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SUMMARY

This dissertation presents novel methodologies$iverproblem areas in modern
guality improvement and computer experiments, s&gctive assembly, robust design
with computer experiments, multivariate quality toh model selection for split plot
experiments, and construction of minimax designs.

Chapter 1 proposes generalizations of the seleaisembly method to
assemblies with any number of components. Seleasgembly has traditionally been
used to achieve tight specifications on the clez@af two mating parts. However, its
applicability is not limited to this particular tgf assembly. This chapter develops a
generalized version of selective assembly, call8& Gt can be a powerful tool for
improving the quality of assemblies of single uitsglifferent component types. Two
variants of GSA are considered: direct selectisermdbly (DSA) and fixed bin selective
assembly (FBSA). The former is selective assemsiyguinformation from
measurements on component characteristics dirediigreas the latter is selective
assembly of components sorted into bins. For eadam, the problem of matching the
N components of each type to giWeassemblies that minimize quality cost is formudate
as a linear integer program. The component matgbiollem for DSA is an axial multi-
index assignment problem, whereas for FBSA, iniscdal multi-index transportation
problem. We use simulations to evaluate the peroca of GSA and to find the optimal
number of bins. Realistic examples are given tawstiat the proposed methods can

significantly improve the quality of assemblies.

XVi



Chapter 2 proposes methods for robust design ggaton with time consuming
computer simulations that take into account unadstaabout the true function. Gaussian
process models, which include the class of lineadets, are widely employed for
modeling responses as a function of control orenfastors. Using these models, the
average loss at control factor settings can benastid and compared. However, robust
design optimization is often performed based oreetgdl quadratic loss computed as if
the posterior mean were the true response funcriois.can give very misleading results.
We propose an expected quadratic loss criterionetbby taking expectation with
respect to the noise factors and the posteriorigired process. Approximate but highly
accurate credible intervals for average quadratis hre constructed via numerical
inversion of the Lugannani-Rice saddlepoint appration. The coverage of the
Lugannani-Rice intervals are compared with intevanstructed via moment-matching
techniques on real data.

Chapter 3 proposes a Bayesian method for idengfgiean shifts in multivariate
normally distributed quality characteristics. Muéiriate quality characteristics are often
monitored using a single statistic or a few stastHowever, it is difficult to determine
the causes of an out-of-control signal based mwaesimmary statistics. Therefore, if a
control chart for the mean detects a change imb&n, the quality engineer needs to
determine which means shifted and the directiorte@thifts to facilitate identification
of root causes. We propose a Bayesian approachitiest a direct answer to this
guestion. For each mean, an indicator variableititatates whether the mean shifted
upwards, shifted downwards or remained unchangedraduced. Prior distributions for

the means and indicators capture prior knowledgeitaimean shifts and allow for

XVii



asymmetry in upward and downward shifts. The mddbeoposterior distribution of the
vector of indicators or the mode of the marginatpaor distribution of each indicator
gives the most likely scenario for each mean. Eatsda of the posterior probabilities of
all possible values of the indicators is avoidecemploying Gibbs sampling. This
renders the computational cost more affordablénifgin-dimension problems.

Chapter 4 proposes a Bayesian method for modsttsah in fractionated split
plot experiments. We employ a Bayesian hierarchieadel that takes into account the
split plot error structure. Expressions for compgtihe posterior model probability and
other important posterior quantities that requiraleation of at most two uni-
dimensional integrals are derived. A novel alganittalled combined global and local
search is proposed to find models with high postgrobabilities and to estimate
posterior model probabilities. The proposed metlsaliustrated with the analysis of
three real robust design experiments. Simulatiodiss demonstrate that the method has
good performance.

The problem of choosing a design that is represetof a finite candidate set is
an important problem in computer experiments. Th@max criterion measures the
degree of representativeness because it is themnaxidistance of a candidate point to
the design. Chapter 5 proposes a method for finghimgmax designs for finite design
regions. We establish the relationship betweenmaridesigns and the classical set
covering location problem in operations researdhiclvis a binary linear program. In
particular, we prove that the set of minimax distmis the set of discontinuities of the
function that maps the covering radius to the ogtiabjective function value. We show

that solving the set covering location problemhat points of discontinuities, which can

Xviii



be determined, gives minimax designs. These reatdtemployed to design an efficient
procedure for finding minimax designs for smallesizandidate sets. A heuristic

procedure is proposed to generate near-minimaxgjales$or large candidate sets.
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CHAPTER 1

GENERALIZED SELECTIVE ASSEMBLY

1.1 Introduction

Selective assembly is a method to achieve highigpogecclearance between two
mating parts. To illustrate the idea of selectisseanbly, consider a sleeve and a shaft
assembly. The clearan¥es the difference between the inner-diameter efdleevey;
and the outer diameter of the shéft i.e.Y = X; — X,. In random assembly, a sleeve
and a shaft are chosen randomly from the availsigdply. However, if the tolerance on
Y is tight, we may match sleeves that have largeridiameters with shafts that have
large outer diameters and sleeves that have snmai diameters with shafts that have
small outer diameters. Our matching can be basdbdeomeasured inner diameters of the
sleeves and the measured outer diameters of tifts divactly. This is what we call
direct selective assembly (DSA). When there areynséeeves and shafts to be
assembled, it is convenient to sort sleeves aniissh¢éo bins and then assemble sleeves
and shafts from matched bins. Assembly is perforlnechindomly choosing sleeves and
shafts from matched bins. We call this fixed bilestve assembly (FBSA).

The literature on selective assembly has focusesie®eve-and-shaft type
assemblies. Kwon et al. (1999) study the sele@ss=mbly of sleeve-and-shaft type
assemblies, wherg; andX, are assumed to have independent and identicalatorm
distributions. They derive optimal partitioning Xf andX, for fixed number of bins
under squared error loss and also propose a maitaetermine the optimal number of

bins. Mease et al. (2004) generalize the optimaltjmaing results of Kwon et al. (1999)



to the case wherk; andX, have arbitrary distributions and also study optima
partitioning under absolute error loss. Matsura &hohozaki (2007) study optimal
partition limits under squared error loss in thegence of measurement error. These
papers constrain the number of bins for sleevesshafis to be the same, i.e., the bin of
smallest shafts is matched with the bin of smaBestves, the bin of the second smallest
shafts is matched with the bin of the second smsiadleeves and so on. In addition, the
probability thatX; falls within the limits of bin for sleeves is constrained to be equal to
the probability tha¥, falls within the limits of bin for shafts. The focus of these papers
is the minimization of the long-run loss of asseae®produced from each pair of
matched bins weighted by the probabilities of taggpof bins. No indication is given on
how situations in which the number of sleeves &wednumber of shafts in a pair of
matched bins are different can be handled. Obwptisése assumptions are not
compatible with a batch production scenario. Thesns to indicate that a mass
production scenario, where the production ratededves and shafts are equal, is being
considered. However, there is a serious probler this scenario. Even if we get the
distributions ofX; andX, perfectly right, each pair of matched bins wowthi an
unstable queuing system. There is a tendency éontimber of components in each bin
to accumulate to excessive numbers since the nuofiltemponents that go into each
bin is random. This is different from random asskmbhere the feeding of component
parts into an assembly line can be adjusted sdhbed is no build-up of component
inventories.

Coullard et al. (1998) study the problem of matghangiven number of two

component types. They present algorithms for sgltre matching problem to maximize



yield and quality. Iwata et al. (1998) formulate telective assembly problem as a
bipartite network flow problem and present a fagbathm to solve the problem. Other
papers that considered selective assembly in thixbof manufacturing quality include
Kannan et al. (2008), Kannan et al. (2005), Kararath Jayabalan (2002), Thesen and
Jantayavichit (1999), Zhang and Fang (1999), CimanLznn (1998), Fang and Zhang
(1995), Pugh (1992) and Mansoor (1961).

Although selective assembly has traditionally bperformed for sleeve-and-shaft
and related assemblies, there is no reason toth@iapplicability of selective assembly
to only this particular type of assembly. It is fhapose of this chapter to develop
selective assembly as a tool to improve the quafigssemblies of any number of
components with any known form of assembly respéunsetion. We study thselective
assembly problem under a batch production envirorinvghere components are
produced in batches and then assembled. Selesseendly seems to be more suitable
for batch production than mass production; the dddeps of selective assembly should
be easily accommodated by a batch production fcilie to the medium to low
production rate requirements. Moreover, the questbility problem of matched bins
does not arise in batch production. The treatmesélective assembly in the statistical
literature (e.g. Kwon et al. (1999) and Mease e{24104)) has focused on optimal
binning designs for assemblies with two componantsa linear response function. On
the other hand, the treatment of selective assemlthe operations research literature
(e.g. Coullard et al. (1998) and Iwata et al. ()9%&s concentrated on developing
algorithms for matching components of two differgiges. In contrast, we treat the

selective assembly of batcheshiinits of each ok different component types.



Moreover, our methods are applicable to assembiithsany assembly response
function.

This chapter is organized as follows. Section 1s2usses DSA and gives two
realistic examples to demonstrate the potentiadgyai quality cost. Section 1.3 discusses
FBSA. Three realistic examples are given to denratesthe potential gains in quality
cost and to show how good bin designs can be foyradscreening and ranking
procedure. The problem of selecting bin designsararobust to batch size and
manufacturing process variations is addressedcatiddel.4. Concluding remarks are

given in Section 1.5.

1.2 Direct Selective Assembly

Consider an assembly of one unit of eack different types of components.
Suppose the assemblies are produced in batchesedf.sThen, in random assembly,
components of each type are supplied to the asgdimé] where they are randomly
matched and assembled. In direct selective assgDBl), the components are matched
in a systematic manner based on measurements obthgonent characteristics. Let the
assembly quality characteristic be denoted b$uppose thdt = f(X4, ..., X)), where
f is the known assembly response function ¥p the vector of measured
characteristics of componehntLet the characteristics of thecomponents of th&gh
type be denoted hY;,, ..., X;y. Then, if we assemble tligh typej component for
j=1,..,k, we have a product with quality characteristicseal
Yiliz---ik = f(Xlilr ---’ink) (1.1)
and quality cost
Q

L(y T), (1.2)

iliZ"'ik - iliz"'ikl



wherel is the quality loss function arftlis the target fo¥. One common choice of the

quality loss functiorl is

L(¥iiyinT) = (Yoot = T) €(Yiyii, — T), (1.3)
where( is a positive semidefinite matrix (Kapur and Ch896).

There are a total aiVv!)*~! possible ways to obtaid assemblies. However, we
can find the combination of assemblies that minesiguality cost by solving a binary

linear program:

Direct Selective Assembly
minQC ZZ _1212 1° Zlk 1Qi1i2---ikDi1i2---ik

subject to:
Program le DY Zlk 1Dy, =1V =1, N
A _1 213 1 b lk 1D11121k == 1 Vlz - 1, ...,N

11 . zl“ 1 ﬁ“_lDlllz i =1Vig=1,..,N
D; € Z,D,

lliz...lk

> 0 Vi, iy o, ig € {1, ..., N}

iqipi

TheD;

irip-i, S are the decision variables.Df = 1, then one product is to be

Ly
assembled from thigth typej component foj = 1, ..., k. The objective function of
Program A is the total quality cost of the asseewblThe constraints of Program A say
that each component of each type must belong t@assembly. Let

D = (Dy4...1, -, Dii...k,) denote the vector of decision variables. THeis a feasible
solution if N elements oD equall and the remainingy* — N elements equdl. The

optimal solutionD* to the program gives thié assemblies that minimize quality cost.

Program A is a special case of the multidimensiasalgnment problem known



as theaxial multi-index assignment problgiBandelt et al., 2004; Queyranne and
Spieksma, 1997; Gilbert and Hofstra, 1988; PietakdP68). The total number of
decision variables i¥* and the program can be solved for a global optsohition

using a branch-and-bound algorithm (Vanderbei, 2@@hrijver, 1986) in which lower
bounds are obtained by solving linear relaxatiditge that ifk = 2, then we have the
usual assignment problem, which can be solvediasa program (Dantzig and Thapa,
2003), i.e., we can drop the integrality constalt;,...;, € Z Viy, iy, ..., i € {1, ..., N}
from Program A. Unfortunately, fdr > 2, this cannot be done.

In order to implement DSA, all relevant charact&essof each component must
be measured and the measured values for each centgwave to be labelled or tagged
on the component. This can become extremely codtgn the batch size is large. Thus,
DSA would generally be most cost effective whenlihteh sizeV is small, as is usually
seen in Just-In-Time production systems.

ol

Note that some of th@iliz. e values can be large, implying poor quality proguct

would be obtained from certain combination of comgds. Thus, it might be more

appropriate to scrap such assemblies rather tharotluce it. Let:f be the cost of

- >Yk c?, itis more cost

scrapping one unit of component of typé&hen, ifQill.Z..,lk i1

effective to scrap the assembly. As such, we shmpjbhceQiliz,, e in Program A with

'l

Q

Higiy = min{L(¥,..;,, T), X, ¢} }. Note that we may also consider the possibility of

reworking the components to get an acceptable ddgem this casezj;lcf should be

replaced with the rework cost.

Because th&;;'s are random, i.e. they vary from batch to batebY, ;,..; s,



andQ l.k’s are random quantities also. Therefore, the agdtsolution and objective

iyig---
function value of Program A are random variablescdise the optimal objective value
of Program A changes from batch to batch, we shaste#ss the cost effectiveness of
DSA by the expected quality cost per batch. Wethisesimulation procedure given in
Appendix A.1 to estimate the expected quality ¢osDSA. It is assumed that the

X1, -, X1n, X21, ..., Xy @re independently distributed and that for eéad,, ..., Xy

have common distributiofy,.

In the following examples, we shall compare rand@sembly with selective
assembly. For random assembly without inspecticaseémblies, the expected quality
cost per batch is
QCpyo = NE[L(Y,T)], (1.4)
whereY = f(X;, ..., Xy) andX;~Fy,. If 100% inspection of the assembled products is
performed, then the expected quality cost is
QCp, = NE[min{L(Y,T), 3}, c}}], (1.5)
assuming that products that have higher quality tban the scrap cost are scrapped.

As shall be demonstrated in the examples, DSA isninetter at improving the
quality of assemblies than 100% inspection of thipat of random assembly. Although
selective assembly may be more costly than 100@ect®n, the cost of 100%
inspection can also be very high. Aside from apétsion cost for every batch, we also
incur the additional cost of wasted effort dueseeanbling products that are ultimately
scrapped. In cases where the assembly quality dieaisdics can only be measured via
destructive testing, 100% inspection cannot be @mginted. In contrast, direct selective

assembly does not suffer from these disadvant&@gescombinations of components are



scrapped even before they are assembled if ittimapto do so. In addition, inspection

of assembled products is not needed. Of coursse thédvantages can only be realized if
Y can be predicted accurately based oklowever, this is possible for many well studied
assemblies, and also for mechanical assembliasHich f is derived from purely

geometric considerations.

1.2.1 Example 1.1: Direct Selective Assembly of Betal thermostat
Consider a bimetal thermostat (see Appendix A.2)nitf width that is simply
supported at both ends (Timoshenko, 1925). The atafiudeflection at the midpoint

upon heating of the thermostat from temperaliyréo T is given by

_ P 6(ap=ay)(T=To)A+m)?
8 h[3(1+m)2+(1+mn)<m2+%)],

(1.6)

where

[ = distance between supports = length of thermostat at temperature T,
aq, a; = coef ficient of thermal expansion of the two metals,

n = E,;/E, = ratio of Young's moduli of the two metals,

m = t,/t, = ratio of thicknesses of the two metals,

h = t; + t, = thickness of thermostat.

Suppose we want to manufacture molybdenum/aluminihermostats (Tierney
and Eischen, 1997; Eischen, 1989) with a defleatiohh = 1mm when heated t8§00 °C
above room temperature. The material consi@pis,, £, andE, are given by.9 x
107%/°C,23 x 107%/°C,32.5 x 101°Pa, and7 x 10'°Pa respectively, where the
subscriptl stands for molybdenum and the subsiptands for aluminium.

The nominal dimensions for the thermostatlare50mm, t; = 1mm, and



t, = 3mm and the thermostat is manufactured by joining ind&num and aluminium

strips. A manufactured molybdenum strip has thiskngthat follows a truncated

normal distribution with suppofL, U] = [0.5,1.5], and mean and standard deviation

before truncatiom, = 1 ando; = 0.2 respectively. On the other hand, a manufactured

aluminium strip has thicknessg that follows a truncated normal distribution wapport

[L,, U,] = [2.5,3.5], and mean and standard deviation before truncatien3 and

o, = 0.2 respectively. We write

t;~TN(1,0.2,0.5,1.5), andt,~TN(3,0.2,2.5,3.5). (1.7)
Suppose that(Y,T) = 10(Y — T)2. If N molybdenum strips antl aluminium

strips are randomly matched and joined to prodacé éatch of thermostats, then the
expected quality cost of a batchgé,,, = 10N {E [(Y — 1)2]}. A simulation with

10,000 runs givesQACRA0 = 0.05038N(0.000755N), where the quantity in brackets is
the standard error. {7, c¢§ = 0.27, then the quality cost 8C,, = 10N{E[min{10(Y —
1)2,0.27}]}. A simulation with10,000 runs givesQC,, = 0.04923N(0.000657N).
ForN = 10,15, 20, we compute the quality cost when DSA is performwét and
without the option of scrapping using simulatiofd 00 runs. Note that the simulation
procedure is given in Appendix A.1. Table 1.1 giesimates of the expected quality
costs per batch a¥ thermostats for random assembly and DSA. We saeé0160%
reduction in quality cost is achieved with DSA @begercentages are obtained by

comparingQC, ,, with QC,,, andQC,, with QC,,). This is a huge improvement and

SA0
may more than offset the implementation cost of DBlAreover, DSA is seen to be far
more effective at improving the quality cost th&@9% inspection. Notice also that the

percentage improvement is greater the larger ttehlsaze. This is to be expected since



Table 1.1: Quality Costs for Random Assembly ané®iSelective Assembly
(Bimetal Thermostat, Truncated Normally Distributip Thickness)

Q\CRAO 2Ya Q\CSAO % 2Ya %
N (no scrap) QCra (no scrap) | Improvement QCsa Improvement
10 0.504(0.0076) 0.492(0.0066) 0.258(0.0186) 49% q25458) 48%
15 | 0.756(0.0113) 0.738(0.0099) 0.362(0.0196) 52% qB8297) 54%
20 1.008(0.0151) 0.985(0.0131) 0.454(0.0270) 55% ((2.0186) 59%
Table 1.2: Quality Costs for Random Assembly aneé®iSelective Assembly
(Bimetal Thermostat, Uniformly Distributed Strip i€kness)
Q\CRAO Nr @SAO % Nr %
N (no scrap) QCra (no scrap) | Improvement QCsa Improvement
10 | 1.011(0.0134)| 0.841(0.0088) 0.410(0.0256) 59% q0224) 55%
15 | 1.517(0.0201)| 1.262(0.0132) 0.579(0.0371) 62% (q@2.9248) 61%
20 | 2.022(0.0268) 1.683(0.0176) 0.691(0.0341) 66% q®6957) 60%

the number of choices of assemblies increasdsinsreases.

thatt; andt, are uniformly distributed over the same suppofiefsre, i.e.,

It is interesting to see the effect of changingdistribution oft; andt,. Suppose

t,~Unif(0.5,1.5), andt,~Unif (2.5,3.5).

(1.8)

Table 1.2 shows that faf = 10,15,20, we achieve 55-65% reduction in quality cost.

The quality costs for random assembly and DSA aremtarger whem; andt, are

given by (1.8) than when they are given by (1. HisTs because (1.8) implies larger

variability in t; andt,. The absolute and percentage improvement achigitbBdSA

also tends to be larger whepandt, are uniformly distributed. This suggests that tgea

cost reductions are attainable with DSA for proesssith more variation.

1.2.2 Example 1.2: Direct Selective Assembly of Kieldle Joint Assembly

Unlike in Example 1.1, the current problem invaweultiple responses and

10




multivariate component characteristicBhe knuckle joint assembly (see Appendix A.2)

shown in Singh et al. (2005) has two cleararGeandY, that must be maintained at

target values. The clearances are functions of coent dimensions given % =

Xy — X1, andY, = X3 — (2X,, + X33), WhereX; is a dimension of componentX,,

andX,, are dimensions of component 2, dfidis a dimension of component 3.
Suppose thaf = (1,1) and that.(¥,T) = 125(Y — T)"(Y — T). Assume that

X1, X724, X2p, andX; are independently distributed truncated normatloamvariables

given by

X1~TN(9,0.04,8.88,9.12), X,,~TN(5,0.04,4.88,5.12), X,,~TN(10,0.04,9.88,10.12),

andX;~TN(21,0.08,20.76,21.24). (1.9)

Simulations with10,000 runs giveQC,,, = 2.1517N(0.02513N) andQC,, =

2.0973N(0.02268N), where we seE’_, ¢ = 10. We compute the quality cost for
selective assembly fa¥ = 5,10 using simulations o300 runs. Table 1.3 gives estimates
of the expected quality costs per batciNdtnuckle joints for random assembly and
DSA. With the implementation of DSA, we achieve®@®% reduction in quality cost. As
in Example 1.1, the improvement is larger e 10 than forN = 5.

Now, assume thaf,, X,,, X,,, andX3 are uniformly distributed with the same
support as given by (1.9). Table 1.4 gives estimatehe expected quality costs of

Table 1.3: Quality Costs for Random Assembly ane®iSelective Assembly
(Knuckle Joint, Truncated Normally Distributed Coonent Dimensions)

@RAO Ya Q,Z‘SAO % Ya %
N (no scrap) QCra (no scrap) | Improvement QCsa Improvement
5 | 10.759(0.1257) 10.487(0.1134) 3.868(0.17R0) 64% | 8FT.1593) 64%
10 | 21.517(0.2513) 20.973(0.2268) 4.184(0.1489) 81% |  38(L1504) 80%
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Table 1.4: Quality Costs for Random Assembly aneé®iSelective Assembly
(Knuckle Joint, Uniformly Distributed Component Damsions

Q\CRAO 2Ya @SAO % 2Ya %
N (no scrap) QCra (no scrap) | Improvement QCsa Improvement
5 | 33.205(0.3393) 25.273(0.1788) 10.589(0.46[75) 68%| 8480.3364) 61%
10 | 66.410(0.6786) 50.546(0.357f) 12.324(0.520D4) 81%| .0840.4102) 76%

random assembly and DSA. With DSA, we achieve 6@-8duction in quality cost.
The quality costs for random and selective assemutadyarger when, andt, are
uniformly distributed than whety andt, are truncated normally distributed over the
same support. In addition, the absolute improverirequality cost achieved with the
implementation of selective assembly also tendsettarger.

Examples 1.1 and 1.2 demonstrate that sizeabletieds in quality cost can be
achieved with DSA. Such improvements can more titset the implementation cost of
DSA. Moreover, the substantial improvements in paadjuality can give the

manufacturing organization a significant compegitadvantage.

1.3 Fixed Bin Selective Assembly

It is seen in the previous section that selectssembly by matching components
based on the measured values of their charactsristin result in considerable
improvements in quality. However, this approach loarextremely costly wheM is
large. The cost of measuring component charadgtriahd keeping records on the
measured values for each component can be profeibioreover, the number of
decision variables and number of constraints fogRxm A increase &g increases,
making the program more difficult to solve. To reduhese costs and still retain the

benefits of component matching, selective assemdntybe performed by sorting tive

12



components of each type into several bins. Wetkllfixed bin selective assembly
(FBSA). In particular, we sort th€ typei components inta; bins for each = 1, ..., k,
where a component of typevith measured characteris&g is sorted into théth bin if

X; € By;. For each, the binsB;,, ..., B;;,, should be a partition &f;, the sample space of
X;, i.e.

UL, By =S, andB;NBy = ¢ Vj # L. (1.10)
Note that ifX; is a one-dimension random vector, then a commactige is to take each
B;; as an interval. IX; has dimension greater than one, then it is coeveno take the
B;;’s as hyper-rectangles.

After sorting, the number of components in eachibicounted. Then, using this
information, we determine the number of productseé@ssembled from binsg ..., i) of
components of typg, ..., k respectively, for al(iy, ..., iy). Define
X, = X/|X; € B;;. (1.11)
If a product were assembled from a typgmponent randomly chosen from Bin
j =1, ..., k, then the quality characteristic of the produatascribed by a random
variable given by
Yijigip, = F(Xaips s Xiiy)- (1.12)
Hence, the expected quality cost of this product is

Q = E[L(Yiiyo T)]- (1.13)

iqip-e i
Let N;; be the number of typecomponents in thith bin for that component type and let
n; be the number of bins for typeeomponents. Define a cell to be a combinationitg;b

we refer to celliy, ..., iy) to be the combination of bin of typej components for

j=1,..,k. The component matching problem is to find the benof assemblies to be

13



produced from each cell such that the total qualist is minimized. This problem can

be formulated as an integer linear program:

Fixed Bin Selective Assembly
min QC = X, X%+ X% Quiyife Dy
subject to:

le 1213 - ”sz 1Dijigeiy, = Nug, YVig =1,.,my

le 1213 1 “Zlk 1Di1i2---ik = NZL'Z Vlz = 1, e, o

Program B
Yiima B Bzt Doty t = Nty Vi = 1,y
Di,..i, € Z,Dy,.ip, = 0V (ig, ..., ix)
€E{(y, o jr) EZ*:1 < <m,l=1,..,k},
where Z;}ilNl-j =NVi=1,..,k.
TheD;,..;,'s are the decision variables.lif ;,...;, = x, thenx products are to be

assembled from cefl,, i,, ..., ix). The objective function of Program B is the expdct
total quality cost of the assemblies. The constsamh Program B say that all components
in each bin must be utilized to build a totalbhssemblies. Let

D= (D11---1; ...,Dnlnz...nk) denote the vector of decision variables. TH2is a feasible

solution if the sum of thE[*_, n; elements oD equalN and all elements db are
nonnegative integers. The optimal soluti®hto the program gives the number of
products to be assembled from each cell suchheagxtpected total quality cost is
minimized.

Program B is known as tlaxial multi-index transportation problef@Queyranne
and Spieksma, 1997; Haley, 1963). It can be sadlvedxactly the same way as Program

A, i.e. using a branch-and-bound algorithm with éowounds obtained by solving linear

14



programming relaxations. F&r= 2, the continuous relaxation of Program B becomes a
transportation problem; thus, all basic solutioresiateger points (Dantzig and Thapa,
2003) and the program must have an integer opswiation. Unfortunately, fok > 2,

this is not true.

If scrapping is an option, then we should replag%mik in (1.13) with

Qiyiyiy = MIN{E[L(Y 4y, T, Zjoq 7). (1.14)
In essence, this leads us to a generalizationeohdttion of setting component tolerances.
Instead of using specification limits to define bypectangle acceptance regions, we
now have acceptance regions that are unions ofrfrgptangles, as illustrated in Table
1.5 fork = 2, andn; = n, = 4. This can give an acceptance region that better
approximates the shape of the contours of the ddgessponse functiofi. Moreover,
some undesirable combinations are scrapped oitlisibptimal to do so according to
Program B.

To evaluate the long-run performance of FBSA, wadlsgissume that alV
components of the same type have identically thsteid characteristics, and that all
component characteristics are independently dig&th Moreover, we assume that the

distribution for each component type remains thmeestom batch to batch. Given these

Table 1.5: Accept/ Reject Cells for Fixed Bin Séhke Assembly

By By, B3 Baa
Bi1 Reject Accept Accept Accept
B, Reject Accept Accept Accept
Bi3 Accept Accept Accept Accept
Biy Accept Accept Accept Accept

15



assumptions, thel.ll.zmik’s in Program B are fixed quantities, unlike PragraA.

However, for ali = 1, ..., k, (N3, ..., Ni,) is @ multinomial random variable. Thus, the
optimal solution and objective function value ob§ram B are random variables that
changes from batch to batch.

For FBSA, it is desirable to determine the optimainber and formation of bins
to minimize the expected total cost per batch eéamlies. The total cost is taken to be
the sum of the quality cost and extra cost of FBSAr random assembly, which is a
function of the number of bins,, ..., n, and also the batch si2ge This latter cost
includes the cost of sorting, and the increasetiafanaterial handling due to
segregation of components of the same type. Mmisyant to choose = (n4, ..., ny)
andBy,j = 1,..,n;,i=1,...,k such that the sum of the expected quality costlaad

implementation cost of FBSA(n, N) for a batch of products is minimized. Denote

n = (N11’ ey NlTll’NZl’ ey NZTLZ’ ey Nkll ---'Nknk) (115)
and let

koo ; .
0={nezZarn2 0,51 Ny=NVi=1,..k} =00 . 1M} (1.16)

N+7’li—1

wherem = 1'[{-;1( o — 1
L

). LetP, =P(n=mn,),p; = P(X; € By), andQCj;i be the

minimum expected quality cost achieved wiges n;. Then, the expected quality cost

for a batch of siz&J is

E(QC) = XiZ,QCy. By, (1.17)

i i
m_ MMy

k
whereP,, = [[~i———p.
n, = [lj=1 Njgl--Np! Py Jny

_ i i i i i i
ni = (N11’ ...,Nlnl,N21, ...,Nznz, ...,Nkl, "'lNknk)'
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We write the bin design problem formally as folkow

Bin Design for Fixed Bin Selective Assembly

ming, 5, {TC = X, QCy Py, + C(n, N)}
Program C _
subject to:

UL, Bij = S, ByNBy = ¢ Vk # I,n € N¥.

In the following examples, we restrict attentiortlie case where ead&h is of a
single dimension with sample space giverSps [L;, U;], and we take
Bj={x€R:b;j_1 < x < by}, (1.18)
whereb;y = L;, by, = U;, bjy < by < -+ < b;n,—1 < byp,; hence, the decision variables
for Program C are;, by, ..., bin,—1,i = 1, ..., k.

Program C is difficult to solve. Note th@t‘; is a function of the decision

variablesn;, b;y, ..., bin,—1,1 = 1, ..., k. Hence, to evaluate the objective function of
Program C at a feasible point, Program B neede teobvedn times. Solving Program B

involves computing thQi1i2~ e values in addition to running a branch-and-bound

B
algorithm. Moreover, because can be a very large number even for small valfiéé o

andng, ..., n;, computing the values of all tIQf; at a single point in the feasible region

of Program C can be a daunting task in itself. pitodlem is further aggravated by the
large number of decision variables.
In view of these problems, we restrict attentiomaioking a finite number of

alternative bin designs. Based on the limitatioithe precision of measuring equipment,

or on a comparison d@f(n,N) to QC, ,, we can reduce the set of alternative from N

RA?

to a finite setw,,. Note that values at such that (n, N) > QCk, need not be
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considered. Sincé(n, N) should be increasing in each of its argument,ahésvs us to
narrow down the alternative choicesmofo a finite set that contains’, the optimal

number of bins. However, it seems to be difficalhairrow down the infinite number of
alternativeb;;'s. We shall compare thig;’s obtained using two heuristic methods (Mease
et al., 2004), which we call bin-formation ruleféEe two rules are:

I.  The equal-width rule: Choose thg's so thatb;; — b; j_; = (U; — L;)/n;.

ii. The equal-area rule: Choose thgs so thatFy, (b;;) — F,(b;j-1) = 1/n;.
Thus, we suggest ranking the agj; of alternative bin design that consists of all
combinations oh € w,, and bin-formation rule. The procedure given in Apgix A.3 is
used to estimate the expected total &@stor each of the finite number of alternative bin
designs suggested.

We use the two-stage screening and ranking proequaoposed by Nelson et al.
(2001) to determine the best alternative in theogatternative bin designs. Since this
procedure requires the assumption of normalityuseas input data for the procedure
the averages of total cost estimafésobtained fromr > 1 runs of ProcedurH
(Schmeiser, 1982). The procedure is summarizegppeAdix A.4. Steps 1-4 of
ProcedurdlIl are steps for the screening of alternatives aguksi-8 are steps for the
ranking of alternatives.

In the following examples, we shall compare rand@sembly with FBSA. In all
examples, the parametersr, andm, for Procedurdll are fixed ax = 0.05, r = 10,
my = 10. Note thatn; = 10 replicates is the minimum recommended by Schmeiser
(1982) and the average o= 10 TC values should be large enough for the normality

assumption to be a good approximation. For StepP3acedurdl, we estimate each
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E[L(Yy,i,..i,, T)] by @ simulation with 10,000 run. In general, thisuld be convenient

when either the loss functidnis complicated, or thE 's are complicated functions

iyig-eiy
of theX]-l-j’s.

Assuming that products that have higher qualitg ibsin the scrap cost are
scrapped, the expected quality cost of random aslggrer batch of assemblies is given
by (1.5). Strictly speaking, the quality cost afidam assembly with 100% inspection is
not comparable to the total cost of FBSA. The odstspection and the cost of wasted
effort due to assembling products that are scrapfted inspection must be added to the
guality cost to obtain the total cost of randormeassly. Note also that our specification
of C(n, N) in the examples shall be somewhat arbitrary. Ehisravoidable because
C(n,N) depends on many production-system-specific factoch as the degree of
automation, the material handling equipment etavéieer, we point out that simulation
models of the assembly process with and withoutempntation of FBSA can be used to

determineC(n, N). For example, Activity Based Costing of manufaictgrsystems using

discrete event simulation models is discussed legd@pg and Sun (1999).

1.3.1 Example 1.3: Fixed Bin Selective Assembly Bfmetal Thermostat

We investigate fixed bin selective assembly oflilmeetal thermostat described in
Example 1.1. Assume thAt= 100, C(n,,n,,100) = 0.2(n, + n, — 2), and the
distributions oft; andt, are given by (1.7). A simulation of 100,000 runseg QACRA =
4.872(0.0208). This indicates that only values @f;, n;) such that; + n, < 26 need
to be considered. However, the precision of thesm&ag equipment would likely place

tighter upper bounds on the valueswpfandn,. We suppose that only a maximum of
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four bins is allowed for each component. Thug,= {(nl,nz) EN%:2<n;<42<

ny < 4}. Note that if we set; = 1 orn, = 1, we are essentially performing random

assembly; if no scrapping of components or ass@sblie allowed, then FBSA with

ny; = 1 orn, = 1 is equivalent to random assembly. Define

lo = { 1,if the equal width bin formation rule is used 119
rue = 2,if the equal area bin formation rule is used (1.19)
Then, our set of alternatives is given by
Wy = {(nl,nz,rule) eEN*2<n; <42<n,<41<rule< 2}. (1.20)

We employ Proceduriél with § = 0.1 to screen and rank the alternativesjj.
The results of the screening steps are shown iteTlab. Highlighted are the seven

alternatives that remain after the screening phEse column heade@?i gives

estimates of the quality costs of the alternat'@égz ﬁgl) — C(nq,n,,100). Itis
interesting to see that the quality cost can irszemith an increase iy or n,. However,
the quality cost must decrease if the bins of ttegraative with the larger values of
andn, are nested within the bins of the alternative i smaller values of; andn,.
The results of the ranking steps are presentedliteTl.7. We see that in order to

rank the seven remaining alternatives, Procetiurad to be rud9, 36,73, 70,97, 44,

and56 times respectively witi = 10. Sinceﬁg?&z) = 3.523 is the smallest, we

declare(3,3,2) as the best alternative. Recall tidt,, = 4.872(0.0208). Thus, the

improvement in total cost, assuming that the totak of random assembly equals the

quality cost, ié‘% ~ 30% and the improvement in quality cost is about

4.872-[3.523-02(3+3-2)] _ ,c¢
4.872 ~ 45%.
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Table 1.6: Screening of Alternative Bin DesignsniBtal Thermostat,

Truncated Normally Distributed Strip Thickness)

n ny Rule s? ¢ | Qe

2 2 1 0.02094| 3.659 | 3.259
3 2 1 0.01980 4.380 | 3.780
4 2 1 0.02339 3.894 | 3.094
2 3 1 0.01784 4.150 | 3.550
3 3 1 0.01635| 3.668 | 2.868
4 3 1 0.02405 4.147 | 3.147
2 4 1 0.02708 3.842 | 3.042
3 4 1 0.01303 4.064 | 3.064
4 4 1 0.01850 3.782 2.582
2 2 2 0.02965| 3.606 | 3.206
3 2 2 0.01922 3.924 | 3.324
4 2 2 0.02592 3.892 | 3.092
2 3 2 0.00861 3.757 | 3.157
3 3 2 0.02836| 3.575 | 2.775
4 3 2 0.03822| 3.581 | 2.581
2 4 2 0.01088 3.948 | 3.148
3 4 2 0.01912| 3.630 | 2.630
4 4 2 0.02338| 3.720 | 2.520

Table 1.7: Ranking of Alternative Bin Designs (Bialel hermostat,
Truncated Normally Distributed Strip Thickness)

ny n, Rule m, ﬁi(z) std error
2 2 1 59 3.671 0.0157
3 3 1 46 3.722 0.0248
2 2 2 83 3.589 0.0155
3 3 2 80 3.523 0.0176
4 3 2 107 3.678 0.0169
3 4 2 54 3.685 0.0169
4 4 2 66 3.670 0.0166

21




Table 1.8: Quality CosE[10(Y — 1)?] for Each Cell 0f4,4,1) Alternative
X

[2.5,2.75] | [2.75,3] | [3,3.25] | [3.25,3.5]

[0.5,0.75] | 0.3593 | 0.0985| 0.0085| 0.0376

[0.75,1] 0.2841 | 0.0812 | 0.0071| 0.0277

[1,1.25] 0.1505 | 0.0336 | 0.0052 | 0.0457

[1.25,1.5] | 0.0406 | 0.0052 | 0.0254 | 0.0928

For the alternativé4,4,1), we illustrate the bins and quality coﬁ‘t%lO(Yl-liZ —

1)2] in Table 1.8. The quality cost values are estisyat#ained from simulations with

10,000 runs. We see that the two upper left bine louality costs that exceed the
scrapping cost/_; ¢; = 0.27. Thus,Q,; = Q,, = 0.27. Table 1.8 also suggests that a
rectangular tolerance region fg¥Y;, X,) may not be a good choice since the union of the
cells that would produce products of acceptabldityua not rectangular in shape.

In the case where the distributionstpandt, are given by the uniform
distributions (1.8), the equal-width and equal-asgaformation rules lead to identical
bins. Because of the larger variances, alternati#sup to five bins per component are
considered and it is found th@t4) is the best alternative. The improvement in totest
is about40% and the improvement in quality cost is abbs®o. Details are omitted for
brevity.

Note that the choices af,, in this and the next example were determinediby tr
and error. We incrementally increased the maximumlyer of bins for each component
type and ran ProcedulH. We stopped when further increases did not leadrtew best
bin design. However, Examples 1.3-1.5 demonsthatedven by restricting attention to a
very small subset of the set of allwith C(n, N) < QCgr,4, we can achieve substantial

reductions in quality cost and total cost.
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1.3.2 Example 1.4: Fixed Bin Selective Assembly Bbrtini’'s Clutch

Consider Fortini’'s clutch (see Appendix A.2), whishan assembly of a cage, a
hub, four ball bearings, and four springs as shimithe literature (Lee and Chen, 2007;
Lee and Kwak, 2005; Forouraghi, 2002; Wu et al98 3eng and Kusiak, 1997). The
quality characteristic of interest is the contawglaY given by
Y = cosTH (X, + X5) /(X3 — X5)],
whereX; is a dimension of the huli; is the ball bearing diameter, aigl is the inner
diameter of the cage. Note that there are fourliesdlings per clutch, which means that
there are four components of the same type pemdwga@nd four contact angles.
Program B is applicable to this assembly provided tve assume all ball bearings for
each assembly have the same diameter. This assummpdly be reasonable if the ball
bearings are produced in groups of four, where gaatip of ball bearings is designated
for one assembly, and the diameters of ball bearim@ group are highly correlated. In
this case, one component of type 2 correspondgtoup of four ball bearings.

Suppose that
X1~TN(55.29,0.0793,55.0521,55.5279), X,~TN(22.86,0.0043,22.8471,22.8729),
X3~TN(101.6,0.0793,101.3621,101.8379). (1.21)
LetN =100, T = 0.12217 rad = 7°, and suppose tha(Y,T) = 10*(Y — T)?. Let the
component scrap costs be givendty, ¢; = 6. Thus, the quality cost is such that when
Y <0.09768 rad = 5.6° orY > 0.14666 rad = 8.4°, then it is more cost effective to
scrap the components. This is reasonable dinoeist be betwees® and9° (Feng and

Kusiak, 1997; Wu et al., 1998; Forouraghi, 2002 bad Kwak, 2005). Based on a

simulation with10°® runs, we obtaiC,, = 126.32(0.4957).
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Let C(n,100) = 5(n; + n, + nz — 3). Then, only thosén,, n,, n3) that satisfy
ny + n, + n3 < 28 need to be included w,,. However, there are too many such
(nq,ny,n3) so that screening and ranking of all alternativesld take too much

j—1

computing time. There are a totalZfE3 (3 _1

) = 3276 ways to choose strictly

positive integersi;, n,, n3 such thaB < n; + n, + nz < 28. Out of thes8&276 triples, a
total of28 + 27 4+ 27 = 82 contain a pair of’s; hence, they are not allowable
alternatives for bin design. Therefore, there 2t®4 (= 3276 — 82) allowable

alternative values at. Assuming that both equal width and equal areddsimation

rules are used, there are a tota3©94 x 2 = 6388 alternative bin designs. Since the
total computation time needed to screen and ramB@halternatives given by (1.22)

below is abou?40 seconds on a MacBook Pro (2.4GHz Processor andR&), we

may need about6 hours & 740 x 6388/80 seconds) computing time to find the best of
the 6388 alternatives. To overcome this problem, we magel&alistic upper bounds on
then;’s based on the variance of tiigs, where the upper bound anshould be large if
var(X;) is large. We may also screen alternatives seqlgntising the group screening
procedure proposed by Nelson et al. (2001), stawtith alternatives with smati;’s and
stopping when a further increase in each ofitfeleads to negligible improvement in
guality cost. But the statistical properties oflsacprocedure would be distorted and hard
to evaluate if the decision to stop depends on wghalbserved in the screening process.

For this example, we consider a much smaller sattefnative values at given by
wy, ={(n1,n2,n3) EN*1<n; <51<n,<2,1<ny<5m+n> ZViij}.

Note that we require that at least two of the tlo@®ponent types to have two or more

bins; otherwise, we would essentially be perfornmeagdom assembly. The set of
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alternatives is given by
We = {(nl,nz,ng,rule) e N*: (ny,ny,n3) € 0y, 1 < rule < 2}. (1.22)
The alternative$3,1,3,2) and(4,1,4,2) remain after the screening phase of

ProcedurdIl with § set at2. The results of the ranking steps are presentédle 1.9.
Sinceﬁgi)mz) = 55.758 < 55.985 = WE?L&Z) , we declaré€4,1,4,2) as the best
alternative. However, since the practically sigrafit difference was set &t= 2 and the
difference between the estimated total cost ofilrealternatives is much less than 2, we
probably cannot distinguish the two alternativethvai type | error oft = 0.05. Note that
the best alternative gives about 55% improvemetutad cost and about 80%
improvement in quality cost over random assembly.

Table 1.9: Ranking of Alternative Bin Designs (ks Clutch,
Truncated Normally Distributed Component Charast&s)

ny n, ng Rule m, ﬁi(z) std error
3 1 3 2 19 55.985 0.2715
4 1 4 2 26 55.758 0.2445

For the case whetg,, X,, andX5; have uniform distributions with the same
support as given in (1.21), we consider alternativéh up to seven bins for components
1 and 3, and up to three bins for component 2.bE¢ alternative i66,2,5) and it gives
about 70% improvement in total cost and 90% impnoset in quality cost. Details are

omitted.

1.3.3 Example 1.5: Fixed Bin Selective Assembly Wfheel Mounting Assembly

We now consider an example with multiple resporeesa special form of
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assembly response function which is such thaticgia combinations can be ruled out
without performing any simulation to evaluate thoeenbinations. This allows us to
achieve some savings in simulation effort. The Whemunting assembly described by
Jeang and Chang (2002) has five components, whaeleamponent is of a different
type. The two quality characteristics of interests clearances given by

Y, =X, — X4, andY, = —X; — X, — X3 + Xo.

The component dimensions have truncated normillidisons given by
X1~TN(5,0.045,4.1,5.09), X,~TN(8.5,0.03,8.44,8.56), X3~TN(4,0.045,3.91,4.09),
X4~TN(8.36,0.04,8.28,8.44), X5s~TN(17.7,0.035,17.63,17.77).

LetN =100, T = (0.14,0.2)7, L(Y,T) = 3000(Y; — T;)? + 12000(Y, — T,)?,
Y1 ¢ =270, andC(n, 100) = 40(n; + n, + n3 + n, + ns — 5)%. A simulation with
10* runs yieIdsQACRA = 6122.1(0.68). This suggests that we should compare all
(nq, np, ng, ny,ns) such thaw, + n, + n3 + ny + ns < 17. However, this would give rise
to a very largev,, set; moreover, Program B contains many decisioiabi@s even for
small values oh, n,, n3, n,, andns. Therefore, we consider the set of values of
(nq,ny, ng, Ny, ns) given by

Wy, = {(nl,nz,ng,m, nsg) € N°:1< ny,n3 < 3,1 <ny,ny,ng < 2}.

A few of the elements ab,, give rise to FBSA designs that are essentiallyvedent to
random assembly. These are elements where foweooffthen;’s equal 1, or where
only n, and exactly one af, n3, orns is greater than 1. With these bin combinations,
component matching does not contribute to the ivgameent of assembly quality.
However, quality might be improved by rejectingeaablies from certain cells. We

remove these values affrom w,, to getw,,. For simplicity, we shall only consider the
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equal width rule. Thus, there are a totab8falternatives.

The single alternativény, n,, n3, ny, ns) = (2,2,2,1,2) remains after screening of
the alternatives using Procedutewith § = 100. It has a total cost dfg,)z,z,l,z) =
1887.0(15.02) and a quality cost @7(2,2,2,1,2) = 1247.0(15.02). Thus, we achieve a

70% improvement in total cost and an 80% improvenrequality cost.

Remark: In Examples 1.3-1.5, the cost functi6tn, N) is somewhat arbitrary.
However, the main purpose of these examples isnwodstrate that a substantial
improvement in quality cost can be achieved witlfSERBwhich suggests that
implementation of FBSA may be justified in manyessAnother purpose of these
examples is to show that good bin designs can lnedfby restricting attention to only a

small set of values af with small values of; that satisfyC(n, N) < QCry.

1.3.4 Summary of Examples and Comparison

Examples 1.1 and 1.2 show that DSA is good at &iigesignificant cost
reductions of 50-80% even for small batch siZ2és=(5 to N = 20). Cost reduction
increases with batch size. Note that Example Inkiders an assembly with univariate
response and univariate component characteristtosreas Example 1.2 considers an
assembly with multivariate response and charatiesis

Examples 1.3-1.5 show that FBSA with optimal bisigas can achieve
significant cost reductions and that large batzesscan be handled with FBSA. They
demonstrate that good bin designs can be founeédiyicting consideration to
alternatives with small number of bins for each poment type and finding the optimal
bin design among the alternatives using a screeamdganking procedure. Reductions in

total cost range from 30% for the bimetal thermiost& 0% for Fortini’s clutch and the
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wheel mounting assembly; reductions in quality casge from 45% for the bimetal
thermostat to 90% for Fortini’s clutch. Reductidesd to increase when the variances of
the distributions of component characteristicsease.

In the case where we have a moderately large lsaaehboth DSA and FBSA
may be considered. Clearly, DSA will be more colign FBSA. However, we can
expect less improvement with FBSA than DSA (as begeen by comparing Examples

1.1 and 1.3) since FBSA uses less information tIh&A in matching components.
1.4 Robustness of FBSA Design

1.4.1 Robustness to Variation in Batch Size

In practice, the batch si2¢é is determined by customer orders or production
planning methods. Thus, we should consider robnstiésign withV treated as a noise
factor. Note that for an arbitrary batch with numb&components in each bin given by

the vectom defined in (1.15), the total cost@is’, (n, rule, N) = QCj;(n, rule,N) +

C(n,rule, N). This makes explicit the fact that the two souralegariation of the total
cost isp andN. In other words, we can split the variation iratatost of a batch into two
components: variation between different batchestdwariation in component
manufacturing, and variation due to changes inhosittes. Thus, the mean and variance

of the total cost per batch are given by

tpe(n,rule) = E (TCy(n,rule, N)) = E[E(TCy(n,rule, N)|N)], (1.23)
and

o?.(m,rule) = var (TC,,(n, rule, N))

= E[var(TC,,(n, rule, N)|N)] + var[E(TC,,(n, rule, N)|N)]. (1.24)
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Equations (1.23) and (1.24) suggest that we mags#the bin desigm, rule)
to minimizep,..(n,rule) ando?.(n,rule) or a composite of both criteria. It may also be
of interest to consider the effect of the choickiafdesign omQC(n, rule) and
ogc(m,rule).

In the following examples, we find that the cortia between,.(n, rule) and
a2.(n,rule) is very high. Thus, it would be appropriate todson finding a bin design
that minimizegu,.(n, rule). Note that optimization qf,.(n,rule) can be achieved

using Procedurdl.

1.4.2 Example 1.6: Mean and Variance of Total CosBimetal Thermostat and
Fortini’'s Clutch

Consider the bimetal thermostat of Example 1.3uAssp(N = 50) =
p(N = 100) = p(N = 150) = 1/3. Since the cost of implementing FBSA should be
higher for larger batch sizes, we 6ét,,n,, N) = 0.002N (n; + n, — 2), and letw,;;
be given by (1.20).

We can estimatg,.(n, rule) ando?.(n,rule) using simulation data obtained
with procedurdl. ForN = 50,100,150, and(n,rule) € wgy;, we run procedurd with
M = 100 and compute the sample mean and variance. Theestiveateu,.(n, rule)
ando?.(n, rule) using sample analogues of (1.23) and (1.24).

Assuming that the thicknesses are distributed é5.1), we find that for the set of
alternativesn,, considered, the correlation between the estinwdtes.(n, rule) and
o2.(n,rule) is 0.96. Moreover, using the same data, we find that trestation between

the estimates qIQC(n, rule) andaéc(n, rule) is 0.97. On the other hand, if the
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thicknesses are distributed as in (1.8) apg is given by (1.21), the correlation between
the estimates qf..(n, rule) ando%.(n,rule) is 0.97, and the correlation between the
estimates oﬁQC(n, rule) andaéc(n, rule) is 0.98. These observations suggests that we
need only focus on finding the bin design that miaes the mean total cost
Uy, rule).

Lastly, we mention that similar results are obtdimgth the Fortini’s Clutch of
Example 1.4 for the case wher@ = 50) = p(N = 100) = p(N = 150) = 1/3, and

C(nl,nz,ng, N) = 005N(n1 +7’l2 +7’l3 - 3)

1.4.3 Robustness to Misspecification of Distributias
In this section, we consider the robustness obtitenal bin design to
misspecification of the distributions of componeharacteristics. If the distributions of

some characteristics are misspecified, the cakedlatlues of thQiliZ,,,ik’s would be in

error. Moreover, we would generate th&ector in Step 4 of Proceduliefrom wrong
multinomial distributions. Thus, our estimate oé tiotal cost of each alternative and our
choice of the optimal bin design would likely beagreous. However, we think that
robustness of bin design to misspecification ofrdiigtions is not a significant practical
problem. In implementing FBSA, every batch of eascmponent type will be sorted into
bins. Data on the total number of components sontiedeach bin of a component type
can be used to determine whether the specifiedldison for that component type is
correct (e.g., Pearson goodness-of-fit test). thtemh, measurements on a characteristic
can be recorded and used to estimate the distinbudifter FBSA has been implemented
for a long time, there would be an abundance & ttaticcurately determine the correct

distributions. Nevertheless, we present the resfilisnumerical study of the robustness

30



of optimal bin designs in Example 1.7.

1.4.4 Example 1.7: Robustness of Optimal Bin Desigrior Fortini’'s Clutch and
Bimetal Thermostat

We shall study how cost savings over random assewith 100% inspection are
affected when the optimal bin design is determiinech misspecified component
distributions. We consider the Fortini’s clutch plem discussed in Example 1.4. The
distributions ofX{, X,, andX; after component inspection are given by
X1~TN(u,,01,55.0521,55.5279), X;~TN(u,, 0,22.8471,22.8729), and
X3~TN (s, 03,101.3621,101.8379) (1.25)
whereu,, 01, i4,, 02, 15, 03 are unknown. The bounds §6.0521,55.5279],
[22.8471,22.8729], and[101.3621,101.8379] on X4, X,, andX3 are known since these
are the specification limits. Assume that to estenthe unknown parameters, we measure
the dimensions af = 16 pieces of each component type (hub, ball beaand,cage)
randomly sampled from batches that have not besggested. Then, Bayesian inferences

with the usual noninformative priors give

= n-1 and—=|data~1/ |x2_,, (1.26)

wherex is the sample mean ands the sample standard deviation. Thus, we have

0991 =P (-3 < I=< )=pP(-075<2<075), (1.27)

-1/2 -1/2
0991 = P ((¥s09055) < 0/(sV15) < (¥s00045) ) = P(0.673 < /s <
1.823). (1.28)
We use the valueg; = 55.29, s, = 0.0793,%, = 22.86,s; = 0.0043,%; = 101.6,53 =

0.0793 to determine the optimal bin design, which in Exéeril.4, was found to be
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(4,1,4,2). However, since these estimates are subject o, @e should quantitatively
study the robustness of the design.

It is of interest to determine the performancéhefoptimal bin design at the
endpoints and midpoints of the credible intervaleg by (1.27) and (1.28). This would
require running 8° design. Fortunately, it is possible to reducerthmber of runs and
still be able to observe the best and worst perdmee of the optimal design.

The effect of increasing standard deviation of eaw@racteristic is to increase the
standard deviation df. Thus, we can form a compound fackgrconsisting of the three
levels(0.673,1,1.823), whereF, = 0.673,1,1.823 correspond to setting the standard
deviations of all{;’s to their lower credible limitsd(673s), nominal valuess(), and
upper credible limits1(.823s) respectively.

It can be shown that is a decreasing function &f andX,, and an increasing
function ofX;. Hence, the mean &fdecreases when the mean¥pfandX, increase,
and the mean of; decrease. Thus, we can form a compound fdgtoronsisting of the
three level{—1,0,1), whereF,, = —1,0,1 correspond to setting the mean(#f, X,, X3)
at(k; — 0.75s4, %, — 0.755,, x5 + 0.75s53), (X1, X5, X3), and(x; + 0.75s4, X, +
0.75s,,x3 — 0.75s3) respectively. The levels éf, andFy are shown in Table 1.10.
Thus, introducing compound factors reduce our erpant from a3° factorial to a3*
factorial.

The results of thd” factorial experiment are shown in Table 1.11. Tblemn
labelledTC gives an estimate of the total cost of FBSA withdesign(4,1,4,2) and the
column labelleds(TC) gives its standard error. Each estinféfeis obtained by running

procedurdl 50 times withM = 10. The column labelle@C ,, gives an estimate of the
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Table 1.10: Levels of the Compound Fact®jsandFy,

Level -1 0 +1
U, = 55.2305 Uy = 55.29 Uy = 55.3495
Fy U, = 22.8568 U, = 22.86 U, = 22.8632
us = 101.6595 us = 101.6 Uz = 101.5405
Level 0.673 1 1.823
o, = 0.0534 o, = 0.0793 o, = 0.1446
Fy o, = 0.0029 o, = 0.0043 o, = 0.0078
o; = 0.0534 o3 = 0.0793 o3 = 0.1446

Table 1.11: Estimates of Total Cost of FBSA witim Biesign(4,1,4,2),
Cost of Random Assembly, and Percentage SavingBSA

Over Random Assembly for t13& Experiment

Fy Fy TC 6(TC) QCra | 6(QCra) | %Savings
-1 0.673 198.33 0.70 198.13 1.65 -0.1
0 0.673 42.35 0.09 60.91 0.85 30.5
1 0.673 225.54 0.91 235.34 2.01 4.2
-1 1 196.44 0.89 220.13 2.01 10.8
0 1 55.57 0.18 123.81 1.55 55.1
1 1 217.62 0.94 247.80 2.26 12.2
-1 1.823 132.46 0.98 243.91 2.23 45.7
0 1.823 73.86 0.42 223.83 2.18 67.0
1 1.823 140.94 1.03 261.01 2.34 46.0

quality cost of random assembly (100% inspectioautput) obtained from0,000 runs,
and the column labelle®(QC ) gives its standard error. Finally, the column late
%Savings gives the quanti(Q\CRA — T‘?)/Q\CRA %X 100. Comparison of thé&;, column

and the %Savings column reveals tRahas a strong linear effect (if we coBeso that

its levels are-1,0,1). Thus, underestimation of the component standawhtions is

much less serious than overestimation. If the staadard deviations are larger than their
estimates (i.ef, = 1.823 gives the true standard deviations wlihije= 1 represent the

nominal standard deviations used to derive thex@gdtbin design), the percentage cost
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reduction would be larger than predicted. On tieohand, if the true standard
deviations are smaller than estimated (Eg.= 0.673 versusF, = 1), the percentage
cost reduction would be less than predicted. Corspaiof theF,, column with the
%Savings column reveals th} has a strong quadratic effect. If errors in estiomaof
the component means act in the same direction xnmmze the error in estimating the
response mean, the percentage cost reduction candieless than predicted (i.e.,
%Savings foi,; = —1 andF,, = 1 are much less than %Savings gy = 0). These
eyeball analyses can be confirmed by a formal ama(ysing a half-normal plot or
Lenth’s test) of linear and quadratic contrastawietd by decomposing the two main
effects and two two-factor interaction componehitsl(@nd Hamada, 2009). We point
out that the high and low levels Bf; andF, represent worst case scenarios. Overall,
Table 1.11 indicates that FBSA would very likelyewve cost reductions over random
assembly.

In Table 1.12, we give estimates of the total émsthe bin designg4,1,4,2) and
(6,2,5,1) whenX, X,, andX; have distributions given by (1.21) and when thayeh
uniform distributions with the same support aslir2{). Note that for the latter case, we
obtained(6,2,5,1) as the optimal bin design, as mentioned at theoékckample 1.4.

Table 1.12: Total Cost Estimates of Bin Designsi@al for Truncated Normally
Distributed and Uniformly Distributed Component Ciaeristics

Truncated )
Uniform
Normal
TC 6(TC) TC 6(TC)
(4,1,4,2) | 55.764 | 0.056| (4,1,4,2) | 101.040| 0.207
(6,2,51) | 75.032| 0.025] (6,2,5,1) | 77.127| 0.100
@RA 126.320] 0.496 (jZ‘RA 278.950| 0.754

34




Table 1.12 shows that, although there is a nonignbltg increase in total cost over the
minimum attainable cost if the component distribng are misspecified, significant cost
savings are still achieved with bins optimal wiglspect to misspecified distributions. We
may use the results of Table 1.11 to predict tlst savings achieved with bin design
(4,1,4,2) when the component distributions are uniform. $tamdard deviations of the
uniformly distributed component characteristics gikeen byF, = 1.732 and the means
are given by, = 0. If we fit a constant mean Kriging model with exjeatial
correlation function (Santner et al., 2003) in itngut space€F,,, F,) to the %Savings
data in Table 1.11, we obtain the predictédins. This is very close to the observed
%Savings, which i$3.8 (= (278.95 — 101.04)/278.95 x 100). This suggests that the
%Savings depend strongly on the first and seconaénts of the component
distributions.

Finally, we point out that for the bimetal thermaistissembly problem described
in Example 1.3Y is not monotonic irt;. However, over the sample spd0e,1.5] x
[2.5,3.5], Y achieves its maximum neét;, t,) = (0.5,2.5) and its minimum aft;, t,) =
(1.5,3.5). Therefore, we can use a compound faggpifor the mean with levelgr; —
0.75s1, %, — 0.75s,), (%1, X3),and(x; + 0.75s4, X, + 0.75s,). Results for the bimetal

thermostat are similar to the results for Fortiiistch given above and are omitted.

1.5 Conclusions
The industrial revolution was brought about byitlesa of interchangeable parts,
which Eli Whitney demonstrated with muskets. Tleg to the move away from
craftsmen to mass production. Each product madeditsmen is unique in the sense

that some components of a product cannot be replaith the components of another
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product of the same type. In contrast, interchabigeaarts are parts that can be randomly
matched to build an acceptable assembly. Thuggittnseem that selective assembly is a
step back towards the days of the craftsmen, arahtithesis of the concept of
interchangeable manufacturing. However, we taketsiion that selective assembly is
a valuable quality improvement tool. Selective a#slg improves quality by introducing

a component sorting and matching step to improgeatisembly of interchangeable parts.
It does not call for the replacement of interchade manufacturing, which is necessary
to ensure easy maintenance and good uniformitgifopmance of products. Rather,
selective assembly is a strategy to gain a connyeaidvantage in product quality, which
can be crucial for profit and growth in a businesgironment that demands perfection in
quality.

Implementation of selective assembly requires adtieyls in the flow of material
through the manufacturing facility. Although thesdra steps may cause congestion in a
mass production facility, they should be easilyomemodated in batch production
facilities or job shops since production rate regmients are not high in these facilities.
Moreover, the numerical examples presented inctiepter also show that larger
reductions in quality cost are possible with GSarthvith 100 percent inspection and
rework.

We developed selective assembly as a tool thabearsed to improve the quality
of products that are assemblies of one unit of ehehfinite number of component types
provided that the assembly response function isvkndVe studied two versions of
selective assembly: direct selective assembly ixed bin selective assembly. For each

version, we formulated the problem of matching conents to give a batch of
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assemblies that minimize expected quality costlagear integer program. Realistic
examples were given to demonstrate that signifioashiictions in average quality cost
can be achieved.

A few problems require further research. Firstkteading the selective assembly
methods proposed in this chapter to assembliestimsist of multiple components of the
same type is one important area for further rebe&econdly, for fixed bin selective
assembly, methods are needed to determine thealgiimformation for given number
of bins. Thirdly, although it is theoretically pdsie to consider more than one
measurement per component type for fixed bin sgkeissembly, it seems practically
impossible to handle this case since we can havg mays to partition the more-than-
one-dimension sample space of the characteristiosub-regions that define the bins
for selective assembly. Thus, approaches to retheceumber of partitions that have to

be considered are needed.
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CHAPTER 2
ROBUST DESIGN OPTIMIZATION WITH QUADRATIC LOSS

DERIVED FROM GAUSSIAN PROCESS MODELS

2.1 Introduction

Robust parameter design is a quality improvemenhau®logy for designing
products and processes to be insensitive to vamiati a set of factors, called noise
factors. Noise factors can be controlled duringeexpentation but not during process
operation or product use. The objective of robasameter design is to find settings of
the control factors so that the response is maiathas close to the target as possible
under noise variations. As such, widely used awelags criteria for robust design
optimization include the mean squared error anuee.

Most of the statistical literature on robust pagéen design has focused on
methods developed for physical experimentation. élex, due to the rapid increase in
computing power, computer simulations have becomengortant tool for product
development. Because these simulations can beniyrdime-consuming, metamodels
are needed to facilitate exploration and optimaabf simulators. To construct a
metamodel, a training data set is acquired by ngaicomputer experiment. In many
cases, Gaussian process models are utilized istsialt metamodel building (Sacks et al.
1989). A Gaussian process model can be interpestedprior for the unknown function
that a simulator represents. Parameters of a Gaupsbcess prior are estimated using
training data and the prior process is updatedgusia same data to yield a posterior

process. Statistical inferences on the simula@tlan made using the posterior process.
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There are many techniques for searching for rofetsings based on linear
models of the response (e.g., Koksoy and Doganak@0$), including ones that take
into account model estimation uncertainty (d4@puesada and Del Castillo 2004).
Methods for constructing confidence regions folirapt robust settings of linear models
have also been developed (Myers et al. 1997; Gmysdiud Ben-Gal 2006). Peterson and
Kuhn (2005) give a method for constructing simudtauns confidence intervals for the
minimum mean squared error loss at various disgfroen the design center. Myers et
al. (1997) give methods to construct approximasslotion and tolerance limits on the
response.

However, most of the techniques developed foalimeodels cannot be applied to
Gaussian process models, and many are only aplditabnear models with specific
forms. Hence, approaches for finding robust desauations and quantifying uncertainty
in the estimated average loss are needed for Gaugsicess models. Apley and Chen
(2006) propose an approximate method for constrgaonfidence intervals for a loss
function suitable for smaller-the-better qualityachcteristics. Williams et al. (2000) and
Lehman et al. (2004) introduce expected improver{Ehtcriteria for finding robust
settings. Chang et al. (1999) and Chang et al.l(e08scribe the robust design of a
femoral component for total hip arthroplasteir criteria for robust design are derived
by treating the posterior mean as if it were tle tresponse function. Despite the vast
literature on robust design, it seems that metlf@dsonstructing credible intervals for
guadratic loss derived from either linear model&aussian process models are lacking.
Moreover, uncertainty about the true response fands often ignored in robust design.

Optimization is typically based on the average gaticiloss derived as if the fitted
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model/ posterior mean were the true function. Thigpter demonstrates that such a
practice can be deficient and introduces bettehau= for robust design optimization.
Although computer experiments and physical exparnisare very different in
nature, linear regression and Gaussian processlimgpaee actually closely related. The
posterior predictive process for Gaussian procesteis contains the predictive process
for linear models as a special case. We proposesh®f a general expected quadratic
loss criterion, where the expectation is taken watpect to the noise factors and the
posterior process. We shall develop saddlepointeqomation-based methods to
construct credible intervals for the loss thatasplicable to Gaussian process and linear
models. The criterion and its credible intervab@allus to properly take into account
uncertainty about the true response function ifiopering robust design optimization. In
examples involving real data, we demonstrate tipersority of the proposed criterion
over the commonly used criterion that ignores raspdunction uncertainty. We also
demonstrate the impressive accuracy of the Lugasiiae saddlepoint approximation.
The rest of the chapter is organized as followstiSe 2.2 reviews the Gaussian
process modeling framework for computer experime®éstion 2.3 derives the proposed
expected quadratic loss criterion. Sections 2.42aBgresent methods for constructing
credible intervals for quadratic loss derived frpasterior normal and processes
respectively. Section 2.6 discusses a method fidlapig accounting for uncertainty in
the correlation parameters and sequential desigiy gsiantiles. Section 2.7 gives three

examples. Concluding remarks are given in Sectién 2

2.2 Gaussian Process Modeling

In this section, we briefly review the main ided$aussian process modeling of
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simulators. It is assumed that the output of a Etouy(-) can be modeled by

Y(x) = f(X)"B + G(x), (2.1)
T

wherex € y ¢ R™, y is the design regiorf,(x) = (1,f1(x), ...,fp_l(x)) B =

(ﬁo,ﬁl, ...,,B’p_l)T, andG (x) is a zero mean stationary Gaussian process. @iweitwo
pointsx; andx;, the covariance df (x;) andY (x;) is given bycov[Y (x;),Y(x;)] =
cov[G(x)),G(x;)] = o2R(x;, x;), whereR(x;, x;) is the correlation function. The most
commonly used correlation function is the Gaussitamnelation function
R(x;x;) = exp [— Yo O (i — xju)z]l (2.2)
wherex;, is theuth element ofx;, andg,, > 0, u=1,...,m.

In a computer experiment, the output is observed elues of inputs given by
the rows ofX = (x, ..., xy)7. This yields a vectoY of observed outputs. The matXx

is called the design, and the choice of emcis restricted tgy. Based on data from the

experiment, a best linear unbiased estimator obtiput can be constructed and is given

by

9 = OB +rx)"RT (Y — FP), (2.3)
wherer(x) = (RG 1), ., R, x))  F = (F(x), ., fGr)) R = (R(xix;))
and

B = (FTR'F)"'FTRY. (2.4)

In (2.3),R, r, andp depend on the correlation functi@f-), which in turn,
depends on the correlation parametr®ne approach to estimatifigs the maximum
likelihood method, i.e., to maximize the likelihood

¥(6,B,0%) = [(2na?)"|R|] " ?exp[—(Y — FB)'R™'(Y — FB)/20?].
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It turns out that give®, g = B, where is given in (2.4), and? = 62 = (Y —

FB)TR‘l(Y — FB)/N maximizesp (0, B,2). Thus, the maximum likelihood estimate

(MLE) 8 of 6 is obtained by maximizing(8, B,6?), which is equivalent to minimizing

5(0) = Nlog(62) + log(|R)). (2.5)
Because the output of deterministic simulationkdaandom error, it seems more

natural to view model (2.1) as representing theratistribution for the simulator. Using

a weak prior fo3|8, 02, p(B16,5?) x 1, it can be shown that (Handcock and Stein

1993; O’Hagan 1994)

Y()IY,0,62~GP(u(:|0),V(-10,0%)), (2.6)

whereGP (u(:10),V(:,18,0?%)) denotes a Gaussian process with mean fungiigf)

and covariance functioh(:,|0, c2); u(-|8) = $(x), and

V(,10,0%) =

o2 {R(x,2)) = r(x") R7r(x!) + [f(x") = FTR-'r(2)] (FTR™'F)~'[f(2’) -

FTR‘lr(xf)]}. (2.7)

It is common to base inference on (2.6) udrig place of@ andé? = NL_ng in place of

o, i.e.,

Y()IY,8,62~GP (u(10),v(-18,62)). (2.8)
A fully Bayesian approach would place a prior(@)c?) and integrate out

(8,0?%) from the product of the prior ant(*), Y|0, 2. If we use the priop(c?|0) x

o~? and integrate out? from (2.6), we obtain &process. In particular, we obtain

(Handcock and Stein 1993; O’Hagan 1994)
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YOIV, 8~st (u(16),7('16)), (2.9)

wherest (u(-le), l7(-,-|0)) denotes a Studentprocess with mean functiqu(+|09), and

N-p
N-p-2

. . N-— ~ - .
covariance funct|0|;1vT’j2 V(10 = V(-+10,62). Inferences can be made using

(2.9) if we replac® with 8, i.e.,
YOIV, B~st (u(-18),7(--18) = V(--18,52)). (2.10)
Finally, letp(0) denote the prior distribution &. Then, it can be shown that the
posterior distribution 08 is given by
p(0|Y) o« |R|7Y/2|FTR™F|7/2[YT(R™* — R-'F(FTR™'F)"'FTR™V)Y]~(""P)/2p(@).
(2.11)

While integrating ou® from (2.9) is analytically intractable, it is pdde to integrate out
6 numerically.

Note that by settin@(x’,x') = 1, R(x,x/) =0 (i #j), r(x') =0,R =1,
(2.9) gives the posterior predictive surface fa tisual linear model with independent
and identically distributed normal errors and pp¢p, c2) « =2 (Zellner and Chetty

1965). Thus, the Bayesian predictive process faai models is a special case of the

predictive process for Gaussian process models.

2.3 Quadratic Loss
In robust parameter design applications (MyersModtgomery 2002; Wu and
Hamada 2009), the simulator outpuft) represents a quality characteristic of interedt an
x = (xf,xI)T, wherex, andx, are the vector of control and noise factor sesting

respectively. Let the quality cost of a system wgtiality characteristig(x) be given by
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L[y(x)]. Then, the average quality cost is given by

Qo (xe) = Ex, {L |y (;Ce)]} (2.12)
where the expectation is taken with respect taltbibution of the noise factod,. Our
objective is to find aw, such tha®,.,(x.) is minimized. A commonly used approach to
this problem would be to replace the unknown fuorcsi(-) by the posterior mean
functionu(+) (for simplicity of notation, we omit referencettee MLE 8) and then
optimizeQ,,,(x.). However, this method ignores the uncertainty atiwaitrue function
y(+), which is captured by the posterior process (2.E@gh realization of (2.10) is a
function ony and the true functiop(-) can be any one of these realizations. Hence, the

uncertainty about the average losg ats represented by a random variable given by

_ x .
Qv @)|(Y,8) = Ex, {L|r (XZ |rol| (v.9). (2.13)
It follows that we should base our inference ondkpected quality cost obtained by

taking the expectation of (2.13) with respect td (2. This yields
0(x,) = E (Exe {L [Y (;Z)H Y(-)}| Y, é), (2.14)
which is a criterion that appropriately accountstfe uncertainty abouyt(-).

The focus of this chapter shall be on the widelgduguadratic loss(y) =
§(y — T)?, wheres is a constant anfl is the target. This loss function arises naturally
with nominal-the-bestjuality characteristics (Wu and Hamada 2009). H@angt can
also be used witemaller-the-betteandlarger-the-bettercharacteristics. Suitable targets
for these two classes of responsesTaremin,e, [J(x)] andT = max,e, [J(x)]

respectively (Peterson and Kuhn 2005). Moreovenespositive-valued smaller-the-

better characteristics have a natural targét of
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We shall assume in the rest of the chapter thadigtabution of the noise factors
is discrete, or can be discretized, with mass fandip (x,,), ..., p(x.;)). For a
univariate continuous distribution, we can findlgmoint discrete approximation that has
the same firskl — 1 moments as the continuous distribution (Miller &ide 1983). On
the other hand, for aif-dimensional continuous distribution that is a protdof
independent univariate marginals, we can discréiealistribution in the following

manner. First, discretize each of the marginalsgigie method proposed by Miller and

Rice (1983) to obtaiép(rjl), w0, D (rﬂj)>,j =1, ..., M. Then, form the¥-dimensional

discrete distribution with suppoxt]’-"i1 {le, ...,rﬂj}, wherex denotes Cartesian product,

and probability masg[(tyi,, -, Tmiy, )| = P(71i,) = P(Tmy,, )- This guarantees that the
first 2; — 1 moments of thg¢th marginal of the discrete multivariate distributioatch

the corresponding moments of fs& marginal of the continuous multivariate

distribution. Moreover, independence is preserved this discrete approximation.

e = [ (3) ot G e = (e[ 8]. (5

and suppose that we can write

Qry(xe) = Ex ALIY (x)NIY ()} = [Y (x.) — TI"H[Y (x.) — T, (2.15)
whereH is somd X [ symmetric matrix. This implies that

Quey(xo) = [m(x) — TI"H[p(x,) — T]. (2.16)
For the loss functioi(Y) = (¥ — T)?2, we substitutdl = diag(p(xe1), ..., p(xe;)), and
T =T1,, wherel, is al X 1 matrix of 1's in (2.15). On the other hand, fosea where

only the variance is of interest, we have

H=U-1,p")"diag(p)(I - 1,p") (2.17)

49



andT = 0, wherel is thel x [ identity matrix, angp = (p(x,1), ...,p(xel))T.

The loss functions introduced in the previous paaply give rise to positive
semidefiniteH. However, for any smooth loss function, the averags ak . for a given
realizationY (-)|Y, @ of the posterior process can be approximated (ppssibly non-
positive semidefinite) quadratic form in degeneragemal or multivariate random
variables obtained by a Taylor series expansidhafoss function. Although this
chapter focuses ofy()(x.) given by (2.15), the methods developed hereinbean
modified in a straightforward fashion to accommedéis more general case.

If v =N —pislarge, (2.8) is an approximation of (2.10). ihgkexpectation of
(2.15) with respect to (2.8), we obtain tlobust design criterion
Q:(xo) = E{[Y (x,) — TI"H[Y (x,) — TV, 8, 5%}

= [u(x) — TI"H[p(x,) — T] + trace[HV (x,)], (2.18)

where(V(xc))i]- =V ((;:l) (;‘:})

On the other hand, if = N — p > 2 but is small, inferences should be based on

@,62), whereV (-8, 52) is given by (2.7).

(2.10). It follows from Theorem B.2 of Appendix Biat

1
1-2/v

Q2(xc) = [n(x.) — T]"H[p(x,) — T] + trace[HV (x.)]. (2.19)
Note that ifH is positive semidefinite (anH = 0), thenQ,(x.) — Quy(xe) >0
sincetrace[HV(x.)] > 0. Thus, theQ,,, criterion, which ignores uncertainty about the

true response function, always givesoaer-optimisticestimate of the true loss. In most
cases, (2.18) and (2.19) are complicated nonlifuzantions ofx,.. We search for optimal
solutions with respect to these two criteria ughmg pattern search algorithm proposed by

Lewis and Torczon (1999) (this algorithm is avdieain Matlab; see Appendix B.4 for
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parameter values used to control the search). ¥¢efid the MLE® using this
algorithm because it is stable and does not regi@reative information. However, since

(2.18) and (2.19) are not convex in general, migltgparting points are used.

2.4 Construction of Credible Intervals whenv = « with the Lugannani-rice
saddlepoint approximation

To construct credible intervals f@% ) (x.) given in (2.15), we need its
cumulative distribution function (cdf). Howeverjghs hard to obtain. This section
introduces approximations of the distribution®{.)(x.) for the case where (2.8) is used
for inference. Théugannani-Ricepproximation(Lugannani and Rice 1980; Butler
2007) and its numerical inversion are discussedskiédl develop this approach in
complete generality, i.ethe method is applicable to any positive semidefinfx,.) and
any symmetriél. We shall also briefly discuss the chi-square lagdormal
approximations, which are obtained by matching musielrhese two approximations
are appropriate wheH is positive semidefinite.

For positive definitd/ (x.), the cumulant-generating function (cgf), whiclihie

key ingredient for saddlepoint approximations, &l#nown. However, the special case

X
of singularV(x.) deserves attention. For example, Wﬁgr‘i_) appears in the design
et

Xc

matrix, we would havé (x _
el

) =u (;C) with probability1. Thus, when some of the
el

noise factors are qualitativE(x,.) would be singular for alt.’'s that appear in the
design. Moreover, to improve computational stapilit would be desirable to utilize an
expression for the cgf that does not involve theigion ofV (x.). Hence, we derive an

expression for the cgf @y () (x.) that holds for any positive semidefinlit¢x.) and any
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symmetricH in Appendix B.1.
Let AT be the spectral decompositionW(x,.)/2HV (x.)'/?, whereA is the
diagonal matrix of eigenvalu@s < --- < A;. It follows from Theorem B.1 in Appendix

B.1 that the cumulant-generating functionQef.) (x.) is given by

K(®) = tla(xd) — TIHIpxe) = T] = Tk In(t - 260) + Tk, 224 (2.20)

=17 20,
whereu; is theith element of the vectd?’ V(x,)/?H[u(x,.) — T]. Note that iV (x,) is
singular, the support @y, (x.) would not be(0, o) in general, but rathéi, o), where
€ = 0 if H is positive semidefinite (and # 0).

A credible interval foQy()(x.) can be constructed based on its cgf (2.20) using
the Lugannani-Rice saddlepoint approximation ferddf. The Lugannani-Rice

approximation is given by

FG) = ow) +¢w) (5 - 7) (2.21)

u

for x € (g ) \ K;, wherek; = Q;(x.) (from (2.18)) is the first cumulant &, (x.),

®(x) andg(x) are the cdf and probability density function (polfthe standard normal

distribution,

w = sign(t.)/2[t.x — K(t.)], (2.22)
u =t JK"(t.), (2.23)
andt, is the saddlepoint, which is defined implicitly by

K'(t,) = x,t, €I = (—=]|2min(A;,0)|7%, [2 max(A;, 0)]71). (2.24)
Expressions foK'(t) andK'' (t) can be obtained from (B.2) and (B.3) by replaging
with u(x.) — T andV with V(x,.). An approximatd 00(1 — a)% credible interval for

Qv (x.) is given by[LCL, UCL], whereLCL andUCL satisfy the equations
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F(LCL) = a/2, andF(UCL) =1 — a/2. (2.25)
Equation (2.25) can be solved using numerical nogttsoich as Newton’s method. In
particular, we can find the roots of the equaif@w) = « by iterating according to

X1 = x; — [F(x) — a]/f(x), (2.26)
where

1

f(x)=F'(x) =Wexp(—%z){1+i+&—l}, (2.27)

u? = 2u[K"() w3
andK'"'(t) is given by (B.4) in Appendix B.1. Note that faah iteration given by
(2.26), we need to solve (2.24) figr This can be done by iterating according to
tivr =t — [K'(&) — x]/K"(&). (2.28)
A good starting poink, is essential for the fast convergence of (2.263ddle limits
constructed using moment-matching methods develbpkxv provide good starting
points. A starting point is also needed for (2.Z8hceK’(+) is a strictly increasing
function from/ onto(e, ), andK’(0) = K;, we can choosg, from
I = (—|2min(A4,0)|7%,0) orI* = (0, [2 max(};,0)]1) according to whether < K,
orx > Kj.

WhenV (x,) is positive definiteQy(x,) is distributed as a linear combination
of noncentral chi-squares. L&, ..., A be the distinct eigenvalues BV (x.), and
E4, ..., E; bel X | positive semidefinite matrices of ranksuch thak;E; = 0 for all
j#i,E=E;,Y_ 1, =1, and
HV(x.) = };_, AE;. Baldessari (1967) proves that
Qro@e) = [Y(x) = TITHY (x0) — T)~ T30, 422, (8)), (2.29)

wherey?, (6;) is a noncentral chi-square variate wittlegrees of freedom and
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noncentrality paramete; = [u(x.) — T]"E;V(x.)~*[u(x.) — T]. For positive
semidefiniteH, the eigenvalues dV(x.) are nonnegative. Thus, we can approximate
5_1/1]-)($j(6]-) by gx?, whereg andh are chosen so that the first two momentg gf

match those oE;-; 4,17, (6;)- The first moment (first cumulant) of (2.29)Ks =
Q,(x,) given in (2.18) and it follows from Corollary Baf Appendix B.1 that the second
central moment (second cumulant) is
K, = 2trace([HV (x.)]?) + 4[p(x.) — TI"HV(x)H[p(x.) — T1. (2.30)
SinceE(gx?) = gh andvar(gy?) = 2g°h, we setg = K, /2K, andh = 2K?/K,. Thus,
we arrive at the approximation
Qry(x)~*(K2/2K) X502 i, » (2.31)
where~% denotes approximately equal in distribution.

Approximation (2.31) can be viewed as an applicatibPatnaik’s and

Satterthwaite’s approximations. We first approxienat)(fj(ch) byp]-)(,%j (Patnaik 1949),
wherep; andv; are chosen so that the first two momentgﬁ;(aj) andpj)(ﬁj match.
Then, we approximatg;-, ]p])(v by gx? (Box 1954), whergy andh are chosen so
that the first two moments Qﬁ-:lﬂjpj)(ﬁj andgy? match. Note that even¥(x,) is

positive semidefinite, the first two cumulants@f.,(x.) are still given by (2.18) and
(2.30), as shown in Corollary B.1 in Appendix BThus, it seems reasonable to use
(2.31) even whelW (x.) is singular. However, it should be noted that wtés,) is
singular,Qy()(x.) has support o(e, ), whereas the chi-square approximation has
support on0, «).

The saddlepoint approximation is expected to beemaocurate than the chi-
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square approximation. However, inversion of (2i8Ijore time-consuming than
computation of the quantiles of (2.31). Neverthglekevelopment of (2.31) serves an
important purpose: we shall use the credible ligiten by (2.31) as starting points for
(2.26) to findLCL andUCL given in (2.25).

Finally, as an alternative to the saddlepoint dmesquare approximations
discussed above, we shall also consider using tithesz approximations. The firstis a
lognormal approximation obtained by matching tist fihree moments of the lognormal
distribution with the first three moments @§.,(x.). This approximation is given by
[Y(x.) — TI"H[Y (x.) — T]~*In[N(y,t*)] + €', (2.32)
wheret? = In(s,); s, > 1 is the unique positive solution of the equatidnt 352 — 4 —

K2/K3 = 0; K, is therth cumulant ofQy()(x.), which can be obtained from (B.5) in

L
exp(t2)-1

Appendix B.1;y = 0.5 [ln( ) — rz]; ande’ = K; — exp(y + t2/2). Note that

€' # € in general. The second approximation is the namakchi-square approximation
introduced by Liu et al. (2009). However, in ounslations, we have found that it often
reduces to Pearson’s three-moment approximationgirh961), where a shift is
introduced into (2.31). The third approximationnsoduced by Solomon and Stephens

(1977). It is obtained by matching the first threements ofy (x7)¢ andQy.,(x.).

2.5 Construction of Credible Intervals whenv is Smalll
When (2.10) is used for inference, the first twatca#l moments 0@y (x.) are
given by (see Theorem B.2 in Appendix BM, = c,a; + by,v > 2, and
M, = (c; — c?)a? + cya, + ¢1by, v > 4, (2.33)

a, = 2" 1(r — D'trace{[HV (x.)]"},
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by = 2" r! [u(x.) — TI"[HV (x )" *H[p(x,) — T], andc, = [(1 - 2/v)(1 -
4/v) -+ (1 —2r/v)]~1. Note thatM; = Q,(x.), whereQ,(x.) is given by (2.19).

It is evident thaM; > K, andM, > K,, whereK; andK, are given by (2.18) and
(2.30) respectively. Thus, the first two centralmamts ofQy () (x.) are inflated by
uncertainty about?. As such, for smalb, credible intervals constructed based on (2.8)
would be too narrow and centered too low.

We propose the following saddlepoint-based apprakion to overcome this
problem. When (2.10) hold¥(x.) =% Z/\/x2/v + u(x.), where=? denotes equality
in distribution,Z~N (0, V(x,.)), x2 is a chi-squared random variable withlegrees of
freedom, and andy? are independent. Thus,

Qvey(xo) = [Y(x) — TI"H[Y (x,) — T]

=4 [Z/VE +p(x,) — T H[Z/VE + p(x.) - T), (2.34)

{[2Z/VE + uxo) - T] H[Z/NE + p(xo) - T

g = f} =4 (z,)"HZ,, (2.35)
whereZ,~N(u(x.) — T, 1V (x.)). The Lugannani-Rice approximation to the cdf of
(2.35) is

P(xlE = &) = d(w) + p(w) (= —2) (2.36)
for x € (g, ) \ K;, whereK; = & Ytrace[HV(x.)] + [u(x.) — TI"H[u(x,) — T]; w,

u, t, are given by (2.22)-(2.24);is given by (2.24) witi, andA, replaced by A, and
&1 andK (), K'(t), andK"'(t) are given by (B.1)-(B.3) witjx replaced byu(x,) —
T, andV replaced by 1V (x,), the latter implying that eadh should be replaced by

§71);, and eachu? should be replaced @y *u?. Now, multiplyingF (x|E = §) by the
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pdf g (&) of £ and integrating over ajl gives an approximation

F(x) = [ F(x|E = &)g(8) dé (2.37)
of the cdf of (2.34). However, to compute the iméégwe need to utilize a numerical
method or a simulation method. The use of simufaanot practical since computing
F(x|2 = &) is difficult and we want to minimize the numbersoich computations. It
seems reasonable to approximate (2.37) using theceation o (x| = &) with respect
to ann-point discrete approximation &f which is essentially the Gaussian quadrature
method of integration (Stoer and Bulirsch 1993).dBgosing thex support points

&1, -, &, and the probability masses, ..., p, using the method described in Miller and
Rice (1983), we can match the filst — 1 moments of the discrete approximation with
the corresponding moments of the distributio® of hus, ifF (x|Z = &) is closely
approximated by a polynomial with degize — 1 in &, the approximation

Fx) ~ By(x) = S0, piF (xIE = &) (2.38)
would be good. Since we want to minimize the nundf@valuations of (x|Z = &) and
at the same time, to approximate (2.37) with gammlieacy, it seems reasonable to use a
3-point or4-point approximation. For thé-point approximation, it can be shown that
&, &,5,&5,&, are the (distinct and positive) roots of the emunat

v3xt — 4w+ 6)v2x® + 6(v+ 6) (v + Dvx? + (v + 6)(v + 4) (v + 2)(1 — 4x) = 0,

(2.39)
wherea,, p,, p3, P4 are given by
-1
SRR 1
P2\ [ St Sz 3 S4 1
T\ g g g 12w | (249
Pa & & & & 1+2/v)(1+4/v)
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Note that the value§, ¢,, &5, &4, andp,, p,, p3, P, Need to be computed only once for a
given value ofv, and they can be used repeatedly to construcibbteddtervals for
Qy((x,) for various values af,. In the examples in this chapter, we shall usetthe
point approximation. Equation (2.28) and a modifredsion of (2.26) given by

Xip1 =% — S piF (xIE = &) — a]/ T pif (XIE = &), (2.41)
wheref (x|2 = ) is given by (2.27) witW (x,) replaced by; 'V (x,), can be used to
numerically solvef, (x) = a for x.

For comparison with the saddlepoint-based appration, we shall also
construct credible intervals using the chi-squaie lagnormal approximations obtained
from (2.31) and (2.32) with/,, M,, andM2 /M3 (see Theorem B.2 in Appendix B.1)
replacingK, K,, andKZ% /K3 . The approximations introduced by Liu et al. (2088d
Solomon and Stephens (1977) shall be modifiedsim@ar manner. The confidence
limits obtained from the chi-square approximatian e used as starting points in

(2.41).

2.6 Uncertainty in Correlation Parameters, Sequenél Design,
and Multiple Responses

This section introduces a method to partially taite account uncertainty in the
correlation paramete® and discuss the problems of sequential desigmauttiple
responses.

It is possible to account for uncertaintydnn the expected loss criterion and the
construction of credible intervals by simply takiegpectation of (2.19) and (2.38) with
respect to the density given by (2.11). In doing,thumerical methods need to be used

to find the constant of proportionality in (2.1X)dato integrate the product of (2.11) and
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(2.19) and also the product of (2.11) and (2.38)sTs cumbersome for
multidimensionaB. However, we may partially account for uncertaiimty by
supposing that the correlation function is knowibéo
R(x;, xj) = HO[ZT“@I‘("W"“W)Z], (2.42)
whereé, € (0,1) andd,, is the MLE of6,, conditioned ord, = e~*. This is more
general than the form in (2.2). Thus, the only utate parameter in the correlation
function is6,, which has the posterior density (2.11). Sincedtli®only a single
uncertain parameter, we can easily perform the nigalentegrations mentioned above.
To perform this task, we first compute the fiz&t, — 1 moments of the posterior
distribution off, using numerical integration and then construct@point discrete
approximatior{(83,pg), -, (6,°,p,°)} of the distribution 0B, (Miller and Rice 1983).
This would allow the efficient computation of thg criterion
Q3(xc) = 2?:01 p(i) [Qz(xc)IHé] (2.43)
and the saddlepoint-based approximation
Frsny () = 212 po X1 piF (12 = &5, 65) | (2.44)
wheref (x| = &;,6}) is computed using (2.21). In the examples, wel Seth, = 5
and assume tha}, is a priori uniformly distributed 0r§0.001,0.99]. This is to ensure
that the posterior distribution is proper. While4@) and (2.44) does not fully take into
account uncertainty in the correlation parametéesy do give an idea of the amount of
uncertainty present. Obvious modifications of (2.d43d (2.44) can be used to fully
account for uncertainty i@ if we have a sample from the posterior distributod 6.
Credible intervals are valuable in the sequentiggign of computer experiments.

For instance, they can be used to determine whtheverage loss is poorly estimated
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and where the next design point should be addetieltatter application, instead of
using an expected improvement criterion as in \Aftis et al. (2000) and Lehman et al.
(2004), we propose thg, criterion, which is “to minimize the quantileQ, of Qy(,".

xc,N+1

xe,N+1) is chosen by setting. 1

Using this criterion, the next design poaf,; = (

equal to the point with the minimumquantileQ,, of Qy . For this application, the
guickness and deterministic nature of the proposethod for constructing credible
intervals make it more appealing than Monte Carlauation. TheQ,, criterion takes
into account both location and dispersion of trerdiution of the average loss and is an
optimistic decision rule. Note that optimism is ddn the sequential design context since
we do not want to miss potentially good controkéasettings. The choice af ., can
be determined by maximizing the minimum pairwisgtaihice between design points
(which is the approach taken in Example 2.2) oresother space-filling or optimal
design criterion. We shall demonstrate that thigpde criterion is quite effective in
finding the true optimum.

The proposed robust design criterion and methoddaostructing credible
intervals can be applied to cases where there altgpie responses, the loss is a
guadratic form in the responses, and the modetfiathod of Conti et al. (2009) is

employed. Conditioned on the covariances betwegporeses at a fixed and the spatial
correlation paramete# the posterior distribution &?(x.) = (Y1 (xc), ...,Yq(xc)) isa

matrix-variate normal distribution. In this cadeg tsaddlepoint approximation is directly
applicable. On the other hand, conditioned on &ql¥?(x.) has a matric-variate
distribution (Box and Tiao 1973), which is a mixdwf a matrix-variate normal and an

inverse wishart distribution. The conditioning mmdh(2.38) for approximating the cdf
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can be applied in conjunction with samples fromittverse Wishart distribution.
2.7 Examples

2.7.1 Example 2.1: Analysis of Springback Data

A finite-element-analysis (FEA) simulation experimhevas run by Chen and Koc
(2007) to study the effects bfankholder force€d,), friction (d,), andmaterial (d3) on
springback variation of a drawing process. A fodéttor,part thicknesgd,), is a noise
factor whose effect on the variation of springbescéf interest. Two of the responses are
thespringback of wall opening anglg and thespringback of the flange anglg. The
30-run design matrix and observed output for thjgeement are given in Appendix B.2.
We shall analyz&; andY, separately. In our analysis, we use the codeddeye-
(d; — miny i<y dj;)/(maxy iy dj; — minyg<y dj;), Whered;; is the value ofl; for the
ith experiment run. Thus, the design regiop s [0, 1]*. We assume the distribution of
part thicknesss discrete with support on the coded le\élsl /9, 2/9, ..., 1} and
probability mass o1 /10 at each support point. For both responses, ttrelaton

function (2.2) is used and the prior mean is a @ong,.

2.7.1.1 Responsg

Minimizing S(6) in (2.5) givesh = (2.88,0.34748,0.48417,13.476), B, =
15.426, andé? = 10.041. We shall consider loss functions givenBby= 0.1(1 — 0.1)),
T = 0 (variance loss) anH = 0.11, T = 15 (target loss) and draw inferences using
(2.8), (2.10), (2.43) and (2.44). We denote theimirer of Q,,(x.) by x2, and the
minimizer ofQ;(x,) by xL, i = 1,2,3. Table 2.1 givex? andxl, the expected log3, at

these two control factor settings, and #9846 credible intervals constructed by inverting
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Table 2.1:

Optimal Robust Settings, Expected Lasd,90% Credible Intervals

Based on the Posterior Normal Process for Resggnse

Criterion X1 Xy X3 Q1 LCL UCL
T =15 x2 0.6010| 0.1120| 0.1067 | 2.0407 | 0.3908 5.5559
arget= xI | 05273 | 0.4111| 0.2594| 1.5739| 0.4427 3.8815
Variance x2 1 0.5177| 0.1858| 1.8352| 0.2617, 5.299
xl 0.5292| 0.5172| 0.5347| 0.9321| 0.1910 2.2028
Table 2.2: Optimal Robust Settings, Expected Lasd,90% Credible Intervals
for Respons#,
Criterion X, Xy X3 03(0Q2) LCL UCL
2.3638 | 0.3896 | 6.6856
0
x2 | 0.60102| 0.11204| 0.10675 (2179 | (0.3859 | (6.12
Target=15 _, 1.7499 0.478 | 4.4182
x% 1 0.52492| 0.43018| 0.26924 (16521 | (0.4647 | (4.1264
x> | 0.51983| 0.48428| 0.28989| 1.7426 0.5137| 4.2313
2.0788 | 0.26638| 6.1997
0
e 1 0.51778 0.18581 (1.9638 | (0.2588 | (5.8245
Variance | _» 0.97177 | 0.19368| 2.3699
x% | 0.52536| 0.53568| 0.55338 (0.96526 | (0.1992' | (2.3062
x3 1 0.51379| 0.6058 | 0.6115( 0.95963 0.20794 2.2652
Boxplot of LCL, UCL, Target Loss (T=15) Boxplot of LCL, UCL, Variance Loss
14
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Figure 2.1: Boxplots oECL andUCL for 90% Credible Intervals for Target Loss (Left)

(2.21). Table 2.2 gives?, x2, x3, theQ, (in parentheses) ar@,values, an®0%
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credible intervals constructed using (2.38) (ingpgheses) and (2.44) respectively.

We see that the optimal robust settings obtainaa @, andQ;,i = 1,2,3 are very
different. The credible intervals for the averagsslatc’, x2, andx> are much narrower
than the credible intervals for the average losg ain fact,QM(.)(xS) = (0.1738 for

target loss and,, ., (x2) = 0.0995 for variance loss, which are below the lower doésli
limits. SinceQ,,,(x.) ignores the uncertainty about the simulator oytpsing this
criterion without confirmation experiments can l@ngerous. In contrast, the optimal
settings and credible intervals for the average ttisnot change much when (2.10) is
used instead of (2.8) (uncertaintydf is taken into account) or when (2.43) and (2.44) i
used instead of (2.10) (uncertaintydns partially accounted for).

To determine how goosl® andx3 are compared to other control factor settings,
we compare th@0% credible intervals for the loss at each of thesiatp to the90%
credible intervals for points on a grid t25 points. Figure 2.1 display box plots of the
credible limits for thel 25 grid points and each of the two loss functionsemghthe
credible limits are computed based on (2.44). Bing Idashed lines plot the credible
limits for the loss ax3 ((0.51,4.23) for target loss an@.21,2.27) for variance loss),
and the short dashed lines plot the credible lifoitthe loss ax? ((0.39,6.69) for target
loss and0.27,6.20) for variance loss). We see that for the targed,|ld®e upper credible
limit (i.e., 4.23) of the loss ax? is higher than the lower credible limit of thedast more
than50% (middle line of the boxplot afCL) of the125 grid points. For the variance
loss, the upper credible limit (i..,27) of the loss ak? is higher than the lower credible
limit of the loss at more tharb% (upper edge of the box in the boxplotLéiL) of the

125 grid points. Because the interval fgf overlaps with the intervals for many of the
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125 points, the true average loss is not well estichate),. However, in this situation,
the optimal setting identified using ti@g criterion considerably outperforms the optimal
setting found using th@,,, criterion.

As a general rule, we can consider any pojnvith credible intervals that
contain the optimal valu@; of Q5 as a potential optimal robust setting. Thus, ibam
points on a grid, there are many with crediblerivakthat containg;, the true average
loss is not sufficiently well estimated i@y to allow us to distinguish between many of
thex.'s andx3. However,Q; is still preferable as a criterion @, since uncertainty
about the true function penaliz@s but notQ,,. Another application of credible
intervals computed for mam,’s is that ifx> is deemed infeasible, we may choose from
among the feasible,. the one with the tightest credible interval thattains the optimal

value ofQ;.

2.7.1.2 Approximate Credible Intervals for Averd@eadratic Loss, Respongge

We now assess the accuracy of the credible inteoaistructed from the
Lugannani-Rice, chi-square, lognormal, power chissg (Solomon and Stephens 1977),
and noncentral chi-square (Liu et al. 2009) appnations for the posteriarprocess.

We construcb0% credible intervals of the loss on a gridl@b points on the control
factor spacg0,1]® and the pointx2 andx? for the loss functionl = 0.1(1 — 0.1)),

T =0andH = 0.11, T = 15. For each loss function and point in the contactdr
space, a total df0,000 loss values are simulated and treetion of loss valuethat fall

into each of the five approximate credible intesvale recorded. In the simulations, we

Xc

generate (x.)T = [Y (xel

), .Y (xc )] from either (2.8) or (2.10) and compute
Xel
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Figure 2.2: Empirical Coverage of 90% Credible ivntés for Responsg,,
Posteriort Process
Qvy(xo) = [Y(x.) — T]TH[Y (x.) — T]. For simplicity, we will refer to the fraction of
loss values that fall into an interval as the “emcpl coverage”.

Figure 2.2 shows boxplots of the empirical coveraiggel27 points for the
posteriort process with 90% being the nominal level. In ilgere, horizontal lines are
drawn at two standard errors of empirical coveffagm the nominal level, where the
standard errors are computed assuming that theowerage equals the nominal level.
We see that the Lugannani-Rice credible intervatperform all other approximations.
The noncentral chi-square approximation (Liu eR@D9) performs much worse than the
others (note that the lower whisker actually exsebelyond the figure window). The chi-
square and power chi-square intervals are consegyathereas the lognormal intervals
have highly variable coverage. Boxplots for thetposr normal process are given in the
Appendix B.3. For a nominal level 86%, similar conclusions can be drawn from
boxplots (not shown in this chapter) of the empirmoverages. Thus, this simulation

indicates that Lugannani-Rice credible intervats superior to credible intervals
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obtained via moment matching techniques.

Note that comparison of credible intervals base@o88), and (2.44) allow us to
determine how uncertainty #, affects the credible interval size. We have fotirat for
all loss functions and grid points considered abdwve credible intervals constructed
using (2.44) ar® to 10 percent longer than the credible intervals coesédiusing
(2.38), with a median of aboftpercent. Thus, we may miss some potentially primgis
x., i.e., those with credible intervals that contiia optimalQ; value if we use (2.38)
instead of (2.44) to construct credible intervilewever, Table 2.2 suggests that we do
not lose much by using ti@, criterion in place of th@; criterion (sincex? andx3 give
similar Q; values and the credible intervals for the avetagg at these points are
similar).

It is difficult to compare the cost of computingedible intervals using Monte
Carlo simulation with the cost of computing credibitervals using the saddlepoint-
based approximations because it is hard to deterthemnumber of Monte Carlo runs
needed to construct intervals that achieve the sarogracy as the saddlepoint method.
However, it is computationally cheap to construetible intervals using the
saddlepoint-based approximations. We observecetwdt interval constructed using
(2.38) takes a fraction of a second (we stop #ratitons on the;’s when the change is
less tharl0~* and we stop the iterations on this when the change is less thedT ).
This is similar to the cost of a few hundred siniolaruns. Moreover, it is known that
the Lugannani-Rice approximation maintains higlative accuracyat the tails (Daniels
1987). On the other hand, the performance of M@atdo simulation in estimating

guantiles tends to deterioratecaapproache$ or 1.
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2.7.1.3 Responsé

For this response, we consider two loss functiéhs: 0.1(I — 0.1J), T = 0 and
H = 0.11, T = 10. Results similar t&, are obtained. For target loss, the valuesZadind
x2 are very different. However, they appear to beaflgulesirable (in terms af; and
credible intervals). The optimal settings afe= (0,0.854,0.204),
x% = (0.286,0.351,0.045), andx3 = (0,0.078,0.556). TheQ; values ax?, x2, andx?
are0.5439, 0.3204, and0.3197 respectively. Lastly, th@0% credible intervals
(constructed based on (2.44)) for the averagedts$, x2 andx> are(0.082,1.607),

(0.060,0.858) and(0.045,0.773) respectively.

2.7.2 Example 2.2: Sequential Robust Parameter Dgsi

This example illustrates the use of quantiles caegbbased on (2.44) for
sequential robust design optimization as desciibb&kction 2.6. We assume that the
true function is
y(x,x) =[4—21(—142x)? + (=1 + 2x,)3/3](—1 + 2x.)? + (-1 + 2x)(—1 +
2x,) + [—4 + 4(—1 + 2x,)%](—1 + 2x,)2.
The initial design is shown in Figure 2.3. It isased thak, is a noise factor with a
continuous uniform distribution oi®,1]. A 6-point discrete approximation of this
continuous distribution is employed. We attemphirid the optimum value of; with
respect to target loss with tar@es. The true average loss function has two local mani
one atx; = 0.229 with average losdL = 0.202 and the other at; = 0.764 with

AL = 0.242.
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Figure 2.3: Initial Design and Final Design (ordewhich Points are added is also
shown), Example 2.2

A sequential design scheme is employed. The nesiggoint is chosen to be
the point that minimizes th&5% quantileQ, o5 of Qy()(x.) (note thatc, = x;), which
is approximated with (2.44). This sequential schérierminated after theotential
improvemenP = Q3(x2) — Qg o25(x) = miny e[o1] Q3(xc) — miny _e[o,1] Qo.025 (xc),
wherex; = argminy e[o,1] Qo.025(c), is less tha®.01. Figure 2.3 shows the final set of

points and the order in which they are added. NMdtat except for the first added point,

After Adding 14 Runs

Initial 10 Point Maximin Design

| ===LCL/UCL I 3.5 === CLIUCL

Q-bar, 'l — Q-bar,

0 0.2 0.4 0.6 0.8 1
X )(1

Figure 2.4: Plot of); (Solid Line), True Average Loss (Dotted Line), dupper and
Lower Credible Limits (Dashed Line) Using Data framitial Design (Left)
and Final Design (Right), Example 2.2
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all the others concentrate around3 and0.76. In our simulation, some of the
computations are performed with low accuracy tedawe (e.g., stopping the Newton’s
iterations for computing the quantil@g ,,s when the change is less theor3). With
data from the initial design; = 0.225 andQ;(x3) = 0.210, which is very close to the
true global minimumiL = 0.202 atx, = 0.229. In contrastx? = 0.051, which is far
from any local minimum, an@,,,(x?) = 0.007, which is far too optimistic. At the final
iteration, bothQ ., andQ; criteria give optimal robust settings and estirmatkthe
minimum average loss that are close to the trugegalFigure 2.4 plot8;(x.) and95%
credible intervals obtained with the initial anddi designs together with the true average
lossAL(x.). The average losses at the two local minima ammated with a high degree
of accuracy.

We have also applied tig .5 criterion to several other functions and obtained
similar successes. However, we have found exanmpl@kich this sequential design
scheme leaves some local minima unexplored.

The implementation of th@, .5 sequential design criterion would be difficult if
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Monte Carlo simulation were used to comp@tg.s. In addition to time-consuming
simulations, minimization o, ,,s Would be difficult due to the stochastic naturehuf
estimates. These difficulties are overcome withsihddlepoint-based approximation
(2.44).

Note that the assumption that the correlation fondts given by (2.42) implies
that we are placing a different prior on the oradioorrelation parameteésat each
iteration of the sequential design scheme becdesBILE of 0 is updated after every
iteration. However, this does represent an impra@rover completely ignoring
uncertainty inf. Moreover, as demonstrated, g,z criterion yields good results for
sequential robust design.

Finally, we give some simulation results to demuatstthe effectiveness @
overQ,, for randomly sampled Latin Hypercube designs. taltof 500 Latin
Hypercube designs of siz® are randomly sampled and the quantifié$x?), AL(x2),
dist0 = min{|[x2 — 0.229]|, ||x? — 0.764]|}, dist3 = min{||x3 — 0.229]), ||x3 —
0.764(1}, Sgerror0 = [Q ) (x0) — AL(x(?)]Z, Sqerror3 = [Q3(x3) — AL(x2)]? are
computed. The first two quantities measure the gess ofc? andx2 as optimal robust
settings respectively; the third and fourth quégimeasure the distancexdfandx2
from the true local minima respectively; and tHthfand sixth quantities measure the
accuracy of),, andQ; as estimators of the true average losg’a&ndx? respectively.
Boxplots of these performance measures are giveigure 2.5. The figure suggests that
Q5 is superior ta, ) as a robust design criterion. In this simulatietup, the MLE of
the correlation parameters is highly unstable.itSseems important to take into account

this source of uncertainty. Similar evidence of dbeantage of; overQ,, was
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obtained with several other response functions.

2.7.3 Example 2.3: Robust Design with Linear Model

In this example, we shall apply the proposed matlogy to perform robust
design optimization with a linear model. Data fd@7arun finite element experiment
described by Bawaneh (2007) is given in Appendi Bhe responsE is chip
thickness; the factots, B, C,n, m are material constants, which we assume are dontro
factors. For the sake of illustration, we assunag the friction coefficienE'C is a noise
factor. In the following, we work with the codecttar levelsx,, xg, X¢, X, X, Xrc
corresponding td, B, C,n, m, FC respectively. Each factor is coded such that the
minimum and maximum coded levels in the designimarne0 and1 respectively.

The full second order model is taken as the corapteidel. Stepwise regression
suggests the modgl= 312 + 218x,, — 114x, + 158x,xrc + 149x,,xpc — 132x0%,, —
129xp + 42.8x2 + 103x,4x5 + 86.4x5x,,. Common practice in robust design with linear
models (Myers and Montgomery 2002) is to find rdtaettings based op which is
equal to the posterior megiix). This is equivalent to robust design using@e,
criterion. In the following, we use (2.10) for imémce but for simplicity, we ignore
model uncertainty (see Chipman 1998). Note th#ipagh the data is from a computer
experiment, the linear model given above fits tadery well R? = 98.2). Thus, there
is no need for using a Gaussian process modelan@hussian correlation function.

It is assumed that the noise factor has discrgipat{0,0.2,0.4,0.6,0.8,1} with
equal probability mass on each point. For the tdogs given byH = 1/6, T = 700, the
optimal control factor setting based on thecriterion isx? = (x4, Xg, Xc, Xp, Xp) =

(0,0,0,1,0.57248). We generate 200-point Latin hypercube design on the control factor
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space and compute9a@% credible interval for each point. Plotted in Fig.6 (left) are
boxplots ofLCL andUCL for the200 points, and alsdéCL = 4264 andUCL = 14483
for the loss ax?. It is seen that? is clearly superior to most other points sincetuthper
credible limit for the loss at? is below the lower credible limit of the loss abshof the
200 points. Howeverx? is nearly identical ta2. Shown in Figure 2.6 (center) is a
boxplot of the estimated coverages (based on stransawith20,000 runs) of the
credible intervals at th200 points andx?. It shows that the saddlepoint approximation is
highly accurate.

For the variance loss given /= (I — J/6)/6, T = 0, the set of multiple
optimal solutions for the criterio@, is given byw? = {(x4, x5, x¢,0,0): 0 <
X4, Xg, Xc < 1}. For each of the points in the s&t, HV (x.) does not depend on
(x4, x5, xc) andHu(x,) = 0. This implies that the loss at each poinwihhas the same
posterior distribution. Thus, we have the very gdse situation of a wide region of
equivalent optimal control factor settings. Notattfor linear models anH given by

(2.17), itis true in general th&V (x.) does not depend o). Hence, in this special

Boxplot of LCL, UCL, Target Loss (T=700) Posterior t Process, Target Loss (T=700) Posterior t Process, Variance Loss
300000
0.906 ® 0.906
R
2500001 0.904 0.904 0.904 0.904
200000 0.9021 0.9024
[ [
(=)} (=)}
1500001 g 0.900 09 g 0.900 0.9
> >
o o
1000004 O 0.8981 O 0.8981
296
50000 I 0.89% 0.89% 0.896 0.8%
x
L3483 0.8941 0.8941 §
01 i 4264
LCL UCL 0.892 0.892

Figure 2.6: Boxplots oECL andUCL for Target Loss (left), Estimated Coverage of
Credible Intervals for Target Loss (center), andidee Loss (right), Example 2.3
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case, optimal settings obtained with g, andQ, criteria coincide. Shown in Figure
2.6 (right) is a boxplot of the estimated coverafjeredible intervals for the loss 200
Latin hypercube points an¢f = (1,1,1,0,0). Again, the Lugannani-Rice approximation
is highly accurate.

In this example, we have worked with a linear maxféhe form commonly used
for robust design, i.e., one that is linear intloése factor. However, we point out that the
Q, criterion and our method of constructing crediblervals can be applied to linear
models of any form. This is an important advantaggr traditional mean variance
modelling in response surface methodology (MyersMontgomery 2002), which is

applicable only to models linear in the noise faxto

2.8 Conclusions

We have proposed a general Bayesian frameworlofarst design optimization.
We derive general quadratic loss criteria that ant®for uncertainty about the true
response function. We also show how highly accuragdible intervals for the loss can
be constructed using numerical inversion of thedrumni-Rice approximation to the
posterior distribution of the loss.

Two real data sets are analyzed. The examples dgratsa significant
advantage of using th@, i = 1,2,3 criteria over thed,, criterion, i.e., the former
criteria favor settings with small response functimcertainty. The examples also show
the usefulness of credible intervals for compaahgrnative control factor settings.
Moreover, it is demonstrated that the LugannaneRigproximation of the cdf of
quadratic loss derived from Gaussian process magletsnsiderably better than chi-

square and lognormal approximations derived by hiagcmoments.
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The methodology presented in this chapter is gén@ta criteria include as
special case any loss function that can be wrétea quadratic form in a set of random
observations on the posterior process. Our methiodanstructing credible intervals can
be applied to any quadratic form in non-degenayatiegenerate normal or multivariate-
t random variables. The criteria and method for ttonting credible intervals can be
applied to any Gaussian process model or linearmeétbwever, our methodology does
not fully take uncertainty incurred in estimatirg tcorrelation parametesinto
account. In addition, we have not addressed thstiqueof quadratic loss criteria derived

from multiple responses. Both are important areaguirther research.
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CHAPTER 3
A BAYESIAN APPROACH FOR INTERPRETING MEAN SHIFTS

IN MULTIVARIATE QUALITY CONTROL

3.1 Introduction

The performance or quality of a process is oftearatterized by multiple
variables. Thus, effective control of a processaally be achieved by jointly monitoring
all relevant variables. Yeh et al. (2006) and Buaisiet al. (2007) review the literature on
control charts for the covariance matrix. Contiwduts for the mean include the well-
known HotellingT? charts and multivariate CUSUM and EWMA charts @mis et al.,
2007). Monitoring multivariate quality characteigstusing a small number of summary
statistics is a common practice. However, thedessts does not effectively support the
diagnosis task, which is to determine the causheobut-of-control signal.

Identification of mean shifts among a large nunmidfequality characteristics often
provides important information for the diagnosisktaFor example, the quality control of
fruit juice can be performed by comparing randosdiected samples against base
samples using a multivariate control chart for amanids and other constituents. If the
control chart indicates differences between sampiésrmation on the identity of the
variables whose mean shifts and the shift direstman help to determine the source of
adulteration of the juice. For instance, Zhand.e2909) give criteria for identifying the
various types adulterations of pomegranate juiag,(@mino acid proline>25mg/L is
indicative of added grape products).

This chapter proposes a Bayesian method for idemgjthe means that shifted
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and the directions of the shifts. The method presid new diagnostic tool for Phase I
monitoring. Fomp quality characteristics, there &% possible scenarios for the means
since each mean can increase, decrease, or ramaontrol. In the Bayesian approach,
each scenario corresponds to a value of an indigatdor and the most probable of the
3P scenarios is found by sampling from the postatistribution of the indicator via
Gibbs sampling.

The problem of interpreting an out-of-control saijfrom aT?2 control chart has
been widely studied in the literature. Many of flieposed approaches attempt to
identify a subset of variables that has the magticant contribution to the large
observed'? value by decomposinf?. This is the basic idea underpinning Murphy
(1987), Doganaksoy et al. (1991), Runger et alk§)9%and Mason et al. (1995, 1997).
Mason et al. (1995, 1997) propose decomposing thetatistic into independent
components. However, there are several problentsthl?> decomposition method.
Firstly, forp variables, there ap# possible decompositions; this makesTRe
decomposition impractical for high-dimension praobge Secondly, there are no clear cut
rules for jointly interpreting the components oé tthecomposition. Thirdly, results are
sensitive to the significance levels used. Li e{2008) introduce a solution to the first
two problems, which is to use a Bayesian causalar&tthat describes the causal
relationship between variables.

Hawkins (1991) proposes a procedure that is basekeolikelihood-ratio tests of
a shift in each mean. A comparison of the appraapheposed by Murphy (1986),
Doganaksoy et al. (1991), Hawkins (1991), and Ma=taal. (1995) is given by Das and

Prakash (2008).
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Recently, Wang and Jiang (2009) propose a pendiizgthood variable
selection method to identify variables with shiffredans. Zou et al. (2011) propose a
heuristic Bayesian Information Criterion (BIC) fehift detection; the search for a model
that minimizes the BIC criterion is restricted hm$e models that are optimal with respect
to an adaptive-LASSO-type penalized likelihood. ifingethod can be applied to
diagnose both covariance and mean shifts. Hereafeeabbreviate the methods
proposed by Wang and Jiang (2009) and Zou et@L1(Ras WIJPLM and LEB
respectively. Capizzi and Masarotto (2011) and diod Qiu (2009) propose EWMA-
type control charts that employ test statisticedam the least angle regression
algorithm and the adaptive-LASSO-type penalizedliiood function respectively.
Diagnostic information is a byproduct of the chagtstatistics.

Unlike most of the available techniques in theriture, the Bayesian approach
described in this chapter gives more specific arectinformation about shifts in the
mean, i.e., it gives the means that shifted upwahdgsmeans that shifted downwards, and
those that remained in-control. It allows prior Wedge to be incorporated in a
statistical framework. We believe that this is dwantage rather than a disadvantage
since in all cases, engineering knowledge mustsied to identify assignable causes
whenever a control chart signals.

Our approach is inspired by George and McCullo¢h293) Bayesian Stochastic
Search Variable Selection (SSVS) approach. Howeaverdifferentfrom SSVS. Our
approach is developed for solving the problem aofgaring the means of two different
populations, i.e., phase | and phase Il processisadia contrast, SSVS is developed for

solving the problem of variable selection in regres. SSVS is limited to independent
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and identically distributed residual error settingsd there are only two decisions per
variable (whether the coefficient is zero or nonze®n the other hand, our approach is
for general multivariate normal variables and themethree decisions per variable.
Furthermore, the priors we use can capture priornmation such as most likely shift
magnitudes that have values different from zerd, different ranges and probabilities of
upward and downward shifts. These features carmatdaleled by SSVS. Finally, we
also develop an empirical Bayes method for spewfgome of the prior parameters.

Unlike our approach, WJPLM and LEB can only incagte prior information
via assumptions (such as assumptions on the nushbariables that shifted and
allowable shift directions), which have strong effeon results. Moreover, these
approaches ignore uncertainty incurred in estingatie in-control means and covariance
matrix (the phase | estimates are assumed to ke sgthe population parameters)
whereas our approach takes this uncertainty intowad. Ignoring estimation uncertainty
may not be justifiable when the phase | sampleisisenall. However, the proposed
approach incurs a high computation cost, excepnwioenpared to the best subset
variant of WJPLM. Note that our approach cannotdmpared with the methods
proposed by Capizzi and Masarotto (2011) and ZauGin (2009) as those methods are
for simultaneous monitoring and diagnosis. Heneehis chapter, we shall only compare
our approach with WIJPLM and LEB.

The chapter is organized as follows: In Secti@) ®e briefly describe the mean
diagnostic problem, state our assumptions, angéwettieT? chart and WJPLM. Section
3.3 gives our proposed Bayesian hierarchical mdsigidelines for specifying prior

distributions are given in Section 3.4. Section@ves a Gibbs sampling procedure for
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sampling from the posterior distribution of the graeters, and decision rules for mean

shifts. Section 3.6 presents four examples and@e8t7 concludes the chapter.

3.2 Multivariate Quality Control

This section describes the diagnostic problem adeckby this chapter and states
the assumptions and notations used throughoutidyater. We also review the Hotelling
T? control chart, the-test and WJPLM. While the proposed approach camsbd
independently of any control chart, an interestipglication of the approach is the
diagnosis of an out-of-control signal given by4chart. Discussion of tHE? chart also
provides a nice context for introducing the meaift siagnosis problem.

Throughout this chapter, we assume that the vassatf interest = (x5, ..., x,)”
have a multivariate normal distribution with in-¢at meanu, and covariance matri,
i.e.,x~N(uy, X). We letxy, ..., x5 denote th&V in-control phase | observations, and
denote the sample size of the phase Il sasydpectedo have been drawn from a
common normal distribution different from(u,, X). All samples are assumed
independent. Furthermore, in this chapter, we asghat the covariance matrix remains
in-control so thak~N (u, X) in phase Il. The objective of the mean shift dizgia
problem is to identify which componentsofare different fromu,. We let
x=YN,x;/NandS =Y (x; — %) (x; — X)T denote the sample mean and sample
dispersion matrix of the phase | sample respegtividie sample covariance matrix of the
phase | sample is denoted®y= S/(N — 1). Similarly, we letx, andS; denote the
phase Il sample mean and dispersion matrix reyadgtithe subscripf stands for
future).

The standard control chart for monitorimds theT? chart with statistid? =
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n(%; — %) £-1(x, — %) plotted with an upper control limit. It can be shothat if each

phase | observation is independently distributel @&, £), andx,~N (uo, £/n), then

- (N+n)(N-1)p

2
T N(N-p)

F(p,N — p), whereF (p, N — p) is the F-distribution witlp andN — p
degrees of freedom. Thus, to control the typedreata, the upper control limi/CL
should be determined using the upp@®a percentile o' (p, N — p).

WhenT? > UCL, the control chart indicates that either the measshifted, i.e.,
u = E(Xf) # uo, or the covariance matrix has changed, or botfs dlapter assumes
that the covariance matrix remains in-control. Viieethe assumption of in-control
covariance matrix is reasonable can be decidedgihrthe use of control charts for the
covariance matrix (see Yeh et al. (2006)) or thiotegts of the hypothestt: X, = X4,
whereX, is the covariance matrix for the phase | sampheiZa is the covariance matrix
for the phase 1l sample that triggered the outenftiml signal. A standard test féf, is
the likelihood ratio test (Timm, 2002).

If it is determined that the mean shifted, sup@atary information can be
provided by computing-statistics for testing each of the hypothedgsu,; = u;, where

Uo; IS theith component oft,, andy; is theith component ofu. Thet-statistic for

testingH,: po; = K; is given by

t= (% — %)/ [t (2 +2), (3.1)

whereé? is thepooledsample variance for thieh variable (the sample variance of the
combined phase | and phase Il samples)apendx; are theith components ak; and
x respectively. We interpret thgs using the following decision rule:

If t; < —v, thenﬂi < Uoi» if ti >v, thenﬂi > Uois if -y <t <y, thenﬂi = Upi- (32)
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The positive scalar is some suitably chosen cut-off.
A more modern approach to variable selection i®MXd. This approach applies

the forward selection method or the best subsetoadeto the variable selection problem

where the response is given by the column vele(@gc — f), the regressors are given by

the columns oR, andR is defined by the Cholesky decomposit@yn) " = RTR. The
forward selection algorithm is terminated whenrniadel size id, and the best subset

method chooses the best model of diz&hereL is specified by the engineer.

3.3 Bayesian Hierarchical Model

In this section, we shall develop a Bayesian hattiaal model that can be used to
determine the means that shifted and the directibiise shifts when given a suspected
out-of-control phase Il sample of sizePrior information is obtained from phase | data,
which is then combined with the likelihood for pbdkto yield the desired posterior
inference.

It can be shown thai~N (uy,2/N), S~W(E,N — 1), whereW (X,N — 1)
denotes a Wishart distribution with scale ma®iandN — 1 degrees of freedorx,ands

are independent, ar(@, S) is a sufficient statistic fofu,, X). Thus, if we use

p+1
noninformative priors fop, andZ given byp(u,) o« 1,p(Z) « |[E71| =", the resulting

posterior distributions fog, andx~! are (see, e.g., Chapter 8 of Box and Tiao (1973))

P(HolX,S) o |1+ N(X — po)"S™ (X - ﬂo)r% (3.3)

N-p-2
2

p(Z7Yx,S) o |27 exp {—%trace(Z‘lS)}. (3.4)

For a phase Il sample with sample m&ar N (u, £/n) and sample dispersion

matrixS,~W (Z,n — 1), the likelihood is
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l(ﬂ, Z_llff,Sf) X

|Z|"%exp [— %n(ff — M)Tz_l(ff — u)] |2‘.|_nT_1exp [—%trace(Z‘le)]. (3.5)
Note that ifn = 1, we simply se§; = 0. It is of interest to determine which components
of u — u, are nonzero and the signs of the nonzero compsn&rgimilar problem arises
in the area of Bayesian variable selection (GeargeMcCulloch, 1993, 1997) in which
the objective is to determine the variables withzeyo coefficients in a linear model.
The key idea in Bayesian variable selection is taleheach regression coefficient as a
mixture of two distributions, where coefficientsadm from one distribution tend to be
close to zero, and coefficients drawn from the othstribution tend to be large.
Indicator variables are introduced to indicatedtstribution from which a coefficient is
drawn.

In a similar vein, we introduce indicator variabls (83, ..., 5,)" so that
6; = —1 indicates thal;; has decreased; = 0 indicates that;; has remained
unchanged, andl, = 1 indicates thaf;; has increased. The reason that wéjeake on
three levels rather than two (one indicating thatith mean shifted and the other
indicating that it remained in-control) is thatghvould allow us to handle cases where
the most likely shift magnitudes are known to bgéa(instead of close to zero) and cases
where we have asymmetrical prior information ahgqaward and downward shifts.

The parameters of the Bayesian mddelphase llareu, §, andz~?, and we
need to specify the prior distributigrfu, 8, 2~1). Note that it is not justifiable to use the
posterior of(u, 271) from phase | as the prior for phase Il. The pihsample mean is
expected to be different, and the proposed methotended to unravel the differences.

We assumé andZ~! are independent andu|6,X271) = p(u|d) so thap(u, 6,271) =
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p(u|®)p(8)p(E~1). The assumption th&tandz ™! are independent is reasonable
because in many cases, prior knowledge suggestsitan shifts does not depend on the
inverse covariance matrix. The dependence strucaptired by the covariance matrix is
due tocommon causeariation; on the other hand, mean shifts aretdgpecial cause
variation. For the sake of mathematical tractahilite further assume thaté has a

multivariate normal distribution, that is

p(u18) o sl 2exp {~ 2 (1 — )T w5 (1 - 6,)}, (3.6)
where@; is the mean angs is the covariance matrix. The subscépdf 85 andy 5
indicates that the mean and covariance matrix depaid.

Because we assume thgu|8,271) = p(u|6) andp(u|é) is given by (3.6), the
joint distribution ofu andZ~?! givené = 0 does not match the phase | posterior for
(Ho, Z71) (see the remark at the end of Section 3.4.2). Weweve adopt (3.6) because
it provides a prior that is easy to interpret amuetto capture prior information.
Moreover, the prior distributiopn(u|8 = 0) with some reasonable values &y andy,
(which shall be given in Section 3.4.2) works vessil.

Detailed specification of the parameter§jt|8) and the prior fob, p(8) shall
be discussed in the next section. Here, we shedlids specification of the prip(Z~1)
for =1 since this is a simpler problem. It is obvious tivatshould sep(2~1) equal to
the distribution given by (3.4) if the covariancatnix is assumed to remain unchanged.

Thus,
pE™) « |27 exp [—%trace(z‘ls)], (3.7)
wheret = (N — p — 2)/2 as indicated in (3.4). Note that> p + 1 is sufficient for the

Wishart distribution (3.7) to be nondegeneratesTandition is almost always met in
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practice.

Our proposed Bayesian hierarchical model consisté, S¢ |, £71), p(ul9d),
p(Z~1), andp(8). The quantities of primary interest are the pastgrobabilities ofs,
i.e.,p(8|Xf, S¢). The posterior probability & = (6;, ..., 8,)" is the probability that the
state of theth mean is given by;,i = 1, ..., p in light of prior knowledge, phase | data,
and the phase Il daf&;, S¢). A comparison of the posterior probabilities dfpaissible
values ofé would yield information about which combinationanft-of-control means is
more likely. In addition, the marginal posteriostiibution of§; can also be useful for
deciding whethed; shifted upwards, downwards, or remained in-contiolwever,
direct computation of the posterior distributionsof clearly infeasible for practical
problems. Section 3.5 provides a Gibbs samplinggatore that solves this
computational problem. Before describing that pdoce, we discuss the specification of

prior distributions foid andu in the next section.
3.4 Specification of Prior Distributions

3.4.1 Prior Distribution for Indicator Variables

A straightforward choice fap(é) is the independence prior

&) =Mpy ™ Vvs ps (38)
wherep;;, p,i, andps; = 1 — p;; — py; are the prior probabilities that tieh mean
shifted downwards, remained in-control, and shifip@ards respectively. Adopting the
independence prior far(d) is equivalent to assuming that iés are a priori

independent, which is justified in cases wheregh&no prior knowledge about the

causal relationships between the variables. Wegs®hat thelefault choiceof
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Pi = (P11, P21, P3i) be taken as
p; = (0.25,0.5,0.25). (3.9)
This choice is justified if the engineer is igndrabout whether thi&h mean
changed or not, and if it changed, whether it iasesl or decreased. If we spegfyas
given in (3.9) for ali = 1, ..., p, the expected number of shifted meang/i2; this
guantity provides one way to check whether it smmable to specifly; according to
(3.9). Other choices @f; might be considered if there is some informatibaw shifts in
theith mean. For instance, if tieh variable is a smaller-the-better quality
characteristic, a downward shift in tith mean may be unlikely ang; should be

small.

3.4.2 Prior Distribution for Mean
We now discuss the specificationmiu|6), which we have assumed to be a
normal distribution with mea@s and covariance matriggs. We set
_ _ T
05 = (%, —1(6; = =1)cyg +1(61 = Deyyy e, ¥y — 18, = =1)cpg + 1(6p = 1cpy)
(3.10)

5 = diag {[al =Pl 6N, . [y T Va0 83/0), (3.11)
whereg; is the sample standard deviation of the phasealfda theith variable, i.e., the
square root of theth diagonal element &. It follows from (3.10) and (3.11) that

U;|6 = u;|6; andu, |84, ...,up|6p are independently distributed. We also obtain

il (8; = 0)~N(%;, 67 /N), ;| (8; = —1)~N(X; — ciq, a4 67 /N),

1;|(8; = +1)~N(%; + ¢y, af, 67 /N). (3.12)

Figure 3.1 illustrates a standardized version e$éhpriors, which will be
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Figure 3.1: Density Functions §f; — x;)/4;|(6; = —1) (Standardized Prior for
Decreased Meanjy; — x;)/6;|(6; = 0) (Standardized Prior for In-Control Mean),
(u; — %;)/6:1(8; = 1) (Standardized Prior for Increased Mean) éfd — x;)/6;|(w; =
X;, 0; = ;) (Distribution of Standardized Phase Il Sample Mean
discussed later in Section 3.4.4. Note théts; = 0)~N(x;, 67 /N) is entirely
determined from phase | data and it is a good aqmation of the posterior distribution
of uy; derived from (3.3) wheN is large. On the other hand, the distributions of
u;|(6; = —1) andy;|(6; = +1) are each controlled by two parameters. The chates
these parameters are crucial; thus, this subjeaditisé discussed in the remainder of the
section.
Note thatp(u|6) andp(8) should be required to jointly satisfy certain
restrictions. Suppose thgt; + ¢, x; + ;] and[x; — {;, x; — €;], whereg; is small and;
is large, contain all possible upward and downwveghifts respectively. Then, it is logical

to require thap(5; = 1|w;)/p(6; = —1|u;) be larger than one in the interyal +

&, X; + ;] and smaller than one [&; — ;, X; — &;]. This is equivalent to requiring that

pil8;i=1)p(8;i=1) (3.13)

() = log [ZE =G
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satisfies

o(p) > 0Vu; € [X; + &, %; + (] ando(u;) < 0Vpy; € [X; — G, % — &]. (3.14)
Equation (3.14) will be satisfied wheneygid; = 1) = p(6; = —1) (p1; = p3; when
p(6) is given by (3.8))¢iq = ciy» @nda;; = a;y,. It will also be satisfied whea,; = a;,,
andp(8; = 1)/p(6; = —1) = exp[(c3, — c%)/(2a?67/N)]. Otherwise, (3.14) should
be checked.

In sections 3.4.3 and 3.4.4, we shall discussifsgesioon of p(u|&) when prior
information about mean shifts is available and witée prior information is available.
Remark: Due to the assumption thafu|8,2™1) = p(u|é), p(u, 271|6 = 0) is not the
same ap(uy, 71X, S), wherep(uy, 271|%, S) is the posterior distributiofuy, £71)
given phase | datdo satisfy the requirement thafu, 218 = 0) equals
p(uy, 271, S), we can set
p(u18,E7) o |DSE1Dslzexp {~ LN — 05)7 D= Ds(1t — 05)). (3.15)
In this case, we can hapéu|s = 0,X71) = N(x,X/N) by settingd, = x andD, = I,
wherel is the identity matrix. Together with(2~1) given in (3.7)p(u|6 =
0,2 Hp(Z~1) would now be the same afu,, X71|%, §). However, this prior has the
disadvantage that the represented prior knowlesigard to understand because the
distribution has a complicated form. For interpbdtyy, we may wantD 5 to be diagonal
so that the variances pof|(§; = —1) andy;|(6; = 1) depends only on thigh diagonal
element o and not on the other elements. However, the exastef correlations
between the;’s given(Z~1, 8) for § # 0 is hard to interpret. For example, why would
u, andu, be correlated whem, shifts upwards and, shifts downwards and why would

they have the same correlationmgsandx,? Certainly, we can let the entire covariance
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matrix of p(u|8,X271) depend od and set all the correlations involvipgto zero
wheneves; # 0. But, it would then be difficult to samp* from its full conditional
distribution as the distribution would not be a Wa# distribution. Compared to (3.15), a
prior for the mean given by (3.12) is arguably easb interpret. For this reason, we
prefer (3.12) over (3.15) despite the fact that§Bgive the correct prior for the case

whered = 0.

3.4.3 Case 1: Prior Information about Mean Shiftss Available

In cases where the quality engineer has a goodableat mean shifts,
specification of the prior parameters in (3.10) &d1) is a rather straightforward
exercise. The prior information that needs to lo@tetl for upward and downward shifts
in each mean is thaost likely value and range

Clearly, c;; andc;, should be set equal to most likely magnitudesosirdvard
and upward shifts of thigh mean respectively. Now, if the range of upwardtshn the
ith mean ie;,, (i, ], then we should set;, so thatc;, + 2a;,6;/VN = {, andc;,, —
2a;,,6;/VN < g;,. If the range of magnitudes of downward shiftfejg, {;4], then we
should sety;; so that—c;; — 2a;46;/VN < —{jq and—c;q + 2a;46;/VN = —&;4. Note
that+2 constants are used because a normal random \&ahasla high (roughly 95%)
probability of being within two standard deviationfsits mean. These considerations
give
Ay = gmax{(iu — Ciw, Cius — Eu}s Gig = gmax{(id — Cig, Cia — €ia}- (3.16)

Three forms of prior knowledge can be capturedieyproposed priors(u|6)

andp(9). The first is the most likely magnitudes of a shathich is often large.
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Assignable causes often produce large shiftsifstance, in thermocompression
processes, a marked decrease in strength of géddsgads is observed when surface
contamination is present (Jellison, 1975). Moreplage shifts are more critical and
more easily detected than small shifts. Secontig,aften the case that information
about mean shifts is asymmetrical, i.e., an in@@&as mean is likely to be within a
certain range and a decrease is likely to be ith@m@ange and the most likely upward
and downward shifts are different. For instance; is a smaller-the-better quantity
(page 268 of Wu and Hamada (2009)), we should;set c;; whereas for larger-the-
better quantity, we should sgt, < c;;. This is because process improvements are often
smaller than process deteriorations. Thirdly, basenowledge of the process, the
engineer may have reason to believe that a paatiooéan is more likely to have
increased than decreased and vice versa. Thesgeftinnes of prior knowledge cannot be
incorporated by modeling each mean as a mixtute@ihormal distributions (one for

the in-control mean and one for the out-of-contnelan).

3.4.4 Case 2: Little or No Prior Information aboutMean Shifts is Available

In cases where prior information about mean sksfteard to obtain, we consider
using a symmetric prior for the mean wahly two parametets.e.,c;y = ¢jy, = ¢; =
hé;/\/n anda;y = a;,, = a. This implies thap; |8;~N (%; + 6;h6;/\n, a?!%162 /N),
which gives
(u; — %)/6:16;~N (6;h/Vn, a5l /N). (3.17)
Figure 3.1 illustrates this prior. It can be sewt the large reduction in the number of
parameters is achieved througfandardizatiorof all variables (variabléis standardized

by x; andg;), and assuming that the magnitudes of upward amch@vard shifts of the
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standardized variables can be approximately modstetde same normal distribution
N(h/+/n,a?/N). Our recommendations for specifying the priorristtions for the
mean and indicators are summarized in Figure 3fail@d discussions about these
choices are given below.

In a nutshell, our suggestion concerning the clsood¢he parametefsanda is
based on the rationale that(6; = 1) should be centered at the upper taifﬁf(ul- =
X;, 0; = 6;), (this determines) and the densities ¢f|(5; = 0) andy;|(6; = 1) should

have at least a slight overlap (this determimeg-igure 3.1 illustrates this idea. Note that

Simplified Priors for the Mean and Indicators
1. ith element 095: fi + (SiCi = fi + 5lh6l/\/ﬁ
2. s Diagonal matrix withith diagonal elemer(ta?®)é?/N.

3. Prior for indicatorsp(8) = H{?zlpig‘s":_l) pég‘gizo)(l — Py — Ppy) 0D,

Default choice fop,; andp,;: p;; = 0.25, p,; = 0.5.

Choice of Hyperparametersh and a:
Suggestion 1Compare results obtained from several reasonable choices.

Seta = max {%\/g - 1,1}. Try several values df € [2,8] andb € [0.5,2]. Make
sure tha{—h/vn — 2a/VN, h/\n + 2a//N| contains al(%;; — x;)/4;.

Suggestion 2Estimate prior parameters via the empirical Bayes method.

o

|%pi—%;| . .
b= REB — {\/ﬁzia L i if Iis nonempty _
2, if 1is empty

14

( o EB
Imax{\/ﬁstdev{@,i € I},h—\/g— 1,1},if 7] = 2

2
a=af? =

hEB [N . '
L max{T\/;—l,l}, if |1 <1

EB

Alternatively, seth = hf8, a = max {hT\/g — 1,1}, and try several values bf

We call this the partially empirical Bayes method.

Figure 3.2: Summary of Recommended Prior Paran@terces When Little or No
Prior Information about Mean Shifts is Available
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if we plot (u; — x;)/8;16;, the same plot would be obtained foriallThus, we need to use
only oneplot to check whether the prior specificationaasonable.

In the design of control charts,is chosen so tha /+/n is small compared t6;
to get good power for detecting a shift of siz€page 247 of Montgomery (2009)).
Similarly, for the proposed approach, the relatiizes of5; /+/n andc; determine the
type | and type Il error rates, where the typerderate is defined as the average number
of in-control means declared out-of-control andtihpe 1l error rate is defined as the
average number of out-of-control means whose dhittions are misidentified. Thus, it
is convenient to measucein units ofé;/vn, i.e.,c; = hé;/v/n. We recommend thét
be at least 2 to achieve reasonable type | ertg.réason for this choice is as follows:
When theith mean is in-controbgs; | (i; = poy, ) ~N (ioi, 07 /1) and sojey; falls within
the interval(x; — 26;/v/n, %; + 26;/+/n) most of the time (see Figure 3.1). Thus, if we
specifyh to be less than 2, the type | error rate woulthigha. On the other hand, Afis
too large kd;/v/n > 3aé;/+/N), the type Il error rate would be high for sméiifts. This
is because for fixed, a largeh implies that large shifts are likely and smalliftshare
unlikely. The problem can be mitigated somewhatlhyosing a large. However, prior
information is diluted because the priors fioh(5; = 1) andy;|(6; = —1) would overlap
somewhat and also allow very large shifts.

We set

_ ci _ h IN_
a = max {bai/x/ﬁ 1,1} = max {b\/; 1,1}, (3.18)

whereb > 0. This arises from the following consideration. Fessons explained in the

next paragraph, we would like to choose the const@o that there is reasonable overlap
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between the priors for the increased mean, in-obntean and decreased mean. Thus,
we sety; + ¢; — bad; /YN = X; + b6;//N. This means thdt standard deviation units
above the center ¢f |(§; = 0) should beb standard deviation units below the center of
1;1(8; = 1). By symmetry, settings; — c; + bad;/\/N = %; — b6;/\/N yields the same
result. Since there is typically less informatidroat shifted means than in-control
means, we should setto be 1 or larger. These considerations lead.ti8}3

If b < 2, there is at least a slight overlap between tmsithefunctions of
w;1(8; = 0) andy;|(8; = 1), and between the density functionsugf(5; = 0) and
u;1(8; = —1). This ensures that the Gibbs sampler do not geksh one of the
conditional distributiong;|3;. Moreover, too large values fbrimply strong prior
knowledge on the mean shifts. This can give ridarge type | error rates because
6; = 1 andé; = 0 for all j # i cannot explain the data wellif; > x; + ¢; + 2a6; /NN
andx;; = x; for all j # i. The data may be better explained(by §,) = (1,1) and
6; = 0 for allj & {i,[}. The smaller the value &f the larger the variances gfi (5; =
—1) andy;|(6; = 1), and so, the prior contains less information alblo@tmean shifts.
This reduces shift detection powsence foru; > x;, p(6; = 1|u;)/p(8; = 0|y;) is
reduced. Thus, we recommend thdie at least 0.5.

Note that a smab (which gives a large) produces considerable overlap
between the densities pf|(6; = 1) andy;|(5; = —1), which may seem unreasonable
because if a mean shifted downwards, it cannot b&hrtarger tharx;. However,
becaus® (y;) is a straight line with positive slope throughregardless of the value bf
the prior distribution makes sense regardlessef#iue ofb. Nonetheless, the slope of

o(u;) is2Nc;/a%67, which decreases with an increasei\s a consequence, we may
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observe that if the posterior probability tldat= 1 is largest, the posterior probability
thats; = —1 can be a close second and vice versa. Howevsrddigis not affect
decisions about the mean shifts as the decisi@based on the value &f that gives the
largest posterior probability (see Section 3.5).

For the analysis of a real dataset, we suggestévatral values df andb be
tried and the resulting decisions be compared.vBhges ofh andb should be chosen so
that the interval|—h/vn — 2a/VN, h/vn + 2a/VN| contains al(x;; — %;)/6; (e.g., see
Figure 3.9). Otherwise, {fx;; — x;)/6; > h/vn + 2a/VN, §; = 1 alone cannot explain
this large deviation well and {fc;; — %;)/6; < h/vn — 2a/V/N, §; = —1 alone cannot
explain this large deviation well. We have foundttdecisions based on Decision Rule 1
or Decision Rule 2 (see Section 3.5) are oftdyustto changes in values dfandh.
However, trying several values give confidencehdecisions obtained from the
proposed approach.

We can also choogeandb using arempirical Bayesian (EB) approacBecause
(u; — %)/6;1(8; = =1)~N(=h/v/n,a®/N), and(u; — %) /6;|(6; = 1)~N(h/v/n,a?/
N), the quantity(|y; — %;1/6:)1(8; # 0) would be approximatelyf (h/vn, a?/N) if
h/\n is large compared t@/vVN. Sinceu, |8y, ..., up|8, are independently distributed,
(g — %11/8)1(81 # 0), ..., (|up — %,|/8,)|(8, # 0) are independent and identically
distributed with approximate common distributiiih/vn, a?/N). Based on this
observation, we can estimdteanda as follows. Let = {i:vn|x;; — %;|/6; > 2}, i.e.,I
is the set of indices associated with large dismmep between phase | and phase I

means. Then, we can estimatby
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= o

|ffi—fi| . .
LEB {\/ﬁziel i Jif 1is nonempty. (3.19)

2, if Iis empty
We propose two ways to chooseThe first is to simply use (3.18) and try varicadues

of b; the second is to estimateby

4

- hEB [N . ’
l max{T\/;—l,l}, if |l <1

wherestdev{|%; — x;|/6;, i € I} denotes the standard deviation of the set of galue

( o EB
Imax{Wstdev{M,i S I},hT\/g— 1,1},if |7l = 2
EB (3.20)

{|%7; — x:|/6:,1 € I} and|I| denotes the number of elements.itVe call the approach of
settingh = hEB and trying several values bfthe partially empirical Bayes (PEB)
method and we call the approach of setting h2 anda = a®E the empirical Bayes
(EB) method.

The reason we do not seét® equal tovNstdev{|x;; — x;|/6;,i € I} is that we
want to ensure that®? is not smaller than (3.18) with= 2. Too small a value far®5
is undesirable for reasons discussed previouslgdtttion, we want to ensure that the
prior does not rule out shifts in variables whos#iges are not in.

Before we end this section, we point out that tBenkethod determines the prior

for the mean entirely from data. Hence, it is veopvenient in practice.

3.5 Gibbs Sampling and Decision Rules for Mean Sisf
This section gives a Gibbs sampling proceduredarding from the posterior
distribution ofé and decision rules for identifying mean shifts.
Since the sample space®tonsists 08P points, direct calculation of aP

probabilities is infeasible even whers moderately large. To give an idea of the growth
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of 3P with p, note thaB'® = 59049 and3'® = 14348907. However, not all values &
are equally of interest. We are primarily interdstethose values af with large
probabilities, especially the posterior mode. Tihiadequate information for making
inference about the mean shifts and the directwdiise shifts. Gibbs sampling is a tool
that allows us to discover the most probable vatdés(Gelfand and Smith, 1990;
George and McCulloch, 1993, 1997).

From the joint posterior distribution
p(W 7% 8%, Sp) o< L, 274X, Sp)p (1 8)p(Z~Hp(8), (3.21)

we can easily obtain the full conditional distriloumis

p(E7 Xy, Sp, 6, 1) |Z‘1|g+texp {—%trace [Z‘l (Sf +8+n(% — u) (% — ”)T)]}

(3.22)
_ _ 1/2 T _
p(uIXs, Sp, 8,271) o |Vsz| “exp {— % (n—9s35) Vaz(n— 95,}:)}, (3.23)
1
p(8I%7, S, 1 E1) o |sl 2exp { = (1 — 05)T95" (1 — 65)} p(8), (3.24)

wheregss = (P5' + nZ ™) (P5'05 + nZ71%;) andVsy = (Y5 + nZ~1) "L The
conditional distributions (3.22)-(3.24) enable asise a Gibbs sampling algorithm
(Figure 3.3) for sampling from the posterior distition of (u, 271, §). The algorithm
given in Figure 3.3 holds for genegglu|8) given by (3.6). For the simplified prior
given by (3.12), Step 4 of the Gibbs sampling atbor given in Figure 3.3 simplifies to
Step 4’ given in Figure 3.4. The Gibbs samplingathm creates a Markov chain

E DY, b 8,68, B2 p?, 62, .., 65, . BT b 8 L 6 (3.25)

which has the property that the valuesbt= (5%, ...,6{,)T that appear in the simulation

would be a sample from(8|x,, S;) for i large enough. Here, the reason for working
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directly withZ~! instead o becomes evident. Direct sampling®f' avoids the need

to invertX in the computation o 5 andVs 5. In addition X has an inverse Wishart
distribution and we are not aware of a direct méttow generating random matrices from
this distribution; the most common method is tcettthe inverse of a draw from the

corresponding Wishart distribution.

1. Start withu® = ¥ ands® = (82, ...,82) . Seti = 1.
2. Sample(Z~1)! from the Wishart distribution with scale mat(ixf +S+

. . -1
n(% — u) (% - u“l)T) andv =n+2t+p+1=N+n—1degrees of
freedom.
3. Sampleu! from a normal distribution with mean

9si-15i = (Pt +n(E™HYH (l[)sl 105i-1 + n(Z71)'x,), and covariance matrix
61 lzl - (1/)61 1 +Tl(z 1) )

4, DeflneS‘(r) = (6%, ..., 81, ,6]‘+11, v, 8D Forj =1, ..., p, sampIeS]-" from the

discrete distribution:

W] *exe =3 (1~ 0,50) Wil (1 = 05 )} p5f0)

1 . )
Zhees ol * e (=3 (0 - 050) Wi (0 - 050 )} (510)
wherer € {-1,0,1}.

p(r) =

Figure 3.3: Gibbs Sampling Algorithm

4', Deflnea‘(r) = (6%, ..., 85;_ LT, 6]‘+11, v 8D Forj =1, ..., p, sampleﬁji from the
discrete distribution:

(6,) 2 exp{ 2w~ 6,0 (¢,082/N) (8l

p(r) = , T
e (0@) exp{ 511 = 6,@) (#;(0)87/N) "} p (8i(0))
€ {-1,0,1},
whered;(r) = (% — I(r = =1)¢jq + [(r = 1)cj,,) ande; (r) = aZI(T——l)aJZIi(r 0

Figure 3.4: Simplification of Step 4 of Gibbs SamglAlgorithm Given in Figure 3.3
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Decision Rule 1 For eacly, choose the valug; of §; that appears most frequently in
(3.25) fori > 7 and make decisiofdy, ..., d,).

Decision Rule 2:Choose the valud of § that appears most frequently in (3.25) for T
and make decisiod.

Figure 3.5: Decision Rules for Identifying Mean f&lUsing Steady State Gibbs
Sampler Outpufé®:i > 1}

Mean shift directions would be identified frodrvalues that have high posterior
probability oré; values that have high marginal posterior probighiWe give two
decision rules in Figure 3.5 to determine meart slmiéctions. The idea underlying the
first decision rule is that of making a decisiorsé&a on the mode of the marginal
posterior distribution of eaaf} while the idea underlying the second decision isithat
of making a decision based on the posterior mode We estimate these modes using
the close-to-steady-state portiar t) of (3.25), where is the burn-in period. This
gives Decision Rules 1 and 2.

Before we end this section, we point out that wttikefocus in this chapter is on
shift directions, the shift magnitudes can be gastimated from the components of
E(ulff,sf) — X. This latter quantity can be estimated from thedas generated by

(3.25).

3.6 Examples
We shall give four examples to demonstrate thecg¥feness of our proposed
methodology. In the first example, we show thatgh@posed approach is superior to the
t-test and is as good as WJPLM over wide rangesaaimmended prior parameter
values. Note that Wang and Jiang (2009) proposadbef the forward selection
algorithm for model selection. In contrast, we thak the best subset method. The latter

performs better than the former but it incurs enhliggmputation cost. Even with the
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use of fast algorithms like those proposed Furrawval Wilson (1974), the computation
can be too costly for high dimensional problemg.(@.> 30). This is primarily due to
the exponential increase in number of possible fsodith the dimension of the
problem. In comparison, the most computationaltgnsive parts of the proposed
approach are Steps 2 and Step 3 in Figure 3.3r{asgbtep 4’ in Figure 3.4 is used),
which require0 (p®) operations. We conclude that the proposed appneagtires
O(Njterp?) operations, wher#,,., is the number of iterations of the Markov chain
(3.25). This means that the proposed approach eamdoe affordable than the best
subset variant of WJPLM whenis large. In the second example, we show thaterop
choices ofh andb can yield performance superior to WIJPLM with cotie and that
asymmetric choices @f(y;) andp(98;) that correctly reflect the true state of natune ca
give even better results.

In the third example, we compare our approach thighLEB diagnostic
procedure proposed by Zou et al. (2011). The examgmhonstrates that our proposed
method combined with the likelihood ratio test éguality of covariance matrices yields
a powerful method for diagnosing shifts. The exarglso includes an analysis of a real
dataset; for this dataset, the proposed methodsytbe same shift decision reached by
LEB for wide ranges of prior parameters. The foathmple analyzes an interesting set
of process monitoring data for a fruit juice pracesiginally given by Fuchs and Kenett
(1998) and reproduced in Beltran (2006). Matlabecfaat implementing the empirical

Bayes version of the proposed approach is givé&xppendix C.3.

3.6.1 Example 3.1: Performance Comparison |

We consider a problem whepe= 12, N = 90, n = 6 (12 variables, 90 phase |
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samples, 6 out-of-control phase Il samples). Theoimtrol mean igt, = 0 and the
population covariance matrk, (given in Appendix C.1) is generated randomly fribra
inverse Wishart distribution with scale matrix eleethe identity matrid, andp + 1
degrees of freedom. This distribution yields a mndorrelation matrix that has
marginally uniformly distributed correlations (Band et al., 2000). The shifted mean is
w, = (Aoy, —Ao,, Ags, —Ady, 0, ...,0). The prior distributiong (u|8) andp(8) are
specified according to Figure 3.2. We chaAge, andb according to the experimental
design given in Table 3.1 (the empirical Bayes meétis denoted by EB) and we
replicate each run in the desigf0 times. For each replicate, we simulzteS, X, and
Sy independently fronV (0, Z,/N), W(Zo, N — 1), N(uy,Zo/n), andW (Zy,n — 1)
respectively. Giveix , S, Xy, andS,, we obtain samples frop(8|x,, S¢) using the
Gibbs sampling algorithm in Figure 3.3 with Stepeglaced by Step 4’ given in Figure
3.4 and we apply the decision rules given in FiguBe Two performance measures are
calculated:

1. Type | Error Rate=(number of in-control means imeotly identified as out-of-
control)/(total number of in-control means).

2. Type Il Error Rate=(number of out-of-control meamsorrectly identified as in-
control or whose shift-direction is incorrectly iddied)/(total number of out-of-
control means).

Adding a constant to botln, andu; will not change the performance of our procedlire.
has the desirablavariance propertythat shifting or rescaling all observations by the
same amount does not change the posterior distibat é (if the priors are specified

according to Figure 3.2).
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For all simulation runs, we terminate sampling fritra Markov chain (3.25) after
N;:er = 3000 iterations and we set the burn-in period &t 1000. These choices are
found to work well in many trial runs. Table 3.kpents the results of the simulation.
The error rates for Decision Rule 1 are given sm¢blumns labeled D1 and the error
rates for Decision Rule 2 are given in the colutabgled D2.

It can be seen from Table 3.1 that except for adases, Decision Rules 1 and 2

have comparable performance. Table 3.1 also sugytiedta smalleb tends to give

smaller type | error rates and a larggih/+/n > A) tends to give larger type Il error
rates. Note that fok = 1.4, b = 0.5 andb = 2 give comparable type Il error rates but

b = 0.5 gives smaller type | error rates. Thus, for largfafts, a smalleb may be better.
For all shift sizes, the EB method gives good penmce; its superior performance when

the shift size is small, i.eA = 0.6, is noteworthy.

Table 3.1: Factor Settings and Results for SimutaEixperiment

Shift Type Il Error Rate| Type | Error Rat¢

A h b D1 D2 D1 D2

NG 0.5 0.445 0.433 0.011 0.030
1.8v6 | 0.5 0.525 0.528 0.009 0.016
0.6 V6 2 0.340 0.373 0.054 0.083
1.8V6 2 0.505 0.503 0.014 0.031
EB 0.330 0.335 0.053 0.086

NG 0.5 0.080 0.068 0.014 0.011
1.8v6 | 0.5 0.098 0.110 0.009 0.013
1 NG 2 0.028 0.035 0.040 0.045
1.8V6 2 0.073 0.068 0.016 0.019
EB 0.043 0.053 0.035 0.044

NG 0.5 0.000 0.000 0.006 0.00%
1.8vV6 | 0.5 0.008 0.008 0.005 0.01(
14 NG 2 0.000 0.000 0.025 0.026
1.8V6 2 0.008 0.008 0.015 0.018

EB 0.003 0.000 0.014 0.013

D
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Figure 3.6: Type Il Error Rate versus Type | EfRate for Proposed Approach, WJPLM,
andt-test. TopA = 0.6, Middle: A = 1, Bottom:A = 1.4. The solid line is for the-test.
The symboH-L is for WIPLM with model sizé. Symbols A-D are for prior
distributions in Table 3.1. Symbol E is for the engal Bayes approach.
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We plot the type Il error rate versus the typerderate for the five different
priors (results for Decision Rule 1 are used),ttbest, and WIJPLM in Figure 3.6.
Symbols 4, B, C, D denote the priors given i, b) = (v/6,0.5), (1.8v6,0.5), (V6, 2),
(1.8v6,2) respectively and symbdl denotes the EB method. The continuous curve for
thet-test is obtained by changingn (3.2) over small steps (the type | and Il enates
are both functions gf). WIJPLM with model size (specified number of meaiits) L is
plotted astL in the figure. Figure 3.6 clearly indicate that approach and WJPLM are
superior to the-test. Whem\ = 0.6, our approach performs similarly to WIJPLM with
L = 2 andL = 3 (specified number of mean shifts less than founictvis the correct
number of mean shifts). However, as the shift Bizeeases ta = 1 andA = 1.4, our
approach has performance comparable to WIPLM wittectly specified number of
mean shifts, i.el, = 4. In particular, forA = 0.6, the EB method performs like WIPLM
with L = 3 and forA = 1 andA = 1.4, the EB method performs like WJPLM with=
4. Note that selecting the model of correct sizénwiinimum residual sum of squares,
which is WIPLM withL, = 4, is probably the best performance we can expent &
frequentist method. Since in practice, the actuablmer of means that shifted cannot be
known, the performance of the EB method is impxessi

It can also be concluded from an examination ofl@ahbl and Figure 3.6 that the
proposed approachisbust.The type | and type Il error rates for the progbapproach
change only slightly (compared to changes for WJRLil differentL) even though
andb are changed over wide ranges.

We have also investigated the effechain performance. Whet= 0.6 andn is

increased to 12, the type Il and type | error rafete EB method decrease to 0.098 and
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0.024 respectively for Decision Rule 1 and 0.078 @023 respectively for Decision
Rule 2 (compare with Table 3.1). Fbe 1 andn = 12, the estimated type Il error rates
are 0.005 (for both decision rules) and the esaohgpe | error rates are 0.0175 and
0.02. Thus, huge improvements can be attainedamitincrease in.

We shall now illustrate a case of poor prior speatfon. The prior given by
h = 0.6/6 andb = 2 is a poor choice for mean shifis= 1,1.4. This is illustrated in
Figure 3.7 (left), which plots the distribution @f; — fi)/6i2|6i together with the
estimated in-control distribution of the standaedizample meafx;; — x;)/4;|(u; =
X;,0; = 6;). It can be seen that shifts of siz&aand1.44; (vertical lines) are unlikely
under this prior since the two vertical lines falt out in the tail of the prior for the
increased mean. Hence, performance of these cheipesr whem\ = 1 orA = 1.4, as
shown in Table 3.2. In particular, we see thattyipe | error rates are very large
compared to the values in Table 3.1. An exampke gdod prior specificatiorh(= V6
andb = 0.5) is given in the right of Figure 3.7. In this cashifts of sizea = 1,1.4 are

in regions of concentration of the prior density thee increased/ decreased mean.

4 4
:
35¢ Y i 35t
In-control mean :: 3
3t 1 3t In-control mean 2
2.5¢ i 1 257

15¢ Decreased mean Increased mean b 15¢
1r 1r " )
i . Sample mean [ E) Shifts=1,1.4
0.51 Sample megn Shifts=1,1.4 1 05f TH ,
/ Decreased mean _1:: Increased mean
N . S s | |
0 . L £y ’ - 1 0 PR I —
-4 -3 -2 -1 0 1 2 3 4 -8 -6 -4 -2 0 2 4 6 8

Figure 3.7: Poor Prior Specification (left), GoodoP Specification (right)
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Table 3.2: Type | and Type Il Error Rates for PBador Distribution for Mean
Type Il Error Rate] Type | Error Rate

D1 D2 D1 D2
1 0.6vV6 2 0.000 0.003 0.173 0.191
1.4 0.6V6 2 0.000 0.000 0.375 0.394

Shift h b

3.6.2 Example 3.2: Performance Comparison Il

This example demonstrates that proper choicésarfdb can yield performance
superior to WIPLM with corredt. It also investigates the performance of the PEB
method and the effect of using asymmetric priorgtie mean. In this example,= 6,
N = 45 andn = 3. We work with two different covariance matricgg(see Appendix

B), each generated randomly from the inverse Wishatribution with scale matrik,

andp + 1 degrees of freedom. The mean shiftis— u, = (00,0,0,205 /3, —20,/V/3).
Six different choices ok andb and the PED with two values bfare investigated (see
Table 3.3). Table 3.3 gives the results for th&t fiovariance matrix. Figure 3.8 plots the
type Il error rate versus the type | error rateaot®d with Decision Rule 1 for the eight
priors using the symbols given in Table 3.3. Ibgots the error rates of WIPLM, and
thet-test. The figure shows that the prior given(hyb) = (1.5,1.6) can outperform
WJIPLM with L = 2 in terms of type Il error rates (by quite a langargin for the second
covariance matrix). For the first covariance mattine PEB method and the other priors
(except B) are somewhat inferior to WIPLM witk= 2. For the second covariance
matrix, the PEB withb = 0.9 (symbol G) and the pridih, b) = (2,0.9) (symbol C) are
as good as WJIPLM with = 2 while the priorgh, b) = (1.5,0.9), (2,1.6) (symbols

A,D) have smaller type Il error rates but largeyay error rates. For both covariance

matrices, the-test is dominated by the proposed approach.
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Table 3.3: Results for Simulation Experiment antidla for Figure 3.8

Type Il Error Rate Type | Error Rate

h b ﬁﬁ D2 ST D2 | Symeol
15 0.9 0.290 0.290 0.120 0.113 A
15 1.6 0.165 0.160 0.168 0.155% B

2 0.9 0.300 0.230 0.083 0.078 C

2 1.6 0.275 0.255 0.113 0.128 D
2.5 0.9 0.365 0.325 0.065 0.073 E
2.5 1.6 0.380 0.325 0.095 0.103 F
PEB 0.9 0.370 0.340 0.083 0.093 G
PEB 1.6 0.280 0.225 0.100 0.093 H
Asymmetric Prior 1 0.140 0.150 0.023 0.023 -
Asymmetric Prior 2|  0.050 0.060 0.013 0.018 -
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Figure 3.8: Type Il Error Rate versus Type | EfRate for Proposed Approach, WJPLM,
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andt-test for First (Left) and Second (Right) Covariamdatrices

We also consider two choices of asymmetric priorgtie mean:

Asymmetric Prior 1: Fori =1, ...,.4, p(i;16;) andp(4;) are specified according to

Figure 3.4 withh = 3 andb = 0.9; (csq, Csy) = (4,1.5)6;/Vn, (ceq, Cen) =

(1.5,4)6;/n; fori = 5,6, a;q = max{

_ Ca

biq6;/VN

1,1}, Ay = max{ Ciu

biy8i/NN

1,1}, bsy = bgy, = 0.9, bs,, = by = 1.5, and defaulp; for alli = 5,6.

0.35

Asymmetric Prior 2: same as Asymmetric Prior 1 except that= (0.2,0.4,0.4) and

pe = (0.4,0.4,0.2).
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For Asymmetric Prior 1g(us) > 0 if and only ifus € [—0.0343, 1.9765] and for
Asymmetric Prior 2p(us) > 0 if and only ifus € [-0.1563, 2.0965]. This says that
Asymmetric Prior 1 is good for upward shiftsug of sizes less than aboli®74 and
downward shifts of size more tha@r034;. A similar statement can be made for
Asymmetric Prior 2. Table 3.3 presents type | dratror rates for the two asymmetric
priors (the results are for the first covariancdrirp Compared with all other priors, the
asymmetric priors give better results since therprincorporate “correct” prior

information. The priore (us|ds = 1) andp(ug|6 = —1) are concentrated around the

upward and downward shifts of si2es/+/3 in the fifth and sixth mean respectively.
Asymmetric Prior 2 gives better results than Asyririodrior 1 because for Asymmetric

Prior 2,ps andp, give more probability to the true state of nature.

3.6.3 Example 3.3: Comparison with LEB

In this example, we compare our method with the 88%ased diagnostic
procedure LEB introduced by Zou et al. (2011). &ct®n 4.1 of their paper, they
consider a few simulated cases that involve onlgmshifts. In these casgs — u, =
(1,1,0,...,0)T andZ, = (0.5/"~/!). We shall compare our approach with LEB for four
cases of N, n,p): (50,25,4), (1000,25,4), (100,50,6), (1000,50,6).

Note that Zou et al. (2011) apply their methoditmdose changes in the
elements of the covariance matrix as well as thenseThus, to ensure fair comparison,
our method is combined with the likelihood ratisttef equality of two covariance
matrices (Timm, 2002). We assume that if the nyfidthesis is rejected, then the means
are declared in-control but the covariance magigeclared out-of-control. For

comparison with the results in Zou et al. (20119, measure the performance of the
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combined methodith two quantities: the relative frequency withiah the combined
method yields perfectly correct decisions on bo#ans and covariance matriX)( and
the expected number of errors in mean shift deass{BNEM). Note that Zou et al.
(2011) employ the expected number of errors irdgm@sions on all parametefd/E as a
performance measure insteadE®fEM. However, this performance measure cannot be
adopted here because we would need a diagnostiodidr identifying the elements in
the covariance matrix that shifted. Nevertheldsfie combined method is enhanced to
include a diagnostic procedure for the covarianegrim we will haveENE €
[ENEM,ENEM + ap(p + 1) /2], wherea is the significance level of the test for the
covariance matrix ang(p + 1)/2 is the number of elements in the covariance matrix
Table 3.4 summarizes the results for four diffeddices of(h, b), i.e.,
(3,0.5),(3,1),(6,0.5), (6,1), and the PEB method with= 0.5 andb = 1. The table also
reproduces the performance estimates for LEB dgoyeAou et al. (2011). The number of
simulations for each prior B00 and we sel;;,,, = 3000 andt = 1000. Forn = 25,
the shift sizes arBo; /+/n,i = 1,2 and forn = 50, the shift sizes arg.070;/vn,i = 1,2.
Thus,h = 3 andh = 6 can be thought of as poor and moderately goodsgses the
mean shifts respectively. The significance levethaf covariance matrix test is fixed at
0.05 and the cut-off point is obtained from a chi-segabapproximation. Simulation
suggests that this approximation is accurate. Tiougur approachE NE €
[ENEM,ENEM + 0.5] for p = 4 andENE € [ENEM,ENEM + 1.05] for p = 6. For the
purpose of comparison, we $&WVE = ENEM + 0.25 forp = 4 andENE = ENEM +

0.525 for p = 6, which are perhaps worse-case estimates.
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Table 3.4: Estimates of Performance MeasardsNEM, andENE for
Six Prior Distribution Choices and LEB

(N,n,p)

L b (50,25,4) (1000,25,4) (100,50,6) (1000,50,6
¢ |ENEM| . |ENEM| . |ENEM| . |ENEM

(ENE) (ENE) (ENE) (ENE)

0.28 0.15 0.16 0.25

3 05| 081 0.53) 0.91 (0.40) 0.88 (0.69) 0.84 0.78)
0.30 0.20 0.42 0.25

3 1 0.80 (0.55) 0.86 (0.45) 0.69 (0.94) 0.80 (0.78)
0.22 0.19 0.17 0.10

6 05| 0.86 0.47) 0.90 (0.44) 0.90 (0.69) 0.95 (0.63)
0.19 0.18 0.27 0.15

6 1 0.88 (0.44) 0.89 (0.43) 0.83 0.79) 0.90 0.67)
0.17 0.13 0.16 0.12

PEB| 05| 0.88 (0.42) 0.92 (0.38) 0.92 (0.68) 0.93 (0.65)
0.24 0.18 0.21 0.16

PEB| 1 0.82 (0.49) 0.87 (0.43) 0.87 0.73) 0.90 (0.68)
LEB C ENE C ENE C ENE C ENE
037 | 1.04| 036] 126/ 051 085 050 0.94

We see that except for the combinatior{®@fn, p) = (100,50,6) and(h, b) =
(3,1), the performances of the six priors are signifigabetter than LEB (larger values
of C and smaller values @&NE are preferred). Some of the best results arermxdanith
the PEB method. The marked decrease in performahea(N,n,p) = (100,50,6) and
(h,b) = (3,1) is due to the fact thgh, b) = (3,1) yields a somewhat informative prior
centered far from the true shift, aNd= 100 is not large enough for accurately
estimating the in-control parameters. It can bechated from the results in Table 3.4
that for processes that frequently suffer from msaifts, it is better to use the combined
approach than to use the LEB procedure to perfosimaltaneous check on all
parameters for a shift.

We now apply the proposed approach (without thewdamce matrix test) to the

wine quality control example discussed by Zou e(2011), which is based on a real
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dataset. This problem involvéd variables that are measurements from various
physicochemical tests. Zou et al. (2011) showtiatcorrect change point (which is
known) can be found with a change point method t&Ke all observations after the
change point as the out-of-control sample. ThushaxeN = 870 Phase | samples, and
n = 11 out-of-control samples. We compute= vn(xy; — x;)/6; fori = 1,...,11 and
found that the four largedt are fori = 4,5,8,11 with values1.95,3.32,3.88, —4.38
respectively. The fifth largeg; only have magnitud&.45. Eight priors given by

(h,b) € {2,3,5,7} x {1,1.5} and the EB method are tried. For the EB methodsate

I = {4,5,8,11}. All nine prior distributions result in apprecialprobability for(u; — x;)/
;1(8; = 1) over the interva1.95/+/11, 4.38/+/11] (see Figure 3.9 for a plot of the
priors obtained via the EB method). The resultsinietd for all priors are similar. All
nine posterior modes @f are identical, with & in the fifth and eight positions,-al in

the eleventh position, and zeros elsewhere. Thétsemre obtained with;;,,, = 20000

h=3.3834,a=14.045

12 ;

10+ ' i
8t E i
6r # In-control Mean 1
at i
Al i (1.953.32,3.88,4.38)/sqrt(11) |

Sample Mean i
Decreased Mean e ) Increased Mean

0 : =
-4 -3 -2 -1 0 1 2 3 4

Figure 3.9: Plot of Prior Distributions Obtaine@¥he EB Method and
DenSity Of(ffl - fl)/6l|(ﬂl = fi, o, = 61)
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Figure 3.10: Marginal Posterior Distribution of Baadicator for EB Method,
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andt = 10000. For the EB method, the marginal posterior distitns ofs;, ..., §;; are
plotted in Figure 3.10. The results clearly indectitat the fifth and eight mean shifted
upwards and the eleventh mean shifted downwards.agnees with the conclusions
reached by Zou et al. (2011) using LEB.

Finally, note that although we det {4,5,8,11}, the EB method identifies a shift
in us, ug, andu,, but not inu,. Thus, the choice dfdoes not determine the means that

will be identified as shifted.

3.6.4 Example 3.4: Fruit Juice Data

We analyze process monitoring data collected frdraijuice process given in
Table 4.3a of Beltran (2006). The data, which isppendix C.1, consists of the
concentrations in microgram per standard volume f11 amino acids (names of the
amino acids are given in the appendix). We takeptiase | observations as the fi25t

observations and the phase Il observations agthainingn = 11 observations.
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However, there are some phase | observations kbiabgtside théd5% control limit of a
T2 chart for the phase | observations (see Bersitrag €2007) for a formula for the
control limit). We removed the four observationsws 16, 20, 22, and 25 of the data in
Appendix C.1) that fall above the control limitcomstructed the control chart, and
further removed two observations (rowsahtl 12) that fall above the revised control
limit. The remaining observations all appear tarbeontrol. Thus, we hav¥ = 19 in-
control phase | samples.7¢ chart for the fruit juice process (without thé value for
observations that were removed) is plotted in Fedliil. We see that four of the phase II
samples plot above t9% upper control limit.

Ten of the values of; = vn(x;; — %;)/6; fori = 1, ...,11 exceed two in absolute
value; only|1;| < 2. Takingl = {1,2,4, ...,10}, we find thath?8 = 3.58 anda®® =
2.01 = VNstdev{(%;; — %,)/6,,i € I} > (R¥2/2){/(N/n) — 1 = 1.35. The posterior
mode ofd (Nt = 20000 andz = 10000) is (0,0,0,1,0,0,0,1,—1,—1,0) and it has
probability abou0.3. The marginal posterior distributions of thés, which are plotted
in Figure 3.12, give the same information. Thisc¢ates that means 4 and 8 shifted
upwards whereas means 9 and 10 shifted downwaltmughA; = 0.141 is smallest in
absolute value, the posterior probability that= —1 is quite high (about 0.3). This can
be explained as follows. Variable 3 has positivealations with variables 4 and 8 but
negative correlations with variables 9 and 10. Tlfusis assumed that one or more of
means 4, 8, 9, and 10 did not shift so that thesually large or small values &f;,i =
4,8,9,10 are explained by natural variation, we would exp@gdo be quite large and
positive. Sincel; is small, mean 3 could have shifted downwards.aW¥e tried(h, b) =

(2.5,0.8),(5,1). For these priors, the shift decisions given bgiBien Rules 1 and 2 are
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identical to those obtained with the EB method.
Appendix C.2 gives a plot of the observations fachevariable. The figure gives
some indication that the means of variables 4,®ldnshifted. However, it seems hard to

tell by a visual inspection of the figure whethiee tmean of variable 8 shifted.
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3.7 Conclusions

We have proposed a Bayesian approach to idengfynigans that shifted and the
direction of the shifts when a control chart foe thean of normal variables signals but
the data indicate that the covariance matrix renmacontrol. We introduce an indicator
variable for each mean whose valuek0,1 indicate whether the mean shifted
downwards, remained in-control, or shifted upwailds prior for each mean
conditioned on its indicator captures prior infotioa about the in-control and shifted
states of the mean. The Bayesian hierarchical medglecified by prior distributions for
the shifts, the indicators of the shift directioasd the covariance matrix. The prior
distributions for the in-control mean and the irseecovariance matrix are derived from
phase | data. Assumptions are made to simplifytior distributions and guidelines are
given to choose the prior parameters effectivélyGibbs sampling algorithm for
sampling from the posterior distribution of the t@of indicators is given.

We propose two decision rules to identify the npysbable state of each mean.
The first is to pick the value of each indicatotiwthe highest marginal posterior
probability. The second is to pick the posteriord@maf the vector of indicators. These
guantities can easily be estimated by their samplaterparts. Monte Carlo simulation
shows that the proposed Bayesian approach alwafmpe better than thetest and
can have performance comparable to the best sutnsant of WIPLM with correctly
specified number of mean shifts. Moreover, it almo outperform the LEB approach
when shifts in the mean are more common than shittse covariance matrix. In all
examples, the EB or PEB method for specifying theror the mean gives good results.

The EB and PEB methods are attractive becausethef is entirely data driven and the
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latter only requires the user to specify one pparameter. For these reasons, we
recommend the EB and PEB methods for practical use.

We have considered modeling the mean with a mexd@ithree normal
distributions. However, it is straightforward totemd our work to include modeling the

increased and decreased mean with truncated ndistabutions. Truncated prior

distributions may yield better results. If we p&u|8) o [P 5| zexp {—%(u —

05) Y5 (u— 05)} Iz (1), wherelz, (n) = 1 if p € E5 andlz, (1) = 0 otherwise, and

Es IS a hyperrectangular set that dependé,ahen the full conditional distribution of
eachy; is truncated normal. Hence, we can sample fronpdiséerior distribution o
using the Gibbs sampling algorithm given in Fig8r& with a modified Step 3. The
modified Step 3 is to sample from, ..., u,, one at a time, where eaghis sampled from
a truncated normal distribution.

Finally, we mention that we are researching théctopincorporating prior

knowledge about causal relationships between Vasahrough the prigw(9).
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CHAPTER 4
A BAYESIAN APPROACH FOR MODEL SELECTION IN
FRACTIONATED SPLIT PLOT EXPERIMENTS WITH

APPLICATIONS IN ROBUST PARAMETER DESIGN

4.1 Introduction

Split plot designs are widely used in industrigbestimentation. In these
experiments, the wholeplot and subplot treatmemseparately randomize@®ue to the
restriction in randomization, two sources of errams present. A wholeplot error is
incurred when a wholeplot treatment is applied whaleplot unit whereas a subplot
error is incurred when a subplot treatment is &gplo a subplot unit. As a consequence
of this error structure, effects in split plot exnpgents can be divided into wholeplot and
subplot effects. Subplot effects tend to be estehatith smaller variance than wholeplot
effects. As such, analyzing a split plot experimastf it were completely randomized
can be misleading. Spurious wholeplot effects n&ajolbind significant and real subplot
effects may be missed.

Traditional methods for analyzing split plot expeeints are the ANOVA
(Giesbrecht and Gumpertz, 2004; Wu and Hamada,)20t9generalized least squares/
likelihood (Letsinger, 1996; Goos et al., 2006; N&eal., 2007; Jones and Nachtsheim,
2009) methods. Although these methods are usefafalyzing many split plot
experiments, there are many experiments in rokarsinpeter design (RPD) where they
cannot be applied because there are insufficiagegs of freedom for simultaneously

estimating all wholeplot and subplot effects, amelwholeplot and subplot error
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variances. In these cases, a Bayesian approachenaken. Some early work on
Bayesian analysis of variance components modefi#irél965), and Tiao and Tan
(1965). Gilmour and Goos (2009) and Wolfinger aras4%(2000) analyze split plot
experiments using Bayesian methods; the latterrpidges not discuss selection of
significant effects. The analysis in Gilmour ando§¢2009) is based on the marginal
posterior distribution of each effect, althoughytleenploy mixture priors for the
coefficients and note the utility of such priors éstinguishing active and inactive
effects. Other recent works include Vounatsou amdl$(1997) and Sun et al. (1996).
Recently, Bingham and Goh (2012) extend the stdichssarch variable selection
(SSVS) approach of George and McCulloch (1993)Gnigman et al. (1997) for split
plot experiments.

Highly fractionated orthogonal array designs thatran with restrictions in
randomizations are often employed in RPD. Thesgdggan provide independent
estimates of main effects, but if two-factor int#rans are also taken into account, a
pattern of complex aliasing emerges (Chapter 9 ofad Hamada, 2009). A special
type of design used in RPD is thessed arrayor inner-outer array in Taguchi’s
terminology), which is built from the Cartesian guat of two orthogonal arrays. In
Taguchi’s applications, control factors are assigtoeone of the arrays, called the control
array, whereas noise and signal factors are askignbe other array, which we call the
signal-noise arrayTwo methods have been proposed to analyze aect@sgy: the
performance measure modeling and the response img@gproaches (Chapter 11 of
Wu and Hamada, 2009). In the response modelingbappr crossed array designs are

often analyzed as if they were completely randothitowever, in reality, many crossed
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arrays are run as split plot experiments to reawst of experimentation (Box and Jones,
2001). In some cases, the control factors are tiweplot factors because they are more
difficult to change whereas in other cases, theadignd noise factors are the wholeplot
factors. Split-plot designs obtained by crossirgutar two-level fractional factorial
designs for the wholeplot and subplot factors caamalyzed using half-normal plots
(Box and Jones, 2001). However, this simple ansiysthod has limited applicability
because crossed arrays employed in practice oftesists of highly fractionated control
and signal-noise arrays with more than two-levetssbme or all of the factors.

In view of the high cost of experimentation andgbical restrictions, the
possibility of running a split plot experiment wigawer wholeplots than wholeplot
effects and a small number of subplot runs is gfartant practical interest. Designs that
are proposed to satisfy this need include fractitaeorial split plot designs (Bingham
and Sitter, 2003) and Taguchi’s split unit desigfeguchi, 1987). Split unit designs are
highly fractionated mixed-level designs derivedhirorthogonal arrays by grouping rows
according to columns designated for wholeplot fexctdhese designs are difficult to
analyze with most existing methods if two-factdenactions in addition to main effects
are entertained.

To address the above problems, we propose a Bayesidel selection
methodology for analyzingny balancedplit plot experiment, i.e., the number of
subplots in each wholeplot is the same. In pasicut can be applied even if the design
is nonorthogonal and the full model cannot bedittele to insufficient number of runs.
We enhance the conjugate hierarchical model forS8%orge and McCulloch, 1997)

to account for the split plot error structure. Wagide an expression for the posterior
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probability of a model that requiresmputation of at most two uni-dimensional
integrals and employ this quantity for model selection. Mg¢e forward selection (FS) to
find good models in regular two-level fractionatti@arial experiments and propose a new
algorithm, called combined global and local sedf&hS), for more complex designs.
GLS is an algorithm that searches for models witkt@rior probability above a threshold
using a large and diverse set of starting pointsilé\it explores the model space by
changing the indicator components one at a time &bbs sampling, it differs from
Gibbs sampling because it uses large number dirgjgoints and avoids unnecessary
revisiting of the same models. Another attractvatfire of GLS is that despite the fact
that it is not a Markov Chain Monte Carlo (MCMC) tined, it can be used for estimating
posterior model probabilities using a simple pragedhat we propose. To allow the
proposed method to be automated and routinely lggadactitioners, we propose default
prior choices and show that they give good fregseptoperties. Our approach is
different from Bingham and Goh’s (2012) approach fiew ways. First, we use a
different parameterization of the covariance madnx a different prior for the model
coefficients. Second, we give explicit expressifumghe posterior model probability and
other posterior quantities, and we propose noggraghms for finding good models.
Third, we apply the proposed method to real proslenRPD. Finally, we give more
emphasis on default prior choices and frequentgbgrties.

This chapter is organized as follows. Sectionidu@duces the sampling model
for balanced split plot experiments. Section 4\&githe Bayesian hierarchical model
and expressions for some posterior quantitiesi@edt4 discusses prior specification.

Section 4.5 discusses model search algorithms amgutational issues. Simulation
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studies of the proposed method and analysis oé tte@ split plot robust design

experiments are given in Section 4.6. Concludimgams are given in Section 4.7.

4.2 Split Plot Design and Sampling Model

In this chapter, we assume that the split plotgies of the balanced type, i.e.,
there areV wholeplots anda subplots per wholeplot. This gives a totahof Nr
observed response values. The wholeplot factotdeare denoted bg?, ..., dy and the
subplot factor levels for thi#gh wholeplot are denoted ki, ..., d?,.. The corresponding
values for the wholeplot and subplot effects lewetsdenoted byY, ..., xy and
X3y, ..., X3, respectively, where}’ = f(d}’) andx; = g(d},d;;). We write the design
matrix and vector of observations as

w s
dl 4 dll
w s

1,%1r

Y,
D= Y=t )Y, =y, )7, (4.1)
kd\év,d_qu | (YN> i i1 ir
W- S /
N»™%Nr
whereY;; is the response for thieh subplot of theéth wholeplot.The corresponding

model matrix for the full model, excluding the cain of ones, is given by

Xl _ (x‘l./lefl)
X=| : |, whereX; = : : 4.2)
XN (x‘ile?r)
We assume that the columnsX#re centered and standardized so that the sum of
squares of each of igscolumns isn. For crossed array designs, the subplot treatment
combinations are the same for all wholeplots. Onté@arrays consists of the rows

Y, ...,dy, and the other consists of the rodis ..., d;. The desigrD is the Cartesian

product of the two arrays.
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The sampling model for a balanced split plot expent is
Yii=Bo+xijB+e+e;i=1..,Nj=1,..,r, (4.3)
wherex;; = (x‘{", xfj); B is thep x 1 vector of regression coefficients; ..., ey are the
wholeplot errors, which are independent and idatyidistributed (iid) with common
distributionN (0, 62); e;4, ..., ey, are the subplot errors, which are N0, ¢2) and
independent of the wholeplot errors.

Assuming model (4.3) holds, the variance of anviddal observation ig? =
var(Y;;) = oy, + o and the correlation between subplot observatiorise same
wholeplot isp = corr(Y;,Yy) = o /(0w + o). Thus, observations from different
subplots in the same wholeplot g@sitively correlatedlt is easy to see that
observations from different wholeplots are indeparid

Variable selection can be an important problenfrimetionated split plot designs
that are used to study a large number of factoug. 0 the large number of effects, it is
desirable and perhaps necessary to identify aepaoslel rather than to include all
effects in (4.3). However, due to the error sutetof (4.3), many variable selection

techniques cannot be applied to this problem.

4.3 Bayesian Hierarchical Model for Variable Seleg¢bn
In this section, we present the proposed Bayes&marghical model, and derive
expressions for the posterior probability of a made some other posterior quantities.
In the following two sections, we discuss prior&fieation and model search. It is clear
from the discussion in Section 4.2 t4g,, B, 02, p~N(Bo1 + XB,0*R,,), wherel is a

vector of ones,
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Ry=1y®( ¥ | (4.4)
is then X n correlation matrix andy is theN X N identity matrix.

The main inference problem is the identificationmportant effects, i.e., variable
selection. Thus, as in George and McCulloch (19@8)introduce an indicator vect8r
where a 1 in positionindicates that effegtis large and @ in positioni indicates that
effecti is small. In other words, whef) = 1, effecti is included in the model and when
6; = 0, itis not. Note that there are alternative Bagmesiariable selection approaches
that do not use indicators (see the review papé&’blara and Sillanpaa (2009)).
Following the conjugate hierarchical setup of Geargd McCulloch (1997), we let
Blo?,8,c~N(0,02S5.), (4.5)
whereS; . is a diagonal matrix given I8 . = diag{cI(6; = 1) + dI(§; = 0)}, c is
given a priom(c) concentrated on values larger thgrandd is a small nonnegative
number. Thus, conditioned @ = 1, ¢ anda?, B; will have variances? and

conditioned or§; = 0 anda?, B; will have variancelo?. As in SSVS, we leb(8,) « 1,

p(0?) o (63) G exp (- 2), (4.6)

207
p(8) = ploli(1 — pyp-lidlh, (4.7)
Finally, we set the joint prior for the parametggsp, o2, 8, c, ¢ as
p(Bo,B.0%,8,¢c,9) = p(Bo)p(Blo?, 8, c)p(c®)p(8)p(p)p(c), (4.8)
wherep (@) andp(c) are the priors op andc. Choices op(8), p(c), p(¢) andd, v, 4
shall be discussed in the next section. Note thbiteithe parameter, the parametet is

a fixed value.
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The primary objective of this chapter is to addrée problem of model selection
for a split plot experiment with many effects ofarest. This objective can be achieved
by finding one or more models that have high past@robabilityp(8]Y). We shall
search for models with high posterior probabilising the FS and GLS algorithms to be
discussed in Section 4.5.

However, identification of good models is not stitfnt for achieving the goals of
robust design experiments. The engineer also rteduks given point estimates and
credible intervals of effects. Inference Brbased op(B1Y, 87), whereé; is thehighest
posterior probability(HPP) model, is the natural step after model sieledf there is not
too much model uncertainty. If model uncertainthiigh, then inference g should be
based o (B|Y,8 € M), whereM is a set of high probability models. It is als@fus to
perform conditional inferences ghbased om(B|Y, 8) for eachd € M in cases where
the intention is to interpret effects, predictoptimize based on each model separately to
compare the results. In this chapter, we providexamession for computing(B1Y, 6)
and show thap(p;|Y, 8) is a mixture of-distributions. The latter fact is used to
construct credible intervals f@. Since we can compug&g;|Y, 8) exactly anch(6]Y)
up to a proportionality constante can also computg;|Y, & € M) using the relation
p(BilY, 8 € M) = Yserr D(BilY, 8)p(81Y) / Xsenr r(8Y).

Aside from model selection and effect estimatitie, éxperimenter may be
interested in estimating the quantyyalso. This is important for the optimal design of
follow-up runs (Goos, 2002), which may be neededmitimere is substantial model or

parameter uncertainty. Point and interval estimesgsbe obtained with(¢|Y, 6 €

M) = Ysem P(@,6Y) / Xserc p(S]Y).
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The problem of computing the posterior distributajrthe indicator and other
parameters is computationally challenging. A comiyposed method is MCMC as in
SSVS. However, we are able to integrate(@jiz?) from the joint posterior distribution
of all parameters because we use the normal-ingaisena prior for these parameters.
This allows us to derive expressions for the pastenodel probability (see (4.10)) and
other posterior quantities of interest (see (4(#1)4)) that require evaluation of at most
two uni-dimensional integrals. Consequently, the @sMCMC is not necessary.
Integrals are computed with Gaussian quadratuesemnple but reliable search
algorithms are employed to find models with higlsteoior probabilities. This approach
eliminates the need for convergence diagnostiasalaws the method to be automated
and routinely used by unsophisticated practitioners

In the following, we shall state results about @as posterior quantities of
interest. We give the joint posterior distributioiall parameterg(B,, B, 02, 8, ¢, p|Y)
in Proposition 4.3.1. This can be used to deriVethker posterior distributions of interest.
Proposition 4.3.2 gives the posterior distributddrthe indicatop (8|Y). The posterior
distribution of the effects given the indicapiB|Y, §) and the corresponding marginal
distributionp(B;|Y, 6) are given in Propositions 4.3.3 and 4.3.4. Lastlg,posterior
distribution of the correlation paramejgfp|Y, § € M) is given in Proposition 4.3.5.
These propositions give important quantities fer @inalysis of a split plot experiment.
Proofs are outlined in Section D.2 of Appendix t&lthat several other quantities such
as the posterior distribution g, + xB can be derived from the results given below.

Proposition 4.3.1:The joint posterior distribution df3,, 8,52, 8, ¢, @) is

p(Bo, B, 02, 8,¢,9Y) o« L(By, B, 02,8, ¢|Y)p(Bo)p(Bla?, 8,c)p(a®)p(8)p(¢)p(c)
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VA+RSSs .

_ -1/2
 (02) (n+p+v+2)/2|R(p| exp( -

) exp {_ % (B- ms.cxp)TGc;.ixp (B-

Macy)}exp (— %) s p@®P(@IPE), (4.9)

whereL(B,, B,c2, 8, p|Y) is the likelihood,
_1 _ — — —
Gsep =Ssc—S5cX (R, +XS5.X") XSs5.,ms.p = Gsc, X R,A(Y-Y), Y =V1,

— — -1 — _
Y =3N 3 Y /n,RSSsc = (Y —V)T(R, + XS5.X") (Y —Y),and1"R,'1 =

n
1+(r—-1)e¢’

Proposition 4.3.2:The posterior distribution af is given by

T{n—l+vﬂ2

p(BIY) = [, [ p(8,c,0lY)dede o [} ["[vA+ RSSs., | XS5 XT +

R, (1"R;1)*p(®)p(9Ip(0)de do. (4.10)

Proposition 4.3.3:The posterior distribution g8 conditional ond is given by

p(BlY,8) =K fol fooo t(B;msep, (n+v—1)" (A4 RSSs.)Gscpn+ v —1)

(n+v-1)/2 -1/2

(vA+ RSS5c,) IR, + XS5 XT| " *(1TR;11) " *p(@)p(c)dedp,  (4.11)

()

o -(W+p)/2
Wheret(ﬁ; m, 'U) = W ]

67 [1+ = B~ W)TE (B~ )

n+v-1

is the multivariatet probability density function with meah, scale matri>G and?
degrees of freedom, and
K =

—(n+v-1)/2 —1/2(

_ -1
|X55,CXT + R(p| 1TR;11) 1/2'p(go)p(c) dcd(p] .

/5 1 (v + RSS5.,)

Remark: The distributionB|Y, & is a mixture of multivariate distributions with weight

function
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—(n+v-1)/2

w(c, ) = K(uA+ RSSs.,,) XS5 X+ R,| A (1TR;11) " *p(@)p(0).

Corollary 4.3.1: The posterior mean ¢ conditional ond is given by

EBIY,8) = [} [, mscp w(c, p)dcdgp. (4.12)
Proposition 4.3.4:Let m; denote théth component ofns . ,, 8; denote théth
diagonal element dfn + v — 1)1 (vA + RSSs.,)Gsc,p- ThENp(B;1Y, 8) =

fooo fol w(c, )t(B; my, 0;,n + v — 1) dedc, wheret(B;; m;, 6;,n + v — 1) is the
univariatet-distribution with meamn;, scaled;, andn + v — 1 degrees of freedom.

Thus,

P(B; < xIY,8) = [, [ 0(c,@)P(tnsv-1 < (x —m;)/|[6;) dpdc, (4.13)
wheret,,,_, is at random variable with meah scalel, andn + v — 1 degrees of
freedom.

Proposition 4.3.5:The posterior distribution of correlation paramegteronditional on

6 € M is given by

]—(n—1+v)/2 -1/2

p(@l¥,8 € M) & Lsepr f, [vA+ RSSsc XSs5.X" + R,

(1"R;'1) " *p(c)dep(8)p(9). (4.14)

4.4 Prior Specification
This section discusses the problem of prior speatiton.
i. Choice ofp(¢): The key feature of the proposed Bayesian hiereatimodel that
distinguishes it from SSVS is the correlation pagtenyp. An obvious choice fop(¢) is
the beta prior, i.e(p) « @* (1 — ¢)?~1 . In this chapter, we set= b = 2 so that

p(@) is symmetric with a mode of 0.5. This has theafé# pulling the posterior mode
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of ¢ towards 0.5 when the data are scarce. An altemaltioice ofa, b) isa = b =1,
which yields a uniform prior fog. This choice tends to yield a posterior mode of
closer to O or 1 than the previous choice. Lardeesofa andb are not recommended
since the beta distribution becomes more concewtiada andb get large.

If ¢ has a prior concentrated near 0, models with leaties of number of
wholeplot effects to subplot effects are favorewsithe wholeplot error variance is
small compared to the subplot error variance. Cglg, a prior forp concentrated near
1 will favor models with relatively fewer wholepleffects. If we sep = 0 or ¢ = 0.99
(if ¢ = 1, the covariance matrix f&f would be singular), we would observe two
opposite and extreme behaviors in the model selegtiocess. With little data available,
a prior forg with mode at 0.5 such as the beta prior with b = 2 is recommended.
This can help avoid extreme behavior in the modkddion process.

ii. Choice ofp(c): We use a discrete uniform prior fowith support
{(1/2)%,(3/4)?,17,27,3%,4%,5%}. (4.15)
We have found that results obtained with a fixeld@afc can be sensitive to the choice
of c. If one fixed value ot is used, a large value of(so that/co is large relative to

most nonzerg;’s) tends to favor (usually sparse) models witlydeeffects. In this case,
small effects can be missed. On the other hand] salaes ofc tend to favor less sparse
models. However, a very small valuecofvould again favor sparse models possibly
because the Bayesian model does not support tleghegis of a true model with many
effects that are considerably larger tRaw. The support (4.15) of the proposed prior for
¢ covers both small and large values ot hus, for the discrete uniform prior proposed

above, results obtained are averaged over smalbagel values of.
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iii. Choice ofd, v and A: In this chapter, we sét=v =1 = 0. Note thaw =1 =0
yields the common noninformative prior fof while d = 0 implies that we se; = 0 if
6; = 0. These choices are also employed by Box and M@gf3). The results given in
Section 4.3 are derived assuming Bat?, §, c has a density, i.ed, > 0. However, the
expressions fop(8|Y), p(B|Y, 8), E(BIY, ), p(B;|Y, 8), andp(@|Y, M) given in
Propositions 4.3.2-4.3.5 and Corollary 4.3.1 ar# defined ford = 0. The choice

d = 0 in each of these expressions can be interpretdtedsniting value ag — 0. In
addition, these results can also be obtained byaimg a degenerate normal prior for
Bla?, 8, c, where conditional on?, 8, andc, 8; = 0 if §; = 0 and the otheg;’s are iid
normal with mean 0 and variance?.

iv. Choice ofp in (4.7):Following the recommendation of Box and Meyer (199& set
p = 0.25. We have found that this choice works well. Howew¢her values op can be
tried. For example, to avoid missing important etffe one may want to tgy = 0.5.
Although this chapter employs iid Bernoulli pridos the §;’s, alternative forms b (8)
such as the heredity prior proposed by Chipmaih €1297) and a beta-binomial prior
can also be employed.

Remark: Some papers (e.g., Gelfand et al. (1990)) on Bagesriance components
models employ independent priors &f ands?. However, it seems that in many
experiments, it2 is large, thew? should also be large and vice versa. For example,
suppose a wholeplot is a batch of material andbalstiis a smaller quantity taken from
a batch. Then, if the batches are manufacturedlmnatable process so that variation
between batches is large?(is large), within batch variation would likely berge also

(a2 is large). The proposed pripfep, 02) < % 1(1 — ¢)?~1/o? reflects this
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relationship betweea? andos?2. It can be shown thd(c32|02) = g2a/(b —2) if b > 2
and the mode qgf(c|02) ism = max{cZ(a — 1)/b,0}. Thus,E(a3|c2) is
proportional tas? for b > 2 and the mode is proportional 4g for a > 1. This implies

that a larges? tends to give rise to a largg and vice versa.

4.5 Computation Strategies
This section proposes two algorithms for modeldedfS and GLS. Some issues

in computing the posterior quantities given in 8ect#.3 are also discussed.

4.5.1 Forward Selection Algorithm

For regular two-level fractional factorial desigimge propose the use of a FS
algorithm, i.e., a greedy optimization algorithim find models that have a high posterior
probabilityp(6|Y). Because the normalization constantf6é|Y) given by (4.10) is not
known, we cannot computg€é|Y). Our implementation of FS maximizes ibg
posterior odds rati@ (&) = In[p(8|Y)/p(0]Y)], which is equivalent to maximization of
p(6|Y). The simple procedure is given below:

FS Algorithm

1. Start withd = 0, the null model. Sat= {} and] = {1, ..., p}.

2. Find the termi* € J that, when added to the current model, yielddalrgest
posterior odds ratio, i.ei} = argmax;c;{o(8;y(;)}. Setl =1 {i*} and
J=N\{"}

3. Repeat Step 2 a total pftimes. This generates a setpainodels (one model of
each size).

4. Choose from th@ models the one with the highgsisitiveposterior odds ratio
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0(6). If there are no models with positiv€d), choose the null model.
Note that ifp, the prior probability that an effect is activejncreased, larger models
tend to be favored and the HPP model may changeet#er, the sequence of effects
entered into the model will remain the same ifitakie ofp is changed. This is because

for a given moded, a change ip from p; andp, merely increase(é) by ||8]|1{In[p,/

(1= p)] = In[p, /(1 —p]}

4.5.2 Global and Local Search Algorithms
For designs that do not give independent effaanases, FS often yields poor
models. In such cases, we use GLS, which condistglobal search (GS) algorithm and
a local search (LS) algorithm:
Global Search (GS) Algorithm
1. Start with an indicatod® = 6° € Dg. Set{ = —o.
2. Fori=1,..,p, obtaing® from §° by switching the value off (from0Oto 1 or1
to 0).
3. Findi* = argmaxi{o(Si)}.
4. If 0o(8") < ¢, stop and returns°?t = §°. Otherwise, sef® = §*', { = 0(8°) and
go to Step 2.
5. Repeat Steps 1-4 for eadh € D 4. In this chapter, we takRz to be a 100-run
maximin design on the model spg€el }?.
Local Search (LS) Algorithm
1. Specifyt and compute thminimum acceptable criterion vall¢ACV =
0(6;s) — Int, whered is the HPP model found by GS.

2. Start with] = {§°Pt} and] = {6°P'}, where§°?! is a local optimal solution found

135



with GS such that(§°P%) > MACV. Setd® = §°P¢,

3. Fori=1,..,p, obtaing® from §° by switching the value af (from0to 1 or 1
to 0). If §* ¢ I ando(8") = MACV, setl = 1 U {§'} and] =] U {&'}.
4. Set] =J\{6°}. If ] is empty or if|I| > 10*, stop and return. Otherwise, sef’

equal to the first element jnand return to Step 3.

5. Repeat Steps 2-4 for ea8fPt that satisfie® (6°Pt) > MACV.

Note that GS returns a local optimal solut&i® for each given starting
indicatord®. Given the current indicatd (which is initialized a$?), it finds an
adjacent vector (one that differs fra¥fiin only one component) that gives the largest
improvement oveo(8¢). The best adjacent indicator becomes the cumelitator, and
the process is repeated until no further improvamean be achieved. The g of
starting indicator#® for the GS algorithm can have an important infieeeon the results
obtained with the algorithm. We have found thataximin design (Santner et al., 2003)
on the model spad®,1}? is a better choice fdD s than a randomly generated design
because GS witB 5 tends to consistently give good models whereast@$ed from
random indicators do not. To generate a maximiigdesve generate a large number
(usually 10,000) of random designs, where the carapts of each design are sampled
from independent Bernoulli distributions with suss@robability0.5. For each design,
we compute the minimum pairwise distance betwesigdeuns, and then pick the
design with the maximum pairwise distance. We reoemd takingD 50 to be a design of
100 runs because we have found that results obtavitk this choice tend to be good
(finds most or all good models) and consistenty(semilar results for all replicates).

However, our experience indicates that the designreay need to be increased for
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experiments witlp > 30 andn < p.

The local search (LS) algorithm searches arounddloel local optimal solutions
(6°P that satisfie® (8°Pt) > MACV) for good modelsq that satisties (6) = MACV).
We takeMACV = 0(6;s) — Int, wheredy is the HPP model found by GS anis a
constant that we choose (note tig$ is not necessarily the true HPP model over the
entire model space). This implies that we are amtlgrested in models that have posterior
probabilities at least/t times that of the HPP model. Note that Madigan Raftery
(1994) have also proposed a search techniquedafagphical models that meet the
MACV requirement. The LS algorithm builds up a set otleis/ whose log posterior
odds is at leag ACV, and then conducts further local searches aroackd ef those
models. The main difference between GS and LSaisli8 is willing to explore sub-
optimal models (i.e. those whose log posterior adds leasMACV), while GS only
follows paths through the model space that incrdas@osterior probability. We have
found that when there is substantial model una@staindt is large, the sdtcan grow
very large, causing the algorithm to be unabletminate within a reasonable amount of
time. To circumvent this problem, we terminate LiSew!/ contains10* or more models.

GLS has a few potential advantages over Gibbs kagniitHeaton and Scott,

2010). Firstly, it can be more efficient computattly. Since LS systematically explores
neighboring models, it does not reevaluate the sandels. While GS may revisit the
same models when restarted from different poibteyiminates each time it finds a local
optimum. In contrast, Gibbs sampling would reviegh probability models frequently.
Secondly, when there is a large number of good medbat contain very different effects

(i.e., when there is a large number of good locafiiimal solutions), GLS can efficiently
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discover these models. In contrast, an MCMC chaset on Gibbs sampling may get
stuck around one of the locally optimal solutiohiis creates the need for convergence

assessment using multiple starting points and ngnihlarkov chains of long lengths.

4.5.3 Estimation of Posterior Model Probabilities
Note that the posterior probability of a modek p(8|Y) = yexp[o(8)], wherey
is a normalization constant. We use the followirgtimd to estimate posterior

probability. Letds, ..., 87, wherep(8;]Y) > - > p(8j,

Y), be the models found by
GLS withMACV = 0o(8;5) — Int. Then,

p(87|Y) < q.(8}) = exp[o(8))]/{Zi", explo(8]]}. (4.16)
If for eacht in a sequence of increasing value&S finds the same HPP model (so that
0(6zs) is constant ant ACV decreases), and GLS finds all mod®such thab(6) >
MACV, theng,(8}) is monotone decreasing alioh,_,., q.(8;) = p(8;
Y):

1. Run GLS for a sequende,, ..., t; } of increasing values af We recommend

Y). This gives a

method to estimate(5;

takingt; = Tl with T = 50 andk = 4.

2. Stop if eithefq,, (83), ..., q¢, (8})} is not monotone nonincreasingdffs # &; or
the topM models do not remain the same (if less tlamodels are found when
t = t;, then check that no additional models found with t;,; meet the ACV
requirement witht = t;). In this case, the size Dfso needs to be increased
because GLS does not give consistent results.

3. Estimatep(s;

Y) with p(8;

Y) = q.,(8;). Alternatively, use the model

O q.(67)] = @y + a1 /VE, whered(*) is the standard normal cdf. In this case,
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estimatep(67|Y) with p(87|Y) = ®(@,), whereg, is the least squares estimate

of ay, andp(8;|Y),j > 1 with p(&;|Y) = [p(8;1Y)/P(851Y)15(8;|Y). Note that

p(plY,8 € M) andp(B;|Y, 8 € M) can be computed witht equal to the tom
models in{b‘*, *L‘,tk} such thap 2, p(8;]Y) is large.

Remark 1: We recommend = 50 andk = 4 because we have found tlgag,(67) is
often quite close tp(87|Y). The decrease i (67) tends to be slow far greater than
100. Moreover, as increases, the set of models that satisihMAEV requirement
increases, which can make GLS time-consuming.

Remark 2: Step 2 ensures thBis is large enough so that GS consistently findHRe
model returned by GLS, and GLS consistently firdstbpM models, wherd/ should
be large enough to include the top few models Wigin posterior probabilities. We take
M = 10 for all examples in this chapter.

Remark 3: The modekb~1[q.(83)] = ao + a;/+/t, wherea; > 0, is accurate for
estimatingp(67]Y) in simulations we performed. Moreover, it is agell-behaved.
Sincelim,_, o (@ + a1 /Vt) = aq, p(8;1Y) = g, (87) is estimated withb (a,), which is

in (0,1).

4.5.4 Other Computation Issues

Computation op(8|Y) given in (4.10) and the posterior mean and credibl
intervals for the components g§- via (4.12) and (4.13) require evaluation of low
dimensional integrals. Because we use a discreteromprior for c, all integrals with
respect ta in (4.10)-(4.14) can easily be replaced with &rsums. However,

computation of (4.10)-(4.13) requires integratiokthwespect tap. We compute this uni-
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dimensional integral using the Gaussian quadratwihod (Miller and Rice, 1983).
Sincep(p) has a beta distribution and all moments of tha dedtribution can be
computed with a simple recursive formula, we cagilgaompute ari-point discrete
approximation t@(¢) such that the firs2. — 1 moments of the discrete approximation
match that of the beta distribution. Details of flmecedure for doing this is given in
Section D.3 of Appendix D. Denote the support pooftthe discrete approximation by
&, ..., &, and the corresponding probability masses/by.., w;. Then, this discrete
approximation is used in place @f@)d¢ to compute integrals. Al-point
approximation will give exact values of integralghwrespect te(¢)de if the integrand
is a polynomial of degre2l — 1 or less. Thus, the use of a sniaik sufficient to
approximate the integrals (4.10)-(4.13) accuratelyhis chapter, we ude= 5.

The integrand of the unnormalized posterior proliteds p (8]Y) given by (4.10)
tends to be extremely small in value. Thus, to mwprcomputation accuracy, the
logarithm of the integrand should be computed atstipport points gi(c) and the
discrete approximation @f(¢). Then, a constant should be subtracted from egttteo
guantities before they are exponentiated and sumWedake the constant as the value

obtained in the first evaluation of the integrandhie computation gi(0]Y).

4.6 Examples
This section gives simulation studies of the pernfance of the proposed method
and analyzes some real split plot RPD experimesitgyithe method. The first example
presents a simulation study of the Type | and Tiyperors of the proposed method. We
also study the effectiveness of GLS as a seardhritign and the accuracy of the method

for estimating posterior model probabilities givarSection 4.5.3. The second example
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is the well-known Ina tile experiment, which isradtional factorial split plot experiment.
In the third example, we analyze an RPD experirfeara heat-exchanger fan casing,
where the signal and noise factors are subplobfaend the control factors are
wholeplot factors. Experiments with signal and edectors as subplot factors and
control factors as wholeplot factors are useful emalvenient in RPD. They are useful
because the control-by-noise and control-by-sigrtatactions are estimated with lower
statistical error. They are convenient becauseetsier to test one product under
multiple noise/signal conditions than to test diéf@ products under each noise/signal
condition. The fourth example analyzes a rathergiersplit unit experiment reported
by Taguchi (1987). In the second and third examplescompare the results obtained
using abeta(2,2) prior for ¢ (see Section 4.4) and the results obtained ith 0 to
assess the consequences of ignoring the splieplot structureWe call the HPP model
obtained with the former and latter priors thetgplot analysis (SPA) model and

completely randomized analysis (CRA) model respebti

4.6.1 Example 4.1: Simulation Experiments

4.6.1.1 Study of Type | and Type Il Error Achiewsilh Proposed Approach

We perform simulation experiments to study the dirgist performance of the
proposed method under the default choice of priarthe first experiment, the split plot
design is obtained by crossin@&design for wholeplot factors A, B and C, an2i'a
design for subplot factor D. There are seven wHotegdfects and eight subplot effects
(15 factorial effects in total). Data are generdtedh two mean models: a model with
active effects B,C,AB,D,AD,CD,BCD\Jodel 1) and a model with active effects

B,C,AB,D,AD,CD (Model 2). Model 1 contains three wholeplot effects (B,C)Aiad

141



four subplot effects (D,AD,CD,BCD) whereas Modeaidhtains one less subplot effect.

We fix 6% = 1, set all inactive effects to 0, and set all manbedfficients of active effects

top = n@ , Whered?,, is the average of the variances of the generalezst
squares estimators of the nonzero coefficientsh B@nde are changed according to a
32 factorial design shown in Figure 4.1. Each ofriiree combinations in th&? design is
plotted as a circle in the figure. For edgh¢), we perform 100 simulations. The exact
value off8 depends on both ande but it mainly depends ap In particular,S is in the
range of 0.71-0.75 whep= 3, 1.41-1.5 whem = 6, and 2.12-2.25 whem = 9. In each
simulation, we generate a set of response valuwtspply the FS algorithm. We use FS
because in our experience, both FS and GLS alwagdlye same best models for two-
level regular fractional factorial designs. We camgthe results with Lenth’s method
(Wu and Hamada, 2009; Lenth, 1989) because iptgpalar method for testing effects in
unreplicated fractional factorial designs. Critipaints that give individual error rates
(IER) (see Wu and Hamada (2009) for a definition).4 and 0.05 for Lenth’s method

are employed and the same IER is applied to testeglot and subplot effect estimates.

2°x2t Design, Model 1 2°x2t Design, Model 2

Typel Typell Typel Typell Typel Typell Typel Typell Typel Typell Typel Typell
Bayesian (FS) 1.3 51.0 1.0 13.3 0.5 0.0 Bayesian (FS) 2.4 353 31 12 3.2 0.0
0.8F LenthiER0.1 1.8 Q 65.1 30 O 60.0 51 Q571 0.8F LenthlER0.1 5.0 Q 345 48 O 138 82 O 58
Lenth IER0.05 0.9 739 15 62.9 29 57.6 Lenth IER0.05 1.7 433 2.7 253 49 12.3
Bayesian (FS) 0.3 79.4 0.8 37.6 0.8 5.0 Bayesian (FS) 1.9 63.0 21 2.0 1.2 0.0
9. 0.5¢ LenthER0.1 05 O 70.0 33 O 594 25 Q571 9. 0.5¢ Lenth ER0.1 26 O 465 42 O 95 66 O 08
Lenth IER0.05 0.1 80.6 13 62.4 1.0 58.4 Lenth IER0.05 1.6 62.2 18 16.8 3.9 5.3
Bayesian (FS) 0.5 87.1 11 53.4 05 15.0 Bayesian (FS) 0.8 738 32 53 14 0.0
0.2F LenthER0.1 03 O 75.0 09 O 59.9 38 0573 0.2F LenthER0.1 06 O 525 57 O 68 72 O 03
Lenth IER0.05 0.0 87.1 05 64.3 11 58.1 Lenth IER0.05 0.3 712 2.8 17.7 3.1 2.5

3 6 9 3 6 9

n n
Figure 4.1: Type | and Type |l Error Rates for Ryegd Method (Bayesian (FS)) and
Lenth’s Method with IER=0.1 and IER=0.05 (Lenth IER, Lenth IER0.05)n, ¢) €
{3,6,9} x {0.2,0.5,0.8}; Model 1 (left) and Model 2 (right)
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For each simulation run, tig/pe | andType Il errors of the HPP model are
computed. The Type | error is the percentage dftiva effects identified as active
(number of inactive effects in HPP model/numbenattive effects) and the Type Il
error is the percentage of active effects idertifis inactive. Thaveragef the Type |
and Type Il errors for the 100 simulation runsdach combination dfy, ¢) are plotted
in Figure 4.1. Similar plots that give detailedddtdown of the Type | and Type Il errors
in terms of wholeplot and subplot effects are giweB8ection D.1 of Appendix D. In
Figure 4.1, the proposed method is denoted by Bay€ES) and Lenth’s method with
IER=0.1 is denoted by “Lenth IERO.1” (similarly ftER=0.05). Figure 4.1 shows that
the Type | error is relatively low for all methodsd combinations dfy, ¢). The Type |l
error changes more dramatically. Foe 3, the Type Il errors for all methods are
intolerably large (for Model 1, it ranges from %090 percent). Therefore, it is not
meaningful to rank order the methods. However, axreases to 6 or 9, the Type Il
error of the proposed method becomes acceptabépewtien(n, ¢) = (6,0.2) or
(6,0.5) for Model 1. The proposed method performs beter acreases. It can also be
seen that the error rates for Model 2 are in gémhaneer than those for Model 1 since
Model 2 is sparser.

Figure 4.1 indicates that whenequals 6 or 9, or whep = 0.8, the proposed
method outperforms Lenth’s method. The improveneiiype Il error can be very large
(up to about 57 percent whém, ¢) = (9,0.8)) in the case of Model 1 and sizeable in the
case of Model 2. For Model 2, the proposed mettmdidates Lenth’s method with
IER=0.1 whem > 6. In addition, it has Type | error comparable tattbf Lenth’s

method with IER= 0.05 but smaller Type Il errorsenty > 6. For Model 1, the Type Il
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error for Lenth’s method remains large evem ascreases. This large Type Il error is
due to the failure of the method in detecting actubplot effects (Figure D.2, Appendix
D shows that the Type Il error for subplot effastalmost always 100 percent). The
reason is that Lenth’s method relies on the mediabsolute values of the effects to
screen out large effects, and for Model 1, theegfaur active subplots out of a total of
eight subplots effects. Consequently, the mediast toe& contaminated with active
subplot effects. In comparison, the proposed metioas not suffer from this problem.
However, it does incur a higher wholeplot Typerhoe for (1, ¢) = (6,0.2), (6,0.5),
(9,0.2). For Model 2, the gains in Type Il error achiewdgth the proposed method
mainly arise from the improvement in wholeplot Typerror forn = 6,9 (Figure D.1,
Appendix D).

For the second experiment, the experimental dasigrsplit plot design
constructed from afA(27,3°) (Table D.1, Appendix D) used by Taguchi (1987 )gpa
264). This design has = 9 wholeplots and = 3 subplots per wholeplot, and it is not a
crossed array. Factors A-D are wholeplot factosfantors E-J are subplot factors (there
is no factor I). The set of candidate effects csissnf the linear and quadratic effects of
each factor and all linear-by-linear interactiofisis gives a total of 54 effects, 14 of
which are wholeplot effects. Data are generatewh ftwo mean modeldlodel 3, which
has active effects Al, El, Aqg, Eq, AIEI, aiMibdel 4, which has active effects BI, Fl, Jl,
Bq, Gq, AlGI, BIDI, DIEI, DIJI. Model 3 satisfiehé strong heredity principle (Wu and
Hamada, 2009) but Model 4 does not. Moreover, Mddslalso larger. Thus, we would
expect variable selection to be difficult with Mdde Values ofs2, 8, and the

experimental design fdm, ¢) are as in the first experiment. For edghy), we perform
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Global Search, OA(27,3°%), Model 3 Global Search, OA(27,3°%), Model 4

Typel Typell Type | Typell Type |l Typell Typel Typell Typel Typell Typel Typell
08r 40 O 188 34 O 12 21 O 00 0.8 84 0O 489 6.6 O 20.2 36 O 107
S S-
05r 71 O 276 34 O 20 1.0 O 0.0 05 79 0O 69.1 58 O 238 45 0O 113
02t 74 0O 372 54 O 6.0 1.4 O 00 0.2 80 0O 678 58 0O 26.7 51 O 111
3 6 9 3 6 9

Figure 4.2: Type | ;nd Type Il Error Rates for Betstdel Founnd with GS(n, @) €
{3,6,9} x {0.2,0.5,0.8}; Model 3 (left) and Model 4 (right)

50 simulations. We perform a smaller number of $athons because they are very time
consuming. In each simulation, we apply GS andW& found that GS almost always
gives a HPP model with higher log posterior odasl, such a model tends to be better in
terms of Type | and Type Il errors (see next segtiblote that we use GS instead of GLS
because we focus only on evaluating the HPP mbdeig found and we find it
computationally convenient. The HPP modgfound with GLS is almost always the
HPP modeb found with GS and the former is at least as godth@satter.

Figure 4.2 plots the Type | and Type |l errors agkd with the HPP model
returned by GS. Plots that breakdown the Type Ik 1l errors in terms of wholeplot
and subplot effects are given in Section D.1 of &qmbx D. For Model 3, all errors,
except possibly the Type Il errorsrat= 3, are small. For Model 4, the Type | errors are
small but the Type Il errors are very high fo= 3. However, the Type Il errors are
tolerable fom = 6,9.

In summary, the simulations above suggest thagpthpeosed method can do well
in terms of Type | error in many cases since itntans a Type | error below 10 percent

for all experiment runs. The Type Il error wouldlbe when the effects are sufficiently
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large ¢ = 6) and the true model is sufficiently sparse. Evethe case of unreplicated
fractional factorial split plot designs, it is adwageous to use the proposed method since

it can outperform Lenth’s method.

4.6.1.2 Comparison of GS and FS

In this section, we compare GS (with 100 starpogts obtained from a maximin
design) and FS in terms of the capabilities ofalgerithms in finding good models. We
have mentioned that both algorithms seem to algayessthe same best models for two-
level regular fractional factorials. However, wevbdound that for designs with
correlated effect estimates, FS can yield suboptnualels that are very different from
the HPP model found by GS. This point is aptly destiated by an analysis of some of
the results of the simulations reported in Sedfidhl.1, specifically those for Model 4.

In each of the 50 simulations for a given¢), GS and FS are applied to the
same randomly drawn response vector. This allopairavise comparison of GS and FS.
Let 8,5 anddrs be the HPP models found with GS and FS. Then,ave B0 pairs of
0(8}5) — 0(8}5s) for each experiment run. The me@jo(85;5) — 0(85s)] of 0(85s) —
0(6Fs) is given in the fourth column of Table 4.1. Thimald be compared with the
meanE[o(6;s)] and standard deviationd[o(8;5)] of 0(ér) given in the second and
third columns of Table 4.1. It can be seen #at(é;5) — 0(8rs)] is relatively large
compared t&[0(8%s)] andstd[o(8%5)]. The number of times(8;s) — 0(85g) = 0
and the number of timegé;5) — 0(6rg) > 0 are given in the fifth and sixth columns of
Table 4.1.We see that except in one simulab@hy) is at least as good agérs) and

the former is larger in value most of the time.
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Table 4.1: Summary Statistics f0(é;.s) ando(8;.5) — 0(85s)

~un 0(8zs) 0(8z5) = 0(875)
Mean | Std. Dev.] Mean No>0 No. >0

1 3.89 2.80 1.05 50 30
2 4.02 3.11 0.88 49 31
3 6.61 2.85 2.36 50 44
4 8.84 3.14 4.08 50 48
5 10.20 3.27 5.18 50 49
6 13.26 2.90 7.92 50 50
7 13.73 2.66 7.87 50 50
8 15.21 2.90 9.03 50 50
9 19.50 3.37 10.77 50 50

Table 4.2: Mean Increases in Number of Type | apgeTll Errors ofé g overéd

RUN 0 o Mean Difference
Type | | Typell
1 3 0.2 -1.46 1.46
2 3 0.5 -0.96 1.22
3 3 0.8 -0.78 2.44
4 6 0.2 1.56 3.24
5 6 0.5 1.44 3.06
6 6 0.8 1.92 2.96
7 9 0.2 2.92 3.24
8 9 0.5 3.26 3
9 9 0.8 5.02 2.32

We now demonstrate th8} tends to have lower Type | and Type Il errors than
drs. In each of the 50 simulations for a givien¢), thenumberof Type | and Type Il
errors made by;; andérg are computed and the increases incurredgyoverdg,
i.e., Type 1(8rs) — Type I(8;5) andType l1(8xs) — Type 11(8;5) are computed. Table
4.2 gives the mean increases for e@gly). Based on Wilcoxon's signed-rank test, all
differences are significant at the 0.05 level. fptder two cases (Type | errors for Run 2
and Run 3), the-values are less than or equal to 0.001. Notettigatnean increases in

Table 4.2 should be compared with the number aftina effects, which is 45, and the
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number of active effects, which is 9. We see fraabl€ 4.2 that the mean increase in
Type | error is actually negative for runs with= 3, i.e., the Type | error d¢ is lower
than that o6 for n = 3. However, for all other casés,¢ outperformérs in both Type
| and Type Il errors. This indicates that the gaih&S over FS in finding models with
better log posterior odds can be associated wigortant gains in frequentist properties.

Thus, GS is worth its extra computation cost.

4.6.1.3 Study of Effectiveness of GLS and EstintatbPosterior Model Probabilities

We consider the 12-run Plackett-Burman split pgiesign given in Table D.2 in
Appendix D. Two responses given By andY? in the table are analyzed. The set of
effects consists of all main effects and two-fa@tderactions. Thus, there are a total of
six main effects and 15 two-factor interactionsisTdives abou®.1 x 10° models. The
posterior probability and log posterior odds of thp 10 models are given in Table 4.3.
We see that foY'2, the posterior distribution df is concentrated at a single model and
models around it. The top 10 models account for 87%e posterior mass. F8t, no
single model stands out; the top 10 models acdouminly 37% of the posterior mass of
é and those models look quite different. Table 4s8 demonstrate the potential dangers
of model selection based 0136): one cannot know how much of the posterior mass of
is concentrated on a group of top models simpliobking at their log posterior odds.

To determine how good GLS is at finding good modeks apply GLS with 12
values oft as given in Table 4.4. The table gives the actuaiber of models that have
log posterior odds at lea@(t) = 0(6*) — Int, whereéd” is the true HPP model, and the
number of models found by GLS. For aliGS findsd*, i.e.,d;s = 8", so thatMACV =

Q(t). We see from Table 4.4 that ft, GLS misses at most two good models, which
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happens when = 140 andt = 150. ForY?, GLS does not miss any good model.

Moreover, in all cases, GLS does not miss any®tadp 10 models.

In Figure 4.3, we plog;(67) (upper bound) versusand the true valug(87|Y).

The figure shows that the decrease,i(¥;) is slow whert > 100. ForY?!, we obtain

p(&;1Y) = q200(87) = 0.133; for Y2, 5(87]Y) = 0.579. The estimates are sufficiently

close to the true values (see Figure 4.3) for pralgpurposes. Fitting the model

®q.(8})] = ay + a,//t to the data for = 50,100,150,200 yields the estimates

p(8;1Y) = 0.102 for Y andp(87;|Y) = 0.522 for Y2, which are close to the true values.

Table 4.3: Top 10 Models fof! andY?2

Yyl Y2
Models,é o(8) | p(dlY) Models,é o(8) | p(dlY)
A,B,C,AF,BC,CF 7.674 0.0889 A,AB,AC,AD 11.863 0.%14
C,AF,BC,CF 7.504 0.0749 A,AB,AC,AD,CD 10.138 0.091L7
AD,AE,BC,BF,CD,CE 6.918 0.041y A,AB,AC,AD,AF 9.084 0.0320
BC 6.773 0.0361 A,F.AB,AC,AD 9.041 0.0306
B,C,AF,BC,CF 6.682 0.0329 A,AB,AC,AD,DE 8.963 0.328
C,AF,BC,CD,CF,DF 6.533 0.0284 A,AB,AC,AD,BD 8.678 .0R13
C,AF,BC 6.404 0.025(0 A,B,AB,AC,AD 8.517 0.0181
A,C,AF,BC,CF 6.266 0.0217 A,E,AB,AC,AD 8.133 0.0123
B,C,AF,BC 5.597 0.0111 A,AB,AC,AD,EF 8.100 0.0120
C,AF,BC,CD,CF 4.996 0.0061 A,AB,AC,AD,BF 8.092 0131
Sum of Probabilities 0.367 Sum of Probabilities 3.7
Table 4.4: Number of Models Found with GLS and AttNumber of
Models that Satisfy(6) > 0(6*) — Int for Y1 andy?
t 20 | 40 50| 60 80| 100120 140|150 160 180 | 200
No. of i
. Models 15 49 68 93| 11%133| 154|167 | 177|185 197 | 213
ActualNo.| 4o\ 4o | 68| 94| 115134 155| 169|179 186| 198| 214
of Models
No. of p
2 Models 5 7 14 19 19 19 20 21 24 2b 25 26
ActualNo.| o o 1 gl 19| 10| 10 20 21 24 25 25 26
of Models
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Now, we consider the 12-run Plackett-Burman st gdesign given in Table

D.3 in Appendix D, which is the same as the desighable D.2 except that there are

five instead of six factors. Two responses givery byandY* in the table are analyzed.

The set of effects consists of all main effects @l factor interactions. This gives

32768 models.

Table 4.5: Top 10 Models fof> andy*

Y3 Y4
Models 0(6) | p(38lY) Models o(8) | p(8lY)

C 1.316 | 0.0684 A,B,C,AB,AC 3.716 0.3525
AC 1.136 | 0.0571 A,B,C,AB,AC,CD 2416 0.0961
A,B,C,D,E,AB,AC 0.980| 0.0484 A,C,AB,AC 2.350 0.0899
A,CE 0.881 | 0.0443 A,B,C,AB,AC,BE 1.513 0.0389
C,E 0.554 | 0.0319 C,AB,AC 1.17% 0.0278
A,B,C,E 0.259 | 0.0238 A,B,C,E,AB,AC 0.692 0.01V71
A,B,C,E,AB 0.104 | 0.0203 A,B,C,AB,AC,BD 0.421 0.0131
AB,C 0.048 | 0.0192 A,B,C,AB,AC,AD 0.421 0.0131
¢ 0.000 | 0.0183 A,C,AB,AC,CD 0.411 0.0129
A,C,AB -0.003 | 0.0183 A,B,C,AB,AC,DE 0.399 0.0128

Sum of Probabilities 0.350 Sum of Probabilities 74.6
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Table 4.6: Number of Models Found with GLS and AttNumber of

Models that Satisfy(8) > 0(6*) — Int for Y3 andy*

t 20 | 40| 50| 60| 80 100120] 140] 150] 160] 180] 200
No.of 1 \o | g4 | 114 127 | 172| 183 201| 221 | 230| 247 | 282 309
y3 Models
Actual No. | o | o/ 1 1141 127 | 172 183 202 | 221 | 231 | 247/ 283 309
of Models
No. of
o] Models 5 | 13| 17| 20| 24| 27 34 38 40 41 42 48
AcualNo.| g | 431 17| 20| 24/ 27 34 38 4p 41 42 48
of Models

The posterior probability and log posterior oddshaf top 10 models are given in

Table 4.5. Table 4.6 gives the actual number ofeteothat have log posterior odds at

leastQ(t) = 0(8*) —Int (6" is the true HPP model), and the number of modrlad by

GLS for 12 different values af For allt, GS findsé™, i.e.,é;5 =

*, so thatMACV =

Q(t). We see from Table 4.6 that GLS almost alwayssfiatigood models. In Figure

4.4, we plotg,(83) versust and the true valup(é;|Y). ForY3, we obtaing(8;|Y) =

d200(8%) = 0.0845 whereas fo’*, we obtaing(8;|Y) = 0.419. The estimates are
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sufficiently close the true values (see Figure fodmost practical purposes. If we fit the
model®~[q.(8})] = ay + a4/t using data for = 50,100,150,200, then we obtain
the estimateg(8;|Y) = 0.0716 for Y3 andp(8;|Y) = 0.362 for Y*, which are very

close to the true values.

4.6.2 Example 4.2: Ina Tile Experiment

The Ina tile experiment (Taguchi, 1987) studiehefgctors (labeled D, B, A, F,
E, C, G, and H) in 16 runs. The noise factor Hhesgubplot factor. There ake= 8
wholeplots and = 2 subplots per wholeplot. We take the set of carididffects for
model selection as the main effects of all whol&aontrol factors, the main effect of the
subplot/noise factor, and all control-by-noise iat¢ions. These effects are estimable if
all other interactions are assumed negligible. Vdekwvith the transformed response
given by Bisgaard and Sutherland (2003). Tablgyegents the first five steps taken by
FS withp~beta(2,2). The term added to the model at each step is givere second
column and the log posterior odd&d) is given in the third column. Results fpr= 0
are given in the fourth and fifth columns. korbeta(2,2), the model {A, H} obtained
at the second step (shaded cells) has the largkst ofo(6), i.e., the SPA model is {A,
H}. It is seen that the CRA model is also {A, H}hé& split plot analysis does not fully
agree with Bisgaard and Sutherland’s (2003) amalymised on eyeballing half-normal
plots), which finds that AH is active. However, Agithe third effect added by FS and
o(8) = 1.72 for the model {A, H, AH} is not too small comparéalo(6) = 2.24 for the
model {A, H}. Moreover, if we increase = p(6; = 1) from 0.25 to 0.4, then the SPA
model would be {A, H, AH}, as is easily verified lagdding[In(0.4/0.6) —

In(0.25/0.75)]||8]l; = 0.6931]|8]|, to each value in the third column of Table 4.7. In
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Table 4.7: FS Results for Ina Tile Experiment

Step Split Plot Completely Randomizéd
Added Term|  0(6) Added Term 0(98)
1 H 2.0129 H -0.14872
2 A 2.2427 A 1.3301
3 AH 1.7203 E 0.32268
4 E 0.61579 D -0.5205
5 D -0.39481 AH -1.3311

FS algorithm applied witp~beta(2,2). °FS algorithm applied witp = 0.

contrast, if the split plot error structure is iged, AH is only fifth in the list of effects to
enter the model and the model with five effectsdnamaller posterior probability than
the null model.

For this example, FS chooses at each step eitbéartpest wholeplot effect
(ranked by the size of the factorial effect estsaor the largest subplot effect not in the
model to enter the model. This behavior has besergbd to hold in our analyses of
regular two-level designs. From a frequentist pointiew, the behavior is sensible
because for such designs, all wholeplot (respdgtaugbplot) effect estimates have the
same variance, and all effect estimates are inadgpgnNote that for such designs, the
generalized least squares estimates are equitalédm ordinary least squares estimates.

To estimate posterior model probabilities, we tm probability estimation
procedure given in Section 5.3 with= 50,100,150,200 andM = 30. For the four
values oft, there are 101, 199, 291, and 358 models that logveosterior odds at least
Q(t). The true HPP moddr is {A,H}. GLS correctly finds all models in eaclase

(thus, the choice a¥ is of no consequence ahy = §*). We find thatg (871Y) =

0.0913, p(83]Y) = 0.0686, andy 323 p(6;

Y) = 0.751. These estimates are close to the

true valuep(83|Y) = 0.0726 andy. 32 p(8;

Y) = 0.795. Because(8;]Y) is small,
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model uncertainty is high. Since the 3étof top358 models accounts for an estimated

75% of the posterior mass 8f we can estimate the marginal posterior probaiwmlit

each effect conditional ofi € M. This givesp(6; = 1|Y) = ija;eMiﬁ(ajf Y)/

2358 5 (8 Y), whereM; = {8 = (5};,..,5},)" €

Y) = Zj:&;-eMiﬁ(8; Y) /3328 5(6;

M:6j; = 1}. A bar graph op(6; = 1|Y) andp(5; = 1|Y) is given in Figure 4.5, which
shows that the probability estimates for the taykireg effects are close to the true
values. Despite the high model uncertainty, wefisea Figure 4.5 that we can be quite
certain that effects H and A are active. Interegyinthe ranking of effects based on
marginal posterior probabilities does not fully egwith the order they are entered in FS.
For example, G is ranked 6 based on the margirsiepor probabilities while FH is the
6th effect to be entered by FS. However, the top éffects match the order they are

entered by FS.

o
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|
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(o]
|
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I
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Figure 4.5: Bar Chart of Estimates and True Vahfddarginal Posterior Probability of
Each Effect

154



Before we end the section, we point out that R&seful for regular two-level
designs because it provides a ranking of facteffaicts and a quantitative measure of
relative importance (log posterior odds) that sappnts a half-normal plot analysis.
While GLS provides better search capability tharaR8 allows estimation of marginal
posterior probabilities, it is computationally mangensive than FS. This computational

advantage can be significant for large fractioaatdrial designs.

4.6.3 Example 4.3: Design of Heat-Exchanger Fan dag of Clothes Dryer

In this example, we analyze an experiment for tirist design of a heat-
exchanger fan casing for clothes dryers (Kim, 1998 control array is 3*~! design
and the signal-noise array i & 3 full factorial. The control factors A, B, C, D are
parameters of the fan casing design. The sign&rfad is the rotation speed of the fan
and the noise factor N, which has two levels, ésamount of clothes in the drum. The
response is the flow rate of the heat-exchangerData for this experiment are given in
Table D.4 in Appendix D. Changing the control fasteequire manufacturing a new fan
casing but changing the signal and noise fact@<laarly very easy. Thus, nine fan
casing designs are tested under six combinatioagoél and noise factor conditions,
i.e., the experiment is a split plot experimentwmdbntrol factors as wholeplot factors and
signal and noise factors as subplot factors.

The set of effects of interest are chosen as falldle main effect for the two-
level noise factor is its linear main effect. Fragher factors (which each has three
levels), linear and quadratic main effects are tanted from the orthogonal linear and
guadratic contrasts given in Supplementary Se@iafi Wu and Hamada (2009). We

also entertain all interactions between linear nediects. There are a total pf= 26
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effects anch = 54 subplots. However, the full model cannot be edthavith
frequentist methods because there are &iidy 9 wholeplots and 4 wholeplot effects.

We apply GLS to six choices of prioRrior 1: the default choice given in
Section 4.4Prior 2: ¢ = 0; Prior 3: (a,b) = (1,3); Prior 4: (a,b) = (3,1); Prior 5:
p(c) = unif{0.5%,0.75%,12, 22} (i.e.,p(c) is the uniform distribution on
{0.52,0.752,12,22}); Prior 6: p(c) = unif{22,32, 42, 52}. For Priors 2- 6, all prior
parameters that are not given are set to theiuttefhoices. The objectives are to assess
the effects of ignoring the split plot error sture (Prior 2) and the sensitivity of results
to prior specification (Priors 3- 6). Prior 3 givB6p) = 0.25, E(62/c2) =
E[(1 - ¢)/¢] = o, andmedian{c?/a2} = 3.847. Prior 4 givesE (¢) = 0.75, E(c2/
02) = E[p/(1 — ¢)] = o, andmedian{c /052} = 3.847. For Prior 5, active effects
have a prior that is a mixture of normal distribas with standard deviations 0.5 to 2
timesao (conditionally ong). Finally, for Prior 6, active effects have a pribat is a
mixture of normal distributions with standard démas 2 to 5 times'.

In each of the six applications of GLS, we BtCV = 0(8}5) — In 6. The top
two models obtained for each prior are given inl@ &8 together with their log posterior
odds. In the table, the linear and quadratic mHetes of factor X are denoted by XI and
Xq respectively, whereas the linear by linear iab#ion of factors X and Y is denoted by
XIYI. The number of models found is given in thetiom row of the table. For Prior 4,
only one model with log posterior odds at led2tCV is found.

We see that the SPA model (HPP masfetor Prior 1) contains 11 effects,
whereas the CRA model (HPP model for Prior 2) dosta3 effects. The SPA model

contains the DIMI term whereas the CRA model dass Although the CRA model
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Table 4.8: Model Selection Results for Fan Cagirgeriment. A shaded cell represents

an active term and terms not listed are excludeah fall models.

Prior 1

Prior 2

Prior 3

Prior 4

Prior 5

Prior 6

Effects

Default

a=1,
b=3

a=3,
b=1

p(c) =
unif{0.52,
0.752,12,22)

p(c) =
unif{2?,
32,42 5%

6 | &

61 | &

Al

BI

Cl

DI

NI

MI

Aq

Bq

Dq

AICI

BICI

BINI

BIMI

CINI

CimI

DIMI

NIMI

Log Posterior
Odds

127.1

1253

P(671Y)
e | 58 1.11 2.46 : 1.04 5.78
No. Models 2 8 3 1 6 2

Found

contains all 10 other effects in the SPA moded/sb contains three additional wholeplot

effects: Aq, Dq, AICI. Thus, the significance of elplot effects appears to be

exaggerated if correlations are ignored.

The results obtained with Priors 1,3,4,6 are simifhe HPP moded] is the

same for each prior and the second best m&d&ir Priors 1, 3, and 6 are the same. For

Prior 4, the fact that GLS cannot find any modéedent fromd;s = 87 that has
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posterior probability at lea#t(é;5|Y)/6 suggests that model uncertainty may be low for
this choice of prior. For Priors 1 and 6, the ratidhe posterior probabilities of the HPP
and second best modél§d;|Y)/P(85|Y) = exp[o(87) — 0(65)] equals 5.78. This
means that the HPP model is significantly bettantthe second best model. For Prior 3,
the HPP model is about 2.5 times better than tbergkbest model. Thus, for Priors
1,3,4,6, the HPP model is significantly better tki@a other models. For Prior 5, which
include only the small valuds52,0.752, 12 in the support op(c), there is higher model
uncertainty since six models are found with GLS &hdndé;, appear to be equally

good. We conclude that the model selection resuéisnsensitive to reasonable choices
of a andb, and to whether we include the value® &, 0.752, 12 in the support of the
discrete uniform distribution fgr(c). This suggests that we can be quite confidenttabou
the results obtained with Prior 1. In general, r@sge/ity analysis can give more
confidence to results obtained with the defaulbnsrif it indicates that the results are
insensitive to prior parameter changes.

For Prior 1, we run the procedure given in Secidwitht = 50,100,150,200
andM = 10. For the four values af GLS finds 16, 23, 29, and 35 models. Because the
total number of models &%¢ ~ 67.1 x 108, it is difficult to evaluate all models. We find
thatp(8%]Y) = G200(8%) = 0.504, H(85]Y) = 0.458, H(85]Y) = 0.079, andp(83]Y) =
0.053. Thus, the HPP model accounts for most of thegpomstmass of the indicator.

This justifies post model selection inference ctinded on the event thét is the true
model or the event that eith& or &5 is the true model.

Table 4.9 gives point estimates and equal tail @&8dible intervals for the

effects in the SPA model conditioned on the evieat the SPA model is the correct
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model. The percentage increase column in Tablgi¢ek the width of the SPA interval

(credible interval constructed with Prior 1) aseagentage of the width of the CRA

interval (credible interval obtained with Prior e see that the wholeplot effects B, Cl,

and DI have SPA intervals that are more than tageide as their CRA intervals. On

the other hand, the lengths of the SPA intervalsife subplot effects are about 30

percent the lengths of their CRA intervals. Thelsgeovations suggest that it can be

misleading to use interval estimates that do nob@at for correlation. Interestingly the

point estimates obtained with Prior 2 are very eltwsthose obtained with Prior 1. This

agrees with the result that least squares and glerest least squares estimates are

equivalent for any design that is a Cartesian prodtidesigns for wholeplot and subplot

factors (Letsinger et al., 1996).

Table 4.9: 95% Credible Intervals for Effects inASModel, Fan Casing Experiment

et Prior 1* Prior Z Percentage
LCL | Mean | UCL | LCL | Mean| ucL| Increasé
Bl | 03601 03757 0.3918 0.3704 03771 0.3838 232.7%
cl | 0.1140| 01296 0.1452 0.1234 01301 0.1368 232.6%
DI |-0.0630| -0.0474| -0.0318| -0.0543| -0.0476| -0.0409| 232.6%
NI |-0.1475| -0.1455| -0.1436| -0.1521] -0.1454] -0.1387| 28.8%
Ml | 0.2022| 0.2041 02060 0.1973 02040 02107 28.8%
BINI |-0.0246| -0.0227| -0.0208| -0.0294| -0.0227| -0.0160] 28.8%
BIMI | 0.0320 | 0.0339] 0.0358 0.0272 0.0339 0.0406 @8.8
CINI | -0.0142| -0.0122| -0.0103| -0.0189] -0.0122| -0.0055| 28.8%
CIMI | 0.0150| 0.0169] 0.0189 0.0102 0.0169 0.0236 %8.8
DIMI | -0.0069 | -0.0050] -0.0031| -0.0117| -0.0050| 0.0017| 28.8%
NIMI | 0.0130 | 0.0150| 0.0169 0.0083 0.0150 0.0J17 @88

Posterior mean and equal tail 95% credible interwath o ~beta(2,2). “Posterior mean
and equal tail 95% credible intervals with= 0. *SPA credible interval width as a
percentage of CRA credible interval width.
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Figure 4.6: Posterior Distribution of CorrelatioarBmeter = {87, 65})

For Prior 1, the posterior denspyg|Y, d € M), whereM = {87, 65}, is plotted
in Figure 4.6. Théeta(2,2) prior for ¢ is also plotted in the figure. The figure shows
that subplot observations in the same wholeplohaglely correlated, i.e., the subplot
variance is small compared to the wholeplot vagalBecause model uncertainty is low,

essentially the same plot pfp|Y, 8 € M) is obtained if we tak®l = {67}.

4.6.4. Example 4.4: Carbon Powder for Transmitter

Taguchi (1987) proposes methods to construct glolitdesigns, which he calls
split unit designs. Split unit designs are desigmsstructed by reordering the rows of
orthogonal arrays and assigning wholeplot and silfattors to appropriate columns in
such a way that eaehconsecutive runs for wholeplot factors have thmeestevels. For
these designs, if main effects and two-factor axtBons are entertained, the number of
effects can be more than the number of runs. Thexg¥ariable selection is an important
step in the analysis of split unit designs.

Taguchi (1987) (Chapter 9) gives an experimentijorove the properties of

carbon powder that is placed in the transmittea tdlephone. There are a few interesting
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features of the experiment. The design is not asa® array, there are more effects than
observations, and the levels of some of the faaminequally spaced. The nine factors
and their levels are given in Table 4.10. Four oesps are observed in the experiment.
We shall only mention the results for the bulk spegravity response. The design
matrix and responses are given in Table D.5 in AdpeD. The wholeplot factors are
factors A-D, and the subplot factors are factork Ehere ar& = 9 wholeplots and
r = 3 subplots per wholeplot. Factor J is a noise faatat all other factors are control
factors. Factors C, D, H, and J are qualitativéoiac The main effects for factors C, D,
and H are included in the set of candidate efféais factor J, we introduce two dummy
variables J1 and J2 representing the differenocegan response between the top and
middle and between the bottom and middle positairibe vessel. For the quantitative
factors A, B, E, F, G, the linear main effect cohsrare obtained by coding the factor
levels so that the low level is -1 and the higrelas 1. Because the three levels for
factors B, E, F, G are not even spaced, the miegles of the factors are not 0. The
guadratic main effect columns for factors A, BF-G are obtained by squaring the
linear main effects column. We also include aléractions between one of the noise
effects J1, J2 and a linear effect of factors Aathie set of candidate effects. This gives
2 X 8 = 16 control-by-noise interactions. Thus, we have 31 effects but onlyr = 27
runs.

To estimate posterior model probabilities, we tum probability estimation
procedure given in Section 5.3 with= 50,100,150,200 andM = 20. For these four
values oft, GLS finds 152, 295, 448, and 611 models that rtiesd? ACV requirement.

We find thatp(671Y) = q,00(67) = 0.0683, p(67|Y) = 0.0478. The top 10 models

161



Table 4.10: Factors and Their Levels, Transmiti@ibOn Powder Experiment

Factor Levels
1 2 3
A: Heat Treatment Temperatuté 1000 1100 1200
B: Rate of Increase of Heat Treatment o5 50 100
Temperature9C/hr)
C: Heat Treatment Atmosphere N, H,
Low (400 for | High (800 for
D: Flow Quantity of Gases (climin) N, and 800 | N, and 1600
for Hy) for H,)
E: Rate of Increase of Carbonization o5 50 100
Temperature9C/hr)
F: Oxidation Time (hours) 2 12.6 80
G: Rate of Increase of Oxidation o5 50 100
Temperature9C/hr)
H: Particle Size (mesh) 40-50 50-70
J: Position Within Vessel top middle bottom

found by GLS, their log posterior odds, and thesterior probability estimates are given

in Table 4.11. A plot of the cumulative sumpgis;

Y) versug for the 611 models

found witht = 200 is given in Figure 4.7. It can be seen that tipelt®80 models account
for only approximately 50% of the posterior mas$ .ot hus, model uncertainty is high.
The setM of top611 models can be used for estimating marginal pastprobabilities

of effects because it accounts for an estimated @Wte posterior mass éf Estimates

of the marginal posterior probability of each effegnditional ons € M are plotted in
Figure 4.8. We see that despite the high modelrtaingy, we can be quite sure that all
effects in the top model {Cl, FI, HI, Fq, BIJ2, €|HIJ1} are active. The HPP model
consists of all effects with marginal posteriorlpmbilities greater than 0.5. In Figure 4.9,

we plotp(@|Y, 8 € M). The posterior mode @f(@|Y, 8 € M) is approximately 0.3.
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Table 4.11: Top 10 Models Together with Their Lazsterior Odds
and Posterior Probability Estimates

Model 0(6) p(8lY) | p(élY)
Cl,Fl,Hl,Fq,BlJ2,ClJ2,HIJ1 17.873 0.0683 0.0478
CI,Fl,HI,Fq,Gq,BlJ2,ClJ2,HIJ1 17.608 0.0524 0.0367
CI,Fl,Hl,Eq,Fq,Gq,BlJ2,ClJ2,HIJ1 17.172 0.0339 @02
CI,Fl,HI,Fq,ClJ2,HIJ1 17.090 0.0312 0.0218
CI,Fl,HI,Fq,Gq,BlJ2,Cl132,D1J2,EIJ2,HIJ1 16.687 0.0209 0.0144
CI,Fl,HI,Fq,Gq,BlJ2,ClJ2,E1J2,HIJ1 16.546 0.0181 o127
CI,FI,HI,Eq,Fq,BIJ2,ClJ2,HIJ1 16.387 0.0155 0.0108
Cl,Fl,Hl,Fq,BlJ2,Cl1J2,EIJ2,HIJ1 16.301 0.0142 0.909
Cl,FlLHI,Fq,HIJ1 16.283| 0.0139  0.009(
CI,Fl,HI,Fq,BlJ2,ClJ2,G1J1,HIJ1 16.21% 0.0130 0.008
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4.7 Conclusions
This chapter proposes a Bayesian method for medsttson in split plot
experiments. It is especially useful when the nundbeffects is comparable to the
number of runs, which is quite common in RPD. R#periments run as split plot
experiments with noise and signal factors as sulyholeplot factors and control factors

as wholeplot/subplot factors automatically givesengower for detecting control-by-
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noise and control-by-signal interactions than a gletely randomized design. These
interactions are important for achieving the ohyexs of RPD.

We employ a Bayesian hierarchical model with ancaidr vector for model
selection. It can be viewed as a generalizatiah®@Bayesian models introduced by
George and McCulloch (1993) and Box and Meyer (1998like Bayesian variable
selection in iid error settings, the proposed maagldes the correlatiop between
subplot observations in the same wholeplot. A nigwréghm called GLS is proposed to
find good models and to estimate the posterior godiby of the models.

Simulation results presented in the chapter shauvttte proposed method has
low Type I error in most cases and low Type |l emtbien the active effects are
sufficiently large and the true model is sufficigrgparse. The proposed method can
perform better than Lenth’s method on unreplicdtadtional factorial split plot
experiments. It is also demonstrated that GLS perdovell at finding models with log
posterior odds above a threshold and that the gexpprocedure for estimating posterior
model probabilities is accurate. Three real examate analyzed in the chapter: the Ina
tile experiment, the heat-exchanger fan casingraxigat and the carbon powder
experiment. The problem of analyzing a highly fiacated split plot experiment has
received scant attention in the statistical literat The proposed method can help to

popularize the use of fractionated split plot expents.
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CHAPTER 5

MINIMAX DESIGNS FOR FINITE DESIGN REGIONS

5.1 Introduction

“Space-filling” designs, which can loosely be im@ted as designs that are
representative of the design region (e.g., unifgrdnstributed over the region), are
widely used in computer experiments. Because ttiesigns are not obtained by
optimizing a model-based criterion, they are maddependent. Due to their
representativeness and model-independence, splawgdiesigns are widely considered
to be natural choices if the experimenter has ra @bout an appropriate model before
the experiment. They are useful for building Gaarsgirocess (GP) and other
nonparametric emulators (Chen et al., 2006; Samtingl, 2003) in cases where the
computer code output is believed to be highly nedr and a parametric form for
modeling the output cannot be specified.

Methods for generating space-filling designs amegally developed for one of
three specific types of design regions: hypercub@sstrained continuous regions, and
finite design regions. A constrained continuousareds defined by inequalities while a
finite design region consists of a finite set afdiaate points. Hypercube regions have
received much attention (e.g., Morris and Mitcl{895), Tang (1993), McKay et al.
(1979)). A few methods have also been proposeénermte space-filling designs for
constrained continuous regions (e.g., Stinstrd ¢2@03), Draguli (2012)) and finite
regions (e.g., Marengo and Todeschini (1992), Kehaad Stone (1969), Royle and

Nychka (1998)).
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The notion of “space-filling” can be made more geavith distance-based
criteria. Two important ones are the minimax anciman criteria. Johnson et al. (1990)
prove some optimality properties of minimax and iman distance designs for
constructing GP emulators. They prove the impontesuailt that for finite design regions,
minimax designs are G-optimal in an asymptotic seghile maximin designs have
received considerable attention (e.g, Morris anttMill (1995)), minimax designs have
received scant attention. John et al. (1995) dstwe-level minimax designs. Kennard
and Stone (1969) give a sequential heuristic metbiodonstructing designs based on the
minimax criterion.

Despite the lack of attention on minimax designsjition suggests that they are
good designs. They minimize the maximum distance cdndidate point to the nearest
design point, which is desirable for two reasonistFsince emulators of nonlinear
functions tend to incur higher prediction errorpaints further from the design, minimax
designs tend to minimize the worst-case prediaioar. Second, because a minimax
design is close to every candidate point, it igigfia representative of the candidate set;
thus, it provides protection against erroneous rioglassumptions.

In this chapter, we address the problem of constigieninimax designs for finite
design regions. We give a procedure for constrggiabal optimalminimax designs
that is practical for a small number of candidatenfs (up to one or two hundred). It is
based on solving a binary linear program (BLP)leckéet covering location problem
(SCLP) in the operations research literature, goamain values of the covering radius.
We prove that a minimax design can be found byisgI8CLP at a discontinuity of the

function that maps the covering radius to the ogtiabjective function value. The set of
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minimax distances is the set of discontinuitiethag function. Because the set of
discontinuities is a subset of the distinct paiendsstances between candidate points, the
discontinuities can be found by solving SCLP atrthdpoints of the ordered distinct
pairwise distances. Because the computationalfeposblving SCLP increases

drastically with the number of candidate pointg, éfoove procedure is infeasible when
the candidate set is large. To overcome this propiee give a heuristic procedure for
constructing near-minimax designs that is afforddbt large candidate sets. It relies on
the well-known heuristic method proposed by Hocmbdi982) for solving SCLP.

The proposed method has many potential applicatroasmputer experiments
because finite candidate sets arise naturally inyndi@sign problems. We briefly mention
these applications and defer a detailed discugsi@ection 5.2.2. First, in validation and
calibration of a computer model with observatiotaga preliminary experiment may
consist of computer model runs at a subset ofrthetidata points (observations on the
input variables). Second, in sensitivity analysisiiocertainty quantification problems,
the joint distribution of the inputs may be compléxthis case, either the input data or
samples drawn from a nonparametric estimate oflistebution can be taken as the
design region. Third, in the construction of nestpdce-filling designs (Qian, 2009), the
current layer is the candidate set for the nex@iayhus, the proposed method can be
used to construct all except the first layer okatad space-filling design. Fourth, when a
continuous design region is constrained, it capdser to build a design from a finite
candidate set used as a proxy for the region.

The problem of constructing designs for finite desiegions is an important

practical problem in physical experimentation (Arsda-Cook and Robinson, 2009;
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Kennard and Stone, 1969) and in spatial statifRcyle and Nychka, 1998). Marengo
and Todeschini (1992) and Royle and Nychka (198&)ley exchange algorithms to
generate designs based on the maximin criterioraahstance-based coverage criterion
respectively. Anderson-Cook and Robinson (2009)leynan exchange algorithm to
generate D-optimal designs that do not have regkcdn this chapter, we shall
abbreviate Kennard and Stone’s (1969) algorithrik8yand Marengo and Todeschini’s
(1992) algorithm by MT.

The remainder of the chapter is organized as faldw Section 5.2, we define
minimax designs for finite design regions, illustréheir value as space-filling designs,
and give computer experiment applications. Sedi8rintroduces the set covering
location problem and relates it to the construcabminimax designs. We describe the
key results and present a procedure for findingmma designs. Important results are
stated as propositions and proved in Appendix & Heuristic procedure for generating
minimax designs from large candidate sets is gime®ection 5.4. In Section 5.5, we give

three examples to illustrate the proposed metHhsestion 5.6 gives concluding remarks.

5.2 Minimax Design and Its Potential Applications

5.2.1 Minimax Design and Minimax Criterion
In this section, we define minimax designs forraté candidate set of design
points and we briefly illustrate the advantagemofimax designs over maximin designs.
We first give some definitions. Let= {u4, ..., uy} be a finite candidate set of
design points, where ali; aredistinct A designD = {x,, ..., x,,} is a subset of. The
distance between; andD isd(u;, D) = min{|lu; — x{||, ..., ||lu; — x,,||}. The distance

betweeny andD, which we call thalistanceof D is
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d(D) = max{d(u,,D), ...,d(uy, D)}. An n-pointminimax designD;, satisfiesd(D;;) =
min{d(D):D < y,|D| = n} andd;, = d(D,,) is called theminimax distancefor n-point
designs. On the other hand,apoint maximin design maximizes the minimum

pairwise distance between design poit®) = minf||x; — x;||:j # i}. Note that-||

can represent any distance metric. However, iredaenples in this chapter, we shall take
[|-]| as theEuclideannorm.

We shall now illustrate some differences betweemtimimax and maximin
criteria, and also an application of the main rissof this chapter. Consider the problem
of selecting a design from the 9x9 grid plottedblask dots in each of the four diagrams
in Figure 5.1. In Figure 5.1, we plot global optimanimax designs of sizes 4, 9, and 20
constructed with the proposed method. We alsomp#timin designs of sizes 4, 9, and
20, which are obtained using MT (note that MT i$ guwaranteed to find globally optimal
maximin designs).

A comparison of each pair of minimax and maximisiges of the same size in
Figure 5.1 indicates that the former tends to oiats close to every candidate point
whereas the latter tends to contain many boundaintg It is seen that pulling the
boundary points of 4 and 9 point maximin desigmaealistance towards the center point
gives minimax designs. This reduces the distan@®mie of the interior points to the
design while not increasing the distance of thenblany points to the design by too
much. One interesting feature of the 20-point manirdesign is that we can reach at least
one design point from every candidate point byrtgldat most a horizontal or a vertical
step. In other words, the distance of the desighdasninimum distance between distinct

candidate points. In contrast, the 20-point maxidesign, which has a larger minimum
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Figure 5.1: Top Left: 1Minimax and Maximin DesignisSize Fourl; Top Right: Minimax
and Maximin Designs of Size Nine; Bottom Left: Mimax Design of Size 20; Bottom
Right: Maximin Design of Size 20
pairwise distance between design points, doeshaseghis desirable property. It leaves

larger unfilled gaps in the design region.

The above examples illustrate the intuitive appédhe minimax criterion. A
minimax design ensures that there is a design peiat every portion of the design
region, i.e., the design points are spread ovecdnelidate set. As such, a minimax
design is spatially representative of the candidateand is good for constructing
emulators. When the true function is smooth bulllyigonlinear, minimax designs can

be expected to perform better than maximin desighsiilding nonparametric emulators.

The reason is as follows: When changes in the iometre smooth but without

174



systematic trends, predictions at candidate paiotser to the design are likely to be
more accurate than predictions at points furthenfthe design. Since minimax designs
minimize the maximum distance of a candidate pimirthe design, they tend to give
small worst-case prediction errors. This may bevew as an intuitive explanation of the
theoretical results in Johnson et al. (1990). Allsinexplanation is given in Santner et al.
(2003), page 149. In contrast, a maximin desigrs ¢hm¢ guarantee that all candidate

points would be close to a design point. Thusait imcur some large prediction errors.

5.2.2 Potential Applications

The proposed method for constructing minimax deslgas many potential
applications. When inputs and outputs to computdes are measurable physical
guantities, data on these physical quantities tiem @vailable. In these cases, minimax
designs chosen from the input data can be usafal few reasons. First, the differences
between the computer output and the response ts¢deated input points can be
observed directly. This provides a reliable wagstimate the bias in the computer
model, which is crucial for the validation and badition of the computer code (Bayarri et
al., 2007). Second, data for the inputs can be tesddfine a design region that is more
realistic than hypercubes specified based on ekpenvledge. In this case, the data may
not be “nice” in the sense that its convex hulias close to an ellipse or rectangle. When
the data are not nice, it is more convenient aatistec to define the region of interest as
all points close (in a vague sense) to the dateerdhan a rectangle that envelops the
data. Thus, a design region consisting of all @& ghoints automatically covers the
region of interest well and a minimax design chdsem the input data can be good for

constructing emulators for predicting in the regidnnterest.
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In some cases, the experimenter may be interesteehsitivity analysis (Oakley
and O’Hagan, 2004) or uncertainty propagation (&akind O’Hagan, 2002) with
complex input distributions. This can involve madglthe input data with kernel or
copula estimators, generating samples from thenagtd distribution, and running the
computer code at the sample points to obtain aorarshmple of the response. If the
computer runs are expensive, it may be desiraldertohe computer code at only a small
subset of a large sample from the estimated digtab, construct a GP emulator based
on the experiment data, and use this to predictdhees of the response at all other
sample points.

Another application of the proposed method for éaasing minimax designs is
in generating nested space-filling designs (Qiaal.eR009; Qian, 2009). A nested space-
filling design withe layers consists of space-filling desighs D2, ..., D¢ such that
D! > D? 5 ... 5 D¢, Such designs can be constructed by first gemgratspace-filling
designD?!, and then applying the proposed method sequent@attonstruct minimax
designsD?, ..., D¢, whereD’/*! is constructed by taking = D/.

Nested space-filling designs are useful for compexg@eriments with multiple
levels of fidelity. A special case of multifideligxperiments is calibration and validation
experiments, in which the highest level of fidelgythe physical experiment. In a
multifidelity experimentD? is for the experiment at the lowest level of fidelD? is for
the experiment at the next higher level of fidetityd so on. Designs of smaller size are
used for experiments with higher fidelity becauspegiment cost increases as the level
of fidelity increases. Qian (2009) argues thatestesigns are desirable for multifidelity

experiments because they allow direct observatidheodifferences between responses
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from different fidelity levels, and thus allow masecurate modeling of the differences.
Note that nested space-filling designs can alsesed for running computer experiments
in a batch sequential manner.

Finally, the proposed method can be used to cartstniinimax designs from
grids overlaid on a continuous region. However,rtlieimax designs obtained depend on
the choice of the candidate set and may not benmaxwith respect to the continuous
region. A sparse grid may yield designs that agaicantly different from designs that
are minimax for the continuous region. On the ottaard, the proposed method can be
infeasible for dense grids.

In each of the above applications, an importanaathge of using a minimax
design over other space-filling designs is thay tleed to minimize the maximum

prediction variance of the GP emulator over thelctate set.

5.3 Construction of Minimax Designs via Solution oSet Covering Location Problem
In this section, we shall first introduce SCLP a@sdormulation as a BLP. Then,
we discuss key results of this chapter without firand provide procedures for finding
minimax designs based on the key results. Proafiseokey results are given in Appendix
E.1.
SCLP is a classical problem in location analysisonfuced by Hakimi (1965). A
brief description of the problem is as follows: \&fe given a set d¥; candidate
locations for constructing facilities of a partiautype andV, locations of demand
points. Each facility has infinite capacity but acanly serve demand nodes less than or
equal taS unit distance from the facility, whefeis called thecovering radiusThe

problem is to determine the minimal number of lawat at which to construct facilities
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so that all demand nodes are served. Toregas(é®all) formulated SCLP as a BLP,
which enables the problem to be solved efficierftly: a recent reference, see Snyder
(2011).

In this chapter, we shall be concerned with ongsjecial casef SCLP where
N, = N, = N and the set of candidate location for facilitieshie same as the set of
demand points. The BLP formulation of this probleas decision variablds, ..., Iy. If
I; = 1, then a facility is constructed at locatipand/; = 0 otherwise. This SCLP is
formulated as a BLP below.

Set Covering Location Problem (SCLP)

z(S) = min ZN f

j=1
StYjea=1i=1,..,N,
[ €{01},j=1,..,N.
Q; ={j €{1,..,N}|n; < S},
h;; = distance between locations i and j,
S = covering radius.
Note that; is the set of indices of locations within a dists from locationi.
The constraint, ;e [; = 1 requires that demand poinbe a distance of no more thén
from the closest facility. We shall write the camstts).;cq ; = 1,i =1,..,N
compactly asi(S)I > 1, wherel = (I, ..., Iy)T, andA(S) is theN x N constraint
matrix with elementgl;; = 1if j € Q; and4;; = 0 otherwise.
We can use SCLP to find a design such that allidatel points are at a distance

at mostS from the closest design point. To do this, werjrtet the candidate points as
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the candidate facility locations (which are alsonded points). A desigh < y is a set
of facility locations, which corresponds to a (pbbsinfeasible) solutiod € A to SCLP,
whereA is the set of all nonzero binaMrvectors. Lefjy, ..., j,} = {j € {1,..,N}:I; =
1}. Then,I corresponds to the design= {u; , ...,u; }. In this chapter, we shall
sometimes writéd (I) or I(D) to make the correspondence clear. SCLP givesigrdes
minimum size such that every candidate point im@st a distance ¢f units away from
a design point.

Thekey resultsof this chapter are as follows: We prove that aimax design
can be found by solving SCLP at a vailyeof the covering radiu$ (or slightly greater
thana;) such that any further decreaseSimwould cause a jump in the optimal objective
function value, i.e.q; is a discontinuity of the functian(S), which maps the covering
radiusS to the optimal objective function value. Any desigptained by solving SCLP at
S = a; is a minimax design with minimax distanege Moreover, the set of minimax
distances is the set of discontinuities of the fiomcz(S). A key observation used to
prove the results is thd((D) < S if and only ifI(D) is a feasible solution of SCLP with
covering radius.

The functionz(S) is a right continuous and nonincreasing functiatin wange
{1, ..., N}. It has finite number of discontinuities= {ay, ..., ay: 0 = @y < - < ay},
which as mentioned above, is also the set of miridistances (as a convention, we refer
to a; = 0 as a discontinuity). Defing = {h;; = ||u; — w||:i,j = 1, ..., N} to be the set
of pairwise distances between design points angl’let {h?, ..., h™}, where0 = h! <
-+ < h™, be the set of distinct valuesyn Becausev € ', i.e., the set of discontinuities

is a subset of the distinct pairwise distances betwpoints iry, identification of the
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discontinuities is easy. It is only necessary loes&CLP at the midpoint between
consecutive values gf’ to determine the discontinuities. Minimax desigas be found

by solving SCLP at a point of discontinufy= «; or for practical purposes (i.e., to guard
against numerical errors), slightly greater thauitless than the next pointiyd. Any
solution of SCLP af = «a; is ann; = z(a;)-point minimax design and conversely any
n;-point minimax design is a solution of SCLPSat «;. For anyn € [n;,n;_; — 1],
wheren;_, = z(a;_,), ann-point minimax design has minimax distante= «; and

can be constructed by adding- n; points to am;-point minimax design.

For illustration, consider the case where {(0,0), (1,0),(0,1), (0.5,0.5)}. Then,
it is obvious that the 1-point minimax desigrDis = {(0.5,0.5)}, 2-point and 3-point
minimax designs can be obtained by addinB;t@ne and two other points from
respectively, and the 4-point minimax desig®js= y. The minimax distances are
di = 1/v/2 = d} = d3, andd;, = 0. We hava)’ = {0,1/+/2,1,v/2}. If we solve SCLP at
S € {h*, h?, h® h*}, whereh! € [0,1/7/2), h? € [1/V2,1), h® € [1,¥2), andh* €
[\/Z 00), i.e., one point in each interval formed by patiing [0, o) with consecutive
points ofy’, then we would obtain the plot 2fS) versusS shown in Figure 5.2. The
figure shows thaz(S) has a discontinuity at, = 1/+/2; note that by conventiom, = 0
is also a discontinuity. The two discontinuities #re minimax distances. We also see
thatz(a,) = 4 andz(a,) = 1. This implies that minimax designs with one taethr
points have minimax distaneg. The one-point minimax design can be found byisglv
SCLP withS = hZ.

We now present a computational procedure for eifitty creating a plot af(S)

versusS. A minimax design can be obtained by solving S@LBny identified
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discontinuity of the plot.

Plot of z(S) versus S

. ] |
0 0.5 1 15

S
Figure 5.2: Plot o£(S) versuss for y = {(0,0), (1,0), (0,1), (0.5,0.5)}.
Long vertical lines extending upwards from the &scare values i’

Procedure A: (for creating a plot o£(S) versusS)
1. Specify an interva]L, U]. Computap andy'. Computed = {H?, ..., H™}, where
H' = (h' + h*1)/2,i=1,..,m — 1, H™ = 1.1h™. Findl andu such that
h'"! < L < ht andh* < U < h**1,
2. Solve SCLP withs = H*. Setk = 2.
3. Determine ifA(H* ) I*(H***2) > 1, wherel* (H* **2) is the optimal

solution for SCLP witl§ = H*~**2, by checking the equivalent condition
d (D (I *(H”"‘”))) < H*~k+1_|f the condition is satisfied, sEt(H* ¥+1) =

I'(H*"**2) and go to Step 5; otherwise, go to Step 4.
4. Solve SCLP withs = H#~k+1,
5. If u—k+ 1 =1, stop. Otherwise, set = k + 1. Go to Step 3.
Remark 3.1: If z(H?™1) > z(HY), thenh? is a discontinuity of£(S). Thus, minimax

designs can be found by solving SCLB at HY. If z(H?™1) > z(H?) + 1, minimax
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designs of siza € [z(H?) + 1,z(H91) — 1] can be obtained by addimg— z(H?)
points to a minimax design of sizéH?). We suggest that the extra points be added at
pointsu; such thati(u;, D) equals the minimax distanaé.

Remark 3.2: Procedure A allows us to determine whethfér, ..., h* are discontinuities
of z(S). We cannot tell from the results whetféris a discontinuity.

Remark 3.3: The solution of SCLP & = H' is y and a solution & = H™ is any one-
point design.

Remark 3.4:If A(HT"Y)I*(H9) > 1, I*'(H?) is a feasible solution for SCLP with

S = H171, This implies thaz(H9™1) < z(H?). SinceH?™! < HY, any feasible solution
atS = H971 must also be feasible §it= HY. It follows thatz(H?~!) > z(H?) and
I*(HY) is optimal atS = H9~1. The step of checking whether an optimal solution
remains optimal a$ is reduced (Step 3) can yield significant compatetl savings over

an alternative procedure that solves SCLP each&ime@educed. By Proposition E.2 in
Appendix E.1AH?)I*(H?) > 1 if and only ifd (D(I*(Hq))) < H? ' The

advantage of checking the latter condition is d(dl(l*)) need only be computed once
for anI*. This can be more efficient than the former caoditwhich requires computing
A(HY?) for eachy.

Remark 3.5: In practice, we would want to pletS) over an intervalL, U] such that the
range[z(HY), z(H") — 1] contains design sizes of interest to the experiereBuitable
choices of[L, U] can be obtained by say, trial and error. Alten&yi, use Procedure B
given below.

Remark 3.6: The set)’ of unique values ap depends on the precision used in

computing the elements ¢f. We compute the elementsipfto DP = 12 decimal places
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in Procedure A.

Input variables for an experiment are often quedtithat vary over very different
ranges. This is because in many experiments, trasbles are different physical
guantities measured in different units. Moreovéygical units can be written in different
scales (e.g., kilometer, meter, centimeter). Beeau these reasons, we recommend
alwaysstandardizing each variablée., subtract the mean from each value and divid
the result by the standard deviation so that tihe slusquares i&/. Throughout the
chapter, the candidate getonsists of the standardized candidate points.

A global optimal solution to SCLP can be obtaingdibing a linear
programming (LP) based branch-and-bound algoritne such algorithm is the
bintprog function in Matlab. However, the time re@qd by such algorithms to solve
SCLP can increase dramatically with an increagbersize of thé&/ X N constraint
matrix A. Note that we usd(S) andA interchangeably. A commonly used strategy to
speed up the solution of SCLP is the removal ofinédnt constraints and decision
variables (rows and columns of the constraint mp{Caprara and Toth, 2000). Define
Cr = {i: Ay, = 1} andR; = {k: A;r = 1}. Then,I, is redundant if there exists# k such
thatC, < C; since this implies that the set of points thatagered by poink is a subset
of the points that is covered by polnOn the other hand, constrains redundant if

there existg # i such thak; 2 R; since this implies that if poiritis covered, then so is

pointi. Any constraint matrix obtained after removal ofre redundant rows and
columns is called a reduced constraint matrix &edcbrresponding BLP is called a
reduced version of SCLP. A reduced constraint matay be further reduced by

removing redundant rows and columns. Note thad#imitions of redundant rows and
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columns extend in a straightforward manner to @ayiced constraint matrix and a
nonredundant row/column in any reduced constraattimmay become redundant after
removal of redundant columns/rows. We also callr@ayced version of a reduced
constraint matrix a reduced constraint matrix, r&corresponding BLP a reduced
version of SCLP. It can be shown that SCLP andradyced version of it have the same
optimal objective function values, and an optin@uson to the latter can always be
converted into an optimal solution to the formersieyting to zero the decision variables
that have been removed (see Appendix E.4). In thdald code for Procedure A that we
provide, rows/columns of the constraint matrix e@uced via the efficient technique of
making pairwise comparisons sequentially and rengpgi row/column as soon as it is
found to be redundant. Our code makes pairwise eosgns of rows first. We call the
BLP obtained by this reduction procedi®educed SCLBNnd we denote its constraint
matrix asd. Note, however, that any other reduced versicB@iP can be employed.
Reduced SCLP can be much smaller than SCLP. Wefbawmd that in some instances,
more than half of the rows and columns of the qairgt matrix are removed by the
reduction procedure.

Algorithms for solving BLP’s often give only onetopal solution. However, the
set ofz(h*)-point minimax designs can be obtained, at leaptiimciple, using the
following technique. Lef; = (114, ..., Iy1) be the optimal solution obtained by solving

SCLP ats = H*. Then, we add the constraly. . _o; + Zj:1;1=1(1 — ;) > 1to SCLP

to “cut off” I7. This would force the program to yield an alteweatsolution. Suppose we

have obtained solutiors, ..., I;. Then, to obtain another, we add the constraint

Y=ol + Z]-.,;_qzl(l — I;) = 1 to the program, which together with the previously
Ty :
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added constraints, would cut dff, ..., I5,. This process is repeated until the program
yields optimal objective function values greatearth(h*) or becomes infeasible. Of
course, we can also terminate the search aftee@fgal number of alternative solutions
are found. We have found that it is often feasiblénd n, alternative minimax designs
if N+ n, < 250 (so that there are less than 250 constraintsgrAdtive minimax
designs can be found based on Reduced SCLP salltdasign points are restricted to
candidate points corresponding to the columng.dfowever, this can yield far fewer
alternative designs. One reason for the existehateynative minimax designs is that it
is often possible to substitute a few design pawits some other candidate points close
to them without changing the distance of the designs is to be expected since the
minimax criterion only measures the worse-casewdcs of the candidate points to the
design. Another reason is that for rotationally syetric candidate sets, any rotation of a
minimax design would produce another minimax design

We suggest choosing among alternative minimax desiging a secondary
criterion. One obvious criterion that can be usetthe maximin criterion. Another
criterion, which we have found to produce visualppealing are designs, is the
minimization ofV(D) = var{§(x,), ..., 5(x,,)}, where § (x;) = min{||x; — x;||:j #
i,j=1, n} This criterion is the variance of the minimumtdisces of each design
point to another. Thus, a design that minimiZé€B) would tend to look evenly spaced.
For example, the four and nine point minimax desigiven in Figure 5.1 achieve a
minimum value o/ (D) = 0. Note that rotations of any (minimax) design ajaiealent
in terms of any criterion based solely on (Eucligedistances between design points,

which includes the maximin ail{D) criteria. A class of minimax designs that is of
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theoretical interest (Johnson et al., 1990) ihigaest index designs. However, we have
frequently found that all alternative designs yiatdindex of 1.

Before we end this section, we present a bisegiionedure for finding a tight
interval[S;, Sy ] that contains the minimax distangg. A slight modification of the
interval can be used as input to Procedure A terdehe the exact value df,. We add
the constrainE?’:le = n to SCLP and call the resulting BLURSCLP. The bisection
procedure is based on solvingSCLP and is given below.

Procedure B:(Bisection procedure for finding a tight intervaintainingdy,)
1. If n =N, returnd;, = 0 and terminate. Computg and®. SetS, = H! and
Sy = H™.
2. SetS; = (S, + Sy)/2 and determine whetharSCLP atS.. is feasible.
3. If n-SCLP is feasible, s}, = S.. If it is infeasible, sef;, = S.
4. If |[SL,SU] N 1//| < t, stop. The intervdlS;, Sy ] containd;,. Use[L, U] =

-1 >
{[H Syl L= 2, whereh! < S, < h!*1, as input to Procedure A. Otherwise,

[0,Sy],l=1
return to Step 2.
Remark 3.7: We can determine whethefSCLP is feasible by working only with
Reduced SCLP. LeY¥. denote the number of columns of the constraintimat of
Reduced SCLP and let Reduced SCLP with the addestramt that all its decision
variables sum ta be called ReducedSCLP. Then, iV, < n, n-SCLP is feasible. If
N, > n, thenn-SCLP is feasible if and only if ReducedSCLP is feasible.

[H, Syl 1> 2

0,510 =1 , Whereh! < S; < h!*1,is given as input to
»Joubt —

Remark 3.8:1f [L,U] = {

Procedure A, then Procedure A will solve SCLIPI4t.., H*, whereu < [ + t. Thus, the
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parametet controls the number of times SCLP needs to besgldiyy Procedure A. We

suggest choosing> 10.

5.4 Algorithms for Large Candidate Sets

Solving SCLP as an integer program can be very tomsuming whew is
large. Because SCLP is an NP-hard problem (Cuetesit, 2002), there is no known fast
(polynomial time) algorithm for solving it. In o@xperience with Matlab’s bintprog
function, only problems of size up to about 200 barsolved quickly (in a few minutes)
on a MacBook Pro laptop for all valuesSflf the candidate set is a grid, it can also be
difficult to find global optimal minimax designsrf&/ between around 150 to 200. As
grows, the number of elementsyf can increase rapidly and its values become more
finely spaced. Thus, SCLP may need to be solved/rianes to construct a plot afS).
In this section, we propose modifications to Praced that overcome these problems.

To overcome the limitation of solving SCLP as aieger program, we employ a
heuristic procedure. Many heuristic algorithms hlagen proposed to solve large scale
SCLP’s. Classical heuristics include the ones pseddy Chvatal (1979) and Hochbaum
(1982). These are simple heuristics with guarantemdt-case performance. We have
implemented Chvatal's (1979) and Hochbaum'’s (19&R2iristics together with
Grossman and Wool’'s (1997) redundancy eliminatimt@dure. The redundancy
elimination procedure removes redundant designtpdiom a heuristic solution. Based
on our experience, the combination of Hochbaum&@rossman and Wool’'s heuristics
tend to give better solutions than the combinatib@hvatal’s and Grossman and Wool’s
heuristics. Hence, we shall focus on the formerisga procedure, which we call HGW.

We first introduce some notation. The number ofs@ivthe reduced constraint
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matrix A is denoted by, (recall that the number of columnsAis denoted by,) and
the(i,j) element ofd is denoted byL-j. We assume without loss of generality that the
columns of4 correspond to decision variablgs..., Iy_. The HGW heuristic is given
below.
HGW Heuristic
1. Solve the LP relaxation of Reduced SCLP. The Lébisined by replacing the

constraintg; € {0,1},j = 1, ..., N, with the constraint8 < ; <1,/ =1, ..., N,.

Let I*F = (I'R, ..., I§}) denote the optimal solution to the LP relaxation.
2. Letv = max{Z?':Cl/Tij =1, ...,Nr} (v is the maximum row sum df) and find

1,j€EF

F={j:I}® = 1/v}. Setl! = {O,j ¢ F

Then, it can be shown thEt =

(1, ..., 1§ ), which is a heuristic solution proposed by Hochhd1i982), is

feasible for Reduced SCLP. &V = I,

N

3. Calculate the redundaney= Y.<, 4;;1/"°" fori = 1, .., N, i.e., for each

constraint associated with the rowsbfSet= = {j: I//°W = 1}. For eaclj € Z,
calculate the minimal redundansy; = min{r;: 4;; = 1}. Find;* such that
mr;- = max{mr;: j € E} (break ties with the minimum index rule).

4. If mry- = 2, setli = 0 and return to Step 3. Otherwis#op.

In Step 1, the LP relaxation of Reduced SCLP ratem that of SCLP is solved.
We recommend doing this because we can expect bestdts by applying Hochbaum’s
heuristic to Reduced SCLP than SCLP. However, oag choose not to reduce SCLP to

save computation time. The method used to solvéPheslaxation can have an effect on
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the solution returned by HGW because different m@shcan give different optimal
solutions. This chapter uses the simplex algoritmplemented in Matlab.

We modify Procedure A so that it can be appliefind near-minimax designs of
sizen from large candidate sets. The procedure, whicludes the use of HGW as a key
ingredient, is given below.

Procedure C(for constructing near-minimax designs)

1. Specify a tentative design simeSetU = f,dXS andL = f,dXS, wheredXS is the
distance of thex-point design obtained with KS. Compute each eldroégh to
DP decimal places. Determing and comput®. Findl andu such thah!~! <
L < htandh* < U < h¥*1,

2. Solve SCLP withs = H* using HGW. Sek = 2.

3. Check ifd <D (i(H”"‘*z))) < H¥=*+1 wherel (H*~**+2) is the heuristic
solution for SCLP witls = H*~k*2_|f the condition is satisfied, set
T(H¥*+1) = T(H*7**2) and go to Step 5; otherwise, go to Step 4.

4. Solve SCLP witht§ = H*~**1 using HGW.

5. Ifu—k+1=1, stop. Otherwise, sek = k + 1. Go to step 3.

6. Denote byz(S) the step function whose valueSa€ [h9, h9*1) is the sum of the
components of (H?). Plot the monotone decreasing step funcigf) with set
of discontinuitiesv; = {h*: 2(h?) > 2(h"),l < q < t < u}, {(h9) = 2(h?) for
all h9 € wg, and{(hY) = 2(hY). Letn' € {{(h9):h? € w,} and lett(n") €
{l+1,..,u} be such thaf (h*™?) = n". Then, the heuristic solutid{ H*™?) is

ann’-point near-minimaxdesign andt™? is the distance of the design (accurate
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up toDP decimal places). By examining a plot{@®), the user can specify the

value ofn’ to obtain near-minimax designs of several diffesres close ta.
Remark 4.1: The choice off,, andf; should be obtained by trial and error. We suggest
trying f,, € [0.9,1] andf; € [0.5,0.7]. We also suggest thitbe chosen so that<
Nmax = max{{(h?):h? € w;} and onlyn’-point near-minimax designs with < 1,4,
be used. The discussion below justifies the suggestOf coursef,, should be chosen
S0 that, = min{¢(h9): h? € w;} < n.

In the remainder of this section, we discuss thaildeof Procedure C. If we
execute Procedure C by specifyirigU] = [0, H™], we would get an estimate ofS)
which we denote by, ym(S). It is possible that for some?, Zg ym)(H?) #
zHGW (H), wherez!W (H?) is the objective function value obtained by solvBCLP
with HGW atH4, due to the checking in Step 3 of Procedure Cikgni(S), Zjo ym(S)
may not be a monotonic function $f Thus, a design obtained at a discontinuity of
210,41 (S) may not be a good design. However, a good dedigizen can be found at
the discontinuityz(n) of 2o 4m(S) such that, ymi(@(n) — &) > 2o ym(@(n)) = n
for all e > 0 (note thaz(n) may not exist for certain). We call@(n) aminimal
discontinuityof Zj, ;m(S). The construction aof, ;= (S) can be too costly because
can be large. To overcome this problem, we appbg&iture C by specifyingd., U] to be
a narrower interval. This leads to an estingtg;(S) of z(S). In the rest of the chapter,
we shall denotéy;, ;1(S) by Z2(S) since the intervdlL, U] is often clear from the
discussion. For finding-point near-minimax designs, we recommend compu{i§g

with [L, U] = [£,d%5, £,,dX5], wheredXS is the distance of the-point KS design,
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£, € 0.9,1] andf;, € [0.5,0.7].

The discontinuity o£(S) that is of interest is the minimal discontinuity™, i.e.,
ht™ satisfiesz(h9) > 2(h*™) = n,1 < q < t(n) < u. The heuristic solutioh( H:™)
gives am-point near-minimax design with distank®™. It is not necessarily a solution
that is found by solving SCLP &t with HGW; due to Step 3 of Procedure C, it could
be a solution obtained with HGW &it= H!(W*k put is found feasible for afl =
HEM, . HIW*E=1 Note thath!™ may not exist. In this case, we can construat’an
point near-minimax design, whenéis an integer close to such thah!™") exists. A
graph ofZ(S) versusS may not show clearly the distance of near-minimdesigns
because&(S) may not be a monotonic function $fHowever, the problem can be
rectified by constructing the monotone nonincregsitep functior (S) that envelops
2(S) from below in the tightest possible way, i&.$) has set of discontinuities; =
{ht:2(h?) > 2(h"),1 < q < t < u}, and function valuegd(h?) = 2(h?) for all h? € w,
and{(h') = 2(hY). Itis clear that if.’ < L, the minimal discontinuity of;, () that
gives am-point near-minimax design is always less thanqouiaéto the corresponding
minimal discontinuity o, ;1(S) (assuming both exist). Thus, the valud.afr f; should
be small enough so that a gaeghoint near-minimax design is not missed:'lfs close
t0 Npgr = max{¢(h?): h? € w;} so thath!™) is close td., then it is possible that a
better near-minimax design of sizeor less can be found by further decreading
because it may happen that for safne L, 2(S) < n'. Thus, near-minimax designs of
sizen' neamn,,,, should be avoided.

As N gets larger, the size gf increases while the differences between values in
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Y’ get smaller. WheW is large, some of the differences can be so sitmatllit is of no
practical interest to distinguish those values. &bwer, because there are many values in
Y', SCLP may need to be solved many times evfl if] is narrow. In this chapter, we
compute the elements gfto DP = 12 decimal places wheN < 200 and toDP = 2
decimal places wheN > 200. Larger values oDP give more accurate results but we
have found that good near-minimax designs can beraa with Procedure C even if
DP = 2.

It is found that wheN > 2000, the Matlab implementation of Procedure C
incurs high memory usage and long computation tmée author’s laptop, which is a
MacBook Pro with 2.4GHz Intel® Core™ Duo Processod 4GB of RAM. The former
problem (high memory usage) can cause the compufezeze when the code is
executed. It is due to the precomputing and stasing andA(S). Note thatd(S) (or
A(S)) is a required input to Matlab’s linear prograniveo and the precomputeplis

used to quickly genera#(S) for various values dof.

5.5 Examples and Comparisons

This section gives three examples to demonstratapbplication of the proposed
methods to three different design problems. Ttet &kample is a real problem in a
building energy simulation project involving thetlaor. A small dataset on the input
variables is available and it indicates that a lyiginegular design region is appropriate.
Since it is difficult to define a continuous desiggion that envelops the data, it is
convenient to construct minimax designs from the.dBhe second example employs the
proposed method to construct a nested space-fdiasggn. The third example examines

construction of near-minimax designs from a ladgase(N = 458) using the
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proposed heuristic method.

We emphasize that minimax designs are intendeé toitial designs for
computer experiments (which are almost always se@len nature). Choice of sample
size for an initial design has been discussed by(B893), Box et al. (1978), and
Loeppky et al. (2009). Box (1993) and Box et a@18) recommend 25% of the
experimental budget (which we call Box’s rule-otxthb). Loeppky et al. (2009)
recommend a design of siz8p (10p rule-of-thumb), where is the dimension/number
of variables. After an initial experiment has been, an analysis of the data will indicate
whether the sample size is adequate. If the exjgaitiah objective is prediction,
prediction intervals (Tan and Wu, 2012; Santnex ,€2003) can be used to determine
whether follow-up runs are needed.

In the examples, we compare the proposed methddk@t MT, and KS-MF,
where KS-MF is an algorithm that improves KS desigiith the modified Fedorov
algorithm (MF). These algorithms are discussedppeéndix E.2. Note that MF is one of
the best algorithms for finding optimal designsfinite candidate set (Cook and

Nachtsheim, 1980; SAS Institute, 2010).

5.5.1 Example 5.1: Urban Heat Island Effect

In this problem, it is desired to construct a noadir emulator for a computer code
used to predict urban heat island intensity, wisdmportant for uncertainty
guantification of building energy consumption (Satral., 2012). Interest centers on
studying the effect of four variables, i.e., canymight, canyon ratio, vegetation area
fraction, and built-up area fraction, on urban hslaind intensity. These variables are

geometric parameters that characterize the layidutitwings within a city (see
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Appendix E.3). It is not easy for the engineersgecify a design region for the four
variables because reasonable values must corretitgt the correlations between the

variables.
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Figure 5.3: Top: 80 Data Points for the Four Urhagout Geometry Parameters;
Bottom: 23-Point Minimax Design that Minimiz&¢D)

Data on the geometric parameters§o«= 80 real urban areas are available. The
engineers express interest in predicting urbanibkatd intensity at the data points

because this would allow direct validation of tleenputer model with measured data
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from real urban areas. Since the four variableg waer quite different ranges, we first
center and standardize each variable. The stazdardata are plotted in the top of
Figure 5.3. It is immediately clear from the figuhat the region of interest cannot be
fitted into a hypercube or hypersphere. Thus, gsgh region is taken as the set of data
points. Moreover, because running the computer ebdé 80 data points is costly, a
minimax design constructed using the data as catalgkt is particularly useful.

There are a total of 2383 distinct pairwise diséanoetween data points with
values from 0 to 6.5932. We apply Procedure A Witti/] = [0.4,1.6]. There are 547
values i)’ N [0.4,1.6], which we denote b§h*~>*¢, ..., h*}. Procedure A only requires
about 9 seconds to find an optimal solution to S&urall S € {H*~>%¢, ..., H*} on the
author’s laptop. A plot o£(S) versusS over[0.4,1.6] is given in Figure 5.4.
Discontinuities are plotted as dots in Figure §.4an be seen that there are less #an
discontinuities since(S) ranges from 6 to 43 within the intenjél4,1.6]. It is not
possible to determine whethi&~5¢ is a discontinuity from the information we have
since this would require solving SCLPSat h*~547. Eachh’ that is a discontinuity of
z(S) is the minimax distance forah’)-point minimax design. &(h’)-point minimax
design can be obtained by solving SCLB &t H/. Figure 5.4 shows that minimax
designs of size6 to 42 have minimax distances in the inter{@i,1.6].

For comparison, we compute designs of size 6-4%ust, MT, and KS-MF.
MT uses 50 random starting designs to generatgmesi each size. We have verified
that different sets of 50 random starting desigmnsltto yield MT designs with similar
distances (across replicates). KS requires a fnacti a second to compute all designs

and their distances, KS-MF requires two seconds Mih requires about 30 seconds. In
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Figure 5.4, we plot the design size versus distahceclear from the figure that none of
the KS and MT designs are (global optimal) minindasigns. We also see that MT
designs can be competitive with KS designs but tiee slightly larger distance values

in most cases.
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Figure 5.4: Plot of(S) versusS, and Design Size versus Distance for KS, MT, afd K
MF Designs, Urban Heat Island Problem

KS-MF performs quite well (i.e., MF is effectiveiatproving KS designs) in this
example. Three of the KS-MF designs are minimaxgiesthose of size 7, 8, and 10;
the one of size 9 is not) while several others ldoge to minimax distances. However,
some of the KS-MF designs perform unsatisfactardsnpared to minimax designs (e.g.,
those of sizes 16 to 24). Observe that a KS-MFgthest size 23 achieves a distance of
di, = 0.74021, which is the distance of a minimax design of diZeThus, KS-MF
designs are not guaranteed to perform well evesrfall candidate sets (they do not
perform well for largeiN as demonstrated in Examples 5.2 and 5.3). Furttre;rthere
is no obvious way to check the goodness of the KSelélsigns other than applying the

proposed method, and the computational advantag&-afliF is not of practical
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significance for small candidate sets. Consequentheems preferable to use the
proposed method for small candidate sets.

The HGW heuristic gives excellent performance is #xample. It yields a global
optimal solution for each € {H*~5%6, ..., H%}, i.e.,z¢W (S) is identical taz(S) on
[0.4,1.6]. As a result, the estimaf€S) obtained with Procedure C is identicak(&) on
[0.4,1.6], and designs produced by the procedure are mingmaigns. In contrast, the
combination of Chvatal’'s (1979) and Grossman an@M@1997) heuristics yields
suboptimal solutions for marsye {H¥~>%¢, ..., H%}.

For the urban heat island experiment, Box’s rul¢hoimb suggests an initial
design of size about 20 (which is 25% of the tbtadget of 80). Results of the
computations used to construct Figure 5.4 showA{stjumps from 23 to 24 aSis
decreased beyond 0.59573. In particular, we fiatl2€5) = 24 for all S €
[0.58046,0.59573) andz(S) = 23 for all S = [0.59573,0.66781). Thus, 0.59573 is the
minimax distance of 23-point minimax designs, idgs, = 0.59573. Note that 0.59573
and 0.59641 are two consecutive valueg'inThus, to obtain a 23-point minimax
design, we solve SCLP at (0.59573+0.59641)/2=0.89%0e search for alternative
minimax designs is terminated when 150 designsoared. This takes about 83 seconds.
Among the 150 designs, the value of the maximitegan, i.e., A(D), varies from
0.544331 to 0.653584, and five designs achievendmamum value. The value of the
V(D) criterion varies from 0.14464 to 0.17989 and amig desigD** gives this value.
The desigD**, which has a value df(D) of 0.636245, is plotted in Figure 5.3. A
comparison of the top and bottom plots of Figukibdicates thab** is spatially

representative of the candidate set.
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5.5.2 Example 5.2: Nested Space-Filling Design

This example illustrates the use of the proposetthogefor constructing nested
space-filling designs. We suppose it is desirecbtustruct a two-layer nested design for a
problem with dimensiop = 10. The10p rule-of-thumb (Loeppky et al., 2009) suggests
the use of designs of size 100. Since the firgray is used for the experiment on the
low fidelity computer model, which is cheap to ritrseems reasonable to chodseto
be of size 2x100=200. On the other hand, sincedlend layep? is used for the
experiment on the high fidelity computer model, ethis expensive to run, it is
economical to choos®? to be of size 100/2=50. The first lay@t is constructed as
follows. We generate 10,000 random Latin hyperalgsigns if0,1]*° of size 200,
select the design that is best with respect tarthgimin criterion, and séd! to be the
standardized version of that design.

To construciD?, we usgy = D! to build 50-run minimax designs. Applying
Procedure B witm = t = 50 gives the interval
[L,U] = [2.713445536765,2.744064182816] (note that we give the valuesi® =
12 decimal places). The computation takes 6 secdydapplying Procedure A to
computez(S) over[L, U], we find thatdz, = 2.717545205187, and the algorithm
returnsH? = 2.7177296575255 as the value of to use to solve for alternative
minimax designs of size 50. The computation takesegonds. A total of 20 alternative
minimax designs are found in 70 seconds. All exteptdesigns achieve the largest
A(D) value of about 1.902. The minimunigD) value of 0.107 is achieved by only one
designD**. The desigrD** also achieves the largestD). Thus, it seems desirable to

takeD? = D**. Two-dimensional projections & are plotted in Figure 5.5. We do not
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plot D! because its projections densely cover a[(6f— 0.5)/(1/v12), (1 —

0.5)(1/V12)]" = [-V3.v3] .
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Figure 5.5: Matrix Plot of 50-Run Minimax Desi@¢
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Figure 5.6: Plot of(S) versusS, and Design Size versus Distance for
KS and KS-MF Designs

We construct a plot of(S) versusS over[2.5,2.8], as given in Figure 5.6. This

takes about 330 seconds. It can be seen that mirdietancesly,, ..., d;, are in the
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interval[2.5,2.8]. We also plot the distances of designs of siZes.,74 obtained with
KS and KS-MF in Figure 5.6. KS-MF takes about 6dosels to find all the designs and
distances. Although KS-MF is an improvement over K&e of the KS-MF designs are
global optimal minimax designs. An undesirable deabf KS-MF is that the KS-MF
design distance is not a monotone function of adesige. Moreover, KS-MF has
significantly poorer performance compared to minirdasigns. For example, the 65-
point KS-MF design achievek, = 2.71274. The increase in sample size of 13 is

substantial.

5.5.3 Example 5.3: Forest Fires

In this example, we apply the proposed heurisiic@dure to construct near-
minimax designs for a large candidate set. We dens hypothetical problem of
building an emulator of a computer model of fofests, such as the model employed by
Miller and Urban (1999). We use the forest fireadat collected by Cortex and Morais
(2007), which can be downloaded from the UCI maehgarning repository at
http://archive.ics.uci.edu/ml/datasets/Forest+FRioedefine the candidate set. This helps
create a realistic design region, and also alloeatlivalidation of the computer
predictions. The coordinate and time variablesangoved from the data, giving nine
remaining variables. One of the variables is thal tourned area, which is the response.
The eight remaining variables are the quantitiepleyed in the computation of the
Canadian forest fire weather index (Cortex and Mo2007). Appendix E.3 describes
the variables. We assume that these eight variabéemputs to our fictitious forest fire

computer model.
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Figure 5.7: Matrix Plot of Candidate Set (Top) &dRun Near-Minimax Design
(Bottom), Forest Fire Data

There are a total of 517 data points and sevetdémican be seen when two-
dimensional projections of the data are plottechil®\t is of interest to run computer
models at locations of outliers in a validation reige, it may not be desirable to include
these outliers in the candidate set for severaloms First, the outliers can significantly
influence the standardization of the variables 08dcif these outliers are included in the

candidate set, some of them would be includednmramax design because they are far
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from the other candidate points. However, the camsmpeode output may behave very
differently at the locations of the outliers, whietay have an adverse effect on the
emulator predictions at non-outlier locations.

In the 517-point data, the variable rain is posiiiv eight instances and equals
zero in all other instances. Thus, these eighymgfldata points are removed and the
variable rain is fixed at zero in the computer ekpent. We now have a 509-point
dataset with seven variables. For this datasegpéy the boxplot to screen out extreme
outliers in each variable. Any data point with aiable that falls outside the outer fences
of its boxplot is discarded. Finally, repeated poisre removed from the data. A total
N = 458 data points remain after removal of all outlyinglaepeated points. Two-
dimensional projections of the standardized daggpbotted in the top of Figure 5.7. We
see that the data concentrate on irregularly shegggdns. For example, in the FFMC
versus DMC plot, the points concentrate on a “cditvegion and in the DMC versus DC
plot, the points concentrate on a highly irreguégion. Note also that in the DC versus
ISI, temp, RH, and wind plots, the points conceetom two disjoint regions.

It is difficult to construct global optimal minimadesigns due to the size of the
candidate set. Since there are= 7 variables, a 70-run minimax design would be a
suitable choice for an initial design accordinghte 10p rule-of-thumb. Thus, we apply
Procedure C witl/ = dX5 andL = 0.7d%3. This yields a plot 0£(S) and{(S) over
[L, U] shown in Figure 5.8.

In Figure 5.8, discontinuities @{S) are plotted as dots addsS) is plotted with a
dotted line. Note that(S) is actually a continuous curve. The portions whieoeerlaps

with ¢(S) are superimposed with the solid line that reprissgis). As illustrated in
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Figure 5.82(S) is not monotonic. The monotonic lower enveld§) is an estimate of
z(8) and its discontinuities give the distances of maarimax designs. We see from the
figure that there is a discontinuity (indicateddyyarrow) in{(S) ath? = 1.51 and

{(h?) = 69. The next largest near-minimax design corresptmdise discontinuity

h?~1 = 1.49 and it has sizé(h?~1) = 73. Figure 5.7 plots the near-minimax design of
size 69, which has a distancehdf= 1.51 up toDP = 2 decimal places (a more precise
calculation gives a value of 1.511322). It can éensthat the design is representative of

the candidate set.
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Figure 5.8: Plot o£(S) and{(S) versusS, and Design Size versus Distance for KS and
KS-MF Designs
The drawback of using near-minimax designs of 8jzg, (defined in Remark
4.1) can be understood by looking at the circledipo of Figure 5.8. IfL, U] =
[1.43,1.8], then a near-minimax design of sizg,, = 84 with distance 1.44 is obtained.
However, we see from the figure that we can okdai®3-point near-minimax design
with distance 1.42.

Figure 5.8 gives the distances of near-minimaxgiesof sizes 43-113, which are
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all greater than 1.25. For comparison, we plotd&s&gn size versus distance for KS and
KS-MF designs of sizes 43-112 (excludimg,, = 113). KS-MF takes about 500
seconds to run. In contrast, Procedure C takesadyt 180 seconds. It is clear from the
figure that for the large candidate set in thisnegke, MF is unable to significantly
improve KS designs. In addition, it can be seeh K&MF designs perform poorly
compared to near-minimax designs. To achieve time ghstance as a near-minimax
design, the design size for KS-MF would need tagigaificantly larger. For example, a
68-point KS-MF design has distance 1.8 whereaspoff& near-minimax design has
distance of 1.79. As another example, to achiegalistance of 1.51 of the 69-point
near-minimax design in Figure 5.7, the KS-MF desigie would have to be 98; this

would give a design with distance 1.50.

5.6 Conclusions

This chapter proposes a method for constructingmair designs from finite
candidate sets. The method is based on solvingR B&., SCLP, at specially chosen
values of the covering radius. We prove that #teominimax distances is the set of
discontinuities ot (S). We show that solving SCLP at or slightly to tight of
discontinuity points gives minimax designs. To @aene computational limitations in
solving large SCLPs, we give a heuristic procediat is useful for constructing near-
minimax designs for large candidate sets. Threengkes are given to illustrate the
usefulness of the proposed method. The first exams@ real problem with a small
candidate set. Minimax distances are determined pi@t ofz(S) versussS, and
alternative minimax designs of a specified sizefaved. The second example illustrates

the use of the proposed method for constructintedespace-filling designs. In the third
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example, we employ the proposed heuristic procetduagproblem with a large candidate
set. In the first and third examples, the candigaiats define highly irregular regions,
and the minimax designs are spatially represemtatithe candidate set.

The algorithms developed in this chapter are véfgrént from existing
algorithms for finding optimal designs on finitencidate set. They are based on solving
finite sequences of SCLP’s with gradually decregsiovering radius. Since SCLP is a
very well-studied problem in the operations reslediterature, there exists a wide variety
of powerful exact and heuristic tools for solvimg toroblem. Some of these tools are
employed in the chapter to solve the minimax depigilem while others can be tested
in future research. Even though existing algoritlionginding optimal designs on finite
candidate can be used to find minimax designsetiseno guarantee that these
algorithms can produce good designs. In fact, teegot perform well on moderate and
large candidate sets. This may be due to theliattihe number of alternativepoint
designs increases as the number of candidate poanesases. Examples 5.1-5.3
demonstrate that a6 increases, the performance of KS-MF designs weat minimax
or near-minimax designs deteriorates. For Examgdl¢ = 80), many of the KS-MF
designs have distances close to minimax distanttesoine of the designs perform
poorly. For Example 5.2\ = 200), none of the KS-MF designs perform well relative
minimax designs although KS-MF designs are sigaifily better than KS designs.
Finally, in Example 5.3N = 458), Procedure C is shown to produce near-minimax
designs that are substantially better than KS-Mstgihs in a much shorter time.
Moreover, the KS-MF designs yield negligible impeawents over the KS designs.

A few areas require further research. First, extensf the proposed method to
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construct designs for continuous regions is neefedond, clever computational
techniques and programming tricks can be used poave the code for Procedure C so
that it can work for larger candidate sets. Thalrteestore the entire constraint matrix
may be eliminated with delayed generation of tivesrand columns of the constraint
matrix (Bersimas and Tsitsiklis, 1997). In additigtate-of-the-art LP solvers can reduce
the time required by Procedure C. For example, CPisEcapable of solving LP’s with
more thanl 0> constraints and variables in reasonable timeBsd®y (2002)). Third,
extension of the heuristic procedure to generatertt@n one near-minimax designs of
each size is needed. Fourth, we can substitute M@k\Vmore modern and powerful

heuristics for solving SCLP, such as the one pregdsy Caprara et al. (1999).
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APPENDIX A

SUPPLEMENTARY MATERIAL FOR CHAPTER 1

A.1 Simulation Procedure for Assessing Effectiveneof Direct Selective Assembly
Procedurel
1. Create thé&kN x N* constraint matri¥d for Program A, wherd can be obtained in
the following way:
i. Generate &/* full factorial designF = (F;;), where theV levels are labelled as
1,2,...,N.
ii. Forthelst row ofA, set the element in theh column equal if F;; = 1 and
zero otherwise. For thiznd row of A, set the element in thieh column equal
if F;; = 2 and zero otherwise. Continue in this fashion uh&lNth row of A,
Then, generate th@V + 1)th to (2N)th row of A based on th&nd column of
F. Continue until alkN rows of4 have been generated.
2. Fori=1,..,k, draw a random sample of si¥e X;;, ..., X;y from distributionFy, .
3. Compute alQ; ;,..;, = min{L(Y, ;,..;,, T), X5_; ¢}, where
Yiiyip = F(X1iy, s Xk, ). Write the costs in a vect@, where thgth element is
Qi ip-iy, if the jth row of F is (iy, iy, ..., ix).
4. Solve Program A, which can be written compactlynas,{Q D:AD = 1,D €
7N, D > 0}, whereD is the vector of decision variables, ah@s akN vector of 1's.

5. Repeat steps 2# times. Estimate the expected quality cost of atbhyQCs, =
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%Zﬁ‘il QC;, where QC; denotes the optimal objective function value ai®diin the

ith replicate.

A.2 lllustrative Figures of Assemblies Discussed iBxamples 1.1-1.4

Temperature Ty

A U 7

Temperature T

Figure A.1: Bimetal Thermostat

Y2

Figure A.2: Knucle Joint Assembly
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X1

Figure A.3: Fortini’'s Clutch

A.3 Simulation Procedure for Assessing Effectiveness of
Fixed Bin Selective Assembly

Procedurell
Given a combination at € o,, and bin-formation rule, do the following.
1. Generate th€Y*_, n;) x [1£, n; constraint matri¥d. This is done as follows:
i.  Generate an; X --- X n; full factorial designF = (F;;), where theq; levels of
thejth column are labelled dsz, ..., n;.
ii. Forthelst row of A, set the element in theh column equal if F;; = 1 and
zero otherwise. For thznd row of A, set the element in theh column equal
if F;; = 2 and zero otherwise. Continue in this fashion uhgin, th row of A.
Then, generate thgy, + 1)th to (n, + n,)th row of A based on thend

column ofA. Continue until alf_, n; rows of4 have been generated.
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. Determine the;;’s based on the bin-formation rule.

. Compute alQ;, ;,...;, = min{E[L(Y¥;,;,...,, T)], Xf-1 ¢’} and write the costs in a
vectorQ, where thgth element ig); ;,..;, if the jth row of F is (iy, i, ..., ix)-

. Generat@) = (Ny4, ..., Nin,, Na1, oo, Nanys oo, Niga, oo, Nien,, ). Note that( Ny, ..., Nip,)
has a multinomial distribution with probabilitips; = Fy, (b;;) — Fx, (b j-1).

. Solve Program B, which can be written compactlynas, {Q'D:AD =n,DEe
Zlli=mi, D > 0},

. Repeat Steps 4 times. Denote the optimal objective function vahiained in
theith replicate a®)C;". We can estimate the expected total cost of enldatc

TC = %Zﬁl QC; + C(n,N), and the expected quality cost@¢s, = %Zﬁl Qc;.

A.4 Simulation Procedure for Estimating Expected Teal Cost of
Alternative Bin Designs

Procedurelll
Select the confidence level- a, practically significant differencé&, number of
replicatesM = r for Procedurdl and first stage sample sizg > 2. Sett =
t(1—a2)t/r-Dm, 1 @NAR = h (1 - %,ml,y), whereh is Rinott’s (see Rinott, 1978)

constant angt is the number of alternatives to be compared|®g;|.
For eache w,; , do the following.
i. Forl=1,..,my, run Procedurd with M = r. Denote the estimate of the total

cost for alternative obtained in théth run byTC;,.

ii. Compute the sample me@6.” = Y™ TC;, /m, and sample variancg =
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. _ 2
(TCy = TC) /my = 1).

i

Computel;; =t /(si2 +s7)/m, foralli # j.

Setl = {i:i € wg and TCY < TC + (Wy; — 8)" Vi # j}.
If I contains a single index, then stop and returndbatbination ofr and bin-

formation rule as best.
. hs;\ 2
Otherwise, for ale I , computen, = max {ml, (?‘) }

For alli € I, run Procedurd (m, — m,) additional times wittM = r and compute
the sample meaﬁi(z) = Y2 TCy /m,.

Select as best the alternative I with smallesTc®
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APPENDIX B

SUPPLEMENTARY MATERIAL FOR CHAPTER 2

B.1 Cumulant Generating Function, Cumulants, and Monents of Quadratic Forms

. _ Y1 _ ”"1 _ Vll O . et
Lemma B.1:LetY = (Y2> N (u = (MZ),V = ( 0 0)) whereV; is positive

H11 H12

definite, andH be a symmetric matrix. WritH = (
H21 H22

), whereH, is a square

matrix with the same number of rows¥asandH,, is a square matrix with the same

1/2

number of rows ag,. Denote the minimum and maximum eigenvaluelsitflelV11

by A..;,, and,, .. respectively. Then, the quadratic fo@m= YT HY has the cumulant-
generating function given by

K(t) =t(u"Hp) - %ln[det(l — 2tV Hqp)] + 2t*(u3Hyy + puiH ) (V] —
2tH1) " (Hyppo + Hyg ) (B.0)
for t € (—|2min(4},;,, 0)| 1, [2 max(A}nqey, 0)]71).

Proof: This result follows easily from Equation (2.6) agfuerverger and Wong (2000).

Theorem B.1:LetY~N(u, V), whereV is positive semidefiniteand letV'/2HV/? =
TAT'T be the spectral decompositionldf?HV'/2, whereA is a diagonal matrix with
diagonal elements; < --- < ;. Then, the cumulant-generating functiorQof YT HY is

given by

1
K(t) = tuT Hu — =In[det(I — 2tVH)] + 2t*uT HVY/2(I — 2tV/?HVY?)~ WY/ 2Hpu
2
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1 2t
= tu"Hp — Yo, In(1 - 264,) + i 1%, (B.1)

whereu; is theith element of the vectdt’ V/2Hpu, and the expression holds for
t € ((=12min(A4, 0)|7%, [2 max(2;, 0)]71)). Moreover, we have

t(1—tA)u?

— T Sl T had
K'(6) = WTHp + Tk, i + a3k, S0 (B.2)
2
K (t) = 221 1742 20\ )2+ Zl 1m, (BB)
and
" _ Uuj 7\
K'"'(t) =8YF o m )3+24Zl L G200 (B.4)

Zy

zz) ~N(M,W) =

Proof: Let B be an orthogonal matrix such thatz = (

N ((%1) ' ([4:)11 g)) whereW ,, is diagonal matrix with strictly positive diagonal
2

elementsM = Bu, andW = BVBT. Hence, we hav@ = YTHY = YTBTBHBTBY =
ZTEZ, whereE = BHB.

Let us write
B M Biu
B, M, H B,u

B,VBT B,VB?
w= ("1 O)=pyer=( 101 1072 and
0O o0 B,VBT B,VB!

E— BHBT — (BlHB{ BlHB£> _ <E11 Elz)

B,HB!Y B,HB? Eyy Ey)
All identity matrices are denoted Byand the dimension of eaétshall be clear from the

context. By (B.0), we have

K(t) = log[M(t)]
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1
= t(MTEM) - Eln[det(l - 2tW11E11)]
+2t*(MZE; + M{E)(W1{ — 2tE1;) " (E;;M, + E1 M)

1

= t(u"BTBHB"Bu) — Eln[det(l — 2tWE)]
+2t*(u"ByB,HB] + p" BT BHB) W1} — 2tE,;) " (B{HB}B,p + B{HB B )
=t(u"Hp) — %ln[det(l — 2tBVBTBHB™)| + 2t?u"THBT (W} — 2tE,;) 'B;Hpu
= t(u" Hp) — In[det(I — 2tVH)] + 2t " HVY/2(I — 2tVY/2HVY/2) 1YY/ 2 Hp,
where the last equality follows from the fact that
Vl/Z(I _ 2tV1/2HV1/2)_1V1/2
= BTW,/*B,(I — 2tBTW\> B, HBTW/*B,) ' BTW/*B,

= BTW/’B,(B"B — 2tBTW/’E,,W/’B,) 'BTW/*B,

=Biwi’B,B7|([ 0) -2 ()wilEawia o] ' BBIW'/’B,

1/2 1/2 -1
= BTW 1/2(I 0)( — 2tW; 0 1T E1 W (I)) ((I)) W1{231

Wi - 2tWiPE L WY 'W?B, = BT (W1}l — 2tE,;) B,;.

Note that (B.1) holds far € (—|2 min(4,,;,,, 0)| 7%, [2 max(A},qx, 0)]~1), where

1/2

A andA, ., are the minimum and maximum elgenvalueWQ{ZEllw . Since

min

1/2 1/2
BVY/2HY'/2BT = (Wn E&lw g), we havel,,, = A, if A, < 0 andAg, = A,

if 200 > 0.

Corollary B.1: LetY~N(u, V), whereV is positive semidefinite. Then, the cumulants

for the quadratic forn§ = YTHY are given by
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K, =2""Y(r — D! {trace[(HV)"] + ru" (HV)""*Hu},r € N. (B.5)
Proof: This result follows by expandind — 2tV'/2HV'/?)~1 and—%ln[det(l —

2tVH)] in the expression fdt (t) as power series in(see Equations (5.10) and (5.11)

in Khuri (2009)).

Theorem B.2:LetY be a multivariate random variable witlv degrees of freedom,
location parameteu, and scale matrik, i.e.,Y =% Z/\/x2/v + u, whereZ~N(0,V),
xZ is a chi-squared random variable withlegrees of freedom adandy? are
independent. Ther = YT HY has first three central moments given by

M; =E(Q) =ciay + by, v > 2,

M, = E[(Q — M))?] = c3(a? + a,) + ¢;(2a,b; + by) + b? — M%,v > 4,

M; = E[(Q — M)3] = ¢c3(a3 + 3a,a, + a3) + c,(3a3b, + 3a,b, + 3a;b, + b3) +
c;(3a;b? + 3b1by) + b3 —3M; M, — M3,v > 6,

wherea, = 2" 1(r — 1)! trace[(HV)"], b, = 2" Yr' u" (HV)""*Hpu, andc, =

[(1-2/v)A—4/v) 1 -2r/v)]".

Proof: We haveQ = YTHY =2 (Z/\[x2/v + 1) H(Z/JxZ/v + p). Thus,
Z/\x2/v + plx2 =2 N(u, (v/x2V). It follows thatQ| 2 = (Z/\/x2/v + M)TH(Z/
Vxd/v+u)

K, = 2771 = DU/ x3) trace[(HV)] + (v/x3)"*ru” (HVY ™ Hps)

X% has cumulants given by

=a, (/)" + b, (/X)) = a )"+ b)Y
where] = v/x2. Now, we can obtaiff (Q"|x2) using the relationship between moments

and cumulants. Sind&(Q"|x2) can be expressed as a polynomial of degiieg, we
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can obtain the raw momenigQ") using the fact that

EGD =E[(%) ] =10 -2/m-4/) 1 -2r/0)] " =

The central moments can then be obtained fromatwamoments.

B.2 Data for Examples

Table B.1: Data for Example 2.1

BHF Friction Material Part Thicknes$ Y v
dy d, d3 dy ! 2

13.6492 0.1405 1.0819 11.8017 16.1242 12.3581
13.7553 0.0904 0.9814 11.9484 16.5589 12.1747
13.7211 0.1534 0.8811 11.9619 12.56P4 9.4974

2.3992 0.1512 0.9933 11.9606 18.442 11.0999
24.9033 0.097 1.0923 11.9473 19.88p3  13.4837
2.5053 0.1005 1.0913 12.0388 17.89B2 11.0234
25.0027 0.1466 1.0063 12.0067 17.036 11.4995
2.4711 0.1521 0.991 12.0383 17.5985 10.8937
2.5291 0.1016 1.0999 12.0638 15.06[/9 11.1937
13.7791 0.0404 0.8937 11.9781 14.19095 11.092

24.997 0.0536 1.016 11.9351 17.7311 12.9[76

2.5072 0.0958 0.8941 12.0725 9.8603 10.0025
2.4983 0.0422 0.9933 11.8973 14.90B6 9.9908
13.7572 0.0995 1.0031 12.0039 16.452 12.23
13.7483 0.0959 1.0025 12.0272 16.62B34 12.2Y83
13.7372 0.0555 0.9081 11.9032 15.399 11.3933
2.4872 0.097 0.8889 12.0405 14.7347 9.35B2

13.792 0.1035 1.0077 11.9982 16.38p7 12.243
24.9737 0.0527 0.9922 11.9569 17.25//1 12.6146
13.7809 0.1515 0.9056 12.0172 12.69P7 9.7055
24,9978 0.0977 0.8982 12.0322 15.99p8 11.2144
13.7721 0.0484 1.1079 11.9815 18.508 13.6613
13.7187 0.0964 0.9919 11.8797 16.5546 12.2819
24.9718 0.1483 1.0078 11.9887 17.07p9 11.5955
13.7858 0.1407 1.1077 12.0855 17.0869 13.951
25.0469 0.1037 0.9091 11.8921 16.44018 11.4263
13.7685 0.0428 1.0955 12.0642 18.7483 14.9Y17
13.7511 0.096 0.9936 12.0129 16.43p3 12.1832

2.542 0.048 1.0014 11.9466 15.2362 10.1161
24.988 0.1004 1.0918 12.0695 18.7641  14.3875
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Table B.2: Data for Example 2.3

A B C n m FC Y
502.1 | 710.8| 0.0067 0.12% 0.7 0.7p  328|75
553.1 | 600.8| 0.026% 0.234 1 0.31 346/64
604.1 | 490.8| 0.0067 0.343 1.3 0.2y 461)21
655.1 | 600.8| 0.0134 0.234 1 0.325 349|87
502.1 | 490.8| 0.0067 0.343 0.7 0.635 538{07
553.1 | 600.8| 0.0134 0.01¢ 1 0.82  297)08
604.1 | 710.8| 0.0201 0.343 1.3 0.035 358(65
553.1 | 600.8| 0.0134 0.234 1.6 0.1 380.1
553.1 | 820.8| 0.0134 0.234 1 0.2%  344)98
502.1 | 490.8| 0.0201 0.343 1.3 0.4 434]53
553.1 | 600.8| 0.0134 0.452 1 0.18 45677
502.1 | 710.8| 0.0067 0.343 1.3 0.198 433{48
604.1 | 490.8| 0.0201 0.12% 1.3 0315 3415
553.1 | 380.8| 0.0134 0.234 1 0.6 442139
502.1 | 710.8| 0.0201 0.12% 1.3 0.2pb  315|75
451.1 | 600.8| 0.0134 0.234 1 0.44  436]15
604.1 | 710.8| 0.0201 0.12% 0.7 0.72  306|88
604.1 | 710.8| 0.0067 0.12% 1.3 0.335 325{09
604.1 | 710.8| 0.0067 0.343 0.7 0.435 435{75
604.1 | 490.8| 0.0067 0.12% 0.7 0.7  342|89
502.1 | 710.8| 0.0201 0.343 0.7 0.3y  419|73
553.1 | 600.8| 0.0134 0.234 0.4 0.8p  394|89
553.1 | 600.8 0 0.234 1 0.47 459.84
502.1 | 490.8| 0.0067 0.12% 1.3 0.5  426|87
604.1 | 490.8| 0.0201 0.343 0.7 0.5p 415)21
502.1 | 490.8| 0.0201 0.12% 0.7 0.8L  357|67
553.1 | 600.8| 0.0134 0.234 1 0.375 38527
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B.3 Supplementary Figure for Section 2.7.1

Posterior Normal Process, Target Loss (T=15) Posterior Normal Process, Variance Loss
0.96 0.96
0.92 1 T | 0.92 1
0.904 L 0.904 ]
0.9 { —== 09 ; == J
o 0.896 T o 0.896 R ]
g g
o 0.881 o 0.881
> >
[=] [=]
o o
0.841 0.841
0.80 0.80

Chi-Squared Lognormal Lugannani-Rice Power_CS Noncentral _CS Chi-Squared Lognormal Lugannani-Rice Power_CS Noncentral_CS

Figure B.1. Empirical Coverage of 90% Credible tnéds for Responskg,, Posterior
Normal Process. The empirical coverage is evaluat&a5 points on the control factor
spac€0,1]3, x2 andx’.
B.4 Parameter Settings of Pattern Search Algorithm
We only changed the maximum number of iterationlgrance of function, and

tolerance of variable to make sure that the allgoriconverges, as indicated by the

exitflag output. All other settings remained asadéif values. For finding MLE’s, we set
psoptimset(  'display’ , 'off , 'Maxiter  ,90000, ‘TolFun' ,107-6, 'TolX' ,107-6)

For finding optimal settings in Example 2.1, aj@lithm parameter values are
default values. For Example 2.2, we use a 10-gpidtto identify a close-to-optimal
control factor setting, and then we refine theilsgttising a crude patternsearch with

parameter values
psoptimset(  'display’ , 'off ,'Maxiter’  ,90000, ‘TolFun' ,107-3, 'TolX' ,107"-3)

Careful use of other optimization packages shoubdyce the same results.
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APPENDIX C

SUPPLEMENTARY MATERIAL FOR CHAPTER 3

C.1 Covariance Matrices and Data for Examples

C.1.1 Covariance Matrix for Example 3.1

0.6952 0.2133 0.9125 0.3183 -0.023 0.0074 0.27115470. 0.0857 -0.1293 -0.4068 -0.3014
0.2133 0.2033 0.4661  -0.0033  0.0425 0.128 0.0834 3103.  0.0458 -0.16 -0.2934  -0.2345
0.9125 0.4661 1.7496 0.3168 0.0584 0.2637 0.38790961. 0.0909 -0.4433 -0.877 -0.7561
0.3183  -0.0033  0.3168 1.045 -0.3363 -0.2946  0.3119.2712 0.2634 0.4661 0.077 0.3024
-0.023 0.0425 0.0584  -0.3363  0.2524 0.1839  -0.0710.0683 -0.111  -0.2382 -0.1413 -0.2186
0.0074 0.128 0.2637  -0.2946  0.1839 0.4899 0.0156 4160. -0.0313 -0.3132 -0.3254 -0.3152
0.2711 0.0834 0.3879 0.3119 -0.0717 0.0156 0.2783.3853 0.0363 -0.012 -0.104  -0.0991
0.5471 0.3103 1.0961 0.2712 0.0683 0.4161 0.3853 1345.  0.1296  -0.3019 -0.6347 -0.4795
0.0857 0.0458 0.0909 0.2634 -0.111  -0.0313  0.0363.1298 0.3016 0.1946  -0.1296  0.1436
-0.1293 -0.16 -0.4433  0.4661 -0.2382 -0.3132  -0.0120.3019  0.1946 0.5211 0.3287 0.4919
-0.4068 -0.2934  -0.877 0.077 -0.1413 -0.3254  -0.1040.6347 -0.1296  0.3287 0.6865 0.4841
-0.3014 -0.2345 -0.7561 0.3024 -0.2186 -0.3152 9@10 -0.4795 0.1436 0.4919 0.4841 0.669

C.1.2 Covariance Matrices for the Example 3.2

Covariance Matrix 1
0.1964 0.1323 0.0615 -0.1305 0.1137 -0.0881
0.1323 1.8235 0.2952 -1.2099 0.3865 -0.1227
0.0615 0.2952 0.184 -0.2689 0.0944 -0.0752
-0.1305 -1.2099 -0.2689 1.1715 -0.4383 0.3145
0.1137 0.3865 0.0944 -0.4383 0.386 -0.1177
-0.0881 -0.1227 -0.0752 0.3145 -0.1177 0.2915

Covariance Matrix 2
0.511 0.0374 -0.176 -0.4448 0.624 0.835
0.0374 0.2593 0.0128 -0.3342 0.111 0.0288
-0.176 0.0128 0.1999 0.0381 -0.1952 -0.2217
-0.4448 -0.3342 0.0381 1.8928 -0.9916 -1.4821
0.624 0.111 -0.1952 -0.9916 1.1354 1.5288
0.835 0.0288 -0.2217 -1.4821 1.5288 2.6812
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Var 1
(LYS)
0.48
0.47
0.42
0.35
0.43
0.4
0.35
0.34
0.27
0.39
0.37
0.26
0.24
0.2
0.26
0.52
0.42
0.45
0.47
0.44
0.48
0.49
0.37
0.36
0.46
0.34
0.34
0.31
0.3
0.3
0.3
0.3
0.33
0.32
0.3
0.26

Var 2
(ARG)
5.81
5.25
4.98
4,79
4.92
5.61
4.54
3.82
3.42
3.6
3.39
2.72
3.13
2.15
2.89
5.53
5.07
5.46
5.79
2.52
5.14
4.77
4.35
4,01
4.26
3.46
4.13
3.7
3.18
3.57
3.31
3.13
3.1
3.84
3.75
3.34

Var 3
(ASP)
2.12
2.75
2.79
2.79
2.88
2.26
2.96
2.86
2.27
2.99
2.78
3.82
3.35
3.28
3.67
2.97
3.06
3.06
291
2.4
2.66
2.42
3.04
2.37
251
2.2
2.72
2.77
2.54
2.45
2.53
2.82
3.01
3.79
2.83
3.46

Table C.1: Data for Example 3.4

Var 4
(SER)
4.68
4.42
3.85
3.39
3.53
3.39
3.89
3.63
4.81
5.03
5.96
6.03
5.76
5.8
6.34
3.37
4.32
4.68
4.44
4.09
4.04
5.92
5.07
3.93
7.29
3.8
6.01
5.29
5.04
5.7
521
5.85
7.15
6.08
6.24
7.01

Var 5
(GLU)
0.78
0.88
0.75
0.81
0.78
0.69
0.88
0.86
0.9
0.92
0.84
1.17
0.96
1.04
1.22
0.78
0.91
0.84
0.8
0.72
0.94
1
0.87
0.76
1.07
0.93
0.95
0.85
0.95
1.06
0.88
1
1.04
1.01
0.71
1.02

Var6 Var7 Var8
(PRO) (GLY) (ALA) (VAL)
1241 031 0.96 0.18
14.72 0.3 1.04 0.19
12.13 0.32 0.99 0.15
12.77 0.25 0.75 0.16
13.11 025 091 0.16
1269 0.2 1.06 0.16
14.01 024 0.86 0.16
15.73 0.22 1.34 0.14
899 0.23 143 0.1
13.71 028 199 0.13
1292 024 176 0.12
7.18 0.15 1.3 0.11
6.75 021 114 0.11
534 022 106 0.12
587 0.18 1.1 0.14
10.74 0.24 0.96 0.1
1537 047 132 0.16
1652 039 135 0.14
16.21 0.35 1.2 0.2
1281 0.28 086 0.18
16.77 0.33 0.97 0.22
1562 0.34 1.93 0.5
1581 0.31 2.08 0.19
11.28 0.22 0.75 0.12
1857 0.37 2.67 0.19
11.73 0.26 14 0.18
1396 0.34 2.3 0.1
10.8 0.22 1.68 0.1
11.25 0.21 184 0.1
1228 0.26 153 0.1
9.1 0.23 1.37 0.08
10.31 0.21 1.55 0.1
1271 023 1.79 0.09
10.13 0.18 1.3 0.09
6.2 0.16 1.2 0.05
6.68 0.2 1.52 0.1

Var9 Varl0 Varll
(PHA) (GABA)

0.2.73 4
0.22.96 3
0.2.943
0.18.69
0.18.23
0.18 76 3.
0.13.92
0.12.88

0.1 2.68
0.1 88 2.
0.18.01
0.07 4 3.
0.08.43 2
008 124
0.12 4 2.
0.16 .4 3
0.2 .63 3
0.18.89
0.18 245
0.23.43 4
0.23#.9

0.15 4.05
0.1.174
0.13.27
0.1.952
0.1 3.06
0.08 06 3.
001 126
0.01 48 2.
0.1 2.46
0.01 525
0.08 2.69
0.1 52 3.
0.01.67 3
0.08 3.01
0.08 821

Y YS=Lysine, ARG=Arginine, ASP=Aspartic acid, SERziBe, GLU=Glutamine acid,
PRO=Proline, GLY=Glycine, ALA=Alanine, VAL=Valind?HA=Phenyl alanine,
GABA=Gamma-amino butric acid
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C.2 Additional Figures for Example 3.4
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Figure C.1: Plot of Phase | and Phase Il Obsematior Example 3.4

C.3 Matlab Code for Implementing the Empirical Bayes Approach

Note: This code was used to obtain the resultxantple 3.4.
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function  EmpiricalBayes

format short ¢

global Phasel OC

%Phase | global variable should contain the phase |
%OC global variable should contain the out-of-contr
[N p]=size(Phasel);

[n ~]=size(OC);

abststat=sqrt(n)*abs((mean(OC)-mean(Phasel))./(std(
ind=find(abststat>2);

lambda=abststat(ind);

h=mean(lambda)

a0=std(lambda)*sqrt(N/n);

Xbb=mean(Phasel)’;
Sigma=cov(Phasel);
S=Sigma*(N-1);

Sf=(n-1)*cov(OC);
Xbf=mean(OC);

C=h*sqrt(diag(Sigma))/sqrt(n);
a=max(max(a0,(h/2)*sqrt(N/n)-1),1)
a=a*ones(p,1);

sigma2hat=diag(Sigma)/(N);

Nruns=20000;
tau=10000;
g=Nruns-tau;

t=(N-p-2)/2;
v=n+2*t+p+1;

Del=zeros(p,1);
Prob=[repmat([0.25 0.5 0.25],p,1)];
mu=Xbb;

T=Sf+S;

for i=1:Nruns

Scale=inv(T+n*(Xbf-mu)*(Xbf-mu)";
Sigmainv=wishartrnd(Scale,v,p);
psi=sigmaZ2hat.*(a.”(2*abs(Del)));

psiinv=diag(1./psi);

Theta=Xbb+Del.*C;
g=(psiinv+n*Sigmainv)\(psiinv*Theta+n*Sigmainv*Xbf)
V=inv(psiinv+n*Sigmainv);

mu=(mvnrnd(g',V))’;
Smu(:,i)=mu;

for k=1.p
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for j=1:3
Del2(k)=j-2;
psi2=sigmaZ2hat(k)*(a(k)*(2*abs(Del2(k))));
psiinv2=1/psi2;
Theta2(k)=Xbb(k)+Del2(k)*C(k);
probdel=Prob(k,j);
const(j)=psiinv2"0.5*exp(-0.5*psiinv2*(mu(k)-Th

end

Del(k)=randsample([-1 0 1],1,true,const);

end

SDel(:,i)=Del,
end

SDel2=SDel(:,(tau+1):Nruns);

for i=1l:p
[ 'Marginal posterior distribution of delta'
tabulate(SDel2(i,:))

end

count=zeros(3"p,1);

index=zeros(q,1);

for i=1:q
for j=p:-1:2
index(i,1)=index(i,1)+(SDel2(j,i)+1)*3(j-1
end

index(i,1)=index(i,1)+(SDel2(1,i)+2);
count(index(i,1),1)=count(index(i,1),1)+1;
end

[val index2]=max(count);
posteriormode=indexconvert(index2,p)

display( 'Posterior probability of mode' )
val/(Nruns-tau)

function  wishartrnd=wishartrnd(Sigma,n,p)
if (n>=p)

L=chol(Sigma)’;

A=zeros(p,p);

for i=1:p

A(i,)=sqrt(chi2rnd(n-i+1));

end

for i=2:p
for j=1:i-1
A(i,j)=normrnd(0,1);
end

end

temp=L*A;

wishartrnd=temp*temp";
Y%wishartrnd=L*A*A"™*L";
elseif (n<=p-1)

for i=l:n+1
X(:,i))=(mvnrnd(zeros(1,p),Sigma))";
end

wishartrnd=(X-repmat(mean(X,2),1,n+1))*(X-repmat(me
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end

function  indexconvert=indexconvert(no,p)
u=1;
remainder=no;
for i=p:-1:2
remainder2=rem(remainder,3"(i-1));
if (remainder2==0&u==1)
index(i)=(remainder-remainder2)/(3”(i-1))-2
u=0;
elseif (remainder==0&u==0)
index(i)=1;
else
index(i)=(remainder-remainder2)/(3”(i-1))-1
end
remainder=remainder2;
end
if (remainder==0)
index(1)=1;
else
index(1)=remainder-2;
end
indexconvert=index;
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APPENDIX D

SUPPLEMENTARY MATERIAL FOR CHAPTER 4

D.1 Wholeplot and Subplot Type | and Type Il Error Rates for Simulation in

Section 4.6.1.1

2%x2t Design, Model 1, Wholeplot Error Rate 2%x2t Design, Model 2, Wholeplot Error Rate
Typel Typell Typel Typell Typel Typell Typel Typell Typel Typell Typel Typell
Bayesian (FS) 2.0 50.0 15 12.7 1.0 0.0 Bayesian (FS) 5.3 52.7 65 2.3 6.8 0.0
0.8} LenthIER0.1 3.5 O 37.0 60 O 6.7 103 O 00 0.8} LenthIER0.1 1.8 O 69.0 15 Q 277 35 Q117
Lenth [ER0.05 1.8 48.3 3.0 133 5.8 1.0 Lenth [ER0.05 0.5 83.0 0.3 50.7 15 24.7
Bayesian (FS) 0.3 773 1.0 35.0 1.3 4.7 Bayesian (FS) 2.0 76.0 25 4.0 1.8 0.0
9. 0.5F LenthIERO.L 1.0 Q 427 65 O 53 50 O 00 9. 0.5+ LenthIERO.I 0.8 Q 737 1.3 O 190 38 O 17
Lenth [ER0.05 0.3 60.7 25 12.3 2.0 3.0 Lenth [ER0.05 0.5 87.0 0.3 337 23 10.7
Bayesian (FS) 0.0 87.3 18 50.7 0.0 14.0 Bayesian (FS) 0.0 84.7 2.0 6.7 0.3 0.0
0.2F LenthER0.1 05 O 59.7 18 O 63 75 O 03 0.2F LenthER0.1 03 O 623 18 O 123 50 O 07
Lenth [ER0.05 0.0 78.0 1.0 16.7 23 2.3 Lenth [ER0.05 0.0 777 0.8 29.7 0.8 5.0

3 6 9 3 6 9

n n
Figure D.1: Type | and Type Il Wholeplot Error Rafer Proposed Method (Bayesian
(FS)) and Lenth’s Method with IER=0.1 and IER=0(08nth IERO.1, Lenth IER0.05);
(n, o) € {3,6,9} x {0.2,0.5,0.8}; Model 1 (left) and Model 2 (right)

252t Design, Model 1, Subplot Error Rate 2%t Design, Model 2, Subplot Error Rate
Typel Typell Typel Typell Type |l Typell Typel Typell Typel Typell Type |l Typell
Bayesian (FS) 0.5 51.7 0.5 13.8 0.0 0.0 Bayesian (FS) 0.2 18.0 0.4 0.0 0.4 0.0
0.8F LenthiERO.1 0.0 Q 86.3 0.0 (100.0 0.0 (100.0 0.8F LenthiERO.1 7.6 O 0.0 74 O 00 120 QO 00
Lenth [IER0.05 0.0 93.0 0.0 100.0 0.0 100.0 Lenth [IER0.05 2.6 3.7 4.6 0.0 7.6 0.0
Bayesian (FS) 0.3 81.0 05 395 0.3 53 Bayesian (FS) 1.8 50.0 1.8 0.0 0.8 0.0
9. 0.5} LenthIER0.L 0.0 O 905 0.0 O100.0 0.0 01000 9. 0.5} LenthER0.1 4.0 O 193 66 O 00 88 O 00
Lenth IER0.05 0.0 95.5 0.0 100.0 0.0 100.0 Lenth [IER0.05 2.4 37.3 3.0 0.0 5.2 0.0
Bayesian (FS) 1.0 87.0 0.5 55.5 1.0 15.8 Bayesian (FS) 1.4 63.0 4.2 4.0 24 0.0
0.2f LenthER0.1 0.0 O 865 0.0 (100.0 0.0 (100.0 0.2t LenthER0.1 08 O 42.7 88 O 13 9.0 O 00
Lenth [ER0.05 0.0 94.0 0.0 100.0 0.0 100.0 Lenth [IER0.05 0.6 64.7 4.4 5.7 5.0 0.0
. . . . . .
3 6 9 3 6 9

n n
Figure D.2: Type | and Type Il Subplot Error RatesProposed Method (Bayesian (FS))
and Lenth’s Method with IER=0.1 and IER=0.05 (Lef&#R0.1, Lenth IER0.05);
(n, ) € {3,6,9} x {0.2,0.5,0.8}; Model 1 (left) and Model 2 (right)
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Global Search, OA(27,39), Model 3, Wholeplot Error Rate

Global Search, OA(27,39), Model 4, Wholeplot Error Rate
Typel Typell Type | Typell Type |l Typell Typel Typell Typel Typell Typel Typell
0.8 8.2 0O 39.0 72 O 30 57 O 00 0.8F 116 O 62.7 147 O 393 95 O 220
S- S-
0.5r 6.0 O 320 38 O 50 1.2 O 0.0 05 64 O 74.0 93 Q373 85 0 233
0.2t 3.3 O 400 22 O 40 07 O 0.0 0.2r 53 0O 673 71 O 320 6.2 O 187
3 6 9 3 6

9

n n

Figure D.3: Type | and Type Il Wholeplot Error Rater Best Model Found with GS;
(n, o) € {3,6,9} x {0.2,0.5,0.8}; Model 3 (left) and Model 4 (right)

Global Search, OA(27,39), Model 3, Subplot Error Rate

Global Search, OA(27,39), Model 4, Subplot Error Rate
Typel Typell Type | Typell Type |l Typell Typel Typell Typel Typell Typel Typell

08 26 O 53 22 O 00 09 O 00 08F 7.3 0O 420 39 0O 107 1.8 O 5.0

S- S-
05r 75 O 247 33 O 00 09 O 00 05 84 0O 66.7 47 0O 170 32 O 53
0.2t 87 0O 353 64 O 73 1.7 O 0.0 0.2 89 O 68.0 54 0O 240 47 O 73
3 6 9 3 6 9
n

n
Figure D.4: Type | and Type Il Subplot Error RatesBest Model Found with GS;

(n, @) € {3,6,9} x {0.2,0.5,0.8}; Model 3 (left) and Model 4 (right)

D.2 Theoretical Results

Lemma D.1:ForR, given by

11T + (1 — @)I 0 0
R = 0 11T + (1 — @)I 0 _
» : : : -
0 0 117 + (1 — )I
1 o %
(¢ ! 7
¢ @ 1
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1 ¢ = o\' /ar+B117 0 . 0

coe T
e N e
o ¢ - 1 0 0 - Al + B11T
— — )1 - _ i Tp-11 —
whered = (1 — ¢)™" andB o (LsG—Dg) Moreover, we havé"R,"1

n/[1+ (- 1Del.

Lemma D.2: SetY = Y1, whereY = 3L, ¥7_, V;; /n. Then,(¥ — Bo1)"R,} (Y — Y —
XB) = 0and(Y — XB — Bo )R} (Y — XB — Bol) = (Y =¥ — XB)TR,;' (Y — ¥ —
XB) + (Y — ﬁol)TR;1(7 — Bol).

Lemma D.3: AssumeX”X + S~ has an inverse (this would be trugSifs diagonal with
positive elements on the diagonal so 8K + $~1 is positive definite). Define

RSSsep = (¥ = V)R, {1 — R,V X[(XTR,'X) + S51] " XTR, YR,V (v - V)

andGs., = (X"R,;'X + S31)". Then,

I—-XXTX+S H1xT = (I + XsX")1, (D1)

RSSsep = (¥ — V)T (R, + XS5.XT) (¥ - V), (D2)
-1

Gscp=Ss5c—Ss.X (R, +XS5.X") XS5, (D3)

Proof: Equations (D1) and (D3) follow from the Woodbury tka Identity. Equation

(D2) follows from (D1).

-1/2 -1/2 -1/2

|7/ = |XS5 X7 +R,| 7.

Lemma D.4: |(XTR,'X) + S5 1| IR, |

Proposition D.1: The joint posterior distribution &5, 8,52,8, ¢, @) is

|38,c

p(Bo, B, %, 8,¢,9|Y) < L(Bo, B, 02,8, 0|Y)p(Bo)p(Bla?, 8, c)p(c®)p(8)p(¢)p(c)

B -1/2 VA+RSSs,, 1 T ._
o (o2) D2 |R | e (- 2050 exp {— = (B — ) Gt (B -
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Mscy)}exp (— %) S| p@&P(@IPE), (D4)

whereL(B,, B, o2, 8, p|Y) is the likelihood,

Gsep =Ssc—SscX (R, + XS5 XT) XSy, Mg, = G5, X R, (Y —Y), Y =Y1,
7 =3¥N. ¥ Y, /n RSSsep = (¥ = V)T(R, + XS5.XT) (¥ — ¥), and1"R,'1 =
n/[1+ (r— Del.

Proof: The result follows by writing down

L(Bo, B, 0%, 8,0IV)p(Bo)p(Blo?,8,c)p(a*)p(8)p(9)p(c) and applying Lemmas D.1-
D.3.

Proposition D.2: The posterior distribution af is given by

]—(n—1+v)/2

p(BIY) = [, [ p(8,c,0l¥)dede o [} ["[vA + RSSs, XS5 X" +

R,| " (17R;1) " p(@)p(@)p(c)de dop. (D5)
Proof: This follows by first integrating ou,, B, andas? from the joint posterior (D4)
given in Proposition D.1. The result is the integtaf the integral with respect toand
@ given above.

Proposition D.3: The posterior distribution g8 conditional ond is given by

p(BlY,8) =K fol fooo t(Bimsc, (n+v—1)" (A4 RSSs.)Gscpn+ v —1)

—(n+v-1)/2 -1/2 C1a\—1/2

(A + RSS5.) IR, + XS5.XT| ""(1"R,'1) "“p(p)p(c)dcde, (D6)
where

. (vl+RSS(;,C_(p)G,§_C,q, _ _ F(n“};ﬁ) (U/‘l"'RSS&,c,q))G&c,(p 1/
t (B' M50 n+v—1 mtv 1) - F(%)(rﬁv—l)l’/znp/z n+v-1

r ( ; )G -1 —(n+v—1+p)/2
1 UA+RSS5.,0)Gsc,

ll o (ﬁ B m&c"p) { n+v—(p1 <P} (ﬂ B m‘s'c"p)l (©7)
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is the multivariate studemtprobability density function with means . ,,, scale matrix
(vA+ RSSs.4)Gscp/(n+ v — 1) andn + v — 1 degrees of freedom, and
K =

(n+v-1)/2 -1/2

_ -1
|X55,CXT + R(p| (1TR;11) 1/2'p(go)p(c) dcd(p] .

1 poo -
/5 1" (2 + RSS5.,)
Remark: The distributionB|Y, & is a mixture of multivariate distributions with weight

function

(n+v-1)/2

w(c, ) = K(uA+RSS5c,) XS5 X +R,| 2 (1TR;11) " *p(@)p(0).

Proof: This result follows by dropping all terms involgié only in (D4), and integrating
outS,, anda?. The result is the integrand in (D6).

Corollary D.1: The posterior mean ¢ conditional ond is given by

EBIY,8) = [ [, mscp w(c, p)dcdgp. (D8)
Proof: This follows from (D6) and the fact that; . , is the mean of the density given in
(D7).

Proposition D.4: Let m; denote théth component ofns . ,, 8; denote théth diagonal
element of(n + v — 1)"*(vA + RSSs,,)Gs.,po- TheN,

P(BiIY,8) = [ [; (e, 9)t(Bimy, 0,m + v — 1) dodc, (D9)

wheret(B;; m;, 6;,n + v — 1) is the univariate-distribution with meamn;, scalef;, and

n + v — 1 degrees of freedom. Thus,

o 1
P(B; < x1¥,8) = [ [, w(c,)P(tnsv-1 < (x —m)/|/6;) dpdc, (D10)
wheret,,,_, is at random variable with meah scalel, andn + v — 1 degrees of
freedom.

Proof: This result follows from Proposition D.3 and thetfthat if
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(vVA+RSS5,6,0)Gsc0
n+v—-1

B~t (ﬂ' Mg o)

v = 1), then(B; — my) /\/Bi~tnpos.

Proposition D.5: The posterior distribution of correlation paramegegivend € M is

o0 -(n—-14v)/2
p(plV,8 € M) < Tger i [vA+RSS5p]

-1/2 _ -1/2
|XS5.X" +R,| ""(1TR,'1) ""p(c)dcp(8)p(9). (D11)
Proof: This result follows by integrating ofif, 8, ando? from (D4). The result is the

integrand in (D11).

D.3 Gaussian Quadrature Method for Discretizing a Bnsity
Miller and Rice (1983) propose the Gaussian quadeahethod for constructing
anL-point discrete approximation of a density. bgtbe thejth moment of the
distribution. Then, the procedure for constructimg discrete approximation is given in
the steps below.

1. Solve the system of equations

mo et My Co —my,
mp—q v Myr2/ \C;_4 —My—1
for Cy, ..., C_1.
2. Find the rootg¢,, ..., &) of the polynomial -4 C;x* + xt. These are the

support points of the discrete approximation.

3. Solve the system of equations

]_ ]_ wq mO
=1 ) \wy mp_q

for wy, ...,w;. The valuesv,, ..., w; are the probability masses for the support

pointsé,, ..., &, respectively.
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The discrete approximation given above would bepino construct if the first
2L — 1 moments of the density are easy to compute. Fobdta distribution with

parametera andb, thekth moment can be easily obtained from the recursion

my, = k+a-1 My, (D14)

a+k+b—-1

wherem, = 1.

D.4 Data Used in Examples

Table D.1: Split Plot Design Derived from @A (27, 3%) (for Example 4.1)

Wholeplot Factor | A\B|C|D|E|F|[G|H]|J
Subplot Coded Factor Levels

1 1711 1311|111

1 2 111 1] 1122|222
3 111 113|3|3|3|3

4 1122 2)1]2|3|3|3

2 5 1122 2]12(3]1|1|1
6 1122 213[1]2|2|2

7 113 3] 3113|222

3 8 113 3] 32|1/3|3|3
9 113 3] 313|]2|1|1|1

10 21 1| 2] 3J1|1/1|2]|3

4 11 2| 1] 2| 3|2|2]2|3]|1
12 21 1] 2| 313|3[3|1]|2

13 21 2 3] 1J1]213|1]|2

5 14 21 2] 3] 1J2|3]1]2]|3
15 21 21 3] 1J3|1|/2]|3]|1

16 21 3] 1 2J1|3]2|3]|1

6 17 21 3/ 1] 2J2|1|13|1]|2
18 21 3] 1 2J3|2]1]|2]|3

19 3 1] 3] 2J1|1|1]|3]|2

7 20 3/ 1] 3] 2J2|2/2]|1]|3
21 3 1] 3] 2J3(3|3|2]|1

22 321 311|213 2]|1

8 23 32| 1] 3]2(3|1|3]|2
24 3/ 2] 1] 313[1|2|1]3

25 3132 1J1(3|2|1]3

9 26 332 1J2(1{3|2]|1
27 313/ 2] 1J3|2|1]|3]|2
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Table D.2: Split Plot Design and Data for the Firart of Section 4.6.1.3

Wholeplot| A B C D E F y?! Y?
-1 -1 1 -1 1 1 26.0454  11.0454
1 -1 -1 -1 1 -1 1 10.1488 19.1488
-1 -1 -1 -1 -1 -1 16.5896 13.5896
-1 1 1 -1 1 1 13.454|  14.454
2 -1 1 -1 1 1 -1 | 24.1056 23.1056
-1 1 1 1 -1 -1 | 16.2053 21.2053
1 -1 1 1 -1 1 31.6942 22.6942
3 1 -1 -1 -1 1 -1 | 13.9312 26.9312
1 -1 1 1 1 -1 | 25.7543 22.7543
1 1 -1 1 1 1 23.9856 16.9856
4 1 1 -1 -1 -1 1 24.3905 23.3905
1 1 1 -1 -1 -1 | 14.2034 25.2034

Table D.3: Split Plot Design and Data for the SetcBart of Section 4.6.1.3

Wholeplot| A B C D E Y3 Y4
-1 -1 1 -1 1 20.0454 26.0454
1 -1 -1 -1 1 -1 8.1488 26.1488
-1 -1 -1 -1 -1 10.5896 26.589p
-1 1 1 -1 1 19.454 29.454
2 -1 1 -1 1 1 12.1056 30.105p
-1 1 1 1 -1 14.2053 30.2058
1 -1 1 1 -1 33.6942 37.694P
3 1 -1 -1 -1 1 29.9312 33.931p
1 -1 1 1 1 37.7543 37.7543
1 1 -1 1 1 15.9856 25.985p
4 1 1 -1 -1 -1 14.3905 26.390p
1 1 1 -1 -1 24.2034 30.2034
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Table D.4: Heat-Exchanger-Fan Casing Experiment

M 1 1 2 2 3 3
N 1 2 1 2 1 2
A B C D
1 1 1 1 1.23 0.99 1.4 1.19 1.56 1.38
1 2 2 2 1.8 1.48 2.05 1.76 2.28 2.03
1 3 3 3 2.31 1.89 2.61 2.23 2.9 2.57
2 1 2 3 1.29 1.02 1.47 1.24 1.6b 1.44
2 2 3 1 2.02 1.66 2.29 1.97 2.5b6 2.26
2 3 1 2 2.09 1.73 2.35 2.04 2.6 2.33
3 1 3 2 1.49 1.19 1.7 1.44 1.9 1.67
3 2 1 3 1.61 1.31 1.79 1.54 1.99 1.77
3 3 2 1 2.26 1.87 2.55 2.2 2.88 2.52
Table D.5: Split Unit Design and Data
Wholeplot Factor | A|B|C|D|E|F|[G|H]J]| Bulk Specific
Subplot Coded Factor Levels Gravity
1 1711 111|111 0.728
1 2 1| 1] 1] 12|22 2|2 0.634
3 1111 113/3|3]1|3 0.59
4 1122 2/1|2|3|1]3 0.56
2 5 1122 212]3|]1]1|1 0.538
6 11 2] 2] 2|3|1|2]|2]2 0.741
7 113 1] 111(3|2]|2|2 0.668
3 8 1131 1121|313 0.742
9 1(3/ 1] 113(2|1(1|1 0.581
10 211 2 1J1)1]1]2]|3 0.754
4 11 211 2 1322|211 0.502
12 21 1] 2 1J3|3]3|1]|2 0.559
13 221 112|312 0.638
5 14 2121 1)2|3|1]|2|3 0.657
15 212 1 1Y3|1]2]1]|1 0.724
16 2131 2J1|3]2]1|1 0.568
6 17 21 3] 1 2J2|1]3]1]|2 0.754
18 21 3] 1 2]3|2]1]2]|3 0.661
19 31 1] 2Q1]1]1]1|2 0.736
7 20 31| 1 212|2|2|1|3 0.515
21 3/ 1] 1] 203|3|3]|2|1 0.698
22 3121 1)1/2|3]2|1 0.693
8 23 3/ 2] 1] 112|3|1]|1|2 0.607
24 3121 1)3|1]2]1|3 0.733
25 313/ 2 11121/3|2]|1|3 0.597
9 26 3132 112]1|3]2|1 0.768
27 33| 2 1)3|2|1]|1|2 0.547
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APPENDIX E

SUPPLEMENTARY MATERIAL FOR CHAPTER 5

E.1 Theoretical Results

In this section, we give important theoretical testhat justify the proposed
method for constructing minimax designs. Note thatresults hold for any distance
metric||-]| used to measure the distance between candidatts poi

We shall give seven propositions, which we sumneanzhis paragraph.
Proposition E.1 needs no explanation. Propositi@skates the important fact that the
set of feasible solutions of SCLP wig§h= T is the set of all designs with distance less
than or equal t@'. In Proposition E.3, we prove thatsS) is a right continuous,
nonincreasing function with discontinuities thag arsubset of the design distances.
Proposition E.4 gives bounds for the minimax dis&atfy,. It says that if§; < S,, and
z(8,) > z(S,), then for anyr € [z(S,), z(S1) — 1], we haved;, € (54,S,]. Itis easy to
see that Proposition E.4 justifies ProcedurafiCLP is infeasible & = S; if and only
if z(S;) > n, and it is feasible & = S, if and only ifz(S,) < n. Proposition E.5 states
that the discontinuities of(S) are a subset @b’ and that the set of feasible solutions of
SCLP remains the same for 8lE [h9, h?*1). Propositions E.3 and E.5 imply that to
construct a plot o£(S) versusS, we merely need to find the valueatfS) atH?, ..., H™
(which justify Procedure A). Propositions E.6 and Establish the relationship between
minimax designs and SCLP, indicating how minimasigies can be obtained. Firsthif
is a discontinuity o&(S), thenI* is an optimal solution for SCLP &te [h*, h**1) if and

only if D(I*) is az(h¥)-point minimax design. Second, fare [z(h*),z(h*"1) — 1],

237



d;, = h* and am-point minimax design can be obtained by adding z(h*) points to
D(I*). Third, the set of minimax distances is the seatis€ontinuities of(S).
Proposition E.1: For anyn = 1, ..., N, ann-point minimax design always exists.
Proof: This follows from the fact that there are onlyraté number of designs.
Proposition E.2: D is a design withi(D) < T if and only ifI(D) is a feasible solution of
SCLP withS =T.

Proof: Suppose is a design withl(D) < T. Fori = 1, ..., N, min{||lu; — x,||, ..., ||lu; —
x, |1} = d(u;, D) < max{d(u;, D), ...,d(u,,D)} = d(D) < T. Thus, there exists

Xi(iy = Wiy € D such thaf|u; — ;|| < T. This implies thak o, I; = I = 1.
Conversely, ifl (D) is a solution of SCLP wit§ = T, then fori = 1, ..., N, e, lj = 1.
Thus, there existgi) € Q; such thaf;;, = 1, i.e., there exist$, ;) = u;;) € D such
that||u; — w;; || < T It follows thatd (u;, D) = min{|lu; — x4 |, ..., llu; — x, I} <

|lu: — x|l = ||wi — wjy|| < T- Thus,d(D) = max{d(u;, D), ...,d(u,, D)} <T.
Corollary E.1: The set of feasible solutions of SCLP is give{bg A: d(D(I)) < S},
whereA = {I, ..., I,.} is the set of all nonzero binaNrvectors.

Proposition E.3: The functionz(S) is right continuous and nonincreasing with range

{1,...,N}. It has a finite set of discontinuitiaswhich satisfiesv € {d?, ..., d®}, where
dt, ..., dR are the distinct values @{D(I,)), ..., d(D(I,)).

Proof: The fact thatz(S) has rangé1l, ..., N} is obvious. By Corollary E.Zz(S) =
min{||I||,: I € A,d(D(I)) < S}. From this, it clearly follows tha(S) is a nonincreasing
function sinceI € A:d(D(D)) < S;} € {I € A:d(D()) < S,}if S; < S,. Itis also clear

that the discontinuities of(S) is a subset dfd?, ..., d®}. Suppose that; is an optimal
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solution for SCLP witls = §; > d (D(Ij)). Then, it must be an optimal solution for all

SE [d (D(I,-)),S,-]. S0,z(S) is constant fo§ € [d (D(I,-)),S,-]. This implies that(S)
is right continuous.
Lemma E.1: Let D be a design and I&' = D U {x'}. Then,d(D") < d(D).
Proof: This follows from the fact that(u;, D) = min{||u; — x4||, ..., lu; — x,[1} =
minf|lu; — x4 ], ..., [lu; — x|, llu; — x'l1} = d(u;, D).
Proposition E.4: If S; < S,, andz(S;) > z(S,), then the minimax distancg, of a
minimax desigrD;, with n € [z(S,), z(S;) — 1] points satisfied;, € (S;,S,].
Proof: Forn' = z(S,), a minimax desig®;;, with n’ points must have minimax distance
d;, < S, since there exists a design withpoints that has distance at m8gt(by
Proposition E.2). For € [z(S,), z(S;) — 1], letD,, be anyn-point design withD;;, <
D,. Then, by Lemma E.1, we had€D,) < d;, < S,. Sinced,;, < d(D,,), it follows that
dyn < S,.

It is clear that we must also hadg > S, for anyn € [z(S,), z(S;) — 1].
Otherwise, by Proposition E.R;, is a feasible solution to SCLP wish= S;, and
n < z(S;), which is a contradiction.
Proposition E.5: Let the set of distinct values ¢f= {h;; = ||u; —w;||:i,j = 1, ..., N}
be written ag)’ = {ht,...,h™}, where0 = h! < --- < h™. Then,w € vY’, wherew is the
set of discontinuities of(S). Moreover, for any = 1, ..., m, the set of feasible solutions
of SCLP is the same for dl€ [h9, h9*1), whereh™*1 = oo,

Proof: By Proposition E.3p < {d?, ..., d®}. SinceD(I;) = {u,: I = 1}, wherel is

thekth component of;, we havel (ui,D(Ij)) = min{|lu; — uill:w, € D(I;)} € ¥’
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foralli =1,..,N. Thus,d (D(Ij)) = max {d (ul-,D(I]-)) =1, N} € y'. It follows
thatw € {d?, ..., dR} € ¢’ and the set of feasible solutions must remairstime for all
S € [h9, R+,
Remark E.1: Proposition E.5 says that the set of discontiaesitifz(S) can be identified
by solving SCLP at midpoints between consecutiveesiny’.
Remark E.2: It follows from Proposition E.5 that for amye {1, ..., m}, a solution that
is optimal for somé € [h9, h9*1) must be optimal for alf in that interval.
Proposition E.6: Let I'; be an optimal solution of SCLP 8y € [h*~1, h¥), I} be an
optimal solution fotS, € [h*, h¥*1), andn, = ||I;|l; = z(h*™1) > n, = ||I;|l, = z(h¥).
Then, for anyn € [n,,n; — 1], the minimax distancé;, of a minimax design with
points isd;, = h*, I’; is ann,-point minimax design, and arzpoint minimax design can
be obtained by adding — n, points toD (I5).
Proof: Sincel; is the optimal solution for ali; = [h*~1, k%) and||;||; > || 1;l4, I
must be infeasible for SCLP for afy< h*. By Proposition E.2D (I3) must have
distanceh’, i.e.,d(D(I;)) = h¥. Thus, a minimax design with, points must have
minimax distancel;, < h*k. However, we cannot havk,, < h* since the smallest
designs with distance at mas€ [h*~!, h*) haven, points. This implies that;,, = h*
andr; is a minimax design.

Letn € [n,,n, — 1]. Then, by Proposition E.4;, € (k¥ — g, h¥] forall0 < e <
h¥ — h*=1 Thus,d;, = h*. By Lemma E.1, a minimax design of sizean be obtained
by addingn — n, points toD (I5).

Remark E.3: Proposition E.6 says that a minimax design caolbained by solving
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SCLP a small distance to the right of a discontinbut before the next distance value in
Y.
Remark E.4: If n; > n, + 1, then we must have more than érseich that
d(u;, D(I3)) = max{d(u;, D(UI3)), ..., d(uy, D(I3))} = d(D(I3)).
Proposition E.7: If h* € ' is a discontinuity o£(S), then the set of optimal solution of
SCLP for any§ € [h¥, h**1) is the set of(h*)-point minimax design. Moreover, the set
of minimax distances is the set of discontinuités(s).
Proof: By Proposition E.6, any optimal solution of SCLPS & [h*, h**1) is az(h*)-
point minimax design with distand&. Conversely, leD be az(h*)-point minimax
design. Thend(D) = h*. Thus,I(D) is a feasible solution of SCLP fsre [hk, hk*1),
Since||[I(D)||, = z(h*), I(D) is an optimal solution.

The set of minimax distances is the set of distaf@el-point taV-point
minimax designs. Note that the valuez¢$) changes from 1 t&¥ asS is decreased from
h™ to 0. This fact and Propositions E.5 and E.6 imply thatset of minimax distances is

the set of discontinuities af(S).

E.2 Alternative Algorithms for Finding Space-Filling Designs on
Finite Candidate Sets
KS starts with a two-point design that consistpahts furthest apart. It then
sequentially adds points with the largest distandée design. Thus, KS can be viewed
as a heuristic method for generating near-mininmesighs. Designs obtained from KS
can be improved by a modified Fedorov algorithnréhéier abbreviated as MF) (Cook
and Nachtsheim, 1980; SAS Institute, 2010). In etsrhtion of MF, design poirt, ..., n

is exchanged (in that order) with a nondesign pitiat gives the largest increase in
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distance. The algorithm stops when no improvengntade in an iteration. We call the
combined method KS-MF. MT is a Fedorov algorithm)ECook and Nachtsheim,
1980; SAS Institute, 2010) that starts with a randtesign. At each step, it exchanges a
design pointx; with a nondesign point,, such thap (u,; x;) = max{p(w; x;): x; €

D,u; € Y\D} > 1, wherep(u;; x;) = minf{||u; — x,||:q #j,q = 1,...,n}/

minf||x; — x,||: ¢ # j, ¢ = 1, ..., n}. Because of this, we may view MT as a method for
generating maximin designs.

SAS can be used to construct S and U optimal sfiléing-designs from finite
candidate sets (SAS Institute, 2010). SAS congtrilnetse designs by generating an
initial design and then improving it. Options fargerating an initial design include
sequential and random search while two optiongfproving the initial design are FA
and MF (which SAS Institute (2010) says usuallyegdetter designs than the other
methods). Thus, SAS uses the same algorithms ddiK8ad MT. Moreover, since the S
and U optimality criteria are modifications of theximin and minimax criteria
respectively, the S and U optimal designs prodige8AS are likely to be similar to the
designs obtained with MT and KS-MF. As with PraoedC, high memory usage and a
large amount of computation is incurred when MFFAris used to optimize the minimax
criterion (e.g., KS-MF) for larg&. The former problem is due to storage/ofThe latter
problem arises from the large number of possibtharges of a design point with a
nondesign point, and the computation of the minirraerion. Ify cannot be stored in
memory, its elements must be recomputed as needesing further increases in amount
of computation. SAS User Guide (SAS Institute, J0st@tes that: “the U-optimality

criterion can beery difficult to optimize, especially if the matrix all pairwise
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distances between candidate points does notHieimory.” However, as shown in
Example 5.3, Procedure C can outperform KS-MF figantly both in terms of design
distance (the minimax criterion) and time neededrédver, Examples 5.1-5.3 suggest
that the improvements in KS-MF designs over KSglesdecrease and the performance
of KS-MF designs relative to minimax or near-minkitesigns deteriorates As

increases.

E.3 Description of Variables for Examples 5.1 and.B

Example 5.1:The canyon height is the average height of buikslialgng streets, the
canyon ratio is the canyon height divided by therage street width, the vegetation area
fraction is the percentage of total horizontal are@ered by vegetation, and built-up area
fraction is the percentage of total horizontal are@ered by the roofs of buildings (see
Erell et al. (2010)).

Example 5.3:see Table E.1.

Table E.1: Description of Variables in Forest Hixataset
Variable Description

FFMC Fine Fuel Moisture Code (represents the mistantent of surface litter)

DMC  Duff Moisture Code (represents the moisturetennof shallow organic layers)

DC Drought Code (represents the moisture contedeep organic layers)
ISI Initial Spread Index (score that correlatedwiite velocity spread)
temp Outside temperature Rt
RH Outside relative humidity iPro
wind Outside wind speed km/h
rain Outside rain irmmm/m?
area Total burned area iha
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E.4 Reduced Versions of SCLP
This section gives a detailed discussion of row@idmn reductions of SCLP.
We work with the general SCLP, defined by

General SCLP

w
min Z Ij
j=1

st.BI > 1,
[ €{01},j=1,..,W,
whereB is an arbitrary matrix of 0's and 1's, ahds a vector of 1's.

Section E.4.1 defines redundant rows and colummiseoonstraint matriB.
Section E.4.2 gives the column redundancy elimamagirocedure that we use. The row
redundancy elimination procedure is similar. In Qiea5, we obtain Reduced SCLP by
applying the row redundancy elimination procedwi®ived by the column redundancy
elimination procedure. In Section E.4.3, we prdwa SCLP and any reduced version of
it have the same optimal objective function valug] an optimal solution to the former
can be obtained from an optimal solution to theetdty setting to zero decision variables
that have been removed. Note that any reducedovea$iSCLP is a general SCLP.
Section E.4.4 reports the gains we achieve bysglReduced SCLP instead of SCLP for
Example 5.1 and Example 5.2.

In the following sections, the notatighc Y, whereX andY are sets, means that

X is astrict subset of. The notatiorX € Y means that eitheéf c Y orX =Y.

E.4.1 Redundant Rows and Columns

Let B be the constraint matrix of a general SCLP (ap.arbitrary matrix of 0’s
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and 1's), and;; denote théi, j) element of the matrix. Defing, = {i: By = 1} and
R; = {k: B; = 1}. Then, columrk of B is redundant if there exists# k such that
C, € C;. On the other hand, roinof B is redundant if there exists# i such thaiR; 2

R;.

E.4.2 Column Redundancy Elimination Procedure
1. SetCI={1,..,W},i=1,andn =W.
2. If i <n, setk =i+ 1. Otherwisestop.
3. Label the elements i@il asj; < j, < --- < j,. Check the following conditions:

) IfC, g

Jk?

then seCIl = CI\{j;},n =n—1 and go to Step 2.
i) If ¢;, < C;,, then seCl = CI\{j},n =n—1and go to Step 4.
iii) If neither i) nor ii) holds, set = k + 1 and go to Step 4.
4. If k > n, seti =i+ 1 and go to Step 2. Otherwise, return to Step 3.
Let CI = {}jj, ..., jw,} be the remaining set of columns. Théhcannot be further reduced

becausg; have been comparedq;, ..., jw, foralli =1, ..., W, — 1.

E.4.3 Relationship between SCLP and Reduced Versisof SCLP

Definition: A row reduced version of a general SCLP is obthinem the general SCLP
by removing some redundant rows of the constraattim A column reduced version of
a general SCLP is obtained from the general SCLReImp@Ving some redundant columns

of the constraint matrix and corresponding decisiamables.

Proposition E.8: Let Program R be any general SCLP that has a feasibution. Then,

both Program R and a row reduced version of it hagesame set of feasible solutions.
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Proof: Let B denote the constraint matrix of Program R and@ldenote the constraint
matrix of the row reduced version of it. Lletlenote a binari# -vector. In reducing to
B, only redundant rows are removed. ThB$,> 1 if and only if BI > 1. In other

words,I is a feasible solution of Program R if and onlit i6 a feasible solution of the

row reduced version of Program R.

Proposition E.9: Let Program R be any general SCLP that has a feasibution. Then,
both Program R and a column reduced version aietthe same optimal objective
function values. If; is theW - vector obtained from an optimal solutifnof the column
reduced SCLP by setting to zero decision variathiashave been removed, thEnis an
optimal solution to Program R.
Proof: Let B denote the constraint matrix of Program R and@ldenote the constraint
matrix of the column reduced version of it. Supptbstl* = (1, ...,1,0, ...,0) is an
optimal solution of Program R, where the fisstomponents equal 1 and the rest of the
components equal 0. In reduciBgo B, only redundant columns are removed. Let the
indices of nonredundant columns®be denoted by, ..., ji,. Construct a new binary
W,-vectorIy from I as follows: First, set thigh component of; equal to thg;th
component of” for all i. For each columhe {1, ...,n} that is removed fronB, choose a
Jzqy # 1 such that the indices of 1's in colurhis a subset of the indices of 1's in column
Jzqy- Change the(l)th component of to 1.

By construction||I;||; < [|[I*]|;. Moreover, sincBI* > 1, we must have

7*

<

BI}; > 1. Thus, the column reduced version of Program fgdsible and L

%11, < |II*|l;, wherel* is an optimal solution of the reduced program.
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Now, it is clear that iBT > 1, wherel is a binaryW,-vector, the/-vectorl,,
obtained froml by adding 0’s must satis®1, > 1. Thus,I; (which is defined in the

statement of the proposition) is a feasible solutmProgram R anHii;;

L 2 Il7]l;- On

the other, by construction &f and the inequalityT*

LS [[I*]|; established in the

7*

previous paragraph, we hallE,

1

. < IF*|l;. We conclude thalT;

1

7*

=1L
Thus, both Program R and the column reduced verdidrhave the same
optimal objective function values and any optimalugon I* to the column reduced

version gives an optimal solutidj to Program R.

Proposition E.10:Both SCLP and a reduced version of it (as definegdhapter 5) have
the same optimal objective function valuedlis theN-vector obtained from an
optimal solutionl* of the reduced version of SCLP by setting to zZimcision variables
that have been removed, thEnis an optimal solution to SCLP.

Proof: This follows from Proposition E.8 and Propositie®.

E.4.4 Sizes of Reduced SCLP and SCLP for Examplas Chapter 5

In Example 5.1, SCLP needs to be solved with adbraamd-bound algorithm a
total of 85 times fofL, U] = [0.4,1.6]. Up to 80% of the 80 columns and 72.5% of the 80
rows of the constraint matrix are removed in thersances of SCLP that are solved.
The average number of rows of Reduced SCLP is&@@&dthe average number of
columns is 30.9.

In Example 5.2, SCLP needs to be solved with adbraamd-bound algorithm a
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total of 67 times fofL, U] = [2.5,2.8]. Up to 42% of the 200 columns and 27.5% of the
200 rows of the constraint matrix are removed &6 instances of SCLP that are
solved. The average number of rows of Reduced S€1B4.3 and the average number

of columns is 140.1.
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