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SUMMARY

This thesis introduces the octave-band directional filter bank (OBDFB) and discusses its use

in several applications. The OBDFB is a maximally decimated, perfectly reconstructing filter bank

that is able to discriminate with respect to both radial and angular frequency. Previous filter banks

have been able to capture either radial or angular frequency content, but not both in a maximally

decimated context. Other properties of the OBDFB are its use of separable polyphase filtering and

its ability to use either FIR or IIR filters.

Initially, a brief review of multi-dimensional, multi-rate systems is presented. In particular, the

derivation of directional filter bank (DFB) is presented as background for the OBDFB. The deci-

mated subbands of the DFB still contain radially low frequency information, but that information is

scrambled in frequency space due to modulation and decimation. By applying another filter bank to

the subbands of the DFB, radially high and low frequency content can be separated.

With respect to applications, multi-channel texture segmentation is discussed first. Different

filter bank configurations are tested and compared to the OBDFB with respect to segmentation

accuracy including Gabor filters in the undecimated domain. Next, a novel texture augmentation

algorithm for remote sensing is introduced to increase classification accuracy of hyperpixels in hy-

perspectral data. For the final application, ultrasound despeckling results are provided and compared

between the OBDFB, a traditional wavelet decomposition, and adaptive weighted median filtering.

Finally, a new, non-uniform filter bank is proposed and designed to address many issues per-

taining to the OBDFB. Although it does not have all of the properties of the OBDFB, it does solve

the problem of the DC component being distributed among directional subbands unevenly.
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CHAPTER I

INTRODUCTION

For many years, there has been interest in 2-D signal decompositions with refinable angular reso-

lution, stimulated by established and emerging applications such as object and character analysis,

texture classification, denoising, segmentation, enhancement, and velocity filtering [30, 60, 86, 91].

Such decompositions are also of interest in applications that attempt to exploit directional properties

of the human visual system (HVS) [92, 93].

In parallel, there has been sustained interest in traditional decompositions that separate the spec-

trum into rectangular short and medium bands from 0 to � such as the discrete wavelet transform

(DWT). These decompositions typically result from applying 1-D techniques separably in higher

dimensions. There are numerous applications that take advantage of low frequency, mid-band fre-

quency, and high frequency partitions, the most notable of which are image compression and video

coding.

1.1 Motivation

More recently, there has been interest in decompositions with both radial frequency partitioning as

in the conventional tree-structured filter banks and angular partitioning, each ideally with arbitrary

resolution [4, 21]. Examples of both types of partitioning may be seen in Figure 1.1.

These two objectives can be met simultaneously rather easily using undecimated filter banks,

but the outcome is a highly redundant and data inefficient representation.

A number of efforts have been made to achieve high angular and radial resolution with minimal

redundancy, but virtually all thusfar have been limited with respect to one or more of these objectives

[12, 21, 29]. That is, they will have either limited angular resolution, limited radial resolution,

and/or various degrees of redundancy. For some applications, the additional condition of near shift

invariance is considered, which further constrains the design problem.

In this thesis, a family of fully non-redundant octave-band directional filter banks is introduced

1
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Figure 1.1: Examples of (a) a 3-stage, octave-band decomposition and (b) a uniform, eight-band
directional decomposition.

that provides the flexibility to obtain good resolution both angularly and radially. This family of

filter banks contains a number of useful properties which include maximal decimation; perfect re-

construction; an efficient, separable implementation; the option for linear-phase or non-linear phase;

an arbitrary number of directional and octave-band partitions; and the option of visualizable direc-

tional subbands [65]. Consequently, these filter banks prove to be attractive alternatives to some

of the decompositions currently employed to extract and manipulate directional information for a

variety of applications.

1.2 Organization of Thesis

Background material including discussions of 1-D decompositions and their importance to multi-

dimensional transforms and the directional filter bank are presented in Chapter 2. A thorough under-

standing of the directional filter bank is necessary for the development of the octave-band directional

filter bank.

The octave-band directional filter bank and many of its implementation issues are discussed in

Chapter 3. It is derived from the directional filter bank and is able to decompose 2-D signals with

respect to both radial and angular frequency. Similar decompositions from the literature are also

presented for comparison and completeness.

After the introduction of the OBDFB, three chapters are presented that discuss the results of

2



applying the OBDFB to three different applications: texture segmentation, hyperspectral data anal-

ysis, and ultrasound despeckling (Chapters 4, 5, and 6, respectively). These chapters discuss the

individual applications and provide comparisons between the OBDFB and leading algorithms for

each application.

Additional work pertaining to filter bank theory is presented in Chapter 7. In particular, a non-

uniform rationally sampled multidimensional filter bank is proposed, and the design methodology

is presented. The new filter bank addresses many issues with respect to the OBDFB and DFB as

well as other decompositions.

Concluding remarks and a summary of the contributions of this thesis are presented in Chapter 8

along with suggestions for future work.
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CHAPTER II

BACKGROUND

Filter banks can be designed to have a wide variety of properties. Desirable properties and charac-

teristics of filter banks include:

� Maximal Decimation - the number of coefficients produced by a decomposition is the same

as the number of input samples; this is also known as critically sampled. This property is

associated with computational efficiency as it keeps the number of samples to be processed

to a minimum.

� Separable Filtering - the filtering operations can be performed as one-dimensional filtering

operations on multidimensional data; for images, the filtering typically is performed row-wise

and column-wise. This property is also associated with computational efficiency as separable

filtering is much more efficient than the equivalent non-separable filtering.

� Polyphase Form - an efficient implementation of a decimated filter bank where the filtering is

performed after the downsampling thereby reducing the number of computations.

� Perfect Reconstruction - the coefficients produced by the forward transform can be sent

through the inverse transform to reproduce the original signal without any error.

� Tree Structure - the decomposition is implemented in stages where the output of each stage is

further subdivided. This allows for an arbitrary number of subbands.

Not all of these characteristics are important in every application, but it is this versatility that makes

filter banks so appealing for so many different applications. General discussions on filter banks may

be found in [89].

Tree-structured decompositions that subdivide radially low frequency regions are currently very

popular. Such decompositions are particularly well-suited to processing natural images which tend

to have energy concentrated in radially low frequency regions. One of the limitations of many of
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the tree-structured filter banks is their current use for radial frequency discrimination only; it is not

trivial to provide discrimination with respect to directional information.

The goal of this thesis is to produce a filter bank that can discriminate with respect to both

radial and directional frequencies while maintaining several, if not all, of the previously described

desirable filter bank characteristics. The derivation of such a filter bank resides in the analysis and

understanding of the directional filter bank (DFB) [9]. Although many valuable additions have

been made to the DFB [66, 72, 79], its fundamental features have remained mostly unchanged. The

DFB provides a maximally decimated means of analyzing 2-D signals based on their directional

content, and has other attractive features such as perfect reconstruction. It also can be implemented

efficiently using separable filtering and IIR filters. In [66], Park described a method of reducing the

effects of frequency scrambling (discussed at length in Section 2.3.4) that also provides a method of

rectangularization of the output subband coefficients. However, for all of the DFB’s advantages, it

is still unable to discriminate between radially high and low frequency information in a maximally

decimated fashion. In order to overcome this obstacle, a strong understanding of the inner workings

of the DFB is necessary.

2.1 Traditional Octave-band Filter Banks

Typical wavelet decompositions can bee implemented with separable filter banks. The filter bank

is constructed in a tree structure where only the subbands corresponding to low frequencies are

subdivided. Sample filter magnitudes may be seen in Figure 2.1.

0

magnitude

ππ/2
ω

Figure 2.1: Example of a 1-D octave-band decomposition.

These filters have several attractive properties including computationally efficient polyphase

forms, maximal decimation, separable implementations, and filter flexibility where a variety of both
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FIR and IIR filters can be used.

When these filters are applied row-wise and then column-wise to 2-D signals, they result in

decompositions such as the one shown in Figure 1.1(a). These decompositions are particularly

useful for image processing because of the tendency of natural images to have a large amount of

radially low frequency content. These octave-band decompositions have been very successful in a

number of image processing applications, but they are limited by the fact that they are unable to

discriminate angularly.

2.2 Current 2-D Decompositions with Radial and Angular Frequency
Selectivity

Several 2-D transforms exist that divide the frequency space into directional and octave-band sub-

bands. None of them have all of the properties of the octave-band directional filter bank, but many

of them warrant mention for completeness. We shall limit the discussion here to undecimated trans-

forms as the majority of maximally or partially decimated transforms are more intuitively explained

after discussing the DFB and OBDFB. In any event, the desired passband geometry of all of these

transforms is straightforward. The cortex transform and some representative 2-D Gabor filters are

shown in Figure 2.2 as popular examples. As can be seen in the figure, the passband areas are

situated both radially and angularly.

π

π

−π

1ω

ω2

−π

π

π

−π

1ω

ω2

−π

(a) (b)

Figure 2.2: Illustration of the 2-D spectrum associated with two popular directional transforms:
(a) the cortex transform and (b) 2-D Gabor filters.

Gabor filters, for example, are relatively easy to implement and conceptually simple; they can
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be characterized by the following Fourier transform pair:

h(x; y) =
1

2��x�y
exp

�
�1

2

�
x2

�2x
+
y2

�2y

��
cos(2�u0x);

H(u; v) = A

�
exp

�
�1

2

�
(u� u0)

2

�2u
+
v2

�2v

��
+ exp

�
�1

2

�
(u+ u0)

2

�2u
+
v2

�2v

���
;

where u0 is the frequency of a sinusoidal plane wave along the x-axis; �x and �y are the space

constants of the Gaussian envelope along the x and y axes, respectively; �u = 1=2��x and �v =

1=2��y ; and A = 2��x�y [41]. Filters h with arbitrary orientations are obtained by a rotation of

the x � y coordinate system. The Fourier representation H is a bit more obvious in the sense that

it is clearly a pair of Gaussians oriented in a particular direction with some radial center frequency.

The directional partitioning in addition to the octave-band structure is apparent in the figure as well

even though the filters themselves are far from ideal with respect to well defined passbands and

passband overlap.

Although these decompositions are straightforward to implement, they have several disadvan-

tages. They are data expansive as each subband is simply a filtered version of the input and there is

no downsampling. Therefore the expansion is by a factor of the number of channels in the decompo-

sition. Additionally, because the passband geometries necessary to capture directional information

are nonrectangular, a separable implementation is not possible. Therefore computational complex-

ity is relatively high.

2.3 The Directional Filter Bank

The DFB originally was proposed by Bamberger and Smith in [9]. The decomposition uses a tree-

structure of two-band splits to divide the frequency space into wedge-shaped regions that correspond

to spatial directional information. The tree-structure allows for an arbitrary number of directional

subbands to be generated (although the number is typically limited to a power of 2). An eight-band

decomposition can be seen in Figure 2.3. The following sections discuss the inner workings of the

DFB with emphasis on the concepts essential to the derivation of the octave-band directional filter

bank (OBDFB). General information on multidimensional signal processing including sampling

and filtering may be found in ??.

An example of two different inputs being decomposed in one branch of the DFB may be seen
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Figure 2.3: An eight-band DFB illustrating the full-rate subbands (left) and their equivalent max-
imally decimated counterparts (right).

in Figure 2.4. In the figure, the Bamberger polyphase structure is depicted. The first two stages of

the DFB use modulators to isolate the desired frequency regions, and after that, resampling matrices

are used to shape the different branches accordingly.

ω

ω

Qk

Qk

Rn

Qk

Qk

0( )

1( )P

P

−1

equivalent
channel

equivalent
channel

modulation
example

resampling
example

c

modulation
output 1

output 1
resampling

modulation

resampling
output 2

output 2

e
−j ωT

Figure 2.4: The two-band split used in the tree-structured DFB. The traditional polyphase form is
depicted as are the equivalent channels.

2.3.1 Quincunx Downsampling

One of the first considerations for the DFB is the downsampling matrices used in the two-band

filter banks. For now, let us assume that the diamond-shaped passbands shown in Figure 2.5 rep-

resent the regions of interest in the frequency space and that we need a way to downsample them

efficiently. Since we are using two-band splits, one of the important properties of this matrix is

that it downsamples by a factor of 2 and consequently has a determinant whose absolute value is
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equal to 2. Similarly, matrices with a determinant whose absolute value is equal to 1 are unitary

resampling matrices that simply rearrange sample points, not throwing any away. There are several

quincunx downsampling matrices that generate the sampling lattice shown in Figure 2.6 (the shaded

samples) [66]; however, the two most commonly used quincunx matrices create minimal rotation of

the data. A sample input signal is shown in Figure 2.6. The two quincunx downsampling matrices

used are

Q1 =

2
64 1 �1

1 1

3
75 Q2 =

2
64 1 1

�1 1

3
75 : (2.1)

(a) (b)

Figure 2.5: The frequency effects from downsampling by (a) Q1 and (b) Q2.

24 25232221

151412

109876

5432

n

n2

1

2019181716

13

1

11

Figure 2.6: An example of labeled input data where the shaded samples indicate a quincunx lattice.
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The spatial effect that these matrices have when downsampling may be seen in Figure 2.7. In

the figure, the input is assumed to be the signal x[n] shown in Figure 2.6 where n =

2
64 n1

n2

3
75. Then

the result from downsampling by Q1, y1[n] = x[Q1n], may be seen in Figure 2.7(a) and the result

fromQ2, y2[n] = x[Q2n], in Figure 2.7(b). Additionally, assuming that x[n] has a diamond-shaped

region of support in the frequency domain, then the effects of spatially downsampling byQ1 andQ2

may be seen in Figure 2.5. The expansion in frequency space is analogous to 1-D downsampling,

and the counter-rotation is expected because of the inverse relationship between space and spatial

frequency.

13
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1

3

9 5

11

25

23

21 17

1519

n

n2

1

13
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3

71

9

11

15

17

19

21

23

25
n

n2

1

(a) (b)

Figure 2.7: The spatial effects from downsampling by (a) Q1 and (b) Q2.
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2.3.2 Diamond Filters

In order to obtain diamond-shaped regions of support in the frequency domain, filtering is neces-

sary. The actual design of diamond filters has already been discussed in [16], for example, but the

structures used to implement them in a DFB context will now be discussed.

The basic building block of the original DFB is the two-band filter bank using filters with

diamond-shaped passbands and stopbands. Different structures for implementing such a filter bank

may be seen in Figure 2.8. Conceptually, the first example is the simplest because H0(z0; z1) is

simply a diamond filter, and H1(z0; z1) is its complement. Additionally, M is a quincunx downsam-

pling matrix (not necessarily confined to Q1 and Q2), as described earlier. Each of these structures

can provide perfect reconstruction, and each has its own set of properties.

x[n1; n2]

H0(z0; z1)

H1(z0; z1)

y0[n1; n2]

y1[n1; n2]M

M

(a) Typical Two-band Split

x[n1; n2]

P0(z0)P0(z1)

P1(z0)P1(z1)

y0[n1; n2]

y1[n1; n2]

M

M

z�10 �1

(b) Traditional Polyphase Structure

x[n1; n2] �(z0)�(z1) ��(z0)�(z1)

y0[n1; n2]

y1[n1; n2]M

M

z�10

p
2

p
2

1=2

(c) Ladder Filter Implementation

Figure 2.8: Different two-band structures for implementation: (a) the basic structure, (b) the
traditional polyphase structure, and (c) a ladder filter implementation.
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The original DFB used modulators, unitary resamplers, diamond filters, and quincunx down-

samplers in its two-band splits. The input to the two-band filter bank is modulated in the first two

stages or resampled by a unitary resampling matrix in all subsequent stages such that the diamond

filters and their complements would capture the desired frequency regions. Different implementa-

tion structures of the two-band filter bank may be seen in Figure 2.8. The first filter bank is a staight-

forward implementation whereas the next two are polyphase implementations. The polyphase struc-

ture proposed in [9] is shown in Figure 2.8(b) and its analysis filters are described by the following

set of equations:

H0(!) = P0(M
T!) + exp(jMT!)P1(M

T!);

H1(!) = P0(M
T!)� exp(jMT!)P1(M

T!);

where ! =

2
64 !1

!2

3
75, P0 and P1 are the polyphase filters, and M is the quincunx downsampling

matrix. This polyphase form allows for perfect reconstruction, separable filtering, and the use of

IIR filters that can have guaranteed stability (though not causality). The ladder filter (a biorthogonal

filter bank) implementation proposed in [68] and discussed in [83] is shown in Figure 2.8(c), and its

analysis filters are described by the following set of equations:

H0(z0; z1) =
1

2
(z�2N0 + z�10 �(z0z

�1
1 )�(z0z1));

H1(z0; z1) = ��(z0z�11 )�(z0z1)H0(z0; z1) + z�4N+1
0 ;

where �(z) is a linear phase filter with even length N . To obtain fan filters, we let z0 ! �z0 in the

previous equation.

The ladder structure was used in a DFB implementation in [79] and was shown to provide

advantages similar to those of Bamberger’s polyphase form. However, the ladder structure has the

addition of structurally enforced perfect reconstruction. Both Bamberger’s polyphase form and the

ladder structure allow the diamond filtering to be performed separably in the decimated domain.

However, because of design constraints, the traditional polyphase filters themselves cannot have

linear phase although their equivalent non-decimated filters can, whereas the ladder filters can [3,

68]. This allows for more flexibility when dealing with signal boundaries such as the edges of

images. The linear phase filters in the ladder implementation also provide higher computational

12



efficiency as symmetric (and anti-symmetric) filters can halve the number of multiplies of non-

linear phase filter of the same length. After informally comparing the traditional polyphase form

and the ladder structure, the latter was chosen.
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2.3.3 Resampling Matrices

We now discuss the use of diamond filters to generate directional passbands. Successive applications

of diamond filters in an octave-band structure appears to yield passbands of lower and lower radial

frequency content, not angular frequency content. In order to allow the two-band diamond filter

bank to provide the frequency partitions desired, modulators and unitary sampling matrices are used

to adjust the input of each two-band filter bank such that overall angular frequency information can

be isolated.

Modulating the input by (�1)n1 is simply a shift with respect to !1 by � in frequency space.

For the first stage, this appears to generate approximately directional bands, with regions 1 and 2

captured in one subband and regions 3 and 4 cpatured in the other in Figure 2.9. After the first stage,

modulators serve a similar purpose by allowing the use of diamond filters again in the second stage

shown in Figure 2.10.

H (  )0 ω

H (  )1 ω

2

21

1

2

21

1

4

43

3

4

43

3

1

2
34

1

2
3 4

−j ω0π
e Q

Q1

1

1 1

2

3

4 4

2

3

Figure 2.9: The first stage of Bamberger’s DFB.

However, now the subbands are oriented such that the wedges need to be split down the long way

(see Figure 2.11). In the figure, a single directional subband is shown being split in this fashion.

The way to achieve this is not obvious, but it can be done with the use of diamond filters and

unitary downsampling matrices. For practical application, unitary resampling means that none of
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Figure 2.10: The second stage of Bamberger’s DFB.

the samples are thrown away, simply rearranged. The following matrices are explicitly defined:

R1 =

2
64 1 �1

0 1

3
75 ; R2 =

2
64 1 1

0 1

3
75 ;

R3 =

2
64 1 0

�1 1

3
75 ; R4 =

2
64 1 0

1 1

3
75 :

The effect that they have on downsampling the signal from Figure 2.6 may be seen in Figure 2.12,

and the effect they have in the frequency domain is depicted in Figure 2.13. Once the unitary

downsampling is performed, diamond filters are used to separate the appropriate frequency regions.

Because these resampling matrices reshape the geometry of the input signal in the frequency

domain, the diamond filters are able to isolated desired regions. Also, because the orientations of

the third-stage (shown in Figure 2.14) output subbands are similar to those of the second stage, more
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Figure 2.11: The directional split necessary after the second stage is shown above: (a) the two
directional bands resulting from splitting one of the original 4 directional bands and (b) the equiva-
lent “long” split necessary to perform the splitting operation on the same subband in the decimated
domain.

two-band splits preceded by appropriate unitary matrices may be cascaded to each output to obtain

as high an angular frequency resolution as desired.

This tree structure not only allows for an arbitrary number of splits, it also allows for separable

filtering at each step which is still more efficient than non-separable multi-dimensional filters. For

example, it would still be more efficient to decompose an image using the DFB, and then reconstruct

a single directional subband than to filter an image initially using a non-separable directional filter of

equivalent size. More specifically, to do a 2D-band directional decomposition, using length N 1-D

filters, the DFB would require approximately (4�D�N) multiplies per sample. If non-separable

filters were used, even if they had a similar order filter size of N �N , the number of computations

would be (2D �N �N) per output sample.

16



54321

109876

2019181716

24 25232221

151412

n2

1311
n1

54321

109876

2019181716

24 25232221

151412

n2

1311
n1

(a) (b)

23

8

3

18

13

22

12

7

2

17

21

6

16

1

11

24

14

9

4

19 25

15

10

5

20

n2

n1

23

8

3

18

13

n2

25

15

10

5

2024

14

9

4

19

22

12

7

2

1721

6

16

1

11

n1

(c) (d)

Figure 2.12: Examples of different downsamplings by unitary matrices (a) R1, (b) R2, (c) R3,
and (d) R4.
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(a) (b)

(c) (d)

Figure 2.13: Examples of different downsamplings by unitary matrices (a) R1, (b) R2, (c) R3,
and (d) R4.
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Figure 2.14: The third stage of Bamberger’s DFB.
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2.3.4 Frequency Scrambling

Because of the modulators used in the DFB, radially low frequency information is displaced to

radially high frequency areas as seen in Figure 2.15. This phenomenon is referred to as frequency

scrambling from [65].

(a) (b)

Figure 2.15: Frequency scrambling from (a) the non-decimated equivalent passband and (b) the
maximally decimated subband.

Moving the modulators to the end of the filter bank as described in [7] can mitigate some of

the major modulation effects, however, this requires modulation of the filters themselves instead of

modulation of the signal. So instead of diamond filters, fan filters are used as seen in Figure 2.16.

A different design procedure with the same end-result was introduced in [69].

(a) (b)

Figure 2.16: The fan filters associated with (a) Q1 and (b) Q2 where the shaded regions denote
the passbands.
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To compensate for the remaining displacements from aliasing, Park introduced the concept of

post-sampling (originally referred to as backsampling) in [66]. Post-sampling conceptually uses the

multirate identities to push all of the downsampling operations from each stage of the DFB into

a single downsampling operation by an overall downsampling matrix at the end of the final stage.

This concept is illustrated in Figure 2.17. If this downsampling matrix is followed by a unitary

matrix that downsampled such that the overall effect was a diagonal downsampling matrix, then

the subbands would be rectangular, and the orientation of the directional information would be as

similar as possible to the original information with the constraint that it be maximally decimated.

H (z ,z )0 0 1 Q R

H (z ,z )0 0 1 Q

H (z ,z )0 0 1 Q

(a)

H (z ,z )E 0 1 D = QQ R Q H (z ,z )E 0 1 D  B

(b) (c)

H (z ,z )0 0 1 Q R

H (z ,z )0 0 1 Q

H (z ,z )0 0 1 Q B

(d)

Figure 2.17: Post-sampling illustration (figure from [66]): (a) two paths in an eight-band DFB.
(b) simplified structure, (c) simplified structure with post-samplers, and (d) the original two paths
with the post-samplers.

In order to remove the rotation that occurs after downsampling by Q1 in the first two stages,

Q1 is used for the first stage and Q2 for the second. Then, for the third stage, the post-sampling
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matrices are defined as

B1 = R4; B2 = R3;

B3 = R2; B4 = R1:

For successive stages, the defining equation is

Bn
i =

�h
B(n�1)

i
�1
Rn
i Q

n
i

�
�1

Ti; (2.2)

where

Ti =

8>>>>>>>>><
>>>>>>>>>:

2
64 1 0

0 2

3
75 ; if i = 1; 2;

2
64 2 0

0 1

3
75 ; if i = 3; 4:

(2.3)

Finally, a complete set of DFB coefficients of the input image in Figure 2.18 may be seen in

Figure 2.19. The input image is a 2-D chirp function that effectively provides frequency space

information in the spatial domain. Consequently, frequency passband geometries are observable

directly from the output subbands.

We have discussed the DFB and many of its enhancements including the ladder filter implemen-

tation, frequency scrambling, and post-sampling. These improvements will only help us in the next

chapter where we discuss the DFB and how to add the ability to discriminate with respect to radial

frequency.
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Figure 2.18: A sample input image whose rectangularized DFB coefficients are shown in Fig-
ure 2.19.
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Figure 2.19: An example of the rectangular form of the coefficients of the DFB of the input image
shown in Figure 2.18.
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CHAPTER III

PROPOSED RESEARCH

Although there have been several enhancements proposed and implemented for the DFB that have

given it advantages over other directional decompositions, the DFB is unable to discriminate be-

tween radially low and high frequency content in a maximally decimated framework. Consequently,

it is not suitable for use in many applications that take advantage of the low frequency concentration

of energy in images, for example.

In this chapter, we propose the octave-band directional filter bank (OBDFB) which is an exten-

sion to the DFB that allows for both angular and radial frequency selectivity. By first applying the

DFB, the OBDFB is then able to isolate radial frequency content within each directional band in a

maximally decimated framework.

3.1 The Octave-band Directional Filter Bank

The underlying goal of the OBDFB is to generate a decomposition that can separate radially low

and radially high frequency content in addition to directional frequency content and simultaneously

retain all of the advantages of the DFB, such as maximal decimation and a separable filter imple-

mentation. An example of an OBDFB may be seen in Figure 3.1.

Conceptually, the OBDFB extracts radial frequency information from the maximally decimated

subbands of the DFB. The application of the DFB accomplishes the goal of providing angular fre-

quency resolution. Because the subbands are maximally decimated, the frequency content of each

directional band is aliased such that it fills the frequency space and warps the frequency slices that

characterize the subbands of the DFB in the non-decimated domain. The filter passband geometries

necessary to achieve the radial frequency partitioning of the decimated directional subbands is mo-

tivated through the illustration shown in Figure 3.2. The shaded region in Figure 3.2(a) shows the

first directional DFB passband (4th quadrant) next to its downsampled representation (Figures 3.2(b)

and 3.2(c)). As is evident from Figure 3.2(a), the dark shaded signal spectrum corresponds to the
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Figure 3.1: A sample decomposition of the OBDFB; the equivalent subbands are shown in the
nondecimated domain, and the shaded subbands represent corresponding octave-band subbands
within a single directional band.

low frequencies while the light shaded regions correspond to high frequencies. This shading is help-

ful in keeping track of the original frequency content of the different subbands in the face of aliasing.

Figure 3.2(b) (as well as Figure 3.2(c)) illustrates how the low and high frequency components are

aliased in the decimated subband domain, and illustrate the crux of the OBDFB.

π

−π

−π

π
ω2

1ω

(a) (b) (c)

Figure 3.2: Example of (a) a single directional band with a gradient to reflect the low to high
frequencies; (b) the same subband in the decimated domain with a four-band DFB overlaid and a
(c) three-band (unbalanced) DFB.

The frequency scrambling discussed earlier is integral to the derivation of the OBDFB. The
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frequency scrambling in the maximally decimated subband is evident in Figure 3.2(b) (and Fig-

ure 3.2(c)); however, if a four-band DFB were applied to the subband in Figure 3.2(b), one of the

subbands of the four-band DFB would contain the original, radially low-frequency information de-

noted by the bold black partition whereas the passbands associated with the radially high frequency

region are indicated with dashed line partitions. If this same procedure is applied to each of the

directional subbands, one obtains a decomposition with both angular and radial frequency domain

separation—an example of which is shown in Figure 3.3. Also, because the DFB generates sub-

bands with similar types of geometries, the radially low-frequency subband would also be oriented

such that another four-band DFB could be used to isolate even lower radial frequency information.

Consequently, this process can be applied indefinitely to the lowest radial frequency subbands to

capture lower and lower frequency content in much the same way the DWT is currently applied to

images with the clear distinction that this procedure is performed on subbands that have already

performed the directional portion of the decomposition.

ω

ω

1

2

Figure 3.3: A depiction of the OBDFB in the non-decimated, frequency domain. The dotted lines
indicate boundaries between subbands where further decomposition is typically unnecessary.

It should be noted that in order to isolate radially low-frequency content, either a four- or three-

band DFB may be used (shown in Figures 3.2(b) and 3.2(c), respectively). However, the subbands
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of a four-band DFB have an equivalent downsampling described by

Q1Q2 =

2
64 2 0

0 2

3
75 ; (3.1)

where Q1 and Q2 were defined in (2.1), whereas the three-band DFB would only have two bands

with the equivalent downsampling as (3.1) and one band downsampled only by Q1. Consequently,

the arrangement of coefficients and visualization is simpler for the four-band case despite the extra

computation.

3.1.1 Type Definition

The OBDFB is based on a tree structure, where each stage involves different resampling matrices

and filters. It is useful to define “type” classifications for the various subbands in order to discuss

each instance succinctly. The geometric descriptions for each class follow directly from the rela-

tionship between subband number and directional band number as seen in Figure 3.4. The type

definition associated with the subband orientation is also in the figure.

For the first stage (n = 1), Q1 is used (Q[1] = Q1), and for the second stage (n = 2), Q2 is

used (Q[2] = Q2). After these two stages, the overall downsampling matrix is described by (3.1),

where it is important to realize that the matrix is diagonal; i.e., the downsampling is equivalent to

downsampling separably by two with respect to both n1 and n2. Additionally, both downsampling

matrices Q1 and Q2 are used to avoid the inherent rotation associated with using either matrix for

both stages. After these stages (n > 2), Q[n] is determined for input subband of type t[n�1] as

follows:

Q[n] =

8><
>:
Q1; if t[n�1] = 2; 3;

Q2; if t[n�1] = 1; 4:
(3.2)

Subsequently, the following resampling matrices are used to provide the proper filtering in the

remaining stages of the tree:

R1 =

2
64 1 0

1 1

3
75 ; R2 =

2
64 1 0

�1 1

3
75 ;

R3 =

2
64 1 1

0 1

3
75 ; R4 =

2
64 1 �1

0 1

3
75 :
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Nondecimated Decimated

!

Type 1 (t[2] = 1)

!

Type 2 (t[2] = 2)

!

Type 3 (t[2] = 3)

!

Type 4 (t[2] = 4)

Figure 3.4: Type definitions from the output of a 4-band DFB in 2-D frequency space where the
decimated subbands are shown modulated by (�1)n1+n2 for clarity.

These type definitions are helpful to keep subband descriptions brief. Also, they will be even more

convenient after the discussion of subband orientation in Section 3.1.2.
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3.1.2 Subband Orientation

An important consideration with respect to the further decomposition of directional subbands (either

for increased angular resolution or separation of radial frequency content) is the orientation of the

subbands. By “orientation,” we mean where the radially low frequency content is and whether or

not the subband has been skewed from its original geometry (beyond was is necessary to keep it

maximally decimated). When doing a purely directional decomposition, this is not as important a

concern because the directional decomposition can proceed perfectly well even if the subbands are

rotated or skewed, but because the octave-band, four-band DFB is added, the orientation becomes

extremely important for consistency.

An example of the problem of orientation is illustrated in Figure 3.5. If the sample shown in the

figure were the final directional stage, the application of a four-band DFB to the original subbands

would yield different geometries for the radially higher frequency subbands which is undesirable

because we would want all of the directional bands to have similar partitions. In order to alleviate

this inconsistency, post-samplers (different from those in [65]) are used to retain consistent subband

geometries.
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Figure 3.5: Post-sampling example for a subband with t = 1 where the subbands have all been
modulated for visual simplicity.

The following are the definitions for the post-sampling matrices P1;t and P2;t (dependent on

type t):

P1;1 = I2, P2;1 = R4; P1;2 = R3, P2;2 = I2;

P1;3 = I2, P2;3 = R2; P1;4 = R1, P2;4 = I2;
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where I2 is the 2 � 2 identity matrix. For computational efficiency, the post-samplers can be com-

bined (or removed in the case of I2) with the resampling matrices that follow in successive direc-

tional decomposition stages. It should be noted that these post-sampling matrices P are different

from Park’s post-sampling matrices B from (2.2) although they can be combined in the same way

that the resampling matrices can be combined with the P after each stage.

It should be noted that the type definitions from Figure 3.4 are preserved after the octave-band

portion of the OBDFB for the radially low frequency components. When performing type enforce-

ment, for n � 2, t[n+1] = t[n]. This is somewhat intuitive after examination of the triangular

geometry of the low-frequency portion of a directional band. Because the overall downsampling of

a four-band DFB is simply a downsampling by two in each direction, the type enforcement is guar-

anteed. This is also useful conceptually, that subbands and their radially low frequency portions

have the same type for successive capturing of low-frequency content.

Finally, Park’s post-sampling is responsible for the rectangularization of subband coefficients. It

is also what allows an intuitive subband arrangement for convenient processing by algorithms such

as zero-tree coding as seen in Figure 3.6.
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Figure 3.6: A sample OBDFB with 8 directions and 3 octave-band splits: (a) the decomposition in
the frequency domain and (b) the subband arrangement. All of the shaded regions correspond to the
same directional band, while the typical octave-band subband arrangement is essentially preserved.
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3.1.3 Computational Efficiency

The OBDFB has many advantages over other image decompositions including the use of linear-

phase filters, perfect reconstruction, and control of both angular and radial frequency resolution.

Gabor filters are representative of many non-decimated decompositions and will be used in the

following example. The greatest advantage of the OBDFB over Gabor filters comes from the com-

putational efficiency and to a lesser extent, reduced memory requirements. Because the OBDFB is

maximally decimated, computations are reduced at each stage in addition to saving memory. Fur-

thermore, its tree structure allows for the use of two-band filter banks that have polyphase forms

that allow efficient separable filtering.

As a simple experiment, it is enlightening to compare the arithmetic complexity of the OBDFB

to a direct form implementation of an equivalent Gabor decomposition. Consider as an example a

decomposition with Nd directions and No octave bands. If the filters are of size N � N , then the

Gabor decomposition would require Nd � No � N � N multiplies per pixel. For a comparable

OBDFB, the number of multiplies for the directional decomposition is 2�N � log2Nd per pixel,

and the number for the octave-decomposition is 2� 2�N � 1�( 1
4
)No�1

1� 1

4

multiplies per pixel. Thus,

a 256� 256 image decomposed using 4 directions and 3 octave bands with filters of length N = 12

would require 113 million multiplies for the Gabor filter bank but only 7.1 million multiplies for the

OBDFB. These savings increase dramatically with filter length N .
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3.1.4 Image Border Processing

Because image borders can introduce discontinuities to processing methods, we address them ex-

plicitly. For a finite-length signal, nothing is assumed about it outside of its range of indices

0 � n < N . In order to filter near the boundaries, values need to be used from beyond the

range of indices. Typical solutions for border processing include zero padding, boundary value

replication, periodic extension, and symmetric extension [64]. Zero padding assumes signal values

of zero outside of the range; boundary value replication is similar except that it assumes values

equal to the value of the closest boundary sample; periodic extension simple treats the signal as an

infinite-length periodic signal with length N where the original signal is simply repeated; symmet-

ric extension first mirrors the original signal at the boundary and then periodically extends this new

signal. Because it removes discontinuities at signal boudaries [8, 87] and can also be extended to

images, symmetric extension is highly desirable and is used in this thesis when applicable.

Currently, because of the separable processing, image borders are being handled in an “incon-

sistent” fashion. An example of this effect is shown in Figure 3.7 where the upper, right corner of

the Lenna image is shown after reconstructing single directional bands using the DFB and an equiv-

alent non-separable FIR directional filter (generated using the DFB). The underlying reason for this

effect is illustrated in Figure 3.8. The inconsistency of the extended point makes the processing of

this image quite different than if a non-separable directional filter were used instead of the DFB.

However, because all of the downsamplings are known, it should be possible to symmetrically ex-

tend in a given direction as shown in Figure 3.8(b). Because the ladder filter implementation is used

(i.e. perfect reconstruction is structurally enforced), this method of symmetric extension is feasible

and provides more control over image border characteristics.

One solution to this discrepancy is to conceptually perform post-sampling first (for subband

rectangularization) and then do the appropriate 1-D filtering now at angles dictated by the post-

sampling matrices. This is presented visually in Figure 3.9. This solution is attractive for several

reasons. The first is that we no longer have to keep track of the “zero position” that is typically

very important for each subband to make sure that the coset vector delays are accurate. Although

the coset vectors will change based on their interaction with the post-sampling matrix, it will be
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(a) (b)

Figure 3.7: (a) This corner section was taken from a Lenna image that was reconstructed from a
single subband of the DFB; (b) this is from the same location of a Lenna image that was filtered by
the reconstructed subband of a DFB of a delta function (as an FIR filter).

(a) (b)

Figure 3.8: The reason behind the image border discrepancy. (a) The type of symmetric exten-
sion being used in the DFB (1-D symmetric extension). (b) The proposed type of extension for
consistency with respect to the original image.

trivial to shift one subband with respect to its polyphase pair. Additionally, symmetric extension

at this point is much simpler because it is the same as the rectangular case. The only change is to

the filtering, but that remains essentially 1-D. It should be noted that this solution only works in the

case of the biorthogonal polyphase form because of its structurally enforced perfect reconstruction.
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(a) (b)

Figure 3.9: One solution is to conceptually perform post-sampling, filter in 1-D at angles corre-
sponding to the post-sampling matrices and then invert the post-sampling.
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3.1.5 Notation

In the first stage of the DFB, the subband that includes the !0-axis is arbitrarily chosen to start as

the 0 subband, and the subband that includes the !1-axis is chosen as 1. Naming proceeds from the

lower right to the upper right of the 0 subband and then from the upper left to the upper right of the

1 subband. This notation is demonstrated in Figure 3.10.

0
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1110

00

000

001

100 101

010

011

110 111

Figure 3.10: The labeling procedure of subbands of an eight-band DFB.

An instantiation of an OBDFB is signified by �ND

SO
, whereND denotes the number of directional

bands in the directional decomposition, and SO denotes the number of octave-band stages.

Furthermore, individual subbands may be referenced by their directional index first and then

their octave-band position. For example, in Figure 3.1, the black subband pair would be referred to

as �8
2(011,LL,LH), and the gray subbands �8

2(011,LH).
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Figure 3.11: (a) A �4
1 OBDFB and (b) the mapping of its coefficients; the highlighted directional

subband in (a) has corresponding coefficients that are highlighted in (b).
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3.1.6 Non-uniform Directional Resolutions

Another advantage of the OBDFB is its ability to change the angular resolution of the radially low

frequency subbands in each direction. Because each low freqeuncy region has the same type t as the

directional band it is in, showing that it is possible to change the angular resolution for one means

it is possible for all of them.

The ability to increase angular resolution in lower frequency subbands is accomplished by

adding two-band DFB analysis sections to the original OBDFB to subdivide the radially low fre-

quency subbands directionally. The overall structure obviously retains the advantages of the OBDFB

and DFB because it still uses the same two-band filter banks from the original DFB. Type assignment

is useful here because the analysis block parameters are determined by the type of the low-freqeuncy

subband which, in turn, was determined to be the same as the type of its corresponding directional

band, a type that is retained even after the octave-band portion of the OBDFB (for low-frequency

regions only). The block diagram may be seen in Figure 3.12, and the equivalent frequency parti-

tioning may be seen in Figure 3.13. The frequency partitioning may also be compared to the one

depicted in Figure 3.3 (the OBDFB decomposition before the increase in angular resolution).

2−band DFB
Analysis

2−band DFB
Analysis

HH

HL

LH

LL

DFB

DFB

4−band

HH

HL

LH

LL

DFB
4−band

Figure 3.12: A block diagram for the increase of angular resolution in the low frequency region.

Sometimes it is desirable to reduce the angular resolution for radially lower frequency subbands,

rather than increase the resolution (i.e., have fewer directional subbands for radially lower frequency

regions). This is true for decompositions that attempt to emulate the cortex transform [92], for ex-

ample. In this situation, the addition of a two-band DFB synthesis section effectively combines two
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Figure 3.13: An example of an OBDFB with higher angular resolution in the low frequency
region.

directional bands into its “original” lower angular frequency equivalent. The effect of performing

this alteration on the OBDFB from Figure 3.3 may be seen in block diagram form in Figure 3.14

and in the frequency domain in Figure 3.15.

HH

HL

LH

LL

DFB
4−band

DFB

2−band DFB
Synthesis

HH

HL

LH

LL

DFB
4−band

Figure 3.14: A block diagram for the reduction of angular resolution in the low frequency region.

This concept can be taken further by applying it successively to other low frequency subbands

in combination with other octave-band structures or to completely reconstruct the lowest frequency

region, for example. In the latter case, a system like the one shown in Figure 3.14 might be followed

by another octave-band structure (thereby isolating low-frequency content from the newly merged
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Figure 3.15: An example of an OBDFB with lower angular resolution in the low frequency region.

directional bands) and then reconstruct the lowest frequency subbands entirely. The equivalent

decomposition is shown in Figure 3.16 which depicts such a transform.

A benefit of this subband combination method, besides its ability to allow for different angular

resolutions, is that it is not restricted to the OBDFB. Transforms such as the CRISP–contourlet [56]

(described in more detail later) may take advantage of this by combining directional subbands that

are divided along the frequency axes, for example.

Finally, although the OBDFB provides a large amount of flexibility in dividing up the frequency

space, there are situations where the type of split may not be defined until after the signal has been

analyzed. For example, some decision criterion whose output determines whether a directional or

octave-band split is used, may be applied during the image decomposition. This family of filter

banks may be used for that purpose as well. The output of such a hybrid structure may be seen

in Figure 3.17. It is accompanied by a block diagram of the filter bank components illustrated in

Figure 3.18.
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Figure 3.16: An OBDFB where the low frequency regions were first combined once to reduce the
angular resolution, then fully reconstructed.
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Figure 3.17: An example of an octave-band DFB decomposition whose structure appears in Fig-
ure 3.18.
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Figure 3.18: The associated diagram with the example shown in Figure 3.17.
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3.1.7 Implementation

Actual implementation of the octave-band DFB successfully produced subbands with the desired

passbands. For future reference, unless otherwise noted, the filter coefficients for �(z) from Fig-

ure 2.8(c) were generated using the Parks-McClellan algorithm in Matlab:

beta = remez(11, [0, 0.8, 1, 1], [1, 1, 0, 0]);

resulting in the following coefficients:

�(z) = [�0:0144; 0:0272;�0:0526; 0:0972;�0:1929; 0:6300; (3.3)

0:6300;�0:1929; 0:0972;�0:0526; 0:0272;�0:0144]; (3.4)

which were then modulated by (�1)n in order to produce hour-glass filters (instead of diamond fil-

ters) whose orientations were dependent on the quincunx matrix (and coset vector) used for down-

sampling.

A sample octave-band DFB subband displayed in the non-decimated frequency domain may be

seen in Figure 3.19. The radially low frequency region was isolated from the rest of the directional

band as described in Section 3.1.

−π

−π

π

π
ω1

ω2

Figure 3.19: A sample frequency response of the analysis filters of a passband of the OBDFB �41.
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Residual shadows can exist in radially higher frequency passbands, along the boundaries of the

directional band in Figure 3.19, because of the passband orientations relative to one another and the

nonidealities of the filters used. The orientation of an arbitrary directional subband may be seen

in Figure 3.20 in the decimated domain. If the four-band DFB were applied to perform an octave-

band split, the radially low frequency area would be captured in one of its subbands. However, that

particular subband would have boundaries adjacent to the radially high frequency areas as indicated

in the figure. Those boundary effects cause the shadows in the non-decimated domain. The impact

of these shadows can be minimized, however, simply by applying filters with tighter transition

bands.
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(a) (b)

Figure 3.20: Shadow mapping of the OBDFB.

The DFB, when applied to an image, is effective in isolating directional information, as illus-

trated in Figure 3.21. The original Cameraman image is shown in (a) next to the subband depicted

in Figure 3.19, shown in (b). As noted earlier, because the image in (b) is a subband in the decimated

domain, frequency scrambling is present. The image was modulated, however, to restore DC to the

center of the frequency cell. Strong directional information may be seen at the edges of the lower

jacket as well as the left tripod leg. Additionally, the equivalent non-octave split directional sub-

band is provided in (c), as well as the non-decimated version of (b) in (d) which is visually accurate

because there is no aliasing present.
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(a) (b)

(c) (d)

Figure 3.21: (a) The original Cameraman image (256 pixels � 256 pixels), (b) the subband
(64 pixels � 64 pixels) associated with the passband shown in Figure 3.19, (c) the purely direc-
tional subband (128 pixels � 128 pixels), and (d) the non-decimated version of (b).
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3.2 Other Decompositions

There are several other decompositions that divide the frequency space both angularly and radially.

The transforms shown in Figure 3.22 were chosen because of their similarities to the OBDFB.
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(b) CRISP–contourlets
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(c) Non-uniform DFB

Figure 3.22: Other decompositions with both angular and radial frequency discrimination.

Bamberger Pyramids were originally introduced in ?? and then later introduced in [21] as

curvelets using pyramidal directional filter banks (PDFB) by Do and Vetterli. They are discussed at

length in [22], and a sample decomposition is shown in Figure 3.22(a). Using a Laplacian pyramid,

the DFB is applied to the radially high frequency subbands at the desired angular frequency resolu-

tion. This decomposition is flexible in that regard, and it is relatively simple to implement as both

the Laplacian pyramid and DFB are computationally efficient. However, because this decomposi-

tion uses the Laplacian pyramid, it can increase the number of coefficients by up to 33%; i.e., it is
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data expansive. For applications such as compression, this is extremely counterproductive.

More recently, Lu and Do introduced CRISP–contourlets in [56] (Figure 3.22(b)). Like the

OBDFB, it is maximally decimated and can discriminate angularly and radially. And unlike the

OBDFB, it is able to subdivide the radially high frequency subbands into directional subbands (not

the three triangle-shaped regions produced by the OBDFB). Conceptually, this is achieved by de-

composing the output subbands of a DFB by a non-uniform filter bank. The main problem with

CRISP–contourlets is the implementation. Because the OBDFB was based on diamond (hour-

glass) filters, it has an extremely efficient implementation. CRISP–contourlets, however, rely on

non-separable filters that do not (currently) have a useful polyphase form. Additionally, this decom-

position does not solve the propagation of the DC problem inherent to the DFB.

A non-uniform DFB (nuDFB) was presented by Nguyen and Oraintara in [63] (Figure 3.22(c)).

Unlike the other decompositions, the nuDFB has non-uniform subband geometries as well as non-

uniform downsampling (the radially low frequency subband is downsampled by a factor of 2 whereas

the radially high frequency directional subbands are downsampled by a factor of 8). This decompo-

sition appears to have similar properties to the PDFB; however, it does not divide subbands along

the major frequency axes and it is not data expansive. Unfortunately, in its current form, it does not

provide perfect reconstruction and it does not have an efficient implementation. Another problem

is its lack of flexibility. Because the other transforms are based primarily on the DFB, arbitrary

numbers of directional subband (powers of two) are archievable. The nuDFB requires a minimum

of six directional bands that require specialized filter banks if greater angular resolution is desired.
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CHAPTER IV

TEXTURE SEGMENTATION

The ability to classify the pixels of an image based on their surrounding pixels and textural cues

plays a significant role in a number of image processing applications such as medical image pro-

cessing, remote sensing, and computer vision. Typically, texture classification is divided into two

subproblems: feature extraction and classification. This chapter focuses on the feature extraction

aspect of the texture classification problem. More explicitly, filter banks and wavelets are able to

generate features from images by decomposing them based on different frequency regions. By pro-

cessing each subband and stacking the outputs, feature vectors can be formed. But with so many

different decompositions, criteria must be defined to narrow the possibilities.

The discrete wavelet transform (DWT) has enjoyed success in the field of texture classification.

Randen and Husøy [71] did an extensive study of filter bank and wavelet decompositions used in

texture classification. Their experiments primarily tested different filter types while varying subband

geometries over only four patterns.

Another common approach to texture segmentation and analysis is to use a polar-logarithmic

Gabor filter bank where each Gabor filter represents a separate frequency channel thereby mimick-

ing the human visual system (HVS). This approach is well-established for the texture segmentation

problem [41] and has been used in a wide variety of texture analysis systems and has been analyzed

with respect to a number of aspects already [19, 35]. One of the major reasons to use Gabor filters

is because of its emulation of the cortex transform [92]. A side-by-side comparison is shown in

Figure 2.2 where the analogous subband structures are evident. Additionally, Gabor filters are rela-

tively easy to implement and conceptually simple. For the purposes of this chapter, the Gabor filter

system will be considered the gold standard.

Other decompositions have been used for the texture segmentation problem such as the di-

rectional filter bank (DFB) used by Rosiles in [81]. Although the DFB is unable to provide an
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octave-band decomposition, its ability to discriminate angularly still allowed it to extract meaning-

ful features in a maximally decimated and computationally efficient manner. The success of both

the DFB and Gabor filters (along with a myriad of wavelet decompositions) provides a strong case

for multichannel approaches to texture classification, and in particular, results obtained using the

DFB indicate that there is not necessarily a large trade-off between computational efficiency and

high classification accuracy.

As seen in [38], the octave-band directional filter bank (OBDFB) is able to capture similar di-

rectional and octave-band information as Gabor filters in a maximally decimated fashion in addition

to having a computationally efficient implementation also requiring less memory than overcomplete

decompositions. The purpose of this chapter is to provide a comparison of the features extracted by

the OBDFB and other decompositions and to analyze actual texture segmentation results.

4.1 System Overview

There are many different configurations used for texture classification using filtering techniques;

however, fundamental aspects of such systems are shared. System complexity was a factor in the

choice of components, but the underlying units are typically the same from system to system. After

the input image is decomposed, local energy estimates from each subband are used to create feature

vectors which are then classified. Because the purpose of this research is to compare the OBDFB

with other decompositions, the system was made as modular as possible such that switching between

the decompositions was easily accomplished. As for Gabor filter bank parameters, the � values were

chosen to obtain even coverage of the spectrum given the number of directions and octave bands.

Ultimately, the overall texture classification system from [71] was used with minor adjustments.

For energy estimation, the square-magnitude of the subband coefficients is smoothed in both the

horizontal and vertical directions by using a Gaussian smoothing filter of the form

hG[n] =
1p
2��s

exp

�
�1

2

n2

�2s

�
; (4.5)

where

�s =
1

2
p
2f0

; (4.6)
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where f0 is the normalized radial center frequency of the subband being processed [71]. Although

there are different methods for choosing f0 for each subband based on its frequency-domain geom-

etry, the best empirical results came from choosing f0 such that �s = 8, and that value was used

for the experiments presented in this chapter. The log is then taken of the smoothed data (although

different nonlinearities can be used). A filter providing a higher amount of smoothing was used with

the OBDFB because of the manner of subband aliasing that occurs from decimation.

The decimated decompositions used typically had subbands that were of different sizes (i.e.,

subbands at different scales had different sizes). In order to generate features corresponding to

every pixel of the original image, the decimated subbands were interpolated using zero-order hold

as shown in Figure 4.23. To remain consistent between the decimated and undecimated transforms,

smoothing was performed after the resizing to keep the computational comparison purely an aspect

of the decompositions and not any post processing.

(a) (b)

Figure 4.23: (a) The subbands of a typical filter bank decomposition. (b) The reshaped and
rearranged subbands creating feature vectors.

For the OBDFB and Gabor filter bank decompositions, the low frequency region was removed

separately with a normalized cut-off frequency of �
16 and processed as its own dimension within the

feature vector. This was necessary for both transforms as the Gabor filter bank implementation used

excludes the low frequency region and the OBDFB tends to channel the DC energy into a single

directional band thereby skewing the energy distribution among the directional bands. The other

decompositions did not require this preprocessing step.

For classification, type 1 learning vector quantization (LVQ) used by Randen [71] was em-

ployed. The basic principle of LVQ is to move codebook vectors closer to training data points that
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correspond to the same class and further away from training points from different classes during

codebook generation/training. If mi represents the codebook vectors, then some vector x is de-

clared to be in the same class C as the nearest mi which will be denoted as mn. The training

process is described for input x[k] (where k denotes time) as

mn[k + 1] =

8><
>:

mn[k] + �[k](x[k] �mn[k]); if x;mn 2 C;

mn[k]� �[k](x[k] �mn[k]); otherwise;

where 0 < �[k] < 1 and �[k] may be constant or decrease monotonically with time, and the mi for

i 6= n do not change. The number of codebook vectors used was 800, and the training data was kept

strictly separate from the test data.

After codebook generation, each of the test vectors was assigned to a class according to com-

parison with the codebook vectors, and texture maps were generated.

4.2 Experiments

The following experiments were used to compare the performance of the OBDFB to that of other de-

compositions. Because of the modularity of the texture segmentation system, the only modification

between tests was usually the change in decomposition.

4.2.1 Test Images

All of the test images are shown in Figure 4.24. They consist of five five-texture images, two

16-texture images, two 10-texture images, and three two-texture images (shown respectively in

Figures 24(a)–24(l)). These are the same textures used in [71] and [75]. Because the overall systems

are very similar, direct comparison with their results is possible.

4.2.2 Alternate Decompositions

The different subband decompositions used in addition to Gabor filters for comparison are shown

in Figure 4.25. The overriding intent of using these decompositions was to compare subband ge-

ometries, not filter design techniques. Consequently, two-band filter banks similar to those used

in the OBDFB were used to generate these decompositions with the same 1-D biorthogonal filter

bank coefficients from Section 3.4 (12-tap, linear-phase, etc.). The main differences involve the
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effective downsampling matrices as these filter banks act separably on the rows and columns and

downsample accordingly.

As previously mentioned, the � values for the Gabor filter banks were chosen to obtain even

coverage of the spectrum given the number of directions and octave bands. Additionally, the Ga-

bor filter passbands were chosen such that they correlated as closely as possible to the equivalent

OBDFB passbands. In the case of the radially high frequency areas, a single Gabor filter was used

to approximate the corresponding three OBDFB subbands. The exception to this was the implemen-

tation of a 6-direction Gabor filter bank as this is a common configuration for texture segmentation

and was included for completeness.

4.2.3 Results

Two scoring methods were adopted for direct comparisons with [71] and [75]. The first score is

percent inaccuracy which is simply the total number of incorrectly classified pixels divided by the

total number of pixels. The second score was presented in [75] and is the average ranking with

respect to each method (where a rank of 1 corresponds to the highest performance).

The average decimated transform results are shown in Tables 4.1 and 4.2 (the full results are

shown in Tables 4.5 and 4.6). Although the OBDFB has the highest overall performance with 4

directional bands and 2 octave-band splits (followed closely by the 8 directional, 2 octave-band

decomposition), the largest margin of improvement is in the 10-texture case. Although there are

only two test cases here, the OBDFB more than halves the percent inaccuracy of the best performing

ladder implementation.

Another interesting trend in the decimated case is the fact that inaccuracy tends to increase after

2 octave-band divisions. This could be due to a number of factors. First, the number of bands is

increased with this extra split, and the classifier may not perform well because of this. The fact that

the number of bands doubles when we move from 4 to 8 directional bands would seem to nullify

this argument, but it could still be that the trade-off of useful information in this frequency range

does not offset the increase in number of features. Second, the increase in number of subbands

indirectly affects the size of the subbands where an extra octave-band split will reduce the smallest

subband size by a factor of 4 (2 in each direction). Reducing the effective subband resolution only
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Table 4.1: Average texture segmentation results (% inaccurate) using critically sampled trans-
forms. The decompositions are labeled first by type, then by number of directions and number of
octave bands, respectively.

Decomp.
Number of Textures

all5 16 10 2

Filter Bank A 21.5 43.1 63.8 6.8 28.5
Filter Bank B 23.6 45.6 63.6 6.1 29.6
Filter Bank C 28.4 52.5 68.9 9.2 34.4
Filter Bank D 20.5 37.3 63.3 5.5 26.7
OBDFB 4,0 37.8 61.6 50.4 6.0 35.9
OBDFB 4,1 25.4 42.3 30.1 3.3 23.5
OBDFB 4,2 23.0 38.9 29.7 3.6 21.9
OBDFB 4,3 25.3 43.9 35.3 3.8 24.7
OBDFB 8,0 32.4 48.5 40.0 5.3 29.6
OBDFB 8,1 25.3 40.2 31.5 3.5 23.4
OBDFB 8,2 24.2 38.2 31.0 3.4 22.4
OBDFB 8,3 31.1 43.2 38.2 5.6 27.9

increases the percent inaccuracy. Nonetheless, a happy medium seems to exist at 2 octave-band

splits for either 4 or 8 directional bands.

The average nondecimated transform results are shown in Tables 4.3 and 4.4 (the full results

are shown in Tables 4.7 and 4.8). Technically, the OBDFB performs best in the nondecimated

domain, but the difference between it and the Gabor filter bank is negligible. Because we are

treating the Gabor filter bank as the gold standard, this confirms that the OBDFB can perform well

in the undecimated domain and seems to indicate that the radial/angular frequency decompositions

perform better than either alone.

With respect to the number of octave-band splits, the move from 2 to 3 seems to make little

difference for both the OBDFB and the Gabor filter bank thereby suggesting that there is little

information in that last frequency band. This also suggests that the degredation in accuracy in the

decimated domain is due to the decimation of the subbands.

On average, the loss in accuracy from the best OBDFB scores in the full-rate domain to the

decimated domain is 5%. The trade-off between accuracy and computational savings favors the

computational savings in this case.
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Table 4.2: Average texture segmentation ranks using critically sampled transforms. The decompo-
sitions are labeled first by type, then by number of directions and number of octave bands, respec-
tively.

Decomp.
Number of Textures

all5 16 10 2

Filter Bank A 3.0 5.5 10.5 5.3 5.3
Filter Bank B 5.6 7.0 10.5 4.7 6.4
Filter Bank C 9.0 10.5 11.0 9.0 9.6
Filter Bank D 3.4 3.5 10.0 5.3 5.0
OBDFB 4,0 11.6 12.0 8.0 9.0 10.4
OBDFB 4,1 6.0 6.5 2.5 6.3 5.6
OBDFB 4,2 4.0 3.5 2.0 6.0 4.1
OBDFB 4,3 6.0 7.5 4.5 6.3 6.1
OBDFB 8,0 8.4 9.0 6.0 8.0 8.0
OBDFB 8,1 6.6 4.5 3.5 4.7 5.3
OBDFB 8,2 4.6 2.0 3.0 4.0 3.8
OBDFB 8,3 9.8 6.5 6.5 9.3 8.6

Table 4.3: Average texture segmentation results (% inaccurate) using full-rate transforms. The
decompositions are labeled first by type, then by number of directions and number of octave bands,
respectively.

Decomp.
Number of Textures

all5 16 10 2

Filter Bank A 21.4 37.8 30.1 4.5 21.4
Filter Bank B 20.5 38.9 27.1 4.5 20.7
Filter Bank C 22.9 41.6 28.8 3.6 22.2
Filter Bank D 19.4 34.9 26.1 2.5 18.9
Gabor 4,1 29.2 52.6 38.4 3.1 28.1
Gabor 4,2 19.3 38.7 30.9 2.1 20.2
Gabor 4,3 17.9 36.8 25.3 2.3 18.4
Gabor 6,1 26.6 45.2 33.9 2.6 24.9
Gabor 6,2 18.4 35.2 23.8 1.9 18.0
Gabor 6,3 17.6 34.6 23.8 2.4 17.7
Gabor 8,1 26.5 43.4 32.3 2.5 24.3
Gabor 8,2 18.1 33.8 24.1 2.1 17.7
Gabor 8,3 17.2 34.6 24.2 2.2 17.5
OBDFB 4,0 36.8 62.9 47.0 6.0 35.2
OBDFB 4,1 22.9 34.0 23.6 1.7 19.6
OBDFB 4,2 20.0 33.6 22.5 1.8 18.1
OBDFB 4,3 18.9 35.2 25.9 1.6 18.5
OBDFB 8,0 30.0 50.2 38.8 4.3 28.4
OBDFB 8,1 19.4 33.0 22.7 1.7 17.8
OBDFB 8,2 18.4 32.7 21.4 1.5 17.1
OBDFB 8,3 20.8 34.6 24.8 1.7 19.0
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Table 4.4: Average texture segmentation ranks using full-rate transforms. The decompositions are
labeled first by type, then by number of directions and number of octave bands, respectively.

Decomp.
Number of Textures

all5 16 10 2

Filter Bank A 12.4 13.0 11.5 10.7 11.9
Filter Bank B 11.4 12.0 9.5 10.3 10.9
Filter Bank C 14.4 17.0 11.5 12.7 13.9
Filter Bank D 8.2 6.5 8.5 11.3 8.8
Gabor 4,1 19.2 19.5 19.0 14.0 17.9
Gabor 4,2 8.2 14.5 15.5 12.0 11.4
Gabor 4,3 6.6 11.5 11.0 13.3 9.8
Gabor 6,1 16.4 17.0 16.5 12.0 15.4
Gabor 6,2 7.6 8.5 8.0 9.7 8.3
Gabor 6,3 6.2 8.0 8.0 11.0 8.0
Gabor 8,1 16.0 16.0 14.5 11.3 14.6
Gabor 8,2 7.2 5.0 8.0 10.3 7.8
Gabor 8,3 5.6 7.0 7.5 10.7 7.4
OBDFB 4,0 21.0 21.0 21.0 19.3 20.6
OBDFB 4,1 11.8 6.0 8.0 10.0 9.8
OBDFB 4,2 8.8 6.5 6.0 10.7 8.4
OBDFB 4,3 8.2 6.5 10.5 8.3 8.3
OBDFB 8,0 17.0 19.0 16.5 11.3 15.8
OBDFB 8,1 6.6 6.0 6.5 7.7 6.8
OBDFB 8,2 7.0 4.0 4.0 6.0 5.8
OBDFB 8,3 11.2 6.5 9.5 8.3 9.4

4.3 Summary

The OBDFB provides a computationally efficient alternative to using traditional (and non-traditional)

octave-band decompositions as well as Gabor filters for texture segmentation. Although the result-

ing features are not exactly the same, the most important structures are retained and its classification

results in the decimated domain are comparable even to those of the full-rate Gabor filters, consid-

ering the significant reduction in computations.
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(a) (b) (c)

(d) (e)

(f) (g)

(h) (i)

(j) (k) (l)

Figure 4.24: Texture test images.
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(a) Filter Bank A (b) Filter Bank B (c) Filter Bank C (d) Filter Bank D

Figure 4.25: Different subband decompositions.
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CHAPTER V

HYPERSPECTRAL DATA

Hyperspectral images are gathered by sensors calibrated to different electromagnetic (EM) fre-

quency bands to generate a set of images at different wavelengths. This collective set of images

is referred to as a hyperspectral data cube made up of hyperpixels that are vectors formed by all

of the pixels with the same spatial coordinates varying across the EM bands. Although image seg-

mentation has been treated extensively in signal processing literature, segmentation of hyperspectral

images has received less attention, and because of the high dimensionality, has its own unique chal-

lenges [51].

Texture information is used on a regular basis for segmentation and classification of a hyper-

spectral scene, i.e., dividing up the image into recognizable areas based on physical structures or

surrounding materials. Texture classification methods typically fall into one of two categories: sta-

tistical approaches and filter-based approaches. Focusing on popular filter-based approaches, these

tend to provide good results, but implementation issues may hinder their use with hyperspectral

data. A computationally efficient method would help alleviate some of the already constraining

computational complexity inherent in hyperspectral data.

In this section, we exploit texture information in order to enhance segmentation performance.

We introduce a novel algorithm that incorporates texture features based on different configurations

of the octave-band directional filter bank (OBDFB) originally discussed in [37]. Texture information

and wavelets have been used in the past [52,59,74,84] for hyperspectral data; however, in this paper,

it is used as a supplement to the spectral information in a simple, computationally efficient system.

A popular hyperspectral data set is the “AVIRIS” data set, short for “airborne visible/infrared

imaging spectrometer.” AVIRIS imagery uses 224 contiguous spectral channels with wavelengths

ranging from 400 to 2500 nanometers. Data sets are typically very large because of the high dimen-

sionality of the hyperpixels, and consequently, computational efficiency is a major factor in most

applications regarding hyperspectral data.
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5.1 System Overview

An overall system diagram for the texture augmentation is shown in Figure 5.26. First, texture

features are extracted from a composite image of the input hyperspectral data. Then the original

hyperpixels (or dimension-reduced versions) and texture feature vectors are run through maximum

likelihood (ML) classifiers, independently, where the outputs are the ML “scores” normalized as

probabilities. These scores are then combined and post-processed, and the final classification is

performed. The baseline system follows the top branch in the figure and deals only with the spectral

features of the hyperspectral data. There is the option to perform principal component analysis for

dimension reduction as described in [31]; results are provided for both cases.

Texture Feature
Extraction

Score
Combination

Calculations
Likelihood

Likelihood
Calculations

Classification
processing

Post−

Dimension
Reduction

Component
Principal

Figure 5.26: A block diagram outlining the texture augmentation system.

5.1.1 Dimension Reduction

In order to make the hyperspectral problem more tractable, dimension reduction is often imple-

mented on the hyperpixels. This is done not only for computational savings but also to allow

classifiers to generalize and be able to identify feature vectors outside of those provided in the

training data. For high dimensional systems, more training data is necessary to prevent classifiers

from simply “memorizing” training data for each class. Consequently, dimension-reduced data is a

practical alternative. Although this dimension reduction can take many different forms, one of the

most commonly used algorithms is principal component analysis (PCA). Using this technique, an

optimal transform (in terms of decorrelating the input) is calculated and applied to the data to be

reduced. First, the covariance matrix C is calculated from the training data. Then the eigenvalues

are computed and ordered from largest to smallest as �1; : : : ; �n. In order to perform dimension

reduction, only the first k largest values (k < n) are used. The corresponding eigenvectors are then

used as the column vectors of a transform matrix A, and A is applied to the hyperpixels xi;j as
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follows:

yi;j = ATxi;j ; (5.7)

where yi;j are the dimension-reduced hyperpixels.

It should also be noted that this is the same procedure used to extract the principal component

(k = 1) used in the texture feature extraction.

5.1.2 Texture Feature Extraction

The composite image used for texture feature extraction is constructed by projecting the hyperpixels

onto the principal eigenvector associated with the overall covariance matrix of the training data as

described in Section 5.1.1. This image contains much of the high frequency information associated

with scene topography and the majority of the scene variance [88]. Because the texture features

extracted can themselves be of high dimensionality for single 2-D images, the composite image

is used instead of extracting features for each spectral frame which would cause excessive data

expansion.

The extraction of texture features is accomplished using the method described in [71]. Initially,

a subband decomposition is performed on the purely 2-D composite image. A local energy estima-

tion is based on the log-magnitudes of the subband coefficients, and then smoothing is performed

on each output subband using a Gaussian smoothing filter whose cut-off frequency is determined

by the frequency characteristics of each subband. Finally, the processed output subbands are used

to construct feature vectors by “stretching” and “stacking” the processed subbands as shown in

Figure 4.23. The reshaping of the subbands is particularly necessary for outputs of the DFB and

OBDFB as they can have unusual geometries due to the various downsampling matrices used. How-

ever, they ultimately have rectangular shapes (not necessarily square) when used in conjunction with

the post-sampling from [65].

In particular for the directional decompositions, because multivariable Gaussian pdf’s are as-

sumed, it was necessary to generate texture feature vectors that were rotationally invariant. To this

end, a post-processing technique is used after the original texture feature vector formation. In each

texture feature, the energy associated with the subbands affiliated with a given direction is calculated

for each directional wedge, and then the direction with the maximum energy is placed “first” in the
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vector. Then, depending on which neighboring directional wedge has more energy, the directional

wedges are ordered either clockwise or counterclockwise as shown in Figure 5.27. In this way, con-

sistency with respect to mean and variance calculations is achieved, again, assuming single-modal

Gaussian pdf’s.

ω

ω

1

2

Figure 5.27: Directional feature construction where the darkest subband represents the one with
the greatest energy. In this case, because the directional wedge in the counter-clockwise direction
has more energy of the two neighbors, the coefficients will be taken in that direction.

5.1.3 Likelihood Calculation and Score Combination

The likelihood calculation blocks from Figure 5.26 refer to the likelihood calculations of each fea-

ture with respect to the different classes for both the raw hyperspectral data and the texture feature

vectors. If the classes !n are assumed to have pdf’s p(xj!n), then the likelihoods for each class are

calculated by evaluating that classes’s pdf by the vector in question. These likelihoods are retained

for the N classes. It should be noted that the pdf’s of each class are assumed to be single-modal

Gaussians whose means and covariances are estimated from training data (discussed more in Sec-

tion 5.2.3).

In order to use both sets of likelihoods, they need to be combined in a useful way. To that end,

the likelihood measures are first converted to a posteriori probabilities via Bayes’ theorem where

the a priori probabilities P (!n) are assumed to be equal for all classes since no spatial information
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is being used at this time. Then the product rule is used for the combination as described in [47].

Because the a priori probabilities are assumed to be equal for all classes (there is no reason to prefer

one class to another at this point), the product rule is simplified; the decision rule is to assign the

hyperpixel (and equivalent texture feature vector) to class !j for

j = argmax
n

MY
i=1

P (!njxi);

where M = 2 in this case because there are only two systems being integrated together.

5.1.4 Post-processing

The post-processing technique used on the combined scores is a multiplication of the scores (prob-

abilities) in a particular window surrounding a given pixel. This has the effect of adding in spatial

information to the decision criterion because now a pixel is affected by its neighbors. The window

size was varied, and results for different sizes are given in Section 5.2. Formally, the technique is

described by the following equation:

p0i;j =
Y

(n;m)2Wi;j

pn;m; (5.8)

where pn;m is the vector of probabilities associated with each class for a particular pixel to be

classified at spatial location (n;m), Wi;j is a window of size M �M at (i; j), and p0 is the new

output. This system is a means to include prior information that class labels between pixels should

be consistent; i.e., a pixel is more likely to belong to the same class as its neighbors. The larger M

is, the more neighboring pixels are “considered”; however, if M is too large, the windowing process

will “blur” the scores too much and impair the ability of the classifier to detect different classes in

spatially small regions.

5.2 Experimental Set-up and Results

The experiments used a hyperspectral data set consisting mostly of land features such as bog and

fen as well as different types of vegetation such as jack pine and black spruce. A full description of

the data set, algorithm and parameters, as well as classification results with discussion follow.
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5.2.1 The Data Set

The AVIRIS data set used for training and testing was taken from the Boreal forest in Canada as part

of the Boreas project and has a spatial resolution of 30 m. Three scenes were provided each taken at

three different times of year: 04/94, 07/94, and 09/94. Of the original 224 AVIRIS spectral bands,

179 (168 in one case) were retained and used for both the baseline system (classification using just

the spectral features) and to provide the composite image for texture classification.

Mean vectors and standard deviations of the hyperspectral data set ojp in 07/94 for both the raw

data and for the dimension-reduced data may be seen in Figures 5.28 and 5.29, respectively. While

some of the spectral signatures are relatively unique, the majority of them are quite similar. This

similarity is expected for like classes such as white and black spruce, but unlike classes such as

aspen and fen also exhibit similarities, making the classification problem more difficult. This, in

turn, prompts the use of more features such as texture features to aid in the classification process.
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Figure 5.28: Mean vectors of different classes of a hyperspectral data set where each different
shade of red denotes a standard deviation.

The ground truths of the two different scenes displayed in the results are shown in Figures 5.30
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Figure 5.29: Mean vectors of different classes after dimension reduction where each different
shade of red denotes a standard deviation.

and 5.31. Along with the ground truth, individual maps of each of the classes present in each scene

are also presented. As seen, each class is not represented equally. In Figure 5.30, the classes present

(and their abundance in the scene) are aspen (2.0%), black spruce (13.4%), fen (3.5%), jack pine

(53.5%), muskeg (11.4%), open (12.0%), water (0.1%), tamarack (3.7%), white spruce (0.1%), and

cleared muskeg (0.3%). In Figure 5.31, the classes present (and their abundance in the scene) are

aspen (66.0%), black spruce (14.8%), fen (3.7%), jack pine (3.4%), water (2.7%), tamarack (2.1%),

and white spruce (7.4%).

5.2.2 OBDFB Parameters

Different configurations of the OBDFB may be seen in Figure 5.32. Results using the first three are

presented. The final two configurations produced subbands with very poor spatial resolutions, and

consequently, they were not used during experimentation.
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Figure 5.30: The ground truth for scene ojp.
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Figure 5.31: The ground truth for scene oa.

5.2.3 Training and Testing

The hyperspectral data sets were divided into 20 blocks of size 128 � 128 hyperpixels, and each

scene was tested and trained on individually; i.e., one hyperspectral data set provided one set of

results independent of the other hyperspectral sets. For j; k 2 [1; : : : ; 20], each block bk was used

for testing while training was performed on blocks bj where j 6= k. In this way, we were able to

maximize the use of the provided data. Additionally, the OBDFB was performed on a block-by-

block basis. This also was to maximize the amount of training and testing data available as the

region of support for the filters in the OBDFB would cause potential overlap of testing and training

data.

The baseline system was implemented in two ways. The first way uses the raw hyperpixels, and

the second way uses principal component analysis to perform dimension reduction from 179 (the
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Figure 5.32: The different configurations of the OBDFB used in the experiments; (a) OBDFB 4,0,
(b) OBDFB 4,1, (c) OBDFB 8,0, (d) OBDFB 4,2, and (e) OBDFB 8,1 (where the results from (d)
and (e) were not presented because of the small spatial size of the subbands).

corrected raw hyperpixel length) to 16. In both cases, maximum likelihood scores are generated

after approximating the parameters of the pdf’s of the classes. Both sets of results are presented in

the following section.
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5.2.4 Results

By supplementing the classification of hyperpixels with the texture feature information, accuracy

was generally increased. The results without using dimension reduction and using dimension reduc-

tion may be seen for two hyperspectral scenes in Tables 5.9 and 5.10, and sample output maps may

be seen in Figures 5.33 and 5.34. The experiment was performed over 3 different sets of parameters

for the OBDFB that were shown in Figure 5.32. The number of directions were either 4 or 8; in the

case of 4 directional bands, 0 and 1 octave-band divisions were used; and in the case of 8 directional

bands, no octave-band divisions were used. More octave-band divisions had been tested, but be-

cause of the maximal decimation, more divisions correspond to spatially smaller subbands that are

sometimes too small to be usable. Additionally, overall results for all of the data sets are presented

in Table 5.11, and confusion matrices for the ojp scene in 07/94 are presented in Tables 5.12–5.15

for the raw data, dimension-reduced data, and the equivalent texture-augmented systems.

By reviewing Tables 5.9 and 5.10, approximate increases in accuracy of 15% and 3%, respec-

tively, is obtained for two different hyerspectral scenes. The texture augmentation seems to factor in

at least some spatial information as it tends to have a smoothing effect. However, it is acting as more

than a smoothing filter as seen in the maps shown in Figures 5.33 and 5.34 (i.e., the maps associated

with the two scenes associated with the tables). For the ojp scene, the increase in classification ac-

curacy comes from the correct classification of classes that are more abundant, such as jack pine, for

example. In the center of the image, for example, we expect the OBDFB to add texture information

for that large area of jack pine. For the ojp scene, only a slight increase in classification accuracy

is shown in Table 5.10. However, the algorithm is still outperforming typical processing techniques

that act solely on the scores generated by the baseline system. A simple processing technique after

the baseline sytem would have misclassified some of the aspen pixels around the bodies of water.

However, the texture augmentation system was able to correctly identify these regions as aspen.

The overall results for all the scenes over all the times are shown in Table 5.11. In general,

the texture augmentation algorithms performed best for 07/94 and 09/94. Although the best results

were shown for the ojp scene, there are slight improvements in the other scenes, and many of them

are similar to the ones demostrated in Figure 5.34 where the improvements were not necessarily
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(a) (b)

(c) (d)

(e) (f)

Figure 5.33: Maps for the ojp scene in 07/94 associated with (a) the principal component, (b) the
ground truth, (c) the baseline system, (d) the OBDFB with 4 directions and 1 octave-band division,
(e) the baseline system using dimension reduction, and (f) the OBDFB, all with a post-processing
window size of 7.

shown in percent accuracy. Additionally, a similar conclusion to the one found in [71] is that the

decompositions with more subbands (in the high frequency regions, in particular) appear to perform

the best overall as the best scores were generally achieved by the 4 direction, 1 octave-band division

case. This obviously was balanced with the subband spatial resolution issue discussed earlier.

As for the confusion matrices in Tables 5.12–5.15 for the raw data, dimension-reduced data, and

the equivalent texture-augmented systems, the greatest performance boosts involved the most abun-

dant classes. For example, comparing the classification accuracy of jack pine in Tables 5.12 and 5.14

(i.e., the baseline system without dimension reduction), we see a big increase since the baseline sys-

tem had misclassified 48:8% of the jack pine as open. This is also evident in Figure 5.33 in the

center of images (c) and (d). These large areas are excellent candidates for texture augmentation
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(a) (b)

(c) (d)

(e) (f)

Figure 5.34: Maps for the oa scene in 07/94 associated with (a) the principal component, (b) the
ground truth, (c) the baseline system, (d) the OBDFB with 4 directions and 1 octave-band division,
(e) the baseline system using dimension reduction, and (f) the OBDFB, all with a post-processing
window size of 9.

because they provide enough area for texture extraction to train and test well. At the same time,

classes that are not abundant or that are spread thin spatially suffer in the sense that few pixels were

identified as those classes regardless of accuracy. This is evident in Tables 5.14 and 5.15 where very

few (not necessarily zero because of the precision) pixels were classified as water, tamarack, white

spruce, or cleared muskeg. In any case, for this scene, the texture augmentation system was able to

increase accuracy for the majority of classes.

In addition to performing the experiments over different OBDFB parameters, the window size
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in the post-processing block was varied, and one set of results are shown in Figure 5.35. These were

plotted for the ojp scene in 07/94 for all the configurations of the OBDFB tested.
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Figure 5.35: (a) The accuracies with respect to the post-processing window size for the baseline
system and the three OBDFB configurations used for texture augmentation. (b) The accuracies with
respect to the post-processing window size for the baseline system using dimension reduction and
the three OBDFB configurations used for texture augmentation.

It was also noticed that the texture features, when classified independently, had more trouble in

the upper regions outside of the aspen area. This is somewhat intuitive as there are many transitions

in that area and the region of support of the equivalent filters is relatively large. This addresses

a potential hindrance as there were not particularly good instances of large sections of each class
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to train over. There certainly are some areas that are entirely one class, but the fact that a maxi-

mally decimated filter bank is being used means that the resolution is getting lower for the smaller

subbands.

5.3 Summary

In this paper, the OBDFB was used to extract texture information that, in turn, was used to increase

classification accuracy of land features in hyperspectral scenes in a computationally efficient man-

ner. The various scores for each class for both the baseline system and for the texture feature vectors

were combined using the product rule in a maximum likelihood context. Future work may involve

the decomposition of more composite bands with a more complex dimension reduction scheme for

the resulting large feature vectors.
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CHAPTER VI

ULTRASOUND DESPECKLING

Ultrasonic imaging is noninvasive, low-cost, portable, and real-time. Because of these characteris-

tics, it is becoming more and more popular as a medical diagnostic tool. Image quality is therefore

extremely important to maximize its effectiveness for diagnoses. The speckle that is inherent to

ultrasound imagery reduces image quality as well as the ability of a human observer to discriminate

fine details [2]. Additionally, it is arguable whether or not speckle presents any relevant information

at all.

Many different speckle reduction algorithms have been proposed; however, we focus our at-

tention on real-time systems. Adaptive weighted median filtering, for example, has received much

attention in the literature because of its good results and simple implementation [44, 55]. Wavelet

thresholding [13, 14, 36, 82] has also received attention because of its computational efficiency and

success in natural image denoising.

However, we propose a new despeckling system based on the octave-band directional filter

bank (OBDFB). Advantages of using the OBDFB is superior performance over existing systems,

real-time computational efficiency, and the ability to be appended to already existing systems as a

post-processing step. The purpose of this chapter is to compare despeckling results generated by

the OBDFB and other well-established algorithms.

6.1 Background

The term “speckle” refers to the granular pattern that appears on B-scans in ultrasound imagery.

It is considered to be multiplicative noise (versus additive) and is caused by the scattering of the

ultrasonic beam from microscopic tissue inhomogeneities. Speckle noise is a major limitation of

image quality in ultrasound images. This can be a significant hindrance to medical diagnoses both

by doctors as well as automated computer algorithms because it can obscure fine image details.
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If f [n] represents the speckled ultrasound image, it can be modeled by

f [n] = g[n] � e[n]; (6.9)

where g[n] is the true image, and e[n] is the speckle noise. By taking the logarithm of both sides,

the equation becomes

log(f [n]) = log(g[n]) + log(e[n]); (6.10)

where the noise component is now additive, not multiplicative. This leads to the more common

image denoising problem where the typical assumption is that the noisy image can be modeled as

y[n] = x[n] + �[n]; (6.11)

where x[n] is the original image, and �[n] is additive white noise.

The purpose of ultrasound despeckling is to isolate the true image g[n] (or equivalently, x[n]).

This can be accomplished in a number of ways including wavelet thresholding [13, 14, 36], filter

banks [77], nonlinear diffusion [1], and adapted weighted median filtering [44, 55].

6.2 Wavelet Thresholding

Wavelet thresholding involves the thresholding (typically soft-thresholding versus hard-thresholding)

of computed wavelet coefficients. A separate threshold is computed for each subband and is applied

separately. After thresholding, the inverse wavelet transform is applied.

There are two types of thresholding: hard-thresholding and soft-thresholding. Hard-thresholding

is computed by

xt =

8><
>:

x; for jxj � T ;

0; for jxj < T;
(6.12)

where x is the value to be compared to some threshold T , and xt is the resulting value. Soft-

thresholding is similarly computed by

xt =

8><
>:

sgn(x)(jxj � T ); for jxj � T ;

0; for jxj < T:
(6.13)
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It should be noted that hard-thresholding introduces a discontinuity at x = T whereas soft-thresholding

is continuous over all values of x. Soft-thresholding is usually chosen over hard-thresholding be-

cause of better visual quality. Thus, that is the method we use in our experiments.

The optimal threshold in denoising applications is defined to be the threshold which minimizes

the expected squared error. An acceptable approximation to the optimal threshold is

TB =
�2n
�x
; (6.14)

where �n is the standard deviation of the noise, and �x is the standard deviation of x[n]. The

standard deviation of the noise �̂n can be approximated by

�̂n =
median(jY [i; j]j)

0:6745
; (6.15)

where Y [i; j] are the coefficients of the HH1 subband. Similarly, �x can be approximated by

�̂x = max(�y � �n; 0): (6.16)

The value of �y can be approximated from the observed data.

6.3 Spatially Adaptive Wavelet Thresholding

Although wavelet thresholding as described above performs well, the introduction of a spatially

varying threshold value for each subband has produced some of the best image denoising results to

date [13,14]. The spatially adaptive wavelet thresholding (SAWT) algorithm is based on the idea of

computing spatially local statistics on coefficients with similar context.

Context values Z[i; j] are computed for each coefficient in a subband by taking the mean of the

absolute values of its eight neighbor coefficients and its parent coefficient. These context values are

then used to determine the most similar coefficients and use those to approximate local statistics

such as mean and variance. More formally, for a given subband, Z[i; j] are computed for each

coefficient coordinate (i; j) as previously described. Then these context values are ordered. Finally,

for each context value, L values before and after it in the ordered list are used to approximate its

variance �n[i; j]. Mathematically, this is described as follows:

�̂2x[i; j] = max

0
@ 1

2L+ 1

X
[k;l]2Bij

Y [k; l]2 � �2n; 0

1
A ; (6.17)
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where the Bij is the set of all indices whose coefficients fall within L positions of the coefficient at

(i; j) in the ordered list of Z[i; j]. The purpose is to compute �x[i; j] using data that is as statistically

similar as possible thereby producing the most reliable threshold value.

Finally, the new threshold calculation is

TB[i; j] =
�2n

�x[i; j]
; (6.18)

where it should be noted TB [i; j] varies with (i; j); i.e., the thresholding is performed on a coefficient-

by-coefficient basis.

Originally, the SAWT algorithm also took advantage of the fact that shift-invariant transforms

typically outperformed shift-varying transform for image denoising by using shift-invariant trans-

forms and altering the context and local statistics calculations. For the purposes of performing

real-time image denoising, however, we omit the use of shift-invariant transforms because they

inherently require more system memory (because they are non-decimated) and more computation.

6.4 Experiments

The outputs using the SAWT algorithm and the OBDFB were compared to the original ultrasound

images in addition to the outputs using several competing methods. In order to make fair compar-

isons, alternate algorithms were limited to systems that could be expected to perform realistically in

real time. The different images were compared in subjective AB tests.

6.4.1 Alternate Algorithms

In order to test the performance of the OBDFB for ultrasound speckle reduction, a handful of algo-

rithms was chosen for comparison. The algorithms used were limited to real-time or near real-time

systems.

6.4.1.1 SAWT using a Biorthogonal Filter Bank

The first and most obvious algorithm to compare the OBDFB against is the SAWT algorithm using

a traditional octave-band decomposition. In this case, a biorthogonal filter bank was used for imple-

mentation at four scales of decomposition similar to the configuration in [36]. This amounts to the

original SAWT algorithm using a decimated biorthogonal filter bank.
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6.4.1.2 Adaptive Weighted Median Filtering

Adaptive weighted median filtering (AWMF) [44, 55] is used for comparison because it is the most

used real-time model due to its simplicity, computational efficiency, and good performance. As

expected of median filtering in general, AWMF tends to do a good job of removing speckle noise

and retaining edges in image structures.

The simplest explanation of weighted median filtering involves the weighted median in one

dimension. The weighted median of a sequence fXig is defined as the median of the extended

sequence formed by taking each termXi and repeating itwi times where fwig are the corresponding

weights. If the weight is negative, the value is negated and then repeated by a factor of jwij. For

example, if w1 = 2, w2 = 3, and w3 = �2, and we wish to take the weighted median of the

sequence fX1; X2;X3g, then the equivalent calculation becomes

yWM = median(X1;X1;X2;X2; X2;�X3;�X3): (6.19)

Extending this to multiple dimensions is analogous to the extension of one-dimensional filtering to

multi-dimensions.

For a window size of N �N , the adaptive weights for pixel position (i; j) of the image is given

by the following equation:

wm;n = w0 � g
p
(i�m)2 + (j � n)2�2i;j=�i;j (6.20)

where m and n each vary from �(N�1)
2 to (N�1)

2 , w0 is the central weight, g is a scaling factor,

and �2i;j and �i;j are the local variance and mean, respectively, of the window centered around point

(i; j).

For the experiments, window size N = 9, w0 = 99, and g = 5. Additionally, negative coeffi-

cients were set to zero in accordance with other algorithms.

6.4.2 Results

The images used for the subjective test are shown in Figures 6.36 and 6.37 taken from [67] with

permission. These images were chosen because they are representative of the different types of

ultrasound imagery used in medicine.
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(a) Abdominal Aortic
Aneurysm

(b) Liver/Ascities (c) Pancreas

(d) Complex Breast Cyst (e) Breast Lobular Carci-
noma

(f) Thickened Achilles
Tendon

(g) Calcific Tendinopathy
of Rotator Cuff

(h) 17-week Fetal Profile (i) Endometrial Polyp

Figure 6.36: First set of ultrasound test images taken from [67] with permission.

Only the best performing set of parameters was used for each method; although the different

parameters were varied primarily through published values. For the AWMF, window size N = 9,

w0 = 99, and g = 5 were used and negative weights were set to zero. The decomposition shown

in Figure 25(c) was used for the standard SAWT algorithm which is equivalent to four octave-band

splits. As for the OBDFB, 8 directions and 3 octave-band splits were used.
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(a) Neonatal Head (b) Neonatal Head Bleed (c) Pediatric Liver

(d) Parotid Gland Mass (e) Lymph Node (f) Parotid Gland Ade-
noma

(g) Gortex RGraft (h) Superficial Femoral
Vein Thrombosis/Artery

Figure 6.37: Second set of ultrasound test images taken from [67] with permission.

The subjective tests were set up as AB tests where two images were presented at a time. All

combinations of the original and the outputs processed by the AWMF, standard SAWT, and the

OBDFB were used on the 17 test images. The test was administered on the Internet for simplicity

and had 47 respondents.

The results of the subjective tests are presented in Table 6.16. Sample results of the different

algorithms are shown in Figure 6.38 and in Figure 6.39 with zoom. A strong trend in the results was
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Table 6.16: Ultrasound subjective test results in percent preferred.
Method Original AWMF SAWT OBDFB Overall

Original n/a 87.6 51.1 81.0 73.2
AWMF 12.4 n/a 14.0 26.9 17.8
SAWT 48.9 85.6 n/a 81.7 72.2
OBDFB 19.0 73.1 18.3 n/a 36.8

that the standard SAWT algorithm produced output that was very close to the original input. This

is confirmed in the table where the original and the SAWT output are nearly 50%. The scaling to

the threshold was increased and decreased on a sample set, but ultimately it was left at the original

value as reported in [44]. Because of the small change from the original to the standard SAWT

output, their similar performance is not surprising.

After the initial examination, the results with respect to the OBDFB were disappointing except

against the AWMF; however, similarities between the original image and the standard SAWT algo-

rithm effective translate to the original image outperforming any despeckling whatsoever. This does

not appear to be the case in the sample outputs. In the Figure 6.38, the OBDFB clearly smooths ho-

mogeneous regions such as that near the top of the image yet retains boundaries between obviously

disparate structures such as near the middle of the image whereas the AWMF overcompensates the

smoothing action. This is more obvious in Figure 6.39. This holds true over all of the images.

Possible explanations for the disparity between subjective score and observation include the pool

of testers and the instructions. Very few participants had any medical background or experience

viewing ultrasound imagery. Consequently, their interpretation of the instructions may have led

to ambiguity. The instructions themselves were clear, instructing participants to “Please choose

the image that appears to be LESS NOISY while retaining features such as organ boundaries.”

However, further analysis in a more controlled situation such as a medical doctor comparing an

ultrasound image with ground truth before and after processing is necessary for more conclusive

results.

6.5 Summary

A new algorithm for real-time ultrasound image despeckling is presented. It is a modification of

the SAWT algorithm using the OBDFB. Subjective test results are presented as are a comparison of
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(a) Original (b) Adapted Weighted Median Filter

(c) SAWT using Biorthogonal Wavelets (d) SAWT using the OBDFB

Figure 6.38: Sample ultrasound despeckling results.

sample outputs.
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(a) Original (b) Adapted Weighted Median Filter

(c) SAWT using Biorthogonal Wavelets (d) SAWT using the OBDFB

Figure 6.39: Sample ultrasound despeckling results with zoom.
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CHAPTER VII

MODIFIED OBDFB

As part of this investigations, we explored a modification to the OBDFB structure in an attempt

to better handle the low frequencies and angular frequencies. We examined the potential of non-

uniform and rationally-sampled filter banks [18, 25, 34, 46, 50].

7.1 Non-uniform Rationally-sampled Filter Bank

Although the OBDFB is able to perform angular and radial frequency partitioning in a maximally

decimated framework, it still has some drawbacks. First of all, and this is inherent to Bamberger’s

DFB, energy around DC channels unevenly across the directional bands. Although the OBDFB

addresses most of the area around DC and mid-band frequencies particularly well, without ideal

filters, this leakage is inevitable in the current framework. Additionally, the current incarnation of

the DFB (and OBDFB) generates subband boundaries along the principle frequency axes thereby

dividing the energy there between subbands instead of trying to consolidate that energy into a single

subband.

To address many of these issues, a filter bank with frequency partitions described in Figure 7.40

is proposed. This filter bank removes the low frequency partition by itself thereby removing the DC

energy issue, and it contains directional bands that include the principal frequency axes. These high

radial frequency bands can be further decomposed to provide finer angular resolution if so desired.

Although a similar filter bank was introduced in [63], there are some important property dif-

ferences in the modified OBDFB we consider now. First of all, the cut-off frequency of the low

frequency regions are different. Second, and more importnantly, the decomposition in [63] is re-

stricted to a minimum of six directions whereas the proposed decomposition can have as few as

two. This is useful for further decomposition of lower frequency partitions when a lower angular

resolution is desired.

The proposed structure of the new filter bank is shown in Figure 7.41. The modulators are
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Figure 7.40: The radially low frequency region is denoted Hl and is indicated by the shaded
region near DC; the radially high frequency vertical passband is denoted Hv and is indicated by
vertical lines; and the radially high frequency horizontal passband is denoted Hh and is indicated
by horizontal lines.

included in order to “center” the hexagonal passbands for the vertical and horizontal directional

bands and to avoid aliasing. Notice that the downsampling matrixM is the same for all three bands.

Additionally, we are under the assumption that this is a critically sampled system, and this will be

shown in its design.

M

M

ML

L

lH

H v

H hh

v

(−1)

(−1)

n

n

1

2

Figure 7.41: The non-uniform rationally-sampled filter bank.

To summarize, advantages of this new system include the following:

� Both angular and radial frequency selectivity is achieved simultaneously.

� Frequency scrambling of radially low frequency information aliasing to radially high fre-

quency areas is avoided.
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� Similarly, directional aliasing is avoided.

� Unlike the DFB and OBDFB, this new structure does not propogate DC into a single subband.

� This transform has the potential for further decomposition both angularly and radially (i.e., it

can have a tree structure).

� Directional passbands include the fundamental frequency axes (i.e., does not have subband

boundaries along those axes).

� The new filter bank uses rational sampling matrices for maximal decimation.

Obstacles to the proposed filter bank include the following:

� The filters appear to be nonseparable in both the nondecimated and decimated domains.

� A polyphase implementation is not immediately obvious.

� The downsampling of the two directional subbands requires rational sampling matices (i.e.,

upsampling and downsampling by integer matrices).

� Perfect reconstruction is not enforced yet, and its conditions are unclear (at least relatively

speaking with respect to a non-rationally sampled filter bank).

7.1.1 Design Procedure

This section describes the different considerations in designing the proposed filter bank. Although

the majority of the design process was completed, the actual filter design procedures such as those

discussed in [33] were beyond the scope of this thesis. Related materials may be found in [20, 28,

40, 49, 62].

7.1.1.1 Cut-off Frequency

Let us assume that the cut-off frequency of the low frequency region is !c. We define b to be !c=�

for convenience. Consider first the region denoted by Hv. This region can be modulated so it

appears to be a contiguous hexagon centered at the origin (and repeated every 2�) in the normalized

frequency space. Now the problem becomes finding a rational sampling matrix such that these

hexagons can be packed as seen in Figure 7.42
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Figure 7.42: Different frequency vectors for Hexagonal regions of support.

In order to accomplish this, we define

u1 =

2
64 b+ 1

b� 1

3
75 ;u2 =

2
64 b+ 1

1� b

3
75 ; and u3 =

2
64 0

2� 2b

3
75 : (7.21)

Using

UTV = 2�I; (7.22)

we can find the decimation matrixV for eachU associated with three combinations of vectors from

above. They become

U1 =

2
64 b+ 1 b+ 1

b� 1 1� b

3
75�; V1 =

2
64

1
b+1

1
b+1

1
b�1

1
1�b

3
75 ; (7.23)

U2 =

2
64 b+ 1 0

1� b 2� 2b

3
75�; V2 =

2
64

2
b+1

�1
b+1

0 1
1�b

3
75 ; (7.24)

U3 =

2
64 b+ 1 0

b� 1 2� 2b

3
75�; V3 =

2
64

2
b+1

1
b+1

0 1
1�b

3
75 ; (7.25)

where each of the decimation matrices Vk have det(Vk) =
�2

(b+1)(b�1) .

In Figure 7.43, we see a typical branch of a rationally sampled filter bank. For now, assume that

branch to be Hv . From [17,24,45], if we want to have commutative downsamplers and upsamplers
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for a computationally efficient implementation, we must have LM = ML. If we define H =

L�1M and R = LM�1, then

LM =ML ) LMM�1 =MLM�1 (7.26)

) M�1L = LM�1; (7.27)

and

H = L�1M; (7.28)

= (M�1L)�1; (7.29)

= (LM�1)�1; (7.30)

= R�1: (7.31)

L H(z) M

Figure 7.43: A single branch of a rationally-sampled filter bank.

A convenient assumption to make is that all three branches have the same diagonal downsam-

pling matrix M in the rational portion. Because we need to downsample the radially low frequency

portion by 1
b

in both directions, we can assume that M =

2
64

1
b

0

0 1
b

3
75 without loss of gener-

alization. If it turns out that b is rational, it is still implementable. Another reason this is useful is

because it means that L and M commute which is a necessary condition for an efficient polyphase

form.

Since Vn = L�1M) VnM = L�1, we obtain

L1 = (bV1)
�1; L2 = (bV2)

�1; L3 = (bV3)
�1;

=

2
64

b+1
2b

b�1
2b

b+1
2b

1�b
2b

3
75 ; =

2
64

b+1
2b

1�b
2b

0 1�b
b

3
75 ; =

2
64

b+1
2b

b�1
2b

0 1�b
b

3
75 : (7.32)

In order for the Lmatrices to remain integer, b+12b and b�1
2b must be integers. Thus 1

2 +
1
2b and 1

2 � 1
2b

must be integers. This implies that 1
2b = k + 1

2 and consequently 1
2 = (k + 1

2 )b ) b = 1
2(k+ 1

2
)
=

1
2k+1 , where k is an integer. For k = 0; 1; 2; : : : , b = 1; 13 ;

1
5 ; : : : , respectively. Although b was

allowed to be rational, it actually has the form 1
kodd

where kodd is an odd integer. To maximize the
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area of the low frequency region, we choose k = 0 so that b = 1
3 (i.e., !c = �

3 ). It should be noted

that this is a bit smaller than the usual �2 cut-off frequency.

7.1.1.2 Upsampling Matrix

Now that b is determined, we have

L1 =

2
64 2 �1

2 1

3
75 ;L2 =

2
64 2 1

0 2

3
75 ; and L3 =

2
64 2 �1

0 2

3
75 : (7.33)

The coset vectors of these upsampling matrices are shown in Figure 7.44. Because L1 keeps its axes

orthogonal and only introduces a small amount of rotation, we select it to use for that branch; i.e.,

we define Lv = L1.

n

n

1

2

(a) L1

n

n

1

2

(b) L2

n

n

1

2

(c) L3

Figure 7.44: Coset vectors of the different upsamplers.

Although downsampling by

2
64 3 0

0 3

3
75 is straightforward, upsampling by L1 is not as ob-

vious. The modulated vertical radially high frequency passband is shown in Figure 7.45 along with

its upsampled version without its replicas. The upsampled passband shown defines the necessary

geometry for Hv.

The algorithm from [33] uses objective and constraint formulations to design near-perfect re-

construction filter banks in the spatial domain. It extends the upsamplers in rationally-sampled filter

banks from the filter banks with only downsamplers. If this algorithm is being used, then there are

a few stipulations on the upsampling matrix of the last branch. All of the branches need to start

with the same unitary resampling (i.e., have the same leading matrix in their Smith forms [26, 27]).

First, we decompose Lv . Although we would like the diagonal matrix of the Smith form to be
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L1

(1,0)

(−1/3,2/3) (1/3,2/3)
(−1/4,5/12)

(−5/12,1/4) (1/4,1/4)

Figure 7.45: Upsampling a hexagon in frequency using L1.

2
64 2 0

0 2

3
75 (for simplicity), we can see that this is not possible from the following:

2
64 a b

c d

3
75
2
64 2 0

0 2

3
75
2
64 e f

g h

3
75 =

2
64 2 �1

2 1

3
75

)

2
64 a b

c d

3
75
2
64 e f

g h

3
75 =

2
64 1 �1

2

1 1
2

3
75

)
ae+ bg = 1 ce+ dg = 1

af + bh = �1
2 cf + dh = 1

2

where we know that all of the entries of the matrices must be integers. Obviously, this cannot be the

case with the final set of equations. So instead, after some inspection, we have the following for Lv:2
64 2 �1

2 1

3
75 =

2
64 1 �1

0 1

3
75
2
64 4 0

0 1

3
75
2
64 1 0

2 1

3
75 ; (7.34)

2
64 2 �1

2 1

3
75 =

2
64 1 0

�1 1

3
75
2
64 1 0

0 4

3
75
2
64 2 �1

1 0

3
75 : (7.35)

Since

2
64 1 �2

1 2

3
75 does not have a Smith form with one of the two leading unitary matrices

from above, we use instead2
64 1 2

�1 2

3
75 =

2
64 1 �1

0 1

3
75
2
64 4 0

0 1

3
75
2
64 0 1

�1 2

3
75 ; (7.36)

2
64 1 2

�1 2

3
75 =

2
64 1 0

�1 1

3
75
2
64 1 0

0 4

3
75
2
64 1 2

0 1

3
75 : (7.37)
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We can arbitrarily choose which form to use in the Gardos algorithm which is equivalent to choosing

downsampling by four in either the horizontal or vertical directions. In either case, we choose Lh =2
64 1 2

�1 2

3
75 which orients the hexagon into the same final orientation as Lv (i.e., Hv = Hh).

7.1.1.3 Polyphase Form

The polyphase form for a rational multi-dimensional filter bank [18] provides a computationally ef-

ficient implementation. The following example elucidates the derivation of the polyphase form. We

start with the single branch shown in Figure 7.43. If we assume that jdet(L)j = 2 and jdet(M)j = 3,

we can perform all of the steps shown in Figure 7.46 assuming that all of the coset vectors of M

can be written as ki = Mki1 + Lki2. Additionally, the ji’s are the coset vectors of L. We get

the structure shown in Figure 7.46(a) by substituting in the polyphase form of just the filter H(z)

and the downsampler and by substituting our new form of the coset vectors of M. The transition

from Figure 7.46(a) to Figure 7.46(b) is made by moving the upsamplers and downsamplers across

their respective delays. Because ML = LM, we can commute the upsamplers and downsamplers

(Figure 7.46(c)) and then finally use the polyphase form of the upsampler followed by a filter to get

Figure 7.46(d).

The following vectors were found by doing an exhaustive search where all of the coset vectors

of M were substituted into the ki2’s. Only a single value of ki2 from the coset vectors revealed a
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unique integer solution ki1. For Lv , we have
2
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3
75 = M
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3
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and for Lh, we have
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3
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2
64 0

1

3
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where the equation is of the form ki =Mki1 + Lki2.

7.1.1.4 Further Decomposition

As discussed earlier, further decomposition of the directional bands is possible. In order to keep

the subband divisions from falling on the original principal frequency axes, we can subdivide the

directional bands into thirds as shown in Figure 7.47. After downsampling, these subbands can have

the same geometry as the directional subbands and can be further divided accordingly.
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7.2 Summary

A non-uniform rationally-sampled filter bank was introduced that mitigates many of the disadvan-

tages of the OBDFB. It removes the DC area initially thereby circumventing the propagation of DC

energy into directional bands, and it does not create subband boundaries along principal frequency

axes.
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Figure 7.46: Sample polyphase form derivation from [18]. Assume jdet(L)j = 2 and jdet(M)j =
3 for this example.
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Figure 7.47: Potential further decomposition of the directional bands.
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CHAPTER VIII

CONCLUSION AND FUTURE WORK

The octave-band directional filter bank has been proposed and applied to a number of applications.

Specific contributions to filter bank theory and each application are discussed below. Additionally,

potential future work is presented afterwards.

8.1 Contributions of Thesis

The main contribution of this research was to develop a filter bank that could decompose a 2-

dimensional signal with respect to both radial and angular frequency in a maximally decimated and

computationally efficient manner. The OBDFB is able to achieve this goal in addition to retaining

the separable implementation, perfect reconstruction, and polyphase forms of the DFB because

of its successive applications of a DFB used to capture radially low frequency information from

decimated directional subbands.

We have applied the OBDFB to several applications, the first of which was texture segmentation.

Filter banks and wavelet decompositions have enjoyed a large amount of success when trying to

segment an image into different regions based on texture. The OBDFB was compared to traditional

octave-band decompositions in the decimated domain as well as Gabor filters in the undecimated

domain over a diverse set of test and training data. It was able to outperform the traditional octave-

band decompositions in the decimated domain and perform on par with the Gabor filters which

were used as the gold standard. The computational savings when using the decimated transforms

arguably compensates for the loss in accuracy in that domain.

Similarly, the OBDFB was used to increase classification of hyperpixels in hyperspectral data.

Several sets of ground-truthed AVIRIS hyperspectral imagery from the Boreal forest in Canada

were used for testing and training of a classification algorithm. In the baseline system, maximum

likelihood was used to classify hyperpixels. Using the OBDFB, texture information was added

to the baseline system by combining scores produced first by the baseline system and then by the
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texture system. For both the original and dimension-reduced data, the OBDFB texture augmentation

improved classification accuracy.

Additionally, the OBDFB was used to perform ultrasound despeckling. The speckling that

occurs in ultrasound imagery can be treated in a similar fashion as additive noise in natural images.

Consequently, a modified version of the SAWT algorithm using the OBDFB was applied to a series

of ultrasound images and compared to a traditional wavelet decomposition and an adaptive weighted

median filtering algorithm in subjective A-B testing.

Finally, a non-uniform octave-band directional filter bank was introduced that uses rational sam-

pling to accomodate the non-uniform channels. The design procedure was presented from the initial

subband geometries to the final resampling matrices. This filter bank avoids many of the disadvan-

tages of the DFB and OBDFB but introduces its own set of issues.

8.2 Future Work

There are several open problems with respect to both filter bank theory and design as well as appli-

cations.

� The non-uniform octave-band directional filter bank should be explored in comparison to new

decompositions. Additionally, an appropriate filter design procedure needs to be applied to

create perfectly reconstructing filters. One of the most promising structures appears to be the

ladder filter structure as perfect reconstruction is structurally enforced.

� One of the strengths of the OBDFB is its computational efficiency which is on the order

of traditional, separable wavelet decompositions. Therefore, application of the OBDFB to

real-time video applications should be explored and implemented, even beyond texture seg-

mentation and ultrasound despeckling.

� For three-dimensional signals, an equivalent velocity-filtering filter bank should be explored.

Such a filter bank would generate subbands with conic passband geometries for the higher

radial frequency areas and should also discriminate with respect to radial frequency. Unfor-

tunately, the intuitive subband geometries are not able to be made in a maximally decimated

way; however, alternative geometries should be explored as video processing continues to
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become a staple in signal processing.
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[48] KOVAČEVIĆ, J. and VETTERLI, M., “Perfect reconstruction filter banks with rational sam-
pling rate changes,” in IEEE Proc.: ICASSP, vol. 3, pp. 1785–1788, 1991.
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