
BPMTimeline: JavaScript Tempo Functions and Time
Mappings using an Analytical Solution

Bruno Dias
INESC-ID, IST - Universidade

de Lisboa
bruno.s.dias@ist.utl.pt

H. Sofia Pinto
INESC-ID, IST - Universidade

de Lisboa
sofia@inesc-id.pt

David M. Matos
INESC-ID, IST - Universidade

de Lisboa
david.matos@inesc-id.pt

ABSTRACT
Time mapping is a common feature in many (commercial
and/or open-source) Digital Audio Workstations, allowing
the musician to automate tempo changes of a musical per-
formance or work, as well as to visualize the relation be-
tween score time (beats) and real/performance time (sec-
onds). Unfortunately, available music production, perfor-
mance and remixing tools implemented with web technolo-
gies like JavaScript and Web Audio API do not offer any
mechanism for flexible, and seamless, tempo manipulation
and automation.

In this paper, we present BPMTimeline, a time mapping
library, providing a seamless mapping between score and
performance time. To achieve this, we model tempo changes
as tempo functions (a well documented subject in literature)
and realize the mappings through integral and inverse of
integral of tempo functions.

Keywords
JavaScript, Time Mapping, Tempo Function, Automation

1. INTRODUCTION
Tempo manipulation of a musical expression or works is

used to (1) make a musical expression, or work, more lively
(through a faster tempo) or more solemn (slower tempo);
(2) allow a DJ to synchronize the tempo of several songs
playing simultaneously, to align the beats; (3) create cli-
maxes in a musical expression or work. Mainstream Digi-
tal Audio Workstations (DAWs), either commercial and/or
open-source, like Ableton Live, figure 1, Logic Pro and
Reaper allow tempo automation through time maps, offer-
ing a seamless relation between performance and score time,
using a tempo function. Unfortunately, to the best of our
knowledge, there are no time mapping implementations in
JavaScript. In this paper, we present the theory supporting
time maps as well as our JavaScript implementation, BPM-
Timeline. The development of BPMTimeline followed three
non-functional requirements:

• No real impact on application performance: the

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2016, April 4–6, 2016, Atlanta, USA.

c© 2016 Copyright held by the owner/author(s).

Figure 1: Tempo automation example in Ableton
Live, using step, exponential, logarithm and linear
tempo functions.

temporal overhead for time mapping and tempo search
should remain unnoticed;

• Seamless tempo manipulation: the developer
should not be restricted to crisp tempo changes (e.g.:
step functions) nor should tempo changes be only al-
lowed on restricted time marks (e.g.: the beginning of
a beat or measure);

• Easy to integrate: the implementation should be
self-contained, with no need to include external li-
braries.

In section 3, we describe essential theoretical definitions
regarding the relation between score and real time. In sec-
tion 4, we detail our implementation. Finally, in section 5,
we describe some use cases for BPMTimeline. Our imple-
mentation and demo pages are currently hosted at GitHub.1

2. RELATED WORK
Time mapping is a well document subject [2, 5, 4, 9, 3].

The main idea of a time map is to relate score time (beats)
with real/performance time (seconds) through mathemati-
cal manipulation of tempo functions. A tempo function T
maps score, or performance, time to a tempo value, e.g.:
T (63 secs) = 105.12 bpm). Besides tempo functions and
time maps, another way of representing expressive tempo
manipulation and timing is through time shifts [4], a func-
tion that expresses deviations of certain events in rela-
tion to a reference score/performance time line. Available
JavaScript live coding frameworks and DAWs do not offer
time maps. In frameworks like Flocking [1], tempo manip-
ulation is achieved through manual and crisp changes, and
tempo automation can be achieved through the use of the
setInterval or setTimeout methods. In Tone.js [7], tempo
manipulation and automation is achieved through both (1)

1https://github.com/echo66/bpm-timeline.js

https://github.com/echo66/bpm-timeline.js


manual and crisp changes and (2) through a Tone.Signal
object, which offers a similar API to AudioParam.2 Still,
Tone.js offers no time mapping facilities.

3. THEORETICAL BACKGROUND
We start by describing the basic relation between time,

beats and tempo in order to infer the desired mappings. For
additional background, please see [9, 4]. According to [9],
music tempo T is defined as the number of beats b per t time
units [6],

T =
b

t
(1)

The number of beats b, after t time units, with tempo T is
given by

b = T · t (2)

The duration t of b beats, with tempo T is defined as

t =
b

T
(3)

The bP , which is the inverse of tempo T , is defined as

bP =
1

T
=
t

b
(4)

Equations 1, 2, 3 and 4 assume that T , t, b and bP are
constants. To understand how to map real time to score
time, let us analyse the following example: how many min-
utes have passed when we reach beat 4, with a constant
tempo of 120 bpm (bP = 0.5 secs)? According to equation
3, t = 4

120
= 0.03min, which is the same as the area under

the curve in figure 2(a). If we decide to do a sudden change
at beat 2, t = 2

120
+ 2

110
= 0.0348min. But how do we use

the equations to model a linear tempo change between beats
0 and 4, as depicted in 2(d)? One solution is to approximate
the linear function through a sum of “steps”, figure 2(c). If
we use infinitesimally small steps, the mapping from score
time to real time, t(b), is defined as the integral of the beat
period function. To map real time to score time, b(t), we
use the inverse of t(b)

t(b) =

∫ b

0

bP (β) dβ (5)

b(t) = t−1(b) (6)

In [9], the authors used T (t) instead of T (b), resulting in a
different integral and inverse of the integral for the tempo
function. Despite the differences, the time map will produce
the same results. According to the previous definitions, a
time map can be defined by T (b), bP (b), t(b) and b(t). For
the current implementation, we provide three default for
time mapping and tempo functions: linear, exponential and
step tempo functions, all of them inspired in AudioParam
automation functions.

3.1 Supported Functions
In the following three subsections, we present the three

forms for time maps included in our implementation: step,
linear and exponential forms. All three share a set of terms
related to tempo and time:

• b0, b1: the initial and final score times;

2http://webaudio.github.io/web-audio-api/#AudioParam

a) 1 2 3 4

1

0 beats

beat
period

(seconds)

b) 1 2 3 4

1

0

beat
period

(seconds)

beats

c) 1 2 3 4

1

0

beat
period

(seconds)

beats d) 1 2 3 4

1

0

beat
period

(seconds)

beats

Figure 2: Examples of tempo functions, between
beats 0 and 4. In (a), we have a constant tempo
of 120 bpm (bP = 0.5 secs). In (b), there is a sud-
den (step tempo function) change, at beat 2, from
120 to 110 bpm (bP = 0.(54) secs). In (c), there is
a sequence of step tempo change that are used to
approximate a linear tempo change as seen in (d).
In these examples, we chose to use beat period in-
stead of BPM, for the y-axis, to make the section 3
explanation, regarding b(t) and t(b), more intuitive.

• T0, T1: the initial and final tempos;

• bP0, bP1: the initial and final beat periods;

• t, b: the target time for tempo search and time map-
pings, t for real time and b for score time;

• ts: the time offset, measured in seconds, for the func-
tion.

For each subsection, we define the generic functions and
how are they mapped to a closed form.

3.1.1 Linear
Based on the definition of the formula used in AudioParam

linearRampToValueAtTime method

linX0,X1,Y0,Y1(x) = Y0 + ∆ · (x−X0) (7)

with ∆ = Y1−Y0
X1−X0

defining the slope of lin. This function
is not defined for X0 = X1. Using this function, the tempo
and beat period functions can be defined as

T (b) = linb0,b1,T0,T1(b), bP (b) = linb0,b1,T0,T1(b)

where both functions are not defined for b0 = b1. This
“corner case” occurs when there is a sudden jump in tempo
values. In that case, one should model the tempo change
with a step tempo function. To obtain the mappings, we
integrated the linear function and then obtained the inverse
of the integral

LX0,X1,Y0,Y1,C(x) =

∫ x

0

linX0,X1,Y0,Y1(x) dx =

=
∆

2
· (x−X0)2 + Y0 · (x−X0) + C

(8)

L−1
X0,X1,Y0,Y1,C

(y) =

{
sol1(y) +X0, if sol1(y) > 0
sol2(y) +X0, otherwise

(9)

http://webaudio.github.io/web-audio-api/#AudioParam


sol1(y) =
−Y0 + k1

2 ·∆ , sol2(y) =
−Y0 − k1

2 ·∆

k1 = Y 2
0 −

4

2
·∆ · (C − y)

According to equations 5 and 6, the time mappings are de-
fined as

t(b) = Lb0,b1,bP0,bP1,ts(b), b(t) = L−1
b0,b1,bP0,bP1,ts

(t)

3.1.2 Exponential
Consider the exponential function defined in [9] as

expX0,X1,Y0,Y1(x) = Y0 · ek2·(x−X1), k2 =
log Y1

Y0

X1 −X0
(10)

and the tempo and beat period functions defined as

T (b) = expb0,b1,T0,T1(b), bP (b) = expb0,b1,T0,T1(b)

where all functions are not defined for b0 = b1 (the same
“corner case” as in the linear case). The time mappings for
the exponential function can be obtained in a similar fashion:

EX0,X1,Y0,Y1,C(x) =

∫ x

0

expX0,X1,Y0,Y1(x) dx =

= Y0 ·
ek3·(x−X0) − 1

k3
+ C

(11)

and the inverse of the integral

E−1
X0,X1,Y0,Y1,C

(y) =
log C·(y−C)+1

Y0

k3
+X0 (12)

and the final map between the generic functions and the
time mapping functions is

t(b) = Eb0,b1,bP0,bP1,ts(b), b(t) = E−1
b0,b1,bP0,bP1,ts

(t)

3.1.3 Step
The step function uses a similar tempo function to the

AudioParam setValueAtTime,

stepX0,X1,Y0,Y1(x) =

{
Y0, if x < X1

Y1, otherwise
(13)

with the difference that the value jumps to Y1 only for x =
X1 instead of x = X0, like setValueAtTime formula. The
integral and inverse of the integral are defined as

SX0,X1,Y0,Y1,C(x) =

{
Y0 · x+ C, if x < X1

Y1 · x+ C, otherwise
(14)

S−1
X0,X1,Y0,Y1,C

(y) =

{
y−C
Y0

, if y < Y1
y−C
Y1

, otherwise
(15)

Again, the inverse of the integral is not defined for Y0 =
0 ∨ Y1 = 0. According to the previous formulas, we define
the tempo and beat period functions as

T (b) = stepb0,b1,T0,T1(b), bP (b) = stepb0,b1,T0,T1(b)

and the time mappings as

t(b) = Sb0,b1,bP0,bP1,ts(b), b(t) = S−1
b0,b1,bP0,bP1,ts

(t)

with b(t) not defined for T0 = 0∨T1 = 0. This “corner case”
is only problematic when modelling, with the step closed
form, a full stop in the score/performance time.

3.2 Beats Per Minute definition
T is (usually3) expressed in BPM. For example, 120 bpm =

120 beats
1min

. But, usually, BPM is defined as

BPM =
60 (secs)

bP
(16)

with beat period measured in seconds. How do we deduce
equation 5 from equation 1? If music tempo T is measured
as BPM, then t = 1min and we can deduce from equation 1
that BPM = b

1
= b. Due to the fact that 1min = 60 secs,

we can make the following deduction:

T = b
t
⇔ 1

T
= bP = t

b

For t = 1min⇒ T = b
1

= b = BPM

For t = 60 secs⇒ bP = 60 (secs)
BPM

⇔ BPM = 60 (secs)
bP

Throughout the remainder of this paper, unless stated
otherwise, T is measured as BPM and t as seconds. Addi-
tionally, we use equation 16 to relate BPM and beat period
instead of using the generic tempo/time relations stated in
equations 1 to 4.

4. IMPLEMENTATION
In this section, we describe our JavaScript implementa-

tion for time maps, as defined in section 3. The current
implementation has seven main features:

• find tempo T at beat b, e.g.: what is the BPM T , at
beat b;

• find tempo T at time t, e.g.: what is the BPM T , at t
seconds;

• find what is the beat b at time t, e.g.: mapping time
to beats;

• find what how much time t has passed at beat b, e.g.:
mapping beats to time;

• add, edit and remove tempo markers;

• add new closed forms for tempo functions;

• observe changes in a BPMTimeline instance through
event listeners.

The first four features are related to tempo search and time
mapping, the following two are related to tempo mark-
ers management and the last one offers a way to notify
JavaScript components of changes in a BPMTimeline. A
tempo marker is a JSON object that encodes the informa-
tion needed to evaluate local and global tempo functions:

• endBeat : beat b1, stated by the developer when insert-
ing the tempo marker in the BPMTimeline instance;

• endTime: time t1, measured in seconds, calculated us-
ing t(b1) when inserting the tempo marker in the BPM-
Timeline instance;

• endTempo: final tempo T1, stated by the developer
when inserting the tempo marker in the BPMTimeline
instance;

3In many DAWs like Ableton Live, Logic Pro Tools, Reaper,
Ardour and LMMS, music tempo is expressed in Beats Per
Minute (BPM). Still, it should be noted that music tempo
can be expressed using, for example, italian tempo markings
like Largo, Adagietto, Andante moderato and so on.



• endPeriod : duration of a beat at the “end” of the cor-
responding tempo marker/function, measured in sec-
onds, and calculated when inserting the tempo marker
in the BPMTimeline instance;

• type: String identifying which function (step, linear,
exponential or custom) is used to define the tempo
and mapping functions, stated by the developer when
inserting the tempo marker in the BPMTimeline in-
stance.

The global tempo function, Tg(b), is a non-continuous func-
tion, defined as

Tg(b) =


Tl1(b), if b0 ≤ b ≤ b1
Tl2(b), if b1 < b ≤ b2
...
TlN (b), if bN−1 < b

where Tli(b), i = 1..N , are (local) tempo functions. A global
tempo function is represented as a sorted array of tempo
markers, sorted by endBeat. Each BPMTimeline instance
has only one global tempo function. Each tempo marker rep-
resents a local tempo function. The values T0, t0, b0 and ts
for each tempo are obtained by accessing the endTempo (for
T0), endTime (for T0) and endBeat of the previous marker in
the global tempo function array. As stated in section 1, per-
formance is a very important requirement, therefore, some
trade-offs for the different features are needed. We make the
following assumptions:

• in DAWs and DJ software, time maps are not changed
very frequently during a live performance;

• as such, tempo search and time mapping are more im-
portant than tempo markers management.

We should note that the formulation, in section 3, for the
tempo function T (b) only mentions b. But we could obtain
T (t) by replacing the terms b0, b1, bP0, bP1 and b for t0, t1,
T0, T1 and t, and the tempo would be the same for both
cases, T (b) = T (t).

4.1 Insertion, Edition and Removal of Tempo
Markers

There are three methods for tempo markers management:

• add tempo marker(String type, Number b1, Number
T1): performs a binary search in the tempo marker
array to find the neighbour tempo markers A and B,
where A.endBeat < b1 < B.endBeat. After finding
those neighbours, it inserts the new tempo marker be-
tween them and updates the endTime field of all mark-
ers for which ∀MA.endBeat ≥M.endBeat. If the new
marker is the last one, only its endTime field will be
updated. If there is already a tempo marker with the
same value for endBeat, an exception will be thrown.

• remove tempo marker(Number b1): performs a binary
search in the tempo marker array to find the tempo
marker A for which M.endBeat = endBeat. After
that, M from the tempo markers array is removed
and the endTime field for all tempo markers M that
∀MA.endBeat ≥ M.endBeat are updated. If there is
no tempo marker A for which M.endBeat = endBeat,
then an exception will be thrown.

• change tempo marker(Number b1, Number b′1, Number
T ′1, String newType): removes the tempo marker from
the array and adds the new version. If there is no
tempo marker A for which M.endBeat = b1, then an
exception will be thrown.

These three methods for tempo marker management have
the temporal complexity O(N), due to the usage of a bi-
nary search over a sorted array, O(log2N), and the cal-
culation for the endTime field, O(N). As such, we have
O(log2N)+O(N) = O(N). To add new tempo functions, the
developer can use the add tempo marker type(String type,
Function tempoFn, Function integralFn, Function inver-
seIntegralFn) method:

• tempoFn(Number b0, Number b1, Number T0, Number
T1, Number b): implementation of the tempo function
T (b), as defined in section 3;

• integralFn(Number b0, Number b1, Number T0, Num-
ber T1, Number ts, Number t): implementation of the
mapping t(b), as defined in section 3;

• inverseIntegralFn(Number b0, Number b1, Number
bP0, Number bP1, Number ts, Number b): implemen-
tation of the mapping b(t), as defined in section 3.

This method has a temporal complexity of O(1) (on average)
because it only performs an insertion in an associative array.

4.2 Tempo Search and Time Mapping Meth-
ods

The current implementation has 4 methods for this task:

• beat(Number t): Maps real time t to score time, b(t).
First, it performs a binary search over the tempo mark-
ers array to find tempo markers A and B for which
A.endT ime < t < B.endT ime. If the search returns
both A and B, it performs the mapping b(t) using in-
verseIntegralFn(A.endBeat, B.endBeat, A.endPeriod,
B.endPeriod, B.endTime, t). If the search returns just
a marker, then b(t) = A.endBeat.

• time(Number b): Maps score time b to real time, t(b).
First, it performs a binary search over the tempo mark-
ers array to find tempo markers A and B for which
A.endBeat < b < B.endBeat. If the search returns
both A and B, it performs the mapping b(t) using in-
tegralFn(A.endBeat, B.endBeat, A.endPeriod,
B.endPeriod, B.endTime, b). If the search returns just
a marker, then t(b) = A.endT ime.

• tempo at time(Number t): Returns tempo at real
time t. First, it performs a binary search over
the tempo markers array to find tempo markers A
and B for which A.endT ime < t < B.endT ime.
If the search returns both A and B, it obtains
the tempo through tempoFn(A.endTime, B.endTime,
A.endTempo, B.endTempo, t). If the search returns
just a marker, then the tempo is equal to A.endTempo.

• tempo at beat(Number b): Returns tempo at score
time b. First, it performs a binary search over the
tempo markers array to find tempo markers A and
B for which A.endBeat < b < B.endBeat. If the
search returns both A and B, it obtains the tempo



through tempoFn(A.endBeat, B.endBeat, A.endBeat,
B.endBeat, b). If the search returns just a marker,
then the tempo is equal to A.endTempo.

All four methods have temporal complexity of O(log2N) due
to the usage of binary search of a sorted array. If no marker is
found in each of these four methods, an exception is thrown.

4.3 Event Listeners
Each BPMTimeline instance is observable: every time a

marker is added, edited or removed in the instance, an event
is created and a set of event listeners will be invoked to deal
with that event. In order to register/remove event listeners
in a BPMTimeline instance, the class provides two functions:

• add event listener(String observerId, String event-
Type, Function callback): registers an event listener
for events of the following types: “add-tempo-marker”,
“change-tempo-marker” and “remove-tempo-marker”.

• remove event listener(String observerId, String event-
Type): removes the listeners, that were registered by
observerId, for events with eventType type.

The observerId argument is used to prevent conflicts be-
tween two observers using the same function as event lis-
tener. Each event object has the following schema:

1 { eventType : String ,
2 oldMarker : MarkerDescription ,
3 newMarker : MarkerDescription }

When eventType is equal to “add-tempo-marker”, the old-
Marker field does not exist. When eventType is equal to
“remove-tempo-marker”, the newMarker field does not exit.
Each MarkerDescription instance has the following schema:

1 { startBeat : Number , endBeat : Number ,
2 startTime : Number , endTime : Number ,
3 startTempo : Number , endTempo : Number ,
4 type: String }

startBeat and endBeat define where the marker tempo func-
tions start and end in score time and startTime, endTime
state where does the marker tempo functions start and end
in real time.

5. USE CASES
To date, we have explored three use case scenarios for

BPMTimeline: (1) event scheduling, mapping time values
in AudioContext.currentTime in order to schedule oscillator
plays; (2) automatic synchronization of several audio play-
ers to a dynamic master tempo, in a similar fashion to Able-
ton Live; (3) time rulers, for real and score times, related
through a BPMTimeline instance.

5.1 Event Scheduling and Effect Automation
BPMTimeline can be used to control, through the map-

ping t(b), the scheduling of Web Audio API (WAA) Au-
dio Nodes, like Audio Buffer Source Nodes and Oscillator
Nodes), and their Audio Parameters. Assuming that for
beat = 0⇒ AudioContext.currentT ime = 0, the developer
can play a buffer source node and/or an oscillator node using
the following code:

1 /∗∗ Initial tempo of 60 bpm. ∗∗/
2 var tl = new BPMTimeline (60);
3 var atm = tl. add_tempo_marker ;
4 atm ({ type:" linear ", endBeat :10, endTempo

:200 });
5 atm ({ type:" linear ", endBeat :15, endTempo

:10 });
6 atm ({ type:" linear ", endBeat :20, endTempo

:400}) ;
7 atm ({ type:" linear ", endBeat :60, endTempo

:60});
8 var ctx = new AudioContext ();
9 var osc = ctx. createOscillator ();

10 /∗∗ Play 20 beats. ∗∗/
11 for (var i=0; i <20; i++) {
12 scheduleNote (osc , ’G3’, i, 0.5, ctx.

currentTime );
13 }
14 osc. connect (ctx. destination ); osc.start ();

resulting in a half-beat pulse train, that increases and/or
decreases its tempo throughout the time line. This code is
available in our Git repository.4 Additionally, this module
could be used to control the tempo in libraries like Tuna.js5

which, as far as we know, does not have any implementation
for constant or dynamic tempo.

5.2 Automatic Audio Player Synchronization
Another use case is the synchronization of audio audio

players to a master tempo time line, which is very common
in live music performance applications like Ableton Live. In
one of our prototypes, we share a BPMTimeline instance
(the master tempo) with several audio players. The stretch-
ing factor for each player is determined through the relation
between the master tempo and the tempo of the audio seg-
ment being played/stretched.6

5.3 Time Rulers
WAVES UI library [8] provides a set of music related

UI components (automation lines/breakpoints, waveforms,
time annotations, time rulers, etc) for HTML5. One of those
components, time axis, allows developers to present two time
rulers: one for real time (seconds) and another for score time
(beats), both related through a constant tempo (BPM). In
order to use BPMTimline with WAVES UI library, the de-
veloper must decide which will be “static” time line7, either
real time or score time, in the rulers. Traditionally, DAWs
make score time as the “static” time line. In order to do
the same with WAVES UI, the developer needs to state the
time values for segments, breakpoints, waveforms and traces
in score time.

6. COMPARISONS
In this section, we compare BPMTimeline with Tone.js,

the most advanced JavaScript implementation for tempo
manipulation.

• Time Maps: Tone.js does not offer any time mapping
feature.

4https://github.com/echo66/bpm-timeline.js/blob/master/
demos/demo3.html
5https://github.com/Theodeus/tuna
6https://github.com/echo66/SegmentSequencer.js
7If we choose beat time to become “static”, the tempo
changes affect the real time ruler.

https://github.com/echo66/bpm-timeline.js/blob/master/demos/demo3.html
https://github.com/echo66/bpm-timeline.js/blob/master/demos/demo3.html
https://github.com/Theodeus/tuna
https://github.com/echo66/SegmentSequencer.js


Figure 3: A simple demo page with a graph plotting the output of BPMTimeline.tempo at beat, and a table
listing the markers of the BPMTimeline instance.

• Tempo Functions: Tone.js and BPMTimeline offer
a similar set of basic tempo functions: step, linear and
exponential. Still, with Tone.js, it is possible to sched-
ule an arbitrarily complex tempo function using set-
ValueCurveAtTime Tone.Signal method. Currently,
BPMTimeline does not offer a similar feature to set-
ValueCurveAtTime.

• WAA: Tone.js uses a Tone.Signal object for tempo
automation, a class that uses a Gain Node to sched-
ule changes for tempo, effect parameters, etc. BPM-
Timeline does not have any dependence on specific
JavaScript environments besides a compliant to EC-
MAScript 5 implementation.

• NPM: Tone.js has a NPM module available. Still, the
current implementation does not allow to use Tone.js
within node.js or io.js due to its dependence on WAA.

• Time markers: BPMTimeline requires the user/de-
veloper to schedule tempo changes using score time
values. In Tone.js, due to its dependence on WAA,
tempo changes are scheduled with performance time.

7. CONCLUSIONS AND FUTURE WORK
BPMTimeline provides an API for developers to relate

time and beats, according to a custom tempo function.
Due to the used search method, we expect to minimize
the (temporal) performance impact of time mapping and
tempo search functions. The next step will be the support
for arbitrarily complex functions. Instead of specifying all
tempo functions (there are infinite tempo functions), one
could sample an tempo function and interpolate the result-
ing sequence with a set of linear tempo functions. After
that, we plan to integrate BPMTimeline in browser live
coding environments like Flocking [1], Tone.js [7] and UI
libraries/frameworks like WAVES UI [8].

8. ACKNOWLEDGMENTS
This work was partly supported by national funds

through FCT – Fundação para a Ciência e Tec-
nologia, under projects EXCL/EEI-ESS/0257/2012 and
UID/CEC/50021/2013 and by Luso-American Development
Foundation.

9. REFERENCES
[1] C. Clark and A. Tindale. Flocking: A Framework for

Declarative Music-Making on the Web. In International
Computer Music Conference, Athens, 2014.

[2] R. B. Dannenberg. Abstract Time Warping of
Compound Events and Signals. Computer Music
Journal, 21(3):pp. 61–70, 1997.

[3] P. Desain and H. Honing. Tempo curves considered
harmful. Contemporary Music Review, 7(2):123–138,
1993.

[4] H. Honing. From Time to Time: The Representation of
Timing and Tempo. Computer Music Journal,
25(3):50–61, June 2001.

[5] A. Kirke and E. R. Miranda. A survey of computer
systems for expressive music performance. ACM
Computer Surveys, 42(1):3:1–3:41, Dec. 2009.

[6] J. MacCallum and A. Schmeder. Timewarp: A
Graphical Tool for the Control of Polyphonic Smoothly
Varying Tempos. In International Computer Music
Conference, New York, 2010.

[7] Y. Mann. Interactive Music with Tone.js. In 1st Web
Audio Conference, Paris, 2015.

[8] V. Saiz, B. Matuszewski, and S. Goldszmidt. Audio
Oriented UI Components for the Web Platform. In 1st
Web Audio Conference, Paris, 2015.

[9] J. C. Schacher and M. Neukom. Where’s the beat?
Tools for Dynamic Tempo Calculations. In
International Computer Music Conference. Zurich
University of Arts, 2007.


	Introduction
	Related Work
	Theoretical Background
	Supported Functions
	Linear
	Exponential
	Step

	Beats Per Minute definition

	Implementation
	Insertion, Edition and Removal of Tempo Markers
	Tempo Search and Time Mapping Methods
	Event Listeners

	Use Cases
	Event Scheduling and Effect Automation
	Automatic Audio Player Synchronization
	Time Rulers

	Comparisons
	Conclusions and Future Work
	Acknowledgments
	References

