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SUMMARY 

Current detection platforms ranging from clinical diagnostics to environmental pollutant 

monitoring often require a time-intensive sample analysis process involving expensive 

equipment and highly-trained staff. This has led to growing demands for faster, less 

expensive, more user-friendly platforms. Bacteria have the potential to meet these needs, 

as they can serve as inexpensive, robust biosensors that can be engineered to detect target 

molecules while providing fast, easily measurable readouts; however, genetic engineering 

efforts can often incite metabolic changes that limit biosensing performance. Cell-free 

bacteria-based biosensors, which use a bacterial protein lysate to perform transcription and 

translation, can avoid many of the challenges of whole-cell biosensor development, but the 

uncharacterized metabolic activity in cell-free systems creates a new set of obstacles that 

must be addressed for effective biosensor design. In this work, I use metabolomics (the 

systems-scale study of small molecule intermediates involved in the chemical reactions 

within biological systems) to address these key challenges in whole-cell and cell-free 

systems to improve their development for biosensing applications. For whole-cell systems, 

I explore the metabolic effects linked to expression and optimization of a well-

characterized biosensor reporter system. For cell-free systems, I characterize their 

endogenous, dynamic metabolic activity and explore the metabolic impacts of various 

system perturbations. For both platforms, I identify key metabolites that limit the utility of 

both whole-cell and cell-free systems and present strategies to address some of the 

limitations in each platform to facilitate improved biosensor engineering and ultimately 

broaden the reach of whole-cell and cell-free bacteria-based biosensors.   
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 INTRODUCTION 

Bacteria-based biosensors have significant potential to address the growing need for 

improved detection platforms. Although researchers have learned to harness and 

manipulate the natural sense-and-respond genetic machinery from bacteria, genetic 

manipulation of these organisms often results in downstream metabolic changes that can 

limit the utility and applicability of bacteria for real-world sensing applications. Cell-free 

biosensors can avoid many of the challenges faced in whole-cell biosensor design; 

however, the fact that we have no idea what kind of metabolic activity even exists in these 

systems creates an entirely new set of challenges that must be addressed to increase the 

generalizability of a cell-free biosensing platform. For both whole-cell and cell-free 

biosensors, understanding the metabolic response to and implications of engineering 

efforts will substantially improve biosensor development. 

1.1 Whole-cell bacteria for biosensor development 

 Biosensors are biological tools that are used to detect the presence of molecules of 

interest and have the potential to expand and improve current diagnostics, drug discovery, 

food monitoring, and environmental control efforts1. Specifically, whole-cell bacterial 

biosensors, which consist of engineered bacteria for detection of target analytes, are 

extremely promising platforms due to their low cost, robust nature, scalability, and genetic 

tractability2. They also have the possibility to transform the field of rapid point-of-care 

diagnostic testing, which provides users with real-time results in an easy to operate, low-

cost platform, as they can reduce the need for expensive equipment and highly-trained 

staff3.  
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 In general, bacterial biosensors consist of two main components: (1) machinery to 

sense and respond to input signals and (2) a system to convert the biological response to 

measurable signal outputs4 (Figure 1). For a biosensor to sense and respond effectively to 

target molecules, the genetic sensing machinery used must be selective and sensitive to the 

target input, and the resulting signal output should be easily measurable over any 

background noise even at low signal levels5. Although natural and synthetic sensing 

systems exist that can be used for the development of biosensors, these systems typically 

require extensive tuning to create a high performing biosensor that can detect the input 

molecule over the desired concentration range6. 

 

Figure 1: Bacterial biosensor overview.  

 Although advancements in synthetic biology (a field of research that aims to design 

and construct biological components to facilitate molecular engineering of cells) have led 

to the development of various tools that can be used to tune the dynamic range of 

biosensors, these engineering efforts can have undesirable effects on the metabolic state of 

the cell. Metabolite responsive transcription factors, two component systems, and 

regulatory RNAs are examples of effective synthetic biology tools that can be used to 

control the output ON- and OFF-states with minimal background noise7. However, these 
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approaches can adversely affect cellular metabolism and introduce cellular stress, which 

could negatively impact biosensor response, making tight control of metabolic state 

necessary to effectively control signal transduction. To regulate metabolic state, byproduct 

formation, environmental stress, and additional energetic burdens on the cell are minimized 

while the rate of output signal production in response to the presence of input is 

maximized8. Efforts to adjust transcription and translation rates, engineer enzymes, 

introduce precursor pathways, and express heterologous genes are examples of techniques 

that can be used to rebalance metabolism for improved biosensor response9, 10. 

 The selection of the signal output known as the reporter is highly dependent on the 

specific needs of the biosensor application due to the unique advantages and limitations of 

each reporter system11. Fluorescent, bioluminescent, and colorimetric reporters are 

commonly used biosensor outputs12, 13. Fluorescent reporters such as green fluorescent 

protein (GFP) are stable, fast maturing outputs, but they require the use of specialized 

equipment for quantification under a specific light excitation. Bioluminescent reporters 

such as luciferase do not require an excitation light source but also requires specialized 

tools to measure the output. In contrast, colorimetric reporters such as β-galactosidase and 

crtA can often be qualitatively visualized by the naked eye. Although quantification of 

colorimetric output can be challenging without equipment5, there exist many cases where 

qualitative results are sufficient, especially for point-of-care diagnostics.  

 Numerous bacteria-based biosensors have been developed using different reporter 

systems that sense and respond to various targets ranging from pathogens14 and clinically-

relevant biomarkers15 to common pollutants16, 17. Yet major challenges remain that can 

limit the utility of whole-cell bacterial biosensors. Because whole-cell biosensors are 
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genetically engineered, they can experience severe stress due to plasmid maintenance, 

intra- and extracellular product toxicity, protein misfolding, and high gene expression that 

have downstream effects on metabolism. This cellular stress can redirect metabolic flux, 

creating a metabolic burden that can lead to decreased cell growth rate or terminal cell 

density, altered membrane composition, plasmid instability, and potentially even cell 

death18. Additionally, membrane permeability can also severely limit the detection range 

of these sensors19. 

1.2 Bacteria-based cell-free expression systems for biosensor development  

 Cell-free expression (CFE) systems have been shown to be a promising alternative 

to overcome these limitations in whole-cell systems20-23. CFE systems provide in vitro 

protein expression using extracted molecular machinery from cells, which can be collected 

from various types of organisms, including microbes, wheat germ, insect cells, and rabbit 

reticulocytes24. However, bacteria-based CFE systems are often used because they are the 

fastest to prepare, produce the highest titers of protein, and are the cheapest to 

manufacture25, 26, with Escherichia coli-based CFE systems being the most popular. 

Bacterial CFE systems can be prepared as purified recombinant elements (PURE)27-29 or 

crude protein extracts (lysates)30, 31. The PURE system uses purified, recombinantly-

produced protein components involved in transcription and translation32, whereas crude 

lysate systems use the cytosolic cellular material from bacteria that is separated from the 

membrane and genomic DNA.  

 Overall, both systems contain the necessary material to produce proteins, while 

lacking the typical whole-cell burdens such as cell division and membrane maintenance. 
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Their open-membrane platform (1) allows for the detection or production of molecules that 

cause cellular toxicity, (2) is easily monitored and manipulated, and (3) enables rapid 

prototyping33. They are even stable at room temperature after lyophilization and can be 

easily reactivated upon rehydration, expanding their applicability for field-friendly point-

of-care diagnostics22. Although both the PURE and crude lysate systems can be used for 

biosensing applications, crude lysate systems can be favorable due to their low cost per 

reaction and the extensive efforts that have already been done to optimize lysate 

preparation methods and reaction conditions34-37. 

 Bacterial crude lysate preparations typically follow the same overall steps: 

culturing cells, lysis, and lysate post-processing (Figure 2). Bacterial cells are typically 

cultured in rich medium such as LB or 2xYT and grown to log phase to optimize protein 

expression while minimizing the production of fermentation products38. At this stage, cells 

can be harvested, and their membranes can be disrupted without damaging intracellular 

proteins. Various approaches can be taken to lyse cells including homogenization39, bead-

beating40, sonication41, and lysozyme treatment42. After lysis, unwanted cellular debris and 

genomic DNA are separated from the crude lysate, which can then undergo further 

processing if desired, including incubation, dialysis, and centrifugation to further improve 

lysate productivity39.   
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Figure 2: Cell-free expression (CFE) systems overview.  
CFE systems are prepared from bacterial cells. Cells are lysed, and the crude extract 
is extracted and processed. This bacterial lysate is combined with a reaction mixture 
and a DNA template to initiate transcription and translation of a target protein, which 
may itself be a product or may catalyze synthesis of a small molecule or another 
product. Figure from Miguez et al, Industrial & Engineering Chemistry Research 
201943. 

 Once the final lysate is collected, CFE reactions can be assembled. Complete CFE 

reactions consist of the protein lysate, a DNA template encoding a target protein or genetic 

circuit, and “reaction mixture.” The reaction mixture contains energy sources, amino acids, 

cofactors, nucleoside triphosphates, tRNAs, substrates and salts. ATP is the primary energy 

source for the reaction, but molecules such as phosphoenolpyruvate, glucose-6-phosphate, 

or 3-phosphoglycerate are added to help regenerate ATP via substrate phosphorylation 

during the reaction44.  

 Many of the recognition elements that have been applied to whole-cell biosensors 

such as toehold switches, aptamers, transcriptional regulators, and antibodies have also 

been successfully implemented in CFE sensors19. This has led to the development of CFE 

biosensors for a broad range of analytes ranging from nucleic acids to detect Ebola45 and 

Zika viruses46, small molecules such as quorum sensing molecules11 and antibiotics20, 

proteins such as alpha-fetoprotein47, and metal ions such as zinc23 and mercury11.  
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 Despite this progress, there are still hurdles in CFE systems that can preclude their 

use for biosensing purposes. Crude lysates are complex, undefined mixtures that are highly 

sensitive to small changes in lysate preparation method, which ultimately affect its activity 

in a CFE reaction. Batch-to-batch variability is a common issue resulting from this 

sensitivity to change that impacts the reproducibility48, scalability26, and standardization49 

of CFE systems. Limited reaction life is another prominent issue, which is thought to be a 

result of (1) depletion or degradation of essential metabolites for protein synthesis, (2) 

accumulation of small molecule transcriptional inhibitors and waste products, and/or (3) 

alteration of lysate pH39, 50. The buildup of unwanted molecules is thought to be in part due 

to the utilization of the substrates for ATP regeneration in the CFE reactions. Although 

these substrates have been shown to greatly improve the overall CFE reaction activity, they 

are thought to lead to an accumulation of inorganic phosphates, which could inhibit protein 

synthesis and reduce the translational life of the reaction51. Although efforts to mitigate 

these issues by exploring different energy sources has been successful at improving 

reaction yield24, they have not completely resolved the issue of reaction longevity. 

Inactivation of expression machinery is not likely to be the cause because continuous CFE 

systems (which constantly replenish the reaction with fresh small-molecule reagents while 

removing reacted small-molecule products) have been able to extend reaction life; 

however, the exact small molecules that lead to this improvement are unknown, and batch 

(not continuous) CFE systems are preferable platforms for biosensing applications. 

Surprisingly, despite the many hypotheses suggesting metabolic-related causes for many 

of the issues in CFE systems, the metabolic profiles of these systems have yet to be 

characterized. 
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1.3 Bacterial biosensor development in our lab 

Recently, our group has used both whole-cell and cell-free bacterial systems for the 

development of point-of-care diagnostic tools, facing the unique challenges of each system 

firsthand during the development of vitamin B12 and zinc whole-cell and CFE biosensors. 

Despite the many advantages of CFE systems for biosensing design, we found for the 

development of a B12 biosensor that whole-cell systems were preferable because they had 

improved sensitivity to B12 due to their natural B12 active membrane importers that 

concentrated the metabolite in the cell52. In contrast, for our zinc biosensor, CFE systems 

were preferable due to their ability to sensitively detect clinically relevant levels of zinc in 

a field- and user-friendly platform. However, the development for both types of sensor was 

limited by the need for extensive engineering efforts to tune their sensitivities and, 

specifically for the whole-cell sensors, to address toxicity related to the production of the 

metabolite pigment reporters53. Although our previous work highlights the utility of each 

platform for the detection of different molecules, we could more easily address issues and 

speed up our progress to create novel biosensors by having a deeper understanding of the 

exact metabolic impacts that our engineering efforts have on our biosensors. 

1.4 Systems biology to address challenges in biosensor design 

 Systems biology, which aims to understand the complexity of biological systems 

by focusing on them as a whole rather than on individual components, is a promising 

approach to study the metabolic effects of genetic engineering on biosensors and has been 

proven to be extremely useful to advance microbial engineering54. Systems-level analyses 

typically use omics techniques that generate large data sets to provide a holistic 



 9 

understanding of the different levels of regulation within a cell and can complement 

synthetic biology approaches for improved biosensor development55, 56 (Figure 3). 

Transcriptomics, proteomics, and metabolomics are popular omics technologies that have 

been used to evaluate cellular physiology in response to microbial engineering. 

Transcriptomics and proteomics focus on studying the RNA transcripts and protein content 

with a cell, respectively, and can provide information on gene expression, regulation, and 

protein interactions that may be impacted by introducing recombinant genetic material57. 

Although these omics techniques provide in-direct measurements of metabolism, the 

changes in transcript- and protein-levels do not directly correspond to changes in 

metabolism58.  
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Figure 3: Systems biology techniques for improved biosensor development.  
Omics techniques and synthetic biology take top-down and bottom-up approaches, 
respectively. Each provide unique and complementary perspectives on biosensing 
systems that can be used to inform optimization efforts. Figure modified from Del 
Valle et al, Frontiers in Microbiology 202156. 

 To directly characterize the metabolite-level changes in biosensors, metabolomics 

can be used. Metabolomics is the study of the small-molecule intermediates of metabolism, 

which is defined as the set of chemical reactions in an organism required to provide energy 

and build cellular material58. Because metabolomics synthesizes the effects of genetic, 

transcriptional, and protein levels of regulation, it provides a downstream, endpoint readout 

of cellular metabolic activity. Although metabolomics has not been widely applied to 

biosensor engineering, it has become a valuable resource to inform genetic engineering of 

bacteria for improved production of valuable chemicals, such as fatty acids59, butanol60, 61, 
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and terpenoids62, 63, highlighting the potential of metabolomics to inform engineering 

efforts for improved bacterial biosensor design. There has also been a recent growth of 

systems-level approaches to better understand the complex, undefined crude lysate used in 

CFE systems. Proteomics approaches in particular have been used by researchers to 

uncover the types of proteins present in the undefined, crude protein lysate64-66, but there 

have been no metabolomics studies of these systems before my work and only a handful 

now67-69. With a better understanding of the endogenous metabolism within CFE systems, 

we would be able to better engineer biosensors.  

1.5 Metabolomics analytical techniques 

 Efforts to characterize the metabolite profile of a sample fall into two classes: 

untargeted and targeted metabolomics analyses. Untargeted metabolomics analyses try to 

measure all of the analytes in a sample, whereas targeted analyses aim to monitor a set of 

metabolites that are defined and annotated70. In this work, I use untargeted metabolomics 

analyses to better capture the entirety of the metabolic changes within the samples studied, 

since I do not know which molecules or classes of molecules are important to whole-cell 

and cell-free bacterial biosensor functionality. 

 For both targeted and untargeted analyses, advanced analytical equipment is 

required to measure the metabolites within the samples. The two most popular technologies 

for this are nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) 

coupled to a separation technique. Due to the vast space of possible chemical structures, 

no single technology can detect all the metabolites in a sample. As a result, researchers 

typically focus on a smaller set of molecules that can be detected with a single technique 
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or combine analytical technologies to cover a larger range of targets. Although these 

analytical platforms are extensively described elsewhere71-74, they are briefly described 

here.   

 NMR spectroscopy can identify and quantify analytes in a sample without extensive 

sample workup and is non-destructive71. This tool is particularly useful to determine the 

structural properties of molecules and their concentrations with high reproducibility72; 

however, NMR typically has low sensitivity, which in turn requires large sample sizes. 

This large sample size requirement can be logistically challenging to meet and limit the 

utility of NMR for analysis of bacterial biosensor samples.  

 In contrast, mass spectrometry offers a more sensitive approach that requires 

smaller amounts of sample71. Mass spectrometers consist of an ion source, a mass analyzer, 

and a detector73. The ion source is where the analytes are ionized, which then are sent to 

the mass analyzer. The mass analyzer separates the ions based on their mass to charge ratio 

(m/z). Quadrupole, ion trap, and time-of-flight (TOF) mass analyzers are commonly used 

platforms. Quadrupole mass analyzers separate ions by transmitting them down four 

parallel cylindrical rods that have been subjected to an electrical field and provide 

consistent separation73. Ion trap mass analyzers separate ions by sending them through to 

a ring electrode with two end caps that has also been subjected to an electric field. Ion trap 

analyzers have good sensitivity due to their ability to store ions. TOF mass analyzers 

separate ions by accelerating them down a flight tube with a constant kinetic energy that 

allows for mass-based ion separation and has the widest mass range of any mass analyzer. 

After the ions are sent through one of these mass analyzers, the ions travel to the detector, 
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which measures the ions, and the resulting output is used to create a spectrum of the relative 

abundance of the ions as a function of m/z.  

 Because metabolites are often in complex mixtures, mass spectrometers are 

commonly coupled to a chromatography-based separation technique to resolve the 

molecules, allowing for them to be separated by retention time prior to ionization. Liquid 

and gas chromatography are the most popular separation platforms used. Liquid 

chromatography-mass spectrometry (LC-MS) separates molecules based on their 

interactions with mobile and stationary phases and can detect a broad range of metabolites 

with few required sample preparation steps74. LC-MS typically uses soft ionization 

techniques such as electrospray ionization which cause little to no ion fragmentation; 

however, this ionization technique can result in adduct ion formations and less informative 

or comprehensive spectra for analyte identification75. Gas chromatography-mass 

spectrometry (GC-MS) separates molecules based on their boiling points and is ideal for 

measuring volatile metabolites. To improve nonvolatile metabolite detection, 

derivatization of samples is typically required using methods such as methoximation and 

trimethylsilylation, which increase the volatility and thermal stability of metabolites. 

Although the derivatization process is tedious and time intensive, it is highly beneficial 

because it broadens the range of metabolites that can be measured with GC-MS. Because 

GC-MS typically uses electron ionization, which is a hard ionization technique that 

fragments each ion with high reproducibility, more informative spectra can be obtained76.  

 In this work, I use gas chromatography coupled to time-of-flight mass spectrometry 

(GC-TOF-MS) as the primary analytical tool based on its robust sensitivity and 

reproducible metabolite spectra. Specifically, I use two-dimensional gas chromatography 
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coupled to time-of-flight mass spectrometry (GCxGC-TOF-MS), which uses two GC 

columns with different properties connected to a modulator to more effectively separate 

molecules that coelute in the first column, improving the instrument’s overall resolution 

and sensitivity77.  

1.6 Metabolomics data processing and analysis 

Due to the complexity of the data that results from metabolomics measurements, 

multiple data processing steps and various software packages are required that are often 

specific to the instrument being used78. In general, data processing and analysis entails (1) 

peak deconvolution, (2) peak alignment and filtering, (3) analyte identification, and (4) 

statistical analyses. Peak deconvolution aims to separate and create unique spectra for the 

peaks generated by analytes that elute from the chromatography column at the same time79. 

Peak alignment and filtering work to adjust for instrument drift (which is a common 

problem that leads to a change in sample baseline position) by aligning the analytes across 

all the samples and filtering the peaks based on their reproducibility. Analyte identification 

uses in-house or commercially-available spectral libraries to assign a chemical identity to 

the chromatographic peaks based on their spectra. Lastly, for statistical analyses, univariate 

and multivariate analyses can be conducted, and each can contribute significant insights to 

the interpretation of the data. Univariate analyses focus on one variable at a time and 

include tests like t-tests and analysis of variance (ANOVA). These analyses are useful to 

assess the individual metabolites in the data set. Multivariate analyses focus on the data set 

as a whole and include analyses such as principal component analysis (PCA) and partial 

least squares discriminant analysis (PLS-DA)80. These analyses are useful to process the 
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complex data set into a simpler, visual format that can help differentiate between sample 

classes. 

1.7 Contribution of this thesis 

In this dissertation, I use metabolomics analysis via GCxGC-TOF-MS to address key 

issues in whole-cell and cell-free bacteria-based biosensor development. For whole-cell 

biosensors, I explore the metabolic effects of expressing precursor pathways for a pigment 

reporter system in E. coli and identify metabolites that limit this system’s utility. I then use 

this information to move towards addressing some of the limitations by conducting 

medium supplementation-based validation experiments. For cell-free biosensors, I 

characterize the endogenous metabolic activity in E. coli-based CFE systems, which until 

my work had never been fully characterized. I compare the metabolic profiles and 

productivity of differently prepared crude lysates using common preparation methods and 

characterize the metabolic dynamics within CFE systems. I identify key metabolites that 

impact CFE reaction activity that are generalizable to differently prepared lysates derived 

from a variety of strains of E. coli and use these insights to improve reaction performance 

through small molecule and enzyme supplementation efforts, highlighting the importance 

of understanding the metabolic activity of CFE systems for targeted optimization of cell-

free biosensors.  

 

 

  



 16 

 ANALYSIS OF THE METABOLIC IMPACTS OF 

AN ENGINEERED LYCOPENE REPORTER SYSTEM ON 

WHOLE-CELL BACTERIAL BIOSENSORS 

Portions of this chapter are reproduced from my publication “Metabolomics analysis of the 

toxic effects of the production of lycopene and its precursors”81 in Frontiers in 

Microbiology. 

2.1 Introduction 

The use of cells as microbial factories has significant potential in many different 

contexts. The intricate enzyme machinery available in nature enables highly specific 

production of molecules ranging from specialty fuels to pharmaceutical precursors. These 

approaches also have the potential to be more environmentally friendly and sustainable 

than synthetic chemistry and petrochemical approaches, in aspects ranging from solvent to 

energy usage. The field of synthetic biology continues to provide tools that advance the 

forefront of what chemicals cells are capable of synthesizing and how much they are 

capable of making, with ever-increasing titers of ever-more-complex molecules.  

Metabolomics, the systems-scale study of the biochemical intermediates of 

metabolism, can help to inform the development of engineered strains82 through 

characterization of key endpoints and small molecule regulators of cellular state83, 84. While 

metabolomics has proven to be useful in complementing the development of strains 

designed to maximize biochemical production85-87, it has been largely unexplored for 
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biosensor development, which instead focuses on selectively producing high yields of 

reporter molecules in response to a target analyte.  

In recent work, we have sought to develop  low-cost, minimal-equipment biosensors 

for application in the developing world88. Specifically, we have used E. coli as the chassis 

organism for a whole-cell biosensor to measure zinc status in blood samples, with 

biosynthesis of differently colored pigments used as the readout for the sensor. In this 

application, the key challenges to date have included the precise control of production of 

only one pigment at a time, and the complete repression of any pigment production to 

enable a dense, colorless initial inoculum that allows a rapid output response89.  Our lab 

has pursued multiple strategies to limit unwanted pigment production and speed up visible 

pigment production once desired, including precursor supplementation. 

Specifically, we engineered strains that produced negligible visible lycopene in the 

uninduced state and produced unmistakably visible lycopene within approximately three 

hours after induction. To attempt to speed up this response time, we heterologously 

expressed in the same strain the mevalonate pathway, to overproduce the precursors for 

lycopene biosynthesis. We expected that by providing a mechanism for increased 

production of lycopene precursors, we could increase total titers and/or the time necessary 

for unmistakably visible lycopene production. Furthermore, we expected that by inducing 

the production of these colorless precursors overnight, the cell would be primed for 

lycopene production upon induction of the heterologous lycopene biosynthesis pathway. 

To our surprise, the effect of mevalonate pathway supplementation on cell growth 

and specific lycopene production varied greatly depending on the time of supplementation. 



 18 

Specifically, if the mevalonate pathway was induced overnight before inoculation and 

induction of lycopene biosynthesis, specific lycopene production increased, and cell 

growth decreased significantly. In contrast, if the mevalonate pathway was only induced at 

the same time as the lycopene biosynthesis pathway, there was minimal impact on cell 

growth and an even greater increase in specific lycopene production. While toxicity 

associated with lycopene production has certainly been reported before90-92, in this case our 

results suggested that it was not necessarily the total levels of lycopene that were causing 

growth inhibition. To enable further engineering of this pathway to speed up lycopene 

production, it was of great interest to characterize the metabolic phenotypes underlying this 

curious cellular behavior. 

In this chapter, we use metabolomics (via two-dimensional gas chromatography 

coupled to mass spectrometry, GCxGC-MS) to characterize the underlying metabolic 

states across these counterintuitive observations. We focus on the central carbon 

metabolites with broad functional and metabolic impacts that are well-measured by 

GCxGC-MS. After briefly presenting an improved method for quenching E. coli for 

metabolomics analysis, we first characterize the metabolic state of our baseline lycopene-

producing strain in the growth conditions characteristic of our biosensor application. We 

then study the induction of the mevalonate pathway at inoculation and during the overnight 

culture before induction, with and without the lycopene biosynthesis genes in the same 

strain. We briefly consider some of the most noteworthy metabolic changes in the affected 

strains and conditions, suggesting potential hypotheses for the regulation or mechanisms 

mediating the observed behaviors, and then test and validate one of those hypotheses via a 

medium supplementation experiment.  



 19 

2.2 Experimental Methods 

2.2.1 Strains characterized 

Escherichia coli K-12 DH10B (New England Biolabs, Ipswich, MA) was used as 

the host strain for all metabolite production experiments, and all heterologous proteins were 

expressed from standard expression plasmids.  A detailed description of plasmid assembly 

can be found in McNerney, et al89.  In short, the lycopene producing genes crtE, crtB, and 

crtI were amplified from Part bba_k274100 of the Registry of Standard Biological Parts 

and placed under the control of an IPTG-inducible promoter.  The mevalonate pathway 

genes were amplified from the plasmid pJBEI-640993, which was obtained from Addgene 

(Cambridge, MA, USA) and placed under control of the arabinose-inducible promoter 

pBAD to create the plasmid pBadMEV. The high lycopene producing plasmid pLac32EBI 

has the medium-strength RBS B0032 on the crtE, crtB, and crtI genes, and the weak 

lycopene producing strain pLac33EBI has the weak RBS B0033 on the crtE, crtB, and crtI 

genes.  In all experiments comparing the effect of mevalonate pathway supplementation, 

the high lycopene-producing plasmid was used.  Plasmids pLacØ and pBadØ were 

constructed as controls and contain no coding sequence after the promoter.   

2.2.2 Cell culture 

In experiments comparing the metabolic changes based on lycopene production 

levels, cells were transformed with individual plasmids.  In experiments comparing the 

effect of the mevalonate pathway, cells were cotransformed with two plasmids. Following 

transformation, cells were plated on LB plates with appropriate antibiotics for selection 

and grown at 37 °C overnight.  Freshly transformed colonies were then inoculated in 
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triplicate into LB medium with the appropriate inducers and grown at 37 °C and 180 rpm 

for 18 hours. Cultures were then concentrated and inoculated to an OD of 0.2 in fresh 

medium, the appropriate inducers were added, and the sample was aliquoted into culture 

tubes corresponding to different time points.  Samples were analyzed at the time of 

inoculation and at hours 1, 2, 4, and 6.  At each time point, optical density and lycopene 

content were measured, and samples were collected for metabolomics analysis.  Optical 

density was quantified by measuring the absorbance at 600 nm in a ThermoFisher Genesys 

20 spectrophotometer with a 10 mm path length. 

An additional triplicate set of pLac32EBI+pBadØ samples as well as two triplicate 

sets of wild type were grown during the lycopene production comparison experiment to 

control for variation between experiment days. Lycopene extractions and quenching of 

these samples were performed with those from the lycopene production comparison 

experiment, but one set of wild-type samples as well as the additional set of 

pLac32EBI+pBadØ samples were stored in a -80°C freezer until extraction of the second 

experiment’s samples. 

LB medium composed of 10 g L-1 NaCl, 5 g L-1 yeast extract, and 10 g L-1 tryptone 

was used in all experiments.  Either 1 mM IPTG or 0.01% (w/v) arabinose was used for 

induction, and the following antibiotics were used for appropriate selection: tetracycline 

(15 µg/mL), kanamycin (30 µg/mL), and carbenicillin (100 µg/mL).  

2.2.3 Lycopene extraction and HPLC analysis 

Lycopene was extracted from cultures and analyzed as described previously89. 

Briefly, 500 µL of bacterial culture was pelleted and resuspended in 50 µL of ultrapure 
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water.  Lycopene was extracted with 1 mL of acetone at 50 °C for 20 minutes. Cellular 

debris was pelleted, and the supernatant was removed for analysis.  Sudan I (TCI America, 

Portland, OR) was used as an internal standard94 and added to the acetone used for 

extractions at a concentration of 1 µg/mL.   

All HPLC analysis was conducted on a Shimadzu Prominence UFLC using an 

Agilent C18 4.6 mm x 50 mm column with a 5 μm particle size and a Shimadzu photodiode 

array detector.  A solvent ratio of 50:30:20 acetonitrile:methanol:isopropanol was used as 

the mobile phase95 and run at a flow rate of 1 mL/min with a 25 μL sample injection 

volume. Absorption was detected at 471 nm. Retention times and peak intensities were 

compared to an analytical lycopene standard (Millipore Sigma, St. Louis, MO) spiked into 

control extractions from DH10B cells, and the internal standard Sudan I was used to 

account for acetone evaporation during the extraction protocol and for instrument drift. 

2.2.4 Quenching  

This method is a modified version of the methods in Spura et al and Yasid et al96, 

97. A quenching solution composed of 30% ethanol (v/v) and 0.6% NaCl (w/v) in a 15 ml 

or 50 mL conical was cooled to -15 °C. Each tube was prefilled with a certain amount of 

quenching solution for a 2:1 quench:sample ratio based on estimated OD at sampling time.  

Samples were taken at 0 hours, 1 hour, 2 hours, 4 hours, and 6 hours for both 

experiments to capture the metabolic profile over a relevant timeframe for lycopene 

production. The sample was added to each tube and quickly mixed by inversion. Each tube 

was kept in a -15 °C 70% methanol bath until the sample temperature reached -5 to -8 °C.  

The tubes were then centrifuged for 5 minutes at 3500 rpm at -10 °C and transferred back 
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to a -15 °C bath. The supernatant was removed, and the tubes were frozen in liquid 

nitrogen. The samples were stored in a -80 °C freezer until extraction. 

2.2.5 Metabolite extraction 

The extraction method is a modified version of the freeze-thaw method in Faijes et 

al and Yasid et al97, 98. The cell pellet was resuspended in 500 µL of -80 °C methanol and 

transferred to a 1.5 mL microcentrifuge tube. The suspension was then frozen in liquid 

nitrogen, thawed on ice, and centrifuged for 2 minutes at 10,000 g at 4 °C. The supernatant 

was collected and stored in a separate microcentrifuge tube. The pellet was again 

suspended in an additional 500 µL of -80 °C methanol, frozen, thawed, and centrifuged 

under the same conditions as the previous step. The supernatant was collected, and the 

pellet was resuspended with 250 µL of cold water, undergoing this freeze-thaw process for 

a final time. Once the supernatant was collected, the pooled supernatants were more 

accurately normalized to OD and were transferred to a CentriVap to be centrifugally 

concentrated at 40 °C until completely dry. The dried samples were stored in a -80 °C 

freezer for later processing. 

2.2.6 GC-MS analysis 

Before derivatization, the samples were transferred to a CentriVap to be dried at 40 

°C for 15 min. Samples were derivatized as previously described99, 100. 10 µL of 20 mg/mL 

O-methylhydroxylamine hydrochloride (MP Biomedicals, LLC, Santa Ana, CA) in 

pyridine was added to each dried sample and shaken at 1400 rpm for 90 minutes at 30 °C. 

90 µL of N-methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA) + 1% 

trimethylchlorosilane (TMCS) (Thermo Scientific, Lafayette, CO) was then added to the 
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samples and shaken at 1400 rpm for 30 minutes at 37 °C. Samples were centrifuged at 

21,100 g for 3 minutes, and 50 μL of the supernatant was added to an autosampler vial. 

Samples were spiked with 0.25 μL of a retention time standard solution composed of fatty acid 

methyl esters (FAMES) and an internal standard of nonadecanoic acid methyl ester dissolved 

in dimethylformamide. In parallel, a quality control (QC) sample was prepared by removing 

150 μL of extract from each sample and aliquoting 1.15 mL for experiments comparing the 

metabolic changes based on lycopene production levels. For experiments comparing the effect 

of the mevalonate pathway, 75 μL was removed. 1.15 mL and 0.65 mL of QC was aliquoted 

for each experiment respectively, dried, and derivatized with each batch of 9-10 samples. At the 

beginning of the GC-MS run, the QCs were injected once and repeated again after every 4 to 5 

sample injections to allow for downstream correction for batch effects. A derivatization blank 

was prepared and run with every batch of samples. 

A LECO Pegasus 4D instrument with an Agilent 7683B autosampler, Agilent 7890A 

gas chromatograph and time-of-flight mass spectrometer (TOF-MS) was used to analyze the 

samples. The first column was an HP-5, 28 m long × 0.320 mm ID × 0.25 μm film thickness 

(Agilent, Santa Clara, CA, USA), and the second was an Rtx-200, 1.75 m long × 0.25 mm ID 

× 0.25 μm film thickness (Restek, Bellefonte, PA, USA). More detailed gas chromatography, 

autosampler, and mass spectrometry methods are provided in Appendix A. 

2.2.7 Data analysis 

Sample runs were analyzed in ChromaTOF (LECO, St. Joseph, MI) to determine 

baseline, peak area, and peak identification as described previously101, 102. Briefly, settings 

included a baseline offset of 0.5, automatic smoothing, 1st dimension peak width of 
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36 seconds, 2nd dimension peak width of 0.10 seconds, and a match of 700 required to 

combine peaks with a minimum signal-to-noise (S/N) of 5 for all subpeaks. Peaks were 

required to have a S/N of 10 and have a minimum similarity score of 800 before assigning 

a name. Unique mass was used for area and height calculation. 

MetPP (http://metaopen.sourceforge.net/metpp.html) was used to align the 

samples103. Sample files and a derivatization reagent blank file were uploaded from 

ChromaTOF. Unknowns were retained during the peak alignment process. The 

derivatization reagent blank file was used to subtract peaks resulting from the sample 

preparation reagents from the corresponding cells’ sample files. On-the-fly alignment was 

used with manually selected quality control samples as the peak list for primary alignment. 

Due to the size of the mevalonate induction time variation experiment, MetPP could not 

handle on-the-fly alignment using all of the quality control samples. Instead, one quality 

control sample was used from each batch as well as additional quality controls from the 

first, last, and fifth batches to perform on-the-fly alignment. Peak alignment was performed 

using the default criteria. 

After alignment, further processing of the data was done based on the procedure 

previously described104. Batch effects were removed from the data set using LOESS for 

both experiments. To remove analytes that were not reproducibly detected, analytes for 

which more than half of the values were missing in the QC samples or for which the QC 

samples had a coefficient of variance larger than 0.5 were removed from the data set. Then, 

missing values were manually corrected using small value correction only if all the values 

were missing in the biological replicate.  
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Samples from the mevalonate induction time experiment were processed with 

Combat105 to remove batch effects that were evident from principal component analysis of 

the initial data. 

Finally, MetaboAnalyst (http://metaboanalyst.ca/) was used for statistical and 

pathway analysis106. For both analyses, remaining missing values were k-nearest neighbors 

(KNN) corrected. Data was filtered using the interquantile range method and then log-

transformed using generalized logarithm transformation (base 2) and autoscaled. 

Differences were considered significant at false discovery rate-corrected p < 0.05. The 

metabolomics datasets for this study have been deposited to Metabolights with the dataset 

identifier MTBLS642.  

All samples from the experiment comparing the metabolic effects of the amount of 

lycopene production, except for one triplicate wild type set and the pLac32EBI+pBadØ, 

were extracted, derivatized, and analyzed together. All samples for the experiment 

comparing the metabolic effect of the mevalonate pathway as well as those excluded from 

the previous experiment were extracted, derivatized, and analyzed together.  

2.2.8 Methionine supplementation 

A triplicate set of the strains pLac32EBI+pBadMEV and pLac32EBI+pBadØ were 

cultured and induced as described above with the exception of the addition of 2mM 

methionine to the medium at the start of the experiment. A triplicate control set of the same 

strains under the same culture and induction conditions were grown without methionine to 

test for differences in growth due to methionine addition. Each sample’s optical density 
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was measured at the time of inoculation and at hours 1, 2, 4, and 6, and was quantified as 

described above. 

2.3 Results  

2.3.1 Modified quenching protocol 

 Fast quenching of cellular metabolism for metabolomics analysis is critical for 

acquisition of samples that accurately represent cellular state in culture rather than artifacts 

induced by sample processing. Fast filtration, cold methanol, and cold ethanol are the three 

most common quenching methods for E. coli. However, due to the time needed for 

filtration and quenching of each sample, fast filtration is not appropriate for measuring 

metabolites with high turnover rates107; it has also been reported to cause leakage in Gram-

negative bacteria108. Numerous studies have shown that the cold methanol method also 

causes serious leakage from the cell108-111. We thus selected the cold ethanol method by 

Spura et al96, which causes significantly less leakage.  

Following the original protocol, combining a 37 °C sample with a -20 °C quenching 

solution at a 1:1 ratio lowers the sample’s temperature only to about 7-10 °C 

instantaneously before further cooling to -5 to -10 °C in a cold bath. 7-10 °C is clearly 

insufficient to halt metabolism instantaneously, and the longer the cells spend in quenching 

solution, the more leakage is likely to occur112. To lower this instantaneous post-quenching 

temperature and reduce the time the cells need to stay in the solution, Yasid et al modified 

Spura’s method by decreasing the quenching solution’s temperature to -35 °C97. While this 

resolves the instantaneous quenching temperature issue (yielding temperatures of 1 to -2 

°C upon quenching), the quench solution is an icy slurry that melts in a non-uniform 
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fashion and thus requires extra manual supervision that would not be feasible at the scale 

of sampling needed for this experiment.  

To avoid these issues, we modified the quenching solution to allow for a rapid 

sample temperature decrease to about 0 °C while avoiding ice slurries and manual 

supervision of each quenched sample. We increased the ratio of quenching solution volume 

to sample volume while maintaining the original overall percentage of ethanol and salt in 

the final quenched sample (40% ethanol/0.8% sodium chloride quenching solution added 

at a 1:1 ratio to yield a 20% ethanol/0.4% sodium chloride quenched sample). Our modified 

quenching solution consists of a 30% ethanol (v/v)/0.6% sodium chloride (w/v) solution 

added at a 2:1 ratio to sample. Although decreasing the amount of ethanol in the solution 

increases the freezing point to about -20 °C, we were able to keep our quenching solution 

at -15 °C without any ice formation while lowering the sample’s temperature upon initial 

mixing to about 1 to -3 °C (Table 1).   

Table 1: Quenching solution comparisons. 

 
Quenching 

solution 
temperature 

(°C) 

Sample 
temperature 

(°C) 

Temperature 
after mixing 

(°C) 

STD 
(°C) 

Spura et al Method -20 37 8.4 1.1 

Yasid et al Method -35 37 -0.4 1.4 

Modified Method -15 37 -1.1 1.9 

2.3.2 Lycopene levels of selected strains have minimal impacts on growth characteristics 

 Overcoming the toxicity effects of heterologous expression of the lycopene 

biosynthesis pathway from Pantoea ananatis is a challenge that has been encountered 
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repeatedly in the field of metabolic engineering.  In our previous work, we developed E. 

coli strains that could express different levels of lycopene with minimal effects on cell 

growth by replacing the native ribosomal binding sites (RBSs) on the crtEBI genes with 

RBSs of varying, but weaker, strength89.  

Nonetheless, it has been previously reported that systems-scale metabolic changes 

due to lycopene production can be detected even before lycopene levels are measurable113. 

While it is obvious that metabolites in the lycopene biosynthesis pathway would have 

different profiles in strains with different lycopene production potential, we were 

particularly interested in measuring the extent to which metabolic changes were detectable 

in more central portions of metabolism with broader impact on cell function and phenotype. 

To this end, we sought to perform GCxGC-MS metabolomics on two different strains, 

pLac32EBI and pLac33EBI, with higher and lower (respectively) levels of lycopene 

production, and a non-lycopene-producing wild type strain. 

All three strains were grown and sampled over 6 hours after inoculation and 

induction from a saturated overnight culture, as this time-frame and protocol are relevant 

to the biosensor application for which the cells are producing lycopene. The growth profiles 

of the strains indicate that lycopene production at levels considered in this work has a 

measurable but quantitatively small impact on growth under these culture conditions when 

compared to wild type (Figure 4A). This is consistent with our observations from previous 

work in this area. Differences in growth curves between the higher and lower-producing 

strains were generally insignificant. Despite the nearly identical growth profiles of the two 

lycopene-producing strains, their total lycopene levels differ by approximately an order of 

magnitude throughout most of the time course (Figure 4B & Table 2), suggesting that while 
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lycopene production can be toxic to E. coli growth at sufficiently high levels, the cells 

under study here have quite a bit of tolerance for it. Confirming this fact then allowed us 

to attribute subsequent differences in metabolite profiles between strains to differences in 

lycopene production rather than non-specific metabolic responses to toxicity.  

 
Figure 4: Growth curve and lycopene production of pLac32EBI, pLac33EBI, and wild 
type.  
(A) Although the two lycopene-producing strains have nearly identical growth 
profiles, the production of lycopene does have a minor impact on growth. (B) OD-
normalized lycopene production is different by about an order of magnitude over 
most of the time course. Error bars represent standard deviation. 

 

Table 2: OD-normalized lycopene production for the high and low lycopene 
producing strains pLac32EBI and pLac33EBI at each time point. 

Strain 

Lycopene (ng/mL)/OD Lycopene 
Production 

Rate 
((ng/mL)/OD)/

hr 

0 
hr 

1  
hr 

2  
hr 

4  
hr 

6  
hr 

pLac32EBI 0 80.3 ± 
12.2 

196.3 ± 
9.8 

416.5 ± 
79.9 

481.5 ± 
82.6 85.1 

pLac33EBI 0 0 7.6 ± 7.6 40.6 ± 3.0 88.2 ± 41.7 15.2 
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2.3.3 Culture time and variation in lycopene production levels affect metabolism  

To test whether this degree of variation in the production of lycopene has 

measurable effects on metabolism, we performed metabolomics analysis on all three strains 

(two lycopene producers and the wild type). Two-dimensional gas chromatography 

coupled to mass spectrometry (GCxGC-MS) was used to analyze the metabolic profiles of 

the intracellular samples collected over the six-hour time-course experiments; this 

technique is particularly effective for the analysis of small polar metabolites such as those 

in central carbon metabolism. After peak alignment, data processing, and removal of peaks 

that were not reproducibly measured, all 1002 remaining peaks – which included both 

identified and unannotated analytes – were used in subsequent analyses. 

We found that the predominant effect on the metabolic profiles of each strain was 

the time course rather than the strain. We used principal component analysis (PCA) as an 

unsupervised dimensional reduction approach to characterize metabolic changes across 

strains and time points and identify the dominant axes of variation in the dataset, along 

with the metabolites that most strongly contribute to those axes of variation. Directly 

comparing the higher and lower producers (Figure 5A) and the higher producer to wild 

type (Figure 5B), it is clear that the two major modes of variation (referred to as principal 

components (PCs)), accounting for over 40% of the variability in the data, are affected 

more by the time in culture than by the lycopene expression levels of the strains. There is 

little to no separation between strains across the time course. Similar analysis of all three 

strains together yields the same results (Figure 6). (The initial inoculation time point was 

excluded from these plots for clarity since it overlaps in PCA space for all samples (Figure 

7)).  Consistent with this, two-way analysis of variance (ANOVA2) on all strains for hours 
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1 to 6 yielded hundreds of measured analytes with a significant time effect but fewer than 

100 with significant strain effects (Table 3). While metabolic changes are dominated by 

time-specific changes, there are still detectable and measurable differences between the 

three strains metabolically.   

 

Figure 5: PCA of high and low lycopene producing strains. 
(A) pLac32EBI and pLac33EBI and (B) pLac32EBI and wild type metabolomics data 
were compared. (A) PCA shows little to no separation between the pLac32EBI and 
pLac33EBI strains across time points, indicating that variance is affected more by 
time than the amount of lycopene production. (B) There is also little to no separation 
between the pLac32EBI and wild type strains across the time course, indicating that 
variance is affected more by time than the production of lycopene. All colored ellipses 
represent 95% confidence intervals for each group. 
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Figure 6: PCA of pLac32EBI, pLac33EBI, and wild-type metabolomics data.  
PCA of all three strains indicate that there is little to no separation between strains 
across the time course. All colored ellipses represented 95% confidence intervals for 
each group. 
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Figure 7: PCA of high and low lycopene producing strains at all time points.  
(A) pLac32EBI and pLac33EBI, (B) pLac32EBI and wild-type, and (C) pLac33EBI 
and wild type metabolomics data were compared at all time points. In all analyses, 
strain groups at the initial inoculation time point do not separate from one another. 
Based on this, the initial inoculation time point was excluded in subsequent PCA 
analyses and from figures in the main text. All colored ellipses represent 95% 
confidence intervals for each group. 

 

Table 3: Two-way ANOVA for pLac32EBI and pLac33EBI as well as pLac32EBI and 
wild type from 1-6 hours. 

Strains Group 
Effects 

Time 
Effects 

Group & 
Time Effects 

Interaction 
Effects 

pLac32EBI and pLac33EBI 84 290 7 0 

pLac32EBI and wild type 50 360 29 0 
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Figure 8 shows PCA plots at individual time points, during which the three strains 

are easily distinguishable via their metabolic profiles at 6 hours, and distinguishable to a 

modest extent at earlier time points. Taken together, these results indicate that metabolic 

changes associated with varying levels of lycopene production are, while detectable, less 

quantitatively significant than the changes induced as a function of time during batch 

growth.  

 
Figure 8: PCA of high and low lycopene producing strains at 1, 2, 4, and 6 hours.  
pLac32EBI, pLac33EBI, and wild type metabolomics data were compared at each 
time-point. At (A) 1 h, (B) 2 h, and (C) 4 h, there is a small degree of separation 
between strains. At (D) hour 6, there is clear separation between all strains. All 
colored ellipses represent 95% confidence intervals for each group. 
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We then analyzed through one-way ANOVA at each individual time point which 

metabolites were significantly changed across the strains. Of the individual ANOVA-

significant analytes across the time points, most were unannotated, with only a handful of 

putatively annotated metabolites. These known metabolites did not appear to have any 

strong relationship to lycopene biosynthesis or other strong pathway enrichment, 

precluding a more detailed or mechanistic interpretation of the significantly changing 

metabolites. In addition, previously-reported metabolic indicators of cell stress response in 

E. coli (for example, increased production of almost all amino acids and decreases in L-

alanine and L-methionine114-116), were generally not evident in our data (with a few minor 

exceptions shown in Figure 9).  

 
Figure 9: Profiles of some amino acids of potential interest.  
(A) L-allothreonine decreased in wild type but not in the lycopene-producing strains. 
(B) This trend was also seen for L-glutamate levels. (C) At hour 6, pLac33EBI had 
higher L-phenylalanine levels than the other two strains. Box and whisker plots depict 
the normalized peak areas. Black lines are the medians, and boxes are the middle 
50% values. Error bars represent standard deviation. 
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2.3.4 Time of mevalonate pathway induction significantly affects growth and lycopene 

production  

While the baseline characterization of the metabolic impacts of lycopene 

production on the cells was important, our main goal was to study the cellular response to 

induction of the mevalonate pathway. The mevalonate pathway supplements the 

production of FPP, the last endogenous precursor to lycopene in E. coli. Our previous work 

showed that inducing the mevalonate pathway in overnight pre-culture drastically 

decreases both cell growth and per-cell lycopene production compared to induction at 

inoculation of the 6-hour time course89.  

To study this phenomenon, we used just the higher-producing strain (pLac32EBI) 

as a model because it provided easily measurable levels of lycopene relevant for our target 

application but avoided significant growth toxicity. We then heterologously expressed 

either the lycopene production pathway, the mevalonate pathway, or both in three strains 

(pLac32EBI+pBadØ, pLac32Ø+pBadMEV, and pLac32EBI+pBadMEV, respectively). In 

all cases, the lycopene-producing pathway (or its null construct) was induced only at 

inoculation after overnight culture, while the mevalonate pathway (or its null construct) 

was induced either only at inoculation or starting at the overnight pre-culture.  

Consistent with our previous study, overnight induction of the mevalonate pathway 

in the lycopene-producing strain severely inhibited growth compared to induction at 

inoculation for the identical strain (Figure 10A). Even for the overnight-induced 

mevalonate-only strain, there was visible growth inhibition compared to induction at 

inoculation for the identical strain. Of note is that this growth inhibition seemed to subside 
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between 2 and 4 hours into the culture, with the cells returning to a growth rate similar to 

that of any other non-growth-restricted condition. Thus, overnight induction of the 

mevalonate pathway has some intrinsically toxic effect on cell growth that can be overcome 

after a sufficient recovery time, but production of lycopene prevents any such recovery and 

exacerbates the toxicity.  

 
Figure 10: Growth profiles and lycopene production in response to overnight and 
inoculation induction of the mevalonate pathway.  
(A) When the mevalonate pathway is induced during overnight growth (O/N, dashed 
lines), mevalonate-expressing strains suffer from growth inhibition. The growth 
inhibition subsides at the end of the time course for the mevalonate-only strain, but 
persists for the strain also expressing lycopene. All strains have little to no growth 
inhibition when mevalonate is induced at inoculation (IND, solid lines). (B) OD-
normalized lycopene production is greater for the mevalonate-expressing strains 
regardless of induction time, but overnight induction yields lower OD-normalized 
lycopene production than inoculation induction. Error bars represent standard 
deviation. 

Nonetheless, this toxicity is not directly attributable to lycopene levels in the cells. 

Consistent with previous observations, overnight induction of the mevalonate pathway 

increased normalized lycopene production and decreased growth rate, while mevalonate 

pathway induction at the same time as lycopene pathway induction yielded even higher 

normalized lycopene levels and less cell toxicity (Figure 10B & Table 4). Thus, potential 
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toxicity of lycopene or its intermediates appears to be insufficient to explain the increased 

growth restriction due to mevalonate pathway induction.  

Table 4. OD-normalized lycopene production and rate for lycopene producing strains 
pLac32EBI+pBadMEV and pLac32EBI+pBadØ at each time point. 

Strain 

Lycopene (ng/mL)/OD Lycopene 
Production 

Rate 
((ng/mL)/OD)

/hr 0 hr 1 hr 2 hr 4 hr 6 hr 

EBI/MEV 
(O/N) 

55.7 ± 
21.5 

138.8 ± 
10.9 

284.9 ± 
52.9 

566.0 ± 
90.6 

967.0 ± 
40.3 152.7 

EBI/MEV 
(IND) 0 203.2 ± 

50.2 
650.0 ± 
122.3 

981.4 ± 
427.9 

1794.4 ± 
370.9 291.4 

EBI/Ø 
(O/N) 0 101.9 ± 

6.9 
159.8 ± 

51.2 
318.0 ± 

64.6 
475.6 ± 

79.8 77.7 

EBI/Ø 
(IND) 0 99.3 ± 

27.0 
205.7 ± 

29.5 
330.8 ± 

52.0 
539.0 ± 

54.2 86.8 

2.3.5 Time of mevalonate pathway induction significantly affects metabolism  

To characterize the underlying metabolic impact of the different heterologously 

expressed pathways and induction times, we performed metabolomics analysis, as 

described above, on the engineered strains in the two induction conditions. After peak 

alignment, data processing, and removal of peaks that were not reproducibly measured, all 

400 remaining peaks – which included both identified and unannotated analytes – were 

used in subsequent analyses. PCA for samples from 1 hour through 6 hours clearly 

demonstrate the metabolic impact that the mevalonate pathway has on the cells. (Similar 

to the previous experiment, the initial inoculation time point was omitted from these plots 
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for clarity since it overlaps in PCA space for all samples (Figure 11). This similarity of 

initial metabolic profiles is perhaps unsurprising, as the steps leading up to this sampling, 

including saturation in stationary phase in depleted growth medium followed by 

centrifugation and resuspension during an extended time at room temperature, may have 

induced a common metabolic response across all of the conditions.) The 

pLac32EBI+pBadMEV strain shows essentially complete separation in the first principal 

component strictly by induction time (Figure 12A). This difference is likely not attributable 

just to differences in lycopene production levels, as similar separation was not seen 

between the higher- and lower-producing strains in Figure 5A. The pLac32Ø+pBadMEV 

strain also exhibits induction time-dependent group separation (Figure 12B), though not to 

the same extent; the two treatment conditions do not completely separate out in PCA space, 

but for any individual time point the two treatment conditions are obviously separated in 

the first principal component.  The pLac32EBI+pBadØ strain, on the other hand, showed 

no visible separation between groups at any time point (Figure 12C).  
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Figure 11: PCA of overnight- and inoculation-induced strains.  
(A) pLac32EBI+pBadMEV, (B) pLac32Ø+pBadMEV, and (C) pLac32EBI+pBadØ 
metabolomics data were compared. The initial inoculation time point overlaps in PCA 
space for all samples, so was excluded from plots in the main text for clarity. “O/N” 
indicates overnight induction; “IND” indicates inoculation induction. All colored 
ellipses represent 95% confidence intervals for each group. 
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Figure 12: PCA of overnight- and inoculation-induced strains excluding 0 hours. 
pLac32EBI + pBadMEV, pLac32Ø + pBadMEV, and pLac32EBI + 
pBadØ metabolomics data were compared.  
(A) In pLac32EBI + pBadMEV strains, there is visible separation between induction 
conditions across the time course, with induction effects far outweighing temporal 
effects. (B) Separation is also seen for pLac32Ø + pBadMEV strains between 
induction conditions, though the magnitude of separation is similar to the magnitude 
of the temporal effects and there is less distinct separation at hour 
6. (C) In pLac32EBI + pBadØ strains, there is little separation at each time point, 
indicating no metabolic distinction between induction conditions. “O/N” indicates 
overnight induction; “IND” indicates inoculation induction. All colored ellipses 
represent 95% confidence intervals for each group. 
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Two-way ANOVA analysis results were generally consistent with what was 

observed in PCA. In the pLac32EBI+pBadMEV strain that completely separated in PCA 

space based on mevalonate pathway induction, 159 metabolites were significantly different 

across the time course based on induction time (Table 5). Fewer metabolites were 

significant for the pLac32Ø+pBadMEV strain (only 7, consistent with the decreased 

separation of induction conditions overall and separation only evident for individual time 

points). Since there appeared to be a major physiological change in the 

pLac32Ø+pBadMEV strain starting at 4 hours, likely reverting to a state similar to 

inoculation induction of the mevalonate pathway, we also performed this ANOVA analysis 

specifically only at hours 1 and 2, as this change may have obscured group effects across 

the whole time course. In stark contrast to the previous analysis on hours 1 to 6, this 

analysis identified 60 metabolites with significant induction condition effects. In the 

pLac32EBI+pBadØ strain, only one metabolite was significantly different, consistent with 

the lack of separation between these two conditions.  

Table 5: Two-way ANOVA for overnight- and inoculation-induced 
pLac32EBI+pBadMEV, pLac32Ø+pBadMEV, and pLac32EBI+pBadØ. Contributions 
of the individual factors are calculated using false-discovery rate (FDR) corrected p-
values (<0.05). 

Strain  
(O/N & 

IND) 

Condition 
Effects 

Time 
Effects 

Interaction 
Effects 

Condition 
& Time 
Effects 

Time & 
Interac-

tion 
Effects 

Condition, 
Time, & 

Interaction 
Effects 

EBI/MEV  
(1-6 hrs) 159 6 1 9 1 2 

Ø/MEV  
(1-6 hrs) 7 81 0 71 0 0 

EBI/Ø 
(1-6 hrs) 1 10 0 0 0 0 

Ø/MEV 
(1-2 hrs) 60 0 0 3 0 1 
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2.3.6 Time of mevalonate pathway induction significantly affects individual metabolites  

We then analyzed through one-way ANOVA at each individual time point which 

metabolites were significantly changed across the strains. Similar to the comparison 

between high and low lycopene producers, no metabolites were found that were obviously 

related to lycopene synthesis, likely due to limitations on which metabolites are 

derivatizable and thus detectable via GC-MS. In addition, no metabolites involved in the 

mevalonate pathway were identified; these analytes should be detectable via GC-MS, so 

may either be below the limits of detection or not annotated due to the incompleteness of 

spectral libraries.  

Because overnight induction of both pLac32EBI+pBadMEV and 

pLac32Ø+pBadMEV caused inhibited growth, for both cases we investigated whether 

there were changes in the levels of metabolites that have been previously reported in the 

literature to respond to stress conditions. As discussed above, one well-characterized E. 

coli stress response is the accumulation of amino acids (except for L-alanine and L-

methionine, which typically decrease). Almost all amino acid levels in all strains and 

conditions were identical to those in wild type, with the exception of L-phenylalanine. In 

inoculation-induced pLac32EBI+pBadMEV strains, L-phenylalanine increased over 6 

hours and was significantly higher than in overnight-induced pLac32EBI+pBadMEV 

strains and wild type by the end of the experiment (Figure 13A). In inoculation-induced 

pLac32Ø+pBadMEV, L-phenylalanine levels were significantly higher than in overnight-

induced and in wild type at multiple time points, though at 6 hours L-phenylalanine levels 

were actually significantly higher in overnight-induced pLac32Ø+pBadMEV than in late 

induced and wild type (Figure 13B). While the generally higher levels of phenylalanine in 
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stressed conditions may be relevant, the lack of complete consistency and the lack of 

similar behavior in other amino acids limits the interpretability of this observation. Another 

metabolite that has been previously shown to be involved in E. coli stress response is N-

acetyl-L-alanine. When under heat stress, E. coli increases production of this metabolite116. 

Interestingly, N-acetyl-L-alanine had a decreasing trend in both overnight- and 

inoculation-induced pLac32EBI+pBadMEV as well as in wild type, and by hour 2, 

concentrations in inoculation-induced pLac32EBI+pBadMEV were significantly lower 

than in overnight-induced and wild type (Figure 13C). There were no significant 

differences in this metabolite in the pLac32Ø+pBadMEV and pLac32EBI+pBadØ strains. 

Again, this result suggests that traditional indicators of E. coli cellular stress are not evident 

in the conditions we studied. 

  
Figure 13: Profiles of stress-associated metabolites.  
(A) L-phenylalanine increased over 6 hours and was significantly higher in 
inoculation-induced pLac32EBI+pBadMEV strains than in overnight-induced 
pLac32EBI+pBadMEV strains and wild type by the end of the experiment. (B) L-
phenylalanine levels were significantly higher in inoculation-induced 
pLac32Ø+pBadMEV than in overnight-induced or in wild type at multiple time points. 
However, at 6 hours L-phenylalanine levels were significantly higher in overnight-
induced pLac32Ø+pBadMEV than in late-induced and wild type. (C) N-acetyl-L-
alanine had a decreasing trend in both overnight- and inoculation-induced 
pLac32EBI+pBadMEV as well as in wild type, but to substantially different degrees. 
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By hour 2, concentrations in inoculation-induced pLac32EBI+pBadMEV were 
significantly lower than in overnight-induced and wild type. “O/N” indicates 
overnight induction; “IND” indicates inoculation induction. Box and whisker plots 
depict the normalized peak areas. Black lines are the medians, and boxes are the 
middle 50% values. Error bars represent standard deviation. 

Focusing our analyses on metabolites that were most strongly affected by the time 

of mevalonate pathway induction, we noticed that homocysteine exhibited interesting 

trends. For the inoculation-induced pLac32EBI+pBadMEV and pLac32Ø+pBadMEV 

strains that showed no growth inhibition, there was an obvious and significant decrease in 

homocysteine levels over time, with levels much lower than those of wild type (Figure 

14A-C). In contrast, the homocysteine levels in the same strains under overnight-induction, 

growth-inhibited conditions had similar concentrations to those in wild type at each time 

point (though at 6 hours in the pLac32Ø+pBadMEV strain, when cell growth had begun to 

recover, homocysteine did have a downward trend compared to the earlier time points). 

Homocysteine in the pLac32EBI+pBadØ strain showed a slight downward trend regardless 

of induction status, consistent with the potential interplay of lycopene and mevalonate 

pathways’ impacts on homocysteine levels. 
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Figure 14: Levels of metabolites of interest plotted over time.  
(A) Homocysteine levels for overnight- and inoculation-induced pLac32EBI + 
pBadMEV strains have different trends based on induction condition. The overnight-
induced strain appears to maintain higher homocysteine levels over the time course 
than wild type does. (B) Trends similar to this occur in homocysteine levels 
for pLac32Ø + pBadMEV strains at each induction condition, except in the overnight-
induced strain at hour 6. (C) Homocysteine levels are almost identical at all time 
points for both overnight- and inoculation-induced pLac32EBI + 
pBadØ strains. (D) Homoserine levels in pLac32EBI + pBadMEV strains have similar 
trends to the ones seen in homocysteine. (E) Cysteine sulfinic acid 
and (F) ethanolamine trends are nearly identical to those in homoserine 
for pLac32EBI + pBadMEV strains. “O/N” indicates overnight induction; “IND” 
indicates inoculation induction. Box and whisker plots depict the normalized peak 
areas. Black lines are the medians, and boxes are the middle 50% values. Error bars 
represent standard deviation. 
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Homoserine, a precursor in homocysteine biosynthesis, also exhibited interesting 

behavior (Figure 14D). Similar to homocysteine, inoculation-induced pLac32EBI 

+pBadMEV had lower homoserine levels compared to overnight induction and wild type 

starting at two hours after inoculation. The downward trend in homoserine was also much 

stronger in the inoculation-induced strain compared to wild type, with the overnight-

induced strain showing no consistent trend with time. In contrast, homoserine levels had 

no significant changes in pLac32EBI+pBadØ.  

Two other metabolites had profiles strikingly similar to homoserine in 

pLac32EBI+pBadMEV and wild type (Figure 14E-F): ethanolamine and cysteine sulfinic 

acid. These metabolites significantly decreased in the inoculation-induced mevalonate- and 

lycopene-producing strain from hours 2 to 6 but were comparatively constant over the 

entire 6 hours for the same strain induced overnight. Wild type levels, on the other hand, 

decreased slightly by hour 2 and remained relatively constant through the rest of the time 

course. These metabolites did not significantly change in any other strains at either 

induction condition.  

2.4 Discussion  

 In this study, we have used GCxGC-MS metabolomics to characterize the 

metabolism of engineered lycopene-producing strains of E. coli. Previous work by our 

group showed that changing the RBS on lycopene biosynthesis genes had a significant 

effect on growth rate and lycopene production. More unexpected, though, was the fact that 

induction of the mevalonate pathway could have drastically different impacts on lycopene 

production and cell growth depending on when the pathway was induced89.  Yet, we had 
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little knowledge on what metabolic differences, if any, were underlying these changes in 

behavior.  

We surprisingly found that the metabolic impacts of lycopene production in E. coli 

cells are of much smaller magnitude than the metabolic changes inherent to simple batch 

growth. While we expected the lycopene-producing strains to separate clearly from the 

wild type strain in PCA plots, we instead found that the first principal component was 

dominated by temporal variation in metabolite profiles independent of lycopene 

production.  Nonetheless, there were significant differences between the lycopene-

producing strains, and analysis of individual time points, in particular the metabolite 

profiles at 6 hours, showed that the three strains were metabolically distinct. While there 

were minor fluctuations in L-allothreonine, L-glutamate, and L-phenylalanine levels that 

have been previously associated with stress response, the behaviors were not consistent 

enough between strains and across potential stress-indicative metabolites to strongly 

suggest that the cells are under significant stress when producing lycopene at the levels 

studied here.   

In our previous efforts, we heterologously expressed the mevalonate pathway in the 

same strain expressing the lycopene pathway, expecting it improve lycopene production 

because it provides an alternative, non-native path to producing lycopene biosynthetic 

intermediates, including farnesyl pyrophosphate (FPP). While this was the case when the 

mevalonate pathway was induced at inoculation at the same time as induction of the 

lycopene pathway, overnight induction of the mevalonate pathway before inoculation 

caused lower cell density and smaller increases in lycopene levels, which was quite 

surprising. These growth profiles suggested that there may have been a toxic intermediate 
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in the mevalonate pathway that accumulates to growth-inhibiting levels during overnight 

growth117. Our metabolomics results indicate that induction time of the mevalonate 

pathway has a prominent impact on metabolism, especially when paired with lycopene 

biosynthesis. 

Overnight mevalonate induction clearly has a growth and metabolic impact on cells 

regardless of whether the cells also express lycopene. When cells do express lycopene, the 

difference between overnight and inoculation induction of the mevalonate pathway is the 

most significant source of variation in the data, overwhelming the temporal variability 

associated with batch growth time course measurements (Figure 12A). This is in itself 

noteworthy, as changes in metabolism associated just with time-course batch growth are 

actually greater in magnitude than the differences between strains that have significant vs. 

zero lycopene production (Figure 5B). It is quite surprising that the impact of whether the 

mevalonate pathway had been induced in a saturated overnight inoculation culture would 

be greater than the impact of whether or not cells express a heterologous pathway known 

to exert significant stress on cell growth and resources. 

When cells do not express lycopene, the differences between inoculation and 

overnight induction of the mevalonate pathway are still striking and easily detectable, 

though on the same order of magnitude in principal component space as the temporal 

variations. Moreover, by the end of our sampling period (6 hours), the metabolic profiles 

of the overnight- and inoculation-induced cultures begin to converge again (Figure 12B), 

suggesting that the cells are metabolically recovering from the lingering toxicity associated 

with overnight mevalonate induction. Importantly, this is consistent with the growth 
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kinetics we observed, where cell growth increased rapidly in the overnight-induced culture 

starting at 4 hours, with nearly-recovered cell density at 6 hours. 

Thus, there is something about lycopene biosynthesis (which, at the levels studied 

in this paper were minimally toxic and caused only small measurable differences in 

metabolic profiles) that particularly exacerbates the lingering toxicity associated with 

overnight mevalonate induction. Without lycopene production, the cells can eventually 

recover both metabolically and in terms of growth kinetics, but lycopene production is 

sufficiently antagonistic with the mevalonate pathway to push the cells to an exceedingly 

large metabolic deviation and prevent any growth recovery. 

This analysis also identified two notable metabolites, homocysteine and 

homoserine, that could play a role in the growth inhibition seen in overnight induction of 

the mevalonate pathway. These metabolites are precursors to methionine biosynthesis, and 

are depicted in a metabolic pathway overview diagram along with other metabolites 

discussed in this paper in Figure 15. Homocysteine has previously been found to inhibit E. 

coli growth when in abundance intracellularly and extracellularly 118, 119. The drastic 

decrease seen in homocysteine in inoculation-induced pLac32EBI+pBadMEV and 

pLac32Ø+pBadMEV could possibly suggest that these strains, when induced during 

inoculation, are more equipped to utilize or deplete this metabolite, although the 

mechanism for such a difference remains unclear. Additionally, the stable trend in 

homocysteine levels from hours 0 to 4 in the two overnight-induced strains could indicate 

that early induction of the mevalonate pathway may cause the strains to have a decreased 

ability to handle homocysteine accumulation, which affects their growth rate. Moreover, 

the fact that homocysteine levels drop precipitously in the pLac32Ø+pBadMEV strain at 6 
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hours, just as the cells have phenotypically recovered to high growth rates, supports the 

potential importance of this metabolite in mevalonate-induced toxicity. We note, however, 

that the wild type homocysteine levels are only slightly lower than the overnight-induced 

strains, complicating the direct interpretation of the importance of homocysteine levels. 

 
Figure 15: An overview of metabolic pathways relevant to this work.  
Metabolites of interest specifically noted in this paper are bolded. 

The same study that reported intracellular homocysteine toxicity also noted that in 

their attempts to relieve this toxicity, the addition of extracellular homoserine caused 

intensified inhibition118. Our results could then alternatively suggest that the inoculation-

induced pLac32EBI+pBadMEV strains can better handle homoserine accumulation 

compared to the overnight-induced counterpart strain. Homoserine’s predominantly 

constant and high concentrations that are only visible in the overnight-induced 

pLac32EBI+pBadMEV strain may contribute to the strain’s intensified inhibition even 

compared to the growth profile of early induced pLac32Ø+pBadMEV, which does not have 

significant variations in homoserine compared to its counterpart strain and wild type.  
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To test whether homocysteine was contributing to the cytotoxicity seen in 

overnight-induced pLac32EBI+pBadMEV and pLac32Ø+pBadMEV strains, we conducted 

a medium supplementation experiment. Previous work has shown that methionine 

supplementation can reduce homocysteine-associated toxicity118. We thus supplemented 

the medium with 2mM methionine at inoculation. With addition of methionine, overnight-

induced pLac32EBI+pBadMEV displayed growth improvements within 2 hours compared 

to the same strain under the same induction conditions without methionine (Figure 16A). 

Interestingly, methionine supplementation did not appear to provide significant growth 

benefits to the pLac32Ø+pBadMEV strain (Figure 16B). Although this indicates that 

homocysteine accumulation is not the sole contributor to the observed toxicity, these results 

still imply homocysteine contributes to the growth inhibition and likely to the antagonistic 

effect between the mevalonate and lycopene pathways and is thus likely useful to pursue 

as a target for further strain engineering. 

 
Figure 16: Growth profiles in response to 2mM methionine supplementation.  
(A) When the medium is supplemented with 2 mM methionine, the growth inhibition 
of the pLac32EBI+pBadMEV strain induced with arabinose overnight (blue dashed 
line) is partially alleviated compared to the same strain under the same induction 
conditions without methionine (blue solid line). Methionine addition has no 
significant effect on the growth of the pLac32EBI+pBadMEV strain induced at 
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inoculation (red dashed and solid lines). (B) Methionine supplementation for 
overnight-induced (green dashed line) and inoculation-induced (orange dashed line) 
pLac32Ø+pBadMEV strains did not significantly improve growth compared to the 
same strain under the same induction conditions without methionine (green and 
orange solid lines), though there does seem to be an insignificant trend towards 
alleviation at earlier time points which is counteracted by the cells’ normal recovery 
at later time points. “O/N” indicates overnight induction; “IND” indicates inoculation 
induction; “+Met” indicates supplementation of 2mM methionine. Error bars 
represent standard deviation. Asterisks indicate statistically significant differences 
with a p-value < 0.05. 

Taken together, these observations suggest the role of a diverse set of metabolites 

and pathways in the different growth inhibition and metabolic phenotypes we observed. 

We note, however, that our analysis did not identify as significant many metabolites known 

to have a direct role in lycopene or mevalonate synthesis. This is likely due in part to 

limitations in our choice of analytical instrumentation, the GC-MS, as not many such 

metabolites were even annotated in our dataset. The metabolites in lycopene biosynthesis 

pathways have few, if any, good leaving groups for derivatization by MSTFA, which 

would leave them not particularly volatilizable even after derivatization and thus not easily 

detected by our instrument. Mevalonate pathway metabolites (such as HMG-CoA, IPP, 

and mevalonate) would be expected to be derivatizable, so if these metabolites are present 

above the detection limits of our instrument, they may appear as unknown analytes: the 

metabolite databases used for spectral matching are not necessarily complete for these 

specific pathways, and we set our identification matching thresholds conservatively to 

prevent incorrect metabolite annotation.  

We also note some inherent limitations in our data. As noted in the Methods section, 

there were detectable batch effects in the mevalonate induction experiments. We used batch 

correction software to remove most of the systematic effects in our data, but the batch 
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effects induced an increase in variability for biological replicates which contributed to a 

decreased number of analytes with significant time effects in ANOVA analysis and that 

dampened the visibility of the temporal variation in metabolite profiles. These batch effects 

are also the likely cause for the decrease in the number of properly aligned and tracked 

analytes in the induction experiments compared to the initial experiments looking only at 

different lycopene producers. Nonetheless, trends in individual analytes are consistent 

across mass spectral acquisition days and across experimental replicate days, supporting 

the validity of our results.  

In addition, our data do not capture quantitative concentrations of metabolites nor 

identify the mechanisms driving these metabolic divergences. Despite these limitations, 

our ability to identify fold-changes among metabolites and pathways led us to identify key 

trends occurring due to heterologous pathway induction. Isotope labeling-based absolute 

quantification of metabolite levels and systems-scale measurement of gene expression are 

promising next steps to further elucidate the underlying mechanisms of the trends we 

identified here. Isotope labeling-based quantification could also help to identify the amount 

of metabolite leakage during sample quenching to validate that our modified quench 

protocol provides leakage comparable to the original protocol. Metabolite leakage has not 

explicitly been tested for and validated in this work; however, since our modified protocol 

yields a quenched sample with the same ethanol and salt concentrations as the original 

protocol (just more quickly brought to a cold temperature), we expect the metabolite 

leakage to be similar.  Nonetheless, validation of this hypothesis would help reinforce the 

broader utility of the modified protocol. 
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An important caveat in interpreting our results is in our objective, and thus our 

approach, for strain design and culture. Our primary goal was to engineer strains that 

produce enough lycopene to visibly turn the cells red in the shortest amount of time 

possible for a diagnostic readout, not to produce the greatest amount of lycopene in an 

indefinite timeframe (which often entails significant culture time in stationary phase for 

non-growth-associated production of lycopene). This is the reason our maximum lycopene 

production rate of 291.4 ((ng/mL)/OD)/hr from the inoculation-induced 

pLac32EBI+pBadMEV strain is orders of magnitude less than values seen in the literature, 

which approach 0.030 mg/mL/hr120-122 over 24 hours of culture. We also note that our 

experiments were done in the nutrient-rich LB medium. Rich media are commonly used 

for culturing lycopene producing E. coli in order to achieve optimal production rates 90, 121, 

122, but rich media may affect nutrient uptake and metabolism, which we had sought to 

study.  However, rich medium is a reasonable model for the final assay mixture in our 

application, which will contain 25-100% human serum – itself a complex and rich mixture 

of metabolites. As a result, while these design choices may slightly hinder the 

generalizability of our results and mechanistic interpretations, they are the most relevant 

for the target application and the system we will ultimately look to optimize.   

In conclusion, we have presented the first profiling of the metabolic differences 

caused by induction time variation of the mevalonate pathway, explored its potential 

relationship to lycopene production, identified a possible connection to homocysteine- and 

homoserine-caused growth inhibition, and validated the involvement of homocysteine-

induced toxicity in our system. We also improved the existing metabolomics sampling 

protocols for E. coli cultures to minimize the amount of time cells spent at above-freezing 
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temperatures that could lead to changes in metabolite profiles. While the underlying 

mechanisms of the negative effects caused by overnight induction of the mevalonate 

pathway are still not immediately evident, our efforts have moved us toward a better 

understanding of the metabolic impacts of this phenomenon and generated hypotheses that 

could drive future studies. In particular, our work demonstrates the power of metabolomics 

in helping to provide the understanding needed to drive pathway and strain engineering, 

and the potential utility of unraveling the mechanisms of homocysteine- and homoserine-

related toxicity to allow improved carotenoid biosynthesis.  
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 INVESTIGATION OF THE METABOLIC 

CHANGES ASSOCIATED WITH LYSATE PREPARATION 

METHOD IN CELL-FREE EXPRESSION SYSTEMS 

Portions of this chapter are reproduced from my publication “Metabolic Profiling of 

Escherichia coli-based Cell-Free Expression Systems for Process Optimization”43 in 

Industrial & Engineering Chemistry Research. 

3.1 Introduction 

The previous chapter detailed our efforts to understand the metabolic impacts of 

optimizing a lycopene reporter system via precursor pathway expression in bacterial 

biosensors. By applying metabolomics analyses to the various strains and induction 

conditions, we identified key metabolites involved in the toxicity affecting our engineered 

strains. Although we were able to present a successful strategy to alleviate some of the 

stress through metabolite supplementation, our work highlights one of the major limitations 

of whole-cell biosensor design: metabolite-associated toxicity. Whole cells are inherently 

limited to the production of compounds, yields, and reaction conditions that can be 

tolerated by the cell, which can sometimes result in a narrow operating region. Cell-free 

expression (CFE) systems, which use a protein lysate isolated from cells to produce desired 

compounds, have the potential to overcome this limitation of whole cells because CFE 

systems lack a membrane, enabling the detection and production of toxic molecules. Due 

to the many advantages of CFE systems, they have the potential to expand the scope of 
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biosensing to entirely new applications, and for these reasons, have been widely pursued 

in our lab as a biosensing platform. 

We have specifically used Escherichia coli-based CFE systems, which are the most 

widely-used and well-characterized CFE systems. E. coli-based CFE systems have three 

main components: protein lysate isolated from E. coli cells, a reaction mixture, and a DNA 

template for gene expression. Activity of the system, generally assessed by yield of a target 

protein, is heavily dependent on the method used to prepare the protein lysate39, 123-125. As 

mentioned in Chapter 1, lysate preparation protocols consist of growing E. coli cells in a 

rich medium, isolating and washing the cells, lysing the cells, and removing cell debris40, 

123, 126, with the specific details for each step chosen from a variety of potential techniques 

or reagent combinations. The contents of the growth medium, lysis method, and 

downstream processing steps vary greatly across different protocols and can dramatically 

affect the activity of the resulting CFE systems39, and batch effects are prominent even in 

lysates that have putatively been identically prepared.   

Variation in activity across different lysate preparation methods and the eventual 

loss of transcriptional and translational functionality of CFE reaction systems after 

extended reaction periods are often speculatively attributed to a number of potential factors, 

including (1) protein-level differences in polymerase content or activity and (2) metabolite-

level differences comprising the accumulation and depletion of small molecules in a 

reaction or lysate.  However, we are not aware of any large-scale analysis of the small 

molecules present in different lysates or reactions ever being reported, which is a critical 

gap in our knowledge, and thus the emphasis of this work. A more complete understanding 
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of the relationships of small molecules to the activity of CFE systems could be of great 

value to improve CFE biosensor design and CFE systems overall.  

Metabolomics is an ideal tool for characterizing the effects of small molecule 

differences on CFE activity.  Metabolomics analysis could be particularly useful for 

continuous monitoring of CFE reactions, since small molecules serve as both substrates 

and energy sources for the enzymes that produce the target compound and other 

endogenous enzymes that produce by-products detrimental to CFE activity39, 50. Thus, 

metabolic analysis of CFE systems could be used to predict or monitor reaction activity, to 

ensure batch-to-batch consistency of cell lysate, and even to determine when to add 

additional compounds to increase and extend the reaction output. However, using 

metabolomics as a process analysis tool first requires characterizing the baseline metabolic 

activity of CFE systems and determining which metabolites are most critical for high CFE 

activity.   

Here, we use metabolomics to characterize the effect of lysate preparation method 

on CFE output. We make lysate from E. coli cells using four different standard preparation 

approaches, characterize their activity and differences in baseline metabolic activity, and 

then study how incubation time and production of a target protein alter the activity and 

metabolite profile of each lysate. Using this information, we assess whether 

supplementation of identified individual metabolites can improve reaction output. Finally, 

we use our knowledge acquired from the previous experiments to design an improved CFE 

system. 
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3.2 Experimental Methods 

3.2.1 Plasmids  

The plasmids pJL1s70 and pJL1 were used in this study.  The plasmid pJL1 was a 

generous gift from Prof. Michael Jewett and Prof. Julius Lucks at Northwestern University. 

The plasmid pJL1s70 was constructed by replacing the original T7 promoter of pJL1 with 

a strong σ70 promoter; the original plasmid is hereafter referred to as pJL1t7. Plasmids were 

transformed into E. coli DH10B cells and isolated with Omega midiprep kits according to 

the manufacturer’s instructions.   

3.2.2 CFE lysate preparation 

Cellular lysate for all experiments, excluding toehold switch experiments, was 

prepared based on previously described protocols39, 40, 123. To account for potential 

variability in the preparation process, three batches of each lysate were prepared in parallel, 

each containing media that was separately prepared and inoculated with individually 

selected colonies. BL21 cells were grown in either 2x YTP or 2x YTPG media.  2x YTP 

consisted of 16 g L-1 tryptone, 10 g L-1 yeast extract, 5 g L-1 sodium chloride, 7 g L-1 

potassium phosphate dibasic, 3 g L-1 potassium phosphate monobasic and was pH-

corrected to 7.2 with Tris. 2x YTPG media consisted of 75% (v/v) 2x YTP and 25% (v/v) 

of 7.2% (w/v) dextrose. All media was filter-sterilized prior to use. Cells were grown at 37 

°C and 220 rpm to an OD of 2.0, which corresponds with the mid-exponential growth 

phase. Cells were then centrifuged at 2700 rcf and washed three times with S30A buffer 

(14 mM magnesium acetate, 60 mM potassium acetate, 10 mM Tris-acetate (pH 8.2), and 

2 mM dithiothreitol). After the final centrifugation, the wet cell mass was determined, and 
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cells were resuspended in 1 mL of S30A buffer per 1 g of wet cell mass. The cellular 

resuspension was divided into 1 mL aliquots. Cells were lysed using a Q125 Sonicator 

(Qsonica, Newton, CT) at a frequency of 20 kHz, and at 50% of amplitude. Cells were 

sonicated on ice with three cycles of 10 seconds on, 10 seconds off, delivering 

approximately 130 J, at which point the cells appeared visibly lysed. An additional 4 mM 

of dithiothreitol was added to each tube, and the sonicated mixture was then centrifuged at 

12,000 rcf and 4 °C for 10 minutes. The supernatant was removed, aliquoted, and stored at 

-80 °C for future use or subject to a runoff reaction and dialysis. For the runoff reaction, 1 

ml aliquots of lysate were incubated in 14 ml round bottom culture tubes at 37 ˚C and 220 

rpm for 80 minutes. After this runoff reaction, the cellular lysate was centrifuged at 12,000 

rcf and 4 ˚C for 10 minutes. The supernatant was removed and loaded into a 10 kDa 

MWCO dialysis cassette (Thermo Fisher). Lysate was dialyzed in 1L of S30B buffer (14 

mM magnesium glutamate, 60 mM potassium glutamate, 1 mM dithiothreitol, pH-

corrected to 8.2 with Tris) at 4 ̊ C for 3 hours. Dialyzed lysate was removed and centrifuged 

at 12,000 rcf and 4 ˚C for 10 minutes. The supernatant was removed, aliquoted, and stored 

at -80 ˚C for future use. Total protein concentration of each lysate batch was assessed with 

a Bradford assay. 

3.2.3 CFE reactions 

Cell-free reactions for all experiments were run as previously described127. Each 

cell-free reaction contained 0.85 mM each of GTP, UTP, and CTP, in addition to 1.2 mM 

ATP, 34 μg/mL of folinic acid, 170 μg/mL E. coli tRNA mixture, 130 mM potassium 

glutamate, 10 mM ammonium glutamate, 12 mM magnesium glutamate, 2 mM each of the 

20 standard amino acids, 0.33 mM nicotine adenine dinucleotide (NAD), 0.27 mM 
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coenzyme-A (CoA), 1.5 mM spermidine, 1 mM putrescine, 4 mM sodium oxalate, 33 mM 

phosphoenol pyruvate (PEP), 27% cell lysate, and 12 nM of the specified plasmid. For 

each experiment, a fresh aliquot of lysate was used to minimize variability caused by 

multiple freeze-thaw cycles, and all experiments were performed within four months of 

lysate preparation. When specified, the chemicals putrescine, spermidine, homocysteine, 

β-alanine, glucose 6-phosphate disodium salt hydrate, and sodium chloride were added to 

reactions at the specified concentrations. All chemicals were purchased from Sigma 

Aldrich.   

For metabolomics analysis, 210 μL reactions were prepared in 2 mL 

microcentrifuge tubes. Reactions were run in biological triplicate, with each replicate 

containing a different batch of lysate. Samples were incubated at 37 °C for the specified 

time. 10 μL of the reaction was then removed and stored at -80 °C for subsequent 

fluorescence analysis, and the remaining 200 μL was stored at -80 °C for subsequent 

metabolomics analysis. In experiments solely assessing GFP production, 12 μL reactions 

were prepared in PCR tubes and incubated at 37 °C for the specified time.   

3.2.4  Assessment of GFP production 

To measure fluorescence of CFE reactions, 8 μL of each reaction was added to a 

well of a 384 well plate, and the fluorescence was measured with a plate reader (Synergy4, 

BioTek). Excitation and emission for GFP were 485 and 510 nm, respectively.  

3.2.5 Protein precipitation for metabolomics analysis 
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Before beginning the protein precipitation protocol, 20 µL was removed from all 

samples to prepare pooled quality control (QC) samples for the experiment comparing the 

lysates before reaction mixture and DNA addition, the experiment comparing reaction 

mixtures after protein synthesis, and the experiment comparing reactions after expression 

driven by T7 and σ70 promoters, respectively. For the in-depth time course analysis of 

reactions using lysate NN, 16 µL were removed from all samples for a pooled QC sample. 

These pooled QC samples were directly prepared with all other lysate samples for protein 

precipitation. 

Proteins were precipitated from all samples stored for metabolomics analysis via 

the following protocol: first, methanol was added to each sample at a 1:2 sample to 

methanol ratio and vortexed briefly. The samples were incubated at -20 °C for 20 min, 

centrifuged at 11,600 rcf for 30 min at room temperature, and the supernatant was 

collected. The supernatants of the pooled QC samples were then evenly aliquoted in to 

three, six, and two tubes for the experiment comparing reactions after protein synthesis, 

the experiment comparing reactions after expression driven by T7 and σ70 promoters, and 

the in-depth time course analysis of reactions using lysate NN, respectively. For the 

experiment comparing lysates before reaction mixture and DNA addition, one QC tube was 

used. The supernatants were dried at 40 °C in a CentriVap until all water was removed and 

stored at -80 ºC. 

3.2.6 GC-MS analysis 

Before derivatization, the lysate samples and QC samples were transferred to a 

CentriVap to be dried at 40 °C for 15 min. Samples were derivatized as previously 
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described99, 128. 10 μL of 20 mg/mL O-methylhydroxylamine hydrochloride (MP 

Biomedicals, LLC, Santa Ana, CA, United States) in pyridine was added to each dried 

sample and shaken at 1400 rpm for 90 min at 30 °C. 90 μL of N-methyl-N-(trimethylsilyl) 

trifluoroacetamide (MSTFA) + 1% trimethylchlorosilane (TMCS) (Thermo Scientific, 

Lafayette, CO, United States) was then added to the samples and shaken at 1400 rpm for 

30 min at 37°C. Samples were centrifuged at 21,100 g for 3 min, and 50 μL of the 

supernatant was added to an autosampler vial. Samples were spiked with 0.25 μL of a 

retention time standard solution composed of fatty acid methyl esters (FAMES). At the 

beginning of the GC-MS run, the QCs were injected once and repeated again after every 

4-6 sample injections to allow for downstream correction for batch effects. A derivatization 

blank was prepared and run with every batch of samples. 

A LECO Pegasus 4D instrument with an Agilent 7683B autosampler, Agilent 

7890A gas chromatograph and time-of-flight mass spectrometer (TOF-MS) was used to 

analyze the samples. The first column was an HP-5, 28 m long × 0.320 mm ID × 0.25 μm 

film thickness (Agilent, Santa Clara, CA, United States), and the second was an Rtx-200, 

1.7 m long × 0.25 mm ID × 0.25 μm film thickness (Restek, Bellefonte, PA, United States). 

More detailed gas chromatography, autosampler, and mass spectrometry methods are 

provided in Appendix A. 

3.2.7 Data analysis 

Sample runs were analyzed in ChromaTOF (LECO, St. Joseph, MI, United States) 

to determine baseline, peak area, and peak identification as described previously.101, 102 

Briefly, settings included a baseline offset of 0.5, automatic smoothing, 1st dimension peak 
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width of 36 s, 2nd dimension peak width of 0.10 s, and a match of 700 required to combine 

peaks with a minimum signal-to-noise (S/N) of 5 for all subpeaks. Peaks were required to 

have a S/N of 10 and have a minimum similarity score of 800 to NIST, Golm and in-house 

spectral libraries before assigning a name. Unique mass was used for area and height 

calculation. 

MetPP was used to align the samples.129 Sample files and a derivatization reagent 

blank file were uploaded from ChromaTOF. Unknowns were retained during the peak 

alignment process. The derivatization reagent blank file was used to subtract peaks 

resulting from the sample preparation reagents from the corresponding sample files. On-

the-fly alignment was used with manually selected quality control samples as the peak list 

for primary alignment. Peak alignment was performed using the default criteria. 

For the T7 and σ70 promoter comparison experiment, one of the samples from the 

group with no plasmid and no T7 RNA polymerase was not properly injected into the GC-

MS. For this group, we took the average of the abundances of the two properly injected 

samples, so there would be three samples in the group for downstream analyses. 

To remove analytes that were not reproducibly detected, analytes for which more 

than half of the values were missing in the QC samples or for which the QC samples had a 

coefficient of variance larger than 0.5 were removed from the data set. Then, missing 

values were manually corrected using small value correction only if all the values were 

missing in the biological replicates. 

After alignment, further processing of the data was done to the samples for the in-

depth time course analysis of reactions using lysate NN based on the procedure to remove 
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evident batch effects. First, batch effects were reduced from the data set using LOESS, as 

previously described130. The data set was then processed with Combat131 to further remove 

batch effects that were evident from principal component analysis of the LOESS-corrected 

data. 

Finally, MetaboAnalyst was used for statistical and pathway analysis132. For both 

analyses, remaining missing values were k-nearest neighbors (KNN) corrected. Data was 

filtered using the interquantile range method and then log-transformed using generalized 

logarithm transformation (base 2) and autoscaled. P-values were adjusted using the 

Benjamini-Hochberg False Discovery Rate (FDR). Differences were considered 

significant at FDR-corrected p < 0.05. For pathway analysis, the Escherichia coli K-12 

MG1655 (KEGG) pathway library was selected using a global test for pathway enrichment 

analysis and relative-betweenness centrality for pathway topology analysis.  

For the experiment evaluating the effects of metabolite supplementation, the impact 

of the interaction of metabolites on GFP output was estimated using the Regression tool in 

the Data Analysis package of Excel. 

The metabolomics datasets for this study are available via the Metabolights 

repository, with the dataset identifier MTBLS1079. 

3.3 Results and Discussion 

3.3.1 Lysate preparation method affects CFE activity and metabolite profile   

We first aimed to characterize the effect of lysate preparation on both the activity 

of CFE systems and the baseline metabolite profile of the protein lysates. We prepared four 
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lysates using previously published preparation techniques (Figure 17A). E. coli cells were 

grown either in a growth medium that contained glucose (lysates GN and GD) (signified 

by G as the first letter, for glucose) or in a medium without added glucose (lysates NN and 

ND) (signified by N as the first letter, for no glucose). Cells were isolated during 

exponential growth and lysed via sonication, and the protein lysate was then removed from 

the cell debris. The resulting lysate was either subjected to further processing, specifically 

a “run-off” reaction and a four-hour dialysis (lysates ND and GD) (signified by D as the 

second letter, for dialysis) into a glutamate buffer or stored for future use (lysates NN and 

GN) stored for future use (signified by N as the second letter, for no dialysis).  

 
Figure 17: Lysate preparation overview and GFP output.  
(A) Lysates GN and GD and lysates NN and ND were collected from cells cultured in 
growth media with or without glucose, respectively (signified by G or N as the first 
letter, for glucose or no glucose, respectively). After centrifugation and washing, the 
cells were lysed via sonication and cellular debris was removed.  At this point, lysates 
ND and GD underwent a “run-off reaction” and dialysis before storage at -80°C 
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(signified by D as the second letter, for dialysis) and lysates NN and GN were stored 
at -80°C (signified by N as the second letter, for no dialysis). (B) Lysate preparation 
strongly affects the output of CFE reactions. Reactions using each of the four lysates 
were assembled and used to produce GFP. GFP production was monitored by 
measuring fluorescence across 10 hours. Error bars represent standard deviation of 
biological triplicates. 

Consistent with previously reported data, we found that preparation method 

strongly affects lysate ability to produce a target protein.  Because we aimed to capture the 

activity of native lysate transcription and translation, we added as a DNA template the 

plasmid pJL1s70, which uses a standard E. coli transcriptional promoter to control 

expression of green fluorescent protein (GFP). Lysates prepared from cells grown in the 

presence of glucose produced less GFP than their counterparts grown in the absence of 

glucose (Figure 17B), and dialysis increased expression in both cases. The best-performing 

lysate both in terms of protein production rate and final protein expression was the lysate 

that was isolated from cells grown without glucose and then dialyzed (lysate ND).   

Because all of the cells were isolated in mid-exponential phase and the lysates 

contained the same levels of total protein (Figure 18) yet they still produced different levels 

of GFP, we hypothesized that there may be differences in metabolite levels between the 

lysates. We used metabolomics to analyze the metabolic profile of each lysate (before any 

reaction was performed with the lysate). We precipitated the proteins and then analyzed 

the remaining metabolite mixture with two-dimensional gas chromatography coupled to 

mass spectrometry (GCxGC-MS). Processing the resulting instrument output with a 

standard metabolomics workflow (see Experimental Methods) yielded relative abundances 

for 260 identified and unannotated analytes that were used for downstream data analyses.     
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Figure 18: Total protein concentration in each lysate.  
Lysates have essentially the same protein concentration. Error bars represent 
standard deviation of biological triplicates. 

To assess differences in metabolite profiles of the four lysates, we first analyzed 

the data with principal component analysis (PCA). an unsupervised dimensional reduction 

approach that identifies the modes of the data (linear combinations of analyte 

measurements) that capture the most variance, which are referred to as principal 

components. Separation of sample groups on the resulting PCA plots indicates substantial 

differences in overall metabolite profiles between the different lysates. Dialysis has the 

strongest impact on total metabolite profiles, apparent by the complete separation of 

dialyzed and non-dialyzed lysates in the first principal component (Figure 19A). During 

dialysis, small molecules diffuse through a semi-permeable membrane into the external 

buffer, decreasing the overall concentration of small molecules within the lysate. Though 

dialysis accounts for most of the variation in metabolite profile, assessment of the second 

and third principal components shows that the media composition is also a source of 

variation, apparent by the clustering of samples based on growth media (Figure 19B). 



 70 

Univariate analysis via analysis of variance (ANOVA) supported these conclusions, with 

dialysis having a significant effect on almost half of the measured analytes; a small number 

of other metabolites exhibited effects due to glucose in the growth medium or due to 

interactions between the two factors (Figure 20). The clear differences in the metabolic 

profiles of different lysates thus clearly demonstrate that preparation protocol strongly 

affects both lysate composition and potential for protein production, and they provide a 

potential baseline for future quality control of any individual lysate preparation method. 

 
Figure 19: PCA of metabolomics data collected from all lysates. 
Lysates (without reaction mixture or plasmid) are visualized in (A) principal 
components 1 and 2 and (B) principal components 2 and 3. The dialyzed lysates 
(lysates ND and GD) separate from the non-dialyzed lysates (lysates NN and GN) in 
principal component 1, whereas lysates derived from starter cultures grown without 
glucose (lysates NN and ND) separate from lysates prepared from cultures grown 
with glucose (lysates GN and GD) in principal components 2 and 3. Colored ellipses 
represented 95% confidence intervals for each group, and the plotted samples are 
biological replicates. 
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Figure 20: Analysis of the effects of glucose in the culture medium and the dialysis of 
lysates on the metabolite profile.  
(A) Two-way ANOVA and (B) the distribution of f-values of metabolomics data 
collected from all lysates (without reaction mixture or plasmids), assessing the effects 
of the presence of glucose in the culture medium and the dialysis of lysates. Dialysis 
has the strongest effect on the metabolic differences between lysates. In (a), numbers 
represent counts of metabolites that have significant contributions to the individual 
factors, which are assessed using false-discovery rate (FDR) corrected p-values 
(<0.05). In (B), bin values of 1 were used to determine f-value frequency. The majority 
of f-values are between 0 and 1. 

3.3.2 Baseline lysate activity accounts for most metabolic changes 

While analysis of the starting lysates may yield benefits for quality control of lysate 

production, a better understanding of the ways that metabolite profiles change during CFE 

reactions could ultimately be used to design online reaction monitoring and control 

strategies, or to rationally determine protocol modifications that could extend reaction time. 

To that end, we next characterized the temporal changes in metabolite levels associated 

with protein synthesis. For each lysate, we assembled CFE reactions with and without a 

DNA template for protein synthesis (the plasmid pJL1s70), with the goal of decoupling the 

baseline changes in metabolites that occur even without protein production from the 

changes specifically caused by synthesis of the target protein. We characterized both the 
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initial metabolic state of the system and its final metabolic state after protein production 

plateaued at 8 hours. After all data processing, these metabolomics measurements yielded 

relative abundances for 284 identified and unannotated analytes that were used for further 

analyses. 

Though reactions without plasmid produce no GFP (Figure 21), their metabolic 

profiles as visualized using multivariate analysis are strikingly similar to the corresponding 

reactions containing plasmid (Figure 22A-D). Surprisingly, incubation time (rather than 

protein synthesis) causes the most prominent metabolic changes and is thus the 

phenomenon captured by the first principal component. Univariate analysis via two-way 

ANOVA further supports the finding that incubation time, rather than protein expression, 

accounts for the majority of metabolic changes within a CFE reaction (Table 6), though 

each lysate contains a number of analytes with statistically significant effects due to protein 

expression (Figure 23). 

 
Figure 21: GFP fluorescence data of all lysates after 8 hours of GFP synthesis.  
Error bars represent standard deviation of biological triplicates. 
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Figure 22: PCA of metabolomics data collected from CFE reactions using each lysate. 
Reaction samples using (a) lysate NN, (b) lysate ND, (c) lysate GN, and (d) lysate GD 
were collected at the initial time point and after 8 hours of incubation. Each lysate 
exhibits distinct separation based on time, but little separation based on plasmid 
presence or absence. Colored ellipses represent 95% confidence intervals for each 
group, and the plotted samples are biological replicates. 
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Table 6:  Two-way ANOVA of metabolomics data collected from CFE reactions in all 
lysates.   

Lysate Plasmid 
Effects 

Time 
Effects 

Interac-
tion 

Effects 

Plasmid 
& Time 
Effects 

Plasmid 
& 

Interac-
tion 

Effects 

Time & 
Interac-

tion 
Effects 

Plasmid, 
Time, & 

Interaction 
Effects 

Lysate 
NN 9 95 8 27 16 18 82 

Lysate 
ND 1 83 1 4 0 0 12 

Lysate 
GN 0 239 0 2 0 0 12 

Lysate 
GD 0 66 1 3 0 2 10 

Numbers represent counts of metabolites that have significant contributions to the 
individual factors, which are assessed using false discovery rate (FDR)-corrected p-values 
(<0.05).  

 
Figure 23: F-value distribution graphs for two-way ANOVA data for each lysate. 
(A) Lysate NN, (B) ND, (C) GN, and (D) GD are evaluated after 8 hours of GFP 
production. The majority of f-values are between 0 and 1 for all lysates. Bin values of 
1 were used to determine f-value frequency. 
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To assess whether metabolic changes driven by baseline metabolic activity or target 

protein expression could be occurring earlier in the reaction, we performed a higher 

resolution time course analysis for one of the lysates. We selected lysate NN for this 

analysis because it was a fairly strong GFP-producing lysate, we expected it to have more 

diverse metabolic content since it had not been dialyzed, and it produced its protein 

gradually over the course of 8 hours such that we might be better able to capture temporal 

variation in protein expression-dependent changes in metabolites. We set up reactions 

using this lysate with and without a plasmid DNA template for 0, 1, 2, 4, and 8 hours. After 

all data processing, these metabolomics measurements yielded relative abundances for 387 

identified and unannotated analytes that were used for further analyses. Multivariate 

analysis of the results via PCA shows that incubation time, rather than GFP production, 

accounts for the majority of metabolic variation (Figure 24), in agreement with our 

previous results. Univariate analysis via two-way ANOVA further supported this 

conclusion (Figure 25). It is thus clear that metabolic activity in cell-free reactions is 

dominated by contributions inherent to the reaction components alone and with 

comparatively weak dependence on protein expression, a finding that complicates efforts 

to design process monitoring and control approaches using small molecule indicators. 
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Figure 24: Protein production and metabolomics analysis of CFE reactions using 
lysate NN.  
(A) GFP production and (B) PCA of metabolomics data from CFE reactions run in 
lysate NN, either with or without the pJL1s70 plasmid.  Samples were collected over 
the course of 8 hours. PCA shows that samples with and without the pJL1s70 plasmid 
overlap at each timepoint. Colored ellipses represent 95% confidence intervals for 
each group. Error bars represent standard deviation of biological triplicates. 

 

 
Figure 25: Two-way ANOVA and the distribution of f-values of metabolomics data 
collected from CFE reactions using lysate NN. 
Samples were collected over the course of 8 hours to assess the effects of reaction time 
and plasmid addition. In (A), numbers represent counts of metabolites that have 
significant contributions to the individual factors, which are assessed using FDR 
corrected p-values (<0.05). In (B), bin values of 1 were used to determine f-value 
frequency. The majority of f-values are between 0 and 10. 
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To further test the theory that endogenous metabolic activity overwhelms metabolic 

changes caused by protein production, we analyzed the changes of metabolite levels in 

CFE systems with much higher protein production. We ran reactions using the T7 

transcriptional system, an orthogonal system that can produce up to an order of magnitude 

more target protein than systems that rely on endogenous E. coli transcription. We added 

T7 RNA polymerase and an appropriate DNA template (the plasmid pJL1t7, which 

contains GFP under control of the T7 promoter) to reactions in each of the four lysates and 

showed that protein expression was dramatically increased in all reactions, with the most 

prominent effects in reactions run with lysate GD (Figure 26). We again performed 

metabolomics and analysis, and after all data processing, these metabolomics 

measurements yielded relative abundances for 418 identified and unannotated analytes that 

were used for further analyses. Metabolomics analysis of lysate GD with this 

transcriptional system revealed that after 8 hours of reaction time, there is no discernible 

pattern of systems-scale metabolic changes for extremely high protein expression 

compared to reactions that produce no GFP (Figure 27). Multidimensional analysis via 

PCA shows no apparent separation of samples with the plasmid from samples without 

plasmid, suggesting that the changes in the metabolic profile of CFE reactions due to even 

very high levels of protein expression are dominated by changes caused by endogenous 

metabolic activity. 
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Figure 26: GFP production from different expression systems in reactions run in 
different lysates.   
GFP expression was controlled by either a T7 promoter (pJL1t7) or a standard E. 
coli σ70 promoter (pJL1s70), and T7 RNA polymerase was added as indicated.  
Fluorescence was measured after 8 hours of incubation. Error bars represent 
standard deviation of biological triplicates. 
 

 
Figure 27: Characterization of T7- vs. σ70-driven transcription of GFP in lysate GD. 
(A) T7-driven transcription of GFP yields over 4 times more GFP than σ70-based 
expression. (B) PCA of the metabolomics data corresponding with these reactions 
shows little separation between reactions that contain pJL1t7, pJL1s70, and no 
plasmid. Error bars represent standard deviation of biological triplicates. Colored 
ellipses represented 95% confidence intervals for each group. 
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3.3.3 Endogenous lysate metabolism affects protein-production capacity 

Because metabolic activity in CFE reactions appears to be highly coupled to 

endogenous lysate metabolic activity, we hypothesized that the metabolic state of the lysate 

could dictate the protein production capacity of the reaction. We further hypothesized that 

consumption of reaction mix reagents by native lysate enzymes or accumulation of 

potentially toxic compounds could decrease the ability of lysates to produce the target 

protein. To test this, we assembled CFE reactions with everything except a DNA template, 

incubated the reactions for eight hours, and then subsequently added plasmid DNA 

template to determine if the pre-incubated reactions could still produce GFP. When 

reactions were incubated at 37 ºC prior to plasmid addition, the reactions made far less 

protein than reactions when plasmid was added prior to incubation (Figure 28). When 

reactions were incubated on ice for eight hours prior to plasmid addition, reactions using 

lysates ND and GD (which underwent dialysis) yielded higher GFP levels, though overall 

the GFP production was still less than the freshly assembled reactions, demonstrating that 

not even a significant decrease in temperature can stop the baseline metabolic activity of 

the CFE reaction components. From Figure 17, we see that dialysis, which is essentially a 

different type of long incubation of the lysate, actually helps the reaction. This supports the 

idea that the endogenous metabolism of the system is responsible for reaction degradation: 

dialysis is not done with all of the small molecule reaction supplements used in the 

incubation experiment in Figure 28, and thus it is the lysate’s ability to act on these 

supplements that causes reaction degradation. This could be due to small molecule 

exhaustion or due to accumulation of toxic byproducts that are only produced when the 

small molecules are present in the reaction mixture. 
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Figure 28: GFP output of reactions run with plasmid supplementation at different 
times. 
Preincubating CFE reactions for 8 hours at 37°C or 4°C prior to addition of pJL1s70 
dramatically reduces protein expression.  Error bars represent standard deviation of 
biological triplicates. 

3.3.4 Lysate preparation method and incubation time affect individual metabolites  

While an understanding of overarching metabolic changes could help to guide and 

standardize lysate processing and monitoring of CFE reactions, the insights from 

metabolomics analysis could also be applied to rational improvement of CFE reactions. 

Individual metabolites or combinations of metabolites that appear to be beneficial (or 

detrimental) to CFE performance could be added (or removed) from reactions to improve 

the output of CFE reactions.  We aimed to identify potentially beneficial metabolites by 

analyzing how differentially accumulated individual metabolites correlate with lysate 

preparation and target protein production.      
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We first analyzed individual metabolite differences in the protein lysate via one-

way ANOVA. As expected, the majority of metabolites were in a greater abundance in the 

non-dialyzed lysates (NN and GN) (Figure 29). However, a few metabolites (β-alanine, 

aspartate, and spermidine) were more concentrated in the dialyzed lysates, which is 

surprising, as these metabolites are not present in the dialysis buffer (Figure 30A-C). Since 

dialyzed lysates tend to produce more protein, these metabolites are of particular interest 

for designing improved reaction protocols, as supplementing metabolites to reactions is far 

easier than removing individual metabolites from prepared lysates. Thus, exploring 

potential molecular mechanisms for these metabolites could prove valuable.  
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Figure 29: Heatmap of metabolomics data collected from all lysates without reaction 
mixture or plasmid.   
Clustering of lysates NN and GN from lysates ND and GD is driven by the effects of 
dialysis, with most metabolites depleted in the dialyzed samples. Euclidean distance 
and the Ward clustering algorithm were used for group clustering. Peak areas were 
log-transformed using generalized logarithm transformation (base 2) and autoscaled. 
Only the group averages of the top 60 analytes identified through ANOVA are 
displayed. Due to the high variability of β-alanine, it is not in the top 60 ANOVA-
identified analytes. 
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Figure 30: Levels of individual metabolites vary in lysates and in completed CFE 
reactions.   
Analysis of lysates (without reaction components) shows that (A) β-alanine, (B) L-
aspartate, and (C) spermidine levels are all higher in dialyzed lysates (lysates ND and 
GD) than non-dialyzed lysates (lysates NN and GN), but (D) N-acetylputrescine levels 
are higher in non-dialyzed lysates. (E) Analysis of CFE reactions at different time 
points shows that homocysteine levels increase with time in all extracts, regardless of 
whether reactions produce GFP. Box and whisker plots depict the normalized peak 
areas, which are log-transformed using generalized logarithm transformation (base 
2) and autoscaled. Black lines are the medians, boxes are the middle 50% values, 
black dots are individual sample levels, and yellow diamonds are the mean. Error 
bars represent standard deviation of biological triplicates.  

Two of these three metabolites— β-alanine and aspartate—are a part of the D-

pantothenate (Vitamin B5) biosynthesis pathway, a precursor pathway for coenzyme A 

(CoA) production in E. coli133. CoA is a vital cofactor for a variety of pathways such as 

fatty acid biosynthesis and the TCA cycle134 and is typically added to CFE reactions as part 
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of the reaction mixture. Though D-panthothenate levels were also measured in our 

experiments (Figure 31), β-alanine and aspartate are arguably more reliable markers for 

this pathway when using GC-MS due to known challenges in derivatizing D-

pantothenate135. The third metabolite, spermidine, is a polyamine that interacts with RNA, 

promotes the assembly of the 30S ribosomal subunit, and stimulates protein synthesis136. 

Polyamines are also added as a part of the CFE reaction mixture, and previous studies have 

shown that further addition of polyamines can improve the productivity of E. coli-based 

CFE reactions137, 138. Interestingly, the relative abundances of putrescine, another 

polyamine, follow the opposite trend of spermidine: putrescine levels are lower in the 

dialyzed lysates, suggesting a potentially complex interplay of the effects of polyamines 

on CFE reaction output. 

 

Figure 31: Relative abundances of D-pantothenate in all lysates without reaction 
mixture or plasmid.  
Box and whisker plots depict the normalized peak areas, which are log-transformed 
using generalized logarithm transformation (base 2) and autoscaled. Black lines are 
the medians, boxes are the middle 50% values, black dots are individual sample levels, 
and yellow diamonds are the mean. Error bars represent standard deviation of 
biological triplicates. 
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Analysis of how individual metabolites change over the course of a CFE reaction 

(rather than just in the lysate used as part of the reaction) could further help to inform ways 

to extend the period or quantity of protein production. One-way ANOVA analysis revealed 

that homocysteine accumulates in all CFE reactions when protein production halts (Figure 

30E). High levels of homocysteine are known to be toxic to whole E. coli cells118, 139 via 

conversion to the intermediate homo-thiolactone that reduces protein functionality140, 

which could also potentially inhibit transcription in CFE reactions. Pathway analysis, 

which reveals interconnectedness (in terms of metabolic pathway topology) of multiple 

differentially accumulated metabolites, also shows that two pathways—the CoA and 

pyruvate biosynthesis pathways—are significantly affected by time in all lysates (Table 7). 

Temporal changes in the group of metabolites related to CoA biosynthesis reinforces the 

findings of the individual CoA-related metabolite changes in dialyzed lysates as discussed 

above. Changes in pyruvate metabolism, which have previously been shown to occur in 

CFE reactions66, are largely driven by the accumulation of lactate and propylene glycol, 

fermentative waste products that could indicate the depletion of glycolytic intermediates. 

Because glucose-6-phosphate (G6P) supplementation can alleviate glycolytic intermediate 

depletion-associated stress in cells141, we hypothesized that G6P supplementation in CFE 

reactions could increase the availability of glycolytic intermediates and improve protein 

production.  
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Table 7. Pathway analysis of metabolomics data collected from CFE reactions in all 
lysates.    

Lysate 
Used in 

Reaction 
Pathway Name Match 

status p-value FDR 

Lysate NN 
Pyruvate metabolism 6/26 3.3E-5 5.2E-4 

Pantothenate and CoA 
biosynthesis 5/23 0.0014 0.0056 

Lysate ND 
Pyruvate metabolism 6/26 8.6E-4 0.0038 

Pantothenate and CoA 
biosynthesis 5/23 0.011 0.028 

Lysate GN 
Pyruvate metabolism 6/26 7.7E-6 2.1E-5 

Pantothenate and CoA 
biosynthesis 4/23 3.0E-5 6.1E-5 

Lysate GD 
Pyruvate metabolism 6/26 2.2E-4 0.0018 

Pantothenate and CoA 
biosynthesis 5/23 0.0028 0.0083 

3.3.5 Supplementation of identified metabolites change affects lysate activity  

With a list of potentially critical metabolites in hand, we next tested whether 

supplementation of these metabolites could improve the performance of CFE reactions. 

We specifically tested the ways that spermidine, putrescine, β-alanine, homocysteine, and 

G6P affected CFE reactions by adding them to reactions that contain pJL1s70 and then 

quantifying GFP production at 8 hours. We added concentrations of β-alanine, 

homocysteine, and G6P141 based on reported intracellular concentrations. Since putrescine 

and spermidine are already added to CFE reactions at a concentration of 1.0 and 1.5 mM, 

respectively, we added higher concentrations of these compounds.   
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Of all components tested, putrescine elicited the largest improvement in protein 

yields in all lysates (Figure 32A). Spermidine, another polyamine, only improved CFE 

output when supplemented at 5 mM to reactions containing lysates NN and ND and nearly 

completely inhibited protein synthesis at 20 mM, emphasizing the importance of 

optimizing the concentrations of supplemented molecules. β-alanine supplementation 

modestly improved the performance of reactions with lysate NN and ND, suggesting that 

its role could perhaps be related to the composition of the growth medium.  Homocysteine 

supplementation also altered the output of CFE reactions, but in an unexpected way: 

counter to our initial hypothesis that homocysteine decreases CFE performance, 

homocysteine supplementation improved performance of all reactions. G6P addition had 

little to no effect on reaction performance. Interestingly, addition of putrescine to reactions 

with lysate NN and GD enabled them to produce higher protein than unsupplemented 

reactions with lysate ND (the lysate that initially had the greatest GFP production), 

suggesting that putrescine could be titrated into reactions to adjust lysate activity and 

compensate for differences in preparation (Figure 32B). 
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Figure 32: Metabolite supplementation of CFE reactions can strongly impact GFP 
production.  
(A) The metabolites putrescine, spermidine, β-alanine, homocysteine, and G6P were 
added to CFE reactions.  Fluorescence relative to reactions run in the same lysate 
without additional components was calculated. Addition of putrescine to CFE 
reactions most strongly improved GFP expression. (B) Putrescine supplementation 
can normalize output across CFE reactions that contain differentially-prepared 
lysates.  Addition of 20 mM putrescine to reactions with either lysate NN and lysate 
GD cause them to produce more GFP than reactions with lysate ND and no added 
metabolites. (C) Combinatorial metabolite supplementation further improves CFE 
performance. Addition of putrescine with either β-alanine or homocysteine improved 
CFE output relative to addition of either individual component. Error bars represent 
standard deviation of technical triplicates. 
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With the goal of creating a CFE system with maximal activity, we next focused on 

optimizing the output of reactions run with lysate ND. We first tested whether higher 

concentrations of β-alanine and homocysteine could further improve CFE performance and 

found that 5 mM β-alanine and 20 mM homocysteine most strongly increased protein 

expression (Figure 33). Finally, we tested pair-wise combinations of putrescine, 

spermidine, β-alanine, and homocysteine. Addition of putrescine in combination with 

either β-alanine or homocysteine further improved lysate performance, enabling us to 

create a CFE system that produces over 2.5-fold more protein than the original system 

(Figure 32C). We further note that the effects of the addition of individual molecules are 

not additive (Table 8, Table 9, & Table 10), indicating the complexity of interactions in 

CFE reactions and the difficulty that future optimization of these reactions will entail.  

 

Figure 33: Optimization of homocysteine and β-alanine supplementation levels in 
lysate ND.  
Different concentrations of homocysteine and β-alanine were added to CFE reactions 
run in lysate ND, and fluorescence was measured at 8 hours. 20 mM homocysteine 
and 5 mM β-alanine most strongly improve GFP production. Error bars represent 
standard deviation of technical triplicates. 
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Table 8: Description of the general equation to determine the interaction effects of 
supplemented metabolites. 

General Equation:  𝑌𝑌 = µ0 + 𝐴𝐴𝑥𝑥1𝑖𝑖 + 𝐵𝐵𝑥𝑥2𝑖𝑖 + 𝐶𝐶𝑥𝑥3𝑖𝑖 + 𝐷𝐷𝑥𝑥4𝑖𝑖 + 𝐼𝐼12𝑥𝑥1𝑖𝑖𝑥𝑥2𝑖𝑖 + 𝐼𝐼13𝑥𝑥1𝑖𝑖𝑥𝑥3𝑖𝑖 +
𝐼𝐼14𝑥𝑥1𝑖𝑖𝑥𝑥4𝑖𝑖 + 𝐼𝐼23𝑥𝑥2𝑖𝑖𝑥𝑥3𝑖𝑖 + 𝐼𝐼24𝑥𝑥2𝑖𝑖𝑥𝑥4𝑖𝑖 + 𝐼𝐼34𝑥𝑥3𝑖𝑖𝑥𝑥4𝑖𝑖 + 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥1𝑖𝑖𝑥𝑥2𝑖𝑖𝑥𝑥3𝑖𝑖𝑥𝑥4𝑖𝑖 
Variable Description 

𝑌𝑌 GFP Output 
µ0 constant 
𝐴𝐴 1st-order effect coefficient for 20 mM putrescine 
𝐵𝐵 1st-order effect coefficient for 5 mM spermidine 
𝐶𝐶 1st-order effect coefficient for 20 mM homocysteine 
𝐷𝐷 1st-order effect coefficient for 5 mM β-alanine 
𝐼𝐼12 2nd-order interaction effect coefficient for 20 mM putrescine and 5 mM 

spermidine 
𝐼𝐼13 2nd-order interaction effect coefficient for 20 mM putrescine and 20 mM 

homocysteine 
𝐼𝐼14 2nd-order interaction effect coefficient for 20 mM putrescine and 5 mM β-

alanine 
𝐼𝐼23 2nd-order interaction effect coefficient for 5 mM spermidine and 20 mM 

homocysteine 
𝐼𝐼24 2nd-order interaction effect coefficient for 5 mM spermidine and 5 mM β-

alanine 
𝐼𝐼34 2nd-order interaction effect coefficient for 20 mM homocysteine and 5 mM 

β-alanine 
𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎  4th-order interaction effect coefficient for 20 mM putrescine, 5 mM 

spermidine, 20 mM homocysteine, and 5 mM β-alanine 
𝑥𝑥1𝑖𝑖  Represents the presence (+1) or absence (-1) of 20 mM putrescine in reaction 

i 
𝑥𝑥2𝑖𝑖 Represents the presence (+1) or absence (-1) of 5 mM spermidine in reaction 

i 
𝑥𝑥3𝑖𝑖 Represents the presence (+1) or absence (-1) of 20 mM homocysteine in 

reaction i 
𝑥𝑥4𝑖𝑖 Represents the presence (+1) or absence (-1) of 5 mM β-alanine in reaction i 

 
 
Table 9: Calculated interaction effects of supplemented metabolites. 

Variable Coefficients t Stat p-value Lower 95% Upper 95% 

µ0 39700.94 81.39 7.90E-31 38694.22 40707.66 

𝐴𝐴 7009.88 14.37 2.75E-13 6003.16 8016.59 

𝐵𝐵 -9662.29 -19.81 2.23E-16 -10669.01 -8655.57 
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𝐶𝐶 1297.96 2.66 1.37E-02 291.24 2304.68 

𝐷𝐷 3551.96 7.28 1.60E-07 2545.24 4558.68 

𝐼𝐼12 -4627.52 -9.49 1.36E-09 -5634.24 -3620.80 

𝐼𝐼13 -2890.94 -5.93 4.08E-06 -3897.66 -1884.22 

𝐼𝐼14 1678.23 3.44 2.13E-03 671.51 2684.95 

𝐼𝐼23 -3581.60 -7.34 1.39E-07 -4588.32 -2574.89 

𝐼𝐼24 -972.10 -1.99 5.78E-02 -1978.82 34.61 

𝐼𝐼34 -1701.27 -3.49 1.90E-03 -2707.99 -694.55 

𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 -1198.23 -2.46 2.16E-02 -2204.95 -191.51 

 
Table 10: Calculated interaction effects of supplemented metabolites ignoring 4th-
order interaction effects. 

Variable  Coefficients t Stat p-value Lower 95% Upper 95% 

µ0 36106.25 26.89 2.53E-18 33321.89 38890.61 

𝐴𝐴 4613.42 4.55 1.59E-04 2508.64 6718.19 

𝐵𝐵 -12058.75 -11.88 4.81E-11 -14163.52 -9953.98 

𝐶𝐶 -1098.50 -1.08 2.91E-01 -3203.27 1006.27 

𝐷𝐷 1155.50 1.14 2.67E-01 -949.27 3260.27 

𝐼𝐼12 -5825.75 -8.12 4.63E-08 -7314.05 -4337.45 

𝐼𝐼13 -4089.17 -5.70 9.90E-06 -5577.47 -2600.87 

𝐼𝐼14 480.00 0.67 5.11E-01 -1008.30 1968.30 

𝐼𝐼23 -4779.83 -6.66 1.07E-06 -6268.13 -3291.53 

𝐼𝐼24 -2170.33 -3.02 6.23E-03 -3658.63 -682.03 
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𝐼𝐼34 -2899.50 -4.04 5.47E-04 -4387.80 -1411.20 

3.4 Limitations 

While GC-MS-based metabolomics analysis is quite valuable, it is inherently 

limited to detection of molecules that are either volatile or volatilizable by standard 

derivatization reagents. Also, GC-MS cannot accurately capture di-, bis-, or triphosphates 

such as NADH, ATP, and other cofactors. Understanding how these types of molecules are 

consumed would greatly inform which molecules are potentially limiting CFE reactions 

and better inform supplementation efforts. Other analysis methods such as liquid 

chromatography-mass spectrometry could complement GC-MS analyses by capturing 

nonvolatile and nonderivatizable metabolites as well as cofactors. Heavy isotope-labeled 

standards could also be used to obtain quantitative metabolite concentrations (rather than 

relative abundances), which would both lend more precision to analyses and also better 

inform concentrations of metabolites to supplement. Proteomics could complement 

metabolomics analysis on the same samples by revealing whether specific enzymes are 

present at different levels in crude lysates64, 65 prepared via different protocols, which could 

then be related to the enzymatic activity captured by metabolomics.  

Similarly, we supplemented only identified metabolites with obvious potential 

biological significance at concentrations based on broad assumptions and previously 

reported intracellular levels. Identification and subsequent testing of unannotated analytes 

in conjunction with testing larger concentration ranges may lead to the creation of further 

improved CFE systems. The small scale and “open system” nature of CFE reactions make 

high-throughput assessment of additives feasible, and tools that enable automated 
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metabolic analysis of samples in real-time could enable a temporal systems-wide analysis 

of the effect of supplementation. Moreover, the large data sets generated through such 

system-wide analyses and high-throughput screens could be combined with computational 

models and machine learning to better inform standardization and optimization of CFE 

systems for a variety of applications, including biosensing.   

3.5 Conclusion 

In summary, we used metabolomics via GCxGC-MS analysis to identify difference 

in the levels of small molecules present in differently prepared lysates, to understand their 

potential roles in lysate activity, and to inform lysate optimization. Through a systems-

level analysis of metabolites, we confirmed the expected result that dialysis most strongly 

affects the metabolite profile of isolated protein lysates. To our surprise, we also found that 

the endogenous metabolic activity of the lysate overwhelms the metabolic changes caused 

by protein synthesis in CFE reactions. We then explored how changes to the initial 

metabolic state of the lysate affect CFE performance by incubating reactions without 

plasmid DNA and found that the protein production capacity of the incubated reactions 

was majorly reduced compared to that of freshly assembled reactions, demonstrating that 

the endogenous metabolism of the system is responsible for reaction degradation. In-depth 

analysis of individual metabolite changes revealed that the pantothenate precursors (β-

alanine and aspartate) and polyamines (putrescine and spermidine) differentially 

accumulated based on lysate preparation method and that levels of homocysteine and 

metabolites involved in pyruvate and pantothenate metabolism changed consistently by the 

end of protein synthesis for all reactions, regardless of the type of lysate used. Based on 

this information, we sought to understand the roles of these molecules in CFE activity via 
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metabolite supplementation. We found that individual supplementation of putrescine and 

homocysteine resulted in significant improvements to protein production, and that the 

addition of putrescine in combination with either β-alanine or homocysteine further 

improved lysate performance, increasing CFE output by a factor of 2.5 relative to the initial 

preparation protocol. Our results highlight the importance of small molecules on CFE 

productivity and underscore the importance of fully understanding and controlling 

endogenous metabolic activity to improve CFE reactions and biosensor development.   
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 METABOLIC DYNAMICS OF ESCHERICHIA 

COLI-BASED CELL-FREE EXPRESSION SYSTEMS 

4.1 Introduction 

In the previous chapter, we used metabolomics to assess the impacts of differently 

prepared E. coli-based CFE lysates and found that the reactions composed of these different 

lysates were metabolically distinct43. To our surprise, we found that the metabolite-level 

changes at the end of a CFE reaction due to endogenous metabolic activity in the reactions 

eclipsed any metabolic changes due to protein synthesis. These findings highlight the 

complexity of CFE systems, our lack of understanding of their metabolic underpinnings, 

and the resultant need for broader metabolic investigations of CFE systems to ultimately 

enabled improved biosensor development.  

Although we were able to identify a handful of small molecules that impacted 

reaction activity and demonstrated that certain metabolites could be supplemented into the 

lysates to improve reaction performance, it is still unclear how much the lysate’s 

endogenous enzymes and metabolites impact the productivity of a CFE reaction. One 

prominent hypothesis is that CFE reaction efficiency and lifetime is significantly (or even 

predominantly) affected by the depletion or accumulation of specific metabolites that affect 

protein synthesis39, 50, though the identities of all the molecules involved is not known. 

While it is known that many central carbon metabolism enzymes are present in E. coli-

based cell-free lysates64-66, it is largely unknown how they impact metabolic processes 

downstream of central carbon metabolism and alter the transcriptional and translational 
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capacity of a CFE reaction (Figure 34). Unfortunately, unlike in living whole-cell 

biological systems, we have minimal understanding of the endogenous metabolism in CFE 

systems, prompting a serious need for a more thorough characterization of their metabolic 

dynamics. Deeper understanding of CFE metabolism would facilitate not only biosensor 

optimization efforts, but also rational approaches to resolve reproducibility, scalability, and 

standardization issues in CFE systems. 

 

Figure 34: An overview of metabolic pathways relevant to this work. 
Enzymes of interest specifically discussed in this paper are noted in italics. Metabolic 
pathways and metabolites are as follows: DHAP, dihydroxyacetone phosphate; TCA, 
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tricarboxylic acid cycle; ATP, adenosine triphosphate; ADP, adenosine diphosphate; 
PEP, phosphoenolpyruvate; The enzymes shown are as follows Pgk, 
phosphoglycerate kinase; PykF, pyruvate kinase; LdhA, lactate dehydrogenase; 
GltA, citrate synthase; Icd, isocitrate dehydrogenase. 

Here, we use metabolomics to more broadly characterize the metabolic profiles of E. 

coli-based CFE systems. In particular, we aim for a deeper characterization of the 

metabolic dynamics of these systems, as previous analysis focused on long end-point times 

and thus may have missed critical dynamics during protein synthesis and as CFE activity 

declined. We also deconstruct the CFE reaction into its constituent components for 

metabolomic analysis, in an effort to more clearly pinpoint the source of metabolic changes 

observed in complete CFE reactions. We explore the effects of lysate pre-incubation and 

how changes to the sonication energy input during lysate preparation affect both 

endogenous metabolism and protein synthesis in CFE reactions. Finally, we use the 

information from these studies to select native metabolic enzymes to supplement in CFE 

reactions in an effort to alter metabolic activity and thus protein yield of a reaction.   

4.2 Experimental Methods 

4.2.1 Plasmids  

The plasmids pJL1s70 and E01 were used in this study. Plasmids were transformed 

into E. coli DH10B cells and isolated with E.Z.N.A FastFilter Plasmid Maxiprep kit 

(Omega Biotek) according to the manufacturer’s instructions.  

4.2.2 CFE lysate preparation 

Cellular lysate for all experiments was prepared based on previously described 

protocols39, 41. Briefly, BL21 cells were used for all experiments, except for the experiment 
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evaluating the effects of sonication energy input, where BL21 DE3 Star ΔlacZ cells were 

used. All cells were grown in either 2x YTP media (16 g L-1 tryptone, 10 g L-1 yeast extract, 

5 g L-1 sodium chloride, 7 g L-1 potassium phosphate dibasic, and 3 g L-1 potassium 

phosphate monobasic and was pH-corrected to 7.2 with Tris base). All media was filter-

sterilized prior to use. Cells were grown at 37 °C and 180 rpm to an OD of 2.0, which 

corresponds with the mid exponential growth phase. Cells were then centrifuged at 2700 

rcf and washed three times with S30A buffer (14 mM magnesium acetate, 60 mM 

potassium acetate, 10 mM Tris-acetate (pH 8.2), and 2 mM dithiothreitol). After the final 

centrifugation, the wet cell mass was determined, and cells were resuspended in 1 mL of 

S30A buffer per 1 g of wet cell mass. The cellular resuspension was divided into 1 mL 

aliquots. Cells were lysed using a Q125 Sonicator (Qsonica, Newton, CT) at a frequency 

of 20 kHz and at 50% of amplitude. Cells were sonicated on ice with three cycles of 10 s 

on, 10 s off, delivering approximately 300 J unless otherwise specified in text. An 

additional 4 mM of dithiothreitol was added to each tube, and the sonicated mixture was 

then centrifuged at 12 000 rcf and 4 °C for 10 min. For lysates prepared with BL21 cells, 

the supernatant was removed and divided into 1 mL aliquots for run-off reaction at 37 °C 

and 180 rpm for 80 min. After this runoff reaction, the cellular lysate was centrifuged at 

12,000 rcf and 4 °C for 10 min. The supernatant was removed and loaded into a 10 kDa 

MWCO dialysis cassette (Thermo Scientific). Lysate was dialyzed in 1L of S30B buffer 

(14 mM magnesium glutamate, 60 mM potassium glutamate, 1 mM dithiothreitol, pH-

corrected to 8.2 with Tris) at 4 °C for 3 hours. Dialyzed lysate was removed and centrifuged 

at 12,000 rcf and 4 °C for 10 min. The supernatant was removed, aliquoted, and stored at 

−80 °C for future use. For lysates prepared with BL21 DE3 Star ΔlacZ cells, the 
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supernatant was removed and divided into 0.5 mL aliquots for run-off reaction at 37 °C 

and 220 rpm for 80 min. All downstream processing steps were the same as those for 

lysates prepared with BL21 cells, with the exception of 500 mL of S30B buffer used during 

dialysis. 

4.2.3 Protein purification 

Plasmids coding for expression of different his-tagged proteins were transformed 

into BL21 (DE3) cells and plated on LB plates supplemented with 33 μg/mL kanamycin 

to grow overnight. One colony was selected the next day and resuspended in a 50 mL LB 

culture supplemented with 33 μg/mL kanamycin for overnight growth. The overnight 

culture was then diluted 100-fold in 500 mL of fresh 2xYTP media containing kanamycin 

the next morning and grown until its OD600 reached between 0.4-0.6, at which point 0.4 

mM of IPTG was added to induce T7 polymerase expression and thus plasmid-driven 

protein production. The induced culture was transferred to a shaking water bath for 

incubation at 30 ˚C and 180 rpm for 16 hours, when cells were pelleted, weighed, and 

frozen at -80 ˚C for storage until cell lysis. 

1 g of frozen cell pellet was resuspended in 2 mL of lysis buffer (50 mM Na2HPO4, 

500 mM NaCl, 10 mM imidazole, pH 8). The resuspension was divided into 1 mL aliquots 

and sonicated until cells appeared visible lysed. Sonicated products were centrifuged at 

12,000 rcf and 4 ˚C for 15 min before purifying on a HisPur Ni-NTA column (Thermo 

Scientific) according to the manufacturer protocol. Purification was verified by SDS-

PAGE. The eluted proteins were loaded into 10 kDa MWCO dialysis cassettes (Thermo 

Scientific) and dialyzed overnight in the storage buffer (50 mM Tris-HCl pH 7.5, 100 mM 
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NaCl, 1 mM DTT, 1 mM EDTA, 2% DMSO). Following dialysis, proteins were 

centrifuged at 12,000 rcf at 4 ˚C for 10 min to remove insoluble fractions. The supernatant 

was removed, and protein concentration was measured on a Nanodrop 2000 before sub-

aliquoting and storage at -20 ˚C.  

4.2.4 CFE reactions and assessment of GFP production 

Cell-free reactions for all experiments were run as previously described41. Each 

cell-free reaction contained 0.85 mM each of GTP, UTP, and CTP, in addition to 1.2 mM 

ATP, 34 μg/mL of folinic acid, 170 μg/mL E. coli tRNA mixture, 130 mM potassium 

glutamate, 10 mM ammonium glutamate, 12 mM magnesium glutamate, 2 mM each of the 

20 standard amino acids, 0.33 mM nicotine adenine dinucleotide (NAD), 0.27 mM 

coenzyme-A (CoA), 1.5 mM spermidine, 1 mM putrescine, 4 mM sodium oxalate, 33 mM 

phosphoenolpyruvate (PEP), 27% cell lysate, and 12 nM of the specified plasmid. (9 nM 

of pJL1s70 was used for the experiment evaluating the effects of sonication energy input.) 

For metabolomics analysis, 210 μL reactions were prepared in 1.5 mL 

microcentrifuge tubes in technical triplicates. Samples were incubated at 37 °C for the 

specified time. A total of 10 μL of the reaction was then removed and stored at −80 °C for 

subsequent fluorescence analysis on a BioTek Synergy H4 microplate reader (485/510 nm 

excitation/emission wavelength, gain of 70).  and the remaining 200 μL was stored at −80 

°C for subsequent metabolomics analysis. In experiments solely assessing GFP production, 

10 μL reactions were prepared in technical triplicates in 384-well plates (Greiner Bio-One) 

and fluorescence values were measured every 5 minutes at 37 ˚C. A transparent film was 

used to seal the plates to prevent reagent evaporation. 
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4.2.5 Protein precipitation for metabolomics analysis 

Before beginning the protein precipitation protocol, a small volume was removed 

from all samples in an individual experiment to prepare pooled quality control (QC) 

samples for the mass spectrometry data acquisition. 25 μL was removed from each sample 

from the in-depth time course analysis of CFE reactions and the comparison of reactions 

with differently sonicated lysates. 20 μL was removed from each sample for the time course 

analysis of the incubated lysate and the comparison of enzyme-supplemented reactions. 

15.4 and 10 μL were removed from each samples for the time course analysis of the 

incubated reaction mix and the comparison of reactions with lysates pre-incubated at 

different temperatures, respectively. These pooled QC samples were prepared with all other 

samples for protein precipitation.  

Proteins were precipitated from all samples stored for metabolomics analysis via 

the following protocol74: first, methanol was added to each sample at a 1:2 sample to 

methanol ratio and vortexed briefly. The samples were incubated at −20 °C for 20 min and 

centrifuged at 11,600 rcf for 30 min at room temperature, and the supernatant was 

collected. The supernatants of pooled QC samples were then evenly aliquoted into multiple 

tubes as needed: two tubes for the in-depth time course analysis of CFE reactions and the 

time course analysis of the incubated lysate; three tubes for the comparison of reactions 

with lysates pre-incubated at different temperatures, the comparison of enzyme-

supplemented reactions, and the comparison of reactions with differently sonicated lysates; 

and one tube for the time course analysis of the incubated reaction mix. The supernatants 

were dried at 40 °C in a CentriVap until all water was removed and stored at −80 °C. 
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4.2.6 GC-MS analysis 

Before derivatization, stored samples were transferred to a CentriVap to be dried at 

40 °C for 15 min. Samples were derivatized as previously described99, 128. A total of 10 μL 

of 40 mg/mL O-methylhydroxylamine hydrochloride (MP Biomedicals, LLC, Santa Ana, 

CA, U.S.A.) in pyridine was added to each dried sample and shaken at 1400 rpm for 90 

min at 30 °C. A total of 90 μL of N-methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA) 

+ 1% trimethylchlorosilane (TMCS) (Thermo Scientific, Lafayette, CO, U.S.A.) was then 

added to the samples and shaken at 1400 rpm for 30 min at 37 °C. Samples were centrifuged 

at 21,100 rcf for 3 min, and 50 μL of the supernatant was added to an autosampler vial. 

Samples were spiked with 0.25 μL of a retention time standard solution composed of fatty 

acid methyl esters (FAMES). At the beginning of the GC-MS run, the QCs were injected 

once, and this was repeated again after every 4−6 sample injections to allow for 

downstream correction for batch effects. A derivatization blank was prepared and run with 

every batch of samples. A LECO Pegasus 4D instrument with an Agilent 7683B 

autosampler, Agilent 7890A gas chromatograph, and time-of-flight mass spectrometer 

(TOF-MS) was used to analyze the samples. The first column was an HP-5, 28 m long × 

0.320 mm ID × 0.25 μm film thickness (Agilent, Santa Clara, CA, U.S.A.), and the second 

was an Rtx-200, 1.5 - 1.8 m long × 0.25 mm ID × 0.25 μm film thickness (Restek, 

Bellefonte, PA, U.S.A.). More detailed gas chromatography, autosampler, and mass 

spectrometry methods are provided in Appendix A. 

4.2.7 Data analysis 
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Sample runs were analyzed in ChromaTOF (LECO, St. Joseph, MI, U.S.A.) to 

determine baseline, peak area, and peak identification as described previously101, 102. 

Briefly, settings included a baseline offset of 0.5, automatic smoothing, first dimension 

peak width of 36 s, second dimension peak width of 0.10 s, and a match of 700 required to 

combine peaks with a minimum signal-to-noise (S/N) of 5 for all subpeaks. Peaks were 

required to have a S/N of 10 and have a minimum similarity score of 800 to NIST, Golm, 

and in-house spectral libraries before assigning a name. Unique mass was used for area and 

height calculation. MetPP was used to align the samples103. Sample files and a 

derivatization reagent blank file were uploaded from ChromaTOF. Unknowns were 

retained during the peak alignment process. The derivatization reagent blank file was used 

to subtract peaks resulting from the sample preparation reagents from the corresponding 

sample files. On-the-fly alignment was used with manually selected quality control 

samples as the peak list for primary alignment. Peak alignment was performed using the 

default criteria. To remove analytes that were not reproducibly detected, analytes for which 

more than half of the values were missing in the QC samples or for which the QC samples 

had a coefficient of variance larger than 0.5 were removed from the data set. Then, missing 

values were manually corrected using small value correction only if all the values were 

missing in the biological replicates.  

Finally, MetaboAnalyst was used for statistical and two-factor analysis142. For both 

analyses, remaining missing values were k- nearest neighbors (KNN) corrected. Data was 

then log-transformed using a generalized logarithm (base 2) and autoscaled. P-values were 

adjusted using the Benjamini-Hochberg False Discovery Rate (FDR). Differences were 

considered significant at FDR-corrected p-values < 0.05.  
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The metabolomics data sets for this study are available via the Metabolights 

repository, with the data set identifier MTBLS2630143. 

4.3 Results and Discussion 

4.3.1 Metabolic profiles change throughout CFE reactions 

Our first goal was to characterize the metabolic dynamics in a CFE reaction for the 

duration of protein synthesis, as previous studies had focused on reaction endpoints. We 

prepared the lysate from exponentially growing BL21 cells in 2xYTP media; the cells were 

lysed via sonication, and the lysate was post-processed with a run-off reaction and dialysis 

(see Experimental Methods for details). A CFE reaction was assembled comprising this 

lysate, a small-molecule reaction mixture, and the CFE plasmid pJL1s70 to drive 

expression of green fluorescent protein (GFP) from an E. coli σ70 promoter. GFP 

production was measured and samples were collected for metabolomics analysis at 0, 0.5, 

1, 2, 4 and 6 hours. Metabolomics samples were prepared by precipitating proteins and 

analyzing the remaining metabolite mixture using two-dimensional gas chromatography 

coupled to mass spectrometry (GCxGC-MS) after sample derivatization. The resulting 

instrument output was processed with a computational workflow resulting in relative 

abundances for 276 putatively identified and unannotated metabolites that were used for 

downstream analysis. 

For a systems-scale analysis of the temporal metabolic changes in the reaction, we 

analyzed the resulting data with principal component analysis (PCA). For the time-course 

CFE profiles, the majority of sample group separation is captured in the first principal 

component (PC1), reflecting a monotonic change in metabolic state over the course of the 
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reaction (Figure 35B). The fact that the 0 hour and 0.5 hour samples are the most separated 

consecutive timepoints in PC1 suggests that a large portion of the metabolic changes likely 

occurred in the first half hour of the reaction; however, the separation of later timepoint 

samples in this same principal component suggests that metabolite levels continue to 

change throughout the entirety of the reaction. Surprisingly, metabolite profiles at 4 hours 

separate from those at 6 hours in both PC1 and PC2, showcasing that significant metabolic 

activity continues even as protein synthesis is concluding (Figure 35A). 

 

Figure 35: Temporal profiles of CFE reactions during protein production.  
(A) GFP production (measured via fluorescence) slows down at around 4 hours. Error 
bars represent standard deviation of triplicate reactions. (B) Samples from different 
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timepoints separate from one another, with PC1 values increasing with reaction time. 
Colored ellipses represented 95% confidence intervals for each group, and the plotted 
samples are triplicate reactions. (C) Profiles of metabolites involved in glycolysis, 
dihydroxyacetone phosphate (DHAP) metabolism, β-alanine biosynthesis, and 
polyamine biosynthesis pathways change over the course of a CFE reaction. Box and 
whisker plots depict the normalized peak areas, which are transformed using a 
generalized logarithm (base 2) and autoscaled. Red lines are the medians, boxes span 
the second and third quartiles of values. Error bars represent standard deviation of 
triplicate reactions. 

4.3.2 Levels of multiple key metabolic pathways evolve over the course of a CFE reaction 

We then identified individual metabolites with significant changes during the 

reaction using ANOVA. We found major metabolic changes in central carbon and amino 

acid metabolism. Specifically, we detected significant changes (using False Discovery Rate 

(FDR)-corrected p-values < 0.05) to metabolites involved in glycolysis, dihydroxyacetone 

phosphate (DHAP) metabolism, β-alanine biosynthesis, and polyamine precursor 

biosynthesis (Figure 35C). There were significant decreases in the abundances of the 

glycolytic intermediates 2-phosphoglycerate and pyruvate and a continuous increase in the 

fermentation product lactic acid, potentially from the conversion of pyruvate (Figure 34). 

These observations were unsurprising, as glycolysis is the primary pathway for CFE 

reactions to create ATP, and it has previously been shown that most glycolytic enzymes 

are present in E. coli-derived lysates64-66.  

Changes in other glycolytic byproducts involved in DHAP metabolism were more 

unexpected. DHAP is a glycolytic intermediate that has various routes for conversion: (1) 

isomerization into glyceraldhyde-3-phosphate to enter glycolysis, (2) conversion into the 

glycerol-associated metabolites dihydroxyacetone or glycerol-3-phosphate, or (3) 

breakdown into the highly toxic molecule methylglyoxal that can in turn become the less 
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toxic metabolites 1,2-propanediol or lactic acid144. Two metabolites within this pathway, 

dihydroxyacetone and glycerol-3-phosphate, accumulated significantly during the CFE 

reaction. These metabolites are substrates for or products of glycerol, but we did not detect 

any significant changes to glycerol (Figure 36A). The increase in lactic acid could 

potentially result from conversion of DHAP to lactic acid due to accumulation of 

methylglyoxal. Methylglyoxal is known to be highly toxic to cells due to its ability to 

interact with DNA145, though it was not identified in this data set. If present in the CFE 

reaction at appreciable levels, methylglyoxal could interact with template DNA and inhibit 

expression. 

 

Figure 36: Relative abundances of individual metabolites in CFE reactions. (A) 
glycerol, (B) L-aspartate, (C) ornithine, (D) putrescine, (E) fumarate, and (F) malate 
levels in CFE reaction samples do not significantly change over time. Box and whisker 
plots depict the normalized peak areas, which are transformed using a generalized 
logarithm (base 2) and autoscaled. Red lines are the medians, boxes represent the 
second and third quartiles of values. Error bars represent standard deviation of 
triplicate reactions. 

Beyond this more central portion of carbon metabolism, some sections of amino 

acid metabolism also exhibited significant temporal profiles during the CFE reaction, 
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including β-alanine biosynthesis. β-alanine is the product of L-aspartate, which is 

synthesized from oxaloacetate (OAA) in the tricarboxylic acid (TCA) cycle. Although L-

aspartate did not significantly change (Figure 36B), we found that β-alanine increased at 

the beginning of the reaction and remained relatively constant after the first hour. This 

metabolite and its interesting dynamics are notable for a number of reasons. First, it is the 

precursor to pantothenic acid (vitamin B5) and thus to Coenzyme A, an essential cofactor 

for many key metabolic pathways including the TCA cycle, fatty acid biosynthesis, and 

acetyl-CoA production133, 146. Second, and perhaps even more noteworthy, we have 

previously shown that supplementing β-alanine to a CFE reaction increases protein 

expression43, indicating that its levels are (either directly or indirectly) important to CFE.  

Polyamine biosynthesis was another section of amino acid metabolism with 

significant temporal profiles. The polyamines putrescine and spermidine are known to be 

extremely important for processes in living cells due to their key roles in cell-to-cell 

signaling, cell division, cell motility, and synthesis of DNA and proteins147. They are also 

components of the CFE reaction mixture. Polyamine biosynthesis begins with the 

molecules L-ornithine or L-arginine, which both can be derived from α-ketoglutarate in the 

TCA cycle; byproducts of the pathway include urea and methylthio-adenosine. Although 

ornithine and putrescine remained constant in our measurements (Figure 36C-D) and 

spermidine was not identified, the precursor metabolites L-arginine and methylthio-

adenosine decreased and increased, respectively. Interestingly, the two TCA metabolites 

we detected (fumarate and malate) did not change significantly (Figure 36E-F), potentially 

indicating that TCA cycle molecules are not significant precursors for β-alanine or 

polyamine biosynthesis, likely due to the excess of amino acids in the reaction mixture.  
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4.3.3 The metabolic profile of the lysate alone changes with time 

To begin to pinpoint the source of the metabolic changes that occur in complete 

CFE reactions, we sought to separately identify metabolic changes in each of the two main 

constituents of the reaction: the lysate and the reaction mixture. To that end, we measured 

metabolite profiles in the lysate and in the reaction mixture when separately incubated 

under otherwise normal reaction conditions. Water was added to the lysate and reaction 

mixture samples to bring them to the same volume as a CFE reaction, and both were 

incubated at 37 °C and collected for metabolomics analysis at 0, 1 and 4 h. Data processing 

yielded 247 and 303 known and unannotated analytes for the lysate and reaction mixture 

samples, respectively, to be used in further analyses.  

Principal component analysis revealed no separation of reaction mixture metabolite 

profiles at the different timepoints but did yield distinct separation of lysate samples in PC1 

(Figure 37A-B), consistent with our expectations for both sample types. We expected the 

small molecules in the reaction mixture to be stable without any enzymes present, and only 

twelve metabolites (Figure 38) were identified as significantly changing using ANOVA 

(most of which were not annotated and were likely a result of poor chromatographic peak 

resolution and different derivatization products). We also expected the enzymes in the 

lysate to cause changes in metabolite profiles.  However, it is worth noting that the lysate 

had already undergone a “run-off reaction” (to degrade host RNA/DNA) and dialysis39, 

making the presence of a lysate metabolome and its potential for significant transformation 

somewhat surprising.  
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Figure 37: Metabolic changes in incubated reaction mixtures and lysates.  
(A) PCA plot for the incubated reaction mixture samples, showing no clustering of or 
separation between timepoints. (B) PCA plot for the incubated lysate samples, 
showing distinct separation between metabolite profiles at each time point. For (A) 
and (B), colored ellipses represented 95% confidence intervals for each group, and 
the plotted samples are replicate reactions. (C) Metabolites involved in glycolysis, 
DHAP metabolism, the tricarboxylic acid (TCA) cycle, β-alanine biosynthesis, and 
polyamine biosynthesis pathways change during lysate incubation. Box and whisker 
plots depict the normalized peak areas, which are transformed using a generalized 
logarithm (base 2) and autoscaled. Red lines are the medians, boxes span the second 
and third quartiles of values. Error bars represent standard deviation of triplicate 
reactions. 
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Figure 38: One-way ANOVA of metabolomics data collected from the incubated 
reaction mixture samples.  
Incubation of the reaction mixture in water impacted 12 out of 303 analytes detected. 
Red circles indicate significantly changing analytes, while green circles represent 
insignificantly changing analytes. The y-axis indicates raw p-values for significance 
tests for each analyte; the p = 0.05 line is drawn. Analyte significance was assessed 
using a false discovery rate (FDR) corrected p-value threshold of 0.05. 

The metabolic pathways with significant changes in the lysate were similar to those 

in the complete CFE reaction and included glycolysis, DHAP metabolism, β-alanine 

biosynthesis, and polyamine precursor biosynthesis (Figure 37C). Additionally, molecules 

in the TCA cycle significantly changed.  

Notably, though, many of the metabolites identified as significantly changing in the 

lysate alone did not have the same temporal trends as in the complete CFE reaction. 

Glycerol-3-phosphate, citrate, fumarate and putrescine do not trend the same way as in the 

complete reaction; however, the decreasing trends for glycerol-3-phosphate were not 
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statistically significant. β-alanine does trend similarly to the complete CFE reaction, but 

the changes were not statistically significant. Additionally, pyruvate, lactic acid, glycerol, 

and urea levels did not significantly change over time (Figure 39A-D).  

 

Figure 39: Relative abundances of individual metabolites in incubated lysate samples. 
(A) Pyruvate, (B) lactic acid, (C) glycerol, and (D) urea in incubated lysate samples 
(without reaction mixture or plasmid) do not significantly change over time. Box and 
whisker plots depict the normalized peak areas, which were transformed using a 
generalized logarithm (base 2) and autoscaled. Red lines are the medians, boxes are 
the second and third quartile of values. Error bars represent standard deviation of 
triplicate reactions. 

Thus, the changes in metabolite profiles during CFE reactions do appear to be 

attributable to the endogenous metabolic activity of the lysate rather than chemical 

degradation of the reaction mixture. In fact, similar metabolites are affected in both the 
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lysate and the complete CFE reaction, suggesting the prominent roles of similar enzymes. 

However, the different trends in those metabolite profiles between the two cases indicate 

that the surplus of molecules provided in the reaction mixture fundamentally alters the 

qualitative impacts of endogenous metabolic activity for those enzymes. 

4.3.4 Lysate incubation affects protein yield with minor impacts on CFE reaction 

metabolic state 

We next sought to characterize the relationship between the lysate’s initial 

metabolic state and the productivity and final metabolic state of a CFE reaction.  

Previously, we demonstrated that pre-incubating the lysate with reaction mixture at 37 °C 

for 8 h prior to DNA template addition substantially decreased protein output43, suggesting 

that the endogenous metabolism of the system may affect its productivity. Since we now 

know (Figure 35C and Figure 37C) that the metabolic trends of the lysate’s endogenous 

enzymes can be quite different depending on whether the reaction mixture metabolites are 

present, this led to the question of whether pre-incubation of lysate without the reaction 

mixture would affect the productivity or final metabolic state of a CFE reaction.  

Accordingly, we incubated the lysate without any reaction mixture for six hours at 

4, 25, or 37 °C and then used these pre-incubated lysates in a CFE reaction producing GFP 

from pJL1s70. We selected the incubation time of 6 hours to be consistent with the 

timescale of protein production (Figure 35), allowing sufficient time for endogenous 

metabolic activity to approach completion. We found in small-volume microwell plate 

experiments that lysate pre-incubation at 25 or 37 °C, but not at 4 °C, resulted in a 

substantial reduction in GFP production (Figure 40). We then used larger-volume reactions 
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for fluorescence and metabolomics analysis at 0, 1 and 4 hours after the start of the reaction 

with pre-incubated lysate. After data processing, these metabolomics measurements 

yielded 424 known and unannotated analytes used in further analyses. 

 

Figure 40: GFP production from CFE reactions using lysates that were fresh or pre-
incubated for 6 h at 4, 25, or 37 °C.   
Fluorescence was measured every 5 minutes over 10 h of incubation with excitation 
and emission wavelengths of 485 and 510 nm, respectively, with a gain of 70. Each 
reaction was 10 µL in volume with 12 nM pJL1s70 plasmid. Error bars represent 
standard deviation of triplicate reactions. 

As seen in Figure 41A, CFE reactions in the larger-volume format also produce 

significantly less GFP when lysates are pre-incubated at 25 or 37 °C compared to at 4 °C. 

Multivariate analysis with PCA indicated differences in metabolic profiles between the 

three pre-incubation temperatures before the reaction started but a convergence of the 

overall metabolic profiles by the final timepoint (Figure 41B), a contrast to their divergence 

in protein productivity. With univariate analyses, we found that most metabolic dynamics 
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in the reactions with pre-incubated lysates were the same as in reactions with fresh lysate 

(Figure 41C). For example, temporal trends in glycolysis and TCA cycle metabolites were 

independent of lysate pre-incubation temperature and identical to the fresh CFE reaction, 

even though levels of some of these molecules had changed during lysate incubation.  

 

Figure 41: GFP production and metabolic changes in CFE reactions using lysates pre-
incubated for 6 h at 4, 25, or 37 °C.  
(A) Increasing lysate pre-incubation temperature results in decreased GFP output. 
Error bars represent standard deviation of triplicate reactions. (B) Principal 
component analysis of metabolite profiles collected at different reaction timepoints. 
The samples collected at the start of the reaction separate based on lysate pre-
incubation temperature, but the metabolic profiles converge as the reaction 
progresses. Colored ellipses represented 95% confidence intervals for each group, 
and the plotted samples are replicate reactions. (C) Only a few metabolites involved 
in DHAP metabolism, β-alanine biosynthesis, and polyamine biosynthesis pathways 
had different profiles for different lysate pre-incubation temperatures. Box and 
whisker plots depict the normalized peak areas, which are transformed using a 
generalized logarithm (base 2) and autoscaled. Red lines are the medians, boxes span 
the second and third quartiles of values. Error bars represent standard deviation of 
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triplicate reactions. Metabolites that changed significantly with time but consistently 
across sample groups are noted with text. 

However, a few molecules in DHAP metabolism, β-alanine biosynthesis, and 

polyamine precursor biosynthesis had different profiles for different lysate pre-incubation 

temperatures. Glycerol-3-phosphate levels stayed relatively constant when lysates pre-

incubated at 4 and 25 °C were used, whereas with 37 °C pre-incubated lysates this molecule 

accumulated, indicating it is produced during the CFE reaction despite its downward trend 

during high-temperature pre-incubation. β-alanine levels increased over time for reactions 

with 4 and 25 °C pre-incubated lysates (similar to a fresh CFE reaction), but with 37 °C 

pre-incubated lysates the elevated initial concentration of β-alanine does not appreciably 

increase, suggesting that β-alanine biosynthesis is largely completed after 37 °C pre-

incubation. Urea and gamma-aminobutyric acid (GABA, a putrescine degradation product) 

were also affected by increasing pre-incubation temperatures, with more accumulation at 

higher and lower temperatures, respectively. (Putrescine was detected but did not 

significantly change across samples, potentially due its abundance in the reaction mixture 

(Figure 42).) We also performed ANOVA2 to quantify the impact of lysate pre-incubation 

temperature on the metabolite profiles. We found that reaction time is the most common 

significant effect across the measured metabolites, though (consistent with the preceding 

discussion) there are also significant interaction effects (Figure 43).  
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Figure 42: Relative abundances of putrescine in CFE reaction samples with lysates 
pre-incubated at different temperatures.  
Box and whisker plots depict the normalized peak areas, which are transformed using 
a generalized logarithm (base 2) and autoscaled. Red lines are the medians, boxes 
span the second and third quartiles of values. Error bars represent standard 
deviation of triplicate reactions. 

 

 

Figure 43: Two-way ANOVA and the distribution of f-values of metabolomics data 
collected from CFE reactions run with lysates pre-incubated at different 
temperature.  
In (A), numbers represent counts of metabolites that have significant effects for each 
factor, assessed using FDR corrected p-values (<0.05). In (B), bin values of 1 were 
used to determine f-value frequency. The majority of f-values are between 0 and 9. 
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Although pre-incubating lysates at different temperatures significantly affects CFE 

reaction protein production, the changes in metabolic dynamics caused by the use of these 

different lysates are small compared to the overall metabolic changes during the course of 

a reaction. While it was perhaps surprising that the final metabolic states of these systems 

with such different expression levels seem so similar, the small metabolic changes may 

very well still be a root cause of the changes in expression, especially since some of these 

molecules, such as polyamines and β-alanine, are known to have key roles in protein 

production. This hypothesis is supported by multiple pieces of evidence from the literature. 

First, the loss of protein expression with pre-incubation seems likely to be either directly 

or indirectly metabolic in its cause: expression in CFE reactions can be maintained for 16 

to 24 hours by use of dialysis reactors50, 148, suggesting that expression machinery is not 

likely degrading during the pre-incubation. Furthermore, we previously demonstrated that 

supplementation of β-alanine, putrescine, and spermidine into CFE reactions can 

drastically alter protein production, highlighting the impact of metabolite levels on protein 

output43. Nonetheless, proteins that are temperature-sensitive or have short half-lives could 

be disproportionately affected by pre-incubation, which would not be detected here as 

enzymatic activity was not directly measured in our experiments. Additionally, the 

assessment of there only being “small” temperature-related changes in metabolite profiles 

could be biased by the finite metabolome coverage of GC-MS.   

4.3.5 Sonication energy input significantly impacts protein production and metabolic 

profiles 

We next sought to further explore how susceptible endogenous lysate metabolism 

is to changes in its initial metabolic state via alterations to lysate preparation. Our previous 
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studies of CFE metabolism assessed the impact of multiple steps in lysate preparation, 

including growth of the starter culture with or without glucose and dialysis of the lysate43. 

However, we had yet to explore one variable known to have a significant impact on lysate 

productivity: the sonication energy input to lyse the cells.  

While sonication energy input should not impact the initial metabolite profile in the 

lysate, its impact on expression may be correlated with or mediated by metabolic changes, 

so we sought to characterize endogenous metabolism in lysates made with different 

sonication energies. While the exact number varies between operators due to differences 

in technique, a typical sonication energy input for cell lysis in our group is 250-300 J; lower 

input energies can be used, but may reduce lysis efficacy due to an increase in intact cells 

and a lower total E. coli protein concentration in the crude lysate41. We prepared lysates 

using sonication energies of 25, 100, and 300 J and used them for assembly of CFE 

reactions with the reaction mixture and the template DNA pJL1s70. Samples for 

fluorescence measurements and metabolomics analysis were collected at 0, 1, 4, and 12 h. 

Processed metabolomics measurements yielded 351 annotated and unannotated analytes 

for further analysis. 

Different sonication energies did in fact lead to different protein yields and 

metabolite profiles.  An energy input of 100 J unexpectedly resulted in a higher protein 

yield than either 25 J or 300 J at 1 h and 4 h (Figure 44A). While the 25J condition had 

lower expression than the 300 J condition at 1 h, the 25 J condition surpassed the 300 J 

condition at 4 h and made comparable amounts of protein to the 100 J condition by 12 h.  

This temporal difference in expression profiles was reproducibly observed, but given the 

known operator-specific aspects of sonication energy protocol optimization, we refrain 
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from interpreting too much from the quantitative details and instead focus on the three 

conditions as generally indicative of different degrees of lysis and different expression 

efficiency. The stark differences in protein yield reflected in those measurements were 

evident in our metabolomics data when analyzed using PCA (Figure 44B), with significant 

separation of the conditions at almost all timepoints, indicating that different sonication 

energy inputs lead to fundamentally different endogenous CFE metabolic dynamics. 

Notably, the 100 and 300 J reaction samples are closer to each other in PCA space than the 

25 J reactions at each time point, suggesting greater similarities in their metabolic profiles. 

 

Figure 44: GFP production and metabolic changes in CFE reactions using lysates 
sonicated with different energy inputs.  
(A) Reducing lysate sonication energy input from 300 J to 25 or 100 J significantly 
improves protein production expression in CFE reactions. Error bars represent 
standard deviation of triplicate reactions. (B) Principal component analysis of 
metabolite profiles from reactions using differently sonicated lysates. The different 
lysate reactions separate in PC1 at 0, 1, and 4 h timepoints. Colored ellipses 
represented 95% confidence intervals for each group, and the plotted samples are 
replicate reactions. (C) Metabolites involved in glycolysis, the TCA cycle, β-alanine 
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biosynthesis, and polyamine biosynthesis pathways are prominently affected by 
sonication energy input. Box and whisker plots depict the normalized peak areas, 
which are transformed using a generalized logarithm (base 2) and autoscaled. Red 
lines are the medians, boxes span the second and third quartiles of values. Error bars 
represent standard deviation of triplicate reactions. 

Univariate (ANOVA) analysis again provided additional context for the 

multivariate results. 100 and 300 J reactions behaved like our complete CFE reactions and 

had almost identical metabolic behavior, with few exceptions (Figure 44C). The 25 J 

reactions appeared to have slower glycolytic activity, as evidenced by the smaller changes 

between 0 h and 4 h compared to the 100 J and 300 J reactions. Interestingly, the 25 J 

reactions had lower initial abundances of malate, β-alanine, and methylthio-adenosine, 

although the trends of all but malate remained the same across sonication energies. 

Glycerol-3-phosphate, fumarate, succinate, and putrescine were present in the data set and 

remained constant for all reactions (Figure 45A-D).  
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Figure 45: Relative abundances of individual metabolites in CFE reactions using 
differently sonicated lysates. (A) Glycerol-3-phosphate, (B) fumarate, (C) succinate, 
and (D) putrescine do not significantly change over time. Box and whisker plots depict 
the normalized peak areas, which were transformed using a generalized logarithm 
(base 2) and autoscaled. Red lines are the medians, boxes are the second and third 
quartile of values. Error bars represent standard deviation of triplicate reactions. 

ANOVA2 results highlight the importance of time and interaction effects over 

sonication energy input alone, indicating that (similar to lysate pre-incubation) the initial 

metabolic differences between lysates with different sonication energies are ultimately 

blunted over time (Figure 46). While the quantitative metabolic dynamics across these 

lysates differ, they are often variations on similar trends but to different degrees. This may 

be a result of the change in total protein content (rather than specific activity) caused by 

altering sonication energy input. Even though the lysates for the sonication energy input 

experiment were derived from a different strain and prepared by a different operator than 
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in the previous figures, their metabolic dynamics were similar to the previous results; this 

further highlights the resiliency of CFE reaction metabolism to external perturbations, 

which is a particularly salient feature given the well-known operator dependence of CFE 

results. 

 

Figure 46: Two-way ANOVA and the distribution of f-values of metabolomics data 
collected from CFE reactions using lysates sonicated with different energy inputs. 
In (A), numbers represent counts of metabolites that have significant effects for each 
factor, assessed using FDR corrected p-values (<0.05). In (B), bin values of 1 were 
used to determine f-value frequency. The majority of f-values are between 0 and 15. 

We note that because the stability and function of proteins are known to be affected 

by sonication energy input, proteins involved in transcription and translation could have 

been affected in our experiment, though they were not directly measured. The metabolic 

behaviors observed here, along with the unique temporal expression dynamics at different 

sonication energies, indicate the likely complex interdependencies between proteins and 

metabolites, and between expression and metabolism, in CFE systems.  

4.3.6 Targeted enzyme supplementation has minor effects on protein yield and metabolic 

profiles 
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With this additional support for the idea that endogenous metabolism is connected 

to CFE productivity and potentially robust to changes in the initial lysate’s metabolic state, 

we sought to assess the impact on productivity when some metabolic fluxes are perturbed 

or rerouted, which could perhaps cause larger-scale metabolic perturbations than single 

metabolite supplementation. We selected five cytosolic enzymes to supplement in CFE 

reactions based on our findings to this point and their known importance in central carbon 

and amino acid metabolism: three glycolytic enzymes (phosphoglycerate kinase (Pgk), 

pyruvate kinase (PykF), and lactate dehydrogenase (LdhA)) and two TCA cycle enzymes 

(citrate synthase (GltA) and isocitrate dehydrogenase (Icd)) (Figure 34). 

We initially sought to supplement the enzymes via expression from a plasmid; 

however, we found that including additional plasmid DNA to produce the enzyme at the 

same time as the GFP reporter in a CFE reaction confounded results (Figure 47). Extra 

DNA, regardless of sequence and gene products, increased GFP production in these 

experiments. To avoid this confounding effect, we instead supplemented the reaction with 

purified enzyme. Before performing metabolomics analysis, we identified the optimal 

concentration ranges for expression enhancement for each enzyme in small-volume 

reactions (Figure 48). Only two of the five enzymes (GltA and LdhA) caused improved 

endpoint GFP production in the CFE reactions when supplemented at their optimal 

concentrations.  
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Figure 47: GFP production changes for reactions run with additional, non-reporter 
plasmids.   
pGFP is pJL1s70, with expression controlled by a standard E. coli σ70 promoter.  
Error bars represent standard deviation of triplicate reactions. 
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Figure 48: Optimization of enzyme supplementation levels in a CFE reaction. 
Different concentrations of (B) GltA, (C) LdhA, (D) PykF, (E) Icd, and (F) Pgk were 
added to CFE reactions and fluorescence was measured over 8 hours. Protein storage 
buffer at dilutions equivalent to those that would be added during enzyme 
supplementation were also tested (A) to control for potential protein expression 
improvements due to storage buffer components. 1 µM GltA and 100 nM LdhA 
statistically significantly improve endpoint GFP production. GFP expression was 
controlled by a standard E. coli σ70 promoter (pJL1s70).  Error bars represent 
standard deviation of triplicate reactions. 

We selected GltA, Pgk, and LdhA for metabolomics analysis of supplemented 

reactions based on their metabolic pathway diversity (they come from the TCA cycle, 

glycolysis, and fermentation, respectively) and the preliminary evidence of improved GFP 

production for GltA and LdhA. Each larger-volume reaction was supplemented with the 

optimized concentration of the selected enzyme (1 µM GltA, 100 nM LdhA,10 nM Pgk); 

control reactions were supplemented with enzyme buffer with no enzyme. Samples were 

collected for fluorescence and metabolomics analysis at 0, 1, and 4 hours after reaction 
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assembly. After data processing, these metabolomics measurements yielded 331 known 

and unannotated analytes used in further analyses. 

Only GltA supplementation yielded significantly improved GFP expression in the 

large-volume reactions (Figure 49A), though supplementation with the other enzymes 

trended in the same direction. (Differences in protein expression between small- and large-

volume reactions is consistent with literature reports149.) Multivariate analysis via PCA 

yielded no clear separation of samples at each timepoint (though the GltA samples showed 

a small amount of separation at 0 hours), indicating that supplementation of these enzymes 

only minimally impacts the metabolic profile despite their known importance in carbon 

metabolism (Figure 49B).  
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Figure 49: GFP production and metabolic changes in CFE reactions supplemented 
with the enzymes GltA, LdhA, or Pgk.  
(A) Though all three supplemented reactions trended towards increased GFP 
expression, only GltA supplementation yielded a statistically significant increase at 4 
h. Error bars represent standard deviation of triplicate reactions. (B) Principal 
component analysis of metabolite profiles collected at different reaction timepoints. 
The supplementation conditions do not clearly separate at any timepoint. Colored 
ellipses represent 95% confidence intervals for each group, and the plotted samples 
are replicate reactions. (C) Only a few metabolites involved in glycolysis, DHAP 
metabolism, the TCA cycle, β-alanine biosynthesis, and polyamine biosynthesis 
pathways were affected by enzyme supplementation. Box and whisker plots depict the 
normalized peak areas, which are transformed using a generalized logarithm (base 
2) and autoscaled. Red lines are the medians, boxes span the second and third 
quartiles of values. Error bars represent standard deviation of triplicate reactions. 
Metabolites that changed significantly with time but consistently across sample 
groups are noted with text. 

On a univariate level, while most metabolite levels were not affected by enzyme 

supplementation, there were five metabolites within DHAP metabolism, glycolysis, TCA 

cycle, β-alanine production and polyamine biosynthesis with notable (though often subtle) 

changes for different supplemented enzymes (Figure 49C). The DHAP breakdown product 
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1,2-propanediol increased for all reactions, but to a lesser extent for reactions with Pgk, 

potentially indicating some rerouting of metabolic flux from DHAP metabolism into 

glycolysis. Reactions with LdhA had lower levels of lactic acid at 4 hours than the control 

reaction. Although one may have expected larger changes to lactic acid production for 

reactions supplemented with LdhA, some of the lactic acid pool may come from conversion 

of methylglyoxal in DHAP metabolism. Succinate levels also change with enzyme 

supplementation (though with similar profiles across all three enzymes), and 

supplementation of LdhA and Pgk both affected biosynthesis of the polyamine spermidine. 

For GltA supplementation (again, the only one to yield significant increases in GFP 

expression), only one metabolite (succinate) was notably changed compared to the control. 

Interestingly, β-alanine levels were largely unaffected, even though one might have 

anticipated changes based on GltA’s consumption of OAA. β-alanine profiles may have 

remained unchanged due to the excess of amino acids (specifically L-aspartate) supplied 

in the reaction mixture.  

Taken together, the impacts of enzyme supplementation on the metabolic state of the 

CFE reactions is comparatively small (though again, one should note the caveat that GC-

MS is not well-suited to measuring all classes of metabolites, so there may metabolites we 

did not measure with more clear differentiation between conditions). While analysis with 

ANOVA2 suggests that there are more statistically significant enzyme supplementation 

effects than what is evident from visual inspection or one-way analyses, time still has the 

broadest effect on metabolite profiles (Figure 50) and the ANOVA2-significant enzyme 

effects are still quite subtle. Although one may have expected more substantial changes to 

metabolic activity due to enzyme supplementation, our results suggest a certain degree of 
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resilience of CFE metabolism, perhaps a result of the allosteric regulation that allows living 

E. coli cells to maintain metabolite homeostasis150. This overall metabolic resilience only 

further highlights the importance of using metabolism as a guide or target for optimization 

of CFE systems, as it is a prominent force with a substantial impact on total protein 

expression. 

 

Figure 50: Two-way ANOVA and the distribution of f-values of metabolomics data 
collected from CFE reactions run with supplemented enzymes.  
In (A), numbers represent counts of metabolites that have significant effects for each 
factor, assessed using FDR corrected p-values (<0.05). In (B), bin values of 1 were 
used to determine f-value frequency. The majority of f-values are between 0 and 7. 
 

4.4 Conclusion 

 In summary, we identified temporal changes in the small molecules within a CFE 

reaction via metabolomics using GCxGC-MS analysis, linking them to key areas of 

metabolism. By performing a deeper characterization of the metabolic dynamics of these 

systems, we confirmed our findings in the previous chapter that metabolites involved in β-

alanine/pantothenate biosynthesis and pyruvate metabolism change during a CFE reaction 
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as well as discovered that metabolites in other areas of metabolism change including 

glycolysis, DHAP metabolism, the TCA cycle, and polyamine precursor biosynthesis. We 

also dissected the contributions of the lysate and reaction mixture to the metabolic changes 

in a complete CFE reaction, confirming that the lysate, not the reaction mixture, plays a 

significant role due to its the endogenous metabolic activity. However, the reaction mix 

alters the initial metabolic state of the reaction and can impact the direction in which 

metabolites are utilized.  

 Because we found in the previous chapter that incubation of the reaction without 

plasmid DNA negatively affects protein yield (Figure 28), we decided to further explore 

this by performing metabolomics analysis on pre-incubated lysates that were subsequently 

used in CFE reactions. Although we found that most metabolic changes in the reactions 

with pre-incubated lysate were the same as those in reactions with fresh lysate, a few 

molecules involved in DHAP metabolism, β-alanine biosynthesis, and polyamine 

precursor biosynthesis changed, which is notable because we were able to show in the 

previous chapter that supplementation of the polyamine putrescine as well as β-alanine can 

improve reaction performance (Figure 32).  

 We then decided to determine how susceptible endogenous lysate metabolism is to 

changes in its initial metabolic state via alterations to lysate preparation method. Because 

we previously assessed the impact of growth of the starter culture with or without glucose 

and dialysis of the lysate, we chose to explore how changes to lysate sonication energy 

input alter protein yield putatively via metabolic changes. Despite major changes to protein 

output, there were comparatively minor impacts on the overall metabolic profile of the 

reaction. We then used the information from these studies to selectively target some of the 
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areas of metabolism (specifically glycolysis, fermentation, and the TCA cycle) via enzyme 

supplementation. We were able to improve expression, though only in a few cases and it 

had only minor impact on the metabolic profile of the reaction. Overall, CFE reactions 

maintain a robust balance of metabolites despite changes to the initial metabolic state of 

the lysate and enzymatic capacity of the lysate, and subtle and small changes in metabolite 

levels may play a significant role in determining reaction productivity. Our results highlight 

the complex, intertwined relationship of metabolism and protein expression as well as their 

potential as a vehicle for understanding CFE systems to improve their optimization for a 

broad range of applications, including biosensing. 
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 CONCLUSIONS AND FUTURE DIRECTIONS 

 In this thesis, I have used metabolomics to explore key obstacles of bacteria-based 

whole-cell and cell-free biosensor design. I showed that a better understanding of 

metabolism can lead to improvements in biosensor engineering. I have identified specific 

strategies to improve biosensor performance in whole-cell and cell-free systems. However, 

there still remain important next steps to evaluate the utility of these findings for both 

whole-cell and cell-free biosensors. In this chapter, I will discuss the novelty and 

contribution of my thesis research as well as the relevant next steps to expand upon the 

advances and findings in my work. I will also present more forward-looking directions to 

further expand the applicability of whole-cell and cell-free bacterial-based biosensors 

through the use of metabolomics. 

5.1 Novelty of thesis research 

 While metabolomics analyses have been widely applied to study E. coli cells that 

have been designed to maximize biochemical production, very few studies have focused 

on the metabolic impacts of engineering efforts related to biosensor development. In my 

work, I sought to bridge this gap by exploring the metabolic effects linked to expression 

and optimization of a well-characterized biosensor reporter system. I characterized the 

metabolic impacts of a previously-reported strategy to improve carotenoid production, and 

I was the first to link homocysteine and homoserine accumulation to mevalonate precursor 

production. Additionally, I developed an easily implementable and effective strategy to 

mitigate some of the toxicity associated with homocysteine and homoserine and uncovered 

other metabolites that may also be linked to the toxicity that could be investigated to 
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potentially reduce cellular stress even further. Overall, this work highlights the value of 

applying metabolomics to inform strain design for not only lycopene production but in 

general for whole-cell biosensors.  

 Despite the major advances in applying CFE systems for biosensor development, 

there had been no studies before my work that characterized the metabolic profiles of E. 

coli-based CFE systems. Previous research had focused only on the protein synthesis 

impacts of changes to CFE systems, including alterations to lysate preparation protocols. 

By directly measuring the metabolite levels within CFE systems, I identified that 

pantothenate precursors and polyamines are impacted based on lysate preparation method 

and demonstrated that molecules such as putrescine, homocysteine, and β-alanine can be 

supplemented into the lysates to improve reaction performance and enable consistent 

activity across different batches of lysates. The results from this thesis can be directly 

applied to better engineer biosensors and have already been useful to inform the 

development of a homocysteine biosensor in our lab, as they have provided novel insights 

on the endogenous production of homocysteine in CFE reactions. Due to the overall 

popularity of the lysate methods studied, the findings and proposed supplementation 

strategies in this work are highly generalizable to a variety of bacterial cell-free systems 

and are especially useful for biosensor design to help optimize and standardize sensor 

response.     

 To enable more informed engineering efforts of CFE systems, I characterized the 

dynamic small molecule changes in CFE lysates and reactions. I identified active areas of 

metabolism including glycolysis, DHAP metabolism, the TCA cycle, β-alanine synthesis, 

and polyamine precursor biosynthesis that consistently change during a CFE reaction, 
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independent of GFP production, lysate pre-incubation, changes to lysate sonication energy 

input, and even enzyme supplementation. I demonstrated that these trends are conserved 

in CFE reactions using lysates derived from different strains of E. coli that were prepared 

by different operators. Because central carbon metabolism should be well-conserved across 

different strains, these results are broadly applicable to a variety of CFE systems derived 

from different strains of E. coli, and the metabolic trends will likely be conserved across 

batches prepared by different users. This thorough characterization of the endogenous 

metabolic processes in CFE systems and the metabolic effects of system perturbations can 

help inform which metabolic pathways should be targeted for CFE reaction optimization. 

Overall, this information provided in this thesis can enable more rational and informed 

engineering strategies for improved bacterial biosensor design as well as CFE system 

performance in general. 

5.2 Next steps and future directions for whole-cell biosensors 

5.2.1 Next steps – Expanding strategies to improve lycopene production and mitigate 

toxicity 

As shown in this work, the lycopene reporter alone did not substantially impact 

cellular metabolism, but it also did not produce sufficient levels of lycopene in a short 

enough timeframe for biosensing applications without further optimization via precursor 

pathway introduction. Although the precursor pathway could increase the extent and rate 

of lycopene production, their impacts were highly dependent on when the pathway was 

induced. Because accumulation of homocysteine and homoserine was found to be linked 

to the toxicity associated with expression of the precursor pathway at certain times, the 
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next step for this study should be to further explore strategies to minimize the toxicity 

associated with these small molecules to potentially allow for optimized carotenoid 

biosynthesis. Additionally, the molecules ethanolamine and cysteine sulfinic acid 

accumulated when lycopene was produced for the strains expressing the precursor pathway 

during overnight growth and should be further investigated to determine their role in 

cellular toxicity. 

Although I have already shown in this work that methionine supplementation can 

alleviate some of the stress caused by homocysteine and homoserine accumulation, 

lycopene was not quantified for the strains grown with methionine. A clear next step would 

be to measure the lycopene production in these strains to determine if methionine 

supplementation is a valuable approach to improve lycopene synthesis and increase its rate 

of production, which is necessary to decrease the time needed to generate a visual output. 

Additionally, methionine supplementation at the start of lycopene production was not 

sufficient to completely restore normal growth, indicating the potential for further 

improvement. Supplementation of methionine to cells at the time of induction of the 

mevalonate pathway may be a better approach to relieve stress and improve lycopene 

production. Also, isoleucine and leucine have been shown to improve growth of E. coli 

exposed to high levels of extracellular homocysteine140, so these small molecules should 

be explored to determine if they are also valuable supplements to improve growth and 

reporter production. 

Because small molecule supplementation efforts may not be sufficient to reduce 

intracellular stress, genetic perturbations can be explored to determine if they better reroute 

metabolic flux and reduce homocysteine and homoserine accumulation. To evaluate this, 
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key enzymes used to metabolize homocysteine and homoserine in precursor producing 

cells can be overexpressed from plasmids. For homocysteine, the MetE and MetH enzymes 

could be overexpressed because both are involved in catalyzing the reaction of 

homocysteine into methionine151. For homoserine, the MetA and ThrB enzymes can be 

used because they catalyze the reactions of homoserine to methionine and homoserine to 

homoserine phosphate (the threonine biosynthetic precursor), respectively152.  

Deletions of the upstream genes that result in the production of homocysteine (malY 

and metC) and homoserine (metL and thrA) could also be targeted to prevent accumulation. 

However, this approach is less suitable because these genes have key roles in branched 

chain amino acid synthesis, and their deletion may have undesirable downstream 

consequences on amino acid metabolism, introducing more stress to the cells. Clustered 

regularly interspersed short palindromic repeats (CRISPR) interference (CRISPRi) is an 

alternative approach that can be used to repress the expression the genes involved in the 

production of homoserine and homocysteine153. CRISPRi requires a catalytically dead 

variant of the CRISPR-associated (Cas) protein (dCas) and non-coding, custom-designed 

guide RNAs (gRNAs) that guide dCas proteins to the target gene sequence, and the 

resulting dCas-gRNA complex sterically hinders transcription of the gene. Gene repression 

could be induced at specific times when the toxic molecules are known to accumulate, such 

as during lycopene production, to alleviate cellular stress. Because CRISPRi-based gene 

repression is tunable and reversible, any stress associated with gene repression can be 

reduced by restricting available dCas proteins and gRNAs to limit the overall repression. 

To validate our findings regarding homocysteine and homoserine and further 

explore the changes in ethanolamine and cysteine sulfinic acid accumulation, metabolic 
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flux analysis could be performed to profile the pathways that utilize these molecules, such 

as the cysteine, methionine, and serine biosynthesis pathways. This type of study tracks 

and quantifies stable isotope labeled metabolite intermediates to measure metabolic flux154 

and can be used to determine how the fluxes into the amino acid pathways are affected 

based on induction time of the mevalonate pathway coupled and uncoupled to lycopene 

synthesis. Overall, this type of experiment can offer more clarity into how the metabolite 

intermediates in the identified pathways are affected and potentially provide mechanistic 

insight which could lead to better-informed interventions. This approach could also 

identify interesting changes in molecules that are known to be toxic, such as buildup of the 

toxic molecule acetaldehyde from ethanolamine metabolism155. 

5.2.2 Future directions – Extending the utility of bacterial biosensors 

Since optimization of the reporter system can be challenging and lead to unforeseen 

metabolic consequences, it is vital that we improve our understanding on the metabolic 

impacts of engineering and optimizing reporter systems to engineer these systems more 

effectively for easier and more rapid biosensor development. This is especially important 

since researchers often select reporter systems based on their familiarity and experience 

with the system as opposed to selection based on a systematic investigation of the optimal 

reporter11. Future work for this project should involve expanding our knowledge on the 

metabolic impacts of other common reporter systems in whole cells and evaluating how 

typical ways to optimize these systems further affect metabolic state. Specifically, 

fluorescent, bioluminescent, and colorimetric reporter systems such as GFP, luciferase, and 

lacZ could be studied. Optimization efforts such as manipulation of plasmid copy number, 
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promoter strength, and ribosomal binding site strength can also be explored to help inform 

the selection of the reporter system for specific biosensing applications. 

Additionally, our lab has successfully used multiple colorimetric reporter systems 

to provide visual, semi-quantitative information on the concentration of target analytes for 

a field-friendly, point-of-care diagnostic test23. For this work, three pigment reporters were 

used (violacein, lycopene, and β-carotene); however, engineering cells to display this 

behavior was extremely challenging due to metabolite toxicity53. As demonstrated in this 

thesis work, metabolomics is a useful technique to identify toxic metabolites and could be 

applied to explore the metabolic effects of expressing multiple colorimetric reporter 

systems. These studies could explore how efforts to tune the response of each reporter 

system to specific analyte concentration ranges impact metabolism. New strategies to 

optimize these systems and expand the number of colorimetric reporters that can be 

expressed in a cell could potentially be achieved to create more informative, field-friendly 

biosensors with reduced metabolic demand. 

Bacterial biosensors also have huge promise in the area of targeted drug delivery, 

since they can serve as “theranostics” to sense and respond to a particular environment or 

condition and deliver a therapeutic payload156. For example, bacterial biosensors have 

already been used to detect pathogenic bacteria and respond by producing a pathogen-

specific toxin157 and have even been designed to deliver a cancer-targeting nanobody in 

response to bacterial cell density near tumors158. However, production of these therapeutic 

molecules can have major impacts on cellular growth and metabolism, limiting the utility 

of bacteria as theranostics. Metabolomics is an ideal technique to characterize the 

metabolic effects of therapeutic molecule production in biosensing cells and can even be 
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extended to evaluate metabolic changes associated with biosensor-host interactions. This 

approach could reveal underlying metabolic changes that result from therapeutic 

production and host environment that could be targeted to improve sensing and drug 

delivery, ultimately enabling the development of bacterial theranostics to target and treat a 

broad range of diseases. 

5.3 Next steps and future directions for cell-free biosensors 

5.3.1 Next steps – Further exploring the importance of identified metabolites and 

pathways on CFE reaction activity 

For CFE systems, I have identified metabolic pathways involved in glycolysis, 

DHAP metabolism, the TCA cycle, β-alanine synthesis, and polyamine synthesis as well 

as homocysteine to change over the course of a CFE reaction and within an incubated 

lysate. These metabolic pathways and molecules are ideal areas to further explore for 

efforts to optimize protein production and improve biosensor response.  

A relatively straightforward way to do this is to extend the small molecule and 

enzyme supplementation efforts to encompass different types of metabolites and enzymes. 

This could be especially effective since both strategies resulted in improved protein 

production in CFE reactions. For example, because glycolysis and the TCA cycle are 

important energy-providing pathways for CFE reactions and supplementation of the TCA 

cycle enzyme GltA improved reaction performance (Figure 49A), these areas could be 

further targeted to explore their impact on protein production. One class of molecules that 

could be supplemented to more broadly impact glycolysis and the TCA cycle are known 

glycolytic and TCA cycle inhibitor metabolites such as citrate159 and succinyl-CoA160 and 
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known activators such as ADP160 and NADH161. Additionally, because the importance of 

DHAP metabolism intermediates was largely unexplored, supplementation of molecules 

in this pathway such as DHAP, DHA, and methylglyoxal could help us better understand 

the effects of these molecules on the activity of CFE reactions. 

Although I have already explored how supplementing purified enzymes within 

glycolysis and the TCA cycle affect CFE reactions, enzymes more specific to β-alanine, 

polyamine, DHAP, and homocysteine production should also be tested. For example, the 

enzymes involved in β-alanine (PanD) and putrescine (SpeB and SpeC) synthesis could be 

added to explore how increasing the availability of these small molecules to CFE reactions 

affects protein yield. Although there exist numerous enzymes that could be tested, these 

suggestions can provide a starting point for identifying which enzymes are important and 

whether enzyme supplementation is more effective at improving protein yield than small 

molecule supplementation. 

Additionally, supplementing small molecules and enzymes at various times 

throughout the reaction could result in increased productivity and is another area that could 

be examined. Based on the metabolite dynamics I measured over the course of a CFE 

reaction, certain molecules or enzymes could be added at the timepoints when specific 

metabolites are known to be consumed or accumulating to improve protein output. Once 

the metabolites and enzymes that give the highest protein yields are identified, 

combinations of these molecules can be pursued to find an optimal mixture. 

Another way to target these identified pathways for optimization of CFE systems 

would be to engineer the starter culture strain to underproduce toxic molecules or to 
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overproduce beneficial ones. Although this approach would be more challenging than 

direct supplementation, it could be an effective strategy to reroute the flux within these 

pathways and could even result in changes to the protein expression levels in the cells, 

ultimately altering the protein profile of the final lysate. For example, because this thesis 

work highlighted the importance of putrescine in CFE reactions, putrescine degradation 

genes such as speE and puuA genes could be deleted. Genes involved in the other identified 

areas of metabolism could also be targeted, though extra research should be done in 

selecting genes to ensure that they are not essential, and their deletion does not cause 

significant stress to the cells. Metabolic enzymes in these pathways could also be 

overexpressed in the starter culture strain via plasmid-based gene expression. Like direct 

enzyme supplementation, this should increase the amount of enzyme in the lysate, but it 

will also alter metabolite levels and potentially even the broader proteomic profile in the 

lysate because these enzymes will be expressed and functional during pre-lysis cell growth. 

Because the metabolic activity in CFE reactions is controlled by the proteins and 

enzymes within the lysates, understanding how specific proteins change over time could 

provide more context for the changes we observe in metabolism. Although some studies 

have identified some of the proteins native to the lysate64-66,  it is unclear if these enzymes 

are present throughout the entirety of a reaction or if they degrade over time. To address 

this question, a multi-omics approach can be taken that combines metabolomics and 

proteomics to understand how the small molecules and proteins in CFE reactions change 

over time. This type of study would allow us to uncover links between these different levels 

of cellular activity, expanding the potential for more targeted reaction optimization efforts. 

5.3.2 Future directions – Extending the utility of cell-free biosensors 
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Because there has been almost no characterization of the metabolic processes in 

CFE systems up to this point, extending this work to further profile the metabolic behavior 

of CFE reactions in response to changes to the lysate preparation procedure can uncover 

new opportunities to optimize protein production. Metabolomics can be extremely useful 

to explore how changes to starting culture conditions, lysis method, and post-processing 

affect metabolism. To evaluate simple changes to the starter culture growth method, 

variables such as temperature, carbon source, and time of collection can be evaluated. 

Changes to these factors have been shown to affect protein content in E. coli cells162-164, so 

it is likely that these changes will result in alterations to metabolite and protein content of 

the lysate. Different types of lysis methods besides sonication can be evaluated and 

compared such as bead-beating and enzymatic lysis to explore how the different techniques 

alter the metabolite content in the lysate. To further explore the effects of post-processing, 

the importance of each individual post-processing step such as the wash, run-off reaction, 

and dialysis can be explored to understand how each affects CFE reaction productivity and 

metabolic activity. Ultimately, understanding the impact of alterations to the lysate 

preparation steps is crucial to address the issues of reproducibility, scalability, and 

standardization in CFE systems and expand the generalizability of these systems to a wide 

range of biosensing applications.  

Two key factors that can further expand cell-free biosensor applicability are rapid 

response times and field-friendliness. Although our cell-free systems typically begin to 

produce protein within the first hour and max out production a few hours later, shortening 

the time needed to generate a measurable response could be more desirable, especially 

when designing point-of-care diagnostic biosensors. An important next step to address this 
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would be to perform metabolomics analysis on the earlier timepoints of the reaction. 10-

minute interval samples could be taken over the first hour to explore the metabolic 

dynamics. This could be an especially interesting area to study since we saw large 

separation of CFE reaction samples collected at the reaction start and after 30 minutes in 

PCA space, which suggests that major metabolic changes occurred very early on (Figure 

35). Additionally, because we primarily characterized the metabolic dynamics in reactions 

using lysate ND, it is unknown whether the other types of lysates in CFE reactions have 

the same metabolic behavior at those time points. Evaluating more and earlier time points 

can help identify which lysates are more suitable than others for specific performance goals 

and could enable lysate-specific optimization efforts to decrease sensor response time. 

For all of the metabolomics experiments described in Chapters 3 and 4, CFE 

reactions were run in 1.5 mL microcentrifuge tubes; however, tubes are not necessarily the 

ideal platform for a diagnostic test. Of particular note, our lab has observed changes in CFE 

performance depending on the vessel geometry (data not shown), which is thought to be 

attributable to changes in oxygenation of the liquid reaction volume. Therefore, it may be 

important to identify if changes to reaction vessel geometry affect CFE reaction 

metabolism. 200 µL CFE reactions (optimal reaction volume for GC-MS analysis) could 

be performed in 1.5 ml microcentrifuge tubes, 50 mL centrifuge tubes, and 9-well plates 

and collected for metabolomics analysis to evaluate how changes in vessel geometry and 

gas interfacial area alter metabolic behavior. Smaller tubes such as PCR tubes could also 

be used to explore smaller geometries; however multiple reactions would need to be pooled 

to have a sufficient sample volume for GC-MS analysis. Such a study could lead to insights 

on which biosensor vessel geometry yields highest or fastest reaction productivity.  
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 The results from this thesis as well as the metabolomics studies suggested here can 

provide insights on the metabolites that majorly affect CFE system activity and uncover 

how they change over the course of a reaction. This could inform the development of novel 

reaction platforms that continuously and selectively remove metabolites that negatively 

impact activity as well as supplement beneficial metabolites at appropriate times. For 

biosensing applications, this could potentially be achieved by using microfluidic devices 

with channels that selectively draw undesirable metabolites away from the main reaction 

chamber as they are produced and introduce beneficial molecules into the reaction as they 

are consumed. Designs such as these could greatly improve the response time of biosensors 

as well as result in optimized, reproducible reaction performance, which is essential for 

biosensor commercialization. Larger scale formats could be designed similarly to the 

continuous CFE systems discussed in Chapter 1, but unlike the continuous CFE systems, 

this platform would add and remove specific small molecules from the reaction to increase 

yield while decreasing reaction variability. These redesigned reaction formats could 

majorly benefit biomanufacturing efforts and could facilitate the production of valuable 

molecules such as pharmaceutical precursors at industrially-relevant titers while reducing 

batch to batch variability. Additionally, these efforts could extend the life of CFE reactions 

and further improve target molecule yield, expanding CFE system’s utility in both 

biosensing and biomanufacturing. 

5.4 Closing Remarks 

In this thesis, I have described my efforts to apply metabolomics to address 

challenges in E. coli-based whole-cell and cell-free systems for biosensor development. In 

whole cells, I evaluated how expression of a well-characterized colorimetric reporter 
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system and how optimization of reporter production by introducing precursor pathways 

can result in undesirable changes to metabolism and negatively impact characteristics of 

the E. coli cells that are important to biosensor applications. Moreover, I identified the 

molecules that partly attributed to cellular stress and identified a successful strategy to 

alleviate some of the stress via supplementation. 

In CFE systems, I characterized the small molecules in differently prepared cell-free 

protein lysates and investigated how these different lysates affect protein production and 

the metabolic profiles of CFE reactions. I also profiled the metabolic dynamics in lysates 

and CFE reactions and demonstrated how alterations to the starting metabolite 

compositions of the lysates and reactions affects metabolic behavior. I have identified 

metabolites involved in various areas of metabolism that change over the course of a CFE 

reaction and are linked to protein production. 

Because both whole-cell and cell-free platforms are widely used for biosensor 

development, solving the challenges that limit the design of each system is crucial to 

expand the applicability of bacterial-based biosensors. In this work, I have used 

metabolomics to explore some of the unique issues in biosensor design for each platform 

and provide insights into areas of metabolism that can be targeted in efforts to optimize 

bacterial biosensor performance. This thesis highlights the versatility of metabolomics to 

uncover the metabolic impacts of biosensor engineering in two unique platforms and lays 

the groundwork for metabolomics-driven optimization efforts to facilitate biosensor 

engineering and ultimately broaden the reach of whole-cell and cell-free bacterial-based 

biosensors.   
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APPENDIX A 

A1. GCxGC-MS Methods 

A.1.1  Auto-sampler Method 

An Agilent 7683 auto sampler was used. Prior to sample injection, three pre-washes 

were performed with pyridine. Samples were pumped 4 times for thorough mixing and 

injected using a syringe size of 10 µL with 1 µL of injection volume. Three post-washes 

of the needle were performed after injection using pyridine. 

A1.2  GCxGC Method 

An Agilent 7890 gas chromatograph adapted to GCxGC analysis was used. Helium 

was used as the carrier gas with a corrected constant flow rate of 1.00 mL/min. The inlet 

septum purge flow was maintained at 3 mL/min. The inlet was used in splitless mode with 

a purge flow of 100 mL/min delayed to start 30 seconds after injection, giving a total flow 

of 101 mL/min. Runs were performed in a gas saver mode with a flow of 20 mL/min set to 

start a minute after injection. Front inlet temperature was set at 250 °C for the entire run. 

The primary oven temperature was held at 70 °C for 1 min and the temperature was 

ramped at 10 °C/min until 315 °C and held for 2 minutes. The secondary oven temperature 

and the modulator temperature offsets were 5 °C and 15 °C above the main oven 

respectively. A one-minute equilibration time was set for the ovens. The modulation 

program is listed in Table 11. The transfer line temperature was maintained at 320 °C for 

the entire run. 
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Table 11: Modulation Timing 

 

A2.  MS Method 

A Leco Pegasus 4D time of flight mass spectrometer (TOF-MS) with electron impact 

ionization was used for mass analysis. Filaments were turned off for the initial 230 seconds 

to delay mass acquisition until after the solvent peak. The mass scanning range was from 

50 to 500 u with an acquisition rate of 200 spectra per second. The detector voltage was 

set at 100 V above the optimized voltage with an electron energy of -70 V. Manual mass 

defect mode was used with the mass defect 0 mu/ 100 u. The ion source temperature was 

required to reach 220 °C before starting mass acquisition.  

# Start (s) End (s) Modulation 
period (s) 

Hot pulse 
time (s) 

Cool time between 
stages (s) 

1 Start 392 6.00 1.00 2.00 

2 392 End of Run 6.00 1.50 1.50 
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