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Abstract

We review various methods and applications that have used grammars for solving inference problems
in computer vision and pattern recognition. Grammars have been useful because they are intuitively sim-
ple to understand, and have very elegant representations. Their ability to model semantic interpretations
of patterns, both spatial and temporal, have made them extremely popular in the research community.
In this paper, we attempt to give an overview of what syntactic methods exist in the literature, and how
they have been used as tools for pattern modeling and recognition. We also describe several practical
applications, which have used them with great success.

1 Introduction

Grammars have been useful for providing structural descriptions of a variety of objects like plants, buildings,
English sentences etc., and associating semantic information with the resulting models. They have been
most widely used by the natural language processing community. However, they have also been applied in
many pattern recognition and computer vision problems. Some of the areas include character recognition
[K.H. Lee and Kashyap, 1988], recognition of handwritten mathematical formulae [Miller and Viola, 1998]
and more recently, activity recognition [Minnen et al., 2003].

Grammars consist of a collection of basic primitives and a set of rules which compose patterns out
of these primitives. Thus collections of objects which exhibit structural regularity can be modeled using
grammars. For example, the set {00, 0110, 01110, 011110... } describes the set of sequences over {0, 1}
which have a sequence of 1s bounded by two Os. Much more complicated sets, which exhibit regularity
in higher dimensions including time, can be modeled using grammars. Roughly speaking, they generate
sub-patterns out of basic primitives, and then generate bigger or more complicated patterns from these sub-
patterns. This generation is controlled by the grammar rules.

There are several issues in the modeling of objects or events using grammars. The first issue is the
choice of basic primitives and the appropriate grammar type. The choice of primitives is determined by
how easily basic features can be extracted from the data, while the choice of grammar type is determined



by the complexity of the desired structure. One might want to consider the scenario, wherein extraction
of basic primitives and choice of the grammar, be completely independent. However, Narasimhan in Chap
1 of [Kaneff, 1969] argues that, this is not possible. According to him, the inherent complexity of the
problem is divided among the basic primitives and the actual grammar and thus the choice cannot be made
independently. Related to this point is the syntax-semantic tradeoff, which states that one might choose to
keep a very simple grammar and imbibe a lot of semantic interpretations in it, or otherwise choose to keep a
highly complicated grammar and have simpler and more tractable interpretations. This tradeoff is a crucial
decision that researchers have to make before thinking of a solution.

The second important issue is noise handling. Inputs in computer vision applications are very noisy,
and formal grammars are too exact theoretical concepts to model these perturbations in data. Thus, people
have come up with grammatical models and algorithms which are robust against noise. These two issues are
important in defining grammars and using them for performing inference tasks.

In this paper, we survey the various forms of grammars that have been developed and used by the
research community. We also attempt to provide scenarios where one form may prove more appropriate than
another form, depending on the characteristics of the problem under consideration. The paper is divided into
5 sections. In section 2, we discuss string grammars, their different extensions and some applications as to
how they have been useful in describing line drawings and activity recognition. Probabilistic information
could be associated with grammars and so we explore stochastic grammars in section 3. We then move on
to higher dimensional grammars and discuss various forms which have been developed over the past 30
years in section 4. We finally conclude the paper in section 5. Most of the mathematical descriptions have
been taken from [Bunke and Sanfeliu, 1990].

2 String Grammars

String grammars form the basis of formal language theory. These grammars are defined over a vocabulary
(finite set of symbols). Each grammar represents a set of (finite) sequences over this vocabulary. For ex-
ample, the sequence {01,0011,000111,00001111,.....}, comprises of all strings over the vocabulary {0,1}
which are formed by concatenating a sequence of Os with a sequence of 1s, such that the length of the two
sequences are same. These sequences are generated using a collection of production rules. These rules
define a set of substring replacement policies which gives the final string certain properties, like the one
described in the example above.

The set of symbols belonging to the grammar vocabulary correspond to the basic primitives, while the
production rules correspond to the structural relationships that exist in the set defined by the grammar.
Since a sequence is a one-dimensional concept, the above schema is not very suitable for describing 2D
or 3D objects. However, certain extensions of these grammars have led to their use in computer vision
and pattern recognition applications. In this section, we first provide some formal definitions and examples
of string grammars. We then review the extensions of these grammars and how they have been useful in
practical applications.

2.1 Formal definitions

The following definition is taken from [Bunke and Sanfeliu, 1990]. A formal grammar is a four-tuple G =
(N,T,P,S) where



N is a finite set of non-terminal symbols,

T is a finite set of terminal symbols,

P is a finite set of productions, or rewriting rules, and

S € N is the initial or starting symbol.

It is required that NNT = ¢. Let us suppose, V = NUT. Each production p € P is of the form o0 — [
where o and B are called the left-hand and right-hand side respectively, with o, € VT (set of finite, non-zero
length sequences over V) and 3 € V* (set of finite length sequences over V).

To illustrate this definition, consider the grammar G = (N, T,P,S) where N = {S,A,B}, T = {a,b,c},
P={S— cAb,A — aBa, B— aBa, B — cb}.

This grammar generates the language

L(G) ={ca"cbd"bln > 1}

For example, for generating caacbaab, i.e., for n = 2, the following sequence of substring replacements are
applied.
S — cAb — caBab — caaBaab — caacbaab

2.1.1 The Chomsky Hierarchy

Grammars have been divided into four classes or types, based on their degree of expressiveness. This
classification has been taken from [Aho et al., 1988]. The classes are as follows :

1. Unrestricted class or type 0 have no constraints other than the definition of grammar described above.

2. Context-sensitive or type I have productions of the form xAy — xzy where x,y € V*; A€ N; z € V*.
Thus, in a context-sensitive grammar, the non-terminal A can be replaced by a string z only if it
appears in the context xAy.

3. Context-free or type 2 have productions of the form A — z, where A € N and z € V*. Thus, in a
context-free grammar no context is necessary for the application of a rule.

4. Regular or type 3 have productions of the form A — aB, or A — a where A,B € N; a € T. These
grammars are simpler and can be simulated by finite state automata.

2.2 Attributed Grammars

Grammars are useful to represent structural information of patterns. However, in practice, we need to derive
semantic interpretations for those structures. Consider for example, the language L = {(0+ 1)*} which
denotes the set of all strings over 0 and 1. However, one natural semantics that one might want to associate
with this set could be the set of whole numbers. For associating appropriate semantics, one needs to associate
semantic information with the primitive symbols, non-terminals and the production rules. The semantics
associated with symbols are also known as attributes, and those associated with productions are semantic
rules. These semantic rules relate the attribute values of different symbols involved in a production. Thus,
the “meaning” of any string can be obtained by first deriving the string and then extracting the attribute
values of the start symbol S. Attribute grammars were introduced by Donald Knuth in 1968 [Knuth, 1968].



Consider the grammar Gg;, = (N, T,P,S) where N = {S}, T ={0,1}, P={S — S0, S —» S1, S — 0,
S — 1}. Gp;y, generates all sequences of Os and 1s. Now, if we want to associate the language of Gp;, with
the set of whole numbers, then the semantics that we choose for terminals and non-terminals would be their
actual value (attr==value). Thus, the symbol 0 will be mapped to the “whole number” zero, and the symbol
1 will be mapped to the “whole number” one. For further discussions, we will call the actual whole numbers
by their English names. Also, for a production S — S0, the first non-terminal will be referred to as S[0] while
the second non-terminal will be referred to as S[1], so that we know which attribute value we are referring
to. Thus, we have

0.value = zero

1.value = one

We now need to associate semantics to the production rules. The semantic rules relate the attribute values
of the left-hand side and the right-hand side of a production rule. It is through these rules that information
or meaning can propagate from the start symbol to the terminals and vice versa. For instance, the semantic
rule for the first and third productions would be

S[0].value = two x S[1].value + zero

S.value = zero

the array index is present to refer to the appropriate non-terminal (S of left-hand side or right-hand side) in
the production. Now while deriving the string 10, we have the sequence

S—50—10
and the corresponding semantics would be
S[0].value = two * S[1].value + zero = two * one + zero = two

which was what we expected.

2.3 Parsing

Grammars are used in computer vision and pattern recognition for performing inference tasks, i.e., finding
out whether the given data satisfies certain structural characteristics. Given the description of a grammar
and an input string, determining whether the string belongs to the language generated by the grammar is the
key question in this inference task. This task is performed by a parser. A parser takes as input a sequence
of symbols, and returns a parse tree which contains the details of the derivation of that string. If the string
is not part of the language, then no such tree can be generated and the parser can detect this. Designing
efficient and robust parsers are very important for performing pattern recognition tasks using grammars.

As the degree of expressiveness of the grammar increases, design of the corresponding parser becomes
more and more difficult. Most of the parsing methods assume a noise-free stream of input symbols. How-
ever, error-correcting parsing methods have also been devised. Much research has also been done in parsing
of higher dimensional structures like graph grammars and tree grammars [Fu and Shi, 1983]. More detailed
description of different parsers and issues in parsing could be found at [Aho et al., 1988] and [Fu, 1974].



2.4 Grammar Learning

A grammar representing a pattern class could be learned from a set of examples from that class. This is the
typical machine learning problem, where from a huge set of positive and negative examples, one attempts to
learn the syntactic structure inherent in this class. Inference of grammars has been a very difficult problem,
when applied to practical situations. Since the number of examples is always finite, generalization is an
important issue in these learning algorithms (otherwise overfitting will lead to inaccurate models). Most of
the applications propose grammatical models rather than “learning” those models and then apply them to
the test examples.

Much work has been done in developing different inference techniques for various forms of grammar.
For surveys of the different methods, see [Fu, 1974], [Angluin and Smith, 1983]. Some of the projects which
have used these inference techniques includes fingerprint classification using tree grammars [Moayer and Fu, 1975]
(discussions on higher dimensional grammars like tree grammars will be done in Section 4). In this work,
the “interesting” components of the picture were identified which had a lot of repetitive structures. Gram-
mars were inferred for each such component and the different grammars were then merged.

A similar (top-down) approach was used in the work on texture synthesis by [Lu and Fu, 1979], where
texture in images were modeled using stochastic tree grammars. The problem was broken into simpler
problems by decomposing the tree structure into a number of strings. Each such string class corresponded
to a finite state grammar, and was learnt independently. The resultant grammars were then recomposed to
output one tree grammar.

A pattern recognition for use in robotics was developed by [Ouriachi, 1980], where in structure of dif-
ferent machine components were inferred from image features like edges. A polygonal approximation of
these features is translated into sentences and a finite state grammar is learnt.

More recent work in this area is based on inferring bidimensional objects [Sainz and Sanfeliu, 1996]. A
grammar formalism developed by the same authors, ARE (Augmented Regular Expressions), was used to
describe two dimensional traffic signals. The grammar was itself learnt and its performance was shown to
be tolerant towards noise.

2.5 Syntax Directed Translations

A grammar can be used to model different “domains” having similar structure. Grammars are purely syntac-
tic models and thus using this common interface, patterns in different domains can interact. Syntax directed
translations allow this interaction.

These translations have been extremely useful in error-correction parsing [Thomason, 1975]. The two
domains that we referred to above in this case, are the error prone channel and the actual fact that exists in
the world. By “correcting” noise from the data channel, one can infer the ground truth.

2.5.1 Definitions

The following definition has been taken from [Bunke and Sanfeliu, 1990]. A translation from language L to
language L, is a relation M in L X L, where xMy means “output string y in L, is a translation of input string
x from L;. A syntax directed translation is a generalization of context-free grammar, say G = (N, T, P,S)
into a translation schema, T = (N,T;,To,R,S), where N, T; and Ty are finite sets of non-terminals, input
terminals and output terminals respectively. R is the finite set of translation rules. Each such rule “locks”



together the input generation and the corresponding output generation into one single rule. Thus the rules
are of the form A — a3, where B is a translated version of a. There needs to be some structural similarity
(in terms of positions and types of non-terminals), between o and [3 so that the entire generation process
remains essentially the same for both the channels. Moreover, associated non-terminals in the two channels
must be rewritten simultaneously.

To illustrate these translations, consider the schema

S — aSc, aSc

S—b,b

S—a, b

The language that is of interest is given by the output channel. This language is L = {a"bc"|n > 1}.
However, the input channel observes this data and sometimes misreads b to be a. In that case, the translation
schemes mentioned in the grammar would do the necessary correction and will restore the correct string.

2.5.2 Some Applications

Error correction is a very important application that uses syntax directed translations. One drawback of
this error correction model is that, the model assumes knowledge about all kinds of errors. Thus, in the
example illustrated above, it was assumed that the only kind of error possible was a b misinterpreted to be
a. This need not be true in practice. Models which do not assume this knowledge are more generic, but less
efficient. One way in which these two could be combined is by first preprocessing the input string using
whatever error knowledge is available. Given the “partially corrected” string, one can then apply the more
generic approach on the simpler matching problem.

Moreover, this scheme could be extended to multiple dimensions. Order n schemata have been proposed
to study images that vary with time [Fan and Fu, 1979]. The structure of the images remain essentially the
same. However, the changes are modeled by the translations. Syntax directed models have also been used
for performing tree translations [Fu and Fan, 1986] which are useful in tree-grammars (discussed later).

2.6 Picture Language

We now discuss practical applications of string grammars in the area of picture recognition. Research on
syntactic processing of pictures started in the 60s. There was active interest in graphic data-based “conver-
sation programs”, and this led to increased work in picture processing. During the same time, important
developments were taking place in the field of formal languages. Thus, understanding of the applicability
of languages in the domain of pictures was an important area.

One of the first papers [Kirsch, 1964] argued that “the important fact about natural language text and
pictures is that both have a syntactic structure which is capable of being described to a machine and of
being used for purposes of interpreting the information within a data processing system’”. Much work at
that time was being done on analyzing “bubble chamber images” and recognition of hand-written English
characters. Syntactic description of these were given in [Narasimhan, 1966]. Existing picture processing
techniques at that time were mainly based on “prototypes”. However, the nature of the “bubble chamber
images” made the application of this approach extremely difficult. Thus, the need for a descriptive scheme
for picture analysis and recognition was felt. In an article written by Narasimhan in the book [Kaneff, 1969],
a generic picture language was described and pointers were provided as to what such a generic language
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Figure 1: Primitive block and operators of PDL [Shaw, 1969]

must comprise of. Based on this work, many languages based on line drawings were introduced. Some of
these have been discussed in the next couple of sections of this paper.

2.7 Example : Picture Description Language (PDL)

String grammars generate patterns where the only relation between primitives is concatenation with neigh-
boring symbols. This limits their use for analysis and recognition of 2D or 3D objects. One way to extend
the use of string grammars is to generalize the basic primitives and the notion of concatenation. Picture De-
scription Languages [Shaw, 1969] do this by representing every primitive part by a directed line segment,
and introducing operators which “concatenate” these primitives in a convenient way. An important point to
note is that, these operators are also part of the basic primitives. Thus, these languages generalize the notion
of terminals to relational symbols.

Each primitive part of a pattern has exactly two points, head and tail, where it can be linked or connected
to other patterns. At any point in the generation process, the pattern continues to have two attaching points.
Patterns are attached using operators. There are four binary operators denoted by 4, —, X and *. In addition
to these, there are two unary operators ~ and \. The first operator simply reverses the direction of the edges
in the pattern, while \ serves to allow replication of a particular pattern.

Example of a “house” shaped pattern, derived from such a PDL is shown. These languages were initially
used for analyzing spark and bubble chamber photographs. The pictures describable by PDLs are said to
be graph-representable since these languages essentially generate graphs. Depending on the primitive used,
arbitrarily complicated designs could be generated and analyzed. These included electrical circuits, text and
detailed flowcharts [Shaw, 1969].

PDLs have been used primarily for line drawings. The system MIRABELLE [Masini and Mohr, 1983]
was developed in the 80s as a general-purpose system to recognize hand-drawn sketches composed of lines.
It was also able to perform labeling of different parts of the drawing. The contribution of this work was the
adaptation of Miller’s parser [Miller and Shaw, 1968] which was originally developed for speech recogni-
tion. Most of the parsing algorithms that exist in formal language literature proceed from left to right of a
one dimensional string. Global parsing algorithms proceed in parallel with all the primitives, and can be
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P=P1*P2

Figure 2: An example of a pattern generated by a PDL [Bunke and Sanfeliu, 1990]

applied without the left-to-right restriction. However, these algorithms take into consideration all possible
constructions and are space-inefficient. Miller [Miller, 1974] had developed a local parsing scheme as an
improvement over this. This scheme was modified and adapted into the MIRABELLE system and an alter-
nating bottom-up and top-down parser was developed. Using this parser, hand drawings of common tools
like hammer, and sketches of house drawings were interpreted.

PDL patterns always had only two attaching points which limited their use in defining more complicated
drawings. This led to development of PLEX structures described in the next section.

2.8 Example : PLEX

Plex structures [Feder, 1971] are similar to PDLs. However, they can have any number of concatenation
points. Such a n-attaching point entity is called a nape. Structures formed by combining napes are called
plex structures. A nape denoted by hor(1,2,3), denotes a horizontal line segment with 3 attaching points,
labeled by numbers. More complicated napes are defined by first specifying a list of primitive blocks
(hor,ver), and then specifying their connections. Some examples have been shown in the figure.

The nape (ver, hor, hor)(110,210)() denotes a structure which is composed of one ver and two hor. This
forms the first component of the description. The second component describes how they are connected with
each other. 710 denotes that point / of ver is connected to point / of hor. 201 denotes that point 2 of ver is
connected to point / of the second hor.

A string grammar that generates a set of plex structures is called a plex grammar. The terminals in these
grammars correspond to napes. There may also be some non-terminal napes, which are described by a set
of attaching points. The third component of a nape description is used to specify exactly that.

Plex grammars have been used for representing 3D objects [Lin and Fu, 1984]. They were the first
grammar concept to come up with description of real world objects. In this work, they also described a
Plex parser for recognizing plex structures. A more recent application of these structures has been in the
field of engineering drawing. One such application is the analysis of dimensions in a technical drawing
[Collin and Colnet, 1994]. In this, the document is first digitized and connected components are extracted.
These components are then recognized as segments, arrows or text blocks. The dimension model is defined
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Figure 3: Examples of some nape structures [Bunke and Sanfeliu, 1990]

using a dimension grammar (first defined by [Dori and Pnueli, 1988]), and the extracted set of primitive
components are then parsed by this grammar. The underlying structure is that of the plex grammar. The
parser used also handles noise, which may be present due to the digitization process. Parsers for plex
languages are more complex than those corresponding to the strings. These were proposed and developed
by [Fu and Shi, 1983], and [Flasinski, 1989].

2.9 Use of grammars in activity recognition

Activity recognition has been an important research topic for the past few years. The problems range from
interpretation of basic tasks like sitting or walking to a more complicated problem of action recognition.
Some of the first attempts that were made in activity recognition were based on HMMs [J. Yamato and Ishii, 1992].
HMMs stand for Hidden Markov Models and they are the stochastic counterpart for finite state machines.
In this work, discrete HMMSs were used to recognize six tennis strokes performed by three subjects.

One of the first papers that appeared in the use of grammatical approach for activity recognition was
[Brand, 1996]. Discrete events were recognized based on blob interactions such as overlapping of objects.
The grammar used was non-probabilistic (discussion on probabilistic or stochastic grammars is present in
Section 3). Recognition of visual activities using stochastic parsing was performed by [Ivanov and Bobick, 2000].
In this paper, the authors describe how activities extended over time (like interactions in a parking lot) were
first split into events using probabilistic event detectors. The sequence of events was then parsed to a stochas-
tic context-free grammar for recognition purposes. Applications of this work in gesture recognition was also
demonstrated. A more complicated recognition task was performed by [Minnen et al., 2003]. The authors
designed expectation grammars for modeling the sequence of events. They used stochastic context-sensitive
grammars to model the Tower of Hanoi task, and were successful in identifying sub-events correctly even
when the exact sequence of events were not deterministic.



3 Stochastic Grammars

Grammars can be extended to incorporate probabilistic information. This information allows modeling of
the probability distribution over the space of patterns. Given a set of such probability distributions over
different grammar classes, it is easy to classify new patterns. We just need to compute for each class, the
probability of the pattern belonging to that class (by computing the parse tree), and then choosing the class
with the highest value. Even if an exact parse is not possible, one can perform “an approximate” parse and
get the probabilities. Probabilistic information allows us to use statistical techniques not only for finding
best matches, but also for performing robust feature detection guided by the grammar structure.

3.1 Definitions

A stochastic grammar is obtained from the characteristic (base) grammar, by associating a probability with
every rule, such that, the sum of the probabilities of rules, with identical left hand side, add up to 1. Intu-
itively, if we see the generating process of a string, at any stage, the probability of a “rewriting rule” getting
fired for a left-hand side sub-string (a non-terminal in case of context-free grammar), is based on the discrete
distribution of the choices that exist; the distribution for the i’ left-hand side (say o) being specified by p; s
where j is the index for the set of productions, whose left-hand side is c.

The following definition is taken from [Bunke and Sanfeliu, 1990]. For simplicity of notation, we will
consider context-free grammars. Analogous definitions of stochastic grammars (used by [Minnen et al., 2003])
could be provided for other grammar forms too. So a generic production oc — [ will now have a more spe-
cific form A — X;;, where X;; will be strings over terminals and non-terminals. Consider the grammar
G = (N,T,P,S) where for notational convenience, we have

N = {A},A,...A,,} as the set of non-terminals, and the set of productions as

Al — X11, Al — X12, ceeny Al — le ......

Ap = Xty Am = X2y ooy Ay = Xonn,, Where X;; € (NUT)T.

A stochastic (context-free) grammar is a four-tuple G* = (N, T, P*,S), where N, T and S are same as the
base context-free grammar (non-terminals, terminals and initial symbol), and P? is the set of productions, of
the form

(Ai — Xij, pij) such that A; € N, X;; € (NUT)* and Z;f"zlpij =1 fori=1,....,m., where n; denotes the
number of productions with left hand side as A;.

3.2 Probabilistic Modeling

We now consider the use of the probabilistic knowledge that is associated with stochastic grammars. To mo-
tivate this, it is important to understand that a grammar represents a set L(G) of strings, and the information
that we might want to associate with this set would be a probability distribution over the possible instances
of this set L(G). Thus given a grammar G*, and a string x € L(G*), we might want to know the probability
of the grammar rules generating this string, denoted by p(x|G*). This can further be extended to consider a
set of pattern classes, say G7, and then asking the question of the most likely class for a given string x.

Let G* = (N, T, P*,S) be a stochastic grammar and G = (N, T, P,S) be the corresponding base grammar.
Then, as specified in [Bunke and Sanfeliu, 1990],
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1. If x € L(G) is unambiguous and has a derivation S = wg ="t w; —"2 ... =" wy = x, where ry,r...r¢ €
P, then the probability of x with respect to G* is given by

k

p(G") =] r(r)

i=1

This particular definition of probability does not ensure that the function p(x|G*) is a probability
distribution. This problem of grammar consistency is described more in [Fu, 1974].

2. Ifx € L(G) is ambiguous and has / different derivation trees with corresponding probabilities p (x|G*),
p2(x|G¥),....... , P1(x|G*) then the probability of x with respect to G* is given by

M-~

p(HG’) =) pix[G’)

1

Thus, to get the probability of an unambiguous string x, we simply multiply the probabilities of the produc-
tions that are applied during its derivation. If there are multiple ways of deriving x, then for each derivation,
we compute the probability and sum them up.

Example: Consider the grammar G = (N,T,P,S) where N = {S,A}, T = {a}, P={S — dA, S —
aaA, A — aa, A — a} with the probabilities being {0.5,0.5,0.3,0.7}. Then the probabilities of the strings
contained in L(G) = {aa, aaa, aaaa} are {0.35, 0.5, 0.15}.

Now let us consider the problem of classifying a given string x, into one of the n classes (taken from
[Bunke and Sanfeliu, 1990]). The classes are each described by a stochastic grammar G3. Let the prior
probability of the pattern classes be denoted by p(G?). Then, if the probability of the string be denoted by
p(x), we have by Bayes’ formula

p(Gilx)p(x) = p(x|G}) p(G})

where p(x|G?) is computed as described above. The expression p(G$|x) is called the posterior probability of
Gi. Thus, if x can be generated by more than one grammar G*, j = 1..n, a meaningful classification would
be obtained by

argmaxgs{p(Gj|x)}

3.3 Stochastic Parsing

In this section, we review the different parsing methods that exist for stochastic grammars. The prob-
lem of parsing for regular grammars and context-free grammars has been well studied. In the case of
regular grammars, the characteristic structure of the grammar makes the parsing a simple task. Parsing
in context-free grammars is non-trivial, and several methods have been proposed to accomplish this task
[Aho and Ullman, 1972]. In case of stochastic grammars, the task is to find out the most likely “parse”
of a given string. In the stochastic version of regular grammars, this problem has been well studied in the
context of HMMs [Rabiner and Juang, 1986]. However, in this paper our focus is on non-regular grammars.
For stochastic grammars, the inside algorithm is most widely used. In all these algorithms, there is a basic
assumption about the correctness of the input string. But in practice, this need not be the case. Thus, we go
on to discuss parsing when the input string is itself noisy.

11



3.3.1 Inside algorithm

The inside algorithm is a dynamic programming procedure for computing the probability of a string, and
the most likely parse of a particular string given a stochastic context-free grammar. The number of parse
trees for a particular string may be exponential in number and thus, computing all parse trees is not a good
idea. Instead, by following a bottom-up approach of parsing smaller strings and storing the results, the
computation of the probabilities and most likely parse can be done in polynomial time. Material in this
section has been taken from [Manning and Schutze, 2001].

We first describe some notations. The string that we are parsing is denoted by w = wowy.....w,, and
a particular substring w,...w, is denoted by w,,. The grammar, as usual is denoted by the symbol G =
(N,T,P,S), where the set of non-terminals is indexed by j, as N J, with N' denoting the initial symbol. The
inside probability B;(p,q) = P(Wpy|Njq,G) is the probability of generating wp, = wpWwpi1....w, starting
from N, ,éq, where the subscript is for denoting the positions in the string.

Now, if we want to compute the probability of a string w being generated by a stochastic grammar, we
perform the following dynamic programming procedure also known as the inside algorithm. We can assume
that the grammar is in Chomsky Normal Form, i.e., all productions are of the form A — BC or A — a where
A, B and C are non-terminals and a is a terminal. Thus, in the present notation, the productions are of the
form N’ — N/N* or of the form N — w;.

1. Base Case: For each substring wy of length 1, compute the inside probabilities [3;(k,k) of non-
terminal N/ generating wy.

2. Induction: Now, for finding ;(p,q) where p < ¢, we see all possibilities of splitting w ,,into w4 and
Wa+1,4» and recursively compute the corresponding inside probabilities B(p,d) and B(d + 1,4). Since
we are using a bottom-up approach, these probabilities will already be stored in our tables. Also, we
have to consider all possible productions that are applicable at N/ for analyzing the possibilities of
splitting w,. More formally, we have to perform

q—1

Bi(p,a) =) ). P(N' = N'N*)B.(p,d)Bs(d + 1,9)

s d:p

By computing B;(0,n), we can obtain the probability of string w being generated by G.

A similar technique could be used for finding the most likely parse of a string. In this, we have to store
two sets of information for each substring w ,, and non-terminal N J. These are & i(p,q), which contains the
highest inside probability parse of a subtree N, [J;q. The second is ;(p,q) which stores the rule which led to
the most probable parse from non-terminal N'. Then a similar bottom-up algorithm could be followed :

1. Base Case: For each substring of length 1, compute 8;(p, p) = P(N* — w),).
2. Induction: For generating w ,,, the highest probability parse is computed using
8i(p,q) = maxi<jr<np<ragP(N' = N'N)8;(p, )8k (r +1,4)
and the rule is stored using

Vi(p,q) = argmax(j ) P(N' = N'N)3;(p,r)8(r +1,9)
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3.3.2 Parsing for noisy inputs

When the input stream is noisy, we do not consider the actual string, but a set of beliefs about the correctness
of a particular symbol at a position. Material in this section has been taken from [Bunke and Sanfeliu, 1990].
Thus we consider a sequence of vectors [c1(x1) ¢1(x2).... ¢1(xn)], ... [em(x1) cm(x2).-.... cm(x,)], Where ¢;(x;)
is a measure of certainty that the symbol x; € T is correct at position i. Thus, for a particular input string
X =< Xj1Xj2.....Xim >, we define the uncertainty by

c(x) = icj(xij)

The certainties will be defined on the basis of the actual input string observed as well as the belief on the
particular string positions. The parsing procedure will then determine the string x which is compatible
with the given grammar and has maximum certainty. A fast and simple algorithm for solving this for a
regular grammar was solved in [Bunke et al., 1984]. Its extension to context-free grammars was given in
[Bunke and Pasche, 1988].

4 Higher Dimensional Grammars

Grammars can be extended to operate on higher dimensions. As pointed out earlier, string grammars are
one-dimensional and the only relation that exists between neighboring symbols is that of concatenation. In
applications of computer vision and graphics, such one dimensional structures are very restricted. There are
two ways to extend this grammar to higher dimensions. The first is to generalize the notion of symbol and
concatenation, and map a sequence of symbols to some expression language which can be interpreted as a
drawing/model. PDLs and plex structures used this approach. Another more fundamental approach is to
generalize the notion of strings, to higher dimensions.

Since we are dealing with images, one obvious extension could be arrays. A string of length n could
be interpreted to be an array of dimension n X 1. Another way to generalize a string is to observe that the
symbols are connected by a neighborhood relation. Thus, they are essentially linear graphs, with every node
(except the first and the last) having 2 nodes. Graph grammars and their special case Tree grammars, have
been widely used in pattern recognition applications. Before discussing these various forms of grammar, we
first discuss parallel grammars and isometric grammars which will lead us to these other forms.

4.1 Parallel grammars

In the grammars that we have discussed till now, there was an inherent sequentiality associated with it.
We say that the grammar G = (N, T, P,S) accepts a string x if there exists a sequence of derivation steps
S—=wo—=wp — ... — wg = x, where each derivation step (—), denotes application of one rule. In the case
of parallel grammars, this restriction is lifted. Thus, a parallel grammar G| = (N,T,P,S) accepts a string x,
if there exists a sequence of parallel derivation steps S = wo = w| = ..... = w, = x, where each derivation
step (=), denotes application of all possible rewriting rules that are possible for an intermediate string.
Since application of rules takes place in a parallel fashion, except for some simple cases (regular gram-
mars), the languages accepted by a parallel grammar G and the corresponding sequential grammar, G are
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not the same. Consider for example, the context-free grammar denoted by the rules S — SS, S — a. Now,
the languages accepted by the corresponding grammars are

L(G) = {d"|n > 1}
L(Gl) = {a”|n > 1}

In fact, the language that is accepted by L(G”) is not context-free even though the underlying grammar
is context-free. In the case of regular grammars, an intermediate string always consists of a single non-
terminal and hence, there is no difference between Gl and G.

One problem with parallel grammars is that for a rule o — B, instances of o are allowed to overlap.
So if there exists a length decreasing rule XXX — ZZ, then starting from X", a parallel grammar derives
72m=2) " A more important problem is that parsing and generation are no longer inverses of each other. For
instance, applying XX — ZZ to XXX in parallel yields ZZZZ, but applying ZZ — XX to ZZZZ in parallel
yields XXX XXX . Thus parsing is an issue in parallel grammars.

Parallel grammars have been widely applied in computer graphics applications in the form of L-systems.
We discuss some of the applications of L-systems in the next section.

4.1.1 L-systems

First introduced as a mathematical theory to explain growth and development of multicellular organisms
by Aristid Lindenmayer, L-systems have since then made a big impact in areas of simulation and model-
ing. These systems were developed by [Prusinkiewicz and Lindenmayer, 1990] into a system which could
express plant models. However, now L-systems are being used for various other applications in computer
graphics.

L-systems are formal grammars which can generate strings. These grammars are in general context-
sensitive parallel grammars. The rules that generate these strings and the symbols themselves have partic-
ular semantic and visual interpretations based on the problem being modeled. The string of symbols has
traditionally been interpreted as a sequence of commands given to a turtle. The type of motion exhibited
by the turtle, then describes the end result. Application of rules in L-systems occurs in a parallel fashion,
thereby resembling natural sub-division processes in cellular organisms.

Applications of L-systems in computer graphics includes modeling of plants [Kurth, 1994]. In this work,
parameterized L-systems were used not only for simulating differential plant growth but also for modeling
interactions with external environment and other plant structures. Another important application was in the
artificial generation of random cities [Parish and Muller, 2001]. In this work, open L-systems were used
for modeling street maps and building structures, by generating templates and then interacting them with
external functions.

4.2 Matrix Grammars

Matrix grammars are used for generating two-dimensional strings. The synthesis of the matrices occur by
first generating a row of symbols. This row is the top row of the matrix, and every symbol is a start symbol
for some grammar. The symbols are then expanded into columns, with the restriction that the lengths of
the final strings should remain same for every column. The column languages are regular since growth of
strings in one-dimension has to be ensured. This also makes parsing easier.
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Figure 4: Applications of L-systems : Modeling of plants and cities
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Figure 5: Example of an array grammar and a sequence of applications of array rules
[Bunke and Sanfeliu, 1990]

To put the above ideas more formally we use the definition from [Bunke and Sanfeliu, 1990]. We define
a matrix grammar M to be an (n+ 1) tuple (G,G1,G,,.....,G,) where G is a grammar, and Gy, ...,G, are
finite state grammars such that the terminal symbols of G is the set {S1, ..., S, } of initial symbols of the G's.
M operates by first generating a “horizontal” string of Ss and then starts expanding every symbol according
to the corresponding grammar rules in parallel. By terminating at the same time, one can ensure the “column
length” of the individual strings to be the same.

4.3 Array grammars

Array grammars are used to model languages which are connected sequences/arrays of symbols in two
(or possible more) dimensions. Matrix grammars generate only rectangular arrays, while one might be
interested in sequences of vectors of different lengths. Moreover, we also do not want to limit the scope
of these grammars to two dimensions. Thus, array grammars are useful for generating more complicated
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sequences of symbols.

Definitions here are taken from [Bunke and Sanfeliu, 1990]. The entire string is modeled as a function
from the set of (integer-coordinate) lattice points to the set of terminal symbols and the blank symbol (#).
An example of an array string is shown in the figure. The notion of connectedness in these strings is defined
on the basis of their coordinates. Two points (i, j) and (h, k) are said to be neighbors (and hence connected),
if

ji—h+]j—k =1

An array X is called connected, if for all non-# symbols A, B in X, there exist a sequence A =Ag,Ay,.....,A, =

B of non-# symbols in X (a “path”), such that A; is a neighbor of A;_;. Definition of an array grammar keeps
all the non-# symbols connected. If this restriction is not imposed, then the distance between disconnected
components may become arbitrarily large, and thus modeling the resultant string using local computations
will not be feasible. Thus, there are some restrictions on the way production rules are defined. More particu-
larly, the rules follow the structure of an isometric grammar. In this grammar, for any rule oe — [, the “size”
of o and [ must be the same. This looks like a big restriction, since then the strings generated will always
be of finite length (of the start configuration), and thus the number of strings will always be finite. However,
the language of an isometric string grammar G is defined to be the set of terminal strings T such that the
infinite string #t#” can be derived in G from the infinite initial string #*S#~. Hence, by incorporating rules
containing the * symbol, arbitrary length strings could be generated.

Thus, in an array grammar, one starts with an infinite two-dimensional array consisting of #’s with the
initial symbol located at one place. Each rule of the grammar, replaces one array with another. The rules
satisfy the isometry constraint since otherwise, it is not clear how one can replace a bigger array, with a
smaller array and keep the resulting embedding connected. Similar problems arise when we have a smaller
array replacing a bigger array in a production.

4.4 Graph and Tree grammars

Both strings and arrays can be considered to be specific instances of a general graph structure. In this, the
relationships between neighbors could be arbitrary in number (rather than 2 in case of string grammars and 4
for array grammars). Modeling of graph grammars is also based on sub-graph recognition and replacement.
Thus for any rule of the form oe — B, o and B would represent subgraphs and their replacement would imply
removing o from the total graph and replacing it by f.

However, embedding of one graph into another would require more specifications than just the individual
graphs. When we replace substring o by substring [3, or subarray o by a geometrically identical subarray f3,
such an issue was not encountered. In this case however, one must specify the new node connections that
should be made between the existing graph (with o removed) and the new graph f.

Applicability of graph grammars in the field of vision and pattern recognition has been limited. Only a
few applications are well known in the literature [Brayer and Fu, 1975], [Brayer, 1977], [Pavlidis, 1972]. A
major issue in working with graph grammars is the subgraph recognition problem. ldentifying the subgraph
were a particular replacement rule should be applied is a non-trivial problem. In a more formal setting, this
is referred to as the subgraph isomorphism problem. The basic algorithm was given by [Ullmann, 1976].
Since then, much work has been done on finding efficient heuristics for solving this basic problem.

The main difficulty with using graph grammars has been that efficient parsers for graph languages do not
exist. One such parser developed by [Fu and Shi, 1983] was based on attributed expansive graph grammars.
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Figure 6: Example of a graph grammar and a graph generated from this
grammar[Bunke and Sanfeliu, 1990]

These grammars defined graphs which through some re-numbering procedures were directly translated into
string grammars. Thus application of string parsing techniques were easily applicable in this case.

An important special case of graph grammars are tree grammars. Here in the rules a0 — B, o and
are labeled sub-trees. We apply the rule to a tree ¢ by replacing some occurrence of «, as a subtree of G,
by B. In this case, the connections to be made are not ambiguous since [ is simply attached to the parent
of a. Examples of graph and tree grammars are depicted in the figure. Tree grammars are more tractable
than graph grammars since the replacement rule substitutes entire subtrees. As a result, parsing of such
grammars becomes simpler. Efficient tree parsers based on tree automaton exist in the literature. A very
good discussion on matching tree structures is available in Chap 6 of [Bunke and Sanfeliu, 1990].

4.5 Programmed grammars

Programmed grammars are extensions of our usual notion of string grammars with success and failure fields
associated with every production. These fields provide an implicit context to any production that is applied.
So although their representations are simple, one can model these grammars so that they can generate a
more expressive language, than what the base grammar can.

More formally, as described in [Bunke and Sanfeliu, 19901, a programmed grammar G is a five-tuple
(N,T,J,P,S) where N, T and P are finite sets of non-terminals, terminals and productions respectively. S is
the starting symbol and J is a set of production labels. A production labeled p; of the form, o« — B has two
sets associated with it, namely the success field U and the failure field W, U,W C J.

To see how a programmed grammar works, consider the following grammar.

(1)S— AB

2Q)A—>aAB)A—-DbAAA—a(5)A—b
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Figure 7: Example of a tree grammar and a tree generated from this grammar

6)B—aB(1)B—bB@®)B—a(9)B—b
and consider the program table to be

‘ Rule No ‘ U ‘ w ‘
) (6) None
3) @) None
4) ®) None
(5) ©)) None
®)or (7) | (2),(3), (4)or (5 | None
(8) or (9) None None

The language generated by this grammar is {66|c € (a+ b) ™ }. No context-free language can generate
this set. Thus, using programmed grammars, one can make use of the simplicity of the language, while also
using it to model more complicated features. These languages have been used for character recognition
tasks [K.H. Lee and Kashyap, 1988]. In this particular work, attribute dependent regular programmable
languages were used to build a model for Hangul, the Korean alphabet scheme.
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Figure 8: Layout of the historic Mughal Gardens
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Figure 9: Example of a shape grammar and a shape generated from this grammar

4.6 Shape Grammars

Shape grammars have been used mostly by the architectural community to model design patterns of different
cultural and historic works of art. For instance, work on understanding the design principles behind the
historic Mughal Gardens, has been based on shape grammars. They were introduced by George Stiny in
the 1970s [Stiny, 1975]. The basic blocks in these grammars are two-dimensional shapes and some basic
generative rules which could range from exact subdivisions and additions of shapes to parametric operations.
Thus, issues like how the Mughal Gardens were partitioned into separate areas, what kind of symmetry was
exhibited by the different parts etc., could all be modeled using different rules and parameters in these
grammars.

A grammar in this category is defined as G =< §,L,P,I > where S is the set of shapes, L is the set
of symbols (labels), P is the set of production rules and [/ is the initial shape. Shape generation follows
the subshape recognition and subshape replacement paradigm. As can be seen in the figure shown, the
replacement of shapes in Rule 2 results in a new shape.

Applications of shape grammars are mainly in modeling and structure analysis. The Ice-ray gram-
mar, developed by [Stiny, 1977] can generate Chinese lattice patterns found in the traditional architec-
ture of China. These patterns resemble the structures that get formed when water solidifies into ice.
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Figure 10: An example of Chinese lattice patterns and the four rules of the ice-ray grammar

[Koning and Eizenberg, 1981] defined a parametric shape grammar that could generate the compositional
forms and specifty the functional zones of Frank Lloyd Wright’s prairie-style houses. Application of shape
grammars in product design was demonstrated by [Agarwal and Cagan, 1998]. Using labeled shape gram-
mars, connections between different parts of the product and their functional implications were considered.

5 Conclusions

In this paper, we have tried to cover most of the important grammar formalisms that have been used in
the computer vision and pattern recognition community. If we see the series of developments in the usage
of grammars, we do not see a very clear trend. One plausible explanation is, sufficient developments in
theoretical aspects of grammatical techniques which might prove suitable for pattern analysis tasks did not
take place in parallel. Most of the techniques described were studied in the 70s. Thus in the application
domain, these concepts were reused with extensions suitable to the problem in hand.

As aptly pointed out in [Tombre, 1996], syntactic methods lack generality. An approach used for one
application is not very adaptable to other applications. The inability to handle the primitives and the semantic
part of grammatical methods in an independent modular way, further led to application specific algorithms
for inference and generation. A clear theory of how a grammar could be learnt from real world data, also
exists in a very abstract sense confined mainly to the domain of string and graph grammars. However, the
domains where different types of grammars are applied are too varied for such a unified theory to exist.

Thus we conclude that grammatical methods are useful when the problem under consideration has pat-
terns and relationships among sub-patterns. However, recognizing the existence of patterns does not guar-
antee a direct syntactic solution since the grammatical methods that exist as of today are not generic enough.
The robustness and the feasibility of the solution would depend a lot on the actual problem.
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