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SUMMARY 

 

This dissertation presents novel methodologies for five problem areas in modern 

quality improvement and computer experiments, i.e., selective assembly, robust design 

with computer experiments, multivariate quality control, model selection for split plot 

experiments, and construction of minimax designs.   

Chapter 1 proposes generalizations of the selective assembly method to 

assemblies with any number of components. Selective assembly has traditionally been 

used to achieve tight specifications on the clearance of two mating parts. However, its 

applicability is not limited to this particular type of assembly. This chapter develops a 

generalized version of selective assembly, called GSA. It can be a powerful tool for 

improving the quality of assemblies of single units of different component types. Two 

variants of GSA are considered: direct selective assembly (DSA) and fixed bin selective 

assembly (FBSA). The former is selective assembly using information from 

measurements on component characteristics directly, whereas the latter is selective 

assembly of components sorted into bins. For each variant, the problem of matching the 

� components of each type to give � assemblies that minimize quality cost is formulated 

as a linear integer program. The component matching problem for DSA is an axial multi-

index assignment problem, whereas for FBSA, it is an axial multi-index transportation 

problem. We use simulations to evaluate the performance of GSA and to find the optimal 

number of bins. Realistic examples are given to show that the proposed methods can 

significantly improve the quality of assemblies.  



 xvii

Chapter 2 proposes methods for robust design optimization with time consuming 

computer simulations that take into account uncertainty about the true function. Gaussian 

process models, which include the class of linear models, are widely employed for 

modeling responses as a function of control or noise factors. Using these models, the 

average loss at control factor settings can be estimated and compared. However, robust 

design optimization is often performed based on expected quadratic loss computed as if 

the posterior mean were the true response function. This can give very misleading results. 

We propose an expected quadratic loss criterion derived by taking expectation with 

respect to the noise factors and the posterior predictive process. Approximate but highly 

accurate credible intervals for average quadratic loss are constructed via numerical 

inversion of the Lugannani-Rice saddlepoint approximation. The coverage of the 

Lugannani-Rice intervals are compared with intervals constructed via moment-matching 

techniques on real data. 

Chapter 3 proposes a Bayesian method for identifying mean shifts in multivariate 

normally distributed quality characteristics. Multivariate quality characteristics are often 

monitored using a single statistic or a few statistics. However, it is difficult to determine 

the causes of an out-of-control signal based on a few summary statistics. Therefore, if a 

control chart for the mean detects a change in the mean, the quality engineer needs to 

determine which means shifted and the directions of the shifts to facilitate identification 

of root causes. We propose a Bayesian approach that gives a direct answer to this 

question. For each mean, an indicator variable that indicates whether the mean shifted 

upwards, shifted downwards or remained unchanged is introduced. Prior distributions for 

the means and indicators capture prior knowledge about mean shifts and allow for 
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asymmetry in upward and downward shifts. The mode of the posterior distribution of the 

vector of indicators or the mode of the marginal posterior distribution of each indicator 

gives the most likely scenario for each mean. Evaluation of the posterior probabilities of 

all possible values of the indicators is avoided by employing Gibbs sampling. This 

renders the computational cost more affordable for high-dimension problems.    

 Chapter 4 proposes a Bayesian method for model selection in fractionated split 

plot experiments. We employ a Bayesian hierarchical model that takes into account the 

split plot error structure. Expressions for computing the posterior model probability and 

other important posterior quantities that require evaluation of at most two uni-

dimensional integrals are derived. A novel algorithm called combined global and local 

search is proposed to find models with high posterior probabilities and to estimate 

posterior model probabilities. The proposed method is illustrated with the analysis of 

three real robust design experiments. Simulation studies demonstrate that the method has 

good performance.  

 The problem of choosing a design that is representative of a finite candidate set is 

an important problem in computer experiments. The minimax criterion measures the 

degree of representativeness because it is the maximum distance of a candidate point to 

the design. Chapter 5 proposes a method for finding minimax designs for finite design 

regions. We establish the relationship between minimax designs and the classical set 

covering location problem in operations research, which is a binary linear program. In 

particular, we prove that the set of minimax distances is the set of discontinuities of the 

function that maps the covering radius to the optimal objective function value. We show 

that solving the set covering location problem at the points of discontinuities, which can 



 xix

be determined, gives minimax designs. These results are employed to design an efficient 

procedure for finding minimax designs for small sized candidate sets. A heuristic 

procedure is proposed to generate near-minimax designs for large candidate sets.  



 

1 

CHAPTER 1 

GENERALIZED SELECTIVE ASSEMBLY 

 

1.1 Introduction 

Selective assembly is a method to achieve high-precision clearance between two 

mating parts. To illustrate the idea of selective assembly, consider a sleeve and a shaft 

assembly. The clearance � is the difference between the inner-diameter of the sleeve V1 

and the outer diameter of the shaft V2, i.e. � = V� − V�. In random assembly, a sleeve 

and a shaft are chosen randomly from the available supply. However, if the tolerance on 

� is tight, we may match sleeves that have large inner diameters with shafts that have 

large outer diameters and sleeves that have small inner diameters with shafts that have 

small outer diameters. Our matching can be based on the measured inner diameters of the 

sleeves and the measured outer diameters of the shafts directly. This is what we call 

direct selective assembly (DSA). When there are many sleeves and shafts to be 

assembled, it is convenient to sort sleeves and shafts into bins and then assemble sleeves 

and shafts from matched bins. Assembly is performed by randomly choosing sleeves and 

shafts from matched bins. We call this fixed bin selective assembly (FBSA). 

 The literature on selective assembly has focused on sleeve-and-shaft type 

assemblies. Kwon et al. (1999) study the selective assembly of sleeve-and-shaft type 

assemblies, where V1 and V2 are assumed to have independent and identical normal 

distributions. They derive optimal partitioning of V1 and V2 for fixed number of bins 

under squared error loss and also propose a method to determine the optimal number of 

bins. Mease et al. (2004) generalize the optimal partitioning results of Kwon et al. (1999) 



 2

to the case where V1 and V2 have arbitrary distributions and also study optimal 

partitioning under absolute error loss. Matsura and Shinozaki (2007) study optimal 

partition limits under squared error loss in the presence of measurement error. These 

papers constrain the number of bins for sleeves and shafts to be the same, i.e., the bin of 

smallest shafts is matched with the bin of smallest sleeves, the bin of the second smallest 

shafts is matched with the bin of the second smallest sleeves and so on. In addition, the 

probability that V1 falls within the limits of bin @ for sleeves is constrained to be equal to 

the probability that V2 falls within the limits of bin @ for shafts. The focus of these papers 

is the minimization of the long-run loss of assemblies produced from each pair of 

matched bins weighted by the probabilities of the pairs of bins. No indication is given on 

how situations in which the number of sleeves and the number of shafts in a pair of 

matched bins are different can be handled. Obviously, these assumptions are not 

compatible with a batch production scenario. They seem to indicate that a mass 

production scenario, where the production rates of sleeves and shafts are equal, is being 

considered. However, there is a serious problem with this scenario. Even if we get the 

distributions of V1 and V2 perfectly right, each pair of matched bins would form an 

unstable queuing system. There is a tendency for the number of components in each bin 

to accumulate to excessive numbers since the number of components that go into each 

bin is random. This is different from random assembly, where the feeding of component 

parts into an assembly line can be adjusted so that there is no build-up of component 

inventories.  

Coullard et al. (1998) study the problem of matching a given number of two 

component types. They present algorithms for solving the matching problem to maximize 
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yield and quality. Iwata et al. (1998) formulate the selective assembly problem as a 

bipartite network flow problem and present a fast algorithm to solve the problem. Other 

papers that considered selective assembly in the context of manufacturing quality include 

Kannan et al. (2008), Kannan et al. (2005), Kannan and Jayabalan (2002), Thesen and 

Jantayavichit (1999), Zhang and Fang (1999), Chan and Linn (1998), Fang and Zhang 

(1995), Pugh (1992) and Mansoor (1961). 

Although selective assembly has traditionally been performed for sleeve-and-shaft 

and related assemblies, there is no reason to limit the applicability of selective assembly 

to only this particular type of assembly. It is the purpose of this chapter to develop 

selective assembly as a tool to improve the quality of assemblies of any number of 

components with any known form of assembly response function.  We study the selective 

assembly problem under a batch production environment, where components are 

produced in batches and then assembled. Selective assembly seems to be more suitable 

for batch production than mass production; the added steps of selective assembly should 

be easily accommodated by a batch production facility due to the medium to low 

production rate requirements. Moreover, the queue instability problem of matched bins 

does not arise in batch production. The treatment of selective assembly in the statistical 

literature (e.g. Kwon et al. (1999) and Mease et al. (2004)) has focused on optimal 

binning designs for assemblies with two components and a linear response function. On 

the other hand, the treatment of selective assembly in the operations research literature 

(e.g. Coullard et al. (1998) and Iwata et al. (1998)) has concentrated on developing 

algorithms for matching components of two different types. In contrast, we treat the 

selective assembly of batches of � units of each of W different component types. 
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Moreover, our methods are applicable to assemblies with any assembly response 

function.   

This chapter is organized as follows. Section 1.2 discusses DSA and gives two 

realistic examples to demonstrate the potential gains in quality cost. Section 1.3 discusses 

FBSA. Three realistic examples are given to demonstrate the potential gains in quality 

cost and to show how good bin designs can be found by a screening and ranking 

procedure. The problem of selecting bin designs that are robust to batch size and 

manufacturing process variations is addressed in Section 1.4. Concluding remarks are 

given in Section 1.5. 

1.2 Direct Selective Assembly 

Consider an assembly of one unit of each of W different types of components. 

Suppose the assemblies are produced in batches of size �. Then, in random assembly, � 

components of each type are supplied to the assembly line, where they are randomly 

matched and assembled. In direct selective assembly (DSA), the components are matched 

in a systematic manner based on measurements of the component characteristics. Let the 

assembly quality characteristic be denoted by X. Suppose that X = Y
Z�, … , Z\�, where 

Y is the known assembly response function and Z@ is the vector of measured 

characteristics of component @. Let the characteristics of the � components of the @ ℎ 

type be denoted by Z@1, … , Z@�. Then, if we assemble the @^ ℎ type ̂  component for 

^ = 1,… , W, we have a product with quality characteristic value  

X@1@2⋯@W = Y
Z1@1 , … , ZW@W�            (1.1) 

and quality cost  

+@1@2⋯@W = ':X@1@2⋯@W , `<,             (1.2) 
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where ' is the quality loss function and ` is the target for X. One common choice of the 

quality loss function ' is 

':X1a1b⋯1c , `< = :X1a1b⋯1c − `<de:X1a1b⋯1c − `<,         (1.3) 

where e is a positive semidefinite matrix (Kapur and Cho, 1996).  

There are a total of 
�!�W−1 possible ways to obtain � assemblies. However, we 

can find the combination of assemblies that minimizes quality cost by solving a binary 

linear program:  

Program 

A 

 
Direct Selective Assembly 

min+� = ∑ ∑ ⋯∑ +1a1b⋯1cS1a1b⋯1cj1ck�j1bk�j1ak�   

subject to: 

∑ ∑ ⋯∑ S1a1b⋯1cj1ck�j1lk�j1bk� = 1	∀@� = 1,… ,�  

∑ ∑ ⋯∑ S1a1b⋯1cj1ck�j1lk�j1ak� = 1	∀@� = 1,… ,�  

⋮ 
∑ ⋯∑ ∑ S1a1b⋯1cj1coak�j1cobk�j1ak� = 1	∀@\ = 1,… ,�  

S1a1b⋯1c ∈ ℤ, S1a1b⋯1c ≥ 0	∀@�, @�, … , @\ ∈ {1,… ,�} 

 
The S@1@2⋯@W’s are the decision variables. If S@1@2⋯@W = 1, then one product is to be 

assembled from the @^ ℎ type ̂  component for ̂= 1,… , W. The objective function of 

Program A is the total quality cost of the assemblies. The constraints of Program A say 

that each component of each type must belong to one assembly. Let 

q = 
S��⋯�	 , … , S\\⋯\	 � denote the vector of decision variables. Then, q is a feasible 

solution if � elements of q equal 1 and the remaining �W − � elements equal 0. The 

optimal solution q∗ to the program gives the � assemblies that minimize quality cost.  

Program A is a special case of the multidimensional assignment problem known 
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as the axial multi-index assignment problem (Bandelt et al., 2004; Queyranne and 

Spieksma, 1997; Gilbert and Hofstra, 1988; Pierskalla, 1968). The total number of 

decision variables is �W and the program can be solved for a global optimal solution 

using a branch-and-bound algorithm (Vanderbei, 2001; Schrijver, 1986) in which lower 

bounds are obtained by solving linear relaxations. Note that if W = 2, then we have the 

usual assignment problem, which can be solved as a linear program (Dantzig and Thapa, 

2003), i.e., we can drop the integrality constraints S@1@2⋯@W ∈ ℤ	∀@1, @2, … , @W ∈ {1,… ,�} 
from Program A. Unfortunately, for W > 2, this cannot be done.  

In order to implement DSA, all relevant characteristics of each component must 

be measured and the measured values for each component have to be labelled or tagged 

on the component. This can become extremely costly when the batch size is large. Thus, 

DSA would generally be most cost effective when the batch size � is small, as is usually 

seen in Just-In-Time production systems.  

 Note that some of the +@1@2⋯@W values can be large, implying poor quality products 

would be obtained from certain combination of components. Thus, it might be more 

appropriate to scrap such assemblies rather than to produce it. Let rQ̂ be the cost of 

scrapping one unit of component of type ^. Then, if +@1@2⋯@W > ∑ rQ̂Ŵ=1 , it is more cost 

effective to scrap the assembly. As such, we should replace +@1@2⋯@W in Program A with 

+@1@2⋯@W = mins':X@1@2⋯@W , `<,∑ rQ̂Ŵ=1 t. Note that we may also consider the possibility of 

reworking the components to get an acceptable assembly. In this case, ∑ rQ̂Ŵ=1  should be 

replaced with the rework cost. 

 Because the Z@^’s are random, i.e. they vary from batch to batch, the X@1@2⋯@W’s, 
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and +@1@2⋯@W’s are random quantities also. Therefore, the optimal solution and objective 

function value of Program A are random variables. Because the optimal objective value 

of Program A changes from batch to batch, we should assess the cost effectiveness of 

DSA by the expected quality cost per batch. We use the simulation procedure given in 

Appendix A.1 to estimate the expected quality cost for DSA. It is assumed that the 

Z11, … , Z1�, Z21, … , ZW� are independently distributed and that for each @, Z@1, … , Z@� 

have common distribution �Z@. 

In the following examples, we shall compare random assembly with selective 

assembly. For random assembly without inspection of assemblies, the expected quality 

cost per batch is 

+�uv0 = ���'
X,`�
,            (1.4) 

where X = Y
Z�, … , Z\� and Z@~�Z@. If 100% inspection of the assembled products is 

performed, then the expected quality cost is 

+�uv = ��xmins'
X,`�,∑ rQ̂Ŵ=1 ty,           (1.5) 

assuming that products that have higher quality loss than the scrap cost are scrapped.  

As shall be demonstrated in the examples, DSA is much better at improving the 

quality of assemblies than 100% inspection of the output of random assembly. Although 

selective assembly may be more costly than 100% inspection, the cost of 100% 

inspection can also be very high. Aside from an inspection cost for every batch, we also 

incur the additional cost of wasted effort due to assembling products that are ultimately 

scrapped. In cases where the assembly quality characteristics can only be measured via 

destructive testing, 100% inspection cannot be implemented. In contrast, direct selective 

assembly does not suffer from these disadvantages. Bad combinations of components are 
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scrapped even before they are assembled if it is optimal to do so. In addition, inspection 

of assembled products is not needed. Of course, these advantages can only be realized if 

X can be predicted accurately based on Y. However, this is possible for many well studied 

assemblies, and also for mechanical assemblies for which Y is derived from purely 

geometric considerations. 

1.2.1 Example 1.1: Direct Selective Assembly of Bimetal thermostat  

Consider a bimetal thermostat (see Appendix A.2) of unit width that is simply 

supported at both ends (Timoshenko, 1925). The amount of deflection at the midpoint 

upon heating of the thermostat from temperature G0 to G is given by 

� = z2
8

6:{2−{1<:G−G0<
1+}�2
ℎ~3
1+}�2+
1+}���}2+ 1}���,                                                                             (1.6) 

where   

z = �@� ��r�	�� ����	������ � = z��� ℎ	��	 ℎ��}�� � 	� 	 �}���� ���	G�, 
{1, {2 = r����@r@�� 	��	 ℎ��}�z	�2����@��	��	 ℎ�	 ��	}� �z�, 
� = ��/�� = �� @�	��	�������	}���z@	��	 ℎ�	 ��	}� �z�, 
} =  �/ � = �� @�	��	 ℎ@rW������	��	 ℎ�	 ��	}� �z�, 
ℎ =  � +  � =  ℎ@rW����	��	 ℎ��}�� � . 
 Suppose we want to manufacture molybdenum/aluminium thermostats (Tierney 

and Eischen, 1997; Eischen, 1989) with a deflection of � = 1mm when heated to 500	℃ 

above room temperature.  The material constants {1, {2, �1, and �2 are given by 4.9 ×
10��/℃	, 23 × 10��/℃	, 32.5 × 10��Pa, and 7 × 10��Pa respectively, where the 

subscript 1 stands for molybdenum and the subscript 2 stands for aluminium.  

The nominal dimensions for the thermostat are z = 50}},  1 = 1}}, and 
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 2 = 3}} and the thermostat is manufactured by joining molybdenum and aluminium 

strips. A manufactured molybdenum strip has thickness  1 that follows a truncated 

normal distribution with support �'1, (1
 = �0.5,1.5
, and mean and standard deviation 

before truncation 01 = 1 and 51 = 0.2 respectively. On the other hand, a manufactured 

aluminium strip has thickness  2 that follows a truncated normal distribution with support 

�'2, (2
 = �2.5,3.5
, and mean and standard deviation before truncation 02 = 3 and 

52 = 0.2 respectively.  We write 

 1~G�
1,0.2,0.5,1.5�, and  2~G�
3,0.2,2.5,3.5�.                    (1.7) 

Suppose that '
�, G� = 10
� − G��. If � molybdenum strips and � aluminium 

strips are randomly matched and joined to produce each batch of thermostats, then the 

expected quality cost of a batch is +�uv0 = 10� �� �
� − 1�2��. A simulation with 

10,000 runs gives +�� uv0 = 0.05038�
0.000755��, where the quantity in brackets is 

the standard error. If ∑ r1Q2̂=1 = 0.27, then the quality cost is +�uv = 10�s�xmins10
� −
1�2, 0.27tyt. A simulation with 10,000 runs gives +�� uv = 0.04923�
0.000657��.  
For � = 10, 15, 20, we compute the quality cost when DSA is performed with and 

without the option of scrapping using simulations of 100 runs. Note that the simulation 

procedure is given in Appendix A.1. Table 1.1 gives estimates of the expected quality 

costs per batch of � thermostats for random assembly and DSA. We see that 50-60% 

reduction in quality cost is achieved with DSA (these percentages are obtained by 

comparing +�� uv0 with +�� Qv0 and +�� uv with +�� Qv). This is a huge improvement and 

may more than offset the implementation cost of DSA. Moreover, DSA is seen to be far 

more effective at improving the quality cost than 100% inspection. Notice also that the 

percentage improvement is greater the larger the batch size. This is to be expected since 
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Table 1.1: Quality Costs for Random Assembly and Direct Selective Assembly 
(Bimetal Thermostat, Truncated Normally Distributed Strip Thickness) 

� +����� 
(no scrap) +���� 

+����� 
(no scrap) 

% 
Improvement +���� 

% 
Improvement 

10 0.504(0.0076) 0.492(0.0066) 0.258(0.0186) 49% 0.254(0.0158) 48% 

15 0.756(0.0113) 0.738(0.0099) 0.362(0.0196) 52% 0.339(0.0197) 54% 

20 1.008(0.0151) 0.985(0.0131) 0.454(0.0270) 55% 0.401(0.0186) 59% 

 
 

Table 1.2: Quality Costs for Random Assembly and Direct Selective Assembly 
(Bimetal Thermostat, Uniformly Distributed Strip Thickness) 

� +����� 
(no scrap) 

+���� 
+����� 

(no scrap) 
% 

Improvement +���� 
% 

Improvement 

10 1.011(0.0134) 0.841(0.0088) 0.410(0.0256) 59% 0.377(0.0224) 55% 

15 1.517(0.0201) 1.262(0.0132) 0.579(0.0371) 62% 0.497(0.0248) 61% 

20 2.022(0.0268) 1.683(0.0176) 0.691(0.0341) 66% 0.669(0.0357) 60% 

 

 

the number of choices of assemblies increases as � increases. 

It is interesting to see the effect of changing the distribution of  1 and  2. Suppose 

that  1 and  2 are uniformly distributed over the same support as before, i.e., 

 1~(�@�
0.5,1.5�, and  2~(�@�
2.5,3.5�.          (1.8) 

Table 1.2 shows that for � = 10,15,20, we achieve 55-65% reduction in quality cost. 

The quality costs for random assembly and DSA are much larger when  1 and  2 are 

given by (1.8) than when they are given by (1.7). This is because (1.8) implies larger 

variability in  1 and  2. The absolute and percentage improvement achieved with DSA 

also tends to be larger when  1 and  2 are uniformly distributed. This suggests that greater 

cost reductions are attainable with DSA for processes with more variation. 

1.2.2 Example 1.2: Direct Selective Assembly of Knuckle Joint Assembly 

 Unlike in Example 1.1, the current problem involves multiple responses and 
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multivariate component characteristics. The knuckle joint assembly (see Appendix A.2) 

shown in Singh et al. (2005) has two clearances �1 and �2 that must be maintained at 

target values. The clearances are functions of component dimensions given by �1 =
V2� − V1, and �2 = V3 − 
2V2� + V2��, where V1 is a dimension of component 1, V2� 

and V2� are dimensions of component 2, and V3 is a dimension of component 3.  

 Suppose that ̀= 
1,1� and that '
X, `� = 125
X − `�d
X − `�. Assume that 

V1, V2�, V2�, and V3 are independently distributed truncated normal random variables 

given by  

V1~G�
9,0.04,8.88,9.12�, V2�~G�
5,0.04,4.88,5.12�, V2�~G�
10,0.04,9.88,10.12�, 
and V3~G�
21,0.08,20.76,21.24�.                (1.9) 

Simulations with 10,000 runs give +�� uv0 = 2.1517�
0.02513�� and +�� uv =
2.0973�
0.02268��, where we set ∑ r3Q3̂=1 = 10. We compute the quality cost for 

selective assembly for � = 5,10 using simulations of 300 runs. Table 1.3 gives estimates 

of the expected quality costs per batch of � knuckle joints for random assembly and 

DSA. With the implementation of DSA, we achieve 65-80% reduction in quality cost. As 

in Example 1.1, the improvement is larger for � = 10 than for � = 5.  

Now, assume that V1, V2�, V2�, and V3 are uniformly distributed with the same 

support as given by (1.9). Table 1.4 gives estimates of the expected quality costs of 

 
Table 1.3: Quality Costs for Random Assembly and Direct Selective Assembly 

(Knuckle Joint, Truncated Normally Distributed Component Dimensions) 

� +����� 
(no scrap) +���� 

+����� 
(no scrap) 

% 
Improvement +���� 

% 
Improvement 

5 10.759(0.1257) 10.487(0.1134) 3.868(0.1720) 64% 3.787(0.1593) 64% 

10 21.517(0.2513) 20.973(0.2268) 4.184(0.1489) 81% 4.138(0.1504) 80% 
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Table 1.4: Quality Costs for Random Assembly and Direct Selective Assembly 
(Knuckle Joint, Uniformly Distributed Component Dimensions) 

� +����� 
(no scrap) 

+���� 
+����� 

(no scrap) 
% 

Improvement +���� 
% 

Improvement 

5 33.205(0.3393) 25.273(0.1788) 10.589(0.4675) 68% 9.848(0.3364) 61% 

10 66.410(0.6786) 50.546(0.3577) 12.324(0.5204) 81% 12.084(0.4102) 76% 

 
 
random assembly and DSA. With DSA, we achieve 60-80% reduction in quality cost. 

The quality costs for random and selective assembly are larger when  1 and  2 are 

uniformly distributed than when  1 and  2 are truncated normally distributed over the 

same support. In addition, the absolute improvement in quality cost achieved with the 

implementation of selective assembly also tends to be larger. 

Examples 1.1 and 1.2 demonstrate that sizeable reductions in quality cost can be 

achieved with DSA. Such improvements can more than offset the implementation cost of 

DSA. Moreover, the substantial improvements in product quality can give the 

manufacturing organization a significant competitive advantage. 

1.3 Fixed Bin Selective Assembly 

It is seen in the previous section that selective assembly by matching components 

based on the measured values of their characteristics can result in considerable 

improvements in quality. However, this approach can be extremely costly when � is 

large. The cost of measuring component characteristics and keeping records on the 

measured values for each component can be prohibitive. Moreover, the number of 

decision variables and number of constraints for Program A increase as � increases, 

making the program more difficult to solve. To reduce these costs and still retain the 

benefits of component matching, selective assembly can be performed by sorting the � 
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components of each type into several bins. We call this fixed bin selective assembly 

(FBSA). In particular, we sort the � type @ components into �@ bins for each @ = 1,… , W, 

where a component of type @ with measured characteristic Z@ is sorted into the ^ ℎ bin if 

Z@ ∈ �@^. For each @, the bins �@1, … , �@�@ should be a partition of Q@, the sample space of 

Z@, i.e. 

⋃ �@^�@^=1 = Q@, and �@^⋂�@z = �	∀^ ≠ z.        (1.10) 

Note that if Z@ is a one-dimension random vector, then a common practice is to take each 

�@^ as an interval. If Z@ has dimension greater than one, then it is convenient to take the 

�@^’s as hyper-rectangles. 

After sorting, the number of components in each bin is counted. Then, using this 

information, we determine the number of products to be assembled from bins @1, … , @W of 

components of type 1,… , W respectively, for all 
@�, … , @\�. Define  

Z@^ = Z@|Z@ ∈ �@^.           (1.11) 

If a product were assembled from a type ^ component randomly chosen from bin @^, 
^ = 1,… , W, then the quality characteristic of the product is described by a random 

variable given by 

X@1@2⋯@W = Y:Z1@1 , … ,ZW@W<.          (1.12) 

Hence, the expected quality cost of this product is  

+@1@2⋯@W = �x':X@1@2⋯@W , `<y.          (1.13) 

Let �@^ be the number of type @ components in the ^ ℎ bin for that component type and let 

�@ be the number of bins for type @ components. Define a cell to be a combination of bins; 

we refer to cell 
@1, … , @W� to be the combination of bin @^ of type ̂  components for 

^ = 1,… , W. The component matching problem is to find the number of assemblies to be 
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produced from each cell such that the total quality cost is minimized. This problem can 

be formulated as an integer linear program:  

Program B 

 
Fixed Bin Selective Assembly 

min+� = ∑ ∑ ⋯∑ +1a1b⋯1cS1a1b⋯1c
¡c1ck�

¡b1bk�
¡a1ak�   

subject to: 

∑ ∑ ⋯∑ S1a1b⋯1c
¡c1ck�

¡l1lk�
¡b1bk� = ��1a 	∀@� = 1,… , ��  

∑ ∑ ⋯∑ S1a1b⋯1c
¡c1ck�

¡l1lk�
¡a1ak� = ��1b 	∀@� = 1,… , ��  

⋮ 
∑ ⋯∑ ∑ S1a1b⋯1c

¡coa1coak�
¡cob1cobk�

¡a1ak� = �\1c 	∀@\ = 1,… , �\   

S1a⋯1c ∈ ℤ, S1a⋯1c ≥ 0	∀
@�, … , @\�
∈ {
^�, … , ^\� ∈ ℤ\: 1 ≤ ^£ ≤ �£ , z = 1, … , W}, 

where∑ �1¨¡©¨k� = �	∀@ = 1,… , W.  
 

The S@1@2⋯@W’s are the decision variables. If S@1@2⋯@W = 2, then 2 products are to be 

assembled from cell 
@�, @�, … , @\�. The objective function of Program B is the expected 

total quality cost of the assemblies. The constraints of Program B say that all components 

in each bin must be utilized to build a total of � assemblies. Let 

q = :S��⋯�	 , … , S¡a¡b⋯¡c
	 < denote the vector of decision variables. Then, q is a feasible 

solution if the sum of the ∏ �@W@=1  elements of q equal � and all elements of q are 

nonnegative integers. The optimal solution q∗ to the program gives the number of 

products to be assembled from each cell such that the expected total quality cost is 

minimized.  

Program B is known as the axial multi-index transportation problem (Queyranne 

and Spieksma, 1997; Haley, 1963). It can be solved in exactly the same way as Program 

A, i.e. using a branch-and-bound algorithm with lower bounds obtained by solving linear 
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programming relaxations. For W = 2, the continuous relaxation of Program B becomes a 

transportation problem; thus, all basic solutions are integer points (Dantzig and Thapa, 

2003) and the program must have an integer optimal solution. Unfortunately, for W > 2, 

this is not true. 

If scrapping is an option, then we should replace +@1@2⋯@W in (1.13) with 

+@1@2⋯@W = mins�x':X@1@2⋯@W , `<y,∑ rQ̂Ŵ=1 t.        (1.14) 

In essence, this leads us to a generalization of the notion of setting component tolerances. 

Instead of using specification limits to define hyper-rectangle acceptance regions, we 

now have acceptance regions that are unions of hyper-rectangles, as illustrated in Table 

1.5 for W = 2, and �1 = �2 = 4. This can give an acceptance region that better 

approximates the shape of the contours of the assembly response function Y. Moreover, 

some undesirable combinations are scrapped only if it is optimal to do so according to 

Program B.  

To evaluate the long-run performance of FBSA, we shall assume that all � 

components of the same type have identically distributed characteristics, and that all 

component characteristics are independently distributed. Moreover, we assume that the 

distribution for each component type remains the same from batch to batch. Given these 

 
Table 1.5: Accept/ Reject Cells for Fixed Bin Selective Assembly 

 ��� ��� ��! ��" 

��� Reject Accept Accept Accept 

��� Reject Accept Accept Accept 

��! Accept Accept Accept Accept 

��" Accept Accept Accept Accept 
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assumptions, the +@1@2⋯@W ’s in Program B are fixed quantities, unlike Program A. 

However, for all @ = 1,… , W, 
�1�, … , �1¡©� is a multinomial random variable. Thus, the 

optimal solution and objective function value of Program B are random variables that 

changes from batch to batch.  

For FBSA, it is desirable to determine the optimal number and formation of bins 

to minimize the expected total cost per batch of assemblies. The total cost is taken to be 

the sum of the quality cost and extra cost of FBSA over random assembly, which is a 

function of the number of bins �1, … , �W and also the batch size �. This latter cost 

includes the cost of sorting, and the increased cost of material handling due to 

segregation of components of the same type.  Thus, we want to choose « = 
��, … , �\� 
and �@^, ^ = 1,… , �@, @ = 1,… , W such that the sum of the expected quality cost and the 

implementation cost of FBSA �
«,�� for a batch of products is minimized. Denote 

¬ = :���, … , ��¡a , ���, … , ��¡b , … , �\�, … , �\¡c<        (1.15) 

and let 

Ω = �¬ ∈ ℤ∑ ¡©c©®a : ¬ ≥ ¯,∑ �1¨¡©¨k� = �	∀@ = 1,… , W� = {¬�, ¬�, … , ¬°},    (1.16) 

where } = ∏ �� + �1 − 1
�1 − 1 �\1k� . Let ±¬@ = ±:¬ = ¬@<, �@^ = ±:Z@ ∈ �@^<, and +�¬@

∗  be the 

minimum expected quality cost achieved when ¬ = ¬1. Then, the expected quality cost 

for a batch of size � is  

�
+�� = ∑ +�¬©
∗ ±¬©

°1k� ,          (1.17) 

where ±¬@ = ∏ �!
�^1@ !⋯�^�^

@ !�^1
�^1@ ⋯�^�^

�^�^
@Ŵ=1 , and 

¬@ = :�11@ , … ,�1�1
@ , �21@ , … ,�2�2

@ , … ,�W1@ , … ,�W�W
@ <.  
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 We write the bin design problem formally as follows. 

Program C 

 
Bin Design for Fixed Bin Selective Assembly 

min¡©,²©³sG� = ∑ +�¬©
∗ ±¬©

°1k� + �
«,��t  
subject to: 

⋃ �1¨¡©¨k� = Q1, �1\⋂�1£ = �	∀W ≠ z, « ∈ ℕ\ .  
 

In the following examples, we restrict attention to the case where each Z@ is of a 

single dimension with sample space given by Q@ = �'@, (@
, and we take 

�@^ = {2 ∈ ℝ:�@,^−1 ≤ 2 ≤ �@^},          (1.18) 

where �@0 = '@, �@�@ = (@, �@0 < �@1 < ⋯ < �@,�@−1 < �@�@; hence, the decision variables 

for Program C are �@, �@1, … , �@,�@−1, @ = 1,… , W.  

 Program C is difficult to solve. Note that +�¬@
∗  is a function of the decision 

variables �@, �@1, … , �@,�@−1, @ = 1,… , W. Hence, to evaluate the objective function of 

Program C at a feasible point, Program B needs to be solved } times. Solving Program B 

involves computing the +@1@2⋯@W values in addition to running a branch-and-bound 

algorithm. Moreover, because } can be a very large number even for small values of � 

and �1, … , �W, computing the values of all the +�¬@
∗  at a single point in the feasible region 

of Program C can be a daunting task in itself. The problem is further aggravated by the 

large number of decision variables.  

In view of these problems, we restrict attention to ranking a finite number of 

alternative bin designs. Based on the limitations of the precision of measuring equipment, 

or on a comparison of �
«,�� to +�uv, we can reduce the set of alternative «’s from ℕW 

to a finite set ω«. Note that values of « such that �
«,�� > +��� need not be 
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considered. Since �
«,�� should be increasing in each of its argument, this allows us to 

narrow down the alternative choices of « to a finite set that contains «∗, the optimal 

number of bins. However, it seems to be difficult to narrow down the infinite number of 

alternative �@^’s. We shall compare the �@^’s obtained using two heuristic methods (Mease 

et al., 2004), which we call bin-formation rules. These two rules are: 

i. The equal-width rule: Choose the �1¨’s so that �1¨ − �1,¨�� = 
(1 − '1�/�1. 

ii.  The equal-area rule: Choose the �1¨’s so that �̧ ©:�1¨< − �̧ ©:�1,¨��< = 1/�1.  

Thus, we suggest ranking the set ω�z  of alternative bin design that consists of all 

combinations of « ∈ ω« and bin-formation rule. The procedure given in Appendix A.3 is 

used to estimate the expected total cost G� for each of the finite number of alternative bin 

designs suggested.  

 We use the two-stage screening and ranking procedure proposed by Nelson et al. 

(2001) to determine the best alternative in the set of alternative bin designs. Since this 

procedure requires the assumption of normality, we use as input data for the procedure 

the averages of total cost estimates G��  obtained from � > 1 runs of Procedure II 
(Schmeiser, 1982). The procedure is summarized in Appendix A.4. Steps 1-4 of 

Procedure III are steps for the screening of alternatives and steps 5-8 are steps for the 

ranking of alternatives. 

In the following examples, we shall compare random assembly with FBSA. In all 

examples, the parameters {, �, and }1 for Procedure III are fixed at { = 0.05, � = 10, 

}1 = 10. Note that }1 = 10 replicates is the minimum recommended by Schmeiser 

(1982) and the average of � = 10 G��  values should be large enough for the normality 

assumption to be a good approximation. For Step 3 of Procedure II, we estimate each 
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�x':X1a1b⋯1c , `<y by a simulation with 10,000 run. In general, this would be convenient 

when either the loss function ' is complicated, or the X@1@2⋯@W’s are complicated functions 

of the Z^@^’s.  

Assuming that products that have higher quality loss than the scrap cost are 

scrapped, the expected quality cost of random assembly per batch of assemblies is given 

by (1.5). Strictly speaking, the quality cost of random assembly with 100% inspection is 

not comparable to the total cost of FBSA. The cost of inspection and the cost of wasted 

effort due to assembling products that are scrapped after inspection must be added to the 

quality cost to obtain the total cost of random assembly. Note also that our specification 

of �
«,�� in the examples shall be somewhat arbitrary. This is unavoidable because 

�
«,�� depends on many production-system-specific factors such as the degree of 

automation, the material handling equipment etc. However, we point out that simulation 

models of the assembly process with and without implementation of FBSA can be used to 

determine �
«,��. For example, Activity Based Costing of manufacturing systems using 

discrete event simulation models is discussed by Spedding and Sun (1999). 

1.3.1 Example 1.3: Fixed Bin Selective Assembly of Bimetal Thermostat 

 We investigate fixed bin selective assembly of the bimetal thermostat described in 

Example 1.1. Assume that � = 100, �
��, ��, 100� = 0.2
�� + �� − 2�, and the 

distributions of  1 and  2 are given by (1.7). A simulation of 100,000 runs gives +�� uv =
4.872
0.0208�. This indicates that only values of 
�1, �2� such that �1 + �2 ≤ 26 need 

to be considered. However, the precision of the measuring equipment would likely place 

tighter upper bounds on the values of �1 and �2. We suppose that only a maximum of 
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four bins is allowed for each component. Thus, ω« = �
�1, �2� ∈ ℕ2:	2 ≤ �1 ≤ 4, 2 ≤

�2 ≤ 4�. Note that if we set �1 = 1 or �2 = 1, we are essentially performing random 

assembly; if no scrapping of components or assemblies are allowed, then FBSA with 

�1 = 1 or �2 = 1 is equivalent to random assembly. Define  

��z� = º		1, @�	 ℎ�	�M��z	�@� ℎ	�@�	���}� @��	��z�	@�	����
2, @�	 ℎ�	�M��z	����	�@�	���}� @��	��z�	@�	����      (1.19) 

Then, our set of alternatives is given by 

ω�z = �
�1, �2, ��z�� ∈ ℕ3:	2 ≤ �1 ≤ 4, 2 ≤ �2 ≤ 4,1 ≤ ��z� ≤ 2�.    (1.20) 

We employ Procedure III with 8 = 0.1 to screen and rank the alternatives in »�z . 

The results of the screening steps are shown in Table 1.6. Highlighted are the seven 

alternatives that remain after the screening phase. The column headed +�� @ gives 

estimates of the quality costs of the alternatives +�� @ = G�,,,,@
1� − �
�1, �2, 100�. It is 

interesting to see that the quality cost can increase with an increase in �1 or �2. However, 

the quality cost must decrease if the bins of the alternative with the larger values of �1 

and �2 are nested within the bins of the alternative with the smaller values of �1 and �2.  

The results of the ranking steps are presented in Table 1.7. We see that in order to 

rank the seven remaining alternatives, Procedure II had to be run 49, 36, 73, 70, 97, 44, 
and 56 times respectively with � = 10. Since G�,,,,
3,3,2�	
2� = 3.523 is the smallest, we 

declare 
3,3,2� as the best alternative. Recall that +�� uv = 4.872
0.0208�. Thus, the 

improvement in total cost, assuming that the total cost of random assembly equals the 

quality cost, is 4.872−3.523
4.872 ≈ 30% and the improvement in quality cost is about 

4.872−�3.523−0.2
3+3−2�

4.872 ≈ 45%. 
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Table 1.6: Screening of Alternative Bin Designs (Bimetal Thermostat,  
Truncated Normally Distributed Strip Thickness) 

�� �� u�z� �1� G�,,,,1
�� +�� 1 
2 2 1 0.02094 3.659 3.259 
3 2 1 0.01980 4.380 3.780 
4 2 1 0.02339 3.894 3.094 
2 3 1 0.01784 4.150 3.550 
3 3 1 0.01635 3.668 2.868 
4 3 1 0.02405 4.147 3.147 
2 4 1 0.02708 3.842 3.042 
3 4 1 0.01305 4.064 3.064 
4 4 1 0.01850 3.782 2.582 
2 2 2 0.02965 3.606 3.206 
3 2 2 0.01922 3.924 3.324 
4 2 2 0.02592 3.892 3.092 
2 3 2 0.00861 3.757 3.157 
3 3 2 0.02836 3.575 2.775 
4 3 2 0.03822 3.581 2.581 
2 4 2 0.01088 3.948 3.148 
3 4 2 0.01912 3.630 2.630 
4 4 2 0.02338 3.720 2.520 

 

 

 

Table 1.7: Ranking of Alternative Bin Designs (Bimetal Thermostat,  
Truncated Normally Distributed Strip Thickness) 

�� �� u�z� }� G�,,,,1
�� � �	����� 

2 2 1 59 3.671 0.0157 
3 3 1 46 3.722 0.0248 
2 2 2 83 3.589 0.0155 
3 3 2 80 3.523 0.0176 
4 3 2 107 3.678 0.0169 
3 4 2 54 3.685 0.0169 
4 4 2 66 3.670 0.0166 
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Table 1.8: Quality Cost ��10
� − 1��
 for Each Cell of 
4,4,1� Alternative   

 
V2 

�2.5,2.75
 �2.75,3
 �3,3.25
 �3.25,3.5
 

V1 

�0.5,0.75
 0.3593 0.0985 0.0085 0.0376 

�0.75,1
 0.2841 0.0812 0.0071 0.0277 

�1,1.25
 0.1505 0.0336 0.0052 0.0457 

�1.25,1.5
 0.0406 0.0052 0.0254 0.0928 
 

 

For the alternative 
4,4,1�, we illustrate the bins and quality costs � �10:�1a1b −

1<�� in Table 1.8. The quality cost values are estimates obtained from simulations with 

10,000 runs. We see that the two upper left bins have quality costs that exceed the 

scrapping cost ∑ rQ̂2̂=1 = 0.27. Thus, +11 = +21 = 0.27. Table 1.8 also suggests that a 

rectangular tolerance region for 
V�, V�� may not be a good choice since the union of the 

cells that would produce products of acceptable quality is not rectangular in shape. 

 In the case where the distributions of  1 and  2 are given by the uniform 

distributions (1.8), the equal-width and equal-area bin-formation rules lead to identical 

bins. Because of the larger variances, alternatives with up to five bins per component are 

considered and it is found that 
4,4� is the best alternative. The improvement in total cost 

is about 40% and the improvement in quality cost is about 55%. Details are omitted for 

brevity.  

Note that the choices of ω« in this and the next example were determined by trial 

and error. We incrementally increased the maximum number of bins for each component 

type and ran Procedure III. We stopped when further increases did not lead to a new best 

bin design. However, Examples 1.3-1.5 demonstrate that even by restricting attention to a 

very small subset of the set of all « with �
«,�� ≤ +���, we can achieve substantial 

reductions in quality cost and total cost.  
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1.3.2 Example 1.4: Fixed Bin Selective Assembly of Fortini’s Clutch 

Consider Fortini’s clutch (see Appendix A.2), which is an assembly of a cage, a 

hub, four ball bearings, and four springs as shown in the literature (Lee and Chen, 2007; 

Lee and Kwak, 2005; Forouraghi, 2002; Wu et al., 1998; Feng and Kusiak, 1997). The 

quality characteristic of interest is the contact angle � given by 

� = r�����
V� + V��/
V! − V��
,         

where V1 is a dimension of the hub, V2 is the ball bearing diameter, and V3 is the inner 

diameter of the cage. Note that there are four ball bearings per clutch, which means that 

there are four components of the same type per assembly and four contact angles. 

Program B is applicable to this assembly provided that we assume all ball bearings for 

each assembly have the same diameter. This assumption may be reasonable if the ball 

bearings are produced in groups of four, where each group of ball bearings is designated 

for one assembly, and the diameters of ball bearings in a group are highly correlated. In 

this case, one component of type 2 corresponds to a group of four ball bearings. 

Suppose that  

V1~G�
55.29,0.0793,55.0521,55.5279�, V2~G�
22.86,0.0043,22.8471,22.8729�, 
V3~G�
101.6,0.0793,101.3621,101.8379�.        (1.21) 

Let � = 100, G = 0.12217	��� = 7°, and suppose that '
�, G� = 10"
� − G��. Let the 

component scrap costs be given by ∑ rQ̂3̂=1 = 6. Thus, the quality cost is such that when 

� < 0.09768	��� = 	5.6° or � > 0.14666	��� = 8.4°, then it is more cost effective to 

scrap the components. This is reasonable since � must be between 5° and 9° (Feng and 

Kusiak, 1997; Wu et al., 1998; Forouraghi, 2002; Lee and Kwak, 2005). Based on a 

simulation with 105 runs, we obtain +�� uv = 126.32
0.4957�.  
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Let �
«, 100� = 5
�� + �� + �! − 3�. Then, only those 
�1, �2, �3� that satisfy 

�1 + �2 + �3 ≤ 28 need to be included in ω«. However, there are too many such 


�1, �2, �3� so that screening and ranking of all alternatives would take too much 

computing time. There are a total of ∑ �^ − 1
3 − 1�28^=3 = 3276 ways to choose strictly 

positive integers �1, �2, �3 such that 3 ≤ �1 + �2 + �3 ≤ 28. Out of these 3276 triples, a 

total of 28 + 27 + 27 = 82 contain a pair of 1’s; hence, they are not allowable 

alternatives for bin design. Therefore, there are 	3194	
= 3276 − 82� allowable 

alternative values of «. Assuming that both equal width and equal area bin formation 

rules are used, there are a total of 3194 × 2 = 6388 alternative bin designs. Since the 

total computation time needed to screen and rank the 80 alternatives given by (1.22) 

below is about 740 seconds on a MacBook Pro (2.4GHz Processor and 4GB RAM), we 

may need about 16 hours (≈ 740 × 6388/80 seconds) computing time to find the best of 

the 6388 alternatives. To overcome this problem, we may place realistic upper bounds on 

the �@’s based on the variance of the V@’s, where the upper bound on �@ should be large if 

���
V1� is large. We may also screen alternatives sequentially using the group screening 

procedure proposed by Nelson et al. (2001), starting with alternatives with small �@’s and 

stopping when a further increase in each of the �@’s leads to negligible improvement in 

quality cost. But the statistical properties of such a procedure would be distorted and hard 

to evaluate if the decision to stop depends on what is observed in the screening process. 

For this example, we consider a much smaller set of alternative values of « given by 

ω« = �
�1, �2, �3� ∈ ℕ3:	1 ≤ �1 ≤ 5, 1 ≤ �2 ≤ 2, 1 ≤ �3 ≤ 5,�@ + �^ > 2	∀@ ≠ ^�.  
Note that we require that at least two of the three component types to have two or more 

bins; otherwise, we would essentially be performing random assembly. The set of 
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alternatives is given by 

ω�z = �
�1, �2, �3, ��z�� ∈ ℕ4: 
�1, �2, �3� ∈ ω«, 1 ≤ ��z� ≤ 2�.     (1.22) 

The alternatives 
3,1,3,2� and 
4,1,4,2� remain after the screening phase of 

Procedure III with 8 set at 2. The results of the ranking steps are presented in Table 1.9. 

Since G�,,,,
4,1,4,2�	
2� = 55.758 < 55.985 = G�,,,,
3,1,3,2�	
2�
, we declare 
4,1,4,2� as the best 

alternative. However, since the practically significant difference was set at 8 = 2 and the 

difference between the estimated total cost of the two alternatives is much less than 2, we 

probably cannot distinguish the two alternatives with a type I error of { = 0.05. Note that 

the best alternative gives about 55% improvement in total cost and about 80% 

improvement in quality cost over random assembly. 

 
Table 1.9: Ranking of Alternative Bin Designs (Fortini’s Clutch,  

Truncated Normally Distributed Component Characteristics) 

�� �� �! u�z� }� G�,,,,1
�� � �	����� 

3 1 3 2 19 55.985 0.2715 

4 1 4 2 26 55.758 0.2445 

 

 

For the case where V1, V2, and V3 have uniform distributions with the same 

support as given in (1.21), we consider alternatives with up to seven bins for components 

1 and 3, and up to three bins for component 2. The best alternative is 
6,2,5� and it gives 

about 70% improvement in total cost and 90% improvement in quality cost. Details are 

omitted.  

1.3.3 Example 1.5: Fixed Bin Selective Assembly of Wheel Mounting Assembly 

We now consider an example with multiple responses and a special form of 
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assembly response function which is such that certain bin combinations can be ruled out 

without performing any simulation to evaluate those combinations. This allows us to 

achieve some savings in simulation effort. The wheel mounting assembly described by 

Jeang and Chang (2002) has five components, where each component is of a different 

type. The two quality characteristics of interests are clearances given by  

�1 = V2 − V4, and �2 = −V1 − V2 − V3 + V5.      

 The component dimensions have truncated normal distributions given by 

V1~G�
5,0.045,4.1,5.09�, V2~G�
8.5,0.03,8.44,8.56�, V3~G�
4,0.045,3.91,4.09�, 
V4~G�
8.36,0.04,8.28,8.44�, V5~G�
17.7,0.035,17.63,17.77�.     

Let � = 100, ̀ = 
0.14,0.2�d, '
X, `� = 3000
�� − G��� + 12000
�� − G���, 

∑ rQ̂5̂=1 = 270, and �
«, 100� = 40
�� + �� + �! + �" + �¾ − 5��. A simulation with 

104 runs yields +�� uv = 6122.1
0.68�. This suggests that we should compare all 


�1, �2, �3, �4, �5� such that �1 + �2 + �3 + �4 + �5 ≤ 17. However, this would give rise 

to a very large ω« set; moreover, Program B contains many decision variables even for 

small values of �1, �2, �3, �4, and �5. Therefore, we consider the set of values of 


�1, �2, �3, �4, �5� given by 

ω«′ = �
�1, �2, �3, �4, �5� ∈ ℕ5: 1 ≤ �1, �3 ≤ 3,1 ≤ �2, �4, �5 ≤ 2�.    

A few of the elements of ω«′  give rise to FBSA designs that are essentially equivalent to 

random assembly. These are elements where four or five of the �@’s equal 1, or where 

only �4 and exactly one of �1, �3, or �5 is greater than 1. With these bin combinations, 

component matching does not contribute to the improvement of assembly quality. 

However, quality might be improved by rejecting assemblies from certain cells.  We 

remove these values of « from ω«′  to get ω«. For simplicity, we shall only consider the 
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equal width rule. Thus, there are a total of 59 alternatives.  

The single alternative 
�1, �2, �3, �4, �5� = 
2,2,2,1,2� remains after screening of 

the alternatives using Procedure III with 8 = 100. It has a total cost of G�,,,,
2,2,2,1,2�
1� =
1887.0
15.02� and a quality cost of +�� 
2,2,2,1,2� = 1247.0
15.02�. Thus, we achieve a 

70% improvement in total cost and an 80% improvement in quality cost.  

Remark: In Examples 1.3-1.5, the cost function �
«,�� is somewhat arbitrary. 

However, the main purpose of these examples is to demonstrate that a substantial 

improvement in quality cost can be achieved with FBSA, which suggests that 

implementation of FBSA may be justified in many cases. Another purpose of these 

examples is to show that good bin designs can be found by restricting attention to only a 

small set of values of « with small values of �@ that satisfy �
«,�� ≤ +���.  

1.3.4 Summary of Examples and Comparison 

Examples 1.1 and 1.2 show that DSA is good at achieving significant cost 

reductions of 50-80% even for small batch sizes (� = 5 to � = 20). Cost reduction 

increases with batch size. Note that Example 1.1 considers an assembly with univariate 

response and univariate component characteristics, whereas Example 1.2 considers an 

assembly with multivariate response and characteristics.  

Examples 1.3-1.5 show that FBSA with optimal bin designs can achieve 

significant cost reductions and that large batch sizes can be handled with FBSA. They 

demonstrate that good bin designs can be found by restricting consideration to 

alternatives with small number of bins for each component type and finding the optimal 

bin design among the alternatives using a screening and ranking procedure. Reductions in 

total cost range from 30% for the bimetal thermostat to 70% for Fortini’s clutch and the 
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wheel mounting assembly; reductions in quality cost range from 45% for the bimetal 

thermostat to 90% for Fortini’s clutch. Reductions tend to increase when the variances of 

the distributions of component characteristics increase. 

In the case where we have a moderately large batch size, both DSA and FBSA 

may be considered. Clearly, DSA will be more costly than FBSA. However, we can 

expect less improvement with FBSA than DSA  (as may be seen by comparing Examples 

1.1 and 1.3) since FBSA uses less information than DSA in matching components. 

1.4 Robustness of FBSA Design 

1.4.1 Robustness to Variation in Batch Size 

In practice, the batch size � is determined by customer orders or production 

planning methods. Thus, we should consider robust bin design with � treated as a noise 

factor. Note that for an arbitrary batch with number of components in each bin given by 

the vector ¬ defined in (1.15), the total cost is G�¬
«, ��z�,�� = +�¬
∗ 
«, ��z�,�� +

�
«, ��z�,��. This makes explicit the fact that the two sources of variation of the total 

cost is ¬ and �. In other words, we can split the variation in total cost of a batch into two 

components: variation between different batches due to variation in component 

manufacturing, and variation due to changes in batch sizes. Thus, the mean and variance 

of the total cost per batch are given by 

0G�
«, ��z�� = � ÀG�¬
«, ��z�,��Á = �x�:G�¬
«, ��z�,��=�<y,                (1.23) 

and 

5G�2 
«, ��z�� = ��� ÀG�¬
«, ��z�,��Á 

= �x���:G�¬
«, ��z�, ��=�<y + ���x�:G�¬
«, ��z�, ��=�<y.     (1.24) 
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 Equations (1.23) and (1.24) suggest that we may choose the bin design 
«, ��z�� 
to minimize 0G�
«, ��z�� and 5G�2 
«, ��z�� or a composite of both criteria. It may also be 

of interest to consider the effect of the choice of bin design on 0+�
«, ��z�� and 

5+�2 
«, ��z��. 
In the following examples, we find that the correlation between 0G�
«, ��z�� and 

5G�2 
«, ��z�� is very high. Thus, it would be appropriate to focus on finding a bin design 

that minimizes 0G�
«, ��z��. Note that optimization of 0G�
«, ��z�� can be achieved 

using Procedure III. 

1.4.2 Example 1.6: Mean and Variance of Total Cost, Bimetal Thermostat and 

Fortini’s Clutch 

Consider the bimetal thermostat of Example 1.3. Assume �
� = 50� =
�
� = 100� = �
� = 150� = 1/3. Since the cost of implementing FBSA should be 

higher for larger batch sizes, we set �
��, ��, �� = 0.002�
�� + �� − 2�, and let ω�z  

be given by (1.20). 

We can estimate 0G�
«, ��z�� and 5G�2 
«, ��z�� using simulation data obtained 

with procedure II. For � = 50, 100, 150, and 
«, ��z�� ∈ ω�z , we run procedure II with 

� = 100 and compute the sample mean and variance. Then, we estimate 0G�
«, ��z�� 
and 5G�2 
«, ��z�� using sample analogues of (1.23) and (1.24).  

Assuming that the thicknesses are distributed as in (1.7), we find that for the set of 

alternatives ω�z  considered, the correlation between the estimates of 0G�
«, ��z�� and 

5G�2 
«, ��z�� is 0.96. Moreover, using the same data, we find that the correlation between 

the estimates of 0+�
«, ��z�� and 5+�2 
«, ��z�� is 0.97. On the other hand, if the 
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thicknesses are distributed as in (1.8) and ω�z  is given by (1.21), the correlation between 

the estimates of 0G�
«, ��z�� and 5G�2 
«, ��z�� is 0.97, and the correlation between the 

estimates of 0+�
«, ��z�� and 5+�2 
«, ��z�� is 0.98. These observations suggests that we 

need only focus on finding the bin design that minimizes the mean total cost 

0G�
«, ��z��.  

Lastly, we mention that similar results are obtained with the Fortini’s Clutch of 

Example 1.4 for the case where �
� = 50� = �
� = 100� = �
� = 150� = 1/3, and 

�
��, ��, �!, �� = 0.05�
�� + �� + �! − 3�.  

1.4.3 Robustness to Misspecification of Distributions 

In this section, we consider the robustness of the optimal bin design to 

misspecification of the distributions of component characteristics. If the distributions of 

some characteristics are misspecified, the calculated values of the +@1@2⋯@W’s would be in 

error. Moreover, we would generate the ¬ vector in Step 4 of Procedure II from wrong 

multinomial distributions. Thus, our estimate of the total cost of each alternative and our 

choice of the optimal bin design would likely be erroneous. However, we think that 

robustness of bin design to misspecification of distributions is not a significant practical 

problem. In implementing FBSA, every batch of each component type will be sorted into 

bins. Data on the total number of components sorted into each bin of a component type 

can be used to determine whether the specified distribution for that component type is 

correct (e.g., Pearson goodness-of-fit test). In addition, measurements on a characteristic 

can be recorded and used to estimate the distribution. After FBSA has been implemented 

for a long time, there would be an abundance of data to accurately determine the correct 

distributions. Nevertheless, we present the results of a numerical study of the robustness 
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of optimal bin designs in Example 1.7. 

1.4.4 Example 1.7: Robustness of Optimal Bin Designs for Fortini’s Clutch and 

Bimetal Thermostat 

 We shall study how cost savings over random assembly with 100% inspection are 

affected when the optimal bin design is determined from misspecified component 

distributions. We consider the Fortini’s clutch problem discussed in Example 1.4. The 

distributions of V1, V2, and V3 after component inspection are given by 

V1~G�
01, 51, 55.0521,55.5279�, V2~G�
02, 52, 22.8471,22.8729�, and 

V3~G�
03, 53, 101.3621,101.8379�        (1.25) 

where 01, 51, 02, 52, 03, 53 are unknown. The bounds on �55.0521,55.5279
, 
�22.8471,22.8729
, and �101.3621,101.8379
 on V1, V2, and V3 are known since these 

are the specification limits. Assume that to estimate the unknown parameters, we measure 

the dimensions of � = 16 pieces of each component type (hub, ball bearing, and cage) 

randomly sampled from batches that have not been inspected. Then, Bayesian inferences 

with the usual noninformative priors give 

0−2,
�/√�Ã�� �~ �−1 and 5

�√�−1Ã�� �~1/ÄR�−12 ,         (1.26) 

where 2Å is the sample mean and � is the sample standard deviation. Thus, we have 

0.991 = ± À−3 ≤ -�Æ̅
Ç/√�� ≤ 3Á = ± À−0.75 ≤ -�Æ̅

Ç ≤ 0.75Á,      (1.27) 

0.991 = ± À:R�¾,�.&&¾¾� <��/� ≤ 5/:�√15< ≤ :R�¾,�.��"¾� <��/�Á = ±
0.673 ≤ 5/� ≤
1.823�.            (1.28) 

We use the values 2Å1 = 55.29, �1 = 0.0793, 2Å2 = 22.86, �2 = 0.0043, 2Å3 = 101.6, �3 =
0.0793 to determine the optimal bin design, which in Example 1.4, was found to be 
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4,1,4,2�. However, since these estimates are subject to error, we should quantitatively 

study the robustness of the design.  

 It is of interest to determine the performance of the optimal bin design at the 

endpoints and midpoints of the credible intervals given by (1.27) and (1.28). This would 

require running a 36 design. Fortunately, it is possible to reduce the number of runs and 

still be able to observe the best and worst performance of the optimal design.  

The effect of increasing standard deviation of each characteristic is to increase the 

standard deviation of �. Thus, we can form a compound factor �� consisting of the three 

levels 
0.673,1,1.823�, where �� = 0.673,1,1.823 correspond to setting the standard 

deviations of all V@’s to their lower credible limits (0.673�), nominal values (�), and 

upper credible limits (1.823�) respectively.  

It can be shown that � is a decreasing function of V1 and V2, and an increasing 

function of V3. Hence, the mean of � decreases when the means of V1 and V2 increase, 

and the mean of V3 decrease. Thus, we can form a compound factor �� consisting of the 

three levels 
−1,0,1�, where �� = −1,0,1 correspond to setting the mean of 
V�, V�, V!� 
at 
2̅� − 0.75��, 2̅� − 0.75��, 2̅! + 0.75�!�, 
2̅�, 2̅�, 2̅!�, and 
2̅� + 0.75��, 2̅� +
0.75��, 2̅! − 0.75�!� respectively. The levels of �� and �� are shown in Table 1.10. 

Thus, introducing compound factors reduce our experiment from a 36 factorial to a 32 

factorial. 

The results of the 32 factorial experiment are shown in Table 1.11. The column 

labelled G��  gives an estimate of the total cost of FBSA with bin design 
4,1,4,2� and the 

column labelled 5È:G��< gives its standard error. Each estimate G��  is obtained by running 

procedure II 50 times with � = 10. The column labelled +�� uv gives an estimate of the  
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Table 1.10: Levels of the Compound Factors �� and �� 
Level -1 0 +1 

�É 
0� = 55.2305 
0� = 22.8568 
0! = 101.6595	

0� = 55.29 
0� = 22.86 
0! = 101.6	

0� = 55.3495 
0� = 22.8632 
0! = 101.5405	

Level 0.673 1 1.823 

�Ê 
5� = 0.0534 
5� = 0.0029 
5! = 0.0534	

5� = 0.0793 
5� = 0.0043 
5! = 0.0793	

5� = 0.1446 
5� = 0.0078 
5! = 0.1446	

 

Table 1.11: Estimates of Total Cost of FBSA with Bin Design 
4,1,4,2�,  
Cost of Random Assembly, and Percentage Savings of FBSA  

Over Random Assembly for the 32 Experiment 
�É �Ê G��  56:G��< +���� 56:+����< %Savings 

-1 0.673 198.33 0.70 198.13 1.65 -0.1 

0 0.673 42.35 0.09 60.91 0.85 30.5 

1 0.673 225.54 0.91 235.34 2.01 4.2 

-1 1 196.44 0.89 220.13 2.01 10.8 

0 1 55.57 0.18 123.81 1.55 55.1 

1 1 217.62 0.94 247.80 2.26 12.2 

-1 1.823 132.46 0.98 243.91 2.23 45.7 

0 1.823 73.86 0.42 223.83 2.18 67.0 

1 1.823 140.94 1.03 261.01 2.34 46.0 

 

quality cost of random assembly (100% inspection of output) obtained from 10,000 runs, 

and the column labelled 5È:+�� uv< gives its standard error. Finally, the column labeled 

%Savings gives the quantity :+���� − G��</+���� × 100. Comparison of the �Ê column 

and the %Savings column reveals that �Ê has a strong linear effect (if we code �Ê so that 

its levels are −1,0,1). Thus, underestimation of the component standard deviations is 

much less serious than overestimation. If the true standard deviations are larger than their 

estimates (i.e., �Ê = 1.823 gives the true standard deviations while �Ê = 1 represent the 

nominal standard deviations used to derive the optimal bin design), the percentage cost 
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reduction would be larger than predicted. On the other hand, if the true standard 

deviations are smaller than estimated (i.e., �Ê = 0.673 versus �Ê = 1), the percentage 

cost reduction would be less than predicted. Comparison of the �É column with the 

%Savings column reveals that �É has a strong quadratic effect. If errors in estimation of 

the component means act in the same direction to maximize the error in estimating the 

response mean, the percentage cost reduction can be much less than predicted (i.e., 

%Savings for �É = −1 and �É = 1 are much less than %Savings for �É = 0). These 

eyeball analyses can be confirmed by a formal analysis (using a half-normal plot or 

Lenth’s test) of linear and quadratic contrasts obtained by decomposing the two main 

effects and two two-factor interaction components (Wu and Hamada, 2009).  We point 

out that the high and low levels of �É and �Ê represent worst case scenarios. Overall, 

Table 1.11 indicates that FBSA would very likely achieve cost reductions over random 

assembly.  

In Table 1.12, we give estimates of the total cost for the bin designs 
4,1,4,2� and 


6,2,5,1� when V1, V2, and V3 have distributions given by (1.21) and when they have 

uniform distributions with the same support as in (1.21). Note that for the latter case, we 

obtained 
6,2,5,1� as the optimal bin design, as mentioned at the end of Example 1.4.  

 
Table 1.12: Total Cost Estimates of Bin Designs Optimal for Truncated Normally 

Distributed and Uniformly Distributed Component Characteristics 

 

Truncated 
Normal 

 

Uniform 

G��  56:G��< G��  56:G��< 

4,1,4,2�	 55.764 0.056 
4,1,4,2�	 101.040 0.207 


6,2,5,1�	 75.032 0.025 
6,2,5,1�	 77.127 0.100 

+���� 126.320 0.496 +���� 278.950 0.754 
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Table 1.12 shows that, although there is a non-negligible increase in total cost over the 

minimum attainable cost if the component distributions are misspecified, significant cost 

savings are still achieved with bins optimal with respect to misspecified distributions. We 

may use the results of Table 1.11 to predict the cost savings achieved with bin design 


4,1,4,2� when the component distributions are uniform. The standard deviations of the 

uniformly distributed component characteristics are given by �� = 1.732 and the means 

are given by �� = 0. If we fit a constant mean Kriging model with exponential 

correlation function (Santner et al., 2003) in the input space 
�É, �Ê� to the %Savings 

data in Table 1.11, we obtain the prediction 65.5. This is very close to the observed 

%Savings, which is 63.8	
= 
278.95 − 101.04�/278.95 × 100�. This suggests that the 

%Savings depend strongly on the first and second moments of the component 

distributions.  

Finally, we point out that for the bimetal thermostat assembly problem described 

in Example 1.3, � is not monotonic in  1. However, over the sample space �0.5,1.5
 ×
�2.5,3.5
, � achieves its maximum near 
 �,  �� = 
0.5,2.5� and its minimum at 
 �,  �� =

1.5,3.5�. Therefore, we can use a compound factor �� for the mean with levels 
2̅� −
0.75��, 2̅� − 0.75���, 
2̅�, 2̅��,and 
2̅� + 0.75��, 2̅� + 0.75���. Results for the bimetal 

thermostat are similar to the results for Fortini’s clutch given above and are omitted. 

1.5 Conclusions 

The industrial revolution was brought about by the idea of interchangeable parts, 

which Eli Whitney demonstrated with muskets. This led to the move away from 

craftsmen to mass production. Each product made by craftsmen is unique in the sense 

that some components of a product cannot be replaced with the components of another 
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product of the same type. In contrast, interchangeable parts are parts that can be randomly 

matched to build an acceptable assembly. Thus, it might seem that selective assembly is a 

step back towards the days of the craftsmen, and an antithesis of the concept of 

interchangeable manufacturing. However, we take the position that selective assembly is 

a valuable quality improvement tool. Selective assembly improves quality by introducing 

a component sorting and matching step to improve the assembly of interchangeable parts. 

It does not call for the replacement of interchangeable manufacturing, which is necessary 

to ensure easy maintenance and good uniformity in performance of products. Rather, 

selective assembly is a strategy to gain a competitive advantage in product quality, which 

can be crucial for profit and growth in a business environment that demands perfection in 

quality. 

Implementation of selective assembly requires added steps in the flow of material 

through the manufacturing facility. Although these extra steps may cause congestion in a 

mass production facility, they should be easily accommodated in batch production 

facilities or job shops since production rate requirements are not high in these facilities. 

Moreover, the numerical examples presented in this chapter also show that larger 

reductions in quality cost are possible with GSA than with 100 percent inspection and 

rework.   

We developed selective assembly as a tool that can be used to improve the quality 

of products that are assemblies of one unit of each of a finite number of component types 

provided that the assembly response function is known. We studied two versions of 

selective assembly: direct selective assembly and fixed bin selective assembly. For each 

version, we formulated the problem of matching components to give a batch of 
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assemblies that minimize expected quality cost as a linear integer program. Realistic 

examples were given to demonstrate that significant reductions in average quality cost 

can be achieved.  

 A few problems require further research. Firstly, extending the selective assembly 

methods proposed in this chapter to assemblies that consist of multiple components of the 

same type is one important area for further research. Secondly, for fixed bin selective 

assembly, methods are needed to determine the optimal bin formation for given number 

of bins. Thirdly, although it is theoretically possible to consider more than one 

measurement per component type for fixed bin selective assembly, it seems practically 

impossible to handle this case since we can have many ways to partition the more-than-

one-dimension sample space of the characteristics into sub-regions that define the bins 

for selective assembly. Thus, approaches to reduce the number of partitions that have to 

be considered are needed. 
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CHAPTER 2 

ROBUST DESIGN OPTIMIZATION WITH QUADRATIC LOSS 

DERIVED FROM GAUSSIAN PROCESS MODELS 

 

2.1 Introduction  

Robust parameter design is a quality improvement methodology for designing 

products and processes to be insensitive to variation in a set of factors, called noise 

factors. Noise factors can be controlled during experimentation but not during process 

operation or product use. The objective of robust parameter design is to find settings of 

the control factors so that the response is maintained as close to the target as possible 

under noise variations. As such, widely used average loss criteria for robust design 

optimization include the mean squared error and variance. 

 Most of the statistical literature on robust parameter design has focused on 

methods developed for physical experimentation. However, due to the rapid increase in 

computing power, computer simulations have become an important tool for product 

development. Because these simulations can be extremely time-consuming, metamodels 

are needed to facilitate exploration and optimization of simulators. To construct a 

metamodel, a training data set is acquired by running a computer experiment. In many 

cases, Gaussian process models are utilized in statistical metamodel building (Sacks et al. 

1989). A Gaussian process model can be interpreted as a prior for the unknown function 

that a simulator represents. Parameters of a Gaussian process prior are estimated using 

training data and the prior process is updated using the same data to yield a posterior 

process. Statistical inferences on the simulator are then made using the posterior process.  
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 There are many techniques for searching for robust settings based on linear 

models of the response (e.g., Koksoy and Doganaksoy 2003), including ones that take 

into account model estimation uncertainty (Mirό-Quesada and Del Castillo 2004). 

Methods for constructing confidence regions for optimal robust settings of linear models 

have also been developed (Myers et al. 1997; Ginsburg and Ben-Gal 2006). Peterson and 

Kuhn (2005) give a method for constructing simultaneous confidence intervals for the 

minimum mean squared error loss at various distances from the design center. Myers et 

al. (1997) give methods to construct approximate prediction and tolerance limits on the 

response.  

 However, most of the techniques developed for linear models cannot be applied to 

Gaussian process models, and many are only applicable to linear models with specific 

forms. Hence, approaches for finding robust design solutions and quantifying uncertainty 

in the estimated average loss are needed for Gaussian process models. Apley and Chen 

(2006) propose an approximate method for constructing confidence intervals for a loss 

function suitable for smaller-the-better quality characteristics. Williams et al. (2000) and 

Lehman et al. (2004) introduce expected improvement (EI) criteria for finding robust 

settings. Chang et al. (1999) and Chang et al. (2001) describe the robust design of a 

femoral component for total hip arthroplasty. Their criteria for robust design are derived 

by treating the posterior mean as if it were the true response function. Despite the vast 

literature on robust design, it seems that methods for constructing credible intervals for 

quadratic loss derived from either linear models or Gaussian process models are lacking. 

Moreover, uncertainty about the true response function is often ignored in robust design. 

Optimization is typically based on the average quadratic loss derived as if the fitted 
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model/ posterior mean were the true function. This chapter demonstrates that such a 

practice can be deficient and introduces better methods for robust design optimization. 

Although computer experiments and physical experiments are very different in 

nature, linear regression and Gaussian process modeling are actually closely related. The 

posterior predictive process for Gaussian process models contains the predictive process 

for linear models as a special case. We propose the use of a general expected quadratic 

loss criterion, where the expectation is taken with respect to the noise factors and the 

posterior process. We shall develop saddlepoint-approximation-based methods to 

construct credible intervals for the loss that are applicable to Gaussian process and linear 

models. The criterion and its credible interval allow us to properly take into account 

uncertainty about the true response function in performing robust design optimization. In 

examples involving real data, we demonstrate the superiority of the proposed criterion 

over the commonly used criterion that ignores response function uncertainty. We also 

demonstrate the impressive accuracy of the Lugannani-Rice saddlepoint approximation. 

The rest of the chapter is organized as follows. Section 2.2 reviews the Gaussian 

process modeling framework for computer experiments. Section 2.3 derives the proposed 

expected quadratic loss criterion. Sections 2.4 and 2.5 present methods for constructing 

credible intervals for quadratic loss derived from posterior normal and   processes 

respectively. Section 2.6 discusses a method for partially accounting for uncertainty in 

the correlation parameters and sequential design using quantiles. Section 2.7 gives three 

examples. Concluding remarks are given in Section 2.8. 

2.2 Gaussian Process Modeling 

In this section, we briefly review the main ideas of Gaussian process modeling of 
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simulators. It is assumed that the output of a simulator Ë
∙� can be modeled by 

�
Ì� = Y
Ì�dÍ + Î
Ì�,            (2.1) 

where Ì ∈ R ⊂ ℝ°, R is the design region, Y
Ì� = À1, ��
Ì�, … , �Ð��
Ì�Ád
, Í =

:Ñ�, Ñ�, … , ÑÐ��<d
, and Î
Ì� is a zero mean stationary Gaussian process. Given any two 

points Ì1 and Ì¨, the covariance of �
Ì1� and �:Ì¨< is given by r��x�
Ì1�, �:Ì¨<y =
r��xÎ
Ì1�, Î:Ì¨<y = 5�u:Ì1, Ì¨<, where u:Ì1, Ì¨< is the correlation function. The most 

commonly used correlation function is the Gaussian correlation function 

u:Ì1, Ì¨< = �2� �−∑ ÒÓ:21Ó − 2̈ Ó<�°Ók� �,          (2.2) 

where 21Ó is the � ℎ element of Ì1, and ÒÓ > 0, � = 1,… ,} .  

In a computer experiment, the output is observed at � values of inputs given by 

the rows of Z = 
Ì�, … , Ìj�d. This yields a vector X of observed outputs. The matrix Z 

is called the design, and the choice of each Ì1 is restricted to R. Based on data from the 

experiment, a best linear unbiased estimator of the output can be constructed and is given 

by  

Ë6
Ì� = Y
Ì�dÍÔ + Õ
Ì�dÖ��
X − ×ÍÔ�,          (2.3) 

where Õ
Ì� = :u
Ì, Ì��,… , u
Ì, Ìj�<d
, × = :Y
Ì��,… , Y
Ìj�<d

, Ö = Àu:Ì1, Ì¨<Áj×j, 

and 

ÍÔ = 
×dÖ��×���×dÖ��X.            (2.4) 

 In (2.3), Ö, Õ, and ÍÔ depend on the correlation function u
∙�, which in turn, 

depends on the correlation parameters Ø. One approach to estimating Ø is the maximum 

likelihood method, i.e., to maximize the likelihood 

Ù
Ø, Í, 5�� = �
2Ú5��j|Ö|
��/�exp	�−
X − ×Í�dÖ��
X − ×Í�/25�
.  
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It turns out that given Ø, Í = ÍÔ, where ÍÔ is given in (2.4), and 5� = 56� = :X −
×ÍÔ<dÖ��
X − ×ÍÔ�/� maximizes Ù
Ø, Í, 5��. Thus, the maximum likelihood estimate 

(MLE) ØÔ of Ø is obtained by maximizing Ù:Ø, ÍÔ, 56�<, which is equivalent to minimizing 

Q
Ø� = �z��
56�� + z��
|Ö|�.           (2.5) 

Because the output of deterministic simulations lacks random error, it seems more 

natural to view model (2.1) as representing the prior distribution for the simulator. Using 

a weak prior for Í|Ø, 5�, �
Í|Ø, 5�� ∝ 1, it can be shown that (Handcock and Stein 

1993; O’Hagan 1994) 

�
∙�|X, Ø, 5�~Î±:0
∙|Ø�, �
∙,∙|Ø, 5��<,          (2.6) 

where Î±
0
∙|Ø�, �
∙,∙|Ø, 5��� denotes a Gaussian process with mean function 0
∙|Ø� 
and covariance function �
∙,∙|Ø, 5��; 0
∙|Ø� = Ë6
Ì�, and 

�
∙,∙|Ø, 5�� =
5� �u:Ì1, Ì¨< − Õ:Ì1<dÖ��Õ:Ì¨< + xY:Ì1< − ×dÖ��Õ:Ì1<yd
×dÖ��×���xY:Ì¨< −

×dÖ��Õ:Ì¨<y�.             (2.7) 

It is common to base inference on (2.6) using ØÔ in place of Ø and 5Þ� = j
j�Ð56� in place of 

5�, i.e.,  

�
∙�|X, ØÔ, 5Þ�~Î± À0:∙|ØÔ<, �:∙,∙|ØÔ, 5Þ�<Á.          (2.8) 

A fully Bayesian approach would place a prior on 
Ø, 5�� and integrate out 


Ø, 5�� from the product of the prior and �
∙�, X|Ø, 5�. If we use the prior �
5�|Ø� ∝
5�� and integrate out 5� from (2.6), we obtain a  -process. In particular, we obtain 

(Handcock and Stein 1993; O’Hagan 1994) 
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�
∙�|X, Ø~� À0
∙|Ø�, �ß
∙,∙|Ø�Á,           (2.9) 

where � À0
∙|Ø�, �ß
∙,∙|Ø�Á denotes a Student   process with mean function 0
∙|Ø�, and 

covariance function 
j�Ð

j�Ð�� �ß
∙,∙|Ø� = j�Ð
j�Ð���
∙,∙|Ø, 5Þ��. Inferences can be made using 

(2.9) if we replace Ø with ØÔ, i.e.,     

�
∙�|X, ØÔ~� À0:∙|ØÔ<, �ß:∙,∙|ØÔ< = �:∙,∙|ØÔ, 5Þ�<Á.       (2.10) 

Finally, let �
Ø� denote the prior distribution of Ø. Then, it can be shown that the 

posterior distribution of Ø is given by 

�
Ø|X� ∝ |Ö|��/�|×dÖ��×|��/��Xd
Ö�� − Ö��×
×dÖ��×���×dÖ���X
�
¡�Ð�/��
Ø�.  
  (2.11) 

While integrating out Ø from (2.9) is analytically intractable, it is possible to integrate out 

Ø numerically.  

Note that by setting u:Ì1, Ì1< = 1, u:Ì1, Ì¨< = 0	
@ ≠ ^�, Õ:Ì1< = ¯, Ö = à,  
(2.9) gives the posterior predictive surface for the usual linear model with independent 

and identically distributed normal errors and prior �
Í, 5�� ∝ 5�� (Zellner and Chetty 

1965). Thus, the Bayesian predictive process for linear models is a special case of the 

predictive process for Gaussian process models.  

2.3 Quadratic Loss 

In robust parameter design applications (Myers and Montgomery 2002; Wu and 

Hamada 2009), the simulator output Ë
∙� represents a quality characteristic of interest and 

Ì = 
Ìád , Ìâd�d, where Ìá and Ìâ are the vector of control and noise factor settings 

respectively. Let the quality cost of a system with quality characteristic Ë
Ì� be given by 
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'�Ë
Ì�
. Then, the average quality cost is given by 

+ã
∙�
Ìá� = �Zä �' �Ë ÀÌáZâÁ��,         (2.12) 

where the expectation is taken with respect to the distribution of the noise factors Zâ. Our 

objective is to find an Ìá such that +ã
∙�
Ìá� is minimized. A commonly used approach to 

this problem would be to replace the unknown function Ë
∙� by the posterior mean 

function 0
∙� (for simplicity of notation, we omit reference to the MLE ØÔ) and then 

optimize +-
∙�
Ìá�. However, this method ignores the uncertainty about the true function 

Ë
∙�, which is captured by the posterior process (2.10). Each realization of (2.10) is a 

function on χ and the true function Ë
∙� can be any one of these realizations. Hence, the 

uncertainty about the average loss at Ìá is represented by a random variable given by 

+æ
∙�
Ìá�=:X, ØÔ< = �Zä �' �� ÀÌáZâÁ�Ã �
∙��Ã :X, ØÔ<.       (2.13) 

It follows that we should base our inference on the expected quality cost obtained by 

taking the expectation of (2.13) with respect to (2.10). This yields  

+,
Ìá� = � À�Zä �' �� ÀÌáZâÁ�Ã �
∙��Ã X, ØÔÁ,        (2.14) 

which is a criterion that appropriately accounts for the uncertainty about Ë
∙�. 
The focus of this chapter shall be on the widely used quadratic loss '
Ë� =

8
Ë − G��, where 8 is a constant and G is the target. This loss function arises naturally 

with nominal-the-best quality characteristics (Wu and Hamada 2009). However, it can 

also be used with smaller-the-better and larger-the-better characteristics. Suitable targets 

for these two classes of responses are G = minÌ∈ç�Ë6
Ì�
 and G = maxÌ∈ç�Ë6
Ì�
 
respectively (Peterson and Kuhn 2005). Moreover, some positive-valued smaller-the-

better characteristics have a natural target of 0.  
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We shall assume in the rest of the chapter that the distribution of the noise factors 

is discrete, or can be discretized, with mass function :�
Ìâ��, … , �
Ìâ£�<. For a 

univariate continuous distribution, we can find an z-point discrete approximation that has 

the same first 2z − 1 moments as the continuous distribution (Miller and Rice 1983). On 

the other hand, for an �-dimensional continuous distribution that is a product of 

independent univariate marginals, we can discretize the distribution in the following 

manner. First, discretize each of the marginals using the method proposed by Miller and 

Rice (1983) to obtain ��:B̈ �<, … , � ÀB̈ £³Á� , ^ = 1,… ,�. Then, form the �-dimensional 

discrete distribution with support ×¨k�É �B̈ �, … , B̈ £³�, where × denotes Cartesian product, 

and probability mass �x:B�1a , … , BÉ1è<y = �:B�1a<⋯�:BÉ1è<. This guarantees that the 

first 2z̈ − 1 moments of the ^ ℎ marginal of the discrete multivariate distribution match 

the corresponding moments of the ^ ℎ marginal of the continuous multivariate 

distribution. Moreover, independence is preserved with this discrete approximation.  

Let X
Ìá�d = �� À ÌáÌâ�Á , … , � ÀÌáÌâ£Á�, é
Ìá�d = �0 �À ÌáÌâ�ÁÃ ØÔ� , , … , 0 �ÀÌáÌâ£ÁÃ ØÔ��, 
and suppose that we can write 

+æ
∙�
Ìá� = �Zä{'�X
Ìá�
|�
∙�} = �X
Ìá� − `
dê�X
Ìá� − `
,     (2.15) 

where ê is some z × z symmetric matrix. This implies that  

+-
∙�
Ìá� = �é
Ìá� − `
dê�é
Ìá� − `
.        (2.16) 

For the loss function '
�� = 
� − G��, we substitute ê = �@��:�
Ìâ��,… , �
Ìâ£�<, and 

` = Gë£, where ë£ is a z × 1 matrix of 1’s in (2.15). On the other hand, for cases where 

only the variance is of interest, we have  

ê = 
à − ë£ìd�d�@��
ì�
à − ë£ìd�        (2.17) 
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and ̀ = ¯, where à is the z × z identity matrix, and ì = :�
Ìâ��, … , �
Ìâ£�<d
.  

The loss functions introduced in the previous paragraph give rise to positive 

semidefinite ê. However, for any smooth loss function, the average loss at Ìá for a given 

realization �
∙�|X, ØÔ of the posterior process can be approximated by a (possibly non-

positive semidefinite) quadratic form in degenerate normal or multivariate   random 

variables obtained by a Taylor series expansion of the loss function. Although this 

chapter focuses on +æ
∙�
Ìá� given by (2.15), the methods developed herein can be 

modified in a straightforward fashion to accommodate this more general case.  

If � = � − � is large, (2.8) is an approximation of (2.10). Taking expectation of 

(2.15) with respect to (2.8), we obtain the robust design criterion 

+,�
Ìá� = �s�X
Ìá� − `
dê�X
Ìá� − `
|X, ØÔ, 5Þ�t 
= �é
Ìá� − `
dê�é
Ìá� − `
 +  ��r��êí
Ìá�
,       (2.18) 

where :í
Ìá�<1¨ = � ÀÀÌáÌâ1Á , À ÌáÌâ¨Áî ØÔ, 5Þ�Á, where �:∙,∙|ØÔ, 5Þ�< is given by (2.7).  

On the other hand, if � = � − � > 2 but is small, inferences should be based on 

(2.10). It follows from Theorem B.2 of Appendix B.1 that  

+,�
Ìá� = �é
Ìá� − `
dê�é
Ìá� − `
 + �
���/ï  ��r��êí
Ìá�
.     (2.19) 

 Note that if ê is positive semidefinite (and ê ≠ ¯), then +,�
Ìá� − +-
∙�
Ìá� > 0 

since  ��r��êí
Ìá�
 > 0. Thus, the +-
∙� criterion, which ignores uncertainty about the 

true response function, always gives an over-optimistic estimate of the true loss. In most 

cases, (2.18) and (2.19) are complicated nonlinear functions of Ìá. We search for optimal 

solutions with respect to these two criteria using the pattern search algorithm proposed by 

Lewis and Torczon (1999) (this algorithm is available in Matlab; see Appendix B.4 for 
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parameter values used to control the search). We also find the MLE ØÔ using this 

algorithm because it is stable and does not require derivative information. However, since 

(2.18) and (2.19) are not convex in general, multiple starting points are used. 

2.4 Construction of Credible Intervals when ð = ∞ with the Lugannani-rice 

saddlepoint approximation 

To construct credible intervals for +æ
∙�
Ìá� given in (2.15), we need its 

cumulative distribution function (cdf). However, this is hard to obtain. This section 

introduces approximations of the distribution of +æ
∙�
Ìá� for the case where (2.8) is used 

for inference. The Lugannani-Rice approximation (Lugannani and Rice 1980; Butler 

2007) and its numerical inversion are discussed. We shall develop this approach in 

complete generality, i.e., the method is applicable to any positive semidefinite í
Ìá� and 

any symmetric ê. We shall also briefly discuss the chi-square and lognormal 

approximations, which are obtained by matching moments. These two approximations 

are appropriate when ê is positive semidefinite. 

For positive definite í
Ìá�, the cumulant-generating function (cgf), which is the 

key ingredient for saddlepoint approximations, is well-known. However, the special case 

of singular í
Ìá� deserves attention. For example, when ÀÌáÌâ1Á appears in the design 

matrix, we would have � ÀÌáÌâ1Á = 0 ÀÌáÌâ1Á with probability 1. Thus, when some of the 

noise factors are qualitative, í
Ìá� would be singular for all Ìá’s that appear in the 

design. Moreover, to improve computational stability, it would be desirable to utilize an 

expression for the cgf that does not involve the inversion of í
Ìá�. Hence, we derive an 

expression for the cgf of +æ
∙�
Ìá� that holds for any positive semidefinite í
Ìá� and any 
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symmetric ê in Appendix B.1. 

Let ñòñd be the spectral decomposition of í
Ìá��/�êí
Ìá��/�, where ò is the 

diagonal matrix of eigenvalues λ� ≤ ⋯ ≤ λ£. It follows from Theorem B.1 in Appendix 

B.1 that the cumulant-generating function of +æ
∙�
Ìá� is given by 

ô
 � =  �é
Ìá� − `
dê�é
Ìá� − `
 − �
�∑ ln
1 − 2 λ1�õ1k� + ∑ �NbÓ©b

���Nö©
õ1k� ,    (2.20) 

where �1 is the @ ℎ element of the vector ñdí
Ìá��/�ê�é
Ìá� − `
. Note that if í
Ìá� is 

singular, the support of +æ
∙�
Ìá� would not be 
0,∞� in general, but rather 
ø,∞�, where 

ø ≥ 0 if ê is positive semidefinite (and ê ≠ ¯).  

A credible interval for +æ
∙�
Ìá� can be constructed based on its cgf (2.20) using 

the Lugannani-Rice saddlepoint approximation for the cdf. The Lugannani-Rice 

approximation is given by 

�ù
2� = Φ
�� + �
�� À�
û − �

ÓÁ         (2.21) 

for 2 ∈ 
ø,∞� ∖ ô�, where ô� = +,�
Ìá� (from (2.18)) is the first cumulant of +æ
∙�
Ìá�, 
Φ
2� and �
2� are the cdf and probability density function (pdf) of the standard normal 

distribution, 

� = �@��
 ∗�ý2� ∗2 − ô
 ∗�
,         (2.22) 

� =  ∗ýô��
 ∗�,           (2.23) 

and  ∗ is the saddlepoint, which is defined implicitly by 

ô�
 ∗� = 2,  ∗ ∈ þ = 
−|2min
λ�, 0�|��, �2max
λ£, 0�
���.     (2.24) 

Expressions for ô�
 � and ô��
 � can be obtained from (B.2) and (B.3) by replacing é 

with é
Ìá� − ` and í with í
Ìá�. An approximate 100
1 − {�% credible interval for 

+æ
∙�
Ìá� is given by �'�', (�'
, where '�' and (�' satisfy the equations 
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�ù
'�'� = {/2, and �ù
(�'� = 1 − {/2.        (2.25) 

Equation (2.25) can be solved using numerical methods such as Newton’s method. In 

particular, we can find the roots of the equation �ù
2� = { by iterating according to 

21�� = 21 − x�ù
21� − {y/��
21�,         (2.26) 

where  

��
2� = �ù�
2� = �
ý�����
N∗� exp À− ûb

� Á �1 + �
Ób + ����
N∗�

�Ó����
N∗�
a.� − Ó
ûl�,    (2.27) 

and ô���
 � is given by (B.4) in Appendix B.1. Note that for each iteration given by 

(2.26), we need to solve (2.24) for  ∗. This can be done by iterating according to 

 1�� =  1 − �ô�
 1� − 2
/ô��
 1�.         (2.28) 

A good starting point 2� is essential for the fast convergence of (2.26). Credible limits 

constructed using moment-matching methods developed below provide good starting 

points. A starting point is also needed for (2.28). Since ô�
∙� is a strictly increasing 

function from þ onto 
ø,∞�, and ô�
0� = ô�, we can choose  � from 

þ� = 
−|2min
λ�, 0�|��, 0� or þ� = 
0, �2max
λ£, 0�
��� according to whether 2 < ô� 

or 2 > ô�.  

When í
Ìá� is positive definite, +æ
∙�
Ìá� is distributed as a linear combination 

of noncentral chi-squares. Let ��, … , �Ç be the distinct eigenvalues of êí
Ìá�, and 

��, … ,�Ç be z × z positive semidefinite matrices of rank �1 such that �1�¨ = ¯ for all 

^ ≠ @, �1� = �1, ∑ �1Ç1k� = z, and 

êí
Ìá� = ∑ �̈ �¨Ç1k� . Baldessari (1967) proves that 

+æ
∙�
Ìá� = �X
Ìá� − `
dê�X
Ìá� − `
~∑ �̈ R	³� :8̈ <Ç̈k� ,      (2.29) 

where R	³� :8̈ < is a noncentral chi-square variate with �̈  degrees of freedom and 
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noncentrality parameter 8̈ = �é
Ìá� − `
d�¨í
Ìá����é
Ìá� − `
. For positive 

semidefinite ê, the eigenvalues of êí
Ìá� are nonnegative. Thus, we can approximate 

∑ �̈ R	³� :8̈ <Ç̈k�  by �R
�, where � and ℎ are chosen so that the first two moments of �R
� 

match those of ∑ �̈ R	³� :8̈ <Ç̈k� . The first moment (first cumulant) of (2.29) is ô� =
+,�
Ìá� given in (2.18) and it follows from Corollary B.1 of Appendix B.1 that the second 

central moment (second cumulant) is 

ô� = 2 ��r�
�êí
Ìá�
�� + 4�é
Ìá� − `
dêí
Ìá�ê�é
Ìá� − `
.     (2.30) 

Since �
�R
�� = �ℎ and ���
�R
�� = 2��ℎ, we set � = ô�/2ô� and ℎ = 2ô��/ô�. Thus, 

we arrive at the approximation 

+æ
∙�
Ìá�~�
ô�/2ô��R��ab/�b
� ,         (2.31) 

where ~� denotes approximately equal in distribution.  

Approximation (2.31) can be viewed as an application of Patnaik’s and 

Satterthwaite’s approximations. We first approximate of R	³� :8̈ < by �¨Rï³
�  (Patnaik 1949), 

where �¨ and �̈  are chosen so that the first two moments of R	³� :8̈ < and �¨Rï³
�  match. 

Then, we approximate ∑ �̈ �¨Rï³
�Ç̈k�  by �R
� (Box 1954), where � and ℎ are chosen so 

that the first two moments of ∑ �̈ �¨Rï³
�Ç̈k�  and �R
� match. Note that even if í
Ìá� is 

positive semidefinite, the first two cumulants of +æ
∙�
Ìá� are still given by (2.18) and 

(2.30), as shown in Corollary B.1 in Appendix B.1. Thus, it seems reasonable to use 

(2.31) even when í
Ìá� is singular. However, it should be noted that when í
Ìá� is 

singular, +æ
∙�
Ìá� has support on 
ø,∞�, whereas the chi-square approximation has 

support on 
0,∞�.  
The saddlepoint approximation is expected to be more accurate than the chi-
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square approximation. However, inversion of (2.21) is more time-consuming than 

computation of the quantiles of (2.31). Nevertheless, development of (2.31) serves an 

important purpose: we shall use the credible limits given by (2.31) as starting points for 

(2.26) to find '�' and (�' given in (2.25). 

Finally, as an alternative to the saddlepoint and chi-square approximations 

discussed above, we shall also consider using three other approximations. The first is a 

lognormal approximation obtained by matching the first three moments of the lognormal 

distribution with the first three moments of +æ
∙�
Ìá�. This approximation is given by 

�X
Ìá� − `
dê�X
Ìá� − `
~�ln��

, B��
 + ø′,       (2.32) 

where B� = ln
�∗�; �∗ > 1 is the unique positive solution of the equation �! + 3�� − 4 −
ô!�/ô�! = 0; ô	 is the � ℎ cumulant of +æ
∙�
Ìá�, which can be obtained from (B.5) in 

Appendix B.1; 
 = 0.5 �ln À �b���
�b���Á − B��; and ø′ = ô� − exp	

 + B�/2�. Note that 

ø′ ≠ ø in general. The second approximation is the noncentral chi-square approximation 

introduced by Liu et al. (2009). However, in our simulations, we have found that it often 

reduces to Pearson’s three-moment approximation (Imhof 1961), where a shift is 

introduced into (2.31). The third approximation is introduced by Solomon and Stephens 

(1977). It is obtained by matching the first three moments of �
R
��â and +æ
∙�
Ìá�. 

2.5 Construction of Credible Intervals when ð is Small 

When (2.10) is used for inference, the first two central moments of +æ
∙�
Ìá� are 

given by (see Theorem B.2 in Appendix B.1) �� = r��� + ��, � > 2, and 

�� = 
r� − r������ + r��� + r���, � > 4,        (2.33) 

�	 = 2	��
� − 1�!  ��r�{�êí
Ìá�
	}, 
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�	 = 2	���! �é
Ìá� − `
d�êí
Ìá�
	��ê�é
Ìá� − `
, and r	 = �
1 − 2/��
1 −
4/��⋯ 
1 − 2�/��
��. Note that �� = +,�
Ìá�, where +,�
Ìá� is given by (2.19).  

It is evident that �� > ô� and �� > ô�, where ô� and ô� are given by (2.18) and 

(2.30) respectively. Thus, the first two central moments of +æ
∙�
Ìá� are inflated by 

uncertainty about 5�. As such, for small �, credible intervals constructed based on (2.8) 

would be too narrow and centered too low. 

We propose the following saddlepoint-based approximation to overcome this 

problem. When (2.10) holds, X
Ìá� =� �/ýRï�/� + é
Ìá�, where =� denotes equality 

in distribution, �~�:¯, í
Ìá�<, Rï� is a chi-squared random variable with � degrees of 

freedom, and � and Rï� are independent. Thus,  

+æ
∙�
Ìá� = �X
Ìá� − `
dê�X
Ìá� − `
  

=� x�/√Ξ+ é
Ìá� − `ydêx�/√Ξ+ é
Ìá� − `y,       (2.34) 

Ξ = Rï�/� and 

�x�/√Ξ+ é
Ìá� − `ydêx�/√Ξ+ é
Ìá� − `yÃΞ = �� =� 
�∗�dê�∗,    (2.35) 

where �∗~�:é
Ìá� − `, ���í
Ìá�<. The Lugannani-Rice approximation to the cdf of 

(2.35) is  

�ù
2|Ξ = �� = Φ
�� + �
�� À�
û − �

ÓÁ        (2.36) 

for 2 ∈ 
ø,∞� ∖ ô�, where ô� = ��� ��r��êí
Ìá�
 + �é
Ìá� − `
dê�é
Ìá� − `
; �, 

�,  ∗ are given by (2.22)-(2.24); þ is given by (2.24) with λ� and λ£ replaced by ���λ� and 

���λ£; and ô
 �, ô′
 �, and ô′′
 � are given by (B.1)-(B.3) with é replaced by é
Ìá� −
`, and í replaced by ���í
Ìá�, the latter implying that each λ1 should be replaced by 

���λ1, and each �1� should be replaced by ����1�. Now, multiplying �ù
2|Ξ = �� by the 
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pdf �
�� of Ξ and integrating over all	� gives an approximation  

�ù
2� = � �ù
2|Ξ = ���
���
� ��          (2.37) 

of the cdf of (2.34). However, to compute the integral, we need to utilize a numerical 

method or a simulation method. The use of simulation is not practical since computing 

�ù
2|Ξ = �� is difficult and we want to minimize the number of such computations. It 

seems reasonable to approximate (2.37) using the expectation of �ù
2|Ξ = �� with respect 

to an �-point discrete approximation of Ξ, which is essentially the Gaussian quadrature 

method of integration (Stoer and Bulirsch 1993). By choosing the � support points 

��, … , �¡ and the probability masses ��, … , �¡ using the method described in Miller and 

Rice (1983), we can match the first 2� − 1 moments of the discrete approximation with 

the corresponding moments of the distribution of Ξ. Thus, if �ù
2|Ξ = �� is closely 

approximated by a polynomial with degree 2� − 1 in �, the approximation  

�ù
2� ≈ �ù¡
2� = ∑ �1�ù
2|Ξ = �1�¡1k�          (2.38) 

would be good. Since we want to minimize the number of evaluations of �ù
2|Ξ = �� and 

at the same time, to approximate (2.37) with good accuracy, it seems reasonable to use a 

3-point or 4-point approximation. For the 4-point approximation, it can be shown that 

��, ��, �!, �" are the (distinct and positive) roots of the equation 

�!2" − 4
� + 6���2! + 6
� + 6�
� + 4��2� + 
� + 6�
� + 4�
� + 2�
1 − 42� = 0, 

             (2.39) 

whereas ��, ��, �!, �" are given by 

������!�"
� = ��

1 1 1		 1�� �� �! �"�����! �����! �!��!! �"��"!�
�

��

� 1
11 + 2/�


1 + 2/��
1 + 4/��
�.      (2.40) 
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Note that the values ��, ��, �!, �", and ��, ��, �!, �" need to be computed only once for a 

given value of �, and they can be used repeatedly to construct credible intervals for 

+æ
∙�
Ìá� for various values of Ìá. In the examples in this chapter, we shall use the 4-

point approximation. Equation (2.28) and a modified version of (2.26) given by 

21�� = 21 − x∑ �1�ù
2|Ξ = �1�¡1k� − {y/∑ �1��
2|Ξ = �1�¡1k� ,     (2.41) 

where ��
2|Ξ = �1� is given by (2.27) with í
Ìá� replaced by �1��í
Ìá�, can be used to 

numerically solve �ù¡
2� = { for 2.  

  For comparison with the saddlepoint-based approximation, we shall also 

construct credible intervals using the chi-square and lognormal approximations obtained 

from (2.31) and (2.32) with ��, ��, and �!�/��! (see Theorem B.2 in Appendix B.1) 

replacing ô�, ô�, and ô!�/ô�!. The approximations introduced by Liu et al. (2009) and 

Solomon and Stephens (1977) shall be modified in a similar manner. The confidence 

limits obtained from the chi-square approximation can be used as starting points in 

(2.41). 

2.6 Uncertainty in Correlation Parameters, Sequential Design,  

and Multiple Responses 

This section introduces a method to partially take into account uncertainty in the 

correlation parameters Ø and discuss the problems of sequential design and multiple 

responses. 

It is possible to account for uncertainty in Ø in the expected loss criterion and the 

construction of credible intervals by simply taking expectation of (2.19) and (2.38) with 

respect to the density given by (2.11). In doing this, numerical methods need to be used 

to find the constant of proportionality in (2.11) and to integrate the product of (2.11) and 
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(2.19) and also the product of (2.11) and (2.38). This is cumbersome for 

multidimensional Ø. However, we may partially account for uncertainty in Ø by 

supposing that the correlation function is known to be 

u:Ì1, Ì¨< = Ò��∑  Ô!:Æ©!�Æ³!<b"!®a �,         (2.42) 

where Ò� ∈ 
0,1� and ÒùÓ is the MLE of ÒÓ conditioned on Ò� = ���. This is more 

general than the form in (2.2). Thus, the only uncertain parameter in the correlation 

function is Ò�, which has the posterior density (2.11). Since there is only a single 

uncertain parameter, we can easily perform the numerical integrations mentioned above. 

To perform this task, we first compute the first 2�� − 1 moments of the posterior 

distribution of Ò� using numerical integration and then construct an ��-point discrete 

approximation s
Ò��, ����,… , :Ò�
¡# , ��

¡#<t of the distribution of Ò� (Miller and Rice 1983). 

This would allow the efficient computation of the +,! criterion 

+,!
Ìá� = ∑ ��1 x+,�
Ìá�|Ò�1 y¡#1k�          (2.43) 

and the saddlepoint-based approximation 

�ù¡×¡#
2� = ∑ ��1 ∑ �¨�ù:2|Ξ = �¨, Ò�1<¡̈k�¡#1k�  ,       (2.44) 

where �ù:2|Ξ = �¨, Ò�1< is computed using (2.21). In the examples, we shall set �� = 5 

and assume that Ò� is a priori uniformly distributed on �0.001,0.99
. This is to ensure 

that the posterior distribution is proper. While (2.43) and (2.44) does not fully take into 

account uncertainty in the correlation parameters, they do give an idea of the amount of 

uncertainty present. Obvious modifications of (2.43) and (2.44) can be used to fully 

account for uncertainty in Ø if we have a sample from the posterior distribution of Ø. 

 Credible intervals are valuable in the sequential design of computer experiments. 

For instance, they can be used to determine whether the average loss is poorly estimated 
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and where the next design point should be added. In the latter application, instead of 

using an expected improvement criterion as in Williams et al. (2000) and Lehman et al. 

(2004), we propose the +$ criterion, which is “to minimize the { quantile +$ of +æ
∙�”. 

Using this criterion, the next design point Ìj�� = ÀÌá,j��Ìâ,j��Á is chosen by setting Ìá,j�� 

equal to the point with the minimum { quantile +$ of +æ
∙�. For this application, the 

quickness and deterministic nature of the proposed method for constructing credible 

intervals make it more appealing than Monte Carlo simulation. The +$ criterion takes 

into account both location and dispersion of the distribution of the average loss and is an 

optimistic decision rule. Note that optimism is good in the sequential design context since 

we do not want to miss potentially good control factor settings. The choice of Ìâ,j�� can 

be determined by maximizing the minimum pairwise distance between design points 

(which is the approach taken in Example 2.2) or some other space-filling or optimal 

design criterion. We shall demonstrate that this simple criterion is quite effective in 

finding the true optimum. 

The proposed robust design criterion and method for constructing credible 

intervals can be applied to cases where there are multiple responses, the loss is a 

quadratic form in the responses, and the modelling method of Conti et al. (2009) is 

employed. Conditioned on the covariances between responses at a fixed Ì and the spatial 

correlation parameters Ø, the posterior distribution of X%
Ìá� = ÀX�
Ìá�,… , X%
Ìá�Á is a 

matrix-variate normal distribution. In this case, the saddlepoint approximation is directly 

applicable. On the other hand, conditioned on only Ø, X%
Ìá� has a matric-variate   
distribution (Box and Tiao 1973), which is a mixture of a matrix-variate normal and an 

inverse wishart distribution. The conditioning method (2.38) for approximating the cdf 
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can be applied in conjunction with samples from the inverse Wishart distribution.  

2.7 Examples 

2.7.1 Example 2.1: Analysis of Springback Data 

A finite-element-analysis (FEA) simulation experiment was run by Chen and Koc 

(2007) to study the effects of blankholder force 
���, friction 
���, and material 
�!� on 

springback variation of a drawing process. A fourth factor, part thickness 
�"�, is a noise 

factor whose effect on the variation of springback is of interest. Two of the responses are 

the springback of wall opening angle �� and the springback of the flange angle ��. The 

30-run design matrix and observed output for this experiment are given in Appendix B.2. 

We shall analyze �� and �� separately. In our analysis, we use the coded levels 2̈ =
:�̈ − min�&1&j	�̈ 1</:max�&1&j 	�̈ 1 − min�&1&j	�̈ 1<, where �̈ 1 is the value of �̈  for the 

@ ℎ experiment run. Thus, the design region is R = �0, 1
". We assume the distribution of 

part thickness is discrete with support on the coded levels {0, 1/9, 2/9,… , 1} and 

probability mass of 1/10 at each support point.  For both responses, the correlation 

function (2.2) is used and the prior mean is a constant Ñ�. 

2.7.1.1 Response �� 

 Minimizing Q
Ø� in (2.5) gives ØÔ = 
2.88, 0.34748, 0.48417, 13.476�, Ñ�� =
15.426, and 56� = 10.041. We shall consider loss functions given by ê = 0.1
à − 0.1'�, 
G = 0 (variance loss) and ê = 0.1à, G = 15 (target loss) and draw inferences using 

(2.8), (2.10), (2.43) and (2.44). We denote the minimizer of +-
∙�
Ìá� by Ìá�, and the 

minimizer of +,1
Ìá� by Ìá1 , @ = 1,2,3. Table 2.1 gives Ìá� and Ìá�, the expected loss +,� at 

these two control factor settings, and the 90% credible intervals constructed by inverting  
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Table 2.1: Optimal Robust Settings, Expected Loss, and 90% Credible Intervals  
Based on the Posterior Normal Process for Response �� 

Criterion 
 2� 2� 2! +,� '�' (�' 

Target=15 
Ìá� 0.6010

2 
0.1120

4 
0.1067

5 
2.0407 0.3908 5.5559 

Ìá� 0.5273
1 

0.4111
7 

0.2594
4 

1.5739 0.4427 3.8815 

Variance 
Ìá� 1 0.5177

8 
0.1858

1 
1.8352 0.2617 5.299 

Ìá� 0.5292
8 

0.5172
3 

0.5347
7 

0.9321 0.1910 2.2028 
 
 

Table 2.2: Optimal Robust Settings, Expected Loss, and 90% Credible Intervals  
for Response �� 

Criterion 
 2� 2� 2! +,!
+,�� '�' (�' 

Target=15 

Ìá� 0.60102 0.11204 0.10675 2.3638 
(2.179) 

0.3896 
(0.3859) 

6.6856 
(6.12) 

Ìá� 0.52492 0.43018 0.26924 1.7499 
(1.6521) 

0.478 
(0.4647) 

4.4182 
(4.1264) 

Ìá! 0.51983 0.48428 0.28989 1.7426 0.5137 4.2313 

Variance 

Ìá� 1 0.51778 0.18581 2.0788 
(1.9638) 

0.26638 
(0.2588) 

6.1997 
(5.8245) 

Ìá� 0.52536 0.53568 0.55338 0.97177 
(0.96526) 

0.19368 
(0.1992) 

2.3699 
(2.3062) 

Ìá! 0.51379 0.6058 0.6115 0.95963 0.20794 2.2652 
 
 

 
Figure 2.1: Boxplots of '�' and (�' for 90% Credible Intervals for Target Loss (Left) 

and Variance Loss (Right), Response �� 
 
 
(2.21). Table 2.2 gives Ìá�, Ìá�, Ìá!, the +,� (in parentheses) and +,!values, and 90% 
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credible intervals constructed using  (2.38) (in parentheses) and (2.44) respectively. 

We see that the optimal robust settings obtained from +-
∙� and +,1, @ = 1,2,3 are very 

different. The credible intervals for the average loss at Ìá�, Ìá�, and Ìá! are much narrower 

than the credible intervals for the average loss at Ìá�. In fact, +-
∙�
Ìá�� = 0.1738 for 

target loss and  +-
∙�
Ìá�� = 0.0995 for variance loss, which are below the lower credible 

limits. Since +-
∙�
Ìá� ignores the uncertainty about the simulator output, using this 

criterion without confirmation experiments can be dangerous. In contrast, the optimal 

settings and credible intervals for the average loss do not change much when (2.10) is 

used instead of (2.8) (uncertainty in 5� is taken into account) or when (2.43) and (2.44) is 

used instead of (2.10) (uncertainty in Ø is partially accounted for). 

To determine how good Ìá� and Ìá! are compared to other control factor settings, 

we compare the 90% credible intervals for the loss at each of these points to the 90% 

credible intervals for points on a grid of 125 points. Figure 2.1 display box plots of the 

credible limits for the 125 grid points and each of the two loss functions, where the 

credible limits are computed based on (2.44). The long dashed lines plot the credible 

limits for the loss at Ìá! (
0.51,4.23� for target loss and 
0.21,2.27� for variance loss), 

and the short dashed lines plot the credible limits for the loss at Ìá� (
0.39,6.69� for target 

loss and 
0.27,6.20� for variance loss). We see that for the target loss, the upper credible 

limit (i.e., 4.23) of the loss at Ìá! is higher than the lower credible limit of the loss at more 

than 50% (middle line of the boxplot of '�') of the 125 grid points. For the variance 

loss, the upper credible limit (i.e., 2.27) of the loss at Ìá! is higher than the lower credible 

limit of the loss at more than 75% (upper edge of the box in the boxplot of '�') of the 

125 grid points. Because the interval for Ìá! overlaps with the intervals for many of the 
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125 points, the true average loss is not well estimated by +,!. However, in this situation, 

the optimal setting identified using the +,! criterion considerably outperforms the optimal 

setting found using the +-
∙� criterion. 

As a general rule, we can consider any point Ìá with credible intervals that 

contain the optimal value +,!∗ of +,! as a potential optimal robust setting. Thus, if among 

points on a grid, there are many with credible interval that contains +,!∗, the true average 

loss is not sufficiently well estimated by +,! to allow us to distinguish between many of 

the Ìá’s and Ìá!. However, +,! is still preferable as a criterion to +-
∙� since uncertainty 

about the true function penalizes +,! but not +-
∙�. Another application of credible 

intervals computed for many Ìá’s is that if Ìá! is deemed infeasible, we may choose from 

among the feasible Ìá the one with the tightest credible interval that contains the optimal 

value of +,!.   

2.7.1.2 Approximate Credible Intervals for Average Quadratic Loss, Response �� 

We now assess the accuracy of the credible intervals constructed from the 

Lugannani-Rice, chi-square, lognormal, power chi-square (Solomon and Stephens 1977), 

and noncentral chi-square (Liu et al. 2009) approximations for the posterior   process. 

We construct 90% credible intervals of the loss on a grid of 125 points on the control 

factor space �0,1
! and the points Ìá� and Ìá� for the loss functions ê = 0.1
à − 0.1'�, 
G = 0 and ê = 0.1à, G = 15. For each loss function and point in the control factor 

space, a total of 20,000 loss values are simulated and the fraction of loss values that fall 

into each of the five approximate credible intervals are recorded. In the simulations, we 

generate X
Ìá�d = �� À ÌáÌâ�Á , … , � ÀÌáÌâ£Á� from either (2.8) or (2.10) and compute  
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Figure 2.2: Empirical Coverage of 90% Credible Intervals for Response ��,  

Posterior   Process 
 
 

+æ
∙�
Ìá� = �X
Ìá� − `
dê�X
Ìá� − `
. For simplicity, we will refer to the fraction of 

loss values that fall into an interval as the “empirical coverage”.  

Figure 2.2 shows boxplots of the empirical coverage at the 127 points for the 

posterior   process with 90% being the nominal level. In the figure, horizontal lines are 

drawn at two standard errors of empirical coverage from the nominal level, where the 

standard errors are computed assuming that the true coverage equals the nominal level. 

We see that the Lugannani-Rice credible intervals outperform all other approximations. 

The noncentral chi-square approximation (Liu et al. 2009) performs much worse than the 

others (note that the lower whisker actually extends beyond the figure window). The chi-

square and power chi-square intervals are conservative, whereas the lognormal intervals 

have highly variable coverage. Boxplots for the posterior normal process are given in the 

Appendix B.3. For a nominal level of 95%, similar conclusions can be drawn from 

boxplots (not shown in this chapter) of the empirical coverages. Thus, this simulation 

indicates that Lugannani-Rice credible intervals are superior to credible intervals 
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obtained via moment matching techniques. 

Note that comparison of credible intervals based on (2.38), and (2.44) allow us to 

determine how uncertainty in Ò� affects the credible interval size. We have found that for 

all loss functions and grid points considered above, the credible intervals constructed 

using (2.44) are 0 to 10 percent longer than the credible intervals constructed using 

(2.38), with a median of about 5 percent. Thus, we may miss some potentially promising 

Ìá, i.e., those with credible intervals that contain the optimal +,! value if we use (2.38) 

instead of (2.44) to construct credible intervals. However, Table 2.2 suggests that we do 

not lose much by using the +,� criterion in place of the +,! criterion (since Ìá� and Ìá! give 

similar +,! values and the credible intervals for the average loss at these points are 

similar). 

It is difficult to compare the cost of computing credible intervals using Monte 

Carlo simulation with the cost of computing credible intervals using the saddlepoint-

based approximations because it is hard to determine the number of Monte Carlo runs 

needed to construct intervals that achieve the same accuracy as the saddlepoint method. 

However, it is computationally cheap to construct credible intervals using the 

saddlepoint-based approximations. We observed that each interval constructed using 

(2.38) takes a fraction of a second (we stop the iterations on the 21 ’s when the change is 

less than 10�" and we stop the iterations on the  1’s  when the change is less than 10��). 

This is similar to the cost of a few hundred simulation runs. Moreover, it is known that 

the Lugannani-Rice approximation maintains high relative accuracy at the tails (Daniels 

1987). On the other hand, the performance of Monte Carlo simulation in estimating 

quantiles tends to deteriorate as { approaches 0 or 1.  
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2.7.1.3 Response �� 

For this response, we consider two loss functions: ê = 0.1
à − 0.1'�, G = 0 and 

ê = 0.1à, G = 10. Results similar to �� are obtained. For target loss, the values of Ìá� and 

Ìá! are very different. However, they appear to be equally desirable (in terms of +,! and 

credible intervals). The optimal settings are Ìá� = 
0,0.854,0.204�, 
Ìá� = 
0.286,0.351,0.045�, and Ìá! = 
0,0.078,0.556�. The +,! values at Ìá�, Ìá�, and Ìá! 

are 0.5439, 0.3204, and 0.3197 respectively. Lastly, the 90% credible intervals 

(constructed based on (2.44)) for the average loss at Ìá�, Ìá� and Ìá!  are 
0.082,1.607�, 

0.060,0.858� and 
0.045,0.773� respectively.  

2.7.2 Example 2.2: Sequential Robust Parameter Design 

This example illustrates the use of quantiles computed based on (2.44) for 

sequential robust design optimization as described in Section 2.6. We assume that the 

true function is 

Ë
2�, 2�� = �4 − 2.1
−1 + 22��� + 
−1 + 22��!/3

−1 + 22��� + 
−1 + 22��
−1 +
22�� + �−4 + 4
−1 + 22���

−1 + 22���. 

The initial design is shown in Figure 2.3. It is assumed that 2� is a noise factor with a 

continuous uniform distribution on �0,1
. A 6-point discrete approximation of this 

continuous distribution is employed. We attempt to find the optimum value of 2� with 

respect to target loss with target 0.5. The true average loss function has two local minima, 

one at 2� = 0.229 with average loss v' = 0.202 and the other at 2� = 0.764 with 

v' = 0.242. 
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Figure 2.3: Initial Design and Final Design (order in which Points are added is also 

shown), Example 2.2  
 

A sequential design scheme is employed. The next design point is chosen to be 

the point that minimizes the 2.5% quantile +�.��¾ of +æ
∙�
2á� (note that 2á = 2�), which 

is approximated with (2.44). This sequential scheme is terminated after the potential 

improvement ±þ = +,!
2á!� − +�.��¾
2á"� = minÆ(∈��,�
 +,!
2á� − minÆ(∈��,�
 +�.��¾
2á�, 
where 2á" = argminÆ(∈��,�
 +�.��¾
2á�, is less than 0.01. Figure 2.3 shows the final set of 

points and the order in which they are added. Notice that except for the first added point,  

 

 
Figure 2.4: Plot of +,! (Solid Line), True Average Loss (Dotted Line), and Upper and 

Lower Credible Limits (Dashed Line) Using Data from Initial Design (Left)  
and Final Design (Right), Example 2.2 
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Figure 2.5: Boxplot of Three Measures of Performance of the +-
∙� and +,! Criteria 

Computed for 500 Randomly Sampled Latin Hypercube Designs, Example 2.2  
 

all the others concentrate around 0.23 and 0.76. In our simulation, some of the 

computations are performed with low accuracy to save time (e.g., stopping the Newton’s 

iterations for computing the quantiles +�.��¾ when the change is less than 10�!). With 

data from the initial design, 2á! = 0.225 and +,!
2á!� = 0.210, which is very close to the 

true global minimum v' = 0.202 at 2á = 0.229. In contrast, 2á� = 0.051, which is far 

from any local minimum, and +-
∙�
2á�� = 0.007, which is far too optimistic. At the final 

iteration, both +-
∙� and +,! criteria give optimal robust settings and estimates of the 

minimum average loss that are close to the true values. Figure 2.4 plots +,!
2á� and 95% 

credible intervals obtained with the initial and final designs together with the true average 

loss v'
2á�. The average losses at the two local minima are estimated with a high degree 

of accuracy.  
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Monte Carlo simulation were used to compute +�.��¾. In addition to time-consuming 

simulations, minimization of +�.��¾ would be difficult due to the stochastic nature of the 

estimates. These difficulties are overcome with the saddlepoint-based approximation 

(2.44). 

Note that the assumption that the correlation function is given by (2.42) implies 

that we are placing a different prior on the original correlation parameters Ø at each 

iteration of the sequential design scheme because the MLE of Ø is updated after every 

iteration. However, this does represent an improvement over completely ignoring 

uncertainty in Ø. Moreover, as demonstrated, the +�.��¾ criterion yields good results for 

sequential robust design.                  

Finally, we give some simulation results to demonstrate the effectiveness of +,! 

over +-
∙� for randomly sampled Latin Hypercube designs. A total of 500 Latin 

Hypercube designs of size 10 are randomly sampled and the quantities v'
2á��, v'
2á!�, 
�@� 0 = }@�{‖2á� − 0.229‖, ‖2á� − 0.764‖}, �@� 3 = }@�{‖2á! − 0.229‖, ‖2á! −
0.764‖}, QM�����0 = x+-
∙�
2á�� − v'
2á��y�, QM�����3 = �+,!
2á!� − v'
2á!�
� are 

computed. The first two quantities measure the goodness of 2á� and 2á! as optimal robust 

settings respectively; the third and fourth quantities measure the distance of 2á� and 2á! 

from the true local minima respectively; and the fifth and sixth quantities measure the 

accuracy of +-
∙� and +,! as estimators of the true average loss at 2á� and 2á! respectively. 

Boxplots of these performance measures are given in Figure 2.5. The figure suggests that 

+,! is superior to +-
∙� as a robust design criterion. In this simulation setup, the MLE of 

the correlation parameters is highly unstable. So, it seems important to take into account 

this source of uncertainty. Similar evidence of the advantage of +,! over +-
∙� was 
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obtained with several other response functions. 

2.7.3 Example 2.3: Robust Design with Linear Model 

In this example, we shall apply the proposed methodology to perform robust 

design optimization with a linear model. Data for a 27-run finite element experiment 

described by Bawaneh (2007) is given in Appendix B.2. The response � is chip 

thickness; the factors v, �, �, �, } are material constants, which we assume are control 

factors. For the sake of illustration, we assume that the friction coefficient �� is a noise 

factor. In the following, we work with the coded factor levels 2�, 2², 2+ , 2¡, 2°, 2�+ 

corresponding to v, �, �, �,}, �� respectively. Each factor is coded such that the 

minimum and maximum coded levels in the design matrix are 0 and 1 respectively.  

The full second order model is taken as the complete model. Stepwise regression 

suggests the model Ë6 = 312 + 2182¡ − 1142� + 1582¡2�+ + 1492°2�+ − 1322+2¡ −
1292² + 42.82°� + 1032�2² + 86.42²2¡. Common practice in robust design with linear 

models (Myers and Montgomery 2002) is to find robust settings based on Ë6, which is 

equal to the posterior mean 0
Ì�. This is equivalent to robust design using the +-
∙� 

criterion. In the following, we use (2.10) for inference but for simplicity, we ignore 

model uncertainty (see Chipman 1998). Note that, although the data is from a computer 

experiment, the linear model given above fits the data very well (u� = 98.2). Thus, there 

is no need for using a Gaussian process model with a Gaussian correlation function. 

It is assumed that the noise factor has discrete support {0,0.2,0.4,0.6,0.8,1} with 

equal probability mass on each point. For the target loss given by ê = à/6, G = 700, the 

optimal control factor setting based on the +,� criterion is Ìá� = 
2�, 2² , 2+ , 2¡, 2°� =

0,0,0,1,0.57248�. We generate a 200-point Latin hypercube design on the control factor 
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space and compute a 90% credible interval for each point. Plotted in Figure 2.6 (left) are 

boxplots of '�' and (�' for the 200 points, and also '�' = 4264 and (�' = 14483 

for the loss at Ìá�. It is seen that Ìá� is clearly superior to most other points since the upper 

credible limit for the loss at Ìá� is below the lower credible limit of the loss at most of the 

200 points. However, Ìá� is nearly identical to Ìá�. Shown in Figure 2.6 (center) is a 

boxplot of the estimated coverages (based on simulations with 20,000 runs) of the 

credible intervals at the 200 points and Ìá�. It shows that the saddlepoint approximation is 

highly accurate. 

For the variance loss given by ê = 
à − '/6�/6, G = 0, the set of multiple 

optimal solutions for the criterion +,� is given by »� = {
2�, 2² , 2+ , 0,0�: 0 ≤
2�, 2² , 2+ ≤ 1}. For each of the points in the set »�, êí
Ìá� does not depend on 


2�, 2², 2+� and êé
Ìá� = ¯. This implies that the loss at each point in »� has the same 

posterior distribution. Thus, we have the very desirable situation of a wide region of 

equivalent optimal control factor settings. Note that for linear models and ê given by 

(2.17), it is true in general that êí
Ìá� does not depend on Ìá. Hence, in this special  

 

 
Figure 2.6: Boxplots of '�' and (�' for Target Loss (left), Estimated Coverage of 
Credible Intervals for Target Loss (center), and Variance Loss (right), Example 2.3 
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case, optimal settings obtained with the +-
∙� and +,� criteria coincide. Shown in Figure 

2.6 (right) is a boxplot of the estimated coverage of credible intervals for the loss at 200 

Latin hypercube points and Ìá� = 
1,1,1,0,0�.  Again, the Lugannani-Rice approximation 

is highly accurate. 

In this example, we have worked with a linear model of the form commonly used 

for robust design, i.e., one that is linear in the noise factor. However, we point out that the 

+,� criterion and our method of constructing credible intervals can be applied to linear 

models of any form. This is an important advantage over traditional mean variance 

modelling in response surface methodology (Myers and Montgomery 2002), which is 

applicable only to models linear in the noise factors. 

2.8 Conclusions 

We have proposed a general Bayesian framework for robust design optimization. 

We derive general quadratic loss criteria that accounts for uncertainty about the true 

response function. We also show how highly accurate credible intervals for the loss can 

be constructed using numerical inversion of the Lugannani-Rice approximation to the 

posterior distribution of the loss. 

 Two real data sets are analyzed. The examples demonstrate a significant 

advantage of using the +,1, @ = 1,2,3 criteria over the +-
∙� criterion, i.e., the former 

criteria favor settings with small response function uncertainty. The examples also show 

the usefulness of credible intervals for comparing alternative control factor settings. 

Moreover, it is demonstrated that the Lugannani-Rice approximation of the cdf of 

quadratic loss derived from Gaussian process models is considerably better than chi-

square and lognormal approximations derived by matching moments.  
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The methodology presented in this chapter is general. Our criteria include as 

special case any loss function that can be written as a quadratic form in a set of random 

observations on the posterior process. Our method for constructing credible intervals can 

be applied to any quadratic form in non-degenerate or degenerate normal or multivariate-

  random variables. The criteria and method for constructing credible intervals can be 

applied to any Gaussian process model or linear model. However, our methodology does 

not fully take uncertainty incurred in estimating the correlation parameters Ø into 

account. In addition, we have not addressed the question of quadratic loss criteria derived 

from multiple responses. Both are important areas for further research. 
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CHAPTER 3 

A BAYESIAN APPROACH FOR INTERPRETING MEAN SHIFTS 

IN MULTIVARIATE QUALITY CONTROL 

 

3.1 Introduction 

The performance or quality of a process is often characterized by multiple 

variables. Thus, effective control of a process can only be achieved by jointly monitoring 

all relevant variables. Yeh et al. (2006) and Bersimis et al. (2007) review the literature on 

control charts for the covariance matrix. Control charts for the mean include the well-

known Hotelling G� charts and multivariate CUSUM and EWMA charts (Bersimis et al., 

2007). Monitoring multivariate quality characteristics using a small number of summary 

statistics is a common practice. However, these statistics does not effectively support the 

diagnosis task, which is to determine the cause of the out-of-control signal.  

Identification of mean shifts among a large number of quality characteristics often 

provides important information for the diagnosis task. For example, the quality control of 

fruit juice can be performed by comparing randomly selected samples against base 

samples using a multivariate control chart for amino acids and other constituents. If the 

control chart indicates differences between samples, information on the identity of the 

variables whose mean shifts and the shift directions can help to determine the source of 

adulteration of the juice. For instance, Zhang et al. (2009) give criteria for identifying the 

various types adulterations of pomegranate juice (e.g., amino acid proline>25mg/L is 

indicative of added grape products). 

This chapter proposes a Bayesian method for identifying the means that shifted 
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and the directions of the shifts. The method provides a new diagnostic tool for Phase II 

monitoring. For � quality characteristics, there are 3Ð possible scenarios for the means 

since each mean can increase, decrease, or remain in-control. In the Bayesian approach, 

each scenario corresponds to a value of an indicator vector and the most probable of the 

3Ð scenarios is found by sampling from the posterior distribution of the indicator via 

Gibbs sampling.  

 The problem of interpreting an out-of-control signal from a G� control chart has 

been widely studied in the literature. Many of the proposed approaches attempt to 

identify a subset of variables that has the most significant contribution to the large 

observed G� value by decomposing G�. This is the basic idea underpinning Murphy 

(1987), Doganaksoy et al. (1991), Runger et al. (1996), and Mason et al. (1995, 1997). 

Mason et al. (1995, 1997) propose decomposing the G� statistic into independent 

components. However, there are several problems with the G� decomposition method. 

Firstly, for � variables, there are �! possible decompositions; this makes the G� 

decomposition impractical for high-dimension problems. Secondly, there are no clear cut 

rules for jointly interpreting the components of the decomposition. Thirdly, results are 

sensitive to the significance levels used. Li et al. (2008) introduce a solution to the first 

two problems, which is to use a Bayesian causal network that describes the causal 

relationship between variables.  

Hawkins (1991) proposes a procedure that is based on the likelihood-ratio tests of 

a shift in each mean. A comparison of the approaches proposed by Murphy (1986), 

Doganaksoy et al. (1991), Hawkins (1991), and Mason et al. (1995) is given by Das and 

Prakash (2008).  
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Recently, Wang and Jiang (2009) propose a penalized likelihood variable 

selection method to identify variables with shifted means. Zou et al. (2011) propose a 

heuristic Bayesian Information Criterion (BIC) for shift detection; the search for a model 

that minimizes the BIC criterion is restricted to those models that are optimal with respect 

to an adaptive-LASSO-type penalized likelihood. Their method can be applied to 

diagnose both covariance and mean shifts. Hereafter, we abbreviate the methods 

proposed by Wang and Jiang (2009) and Zou et al. (2011) as WJPLM and LEB 

respectively. Capizzi and Masarotto (2011) and Zou and Qiu (2009) propose EWMA-

type control charts that employ test statistics based on the least angle regression 

algorithm and the adaptive-LASSO-type penalized likelihood function respectively. 

Diagnostic information is a byproduct of the charting statistics. 

 Unlike most of the available techniques in the literature, the Bayesian approach 

described in this chapter gives more specific and direct information about shifts in the 

mean, i.e., it gives the means that shifted upwards, the means that shifted downwards, and 

those that remained in-control. It allows prior knowledge to be incorporated in a 

statistical framework. We believe that this is an advantage rather than a disadvantage 

since in all cases, engineering knowledge must be used to identify assignable causes 

whenever a control chart signals.  

Our approach is inspired by George and McCulloch’s (1993) Bayesian Stochastic 

Search Variable Selection (SSVS) approach. However, it is different from SSVS. Our 

approach is developed for solving the problem of comparing the means of two different 

populations, i.e., phase I and phase II process means. In contrast, SSVS is developed for 

solving the problem of variable selection in regression. SSVS is limited to independent 
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and identically distributed residual error settings, and there are only two decisions per 

variable (whether the coefficient is zero or nonzero). On the other hand, our approach is 

for general multivariate normal variables and there are three decisions per variable. 

Furthermore, the priors we use can capture prior information such as most likely shift 

magnitudes that have values different from zero, and different ranges and probabilities of 

upward and downward shifts. These features cannot be modeled by SSVS. Finally, we 

also develop an empirical Bayes method for specifying some of the prior parameters.  

Unlike our approach, WJPLM and LEB can only incorporate prior information 

via assumptions (such as assumptions on the number of variables that shifted and 

allowable shift directions), which have strong effects on results. Moreover, these 

approaches ignore uncertainty incurred in estimating the in-control means and covariance 

matrix (the phase I estimates are assumed to be equal to the population parameters) 

whereas our approach takes this uncertainty into account. Ignoring estimation uncertainty 

may not be justifiable when the phase I sample size is small. However, the proposed 

approach incurs a high computation cost, except when compared to the best subset 

variant of WJPLM. Note that our approach cannot be compared with the methods 

proposed by Capizzi and Masarotto (2011) and Zou and Qiu (2009) as those methods are 

for simultaneous monitoring and diagnosis. Hence, in this chapter, we shall only compare 

our approach with WJPLM and LEB. 

 The chapter is organized as follows: In Section 3.2, we briefly describe the mean 

diagnostic problem, state our assumptions, and review the G� chart and WJPLM. Section 

3.3 gives our proposed Bayesian hierarchical model. Guidelines for specifying prior 

distributions are given in Section 3.4. Section 3.5 gives a Gibbs sampling procedure for 
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sampling from the posterior distribution of the parameters, and decision rules for mean 

shifts. Section 3.6 presents four examples and Section 3.7 concludes the chapter. 

3.2 Multivariate Quality Control 

This section describes the diagnostic problem addressed by this chapter and states 

the assumptions and notations used throughout the chapter. We also review the Hotelling 

G� control chart, the  -test and WJPLM. While the proposed approach can be used 

independently of any control chart, an interesting application of the approach is the 

diagnosis of an out-of-control signal given by a G� chart. Discussion of the G� chart also 

provides a nice context for introducing the mean shift diagnosis problem. 

Throughout this chapter, we assume that the variables of interest Ì = 
2�, … , 2Ð�d 

have a multivariate normal distribution with in-control mean é� and covariance matrix ,, 

i.e., Ì~�
é�,,�. We let Ì�, … , Ìj denote the � in-control phase I observations, and � 

denote the sample size of the phase II sample suspected to have been drawn from a 

common normal distribution different from �
é�,,�. All samples are assumed 

independent. Furthermore, in this chapter, we assume that the covariance matrix remains 

in-control so that Ì~�
é,,� in phase II. The objective of the mean shift diagnosis 

problem is to identify which components of é are different from é�. We let 

ÌÅ = ∑ Ì1j1k� /� and - = ∑ 
Ì1 − ÌÅ�
Ì1 − ÌÅ�dj1k�  denote the sample mean and sample 

dispersion matrix of the phase I sample respectively. The sample covariance matrix of the 

phase I sample is denoted by ,Ô = -/
� − 1�. Similarly, we let ÌÅ; and -; denote the 

phase II sample mean and dispersion matrix respectively (the subscript � stands for 

future). 

The standard control chart for monitoring Ì is the G� chart with statistic G� =
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�:ÌÅ; − ÌÅ<d,Ô��:ÌÅ; − ÌÅ< plotted with an upper control limit. It can be shown that if each 

phase I observation is independently distributed as �
é�,,�, and ÌÅ;~�
é�,,/��, then 

G�~ 
j�¡�
j���Ð
j
j�Ð� �
�, � − ��, where �
�, � − �� is the F-distribution with � and � − � 

degrees of freedom. Thus, to control the type I error at {, the upper control limit (�' 

should be determined using the upper 100{ percentile of �
�, � − ��. 
 When G� > (�', the control chart indicates that either the mean has shifted, i.e., 

é = �
ÌÅ;� ≠ é�, or the covariance matrix has changed, or both. This chapter assumes 

that the covariance matrix remains in-control. Whether the assumption of in-control 

covariance matrix is reasonable can be decided through the use of control charts for the 

covariance matrix (see Yeh et al. (2006)) or through tests of the hypothesis .�:,� = ,�, 

where ,� is the covariance matrix for the phase I samples and ,� is the covariance matrix 

for the phase II sample that triggered the out-of-control signal. A standard test for .� is 

the likelihood ratio test (Timm, 2002). 

 If it is determined that the mean shifted, supplementary information can be 

provided by computing  -statistics for testing each of the hypotheses .�: 0�1 = 01, where 

0�1 is the @ ℎ component of é�, and 01 is the @ ℎ component of é. The  -statistic for 

testing .�: 0�1 = 01 is given by 

 1 = :2̅;1 − 2̅1</Ä5Þ1� À�
¡ + �

jÁ,           (3.1) 

where 5Þ1� is the pooled sample variance for the @ ℎ variable (the sample variance of the 

combined phase I and phase II samples), and 2̅;1 and 2̅1 are the @ ℎ components of ÌÅ; and 

ÌÅ respectively. We interpret the  1’s using the following decision rule:  

If  1 < −
, then 01 < 0�1; if  1 > 
, then 01 > 0�1; if −
 ≤  1 ≤ 
, then 01 = 0�1.     (3.2) 
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The positive scalar 
 is some suitably chosen cut-off.  

 A more modern approach to variable selection is WJPLM. This approach applies 

the forward selection method or the best subset method to the variable selection problem 

where the response is given by the column vector Ö:ÌÅ; − ÌÅ<, the regressors are given by 

the columns of Ö, and Ö is defined by the Cholesky decomposition :,Ô/�<�� = ÖdÖ. The 

forward selection algorithm is terminated when the model size is ' and the best subset 

method chooses the best model of size ', where ' is specified by the engineer.   

3.3 Bayesian Hierarchical Model 

In this section, we shall develop a Bayesian hierarchical model that can be used to 

determine the means that shifted and the directions of the shifts when given a suspected 

out-of-control phase II sample of size �. Prior information is obtained from phase I data, 

which is then combined with the likelihood for phase II to yield the desired posterior 

inference. 

It can be shown that ÌÅ~�
é�,,/��, -~/
,, � − 1�, where /
,, � − 1� 
denotes a Wishart distribution with scale matrix , and � − 1 degrees of freedom, ÌÅ and - 

are independent, and 
ÌÅ,-� is a sufficient statistic for 
é�,,�. Thus, if we use 

noninformative priors for é� and , given by �
é�� ∝ 1, �
,� ∝ |,��|01a
b , the resulting 

posterior distributions for é� and ,�� are (see, e.g., Chapter 8 of Box and Tiao (1973)) 

�
é�|ÌÅ,-� ∝ |1 + �
ÌÅ − é��d-��
ÌÅ − é��|�2b ,         (3.3) 

�
,��|ÌÅ,-� ∝ |,��|2o0ob
b �2� �− �

�  ��r�
,��-��.                                      (3.4) 

For a phase II sample with sample mean ÌÅ;~�
é,,/�� and sample dispersion 

matrix -;~/
,, � − 1�, the likelihood is  
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z
é,,��|ÌÅ; ,-;� ∝

|,|�a
b�2� �− �

� �:ÌÅ; − é<d,��:ÌÅ; − é<� |,|�3oa
b �2� �− �

�  ��r�:,��-;<�.                 (3.5) 

Note that if � = 1, we simply set -; = ¯. It is of interest to determine which components 

of é − é� are nonzero and the signs of the nonzero components. A similar problem arises 

in the area of Bayesian variable selection (George and McCulloch, 1993, 1997) in which 

the objective is to determine the variables with nonzero coefficients in a linear model. 

The key idea in Bayesian variable selection is to model each regression coefficient as a 

mixture of two distributions, where coefficients drawn from one distribution tend to be 

close to zero, and coefficients drawn from the other distribution tend to be large. 

Indicator variables are introduced to indicate the distribution from which a coefficient is 

drawn.  

In a similar vein, we introduce indicator variables � = 
8�, … , 8Ð�d so that 

81 = −1 indicates that 01 has decreased, 81 = 0 indicates that 01 has remained 

unchanged, and 81 = 1 indicates that 01 has increased. The reason that we let 81 take on 

three levels rather than two (one indicating that the @ ℎ mean shifted and the other 

indicating that it remained in-control) is that this would allow us to handle cases where 

the most likely shift magnitudes are known to be large (instead of close to zero) and cases 

where we have asymmetrical prior information about upward and downward shifts.  

The parameters of the Bayesian model for phase II are é, �, and ,��, and we 

need to specify the prior distribution �
é, �,,���. Note that it is not justifiable to use the 

posterior of 
é,,��� from phase I as the prior for phase II. The phase II sample mean is 

expected to be different, and the proposed method is intended to unravel the differences. 

We assume � and ,�� are independent and �
é|�,,��� = �
é|�� so that �
é, �,,��� =
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�
é|���
���
,���. The assumption that � and ,�� are independent is reasonable 

because in many cases, prior knowledge suggests that mean shifts does not depend on the 

inverse covariance matrix. The dependence structure captured by the covariance matrix is 

due to common cause variation; on the other hand, mean shifts are due to special cause 

variation. For the sake of mathematical tractability, we further assume that é|� has a 

multivariate normal distribution, that is 

�
é|�� ∝ |4�|�a
b�2� �− �

� 
é − Ø��d4���
é − Ø���,         (3.6) 

where Ø� is the mean and 4� is the covariance matrix. The subscript � of Ø� and 4� 

indicates that the mean and covariance matrix depend on �.  

Because we assume that �
é|�,,��� = �
é|�� and �
é|�� is given by (3.6), the 

joint distribution of é and ,�� given � = ¯ does not match the phase I posterior for 


é�,,��� (see the remark at the end of Section 3.4.2). However, we adopt (3.6) because 

it provides a prior that is easy to interpret and tune to capture prior information. 

Moreover, the prior distribution �
é|� = ¯� with some reasonable values for Ø¯ and 4¯ 

(which shall be given in Section 3.4.2) works very well.  

Detailed specification of the parameters of �
é|�� and the prior for �, �
�� shall 

be discussed in the next section. Here, we shall discuss specification of the prior �
,��� 
for ,�� since this is a simpler problem. It is obvious that we should set �
,��� equal to 

the distribution given by (3.4) if the covariance matrix is assumed to remain unchanged. 

Thus, 

�
,��� ∝ |,��|N�2� �− �
�  ��r�
,��-��,          (3.7) 

where  = 
� − � − 2�/2 as indicated in (3.4). Note that � ≥ � + 1 is sufficient for the 

Wishart distribution (3.7) to be nondegenerate. This condition is almost always met in 
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practice. 

Our proposed Bayesian hierarchical model consists of z:ÌÅ; ,-;=é,,��<, �
é|��, 
�
,���, and �
��. The quantities of primary interest are the posterior probabilities of �, 

i.e., �
�|ÌÅ;,-;�. The posterior probability of � = 
8�, … , 8Ð�d is the probability that the 

state of the @ ℎ mean is given by 81 , @ = 1, … , � in light of prior knowledge, phase I data, 

and the phase II data 
ÌÅ; ,-;�. A comparison of the posterior probabilities of all possible 

values of � would yield information about which combination of out-of-control means is 

more likely. In addition, the marginal posterior distribution of 81 can also be useful for 

deciding whether 81 shifted upwards, downwards, or remained in-control. However, 

direct computation of the posterior distribution of � is clearly infeasible for practical 

problems. Section 3.5 provides a Gibbs sampling procedure that solves this 

computational problem. Before describing that procedure, we discuss the specification of 

prior distributions for � and é in the next section.  

3.4 Specification of Prior Distributions 

3.4.1 Prior Distribution for Indicator Variables 

A straightforward choice for �
�� is the independence prior 

�
�� = ∏ ��1
5
6©k���Ð

1k� ��1
5
6©k���!1

5
6©k��,          (3.8) 

where ��1, ��1, and �!1 = 1 − ��1 − ��1 are the prior probabilities that the @ ℎ mean 

shifted downwards, remained in-control, and shifted upwards respectively. Adopting the 

independence prior for �
�� is equivalent to assuming that the 81’s are a priori 

independent, which is justified in cases where there is no prior knowledge about the 

causal relationships between the variables. We propose that the default choice of 
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ì1 = 
��1, ��1, �!1� be taken as  

ì1 = 
0.25,0.5,0.25�.             (3.9) 

This choice is justified if the engineer is ignorant about whether the 789 mean 

changed or not, and if it changed, whether it increased or decreased. If we specify ì7 as 

given in (3.9) for all 7 = ë,… , ì, the expected number of shifted means is ì/:; this 

quantity provides one way to check whether it is reasonable to specify ì7 according to 

(3.9). Other choices of ì7 might be considered if there is some information about shifts in 

the 789 mean. For instance, if the 789 variable is a smaller-the-better quality 

characteristic, a downward shift in the 789 mean may be unlikely and ìë7 should be 

small. 

3.4.2 Prior Distribution for Mean 

We now discuss the specification of �
é|��, which we have assumed to be a 

normal distribution with mean Ø� and covariance matrix 4�. We set 

Ø� = :2̅� − þ
8� = −1�r�� + þ
8� = 1�r�Ó, … , 2̅Ð − þ
8Ð = −1�rÐ� + þ
8Ð = 1�rÐÓ<d
      

                    (3.10) 

4� = �@�� ������5
6ak�����Ó
�5
6ak��� 56��/�,… , ��Ð��5
60k����ÐÓ

�5
60k��� 56Ð�/��,               (3.11) 

where 561 is the sample standard deviation of the phase I data for the @ ℎ variable, i.e., the 

square root of the @ ℎ diagonal element of ,Ô. It follows from (3.10) and (3.11) that 

01|� = 01|81 and 0�|8�, … , 0Ð=8Ð are independently distributed. We also obtain  

01|
81 = 0�~�
2̅1, 561�/��, 01|
81 = −1�~�
2̅1 − r1�, �1�� 561�/��,  
01|
81 = +1�~�
2̅1 + r1Ó, �1Ó� 561�/��.         (3.12) 

Figure 3.1 illustrates a standardized version of these priors, which will be  
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Figure 3.1: Density Functions of 
01 − 2̅1�/561|
81 = −1� (Standardized Prior for 

Decreased Mean), 
01 − 2̅1�/561|
81 = 0� (Standardized Prior for In-Control Mean), 

01 − 2̅1�/561|
81 = 1� (Standardized Prior for Increased Mean) and :2̅;1 − 2̅1</561=
01 =

2̅1 , 51 = 561� (Distribution of Standardized Phase II Sample Mean) 
 

discussed later in Section 3.4.4. Note that 01|
81 = 0�~�
2̅1, 561�/�� is entirely 

determined from phase I data and it is a good approximation of the posterior distribution 

of 0�1 derived from (3.3) when � is large. On the other hand, the distributions of 

01|
81 = −1� and 01|
81 = +1� are each controlled by two parameters. The choices of 

these parameters are crucial; thus, this subject shall be discussed in the remainder of the 

section.  

Note that �
é|�� and �
�� should be required to jointly satisfy certain 

restrictions. Suppose that �2̅1 + ø1, 2̅1 + U1
 and �2̅1 − U1 , 2̅1 − ø1
, where ø1 is small and U1 
is large, contain all possible upward and downward shifts respectively. Then, it is logical 

to require that �
81 = 1|01�/�
81 = −1|01�  be larger than one in the interval �2̅1 +
ø1, 2̅1 + U1
 and smaller than one in �2̅1 − U1 , 2̅1 − ø1
. This is equivalent to requiring that  

�
01� = z�� � Ð
-©|6©k��Ð
6©k��
Ð
-©|6©k���Ð
6©k����          (3.13) 
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satisfies 

�
01� > 0	∀01 ∈ �2̅1 + ø1, 2̅1 + U1
 and �
01� < 0	∀01 ∈ �2̅1 − U1 , 2̅1 − ø1
.     (3.14) 

Equation (3.14) will be satisfied whenever �
81 = 1� = �
81 = −1� (��1 = �!1 when 

�
�� is given by (3.8)), r1� = r1Ó, and �1� = �1Ó. It will also be satisfied when �1� = �1Ó 

and �
81 = 1�/�
81 = −1� = �2��
r1Ó� − r1�� �/
2�1�561�/��
.  Otherwise, (3.14) should 

be checked.  

 In sections 3.4.3 and 3.4.4, we shall discuss specification of �
é|�� when prior 

information about mean shifts is available and when little prior information is available. 

Remark: Due to the assumption that �
é|�,,��� = �
é|��, �
é,,��|� = ¯� is not the 

same as �
é�,,��|ÌÅ,-�, where �
é�,,��|ÌÅ,-� is the posterior distribution 
é�,,��� 
given phase I data. To satisfy the requirement that �
é,,��|� = ¯� equals 

�
é�,,��|ÌÅ,-�, we can set  

�
é|�,,��� ∝ |q�,��q�|ab�2� �− �
� �
é − Ø��dq�,��q�
é − Ø���.     (3.15) 

In this case, we can have �
é|� = ¯,,��� = �
ÌÅ,,/�� by setting Ø¯ = ÌÅ and q¯ = à, 
where à is the identity matrix. Together with �
,��� given in (3.7), �
é|� =
¯,,����
,��� would now be the same as �
é�,,��|ÌÅ,-�. However, this prior has the 

disadvantage that the represented prior knowledge is hard to understand because the 

distribution has a complicated form. For interpretability, we may want q� to be diagonal 

so that the variances of 01|
81 = −1� and 01|
81 = 1� depends only on the @ ℎ diagonal 

element of , and not on the other elements. However, the existence of correlations 

between the 01’s given 
,��, �� for � ≠ ¯ is hard to interpret. For example, why would 

0� and 0� be correlated when 0� shifts upwards and 0� shifts downwards and why would 

they have the same correlation as 2� and 2�? Certainly, we can let the entire covariance 
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matrix of �
é|�,,��� depend on � and set all the correlations involving 01 to zero 

whenever 81 ≠ 0. But, it would then be difficult to sample ,�� from its full conditional 

distribution as the distribution would not be a Wishart distribution. Compared to (3.15), a 

prior for the mean given by (3.12) is arguably easier to interpret. For this reason, we 

prefer (3.12) over (3.15) despite the fact that (3.15) give the correct prior for the case 

where � = ¯. 

3.4.3 Case 1: Prior Information about Mean Shifts is Available 

In cases where the quality engineer has a good idea about mean shifts, 

specification of the prior parameters in (3.10) and (3.11) is a rather straightforward 

exercise. The prior information that needs to be elicited for upward and downward shifts 

in each mean is the most likely value and range. 

Clearly, r1� and r1Ó should be set equal to most likely magnitudes of downward 

and upward shifts of the @ ℎ mean respectively. Now, if the range of upward shifts in the 

@ ℎ mean is �ø1Ó, U1Ó
, then we should set �1Ó so that r1Ó + 2�1Ó561/√� ≥ U1Ó and r1Ó −
2�1Ó561/√� ≤ ø1Ó. If the range of magnitudes of downward shifts is �ø1�, U1�
, then we 

should set �1� so that −r1� − 2�1�561/√� ≤ −U1� and −r1� + 2�1�561/√� ≥ −ø1�. Note 

that ±2 constants are used because a normal random variable has a high (roughly 95%) 

probability of being within two standard deviations of its mean. These considerations 

give  

�1Ó = √j
�<È©

}�2{U1Ó − r1Ó, r1Ó − ø1Ó}, �1� = √j
�<È©

}�2{U1� − r1�, r1� − ø1�}.               (3.16) 

Three forms of prior knowledge can be captured by the proposed priors �
é|�� 
and �
��. The first is the most likely magnitudes of a shift, which is often large. 
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Assignable causes often produce large shifts; for instance, in thermocompression 

processes, a marked decrease in strength of gold-gold bonds is observed when surface 

contamination is present (Jellison, 1975). Moreover, large shifts are more critical and 

more easily detected than small shifts. Secondly, it is often the case that information 

about mean shifts is asymmetrical, i.e., an increase in a mean is likely to be within a 

certain range and a decrease is likely to be in another range and the most likely upward 

and downward shifts are different. For instance, if 21 is a smaller-the-better quantity 

(page 268 of Wu and Hamada (2009)), we should set r1Ó > r1� whereas for larger-the-

better quantity, we should set r1Ó < r1�. This is because process improvements are often 

smaller than process deteriorations. Thirdly, based on knowledge of the process, the 

engineer may have reason to believe that a particular mean is more likely to have 

increased than decreased and vice versa. These three forms of prior knowledge cannot be 

incorporated by modeling each mean as a mixture of two normal distributions (one for 

the in-control mean and one for the out-of-control mean). 

3.4.4 Case 2: Little or No Prior Information about Mean Shifts is Available 

In cases where prior information about mean shifts is hard to obtain, we consider 

using a symmetric prior for the mean with only two parameters, i.e., r1� = r1Ó = r1 =
ℎ561/√� and �1� = �1Ó = �. This implies that 01|81~�
2̅1 + 81ℎ561/√�, ��|6©|561�/��, 
which gives  


01 − 2̅1�/561|81~�
81ℎ/√�, ��|6©|/��.        (3.17) 

Figure 3.1 illustrates this prior. It can be seen that the large reduction in the number of 

parameters is achieved through standardization of all variables (variable @ is standardized 

by 2̅1 and 561), and assuming that the magnitudes of upward and downward shifts of the 
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standardized variables can be approximately modeled by the same normal distribution 

�
ℎ/√�, ��/��. Our recommendations for specifying the prior distributions for the 

mean and indicators are summarized in Figure 3.2. Detailed discussions about these 

choices are given below. 

In a nutshell, our suggestion concerning the choices of the parameters ℎ and � is 

based on the rationale that 01|
81 = 1� should be centered at the upper tail of 2̅;1=
01 =
2̅1 , 51 = 561�, (this determines ℎ) and the densities of 01|
81 = 0� and 01|
81 = 1� should 

have at least a slight overlap (this determines �). Figure 3.1 illustrates this idea. Note that  

 

 
Figure 3.2: Summary of Recommended Prior Parameter Choices When Little or No 

Prior Information about Mean Shifts is Available 
 

Simplified Priors for the Mean and Indicators   
1. @ ℎ element of Ø�: 2̅1 + 81r1 = 2̅1 + 81ℎ561/√�. 

2. 4�: Diagonal matrix with @ ℎ diagonal element :��|6©|<561�/�. 

3. Prior for indicators: �
�� = ∏ ��1
5
6©k���Ð

1k� ��1
5
6©k��
1 − ��1 − ��1�5
6©k��.  

Default choice for ��1 and ��1:  ��1 = 0.25, ��1 = 0.5. 
Choice of Hyperparameters ℎ and �: 
Suggestion 1: Compare results obtained from several reasonable choices. 

Set � = }�2 =
>Äj
¡ − 1,1?. Try several values of ℎ ∈ �2,8
 and � ∈ �0.5,2
. Make 

sure that x−ℎ/√� − 2�/√�, ℎ/√� + 2�/√�y contains all :2̅;1 − 2̅1</561. 
Suggestion 2: Estimate prior parameters via the empirical Bayes method. 
Find þ = s@: √�=2̅;1 − 2̅1=/561 > 2t. Set 

ℎ = ℎ@² = A√�∑ =Æ̅B©�Æ̅©=<È©1∈5 , @�	þ	@�	����}� Ë
											2,																@�	þ	@�	�}� Ë  and 

� = �@² =
CDE
DF}�2 =√�� ��� º=Æ̅B©�Æ̅©=<È©

, @ ∈ þG , 
HI� Äj
¡ − 1,1? , @�	|þ| ≥ 2	

																	}�2 =
HI� Äj
¡ − 1,1? ,																												@�	|þ| ≤ 1

.  

Alternatively, set ℎ = ℎ@², � = }�2 =
HI> Äj
¡ − 1,1?, and try several values of �. 

We call this the partially empirical Bayes method. 
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if we plot 
01 − 2̅1�/561|81, the same plot would be obtained for all @. Thus, we need to use 

only one plot to check whether the prior specification is reasonable. 

In the design of control charts, � is chosen so that 561/√� is small compared to �1 

to get good power for detecting a shift of size �1 (page 247 of Montgomery (2009)). 

Similarly, for the proposed approach, the relative sizes of 561/√� and r1 determine the 

type I and type II error rates, where the type I error rate is defined as the average number 

of in-control means declared out-of-control and the type II error rate is defined as the 

average number of out-of-control means whose shift directions are misidentified. Thus, it 

is convenient to measure r1 in units of 561/√�, i.e., r1 = ℎ561/√�. We recommend that ℎ 

be at least 2 to achieve reasonable type I error. The reason for this choice is as follows: 

When the @ ℎ mean is in-control, 2̅;1=
01 = 0�1, 51�~�
0�1, 51�/�� and so, 2̅;1 falls within 

the interval :2̅1 − 2561/√�, 2̅1 + 2561/√�< most of the time (see Figure 3.1). Thus, if we 

specify ℎ to be less than 2, the type I error rate would be high. On the other hand, if ℎ is 

too large (ℎ561/√� > 3�561/√�), the type II error rate would be high for small shifts. This 

is because for fixed �, a large ℎ implies that large shifts are likely and small shifts are 

unlikely. The problem can be mitigated somewhat by choosing a large �. However, prior 

information is diluted because the priors for 01|
81 = 1� and 01|
81 = −1� would overlap 

somewhat and also allow very large shifts. 

We set 

� = }�2 � á©><È©/√j − 1,1� = }�2 =
>Äj
¡ − 1,1?,          (3.18) 

where � > 0. This arises from the following consideration. For reasons explained in the 

next paragraph, we would like to choose the constant � so that there is reasonable overlap 
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between the priors for the increased mean, in-control mean and decreased mean. Thus, 

we set 2̅1 + r1 − ��561/√� = 2̅1 + �561/√�. This means that � standard deviation units 

above the center of 01|
81 = 0� should be � standard deviation units below the center of 

01|
81 = 1�. By symmetry, setting  2̅1 − r1 + ��561/√� = 2̅1 − �561/√� yields the same 

result. Since there is typically less information about shifted means than in-control 

means, we should set � to be 1 or larger. These considerations lead to (3.18). 

If � ≤ 2, there is at least a slight overlap between the density functions of 

01|
81 = 0� and 01|
81 = 1�, and between the density functions of 01|
81 = 0� and 

01|
81 = −1�. This ensures that the Gibbs sampler do not get stuck in one of the 

conditional distributions 01|81. Moreover, too large values for � imply strong prior 

knowledge on the mean shifts. This can give rise to large type I error rates because 

81 = 1 and 8̈ = 0 for all ̂ ≠ @ cannot explain the data well if 2̅;1 ≫ 2̅1 + r1 + 2�561/√� 

and 2̅;¨ = 2̅̈  for all ̂ ≠ @. The data may be better explained by 
81, 8£� = 
1,1� and 

8̈ = 0 for all ̂ ∉ {@, z}. The smaller the value of �, the larger the variances of 01|
81 =
−1� and 01|
81 = 1�, and so, the prior contains less information about the mean shifts. 

This reduces shift detection power since for 01 > 2̅1, �
81 = 1|01�/�
81 = 0|01� is 

reduced. Thus, we recommend that � be at least 0.5.  

Note that a small � (which gives a large �) produces considerable overlap 

between the densities of 01|
81 = 1� and 01|
81 = −1�, which may seem unreasonable 

because if a mean shifted downwards, it cannot be much larger than 2̅1. However, 

because �
01� is a straight line with positive slope through 2̅1 regardless of the value of �, 

the prior distribution makes sense regardless of the value of �. Nonetheless, the slope of 

�
01� is 2�r1/��561�, which decreases with an increase in �. As a consequence, we may 
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observe that if the posterior probability that 81 = 1 is largest, the posterior probability 

that 81 = −1 can be a close second and vice versa. However, this does not affect 

decisions about the mean shifts as the decisions are based on the value of 81 that gives the 

largest posterior probability (see Section 3.5).     

For the analysis of a real dataset, we suggest that several values of ℎ and � be 

tried and the resulting decisions be compared. The values of ℎ and � should be chosen so 

that the interval x−ℎ/√� − 2�/√�, ℎ/√� + 2�/√�y contains all :2̅;1 − 2̅1</561 (e.g., see 

Figure 3.9). Otherwise, if :2̅;1 − 2̅1</561 > ℎ/√� + 2�/√�, 81 = 1 alone cannot explain 

this large deviation well and if :2̅;1 − 2̅1</561 < ℎ/√� − 2�/√�, 81 = −1 alone cannot 

explain this large deviation well. We have found that decisions based on Decision Rule 1 

or Decision Rule 2 (see Section 3.5) are often robust to changes in values of � and ℎ. 

However, trying several values give confidence to the decisions obtained from the 

proposed approach. 

We can also choose ℎ and � using an empirical Bayesian (EB) approach. Because 


01 − 2̅1�/561|
81 = −1�~�:−ℎ/√�, ��/�<, and 
01 − 2̅1�/561|
81 = 1�~�:ℎ/√�, ��/
�<, the quantity 
|01 − 2̅1|/561�|
81 ≠ 0� would be approximately �:ℎ/√�, ��/�< if 

ℎ/√� is large compared to �/√�. Since 0�|8�, … , 0Ð=8Ð are independently distributed, 


|0� − 2̅�|/56��|
8� ≠ 0�,… , :=0Ð − 2̅Ð=/56Ð<=:8Ð ≠ 0< are independent and identically 

distributed with approximate common distribution �:ℎ/√�, ��/�<. Based on this 

observation, we can estimate ℎ and � as follows. Let þ = s@: √�=2̅;1 − 2̅1=/561 > 2t, i.e., þ 
is the set of indices associated with large discrepancy between phase I and phase II 

means. Then, we can estimate ℎ by 
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ℎ@² = A√�∑ =Æ̅B©�Æ̅©=<È©1∈5 , @�	þ	@�	����}� Ë
											2,																@�	þ	@�	�}� Ë .        (3.19) 

We propose two ways to choose �. The first is to simply use (3.18) and try various values 

of �; the second is to estimate � by 

�@² =
CDE
DF}�2 =√�� ��� º=Æ̅B©�Æ̅©=<È©

, @ ∈ þG , 
HI� Äj
¡ − 1,1? , @�	|þ| ≥ 2	

																	}�2 =
HI� Äj
¡ − 1,1? ,																												@�	|þ| ≤ 1

,    (3.20) 

where � ���s=2̅;1 − 2̅1=/561, @ ∈ þt denotes the standard deviation of the set of values 

s=2̅;1 − 2̅1=/561, @ ∈ þt and |þ| denotes the number of elements in þ. We call the approach of 

setting ℎ = ℎ@² and trying several values of � the partially empirical Bayes (PEB) 

method and we call the approach of setting ℎ = ℎ@² and � = �@² the empirical Bayes 

(EB) method.  

The reason we do not set �@² equal to √�� ���s=2̅;1 − 2̅1=/561, @ ∈ þt is that we 

want to ensure that �@² is not smaller than (3.18) with � = 2. Too small a value for �@² 

is undesirable for reasons discussed previously. In addition, we want to ensure that the 

prior does not rule out shifts in variables whose indices are not in þ.  
Before we end this section, we point out that the EB method determines the prior 

for the mean entirely from data. Hence, it is very convenient in practice. 

3.5 Gibbs Sampling and Decision Rules for Mean Shifts 

This section gives a Gibbs sampling procedure for sampling from the posterior 

distribution of � and decision rules for identifying mean shifts. 

Since the sample space of � consists of 3Ð points, direct calculation of all 3Ð 

probabilities is infeasible even when � is moderately large. To give an idea of the growth 
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of 3Ð with �, note that 3�� = 59049 and 3�¾ = 14348907. However, not all values of � 

are equally of interest. We are primarily interested in those values of � with large 

probabilities, especially the posterior mode. This is adequate information for making 

inference about the mean shifts and the directions of the shifts. Gibbs sampling is a tool 

that allows us to discover the most probable values of � (Gelfand and Smith, 1990; 

George and McCulloch, 1993, 1997).  

From the joint posterior distribution 

�:é,,��, �|ÌÅ; ,-;< ∝ z
é,,��|ÌÅ;,-;��
é|���
,����
��,      (3.21) 

we can easily obtain the full conditional distributions  

�
,��|ÌÅ; ,-; , �, é� ∝ |,��|3b�N�2� �− �
�  ��r� �,�� À-; + - + �:ÌÅ; − é<:ÌÅ; − é<dÁ��,  

  (3.22) 

�
é|ÌÅ; ,-; , �,,��� ∝ =í�,,=�/��2� �− �
� :é − L�,,<dí�,,��:é − L�,,<�,    (3.23) 

�
�|ÌÅ;,-; , é,,��� ∝ |4�|�a
b�2� �− �

� 
é − Ø��d4���
é − Ø��� �
��,    (3.24) 

where L�,, = 
4��� + �,�����:4���Ø� + �,��ÌÅ;< and í�,, = 
4��� + �,�����. The 

conditional distributions (3.22)-(3.24) enable us to use a Gibbs sampling algorithm 

(Figure 3.3) for sampling from the posterior distribution of 
é,,��, ��. The algorithm 

given in Figure 3.3 holds for general �
é|�� given by (3.6). For the simplified prior 

given by (3.12), Step 4 of the Gibbs sampling algorithm given in Figure 3.3 simplifies to 

Step 4’ given in Figure 3.4. The Gibbs sampling algorithm creates a Markov chain  


,����, é�, 8��, … , 8Ð�, 
,����, é�, 8��, … , 8Ð�, …., 
,���1, é1, 8�1 , … , 8Ð1 ,…     (3.25) 

which has the property that the values of �1 = :8�1 , … , 8Ð1 <d
 that appear in the simulation 

would be a sample from �
�|ÌÅ; ,-;� for @ large enough. Here, the reason for working 
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directly with ,�� instead of , becomes evident. Direct sampling of ,�� avoids the need 

to invert , in the computation of L�,, and í�,,. In addition, , has an inverse Wishart 

distribution and we are not aware of a direct method for generating random matrices from 

this distribution; the most common method is to take the inverse of a draw from the 

corresponding Wishart distribution.  

 

 
Figure 3.3: Gibbs Sampling Algorithm 

 
 

 
Figure 3.4: Simplification of Step 4 of Gibbs Sampling Algorithm Given in Figure 3.3 

 

�
�� =
Ã4�³© 
	�Ã�

�� �2� º−12 Àé1 − Ø�³© 
	�Ád 4�³© 
	��� Àé1 − Ø�³© 
	�ÁG�
�̈1
���

∑ Ã4�³© 
%�Ã�
�� �2� º−12 Àé1 − Ø�³© 
%�Ád4�³© 
%��� Àé1 − Ø�³© 
%�ÁG � À�̈1
M�Á�%k��

, 

1. Start with é� = ÌÅ and �� = :8��, … , 8Ð�<d
. Set @ = 1. 

2. Sample 
,���1 from the Wishart distribution with scale matrix À-; + -+
�:ÌÅ; − é1��<:ÌÅ; − é1��<dÁ��

 and � = � + 2 + � + 1 = � + � − 1 degrees of 

freedom. 
3. Sample é1 from a normal distribution with mean L�©oa,,© = :4�©oa�� + �
,���1<��:4�©oa�� Ø�©oa + �
,���1ÌÅ;<, and covariance matrix 

í�©oa,,© = :4�©oa�� + �
,���1<��
. 

4. Define �̈1
�� = 
8�1 , … , 8̈ ��1 , �, 8̈ ��1��, … , 8Ð1���d. For ̂ = 1,… , �, sample 8̈1 from the 

discrete distribution: 

where � ∈ {−1,0,1}. 

�
�� = À�¨
��Á��� �2� �−12 x01̈ − Ò̈ 
��y�:�¨
��56̈�/�<��� �
�̈1
���
∑ À�¨
M�Á��� �2� �−12 x01̈ − Ò̈ 
M�y�:�¨
M�56̈�/�<��� � À�̈1
M�Á�%k��

, �

∈ {−1,0,1}, 

4'. Define �̈1
�� = 
8�1 , … , 8̈ ��1 , �, 8̈ ��1��, … , 8Ð1���d. For ̂ = 1,… , �, sample 8̈1 from the 

discrete distribution: 

where Ò̈ 
�� = :2̅̈ − þ
� = −1�r̈ � + þ
� = 1�r̈ Ó< and �¨
�� = �̈ ��5
	k����̈ Ó
�5
	k��. 
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Decision Rule 1: For each ̂, choose the value �̈  of 8̈  that appears most frequently in 

(3.25) for @ > B and make decision 
��, … , �Ð�. 
Decision Rule 2: Choose the value M of � that appears most frequently in (3.25) for @ > B 
and make decision M. 

Figure 3.5: Decision Rules for Identifying Mean Shifts Using Steady State Gibbs 
Sampler Output {�1: @ > B} 

 
Mean shift directions would be identified from � values that have high posterior 

probability or 81 values that have high marginal posterior probability. We give two 

decision rules in Figure 3.5 to determine mean shift directions. The idea underlying the 

first decision rule is that of making a decision based on the mode of the marginal 

posterior distribution of each 8̈  while the idea underlying the second decision rule is that 

of making a decision based on the posterior mode of �. We estimate these modes using 

the close-to-steady-state portion (@ > B) of (3.25), where B is the burn-in period. This 

gives Decision Rules 1 and 2.  

Before we end this section, we point out that while the focus in this chapter is on 

shift directions, the shift magnitudes can be easily estimated from the components of 

�:é|ÌÅ; ,-;< − ÌÅ. This latter quantity can be estimated from the samples generated by 

(3.25). 

3.6 Examples 

We shall give four examples to demonstrate the effectiveness of our proposed 

methodology. In the first example, we show that the proposed approach is superior to the 

 -test and is as good as WJPLM over wide ranges of recommended prior parameter 

values. Note that Wang and Jiang (2009) propose the use of the forward selection 

algorithm for model selection. In contrast, we shall use the best subset method. The latter 

performs better than the former but it incurs a high computation cost. Even with the 
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use of fast algorithms like those proposed Furnival and Wilson (1974), the computation 

can be too costly for high dimensional problems (e.g., � > 30). This is primarily due to 

the exponential increase in number of possible models with the dimension of the 

problem. In comparison, the most computationally intensive parts of the proposed 

approach are Steps 2 and Step 3 in Figure 3.3 (assuming Step 4’ in Figure 3.4 is used), 

which require N
�!� operations. We conclude that the proposed approach requires 

N
�1Nâ	�!� operations, where �1Nâ	 is the number of iterations of the Markov chain 

(3.25). This means that the proposed approach can be more affordable than the best 

subset variant of WJPLM when � is large. In the second example, we show that proper 

choices of ℎ and � can yield performance superior to WJPLM with correct ', and that 

asymmetric choices of �
01� and �
81� that correctly reflect the true state of nature can 

give even better results. 

In the third example, we compare our approach with the LEB diagnostic 

procedure proposed by Zou et al. (2011). The example demonstrates that our proposed 

method combined with the likelihood ratio test for equality of covariance matrices yields 

a powerful method for diagnosing shifts. The example also includes an analysis of a real 

dataset; for this dataset, the proposed method yields the same shift decision reached by 

LEB for wide ranges of prior parameters. The fourth example analyzes an interesting set 

of process monitoring data for a fruit juice process originally given by Fuchs and Kenett 

(1998) and reproduced in Beltran (2006). Matlab code for implementing the empirical 

Bayes version of the proposed approach is given in Appendix C.3. 

3.6.1 Example 3.1: Performance Comparison I 

We consider a problem where � = 12, � = 90, � = 6 (12 variables, 90 phase I 
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samples, 6 out-of-control phase II samples). The in-control mean is é� = ¯ and the 

population covariance matrix ,� (given in Appendix C.1) is generated randomly from the 

inverse Wishart distribution with scale matrix equal to the identity matrix à, and � + 1 

degrees of freedom. This distribution yields a random correlation matrix that has 

marginally uniformly distributed correlations (Barnard et al., 2000). The shifted mean is 

é� = 
Δ5�, −Δ5�, Δ5!, −Δ5", 0, … ,0�. The prior distributions �
é|�� and �
�� are 

specified according to Figure 3.2. We change Δ, ℎ, and � according to the experimental 

design given in Table 3.1 (the empirical Bayes method is denoted by EB) and we 

replicate each run in the design 100 times. For each replicate, we simulate ÌÅ , -, ÌÅ;, and 

-; independently from �
¯,,�/��, /
,�, � − 1�, �
é�,,�/��, and /
,�, � − 1� 
respectively. Given ÌÅ , -, ÌÅ;, and -;, we obtain samples from �
�|ÌÅ;,-;� using the 

Gibbs sampling algorithm in Figure 3.3 with Step 4 replaced by Step 4’ given in Figure 

3.4 and we apply the decision rules given in Figure 3.5. Two performance measures are 

calculated:  

1. Type I Error Rate=(number of in-control means incorrectly identified as out-of-

control)/(total number of in-control means). 

2.  Type II Error Rate=(number of out-of-control means incorrectly identified as in-

control or whose shift-direction is incorrectly identified)/(total number of out-of-

control means). 

Adding a constant to both é� and é� will not change the performance of our procedure. It 

has the desirable invariance property that shifting or rescaling all observations by the 

same amount does not change the posterior distribution of � (if the priors are specified 

according to Figure 3.2).   
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For all simulation runs, we terminate sampling from the Markov chain (3.25) after 

�1Nâ	 = 3000 iterations and we set the burn-in period at B = 1000. These choices are 

found to work well in many trial runs. Table 3.1 presents the results of the simulation. 

The error rates for Decision Rule 1 are given in the columns labeled D1 and the error 

rates for Decision Rule 2 are given in the columns labeled D2.  

It can be seen from Table 3.1 that except for a few cases, Decision Rules 1 and 2 

have comparable performance. Table 3.1 also suggests that a smaller � tends to give 

smaller type I error rates and a larger ℎ (ℎ/√� > Δ) tends to give larger type II error 

rates. Note that for ∆ = 1.4, � = 0.5 and � = 2 give comparable type II error rates but 

� = 0.5 gives smaller type I error rates. Thus, for larger shifts, a smaller � may be better. 

For all shift sizes, the EB method gives good performance; its superior performance when 

the shift size is small, i.e., ∆ = 0.6, is noteworthy. 

 
Table 3.1: Factor Settings and Results for Simulation Experiment 
Shift 
∆ 

ℎ	 �	 Type II Error Rate Type I Error Rate 
D1 D2 D1 D2 

0.6 

√6 0.5 0.445 0.433 0.011 0.030 

1.8√6 0.5 0.525 0.528 0.009 0.016 

√6 2 0.340 0.373 0.054 0.083 

1.8√6 2 0.505 0.503 0.014 0.031 
EB 0.330 0.335 0.053 0.086 

1 

√6 0.5 0.080 0.068 0.014 0.011 

1.8√6 0.5 0.098 0.110 0.009 0.013 

√6 2 0.028 0.035 0.040 0.045 

1.8√6 2 0.073 0.068 0.016 0.019 
EB 0.043 0.053 0.035 0.044 

1.4 

√6 0.5 0.000 0.000 0.006 0.005 

1.8√6 0.5 0.008 0.008 0.005 0.010 

√6 2 0.000 0.000 0.025 0.026 

1.8√6 2 0.008 0.008 0.015 0.018 
EB 0.003 0.000 0.014 0.013 
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Figure 3.6: Type II Error Rate versus Type I Error Rate for Proposed Approach, WJPLM, 
and  -test. Top: Δ = 0.6, Middle: Δ = 1, Bottom: Δ = 1.4. The solid line is for the  -test. 

The symbol +' is for WJPLM with model size '. Symbols A-D are for prior 
distributions in Table 3.1. Symbol E is for the empirical Bayes approach. 
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We plot the type II error rate versus the type I error rate for the five different 

priors (results for Decision Rule 1 are used), the  -test, and WJPLM in Figure 3.6. 

Symbols  v, �, �, S denote the priors given by 
ℎ, �� = :√6, 0.5<, :1.8√6, 0.5<, :√6, 2<, 
:1.8√6, 2< respectively and symbol � denotes the EB method. The continuous curve for 

the  -test is obtained by changing 
 in (3.2) over small steps (the type I and II error rates 

are both functions of 
). WJPLM with model size (specified number of mean shifts) ' is 

plotted as +' in the figure. Figure 3.6 clearly indicate that our approach and WJPLM are 

superior to the  -test. When ∆ = 0.6, our approach performs similarly to WJPLM with 

' = 2 and ' = 3 (specified number of mean shifts less than four, which is the correct 

number of mean shifts). However, as the shift size increases to ∆ = 1 and ∆ = 1.4, our 

approach has performance comparable to WJPLM with correctly specified number of 

mean shifts, i.e., ' = 4. In particular, for ∆ = 0.6, the EB method performs like WJPLM 

with ' = 3 and for ∆ = 1 and ∆ = 1.4, the EB method performs like WJPLM with ' =
4. Note that selecting the model of correct size with minimum residual sum of squares, 

which is WJPLM with ' = 4, is probably the best performance we can expect from a 

frequentist method. Since in practice, the actual number of means that shifted cannot be 

known, the performance of the EB method is impressive. 

It can also be concluded from an examination of Table 3.1 and Figure 3.6 that the 

proposed approach is robust. The type I and type II error rates for the proposed approach 

change only slightly (compared to changes for WJPLM with different ') even though ℎ 

and � are changed over wide ranges.  

We have also investigated the effect of � on performance. When ∆= 0.6 and � is 

increased to 12, the type II and type I error rates of the EB method decrease to 0.098 and 
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0.024 respectively for Decision Rule 1 and 0.075 and 0.023 respectively for Decision 

Rule 2 (compare with Table 3.1). For ∆= 1 and � = 12, the estimated type II error rates 

are 0.005 (for both decision rules) and the estimated type I error rates are 0.0175 and 

0.02. Thus, huge improvements can be attained with an increase in �.  

We shall now illustrate a case of poor prior specification. The prior given by 

ℎ = 0.6√6 and � = 2 is a poor choice for mean shifts ∆ = 1,1.4. This is illustrated in 

Figure 3.7 (left), which plots the distribution of 
01 − 2̅1�/561�=81 together with the 

estimated in-control distribution of the standardized sample mean :2̅;1 − 2̅1</561=
01 =
2̅1 , 51 = 561�. It can be seen that shifts of sizes 561 and 1.4561 (vertical lines) are unlikely 

under this prior since the two vertical lines fall far out in the tail of the prior for the 

increased mean. Hence, performance of these choices is poor when ∆ = 1 or ∆ = 1.4, as 

shown in Table 3.2. In particular, we see that the type I error rates are very large 

compared to the values in Table 3.1. An example of a good prior specification (ℎ = √6 

and � = 0.5) is given in the right of Figure 3.7. In this case, shifts of sizes ∆ = 1,1.4 are 

in regions of concentration of the prior density for the increased/ decreased mean.  

 

 
Figure 3.7: Poor Prior Specification (left), Good Prior Specification (right) 
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Table 3.2: Type I and Type II Error Rates for Poor Prior Distribution for Mean 

Shift ℎ	 �	 Type II Error Rate Type I Error Rate 

D1 D2 D1 D2 

1 0.6√6 2 0.000 0.003 0.173 0.191 

1.4 0.6√6 2 0.000 0.000 0.375 0.394 
 

3.6.2 Example 3.2: Performance Comparison II 

This example demonstrates that proper choices of ℎ and � can yield performance 

superior to WJPLM with correct '. It also investigates the performance of the PEB 

method and the effect of using asymmetric priors for the mean. In this example, � = 6, 

� = 45 and � = 3. We work with two different covariance matrices ,� (see Appendix 

B), each generated randomly from the inverse Wishart distribution with scale matrix à, 
and � + 1 degrees of freedom. The mean shift is é� − é� = 
00,0,0,25¾/√3,−25�/√3�. 
Six different choices of ℎ and � and the PED with two values of � are investigated (see 

Table 3.3). Table 3.3 gives the results for the first covariance matrix. Figure 3.8 plots the 

type II error rate versus the type I error rate obtained with Decision Rule 1 for the eight 

priors using the symbols given in Table 3.3. It also plots the error rates of WJPLM, and 

the  -test. The figure shows that the prior given by 
ℎ, �� = 
1.5,1.6� can outperform 

WJPLM with ' = 2 in terms of type II error rates (by quite a large margin for the second 

covariance matrix). For the first covariance matrix, the PEB method and the other priors 

(except B) are somewhat inferior to WJPLM with ' = 2. For the second covariance 

matrix, the PEB with � = 0.9 (symbol G) and the prior 
ℎ, �� = 
2,0.9� (symbol C) are 

as good as WJPLM with ' = 2 while the priors 
ℎ, �� = 
1.5,0.9�, 
2,1.6� (symbols 

A,D) have smaller type II error rates but larger type I error rates. For both covariance 

matrices, the  -test is dominated by the proposed approach. 
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Table 3.3: Results for Simulation Experiment and Labels for Figure 3.8 

ℎ � 
Type II Error Rate Type I Error Rate 

Symbol 
D1 D2 D1 D2 

1.5 0.9 0.290 0.290 0.120 0.113 A 
1.5 1.6 0.165 0.160 0.168 0.155 B 
2 0.9 0.300 0.230 0.083 0.078 C 
2 1.6 0.275 0.255 0.113 0.128 D 

2.5 0.9 0.365 0.325 0.065 0.073 E 
2.5 1.6 0.380 0.325 0.095 0.103 F 

PEB 0.9 0.370 0.340 0.083 0.093 G 
PEB 1.6 0.280 0.225 0.100 0.093 H 

Asymmetric Prior 1 0.140 0.150 0.023 0.023 - 
Asymmetric Prior 2 0.050 0.060 0.013 0.013 - 

 
 

 
Figure 3.8: Type II Error Rate versus Type I Error Rate for Proposed Approach, WJPLM, 

and  -test for First (Left) and Second (Right) Covariance Matrices 
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For Asymmetric Prior 1, �
0¾� > 0 if and only if 0¾ ∈ �−0.0356¾, 1.9756¾
 and for 

Asymmetric Prior 2, �
0¾� > 0 if and only if 0¾ ∈ �−0.1556¾, 2.0956¾
. This says that 

Asymmetric Prior 1 is good for upward shifts in 0¾ of sizes less than about 1.9756¾ and 

downward shifts of size more than 0.0356¾. A similar statement can be made for 

Asymmetric Prior 2. Table 3.3 presents type I and II error rates for the two asymmetric 

priors (the results are for the first covariance matrix). Compared with all other priors, the 

asymmetric priors give better results since the priors incorporate “correct” prior 

information. The priors �
0¾|8¾ = 1� and �
0�|8� = −1� are concentrated around the 

upward and downward shifts of size 25¾/√3 in the fifth and sixth mean respectively. 

Asymmetric Prior 2 gives better results than Asymmetric Prior 1 because for Asymmetric 

Prior 2, ì¾ and ì� give more probability to the true state of nature. 

3.6.3 Example 3.3: Comparison with LEB 

In this example, we compare our method with the LASSO based diagnostic 

procedure LEB introduced by Zou et al. (2011). In Section 4.1 of their paper, they 

consider a few simulated cases that involve only mean shifts. In these cases é� − é� =

1,1,0, … ,0�d and ,� = :0.5|1�¨|<. We shall compare our approach with LEB for four 

cases of 
�, �, ��: 
50,25,4�, 
1000,25,4�, 
100,50,6�, 
1000,50,6�.  
Note that Zou et al. (2011) apply their method to diagnose changes in the 

elements of the covariance matrix as well as the means. Thus, to ensure fair comparison, 

our method is combined with the likelihood ratio test of equality of two covariance 

matrices (Timm, 2002). We assume that if the null hypothesis is rejected, then the means 

are declared in-control but the covariance matrix is declared out-of-control. For 

comparison with the results in Zou et al. (2011), we measure the performance of the 
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combined method with two quantities: the relative frequency with which the combined 

method yields perfectly correct decisions on both means and covariance matrix (�), and 

the expected number of errors in mean shift decisions (����). Note that Zou et al. 

(2011) employ the expected number of errors in the decisions on all parameters ��� as a 

performance measure instead of ����. However, this performance measure cannot be 

adopted here because we would need a diagnostic method for identifying the elements in 

the covariance matrix that shifted. Nevertheless, if the combined method is enhanced to 

include a diagnostic procedure for the covariance matrix, we will have ��� ∈
�����, ���� + {�
� + 1�/2
, where { is the significance level of the test for the 

covariance matrix and �
� + 1�/2 is the number of elements in the covariance matrix.  

Table 3.4 summarizes the results for four different choices of 
ℎ, ��, i.e., 


3,0.5�,
3,1�,
6,0.5�, 
6,1�, and the PEB method with � = 0.5 and � = 1. The table also 

reproduces the performance estimates for LEB given by Zou et al. (2011). The number of 

simulations for each prior is 200 and we set �1Nâ	 = 3000 and B = 1000. For � = 25, 

the shift sizes are 551/√�, @ = 1,2 and for � = 50, the shift sizes are 7.0751/√�, @ = 1,2. 

Thus, ℎ = 3 and ℎ = 6 can be thought of as poor and moderately good guesses of the 

mean shifts respectively. The significance level of the covariance matrix test is fixed at 

0.05 and the cut-off point is obtained from a chi-squared approximation. Simulation 

suggests that this approximation is accurate. Thus, for our approach, ��� ∈
�����, ���� + 0.5
 for � = 4 and ��� ∈ �����, ���� + 1.05
 for � = 6. For the 

purpose of comparison, we set ��� = ���� + 0.25 for � = 4 and ��� = ���� +
0.525 for � = 6, which are perhaps worse-case estimates. 
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Table 3.4: Estimates of Performance Measures �, ����, and ��� for  
Six Prior Distribution Choices and LEB 

ℎ	 �	

�, �, �� 

(50,25,4) (1000,25,4) (100,50,6) (1000,50,6) 

�	 ����	

����	 �	 ����	


����	 �	 ����	

����	 �	 ����	


����	
3 0.5 0.81 

0.28 
(0.53) 

0.91 
0.15 

(0.40) 
0.88 

0.16 
(0.69) 

0.84 
0.25 

(0.78) 

3 1 0.80 
0.30 

(0.55) 
0.86 

0.20 
(0.45) 

0.69 
0.42 

(0.94) 
0.80 

0.25 
(0.78) 

6 0.5 0.86 
0.22 

(0.47) 
0.90 

0.19 
(0.44) 

0.90 
0.17 

(0.69) 
0.95 

0.10 
(0.63) 

6 1 0.88 
0.19 

(0.44) 
0.89 

0.18 
(0.43) 

0.83 
0.27 

(0.79) 
0.90 

0.15 
(0.67) 

PEB 0.5 0.88 
0.17 

(0.42) 
0.92 

0.13 
(0.38) 

0.92 
0.16 

(0.68) 
0.93 

0.12 
(0.65) 

PEB 1 0.82 
0.24 

(0.49) 
0.87 

0.18 
(0.43) 

0.87 
0.21 

(0.73) 
0.90 

0.16 
(0.68) 

LEB 
�	 ���	 �	 ���	 �	 ���	 �	 ���	

0.37 1.04 0.36 1.26 0.51 0.85 0.50 0.94 
 

We see that except for the combination of 
�, �, �� = 
100,50,6� and 
ℎ, �� =

3,1�, the performances of the six priors are significantly better than LEB (larger values 

of � and smaller values of ��� are preferred). Some of the best results are obtained with 

the PEB method. The marked decrease in performance when 
�, �, �� = 
100,50,6� and  


ℎ, �� = 
3,1� is due to the fact that 
ℎ, �� = 
3,1� yields a somewhat informative prior 

centered far from the true shift, and � = 100 is not large enough for accurately 

estimating the in-control parameters. It can be concluded from the results in Table 3.4 

that for processes that frequently suffer from mean shifts, it is better to use the combined 

approach than to use the LEB procedure to perform a simultaneous check on all 

parameters for a shift. 

We now apply the proposed approach (without the covariance matrix test) to the 

wine quality control example discussed by Zou et al. (2011), which is based on a real 
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dataset. This problem involves 11 variables that are measurements from various 

physicochemical tests. Zou et al. (2011) show that the correct change point (which is 

known) can be found with a change point method. We take all observations after the 

change point as the out-of-control sample. Thus, we have � = 870 Phase I samples, and 

� = 11 out-of-control samples. We compute �1 = √�:2̅;1 − 2̅1</561 for @ = 1,… ,11 and 

found that the four largest �1 are for @ = 4,5,8,11 with values 1.95,3.32,3.88, −4.38 

respectively. The fifth largest �1 only have magnitude 1.45. Eight priors given by 


ℎ, �� ∈ {2,3,5,7} × {1,1.5} and the EB method are tried. For the EB method, we set 

þ = {4,5,8,11}. All nine prior distributions result in appreciable probability for 
01 − 2̅1�/
561|
81 = 1� over the interval �1.95/√11, 4.38/√11
 (see Figure 3.9 for a plot of the 

priors obtained via the EB method). The results obtained for all priors are similar. All 

nine posterior modes of � are identical, with a 1 in the fifth and eight positions, a −1 in 

the eleventh position, and zeros elsewhere. The results are obtained with �1Nâ	 = 20000  

 

 
Figure 3.9: Plot of Prior Distributions Obtained via the EB Method and  

Density of :2̅;1 − 2̅1</561=
01 = 2̅1 , 51 = 561� 
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Figure 3.10: Marginal Posterior Distribution of Each Indicator for EB Method,  

Wine Data 
 

and B = 10000. For the EB method, the marginal posterior distributions of 8�, … , 8�� are 

plotted in Figure 3.10. The results clearly indicate that the fifth and eight mean shifted 

upwards and the eleventh mean shifted downwards. This agrees with the conclusions 

reached by Zou et al. (2011) using LEB. 
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However, there are some phase I observations that plot outside the 95% control limit of a 

G� chart for the phase I observations (see Bersimis et al. (2007) for a formula for the 

control limit). We removed the four observations (rows 16, 20, 22, and 25 of the data in 

Appendix C.1) that fall above the control limit, reconstructed the control chart, and 

further removed two observations (rows 11 and 12) that fall above the revised control 

limit. The remaining observations all appear to be in-control. Thus, we have � = 19 in-

control phase I samples. A G� chart for the fruit juice process (without the G� value for 

observations that were removed) is plotted in Figure 3.11. We see that four of the phase II 

samples plot above the 95% upper control limit. 

Ten of the values of �1 = √�:2̅;1 − 2̅1</561 for @ = 1,… ,11 exceed two in absolute 

value; only |�!| < 2. Taking þ = {1,2,4, … ,10}, we find that ℎ@² = 3.58 and �@² =
2.01 = √�� ���s:2̅;1 − 2̅1</561, @ ∈ þt > 
ℎ@²/2�ý
�/�� − 1 = 1.35. The posterior 

mode of � (�1Nâ	 = 20000 and B = 10000) is 
0,0,0,1,0,0,0,1, −1,−1,0� and it has 

probability about 0.3. The marginal posterior distributions of the 81’s, which are plotted 

in Figure 3.12, give the same information. This indicates that means 4 and 8 shifted 

upwards whereas means 9 and 10 shifted downwards. Although �! = 0.141 is smallest in 

absolute value, the posterior probability that 8! = −1 is quite high (about 0.3). This can 

be explained as follows. Variable 3 has positive correlations with variables 4 and 8 but 

negative correlations with variables 9 and 10. Thus, if it is assumed that one or more of 

means 4, 8, 9, and 10 did not shift so that the unusually large or small values of 2̅;1, @ =
4,8,9,10 are explained by natural variation, we would expect �! to be quite large and 

positive. Since �! is small, mean 3 could have shifted downwards. We also tried 
ℎ, �� =

2.5,0.8�, 
5,1�. For these priors, the shift decisions given by Decision Rules 1 and 2 are 
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identical to those obtained with the EB method. 

Appendix C.2 gives a plot of the observations for each variable. The figure gives 

some indication that the means of variables 4, 9 and 10 shifted. However, it seems hard to 

tell by a visual inspection of the figure whether the mean of variable 8 shifted. 

 

 
Figure 3.11: G� Chart for Fruit Juice Data 

 

 
Figure 3.12: Marginal Posterior Distribution of Each Indicator for EB Method,  

Fruit Juice Data 
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3.7 Conclusions 

We have proposed a Bayesian approach to identify the means that shifted and the 

direction of the shifts when a control chart for the mean of normal variables signals but 

the data indicate that the covariance matrix remain in-control. We introduce an indicator 

variable for each mean whose values −1,0,1 indicate whether the mean shifted 

downwards, remained in-control, or shifted upwards. The prior for each mean 

conditioned on its indicator captures prior information about the in-control and shifted 

states of the mean. The Bayesian hierarchical model is specified by prior distributions for 

the shifts, the indicators of the shift directions, and the covariance matrix. The prior 

distributions for the in-control mean and the inverse covariance matrix are derived from 

phase I data. Assumptions are made to simplify the prior distributions and guidelines are 

given to choose the prior parameters effectively.  A Gibbs sampling algorithm for 

sampling from the posterior distribution of the vector of indicators is given.  

We propose two decision rules to identify the most probable state of each mean. 

The first is to pick the value of each indicator with the highest marginal posterior 

probability. The second is to pick the posterior mode of the vector of indicators. These 

quantities can easily be estimated by their sample counterparts. Monte Carlo simulation 

shows that the proposed Bayesian approach always performs better than the  -test and 

can have performance comparable to the best subset variant of WJPLM with correctly 

specified number of mean shifts.  Moreover, it can also outperform the LEB approach 

when shifts in the mean are more common than shifts in the covariance matrix. In all 

examples, the EB or PEB method for specifying the prior for the mean gives good results. 

The EB and PEB methods are attractive because the former is entirely data driven and the 
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latter only requires the user to specify one prior parameter. For these reasons, we 

recommend the EB and PEB methods for practical use. 

 We have considered modeling the mean with a mixture of three normal 

distributions. However, it is straightforward to extend our work to include modeling the 

increased and decreased mean with truncated normal distributions. Truncated prior 

distributions may yield better results. If we let �
é|�� ∝ |4�|�a
b�2� �− �

� 
é −

Ø��d4���
é − Ø��� þR�
é�, where þR�
é� = 1 if é ∈ R� and þR�
é� = 0 otherwise, and 

R� is a hyperrectangular set that depends on �, then the full conditional distribution of 

each 01 is truncated normal. Hence, we can sample from the posterior distribution of � 

using the Gibbs sampling algorithm given in Figure 3.3 with a modified Step 3. The 

modified Step 3 is to sample from 0�, … , 0Ð one at a time, where each 01 is sampled from 

a truncated normal distribution. 

Finally, we mention that we are researching the topic of incorporating prior 

knowledge about causal relationships between variables through the prior �
��.  

3.8 References 

Barnard, J., R. McCulloch, and X. Meng. (2000). “Modeling Covariance Matrices in 
Terms of Standard Deviations and Correlations, with Application to Shrinkage,” 
Statistica Sinica, 10, 1281-1311. 

Beltran, L.A. (2006). “Nonparametric Multivariate Statistical Process Control Using 
Principal Component Analysis and Simplicial Depth,” PhD Dissertation, 
Department of Industrial and Management Systems, University of Central 
Florida. 

Bersimis, S., S. Psarakis, and J. Panaretos. (2007). “Multivariate Statistical Process 
Control Charts: An Overview,” Quality and Reliability Engineering International, 
23, 517-543. 



 118

Box, G.E.P., and G.C. Tiao. (1973). Bayesian Inference in Statistical Analysis. Reading, 
MA: Addison-Wesley. 

Capizzi, G. and Masarotto, G. (2011). “A Least Angle Regression Control Chart for 
Multidimensional Data,” Technometrics, 53(2), 285-296. 

Das, N., and V. Prakash. (2008). “Interpreting the Out-of-Control Signal in Multivariate 
Control Chart – a Comparative Study,” International Journal of Advanced 
Manufacturing Technology, 37, 966-979. 

Doganaksoy, N., F.W. Faltin, W.T. Tucker. (1991). “Identification of Out-of-Control 
Quality Characteristics in a Multivariate Manufacturing Environment,” 
Communications in Statistics – Theory and Methods, 20(9), 2775-2790. 

Fuchs, C. and Kenett, R. (1998) Multivariate Quality Control, New York: Marcel 
Dekker. 

Furnival, G.M. and Wilson, R.W. (1974). “Regressions by Leaps and Bounds,” 
Technometrics, 16(1), 499-511. 

Gelfand, A.E. and A.F.M. Smith. (1990). “Sampling-Based Approaches to Calculating 
Marginal Densities,” Journal of the American Statistical Association, 85(410), pp. 
398-409. 

George, E.I., and R.E. McCulloch. (1993). “Variable Selection Via Gibbs Sampling,” 
Journal of the American Statistical Association, 88(423), pp. 881-889. 

George, E.I., and R.E. McCulloch. (1997). “Approaches for Bayesian Variable 
Selection,” Statistica Sinica, 7, 339-373. 

Hawkins, D.M. (1991). “Multivariate Quality Control Based on Regression-Adjusted 
Variables,” Technometrics, 33(1), pp.61-75. 

Jellison, J.L. (1975). “Effect of Surface Contamination on the Thermocompression 
Bondability of Gold,” IEEE Transactions on Parts, Hybrids, and Packaging, 
PHP-11(2), 206-211. 



 119

Li, J., J. Jin, and J. Shi. (2008). “Causation-Based G� Decomposition for Multivariate 
Process Monitoring and Diagnosis,” Journal of Quality Technology, 40(1), pp. 
46-58. 

Mason, R.L., N.D. Tracy, and J.C. Young. (1995). “Decomposition of G� for 
Multivariate Control Chart Interpretation,” Journal of Quality Technology, 27(1), 
pp. 99-108. 

Mason, R.L., N.D. Tracy, and J.C. Young. (1997). “A Practical Approach for Interpreting 
Multivariate G� Control Chart Signals,” Journal of Quality Technology, 29(1), 
396-406. 

Montgomery, D.C. (2009). Introduction to Statistical Quality Control. 6th Edition, New 
York: Wiley. 

Murphy, B.J. (1987). “Selecting Out of Control Variables with the G� Multivariate 
Quality Control Procedure,” The Statistician, 36(2), pp. 571-581. 

Runger, G.C., F.B. Alt, and D.C. Montgomery. (1996). “Contributors to a Multivariate 
Statistical Process Control Chart Signal,” Communications in Statistics – Theory 
and Methods, 25(6), pp. 2203-2213. 

Timm, N.H. (2002). Applied Multivariate Analysis. Springer-Verlag, New York, NY. 

Wang, K. and Jiang, W. (2009). “High-Dimensional Process Monitoring and Fault 
Isolation via Variable Selection,” Journal of Quality Technology, 41(2), pp. 247-
258. 

Wu, C.F.J. and Hamada, M.S. (2009). Experiments: Planning, Analysis, and 
Optimization. 2nd Edition. New York: Wiley. 

Yeh, A.B., D.K.J. Lin, and McGrath, R.N. (2006). “Multivariate Control Charts for 
Monitoring Covariance Matrix: A Review,” Quality Technology and Quantitative 
Management, 3(1), 415-436. 

Zhang, Y., Krueger, D., Durst, R., Lee, R., Wang, D., Seeram, N., and Heber, D. (2009). 
“International Multidimensional Authenticity Specification (IMAS) Algorithm for 
Detection of Commercial Pomegranate Juice Adulteration,” Journal of 
Agricultural and Food Chemistry, 57, 2550-2557. 



 120

Zou, C., Jiang, W., and Tsung, F. (2011). “A LASSO-Based Diagnostic Framework for 
Multivariate Statistical Process Control,” Technometrics, 53(2), 297-309. 

Zou, C. and Qiu, P. (2009). “Multivariate Statistical Process Control Using LASSO,” 
Journal of the American Statistical Association, 104(488), 1586-1596. 

 

  



 121

CHAPTER 4 

A BAYESIAN APPROACH FOR MODEL SELECTION IN 

FRACTIONATED SPLIT PLOT EXPERIMENTS WITH 

APPLICATIONS IN ROBUST PARAMETER DESIGN 

 

4.1 Introduction 

Split plot designs are widely used in industrial experimentation. In these 

experiments, the wholeplot and subplot treatments are separately randomized. Due to the 

restriction in randomization, two sources of errors are present. A wholeplot error is 

incurred when a wholeplot treatment is applied to a wholeplot unit whereas a subplot 

error is incurred when a subplot treatment is applied to a subplot unit. As a consequence 

of this error structure, effects in split plot experiments can be divided into wholeplot and 

subplot effects. Subplot effects tend to be estimated with smaller variance than wholeplot 

effects. As such, analyzing a split plot experiment as if it were completely randomized 

can be misleading. Spurious wholeplot effects may be found significant and real subplot 

effects may be missed.  

Traditional methods for analyzing split plot experiments are the ANOVA 

(Giesbrecht and Gumpertz, 2004; Wu and Hamada, 2009) and generalized least squares/ 

likelihood (Letsinger, 1996; Goos et al., 2006; Næs et al., 2007; Jones and Nachtsheim, 

2009) methods. Although these methods are useful for analyzing many split plot 

experiments, there are many experiments in robust parameter design (RPD) where they 

cannot be applied because there are insufficient degrees of freedom for simultaneously 

estimating all wholeplot and subplot effects, and the wholeplot and subplot error 
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variances. In these cases, a Bayesian approach may be taken. Some early work on 

Bayesian analysis of variance components model are Hill (1965), and Tiao and Tan 

(1965). Gilmour and Goos (2009) and Wolfinger and Kass (2000) analyze split plot 

experiments using Bayesian methods; the latter paper does not discuss selection of 

significant effects. The analysis in Gilmour and Goos (2009) is based on the marginal 

posterior distribution of each effect, although they employ mixture priors for the 

coefficients and note the utility of such priors for distinguishing active and inactive 

effects. Other recent works include Vounatsou and Smith (1997) and Sun et al. (1996). 

Recently, Bingham and Goh (2012) extend the stochastic search variable selection 

(SSVS) approach of George and McCulloch (1993) and Chipman et al. (1997) for split 

plot experiments.  

Highly fractionated orthogonal array designs that are run with restrictions in 

randomizations are often employed in RPD. These designs can provide independent 

estimates of main effects, but if two-factor interactions are also taken into account, a 

pattern of complex aliasing emerges (Chapter 9 of Wu and Hamada, 2009). A special 

type of design used in RPD is the crossed array (or inner-outer array in Taguchi’s 

terminology), which is built from the Cartesian product of two orthogonal arrays. In 

Taguchi’s applications, control factors are assigned to one of the arrays, called the control 

array, whereas noise and signal factors are assigned to the other array, which we call the 

signal-noise array. Two methods have been proposed to analyze a crossed array: the 

performance measure modeling and the response modeling approaches (Chapter 11 of 

Wu and Hamada, 2009). In the response modeling approach, crossed array designs are 

often analyzed as if they were completely randomized. However, in reality, many crossed 
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arrays are run as split plot experiments to reduce cost of experimentation (Box and Jones, 

2001). In some cases, the control factors are the wholeplot factors because they are more 

difficult to change whereas in other cases, the signal and noise factors are the wholeplot 

factors. Split-plot designs obtained by crossing regular two-level fractional factorial 

designs for the wholeplot and subplot factors can be analyzed using half-normal plots 

(Box and Jones, 2001). However, this simple analysis method has limited applicability 

because crossed arrays employed in practice often consists of highly fractionated control 

and signal-noise arrays with more than two-levels for some or all of the factors.  

In view of the high cost of experimentation and practical restrictions, the 

possibility of running a split plot experiment with fewer wholeplots than wholeplot 

effects and a small number of subplot runs is of important practical interest. Designs that 

are proposed to satisfy this need include fractional factorial split plot designs (Bingham 

and Sitter, 2003) and Taguchi’s split unit designs (Taguchi, 1987). Split unit designs are 

highly fractionated mixed-level designs derived from orthogonal arrays by grouping rows 

according to columns designated for wholeplot factors. These designs are difficult to 

analyze with most existing methods if two-factor interactions in addition to main effects 

are entertained.   

To address the above problems, we propose a Bayesian model selection 

methodology for analyzing any balanced split plot experiment, i.e., the number of 

subplots in each wholeplot is the same. In particular, it can be applied even if the design 

is nonorthogonal and the full model cannot be fitted due to insufficient number of runs. 

We enhance the conjugate hierarchical model for SSVS (George and McCulloch, 1997) 

to account for the split plot error structure. We derive an expression for the posterior 



 124

probability of a model that requires computation of at most two uni-dimensional 

integrals, and employ this quantity for model selection. We use forward selection (FS) to 

find good models in regular two-level fractional factorial experiments and propose a new 

algorithm, called combined global and local search (GLS), for more complex designs. 

GLS is an algorithm that searches for models with posterior probability above a threshold 

using a large and diverse set of starting points. While it explores the model space by 

changing the indicator components one at a time as in Gibbs sampling, it differs from 

Gibbs sampling because it uses large number of starting points and avoids unnecessary 

revisiting of the same models. Another attractive feature of GLS is that despite the fact 

that it is not a Markov Chain Monte Carlo (MCMC) method, it can be used for estimating 

posterior model probabilities using a simple procedure that we propose. To allow the 

proposed method to be automated and routinely used by practitioners, we propose default 

prior choices and show that they give good frequentist properties. Our approach is 

different from Bingham and Goh’s (2012) approach in a few ways. First, we use a 

different parameterization of the covariance matrix and a different prior for the model 

coefficients. Second, we give explicit expressions for the posterior model probability and 

other posterior quantities, and we propose novel algorithms for finding good models. 

Third, we apply the proposed method to real problems in RPD. Finally, we give more 

emphasis on default prior choices and frequentist properties. 

 This chapter is organized as follows. Section 4.2 introduces the sampling model 

for balanced split plot experiments. Section 4.3 gives the Bayesian hierarchical model 

and expressions for some posterior quantities. Section 4.4 discusses prior specification. 

Section 4.5 discusses model search algorithms and computational issues. Simulation 
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studies of the proposed method and analysis of three real split plot robust design 

experiments are given in Section 4.6. Concluding remarks are given in Section 4.7.  

 4.2 Split Plot Design and Sampling Model 

In this chapter, we assume that the split plot design is of the balanced type, i.e., 

there are � wholeplots and � subplots per wholeplot. This gives a total of � = �� 

observed response values. The wholeplot factor levels are denoted by M�û, … ,Mjû and the 

subplot factor levels for the @ ℎ wholeplot are denoted by M1�Ç , … ,M1	Ç . The corresponding 

values for the wholeplot and subplot effects levels are denoted by Ì�û, … , Ìjû and 

Ì1�Ç , … , Ì1	Ç  respectively, where Ì1û = Y
M1û� and Ì1Ç̈ = L:M1û,M1Ç̈ <.  We write the design 

matrix and vector of observations as 

q =

�
SS�
M�û,M��Ç⋮M�û,M�	ÇM�û,M��Ç⋮Mjû,Mj	Ç �

TT�, X = UX�⋮
Xj
V, X1 = 
�1�, … , �1	�d,          (4.1) 

where �1¨ is the response for the ^ ℎ subplot of the @ ℎ wholeplot. The corresponding 

model matrix for the full model, excluding the column of ones, is given by  

Z = �ZW�⋮
ZWj

�, where ZW1 = �
Ì1û, Ì1�Ç �
⋮


Ì1û, Ì1	Ç �
�.            (4.2) 

We assume that the columns of Z are centered and standardized so that the sum of 

squares of each of its � columns is �. For crossed array designs, the subplot treatment 

combinations are the same for all wholeplots. One of the arrays consists of the rows 

M�û, … ,Mjû, and the other consists of the rows M�Ç , … ,M	Ç. The design q is the Cartesian 

product of the two arrays. 
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The sampling model for a balanced split plot experiment is 

�1¨ = Ñ� + Ì1¨Í + ø1 + �1¨, @ = 1,… ,�, ^ = 1,… , �,         (4.3) 

where Ì1¨ = :Ì1û, Ì1Ç̈ <; Í is the � × 1 vector of regression coefficients; ø�, … , øj are the 

wholeplot errors, which are independent and identically distributed (iid) with common 

distribution �
0, 5û��; ���, … , �j	 are the subplot errors, which are iid �
0, 5Ç�� and 

independent of the wholeplot errors. 

 Assuming model (4.3) holds, the variance of an individual observation is 5� =
���
�1¨� = 5û� + 5Ç� and the correlation between subplot observations in the same 

wholeplot is I = r���
�1¨, �1£� = 5û�/
5û� + 5Ç��. Thus, observations from different 

subplots in the same wholeplot are positively correlated. It is easy to see that 

observations from different wholeplots are independent. 

 Variable selection can be an important problem for fractionated split plot designs 

that are used to study a large number of factors. Due to the large number of effects, it is 

desirable and perhaps necessary to identify a sparse model rather than to include all 

effects in (4.3).  However, due to the error structure of (4.3), many variable selection 

techniques cannot be applied to this problem. 

4.3 Bayesian Hierarchical Model for Variable Selection 

In this section, we present the proposed Bayesian hierarchical model, and derive 

expressions for the posterior probability of a model and some other posterior quantities. 

In the following two sections, we discuss prior specification and model search. It is clear 

from the discussion in Section 4.2 that X|Ñ�, Í, 5�, I~�:Ñ�ë + ZÍ, 5�ÖX<, where ë is a 

vector of ones,  
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ÖX = àj⨂�1 I ⋯ I
I 1 ⋯ I
⋮
I

⋮
I ⋱

⋯
⋮
1
�                      (4.4) 

is the � × � correlation matrix and àj is the � × � identity matrix.  

The main inference problem is the identification of important effects, i.e., variable 

selection. Thus, as in George and McCulloch (1993), we introduce an indicator vector �, 

where a 1 in position @ indicates that effect @ is large and a 0 in position @ indicates that 

effect @ is small. In other words, when 81 = 1, effect @ is included in the model and when 

81 = 0, it is not. Note that there are alternative Bayesian variable selection approaches 

that do not use indicators (see the review paper by O’Hara and Sillanpää (2009)). 

Following the conjugate hierarchical setup of George and McCulloch (1997), we let  

Í|5�, �, r~�:¯, 5�-�,á<,            (4.5) 

where -�,á is a diagonal matrix given by -�,á = �@��{rþ
81 = 1� + �þ
81 = 0�}, r is 

given a prior �
r� concentrated on values larger than �, and � is a small nonnegative 

number. Thus, conditioned on 81 = 1, r and 5�, Ñ1 will have variance r5� and 

conditioned on 81 = 0 and 5�, Ñ1 will have variance �5�. As in SSVS, we let �
Ñ�� ∝ 1, 

�
5�� ∝ 
5���À[b��Á�2� À− \]
�<bÁ,           (4.6) 

�
�� = �‖�‖a
1 − ��Ð�‖�‖a.            (4.7)  

Finally, we set the joint prior for the parameters Ñ�, Í, 5�, �, r, I as   

�
Ñ�, Í, 5�, �, r, I� = �
Ñ���
Í|5�, �, r��
5���
���
I��
r�,                  (4.8) 

where �
I� and �
r� are the priors of I and r. Choices of �
��, �
r�, �
I� and �, ̂ , � 

shall be discussed in the next section. Note that unlike the parameter r, the parameter � is 

a fixed value. 
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 The primary objective of this chapter is to address the problem of model selection 

for a split plot experiment with many effects of interest. This objective can be achieved 

by finding one or more models that have high posterior probability �
�|X�. We shall 

search for models with high posterior probability using the FS and GLS algorithms to be 

discussed in Section 4.5.  

However, identification of good models is not sufficient for achieving the goals of 

robust design experiments. The engineer also needs to be given point estimates and 

credible intervals of effects. Inference on Í based on �
Í|X, ��∗�, where ��∗  is the highest 

posterior probability (HPP) model, is the natural step after model selection if there is not 

too much model uncertainty. If model uncertainty is high, then inference on Í should be 

based on �
Í|X, � ∈ ℳ�, where ℳ is a set of high probability models. It is also useful to 

perform conditional inferences on Í based on �
Í|X, �� for each � ∈ ℳ in cases where 

the intention is to interpret effects, predict, or optimize based on each model separately to 

compare the results. In this chapter, we provide an expression for computing �
Í|X, �� 
and show that �
Ñ1|X, �� is a mixture of  -distributions. The latter fact is used to 

construct credible intervals for Ñ1. Since we can compute �
Ñ1|X, �� exactly and �
�|X� 
up to a proportionality constant, we can also compute �
Ñ1|X, � ∈ ℳ� using the relation 

�
Ñ1|X, � ∈ ℳ� = ∑ �
Ñ1|X, ���
�|X�	�∈ℳ /∑ �
�|X�	�∈ℳ . 

Aside from model selection and effect estimation, the experimenter may be 

interested in estimating the quantity I also. This is important for the optimal design of 

follow-up runs (Goos, 2002), which may be needed when there is substantial model or 

parameter uncertainty. Point and interval estimates can be obtained with �
I|X, � ∈
ℳ� = ∑ �
I, �|X�	�∈ℳ /∑ �
�|X�	�∈ℳ .  
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The problem of computing the posterior distribution of the indicator and other 

parameters is computationally challenging. A commonly used method is MCMC as in 

SSVS. However, we are able to integrate out 
Í, 5�� from the joint posterior distribution 

of all parameters because we use the normal-inverse gamma prior for these parameters. 

This allows us to derive expressions for the posterior model probability (see (4.10)) and 

other posterior quantities of interest (see (4.11)-(4.14)) that require evaluation of at most 

two uni-dimensional integrals. Consequently, the use of MCMC is not necessary. 

Integrals are computed with Gaussian quadrature, and simple but reliable search 

algorithms are employed to find models with high posterior probabilities. This approach 

eliminates the need for convergence diagnostics, and allows the method to be automated 

and routinely used by unsophisticated practitioners. 

In the following, we shall state results about various posterior quantities of 

interest. We give the joint posterior distribution of all parameters �
Ñ�, Í, 5�, �, r, I|X� 
in Proposition 4.3.1. This can be used to derive all other posterior distributions of interest. 

Proposition 4.3.2 gives the posterior distribution of the indicator �
�|X�. The posterior 

distribution of the effects given the indicator �
Í|X, �� and the corresponding marginal 

distribution �
Ñ1|X, �� are given in Propositions 4.3.3 and 4.3.4. Lastly, the posterior 

distribution of the correlation parameter �
I|X, � ∈ ℳ� is given in Proposition 4.3.5. 

These propositions give important quantities for the analysis of a split plot experiment. 

Proofs are outlined in Section D.2 of Appendix D. Note that several other quantities such 

as the posterior distribution of Ñ� + ÌÍ can be derived from the results given below. 

Proposition 4.3.1: The joint posterior distribution of 
Ñ�, Í, 5�, �, r, I� is 

�
Ñ�, Í, 5�, �, r, I|X� ∝ '
Ñ�, Í, 5�, �, I|X��
Ñ���
Í|5�, �, r��
5���
���
I��
r� 
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∝ 
5���
¡�Ð�ï���/�=ÖX=��/��2� À− \]�����,(,_
�<b Á �2� �− �

�<b :Í −`�,á,X<da�,á,X�� :Í −

`�,á,X<� �2� b− 
c#�æ,�b
�<b:ëdÖ_oaë<oae =-�,á=��/��
���
I��
r�,        (4.9) 

where '
Ñ�, Í, 5�, �, I|X� is the likelihood, 

a�,á,X = -�,á − -�,áZd:ÖX + Z-�,áZd<��Z-�,á, ̀ �,á,X = a�,á,XZdÖX��
X − XÅ�, XÅ = �,ë, 

�, = ∑ ∑ �1¨	̈k�j1k� /�, uQQ�,á,X = 
X − XÅ�d:ÖX + Z-�,áZd<��
X − XÅ�, and ëdÖX��ë =
¡

��
	���X. 

Proposition 4.3.2: The posterior distribution of � is given by 

�
�|X� = � � �
�, r, I|X��
� �r�I�

� ∝ � � x^�+ uQQ�,á,Xy�
¡���ï�/�=Z-�,áZd +�
�

�
�

ÖX=��/�:ëdÖX��ë<��/��
���
I��
r��r �I.              (4.10) 

Proposition 4.3.3: The posterior distribution of Í conditional on � is given by 

�
Í|X, �� = ô � �  :Í;`�,á,X, 
� + � − 1���:^� + uQQ�,á,X<a�,á,X, � + � − 1<�
�

�
�   

:^� + uQQ�,á,X<�
¡�ï���/�=ÖX + Z-�,áZd=��/�:ëdÖX��ë<��/��
I��
r��r�I,   (4.11) 

where  :Í; g̀ ,aW, �Þ< = hÀ[g10b ÁhÀ[gbÁ
ïÞ�0/b�0/b =aW=��/� �1 + �
¡�ï�� 
Í − g̀ �daW��
Í − g̀ ���
ïÞ�Ð�/�

 

is the multivariate   probability density function with mean ̀g , scale matrix aW and �Þ 
degrees of freedom, and 

ô =

�� � :^� + uQQ�,á,X<�
¡�ï���/�=Z-�,áZd + ÖX=��/�:ëdÖX��ë<��/��
I��
r��
� �r�I�

� ���
. 

Remark: The distribution Í|X, � is a mixture of multivariate   distributions with weight 

function 
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»
r, I� = ô:^� + uQQ�,á,X<�
¡�ï���/�=Z-�,áZd + ÖX=��/�:ëdÖX��ë<��/��
I��
r�. 
Corollary 4.3.1: The posterior mean of Í conditional on � is given by 

�
Í|X, �� = � � `�,á,X�
�

�
� »
r, I��r�I.        (4.12) 

Proposition 4.3.4: Let }1 denote the @ ℎ component of ̀ �,á,X, Ò1 denote the @ ℎ 

diagonal element of 
� + � − 1���:^� + uQQ�,á,X<a�,á,X. Then, �
Ñ1|X, �� =
� � »
r, I� 
Ñ1;}1, Ò1 , � + � − 1��

�
�
� �I�r, where  
Ñ1;}1 , Ò1 , � + � − 1� is the 

univariate  -distribution with mean }1, scale Ò1, and � + � − 1 degrees of freedom. 

Thus,  

±
Ñ1 ≤ 2|X, �� = � � »
r, I�±: ¡�ï�� ≤ 
2 − }1�/ýÒ1<�
�

�
� �I�r,      (4.13) 

where  ¡�ï�� is a   random variable with mean 0, scale 1, and � + � − 1 degrees of 

freedom. 

Proposition 4.3.5: The posterior distribution of correlation parameter I conditional on 

� ∈ ℳ is given by 

�
I|X, � ∈ ℳ� ∝ ∑ � x^� + uQQ�,á,Xy�
¡���ï�/�=Z-�,áZd + ÖX=��/��
�

	�∈ℳ    

:ëdÖX��ë<��/��
r��r�
���
I�.                (4.14) 

4.4 Prior Specification 

This section discusses the problem of prior specification. 

i. Choice of �
I�: The key feature of the proposed Bayesian hierarchical model that 

distinguishes it from SSVS is the correlation parameter I. An obvious choice for �
I� is 

the beta prior, i.e., 
I� ∝ I���
1 − I�>�� . In this chapter, we set � = � = 2 so that 

�
I� is symmetric with a mode of 0.5. This has the effect of pulling the posterior mode 
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of I towards 0.5 when the data are scarce. An alternative choice of 
�, �� is � = � = 1, 

which yields a uniform prior for I. This choice tends to yield a posterior mode of I 

closer to 0 or 1 than the previous choice. Large values of � and � are not recommended 

since the beta distribution becomes more concentrated as � and � get large. 

If I has a prior concentrated near 0, models with large ratios of number of 

wholeplot effects to subplot effects are favored since the wholeplot error variance is 

small compared to the subplot error variance. Conversely, a prior for I concentrated near 

1 will favor models with relatively fewer wholeplot effects. If we set I = 0 or I = 0.99 

(if I = 1, the covariance matrix for X would be singular), we would observe two 

opposite and extreme behaviors in the model selection process. With little data available, 

a prior for I with mode at 0.5 such as the beta prior with � = � = 2 is recommended. 

This can help avoid extreme behavior in the model selection process.  

ii.  Choice of �
r�: We use a discrete uniform prior for r with support  

{
1/2��, 
3/4��, 1�, 2�, 3�, 4�, 5�}.          (4.15) 

We have found that results obtained with a fixed value of r can be sensitive to the choice 

of r. If one fixed value of r is used, a large value of r (so that √r5 is large relative to 

most nonzero Ñ1’s) tends to favor (usually sparse) models with large effects. In this case, 

small effects can be missed. On the other hand, small values of r tend to favor less sparse 

models. However, a very small value of r would again favor sparse models possibly 

because the Bayesian model does not support the hypothesis of a true model with many 

effects that are considerably larger than √r5. The support (4.15) of the proposed prior for 

r covers both small and large values of r. Thus, for the discrete uniform prior proposed 

above, results obtained are averaged over small and large values of r.  
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iii.  Choice of �, � and �: In this chapter, we set � = � = � = 0. Note that � = � = 0 

yields the common noninformative prior for 5� while � = 0 implies that we set Ñ1 = 0 if 

81 = 0. These choices are also employed by Box and Meyer (1993). The results given in 

Section 4.3 are derived assuming that Í|5�, �, r has a density, i.e., � > 0. However, the 

expressions for �
�|X�, �
Í|X, ��, �
Í|X, ��, �
Ñ1|X, ��, and �
I|X,ℳ� given in 

Propositions 4.3.2-4.3.5 and Corollary 4.3.1 are well defined for � = 0. The choice 

� = 0 in each of these expressions can be interpreted as the limiting value as � → 0. In 

addition, these results can also be obtained by employing a degenerate normal prior for 

Í|5�, �, r, where conditional on 5�, �, and r, Ñ1 = 0 if 81 = 0 and the other Ñ1’s are iid 

normal with mean 0 and variance r5�. 

iv. Choice of � in (4.7): Following the recommendation of Box and Meyer (1993), we set 

� = 0.25. We have found that this choice works well. However, other values of � can be 

tried. For example, to avoid missing important effects, one may want to try � = 0.5. 

Although this chapter employs iid Bernoulli priors for the 81’s, alternative forms of �
�� 
such as the heredity prior proposed by Chipman et al. (1997) and a beta-binomial prior 

can also be employed. 

Remark: Some papers (e.g., Gelfand et al. (1990)) on Bayesian variance components 

models employ independent priors for 5û�  and 5Ç�. However, it seems that in many 

experiments, if 5û�  is large, then 5Ç� should also be large and vice versa. For example, 

suppose a wholeplot is a batch of material and a subplot is a smaller quantity taken from 

a batch. Then, if the batches are manufactured by an unstable process so that variation 

between batches is large (5û�  is large), within batch variation would likely be large also 

(5Ç� is large). The proposed prior �
I, 5�� ∝ I���
1 − I�>��/5� reflects this 
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relationship between 5û�  and 5Ç�. It can be shown that �
5û� |5Ç�� = 5Ç��/
� − 2� if � > 2 

and the mode of �
5û� |5Ç�� is } = }�2{5Ç�
� − 1�/�, 0}. Thus, �
5û� |5Ç�� is 

proportional to 5Ç� for � > 2 and the mode is proportional to 5Ç� for � > 1. This implies 

that a large 5Ç� tends to give rise to a large 5û�  and vice versa. 

4.5 Computation Strategies 

This section proposes two algorithms for model search: FS and GLS. Some issues 

in computing the posterior quantities given in Section 4.3 are also discussed.  

4.5.1 Forward Selection Algorithm 

For regular two-level fractional factorial designs, we propose the use of a FS 

algorithm, i.e., a greedy optimization algorithm, to find models that have a high posterior 

probability �
�|X�. Because the normalization constant for �
�|X� given by (4.10) is not 

known, we cannot compute �
�|X�. Our implementation of FS maximizes the log 

posterior odds ratio j
�� = ln��
�|X�/�
¯|X�
, which is equivalent to maximization of 

�
�|X�. The simple procedure is given below: 

FS Algorithm 

1. Start with � = ¯, the null model. Set þ = {} and k = {1,… , �}. 
2. Find the term @∗ ∈ k that, when added to the current model, yields the largest 

posterior odds ratio, i.e., @∗ = ���}�21∈lsj:�5∪{1}<t. Set þ = þ ∪ {@∗} and 

k = k\{@∗}. 
3. Repeat Step 2 a total of � times. This generates a set of � models (one model of 

each size). 

4. Choose from the � models the one with the highest positive posterior odds ratio 
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j
��. If there are no models with positive j
��, choose the null model. 

Note that if �, the prior probability that an effect is active, is increased, larger models 

tend to be favored and the HPP model may change. However, the sequence of effects 

entered into the model will remain the same if the value of � is changed. This is because 

for a given model �, a change in � from �� and �� merely increase j
�� by ‖�‖�{ln���/

1 − ���
 − ln���/
1 − ���
}.  

4.5.2 Global and Local Search Algorithms 

 For designs that do not give independent effect estimates, FS often yields poor 

models. In such cases, we use GLS, which consists of a global search (GS) algorithm and 

a local search (LS) algorithm: 

Global Search (GS) Algorithm 

1. Start with an indicator �á = �� ∈ q�#. Set U = −∞. 

2. For @ = 1, … , �, obtain �1 from �á by switching the value of 81á (from 0 to 1 or 1 

to 0). 

3. Find @∗ = ���}�21sj:�1<t.  
4. If j:�1∗< ≤ U, stop and return �oÐN = �á. Otherwise, set �á = �1∗, U = j
�á� and 

go to Step 2. 

5. Repeat Steps 1-4 for each �� ∈ q�#. In this chapter, we take q�# to be a 100-run 

maximin design on the model space {0,1}Ð.  

Local Search (LS) Algorithm 

1. Specify   and compute the minimum acceptable criterion value �v�� =
�
���∗ � − ln  , where ���∗  is the HPP model found by GS.  

2. Start with þ = {�oÐN} and k = {�oÐN}, where �oÐN is a local optimal solution found 
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with GS such that j
�oÐN� ≥ �v��. Set �� = �oÐN. 

3. For @ = 1, … , �, obtain �1 from �� by switching the value of 81� (from 0 to 1 or 1 

to 0). If �1 ∉ þ and j:�1< ≥ �v��, set þ = þ ∪ {�1} and k = k ∪ {�1}. 
4. Set k = k\{��}. If k is empty or if |þ| ≥ 10", stop and return þ. Otherwise, set �� 

equal to the first element in k and return to Step 3. 

5. Repeat Steps 2-4 for each �oÐN that satisfies j
�oÐN� ≥ �v��. 

Note that GS returns a local optimal solution �oÐN for each given starting 

indicator ��. Given the current indicator �á (which is initialized as ��), it finds an 

adjacent vector (one that differs from �á in only one component) that gives the largest 

improvement over j
�á�. The best adjacent indicator becomes the current indicator, and 

the process is repeated until no further improvements can be achieved. The set q�# of 

starting indicators �� for the GS algorithm can have an important influence on the results 

obtained with the algorithm. We have found that a maximin design (Santner et al., 2003) 

on the model space {0,1}Ð is a better choice for q�# than a randomly generated design 

because GS with q�# tends to consistently give good models whereas GS started from 

random indicators do not. To generate a maximin design, we generate a large number 

(usually 10,000) of random designs, where the components of each design are sampled 

from independent Bernoulli distributions with success probability 0.5. For each design, 

we compute the minimum pairwise distance between design runs, and then pick the 

design with the maximum pairwise distance. We recommend taking q�# to be a design of 

100 runs because we have found that results obtained with this choice tend to be good 

(finds most or all good models) and consistent (very similar results for all replicates). 

However, our experience indicates that the design size may need to be increased for 
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experiments with � > 30 and � < �. 

The local search (LS) algorithm searches around the good local optimal solutions 

(�oÐN that satisfies j
�oÐN� ≥ �v��) for good models (� that satisties j
�� ≥ �v��). 

We take �v�� = �
���∗ � − ln  , where ���∗  is the HPP model found by GS and   is a 

constant that we choose (note that ���∗  is not necessarily the true HPP model over the 

entire model space). This implies that we are only interested in models that have posterior 

probabilities at least 1/  times that of the HPP model. Note that Madigan and Raftery 

(1994) have also proposed a search technique to find graphical models that meet the 

�v�� requirement. The LS algorithm builds up a set of models þ whose log posterior 

odds is at least �v��, and then conducts further local searches around each of those 

models. The main difference between GS and LS is that LS is willing to explore sub-

optimal models (i.e. those whose log posterior odds is at least �v��), while GS only 

follows paths through the model space that increase the posterior probability. We have 

found that when there is substantial model uncertainty and   is large, the set þ can grow 

very large, causing the algorithm to be unable to terminate within a reasonable amount of 

time. To circumvent this problem, we terminate LS when þ contains 10" or more models.  

 GLS has a few potential advantages over Gibbs sampling (Heaton and Scott, 

2010). Firstly, it can be more efficient computationally. Since LS systematically explores 

neighboring models, it does not reevaluate the same models. While GS may revisit the 

same models when restarted from different points, it terminates each time it finds a local 

optimum. In contrast, Gibbs sampling would revisit high probability models frequently. 

Secondly, when there is a large number of good models that contain very different effects 

(i.e., when there is a large number of good locally optimal solutions), GLS can efficiently 
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discover these models. In contrast, an MCMC chain based on Gibbs sampling may get 

stuck around one of the locally optimal solutions. This creates the need for convergence 

assessment using multiple starting points and running Markov chains of long lengths. 

4.5.3 Estimation of Posterior Model Probabilities 

 Note that the posterior probability of a model � is �
�|X� = 
�2���
��
, where 
 

is a normalization constant. We use the following method to estimate posterior 

probability. Let ��∗ , … , �pq∗ , where �
��∗|X� > ⋯ > �:�pq∗ =X<, be the models found by 

GLS with �v�� = �
���∗ � − ln  . Then,   

�:�̈∗=X< ≤ MN:�̈∗< = �2�x�:�̈∗<y/s∑ �2���
�1∗�
pq1k� t.               (4.16) 

If for each   in a sequence of increasing values  , GS finds the same HPP model (so that 

�
���∗ � is constant and �v�� decreases), and GLS finds all models � such that �
�� ≥
�v��, then MN:�̈∗< is monotone decreasing and limN→� MN:�̈∗< = �:�̈∗=X<. This gives a 

method to estimate �:�̈∗=X<:  

1. Run GLS for a sequence { �, … ,  \} of increasing values of  . We recommend 

taking  £ = Gz with G = 50 and W = 4.  

2. Stop if either sMNa
��∗�,… , MNc
��∗�t is not monotone nonincreasing or ���∗ ≠ ��∗  or 

the top � models do not remain the same (if less than � models are found when 

 =  £, then check that no additional models found with  =  £�� meet the �v�� 

requirement with  =  £). In this case, the size of q�# needs to be increased 

because GLS does not give consistent results. 

3. Estimate �:�̈∗=X< with �Þ:�̈∗=X< = MNc:�̈∗<. Alternatively, use the model 

Φ
���MN
��∗�
 = {� + {�/√ , where Φ
∙� is the standard normal cdf. In this case, 
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estimate �
��∗|X� with �̂
��∗|X� = Φ
{6��, where {6� is the least squares estimate 

of {�, and �:�̈∗=X<, ^ > 1 with �̂:�̈∗=X< = ��̂
��∗|X�/�Þ
��∗|X�
�Þ:�̈∗=X<. Note that 

�
I|X, � ∈ ℳ� and �
Ñ1|X, � ∈ ℳ� can be computed with ℳ equal to the top } 

models in ���∗ , … , �pqc∗ � such that ∑ �̂
�1∗|X�°1k�  is large.  

Remark 1: We recommend G = 50 and W = 4 because we have found that M���
��∗� is 

often quite close to �
��∗|X�. The decrease in MN
��∗� tends to be slow for   greater than 

100. Moreover, as   increases, the set of models that satisfy the �v�� requirement 

increases, which can make GLS time-consuming.   

Remark 2: Step 2 ensures that q�# is large enough so that GS consistently finds the HPP 

model returned by GLS, and GLS consistently finds the top � models, where � should 

be large enough to include the top few models with high posterior probabilities. We take 

� ≥ 10 for all examples in this chapter. 

Remark 3: The model Φ���MN
��∗�
 = {� + {�/√ , where {� > 0, is accurate for 

estimating �
��∗|X� in simulations we performed. Moreover, it is also well-behaved. 

Since limN→�:{� + {�/√ < = {�, �
��∗|X� = M�
��∗� is estimated with Φ
{��, which is 

in 
0,1�. 

4.5.4 Other Computation Issues 

Computation of �
�|X� given in (4.10) and the posterior mean and credible 

intervals for the components of Í�∗ via (4.12) and (4.13) require evaluation of low 

dimensional integrals. Because we use a discrete uniform prior for r, all integrals with 

respect to r in (4.10)-(4.14) can easily be replaced with finite sums. However, 

computation of (4.10)-(4.13) requires integration with respect to I. We compute this uni-
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dimensional integral using the Gaussian quadrature method (Miller and Rice, 1983). 

Since �
I� has a beta distribution and all moments of the beta distribution can be 

computed with a simple recursive formula, we can easily compute an '-point discrete 

approximation to �
I� such that the first 2' − 1 moments of the discrete approximation 

match that of the beta distribution. Details of the procedure for doing this is given in 

Section D.3 of Appendix D. Denote the support points of the discrete approximation by 

��, … , �õ and the corresponding probability masses by ��, … , �õ. Then, this discrete 

approximation is used in place of �
I��I to compute integrals. An '-point 

approximation will give exact values of integrals with respect to �
I��I if the integrand 

is a polynomial of degree 2' − 1 or less. Thus, the use of a small ' is sufficient to 

approximate the integrals (4.10)-(4.13) accurately. In this chapter, we use ' = 5. 

The integrand of the unnormalized posterior probabilities �
�|X� given by (4.10) 

tends to be extremely small in value. Thus, to improve computation accuracy, the 

logarithm of the integrand should be computed at the support points of �
r� and the 

discrete approximation of �
I�. Then, a constant should be subtracted from each of the 

quantities before they are exponentiated and summed. We take the constant as the value 

obtained in the first evaluation of the integrand in the computation of �
¯|X�.   

4.6 Examples 

This section gives simulation studies of the performance of the proposed method 

and analyzes some real split plot RPD experiments using the method. The first example 

presents a simulation study of the Type I and Type II errors of the proposed method. We 

also study the effectiveness of GLS as a search algorithm and the accuracy of the method 

for estimating posterior model probabilities given in Section 4.5.3. The second example 
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is the well-known Ina tile experiment, which is a fractional factorial split plot experiment. 

In the third example, we analyze an RPD experiment for a heat-exchanger fan casing, 

where the signal and noise factors are subplot factors and the control factors are 

wholeplot factors. Experiments with signal and noise factors as subplot factors and 

control factors as wholeplot factors are useful and convenient in RPD. They are useful 

because the control-by-noise and control-by-signal interactions are estimated with lower 

statistical error. They are convenient because it is easier to test one product under 

multiple noise/signal conditions than to test different products under each noise/signal 

condition. The fourth example analyzes a rather complex split unit experiment reported 

by Taguchi (1987). In the second and third examples, we compare the results obtained 

using a �� �
2,2� prior for I (see Section 4.4) and the results obtained with I = 0 to 

assess the consequences of ignoring the split plot error structure. We call the HPP model 

obtained with the former and latter priors the split plot analysis (SPA) model and 

completely randomized analysis (CRA) model respectively.  

4.6.1 Example 4.1: Simulation Experiments 

4.6.1.1 Study of Type I and Type II Error Achieved with Proposed Approach 

We perform simulation experiments to study the frequentist performance of the 

proposed method under the default choice of priors. In the first experiment, the split plot 

design is obtained by crossing a 2! design for wholeplot factors A, B and C, and a 2� 

design for subplot factor D. There are seven wholeplot effects and eight subplot effects 

(15 factorial effects in total). Data are generated from two mean models: a model with 

active effects B,C,AB,D,AD,CD,BCD (Model 1) and a model with active effects 

B,C,AB,D,AD,CD (Model 2). Model 1 contains three wholeplot effects (B,C,AB) and 
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four subplot effects (D,AD,CD,BCD) whereas Model 2 contains one less subplot effect. 

We fix 5� = 1, set all inactive effects to 0, and set all model coefficients of active effects 

to Ñ = Hý5�ïâ�  , where 5�ïâ�  is the average of the variances of the generalized least 

squares estimators of the nonzero coefficients. Both H and I are changed according to a 

3� factorial design shown in Figure 4.1. Each of the nine combinations in the 3� design is 

plotted as a circle in the figure. For each 
H, I�, we perform 100 simulations. The exact 

value of Ñ depends on both H and I but it mainly depends on H. In particular, Ñ is in the 

range of 0.71-0.75 when H = 3, 1.41-1.5 when H = 6, and 2.12-2.25 when H = 9. In each 

simulation, we generate a set of response values and apply the FS algorithm. We use FS 

because in our experience, both FS and GLS always give the same best models for two-

level regular fractional factorial designs. We compare the results with Lenth’s method 

(Wu and Hamada, 2009; Lenth, 1989) because it is a popular method for testing effects in 

unreplicated fractional factorial designs. Critical points that give individual error rates 

(IER) (see Wu and Hamada (2009) for a definition) of 0.1 and 0.05 for Lenth’s method 

are employed and the same IER is applied to test wholeplot and subplot effect estimates.  

 

 
Figure 4.1: Type I and Type II Error Rates for Proposed Method (Bayesian (FS)) and 

Lenth’s Method with IER=0.1 and IER=0.05 (Lenth IER0.1, Lenth IER0.05); 
H, I� ∈
{3,6,9} × {0.2,0.5,0.8}; Model 1 (left) and Model 2 (right) 

3 6 9

0.2

0.5

0.8

η

ϕ

O
0.5         87.1

0.3         75.0

0.0         87.1

Bayesian (FS)

Lenth IER0.1

Lenth IER0.05

O
0.3         79.4

0.5         70.0

0.1         80.6

Bayesian (FS)

Lenth IER0.1

Lenth IER0.05

O
1.3         51.0

1.8         65.1

0.9         73.9

Bayesian (FS)

Lenth IER0.1

Lenth IER0.05

Type I     Type II

O
1.1         53.4

0.9         59.9

0.5         64.3

O
0.8         37.6

3.3         59.4

1.3         62.4

O
1.0         13.3

3.0         60.0

1.5         62.9

Type I     Type II

O
0.5         15.0

3.8         57.3

1.1         58.1

O
0.8          5.0

2.5         57.1

1.0         58.4

O
0.5          0.0

5.1         57.1

2.9         57.6

Type I     Type II

23x21 Design, Model 1

3 6 9

0.2

0.5

0.8

η

ϕ

O
0.8         73.8

0.6         52.5

0.3         71.2

Bayesian (FS)

Lenth IER0.1

Lenth IER0.05

O
1.9         63.0

2.6         46.5

1.6         62.2

Bayesian (FS)

Lenth IER0.1

Lenth IER0.05

O
2.4         35.3

5.0         34.5

1.7         43.3

Bayesian (FS)

Lenth IER0.1

Lenth IER0.05

Type I     Type II

O
3.2          5.3

5.7          6.8

2.8         17.7

O
2.1          2.0

4.2          9.5

1.8         16.8

O
3.1          1.2

4.8         13.8

2.7         25.3

Type I     Type II

O
1.4          0.0

7.2          0.3

3.1          2.5

O
1.2          0.0

6.6          0.8

3.9          5.3

O
3.2          0.0

8.2          5.8

4.9         12.3

Type I     Type II

23x21 Design, Model 2



 143

For each simulation run, the Type I and Type II errors of the HPP model are 

computed. The Type I error is the percentage of inactive effects identified as active 

(number of inactive effects in HPP model/number of inactive effects) and the Type II 

error is the percentage of active effects identified as inactive. The averages of the Type I 

and Type II errors for the 100 simulation runs for each combination of 
H, I� are plotted 

in Figure 4.1. Similar plots that give detailed breakdown of the Type I and Type II errors 

in terms of wholeplot and subplot effects are given in Section D.1 of Appendix D. In 

Figure 4.1, the proposed method is denoted by Bayesian (FS) and Lenth’s method with 

IER=0.1 is denoted by “Lenth IER0.1” (similarly for IER=0.05). Figure 4.1 shows that 

the Type I error is relatively low for all methods and combinations of 
H, I�. The Type II 

error changes more dramatically. For H = 3, the Type II errors for all methods are 

intolerably large (for Model 1, it ranges from 50 to 90 percent). Therefore, it is not 

meaningful to rank order the methods. However, as H increases to 6 or 9, the Type II 

error of the proposed method becomes acceptable except when 
H, I� = 
6,0.2� or 


6,0.5� for Model 1. The proposed method performs better as I increases. It can also be 

seen that the error rates for Model 2 are in general lower than those for Model 1 since 

Model 2 is sparser. 

Figure 4.1 indicates that when H equals 6 or 9, or when I = 0.8, the proposed 

method outperforms Lenth’s method. The improvement in Type II error can be very large 

(up to about 57 percent when 
H, I� = 
9,0.8�) in the case of Model 1 and sizeable in the 

case of Model 2. For Model 2, the proposed method dominates Lenth’s method with 

IER=0.1 when H ≥ 6. In addition, it has Type I error comparable to that of Lenth’s 

method with IER= 0.05 but smaller Type II errors when H ≥ 6. For Model 1, the Type II 
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error for Lenth’s method remains large even as H increases. This large Type II error is 

due to the failure of the method in detecting active subplot effects (Figure D.2, Appendix 

D shows that the Type II error for subplot effects is almost always 100 percent). The 

reason is that Lenth’s method relies on the median of absolute values of the effects to 

screen out large effects, and for Model 1, there are four active subplots out of a total of 

eight subplots effects. Consequently, the median must be contaminated with active 

subplot effects. In comparison, the proposed method does not suffer from this problem. 

However, it does incur a higher wholeplot Type II error for 
H, I� = 
6,0.2�, 
6,0.5�, 

9,0.2�. For Model 2, the gains in Type II error achieved with the proposed method 

mainly arise from the improvement in wholeplot Type II error for H = 6,9 (Figure D.1, 

Appendix D).  

For the second experiment, the experimental design is a split plot design 

constructed from an OA
27, 3&� (Table D.1, Appendix D) used by Taguchi (1987) (page 

264). This design has � = 9 wholeplots and � = 3 subplots per wholeplot, and it is not a 

crossed array. Factors A-D are wholeplot factors and factors E-J are subplot factors (there 

is no factor I). The set of candidate effects consists of the linear and quadratic effects of 

each factor and all linear-by-linear interactions. This gives a total of 54 effects, 14 of 

which are wholeplot effects. Data are generated from two mean models: Model 3, which 

has active effects Al, El, Aq, Eq, AlEl, and Model 4, which has active effects Bl, Fl, Jl, 

Bq, Gq, AlGl, BlDl, DlEl, DlJl. Model 3 satisfies the strong heredity principle (Wu and 

Hamada, 2009) but Model 4 does not. Moreover, Model 4 is also larger. Thus, we would 

expect variable selection to be difficult with Model 4. Values of 5�, Ñ, and the 

experimental design for 
H, I� are as in the first experiment. For each 
H, I�, we perform  



 145

 
Figure 4.2: Type I and Type II Error Rates for Best Model Found with GS; 
H, I� ∈

{3,6,9} × {0.2,0.5,0.8}; Model 3 (left) and Model 4 (right) 
 

50 simulations. We perform a smaller number of simulations because they are very time 

consuming. In each simulation, we apply GS and FS. We found that GS almost always 

gives a HPP model with higher log posterior odds, and such a model tends to be better in 

terms of Type I and Type II errors (see next section). Note that we use GS instead of GLS 

because we focus only on evaluating the HPP model that is found and we find it 

computationally convenient. The HPP model ��∗  found with GLS is almost always the 

HPP model ���∗  found with GS and the former is at least as good as the latter.  

Figure 4.2 plots the Type I and Type II errors achieved with the HPP model 

returned by GS. Plots that breakdown the Type I and Type II errors in terms of wholeplot 

and subplot effects are given in Section D.1 of Appendix D. For Model 3, all errors, 

except possibly the Type II errors at H = 3, are small. For Model 4, the Type I errors are 

small but the Type II errors are very high for H = 3. However, the Type II errors are 

tolerable for H = 6,9.  

In summary, the simulations above suggest that the proposed method can do well 

in terms of Type I error in many cases since it maintains a Type I error below 10 percent 

for all experiment runs. The Type II error would be low when the effects are sufficiently 
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large (H ≥ 6) and the true model is sufficiently sparse. Even in the case of unreplicated 

fractional factorial split plot designs, it is advantageous to use the proposed method since 

it can outperform Lenth’s method. 

4.6.1.2 Comparison of GS and FS 
 
 In this section, we compare GS (with 100 starting points obtained from a maximin 

design) and FS in terms of the capabilities of the algorithms in finding good models. We 

have mentioned that both algorithms seem to always give the same best models for two-

level regular fractional factorials. However, we have found that for designs with 

correlated effect estimates, FS can yield suboptimal models that are very different from 

the HPP model found by GS. This point is aptly demonstrated by an analysis of some of 

the results of the simulations reported in Section 4.6.1.1, specifically those for Model 4. 

In each of the 50 simulations for a given 
H, I�, GS and FS are applied to the 

same randomly drawn response vector. This allows a pairwise comparison of GS and FS. 

Let ���∗  and ���∗  be the HPP models found with GS and FS. Then, we have 50 pairs of 

�
���∗ � − �
���∗ � for each experiment run. The mean ���
���∗ � − �
���∗ �
 of �
���∗ � −
�
���∗ � is given in the fourth column of Table 4.1. This should be compared with the 

mean ���
���∗ �
 and standard deviation � ���
���∗ �
 of �
���∗ � given in the second and 

third columns of Table 4.1. It can be seen that ���
���∗ � − �
���∗ �
 is relatively large 

compared to ���
���∗ �
 and � ���
���∗ �
. The number of times �
���∗ � − �
���∗ � ≥ 0 

and the number of times �
���∗ � − �
���∗ � > 0 are given in the fifth and sixth columns of 

Table 4.1.We see that except in one simulation, �
���∗ � is at least as good as �
���∗ � and 

the former is larger in value most of the time. 
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Table 4.1: Summary Statistics for �
���∗ � and �
���∗ � − �
���∗ � 
Run 

�
���∗ � �
���∗ � − �
���∗ � 
Mean Std. Dev. Mean No. ≥0 No. >0 

1 3.89 2.80 1.05 50 30 
2 4.02 3.11 0.88 49 31 
3 6.61 2.85 2.36 50 44 
4 8.84 3.14 4.08 50 48 
5 10.20 3.27 5.18 50 49 
6 13.26 2.90 7.92 50 50 
7 13.73 2.66 7.87 50 50 
8 15.21 2.90 9.03 50 50 
9 19.50 3.37 10.77 50 50 

 
 

Table 4.2: Mean Increases in Number of Type I and Type II Errors of ���∗  over ���∗  

Run H I 
Mean Difference 
Type I Type II 

1 3 0.2 -1.46 1.46 
2 3 0.5 -0.96 1.22 
3 3 0.8 -0.78 2.44 
4 6 0.2 1.56 3.24 
5 6 0.5 1.44 3.06 
6 6 0.8 1.92 2.96 
7 9 0.2 2.92 3.24 
8 9 0.5 3.26 3 
9 9 0.8 5.02 2.32 

 
 

We now demonstrate that ���∗  tends to have lower Type I and Type II errors than 

���∗ . In each of the 50 simulations for a given 
H, I�, the number of Type I and Type II 

errors made by ���∗  and ���∗  are computed and the increases incurred by ���∗  over ���∗ , 

i.e., Type	I
���∗ � − Type	I
���∗ � and Type	II
���∗ � − Type	II
���∗ � are computed. Table 

4.2 gives the mean increases for each 
H, I�. Based on Wilcoxon’s signed-rank test, all 

differences are significant at the 0.05 level. Except for two cases (Type I errors for Run 2 

and Run 3), the p-values are less than or equal to 0.001. Note that the mean increases in 

Table 4.2 should be compared with the number of inactive effects, which is 45, and the 
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number of active effects, which is 9. We see from Table 4.2 that the mean increase in 

Type I error is actually negative for runs with H = 3, i.e., the Type I error of ���∗  is lower 

than that of ���∗  for H = 3. However, for all other cases ���∗  outperform ���∗  in both Type 

I and Type II errors. This indicates that the gains of GS over FS in finding models with 

better log posterior odds can be associated with important gains in frequentist properties. 

Thus, GS is worth its extra computation cost. 

4.6.1.3 Study of Effectiveness of GLS and Estimation of Posterior Model Probabilities 

 We consider the 12-run Plackett-Burman split plot design given in Table D.2 in 

Appendix D. Two responses given by �� and �� in the table are analyzed. The set of 

effects consists of all main effects and two-factor interactions. Thus, there are a total of 

six main effects and 15 two-factor interactions. This gives about 2.1 × 10� models. The 

posterior probability and log posterior odds of the top 10 models are given in Table 4.3. 

We see that for ��, the posterior distribution of � is concentrated at a single model and 

models around it. The top 10 models account for 77% of the posterior mass. For ��, no 

single model stands out; the top 10 models account for only 37% of the posterior mass of 

� and those models look quite different. Table 4.3 also demonstrate the potential dangers 

of model selection based on j
��: one cannot know how much of the posterior mass of � 

is concentrated on a group of top models simply by looking at their log posterior odds.  

To determine how good GLS is at finding good models, we apply GLS with 12 

values of   as given in Table 4.4. The table gives the actual number of models that have 

log posterior odds at least +
 � = �
�∗� − ln  , where �∗ is the true HPP model, and the 

number of models found by GLS. For all  , GS finds �∗, i.e., ���∗ = �∗, so that �v�� =
+
 �. We see from Table 4.4 that for ��, GLS misses at most two good models, which 



 149

happens when  = 140 and  = 150. For ��, GLS does not miss any good model. 

Moreover, in all cases, GLS does not miss any of the top 10 models. 

In Figure 4.3, we plot MN
��∗� (upper bound) versus   and the true value �
��∗|X�. 
The figure shows that the decrease in MN
��∗� is slow when  ≥ 100. For ��, we obtain 

�Þ
��∗|X� = M���
��∗� = 0.133; for ��, �Þ
��∗|X� = 0.579. The estimates are sufficiently 

close to the true values (see Figure 4.3) for practical purposes. Fitting the model 

Φ���MN
��∗�
 = {� + {�/√  to the data for  = 50,100,150,200 yields the estimates 

�̂
��∗|X� = 0.102 for �� and �̂
��∗|X� = 0.522 for ��, which are close to the true values. 

 
Table 4.3: Top 10 Models for �� and ��  

�� �� 
Models, � �
�� �
�|X� Models, � �
�� �
�|X� 

A,B,C,AF,BC,CF 7.674 0.0889 A,AB,AC,AD 11.863 0.5145 
C,AF,BC,CF 7.504 0.0749 A,AB,AC,AD,CD 10.138 0.0917 

AD,AE,BC,BF,CD,CE 6.918 0.0417 A,AB,AC,AD,AF 9.084 0.0320 
BC 6.773 0.0361 A,F,AB,AC,AD 9.041 0.0306 

B,C,AF,BC,CF 6.682 0.0329 A,AB,AC,AD,DE 8.963 0.0283 
C,AF,BC,CD,CF,DF 6.533 0.0284 A,AB,AC,AD,BD 8.678 0.0213 

C,AF,BC 6.404 0.0250 A,B,AB,AC,AD 8.517 0.0181 
A,C,AF,BC,CF 6.266 0.0217 A,E,AB,AC,AD 8.133 0.0123 

B,C,AF,BC 5.597 0.0111 A,AB,AC,AD,EF 8.100 0.0120 
C,AF,BC,CD,CF 4.996 0.0061 A,AB,AC,AD,BF 8.092 0.0118 

Sum of Probabilities 0.367 Sum of Probabilities 0.773 
 

Table 4.4: Number of Models Found with GLS and Actual Number of  
Models that Satisfy �
�� ≥ �
�∗� − ln   for �� and �� 

  20 40 50 60 80 100 120 140 150 160 180 200 

�� 

No. of 
Models 
Found 

15 49 68 93 115 133 154 167 177 185 197 213 

Actual No. 
of Models 

15 49 68 94 115 134 155 169 179 186 198 214 

�� 

No. of 
Models 
Found 

5 7 14 19 19 19 20 21 24 25 25 26 

Actual No. 
of Models 

5 7 14 19 19 19 20 21 24 25 25 26 
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Figure 4.3: Plot of MN
��∗� versus   for �� and �� 

 

Now, we consider the 12-run Plackett-Burman split plot design given in Table 

D.3 in Appendix D, which is the same as the design in Table D.2 except that there are 

five instead of six factors. Two responses given by �! and �" in the table are analyzed. 

The set of effects consists of all main effects and two factor interactions. This gives 

32768 models. 

 
Table 4.5: Top 10 Models for �! and �" 

�! �" 
Models �
�� �
�|X� Models �
�� �
�|X� 

C 1.316 0.0684 A,B,C,AB,AC 3.716 0.3525 
A,C 1.136 0.0571 A,B,C,AB,AC,CD 2.416 0.0961 

A,B,C,D,E,AB,AC 0.980 0.0488 A,C,AB,AC 2.350 0.0899 
A,C,E 0.881 0.0443 A,B,C,AB,AC,BE 1.513 0.0389 
C,E 0.554 0.0319 C,AB,AC 1.175 0.0278 

A,B,C,E 0.259 0.0238 A,B,C,E,AB,AC 0.692 0.0171 
A,B,C,E,AB 0.104 0.0203 A,B,C,AB,AC,BD 0.421 0.0131 

A,B,C 0.048 0.0192 A,B,C,AB,AC,AD 0.421 0.0131 
� 0.000 0.0183 A,C,AB,AC,CD 0.411 0.0129 

A,C,AB -0.003 0.0183 A,B,C,AB,AC,DE 0.399 0.0128 
Sum of Probabilities 0.350 Sum of Probabilities 0.674 
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Table 4.6: Number of Models Found with GLS and Actual Number of  
Models that Satisfy �
�� ≥ �
�∗� − ln   for �! and �" 

  20 40 50 60 80 100 120 140 150 160 180 200 

�! 

No. of 
Models 
Found 

43 84 114 127 172 183 201 221 230 247 282 309 

Actual No. 
of Models 

43 84 114 127 172 183 202 221 231 247 283 309 

�" 

No. of 
Models 
Found 

5 13 17 20 24 27 34 38 40 41 42 48 

Actual No. 
of Models 

5 13 17 20 24 27 34 38 40 41 42 48 

 
 

The posterior probability and log posterior odds of the top 10 models are given in 

Table 4.5. Table 4.6 gives the actual number of models that have log posterior odds at 

least +
 � = �
�∗� − ln   (�∗ is the true HPP model), and the number of models found by 

GLS for 12 different values of  . For all  , GS finds �∗, i.e., ���∗ = �∗, so that �v�� =
+
 �. We see from Table 4.6 that GLS almost always finds all good models. In Figure 

4.4, we plot MN
��∗� versus   and the true value �
��∗|X�. For �!, we obtain �Þ
��∗|X� =
M���
��∗� = 0.0845 whereas for �", we obtain �Þ
��∗|X� = 0.419. The estimates are  

 

 
Figure 4.4: Plot of MN
��∗� versus   for �! and �" 
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sufficiently close the true values (see Figure 4.4) for most practical purposes. If we fit the 

model Φ���MN
��∗�
 = {� + {�/√  using data for  = 50,100,150,200, then we obtain 

the estimates �̂
��∗|X� = 0.0716 for �! and �̂
��∗|X� = 0.362 for �", which are very 

close to the true values. 

4.6.2 Example 4.2: Ina Tile Experiment  

The Ina tile experiment (Taguchi, 1987) studies eight factors (labeled D, B, A, F, 

E, C, G, and H) in 16 runs. The noise factor H is the subplot factor. There are � = 8 

wholeplots and � = 2 subplots per wholeplot. We take the set of candidate effects for 

model selection as the main effects of all wholeplot/ control factors, the main effect of the 

subplot/noise factor, and all control-by-noise interactions. These effects are estimable if 

all other interactions are assumed negligible. We work with the transformed response 

given by Bisgaard and Sutherland (2003). Table 4.7 presents the first five steps taken by 

FS with I~�� �
2,2�. The term added to the model at each step is given in the second 

column and the log posterior odds j
�� is given in the third column. Results for I = 0 

are given in the fourth and fifth columns. For I~�� �
2,2�, the model {A, H} obtained 

at the second step (shaded cells) has the largest value of j
��, i.e., the SPA model is {A, 

H}. It is seen that the CRA model is also {A, H}. The split plot analysis does not fully 

agree with Bisgaard and Sutherland’s (2003) analysis (based on eyeballing half-normal 

plots), which finds that AH is active. However, AH is the third effect added by FS and 

j
�� = 1.72 for the model {A, H, AH} is not too small compared to j
�� = 2.24 for the 

model {A, H}. Moreover, if we increase � = �
81 = 1� from 0.25 to 0.4, then the SPA 

model would be {A, H, AH}, as is easily verified by adding �ln
0.4/0.6� −
ln
0.25/0.75�
‖�‖� = 0.6931‖�‖� to each value in the third column of Table 4.7. In 
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Table 4.7: FS Results for Ina Tile Experiment 

Step 
Split Plot1 Completely Randomized2 

Added Term j
�� Added Term j
�� 
1 H 2.0129 H -0.14872 
2 A 2.2427 A 1.3301 
3 AH 1.7203 E 0.32268 
4 E 0.61579 D -0.5205 
5 D -0.39481 AH -1.3311 

1FS algorithm applied with I~�� �
2,2�. 2FS algorithm applied with I = 0. 
 

contrast, if the split plot error structure is ignored, AH is only fifth in the list of effects to 

enter the model and the model with five effects has a smaller posterior probability than 

the null model. 

For this example, FS chooses at each step either the largest wholeplot effect 

(ranked by the size of the factorial effect estimates) or the largest subplot effect not in the 

model to enter the model. This behavior has been observed to hold in our analyses of 

regular two-level designs. From a frequentist point of view, the behavior is sensible 

because for such designs, all wholeplot (respectively subplot) effect estimates have the 

same variance, and all effect estimates are independent. Note that for such designs, the 

generalized least squares estimates are equivalent to the ordinary least squares estimates. 

To estimate posterior model probabilities, we run the probability estimation 

procedure given in Section 5.3 with  = 50,100,150,200 and � = 30. For the four 

values of  , there are 101, 199, 291, and 358 models that have log posterior odds at least 

+
 �. The true HPP model �∗ is {A,H}. GLS correctly finds all models in each case 

(thus, the choice of � is of no consequence and ��∗ = �∗). We find that �Þ
��∗|X� =
0.0913, �̂
��∗|X� = 0.0686, and ∑ �̂:�̈∗=X<!¾Q¨k� = 0.751. These estimates are close to the 

true values �
��∗|X� = 0.0726 and ∑ �:�̈∗=X<!¾Q¨k� = 0.795. Because �
��∗|X� is small, 
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model uncertainty is high. Since the set ℳ of top 358 models accounts for an estimated 

75% of the posterior mass of �, we can estimate the marginal posterior probability of 

each effect conditional on � ∈ ℳ. This gives �̂
81 = 1|X� = ∑ �̂:�̈∗=X<	̈ :�³∗∈ℳ© /

∑ �̂:�̈∗=X<!¾Q¨k� = ∑ �Þ:�̈∗=X<	̈ :�³∗∈ℳ© /∑ �Þ:�̈∗=X<!¾Q¨k� , where ℳ1 = ��̈∗ = :8̈ �∗ , … , 8̈ Ð∗ <d ∈

ℳ: 8̈ 1∗ = 1�. A bar graph of �̂
81 = 1|X� and �
81 = 1|X� is given in Figure 4.5, which 

shows that the probability estimates for the top ranking effects are close to the true 

values. Despite the high model uncertainty, we see from Figure 4.5 that we can be quite 

certain that effects H and A are active. Interestingly, the ranking of effects based on 

marginal posterior probabilities does not fully agree with the order they are entered in FS. 

For example, G is ranked 6 based on the marginal posterior probabilities while FH is the 

6th effect to be entered by FS. However, the top five effects match the order they are 

entered by FS.  

 

 
Figure 4.5: Bar Chart of Estimates and True Values of Marginal Posterior Probability of 

Each Effect  
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Before we end the section, we point out that FS is useful for regular two-level 

designs because it provides a ranking of factorial effects and a quantitative measure of 

relative importance (log posterior odds) that supplements a half-normal plot analysis. 

While GLS provides better search capability than FS and allows estimation of marginal 

posterior probabilities, it is computationally more intensive than FS. This computational 

advantage can be significant for large fractional factorial designs.  

4.6.3 Example 4.3: Design of Heat-Exchanger Fan Casing of Clothes Dryer  

In this example, we analyze an experiment for the robust design of a heat-

exchanger fan casing for clothes dryers (Kim, 1999). The control array is a 3"�� design 

and the signal-noise array is a 2 × 3 full factorial. The control factors A, B, C, D are 

parameters of the fan casing design. The signal factor M is the rotation speed of the fan 

and the noise factor N, which has two levels, is the amount of clothes in the drum. The 

response is the flow rate of the heat-exchanger fan. Data for this experiment are given in 

Table D.4 in Appendix D. Changing the control factors require manufacturing a new fan 

casing but changing the signal and noise factors are clearly very easy. Thus, nine fan 

casing designs are tested under six combinations of signal and noise factor conditions, 

i.e., the experiment is a split plot experiment with control factors as wholeplot factors and 

signal and noise factors as subplot factors.  

The set of effects of interest are chosen as follows. The main effect for the two-

level noise factor is its linear main effect. For all other factors (which each has three 

levels), linear and quadratic main effects are constructed from the orthogonal linear and 

quadratic contrasts given in Supplementary Section G of Wu and Hamada (2009). We 

also entertain all interactions between linear main effects. There are a total of � = 26 
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effects and � = 54 subplots. However, the full model cannot be estimated with 

frequentist methods because there are only � = 9 wholeplots and 14 wholeplot effects.  

We apply GLS to six choices of priors: Prior 1: the default choice given in 

Section 4.4; Prior 2: I = 0; Prior 3: 
�, �� = 
1,3�; Prior 4: 
�, �� = 
3,1�; Prior 5 : 

�
r� = ��@�{0.5�, 0.75�, 1�, 2�} (i.e., �
r� is the uniform distribution on 

{0.5�, 0.75�, 1�, 2�}); Prior 6: �
r� = ��@�{2�, 3�, 4�, 5�}. For Priors 2- 6, all prior 

parameters that are not given are set to their default choices. The objectives are to assess 

the effects of ignoring the split plot error structure (Prior 2) and the sensitivity of results 

to prior specification (Priors 3- 6). Prior 3 gives �
I� = 0.25, �
5Ç�/5û�� =
��
1 − I�/I
 = ∞, and median{5Ç�/5û�} = 3.847. Prior 4 gives �
I� = 0.75, �
5û�/
5Ç�� = ��I/
1 − I�
 = ∞, and median{5û�/5Ç�} = 3.847. For Prior 5, active effects 

have a prior that is a mixture of normal distributions with standard deviations 0.5 to 2 

times 5 (conditionally on 5). Finally, for Prior 6, active effects have a prior that is a 

mixture of normal distributions with standard deviations 2 to 5 times 5. 

In each of the six applications of GLS, we set �v�� = �
���∗ � − ln 6. The top 

two models obtained for each prior are given in Table 4.8 together with their log posterior 

odds. In the table, the linear and quadratic main effects of factor X are denoted by Xl and 

Xq respectively, whereas the linear by linear interaction of factors X and Y is denoted by 

XlYl. The number of models found is given in the bottom row of the table. For Prior 4, 

only one model with log posterior odds at least �v�� is found.  

We see that the SPA model (HPP model ��∗  for Prior 1) contains 11 effects, 

whereas the CRA model (HPP model for Prior 2) contains 13 effects. The SPA model 

contains the DlMl term whereas the CRA model does not. Although the CRA model  
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Table 4.8:  Model Selection Results for Fan Casing Experiment. A shaded cell represents 
an active term and terms not listed are excluded from all models. 

Effects 

Prior 1 Prior 2 Prior 3 Prior 4 Prior 5 Prior 6 

Default I = 0 
� = 1, 
� = 3 

� = 3, 
� = 1 

�
r� = 
��@�{0.5�, 

0.75�, 1�, 2�} 
�
r� = 
��@�{2�, 
3�, 4�, 5�} 

��∗  ��∗  ��∗  ��∗  ��∗  ��∗  ��∗  ��∗  ��∗  ��∗  ��∗  ��∗  
Al        

 

    

Bl            

Cl            

Dl            

Nl            

Ml            

Aq            

Bq            

Dq            

AlCl            

BlCl            

BlNl            

BlMl            

ClNl            

ClMl            

DlMl            

NlMl            

Log Posterior 
Odds 

127.1 125.3 122.9 122.8 123.5 122.6 129.5 - 112.8 112.7 127.6 125.9 

±
��∗|X�
/±
��∗ |X� 

5.78 1.11 2.46 - 1.04 5.78 

No. Models 
Found 2 8 3 1 6 2 

 
 

contains all 10 other effects in the SPA model, it also contains three additional wholeplot 

effects: Aq, Dq, AlCl. Thus, the significance of wholeplot effects appears to be 

exaggerated if correlations are ignored. 

The results obtained with Priors 1,3,4,6 are similar. The HPP model ��∗  is the 

same for each prior and the second best model ��∗  for Priors 1, 3, and 6 are the same. For 

Prior 4, the fact that GLS cannot find any model different from ���∗ = ��∗ that has 
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posterior probability at least ±
���∗ |X�/6 suggests that model uncertainty may be low for 

this choice of prior. For Priors 1 and 6, the ratio of the posterior probabilities of the HPP 

and second best models ±
��∗|X�/±
��∗ |X� = �2���
��∗� − �
��∗�
 equals 5.78. This 

means that the HPP model is significantly better than the second best model. For Prior 3, 

the HPP model is about 2.5 times better than the second best model. Thus, for Priors 

1,3,4,6, the HPP model is significantly better than the other models. For Prior 5, which 

include only the small values 0.5�, 0.75�, 1� in the support of �
r�, there is higher model 

uncertainty since six models are found with GLS and ��∗  and ��∗  appear to be equally 

good. We conclude that the model selection results are insensitive to reasonable choices 

of � and �, and to whether we include the values of 0.5�, 0.75�, 1� in the support of the 

discrete uniform distribution for �
r�. This suggests that we can be quite confident about 

the results obtained with Prior 1. In general, a sensitivity analysis can give more 

confidence to results obtained with the default priors if it indicates that the results are 

insensitive to prior parameter changes.  

For Prior 1, we run the procedure given in Section 5.3 with  = 50,100,150,200 

and � = 10. For the four values of  , GLS finds 16, 23, 29, and 35 models. Because the 

total number of models is 2�� ≈ 67.1 × 10�, it is difficult to evaluate all models. We find 

that �Þ
��∗|X� = M���
��∗� = 0.504, �̂
��∗|X� = 0.458, �̂
��∗ |X� = 0.079, and �̂
�!∗ |X� =
0.053. Thus, the HPP model accounts for most of the posterior mass of the indicator. 

This justifies post model selection inference conditioned on the event that ��∗  is the true 

model or the event that either ��∗  or ��∗  is the true model.  

Table 4.9 gives point estimates and equal tail 95% credible intervals for the 

effects in the SPA model conditioned on the event that the SPA model is the correct 
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model. The percentage increase column in Table 4.9 gives the width of the SPA interval 

(credible interval constructed with Prior 1) as a percentage of the width of the CRA 

interval (credible interval obtained with Prior 2). We see that the wholeplot effects Bl, Cl, 

and Dl have SPA intervals that are more than twice as wide as their CRA intervals. On 

the other hand, the lengths of the SPA intervals for the subplot effects are about 30 

percent the lengths of their CRA intervals. These observations suggest that it can be 

misleading to use interval estimates that do not account for correlation. Interestingly the 

point estimates obtained with Prior 2 are very close to those obtained with Prior 1. This 

agrees with the result that least squares and generalized least squares estimates are 

equivalent for any design that is a Cartesian product of designs for wholeplot and subplot 

factors (Letsinger et al., 1996).  

 
Table 4.9: 95% Credible Intervals for Effects in SPA Model, Fan Casing Experiment 

Effect 
Prior 11 Prior 22 Percentage 

Increase3 LCL Mean UCL LCL Mean UCL 

Bl 0.3601 0.3757 0.3913 0.3704 0.3771 0.3838 232.7% 

Cl 0.1140 0.1296 0.1452 0.1234 0.1301 0.1368 232.6% 

Dl -0.0630 -0.0474 -0.0318 -0.0543 -0.0476 -0.0409 232.6% 

Nl -0.1475 -0.1455 -0.1436 -0.1521 -0.1454 -0.1387 28.8% 

Ml 0.2022 0.2041 0.2060 0.1973 0.2040 0.2107 28.8% 

BlNl -0.0246 -0.0227 -0.0208 -0.0294 -0.0227 -0.0160 28.8% 

BlMl 0.0320 0.0339 0.0358 0.0272 0.0339 0.0406 28.8% 

ClNl -0.0142 -0.0122 -0.0103 -0.0189 -0.0122 -0.0055 28.8% 

ClMl 0.0150 0.0169 0.0189 0.0102 0.0169 0.0236 28.8% 

DlMl -0.0069 -0.0050 -0.0031 -0.0117 -0.0050 0.0017 28.8% 

NlMl 0.0130 0.0150 0.0169 0.0083 0.0150 0.0217 28.8% 
1Posterior mean and equal tail 95% credible intervals with I~�� �
2,2�. 2Posterior mean 
and equal tail 95% credible intervals with I = 0. 3SPA credible interval width as a 
percentage of CRA credible interval width. 
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Figure 4.6: Posterior Distribution of Correlation Parameter (ℳ = {��∗ , ��∗}) 

 

For Prior 1, the posterior density �
I|X, � ∈ ℳ�, where ℳ = {��∗ , ��∗}, is plotted 

in Figure 4.6. The �� �
2,2� prior for I is also plotted in the figure. The figure shows 

that subplot observations in the same wholeplot are highly correlated, i.e., the subplot 

variance is small compared to the wholeplot variance. Because model uncertainty is low, 

essentially the same plot of �
I|X, � ∈ ℳ� is obtained if we take ℳ = {��∗}. 
 

4.6.4. Example 4.4: Carbon Powder for Transmitter 
 
 Taguchi (1987) proposes methods to construct split plot designs, which he calls 

split unit designs. Split unit designs are designs constructed by reordering the rows of 

orthogonal arrays and assigning wholeplot and subplot factors to appropriate columns in 

such a way that each � consecutive runs for wholeplot factors have the same levels. For 

these designs, if main effects and two-factor interactions are entertained, the number of 

effects can be more than the number of runs. Therefore, variable selection is an important 

step in the analysis of split unit designs.   

Taguchi (1987) (Chapter 9) gives an experiment to improve the properties of 

carbon powder that is placed in the transmitter of a telephone. There are a few interesting 
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features of the experiment. The design is not a crossed array, there are more effects than 

observations, and the levels of some of the factors are unequally spaced. The nine factors 

and their levels are given in Table 4.10. Four responses are observed in the experiment. 

We shall only mention the results for the bulk specific gravity response. The design 

matrix and responses are given in Table D.5 in Appendix D. The wholeplot factors are 

factors A-D, and the subplot factors are factors E-J. There are � = 9 wholeplots and 

� = 3 subplots per wholeplot. Factor J is a noise factor and all other factors are control 

factors. Factors C, D, H, and J are qualitative factors. The main effects for factors C, D, 

and H are included in the set of candidate effects. For factor J, we introduce two dummy 

variables J1 and J2 representing the difference in mean response between the top and 

middle and between the bottom and middle positions of the vessel. For the quantitative 

factors A, B, E, F, G, the linear main effect columns are obtained by coding the factor 

levels so that the low level is -1 and the high level is 1. Because the three levels for 

factors B, E, F, G are not even spaced, the middle levels of the factors are not 0. The 

quadratic main effect columns for factors A, B, E, F, G are obtained by squaring the 

linear main effects column. We also include all interactions between one of the noise 

effects J1, J2 and a linear effect of factors A-H in the set of candidate effects. This gives 

2 × 8 = 16 control-by-noise interactions. Thus, we have � = 31 effects but only � = 27 

runs.  

To estimate posterior model probabilities, we run the probability estimation 

procedure given in Section 5.3 with  = 50,100,150,200 and � = 20. For these four 

values of  , GLS finds 152, 295, 448, and 611 models that meet the �v�� requirement. 

We find that �Þ
��∗|X� = M���
��∗� = 0.0683, �̂
��∗|X� = 0.0478. The top 10 models  
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Table 4.10: Factors and Their Levels, Transmitter Carbon Powder Experiment 

Factor 
Levels 

1 2 3 
A: Heat Treatment Temperature C	v  1000 1100 1200 

B: Rate of Increase of Heat Treatment 
Temperature (C	v /hr) 

25 50 100 

C: Heat Treatment Atmosphere �� .�  

D: Flow Quantity of Gases (cm3/min) 
Low (400 for  
�� and 800 

for .�) 

High (800 for  
�� and 1600 

for .�) 
 

E: Rate of Increase of Carbonization  
Temperature (C	v /hr) 

25 50 100 

F: Oxidation Time (hours) 2 12.6 80 
G: Rate of Increase of Oxidation  

Temperature (C	v /hr) 
25 50 100 

H: Particle Size (mesh) 40-50 50-70  
J: Position Within Vessel top middle bottom 

 
 

found by GLS, their log posterior odds, and their posterior probability estimates are given 

in Table 4.11. A plot of the cumulative sum of �̂:�̈∗=X< versus ̂ for the 611 models 

found with  = 200 is given in Figure 4.7. It can be seen that the top 150 models account 

for only approximately 50% of the posterior mass of �. Thus, model uncertainty is high. 

The set ℳ of top 611 models can be used for estimating marginal posterior probabilities 

of effects because it accounts for an estimated 70% of the posterior mass of �. Estimates 

of the marginal posterior probability of each effect conditional on � ∈ ℳ are plotted in 

Figure 4.8. We see that despite the high model uncertainty, we can be quite sure that all 

effects in the top model {Cl, Fl, Hl, Fq, BlJ2, ClJ2, HlJ1} are active. The HPP model 

consists of all effects with marginal posterior probabilities greater than 0.5.  In Figure 4.9, 

we plot �
I|X, � ∈ ℳ�. The posterior mode of �
I|X, � ∈ ℳ� is approximately 0.3.  
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Table 4.11: Top 10 Models Together with Their Log Posterior Odds  
and Posterior Probability Estimates 

Model �
�� �Þ
�|X� �̂
�|X� 
Cl,Fl,Hl,Fq,BlJ2,ClJ2,HlJ1 17.873 0.0683 0.0478 
Cl,Fl,Hl,Fq,Gq,BlJ2,ClJ2,HlJ1 17.608 0.0524 0.0367 
Cl,Fl,Hl,Eq,Fq,Gq,BlJ2,ClJ2,HlJ1 17.172 0.0339 0.0237 
Cl,Fl,Hl,Fq,ClJ2,HlJ1 17.090 0.0312 0.0218 
Cl,Fl,Hl,Fq,Gq,BlJ2,ClJ2,DlJ2,ElJ2,HlJ1 16.687 0.0209 0.0146 
Cl,Fl,Hl,Fq,Gq,BlJ2,ClJ2,ElJ2,HlJ1 16.546 0.0181 0.0127 
Cl,Fl,Hl,Eq,Fq,BlJ2,ClJ2,HlJ1 16.387 0.0155 0.0108 
Cl,Fl,Hl,Fq,BlJ2,ClJ2,ElJ2,HlJ1 16.301 0.0142 0.0099 
Cl,Fl,Hl,Fq,HlJ1 16.283 0.0139 0.0097 
Cl,Fl,Hl,Fq,BlJ2,ClJ2,GlJ1,HlJ1 16.215 0.0130 0.0091 

 
 

 
Figure 4.7: Plot of Cumulative Probability Estimate versus Rank of Model 
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Figure 4.8: Bar Chart of Estimates of Marginal Posterior Probability of Each Effect 

 
 

 
Figure 4.9: Posterior Distribution of Correlation Parameter for  

Bulk Specific Gravity Response  
 

4.7 Conclusions 

This chapter proposes a Bayesian method for model selection in split plot 

experiments. It is especially useful when the number of effects is comparable to the 

number of runs, which is quite common in RPD.  RPD experiments run as split plot 

experiments with noise and signal factors as subplot/wholeplot factors and control factors 
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noise and control-by-signal interactions than a completely randomized design. These 

interactions are important for achieving the objectives of RPD. 

We employ a Bayesian hierarchical model with an indicator vector for model 

selection. It can be viewed as a generalization of the Bayesian models introduced by 

George and McCulloch (1993) and Box and Meyer (1993). Unlike Bayesian variable 

selection in iid error settings, the proposed model includes the correlation I between 

subplot observations in the same wholeplot. A new algorithm called GLS is proposed to 

find good models and to estimate the posterior probability of the models.   

Simulation results presented in the chapter show that the proposed method has 

low Type I error in most cases and low Type II error when the active effects are 

sufficiently large and the true model is sufficiently sparse. The proposed method can 

perform better than Lenth’s method on unreplicated fractional factorial split plot 

experiments. It is also demonstrated that GLS performs well at finding models with log 

posterior odds above a threshold and that the proposed procedure for estimating posterior 

model probabilities is accurate. Three real examples are analyzed in the chapter: the Ina 

tile experiment, the heat-exchanger fan casing experiment and the carbon powder 

experiment. The problem of analyzing a highly fractionated split plot experiment has 

received scant attention in the statistical literature. The proposed method can help to 

popularize the use of fractionated split plot experiments.  
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CHAPTER 5 

MINIMAX DESIGNS FOR FINITE DESIGN REGIONS 

 

5.1 Introduction 

“Space-filling” designs, which can loosely be interpreted as designs that are 

representative of the design region (e.g., uniformly distributed over the region), are 

widely used in computer experiments. Because these designs are not obtained by 

optimizing a model-based criterion, they are model-independent. Due to their 

representativeness and model-independence, space-filling designs are widely considered 

to be natural choices if the experimenter has no idea about an appropriate model before 

the experiment. They are useful for building Gaussian process (GP) and other 

nonparametric emulators (Chen et al., 2006; Santner et al, 2003) in cases where the 

computer code output is believed to be highly nonlinear and a parametric form for 

modeling the output cannot be specified. 

Methods for generating space-filling designs are generally developed for one of 

three specific types of design regions: hypercubes, constrained continuous regions, and 

finite design regions. A constrained continuous region is defined by inequalities while a 

finite design region consists of a finite set of candidate points. Hypercube regions have 

received much attention (e.g., Morris and Mitchell (1995), Tang (1993), McKay et al. 

(1979)). A few methods have also been proposed to generate space-filling designs for 

constrained continuous regions (e.g., Stinstra et al. (2003), Draguljić (2012)) and finite 

regions (e.g., Marengo and Todeschini (1992), Kennard and Stone (1969), Royle and 

Nychka (1998)).   
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The notion of “space-filling” can be made more precise with distance-based 

criteria. Two important ones are the minimax and maximin criteria. Johnson et al. (1990) 

prove some optimality properties of minimax and maximin distance designs for 

constructing GP emulators. They prove the important result that for finite design regions, 

minimax designs are G-optimal in an asymptotic sense. While maximin designs have 

received considerable attention (e.g, Morris and Mitchell (1995)), minimax designs have 

received scant attention. John et al. (1995) discuss two-level minimax designs. Kennard 

and Stone (1969) give a sequential heuristic method for constructing designs based on the 

minimax criterion.  

Despite the lack of attention on minimax designs, intuition suggests that they are 

good designs. They minimize the maximum distance of a candidate point to the nearest 

design point, which is desirable for two reasons. First, since emulators of nonlinear 

functions tend to incur higher prediction errors at points further from the design, minimax 

designs tend to minimize the worst-case prediction error. Second, because a minimax 

design is close to every candidate point, it is spatially representative of the candidate set; 

thus, it provides protection against erroneous modeling assumptions. 

In this chapter, we address the problem of constructing minimax designs for finite 

design regions. We give a procedure for constructing global optimal minimax designs 

that is practical for a small number of candidate points (up to one or two hundred). It is 

based on solving a binary linear program (BLP), called set covering location problem 

(SCLP) in the operations research literature, given certain values of the covering radius. 

We prove that a minimax design can be found by solving SCLP at a discontinuity of the 

function that maps the covering radius to the optimal objective function value. The set of 
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minimax distances is the set of discontinuities of this function. Because the set of 

discontinuities is a subset of the distinct pairwise distances between candidate points, the 

discontinuities can be found by solving SCLP at the midpoints of the ordered distinct 

pairwise distances. Because the computational cost for solving SCLP increases 

drastically with the number of candidate points, the above procedure is infeasible when 

the candidate set is large. To overcome this problem, we give a heuristic procedure for 

constructing near-minimax designs that is affordable for large candidate sets. It relies on 

the well-known heuristic method proposed by Hochbaum (1982) for solving SCLP.  

The proposed method has many potential applications in computer experiments 

because finite candidate sets arise naturally in many design problems. We briefly mention 

these applications and defer a detailed discussion to Section 5.2.2. First, in validation and 

calibration of a computer model with observation data, a preliminary experiment may 

consist of computer model runs at a subset of the input data points (observations on the 

input variables). Second, in sensitivity analysis or uncertainty quantification problems, 

the joint distribution of the inputs may be complex. In this case, either the input data or 

samples drawn from a nonparametric estimate of the distribution can be taken as the 

design region. Third, in the construction of nested space-filling designs (Qian, 2009), the 

current layer is the candidate set for the next layer. Thus, the proposed method can be 

used to construct all except the first layer of a nested space-filling design. Fourth, when a 

continuous design region is constrained, it can be easier to build a design from a finite 

candidate set used as a proxy for the region.  

The problem of constructing designs for finite design regions is an important 

practical problem in physical experimentation (Anderson-Cook and Robinson, 2009; 
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Kennard and Stone, 1969) and in spatial statistics (Royle and Nychka, 1998). Marengo 

and Todeschini (1992) and Royle and Nychka (1998) employ exchange algorithms to 

generate designs based on the maximin criterion and a distance-based coverage criterion 

respectively. Anderson-Cook and Robinson (2009) employ an exchange algorithm to 

generate D-optimal designs that do not have replicates. In this chapter, we shall 

abbreviate Kennard and Stone’s (1969) algorithm by KS and Marengo and Todeschini’s 

(1992) algorithm by MT.  

The remainder of the chapter is organized as follows: In Section 5.2, we define 

minimax designs for finite design regions, illustrate their value as space-filling designs, 

and give computer experiment applications. Section 5.3 introduces the set covering 

location problem and relates it to the construction of minimax designs. We describe the 

key results and present a procedure for finding minimax designs. Important results are 

stated as propositions and proved in Appendix E.1. A heuristic procedure for generating 

minimax designs from large candidate sets is given in Section 5.4. In Section 5.5, we give 

three examples to illustrate the proposed methods. Section 5.6 gives concluding remarks.   

5.2 Minimax Design and Its Potential Applications 

5.2.1 Minimax Design and Minimax Criterion 

In this section, we define minimax designs for a finite candidate set of design 

points and we briefly illustrate the advantages of minimax designs over maximin designs.  

We first give some definitions. Let R = {w�, … ,wj} be a finite candidate set of 

design points, where all w1 are distinct. A design S = {Ì�, … , Ì¡} is a subset of R. The 

distance between w1 and S is �
w1, S� = min{‖w1 − Ì�‖, … , ‖w1 − Ì¡‖}. The distance 

between R and S, which we call the distance of S is 
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�
S� = max{�
w�, S�, … , �
wj, S�}. An �-point minimax design S¡∗  satisfies �
S¡∗� =
min{�
S�:S ⊆ R, |S| = �} and �¡∗ = �
S¡∗� is called the minimax distance for �-point 

designs. On the other hand, an �-point maximin design maximizes the minimum 

pairwise distance between design points ∆
S� = minsyÌ1 − Ì¨y: ^ ≠ @t. Note that ‖∙‖ 

can represent any distance metric. However, in the examples in this chapter, we shall take 

‖∙‖ as the Euclidean norm. 

We shall now illustrate some differences between the minimax and maximin 

criteria, and also an application of the main results of this chapter. Consider the problem 

of selecting a design from the 9x9 grid plotted as black dots in each of the four diagrams 

in Figure 5.1. In Figure 5.1, we plot global optimal minimax designs of sizes 4, 9, and 20 

constructed with the proposed method. We also plot maximin designs of sizes 4, 9, and 

20, which are obtained using MT (note that MT is not guaranteed to find globally optimal 

maximin designs). 

A comparison of each pair of minimax and maximin designs of the same size in 

Figure 5.1 indicates that the former tends to have points close to every candidate point 

whereas the latter tends to contain many boundary points. It is seen that pulling the 

boundary points of 4 and 9 point maximin designs some distance towards the center point 

gives minimax designs. This reduces the distance of some of the interior points to the 

design while not increasing the distance of the boundary points to the design by too 

much. One interesting feature of the 20-point minimax design is that we can reach at least 

one design point from every candidate point by taking at most a horizontal or a vertical 

step. In other words, the distance of the design is the minimum distance between distinct 

candidate points. In contrast, the 20-point maximin design, which has a larger minimum  
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Figure 5.1: Top Left: Minimax and Maximin Designs of Size Four; Top Right: Minimax 
and Maximin Designs of Size Nine; Bottom Left: Minimax Design of Size 20; Bottom 

Right: Maximin Design of Size 20  
 
 

pairwise distance between design points, does not share this desirable property. It leaves 

larger unfilled gaps in the design region. 

The above examples illustrate the intuitive appeal of the minimax criterion. A 

minimax design ensures that there is a design point near every portion of the design 

region, i.e., the design points are spread over the candidate set. As such, a minimax 

design is spatially representative of the candidate set and is good for constructing 

emulators. When the true function is smooth but highly nonlinear, minimax designs can 

be expected to perform better than maximin designs in building nonparametric emulators. 

The reason is as follows: When changes in the function are smooth but without 
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systematic trends, predictions at candidate points closer to the design are likely to be 

more accurate than predictions at points further from the design. Since minimax designs 

minimize the maximum distance of a candidate point to the design, they tend to give 

small worst-case prediction errors. This may be viewed as an intuitive explanation of the 

theoretical results in Johnson et al. (1990). A similar explanation is given in Santner et al. 

(2003), page 149. In contrast, a maximin design does not guarantee that all candidate 

points would be close to a design point. Thus, it can incur some large prediction errors.  

5.2.2 Potential Applications 

The proposed method for constructing minimax designs has many potential 

applications. When inputs and outputs to computer codes are measurable physical 

quantities, data on these physical quantities are often available. In these cases, minimax 

designs chosen from the input data can be useful for a few reasons. First, the differences 

between the computer output and the response data at selected input points can be 

observed directly. This provides a reliable way to estimate the bias in the computer 

model, which is crucial for the validation and calibration of the computer code (Bayarri et 

al., 2007). Second, data for the inputs can be used to define a design region that is more 

realistic than hypercubes specified based on expert knowledge. In this case, the data may 

not be “nice” in the sense that its convex hull is not close to an ellipse or rectangle. When 

the data are not nice, it is more convenient and realistic to define the region of interest as 

all points close (in a vague sense) to the data rather than a rectangle that envelops the 

data. Thus, a design region consisting of all the data points automatically covers the 

region of interest well and a minimax design chosen from the input data can be good for 

constructing emulators for predicting in the region of interest.  
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In some cases, the experimenter may be interested in sensitivity analysis (Oakley 

and O’Hagan, 2004) or uncertainty propagation (Oakley and O’Hagan, 2002) with 

complex input distributions. This can involve modeling the input data with kernel or 

copula estimators, generating samples from the estimated distribution, and running the 

computer code at the sample points to obtain a random sample of the response. If the 

computer runs are expensive, it may be desirable to run the computer code at only a small 

subset of a large sample from the estimated distribution, construct a GP emulator based 

on the experiment data, and use this to predict the values of the response at all other 

sample points. 

Another application of the proposed method for constructing minimax designs is 

in generating nested space-filling designs (Qian et al., 2009; Qian, 2009). A nested space-

filling design with � layers consists of space-filling designs S�, S�, … , Sâ such that 

S� ⊃ S� ⊃ ⋯ ⊃ Sâ. Such designs can be constructed by first generating a space-filling 

design S�, and then applying the proposed method sequentially to construct minimax 

designs S�, … , Sâ, where S¨�� is constructed by taking R = S¨. 

Nested space-filling designs are useful for computer experiments with multiple 

levels of fidelity. A special case of multifidelity experiments is calibration and validation 

experiments, in which the highest level of fidelity is the physical experiment. In a 

multifidelity experiment, S� is for the experiment at the lowest level of fidelity, S� is for 

the experiment at the next higher level of fidelity and so on. Designs of smaller size are 

used for experiments with higher fidelity because experiment cost increases as the level 

of fidelity increases. Qian (2009) argues that nested designs are desirable for multifidelity 

experiments because they allow direct observation of the differences between responses 
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from different fidelity levels, and thus allow more accurate modeling of the differences. 

Note that nested space-filling designs can also be used for running computer experiments 

in a batch sequential manner.  

Finally, the proposed method can be used to construct minimax designs from 

grids overlaid on a continuous region. However, the minimax designs obtained depend on 

the choice of the candidate set and may not be minimax with respect to the continuous 

region. A sparse grid may yield designs that are significantly different from designs that 

are minimax for the continuous region. On the other hand, the proposed method can be  

infeasible for dense grids.  

In each of the above applications, an important advantage of using a minimax 

design over other space-filling designs is that they tend to minimize the maximum 

prediction variance of the GP emulator over the candidate set. 

5.3 Construction of Minimax Designs via Solution of Set Covering Location Problem 

In this section, we shall first introduce SCLP and its formulation as a BLP. Then, 

we discuss key results of this chapter without proof, and provide procedures for finding 

minimax designs based on the key results. Proofs of the key results are given in Appendix 

E.1. 

SCLP is a classical problem in location analysis introduced by Hakimi (1965). A 

brief description of the problem is as follows: We are given a set of �� candidate 

locations for constructing facilities of a particular type and �� locations of demand 

points. Each facility has infinite capacity but can only serve demand nodes less than or 

equal to Q unit distance from the facility, where Q is called the covering radius. The 

problem is to determine the minimal number of locations at which to construct facilities 
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so that all demand nodes are served. Toregas et al. (1971) formulated SCLP as a BLP, 

which enables the problem to be solved efficiently. For a recent reference, see Snyder 

(2011).  

In this chapter, we shall be concerned with only the special case of SCLP where 

�� = �� = � and the set of candidate location for facilities is the same as the set of 

demand points. The BLP formulation of this problem has decision variables þ�, … , þj. If 

þ̈ = 1, then a facility is constructed at location ^ and þ̈ = 0 otherwise. This SCLP is 

formulated as a BLP below.  

Set Covering Location Problem (SCLP) 

P
Q� = min 	{ þ̈j
¨k�

 

s.t. ∑ þ̈	̈ ∈|© ≥ 1, @ = 1,… , �, 

þ̈ ∈ {0,1}, ^ = 1,… ,�. 

Ω1 = s^ ∈ {1,… ,�}|ℎ1¨ ≤ Qt, 
ℎ1¨ = �@� ��r�	�� ����	z�r� @���	@	���	^,  

Q = r����@��	���@��. 

Note that Ω1 is the set of indices of locations within a distance Q from location @. 
The constraint  ∑ þ̈	̈ ∈|© ≥ 1 requires that demand point @ be a distance of no more than Q 

from the closest facility. We shall write the constraints ∑ þ̈	̈ ∈|© ≥ 1, @ = 1,… ,� 

compactly as }
Q�à ≥ ë, where à = 
þ�, … , þj�d, and }
Q� is the � × � constraint 

matrix with elements v1¨ = 1 if ^ ∈ Ω1 and v1¨ = 0 otherwise. 

We can use SCLP to find a design such that all candidate points are at a distance 

at most Q from the closest design point. To do this, we interpret the candidate points as 
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the candidate facility locations (which are also demand points). A design S ⊆ R is a set 

of facility locations, which corresponds to a (possibly infeasible) solution à ∈ Λ to SCLP, 

where Λ is the set of all nonzero binary �-vectors. Let {^�, … , ^¡} = {^ ∈ {1,… ,�}: þ̈ =
1}. Then, à corresponds to the design S = {w¨a , … ,w¨3}. In this chapter, we shall 

sometimes write S
à� or à
S� to make the correspondence clear. SCLP gives a design of 

minimum size such that every candidate point is at most a distance of Q units away from 

a design point.   

 The key results of this chapter are as follows: We prove that a minimax design 

can be found by solving SCLP at a value {1 of the covering radius Q (or slightly greater 

than {1) such that any further decrease in Q would cause a jump in the optimal objective 

function value, i.e., {1 is a discontinuity of the function P
Q�, which maps the covering 

radius Q to the optimal objective function value. Any design obtained by solving SCLP at 

Q = {1 is a minimax design with minimax distance {1. Moreover, the set of minimax 

distances is the set of discontinuities of the function P
Q�. A key observation used to 

prove the results is that �
S� ≤ Q if and only if à
S� is a feasible solution of SCLP with 

covering radius Q. 

The function P
Q� is a right continuous and nonincreasing function with range 

{1, … ,�}. It has finite number of discontinuities » = {{�, … , {É: 0 = {� < ⋯ < {É}, 
which as mentioned above, is also the set of minimax distances (as a convention, we refer 

to {� = 0 as a discontinuity). Define Ù = sℎ1¨ = yw1 − w¨y: @, ^ = 1,… ,�t to be the set 

of pairwise distances between design points and let Ù� = {ℎ�, … , ℎ°}, where 0 = ℎ� <
⋯ < ℎ°, be the set of distinct values in Ù. Because » ⊆ Ù�, i.e., the set of discontinuities 

is a subset of the distinct pairwise distances between points in R, identification of the 
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discontinuities is easy. It is only necessary to solve SCLP at the midpoint between 

consecutive values of Ù′ to determine the discontinuities. Minimax designs can be found 

by solving SCLP at a point of discontinuity Q = {1 or for practical purposes (i.e., to guard 

against numerical errors), slightly greater than it but less than the next point in Ù′. Any 

solution of SCLP at Q = {1 is an �1 = P
{1�-point minimax design and conversely any 

�1-point minimax design is a solution of SCLP at Q = {1. For any � ∈ ��1 , �1�� − 1
, 
where �1�� = P
{1���, an �-point minimax design has minimax distance �¡∗ = {1 and 

can be constructed by adding � − �1 points to an �1-point minimax design. 

For illustration, consider the case where R = {
0,0�, 
1,0�, 
0,1�, 
0.5,0.5�}. Then, 

it is obvious that the 1-point minimax design is S�∗ = {
0.5,0.5�}, 2-point and 3-point 

minimax designs can be obtained by adding to S�∗ one and two other points from R 

respectively, and the 4-point minimax design is S"∗ = R. The minimax distances are 

��∗ = 1/√2 = ��∗ = �!∗, and �"∗ = 0. We have Ù� = {0,1/√2, 1, √2}. If we solve SCLP at 

Q ∈ sℎß�, ℎß�, ℎß!, ℎß"t, where ℎß� ∈ x0,1/√2<, ℎß� ∈ x1/√2, 1<, ℎß! ∈ x1, √2<, and ℎß" ∈
x√2,∞<, i.e., one point in each interval formed by partitioning �0,∞� with consecutive 

points of Ù�, then we would obtain the plot of P
Q� versus Q shown in Figure 5.2. The 

figure shows that P
Q� has a discontinuity at {� = 1/√2; note that by convention, {� = 0 

is also a discontinuity. The two discontinuities are the minimax distances. We also see 

that P
{�� = 4 and P
{�� = 1. This implies that minimax designs with one to three 

points have minimax distance {�. The one-point minimax design can be found by solving 

SCLP with Q = ℎß�. 

We now present a computational procedure for efficiently creating a plot of P
Q� 
versus Q. A minimax design can be obtained by solving SCLP at any identified 
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discontinuity of the plot.  

 

 
Figure 5.2: Plot of P
Q� versus Q for R = {
0,0�, 
1,0�, 
0,1�, 
0.5,0.5�}.  
Long vertical lines extending upwards from the abscissa are values in Ù� 

 
 

Procedure A: (for creating a plot of P
Q� versus Q)  

1. Specify an interval �', (
. Compute Ù and Ù′. Compute Θ = {.�, … ,.°}, where 

.1 = :ℎ1 + ℎ1��</2, @ = 1,… ,} − 1, .° = 1.1ℎ°. Find z and � such that 

ℎ£�� < ' ≤ ℎ£ and ℎÓ ≤ ( < ℎÓ��. 

2. Solve SCLP with Q = .Ó. Set W = 2. 

3. Determine if }
.Ó�\���à∗
.Ó�\��� ≥ ë, where à∗
.Ó�\��� is the optimal 

solution for SCLP with Q = .Ó�\��, by checking the equivalent condition 

� �SÀà∗
.Ó�\���Á� ≤ .Ó�\��. If the condition is satisfied, set à∗
.Ó�\��� =

à∗
.Ó�\��� and go to Step 5; otherwise, go to Step 4. 

4. Solve SCLP with Q = .Ó�\��. 

5. If 	� − W + 1 = z, stop. Otherwise, set W = W + 1. Go to Step 3.  

Remark 3.1: If P
.%��� > P
.%�, then ℎ% is a discontinuity of P
Q�. Thus, minimax 

designs can be found by solving SCLP at Q = .%. If P
.%��� > P
.%� + 1, minimax 
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designs of size � ∈ �P
.%� + 1, P
.%��� − 1
 can be obtained by adding � − P
.%� 
points to a minimax design of size P
.%�. We suggest that the extra points be added at 

points w1 such that �
w1, S� equals the minimax distance ℎ%. 

Remark 3.2: Procedure A allows us to determine whether ℎ£��, … , ℎÓ are discontinuities 

of P
Q�. We cannot tell from the results whether ℎ£ is a discontinuity. 

Remark 3.3: The solution of SCLP at Q = .� is R and a solution at Q = .° is any one-

point design.  

Remark 3.4: If }
.%���à∗
.%� ≥ ë, à∗
.%� is a feasible solution for SCLP with 

Q = .%��. This implies that P
.%��� ≤ P
.%�. Since .%�� < .%, any feasible solution 

at Q = .%�� must also be feasible at Q = .%. It follows that P
.%��� ≥ P
.%� and 

à∗
.%� is optimal at Q = .%��. The step of checking whether an optimal solution 

remains optimal as Q is reduced (Step 3) can yield significant computational savings over 

an alternative procedure that solves SCLP each time Q is reduced. By Proposition E.2 in 

Appendix E.1, }
.%���à∗
.%� ≥ ë if and only if � ÀS:à∗
.%�<Á ≤ .%��. The 

advantage of checking the latter condition is that �:S
à∗�< need only be computed once 

for an à∗. This can be more efficient than the former condition, which requires computing 

}
.%� for each M. 

Remark 3.5: In practice, we would want to plot P
Q� over an interval �', (
 such that the 

range �P
.Ó�, P
.£� − 1
 contains design sizes of interest to the experimenter. Suitable 

choices of �', (
 can be obtained by say, trial and error. Alternatively, use Procedure B 

given below. 

Remark 3.6: The set Ù′ of unique values of Ù depends on the precision used in 

computing the elements of Ù. We compute the elements of Ù to S± = 12 decimal places 
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in Procedure A.  

Input variables for an experiment are often quantities that vary over very different 

ranges. This is because in many experiments, these variables are different physical 

quantities measured in different units. Moreover, physical units can be written in different 

scales (e.g., kilometer, meter, centimeter).  Because of these reasons, we recommend 

always standardizing each variable, i.e., subtract the mean from each value and divide 

the result by the standard deviation so that the sum of squares is �. Throughout the 

chapter, the candidate set R consists of the standardized candidate points. 

A global optimal solution to SCLP can be obtained by using a linear 

programming (LP) based branch-and-bound algorithm. One such algorithm is the 

bintprog function in Matlab. However, the time required by such algorithms to solve 

SCLP can increase dramatically with an increase in the size of the � × � constraint 

matrix }. Note that we use }
Q� and } interchangeably. A commonly used strategy to 

speed up the solution of SCLP is the removal of redundant constraints and decision 

variables (rows and columns of the constraint matrix) (Caprara and Toth, 2000). Define 

�\ = {@: v1\ = 1} and u1 = {W: v1\ = 1}. Then, þ\ is redundant if there exists z ≠ W such 

that �\ ⊆ �£ since this implies that the set of points that is covered by point W is a subset 

of the points that is covered by point z. On the other hand, constraint @ is redundant if 

there exists ^ ≠ @ such that u1 ⊇ ü  since this implies that if point ^ is covered, then so is 

point @. Any constraint matrix obtained after removal of some redundant rows and 

columns is called a reduced constraint matrix and the corresponding BLP is called a 

reduced version of SCLP. A reduced constraint matrix may be further reduced by 

removing redundant rows and columns. Note that the definitions of redundant rows and 
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columns extend in a straightforward manner to any reduced constraint matrix and a 

nonredundant row/column in any reduced constraint matrix may become redundant after 

removal of redundant columns/rows. We also call any reduced version of a reduced 

constraint matrix a reduced constraint matrix, and the corresponding BLP a reduced 

version of SCLP. It can be shown that SCLP and any reduced version of it have the same 

optimal objective function values, and an optimal solution to the latter can always be 

converted into an optimal solution to the former by setting to zero the decision variables 

that have been removed (see Appendix E.4). In the Matlab code for Procedure A that we 

provide, rows/columns of the constraint matrix are reduced via the efficient technique of 

making pairwise comparisons sequentially and removing a row/column as soon as it is 

found to be redundant. Our code makes pairwise comparisons of rows first. We call the 

BLP obtained by this reduction procedure Reduced SCLP and we denote its constraint 

matrix as }W. Note, however, that any other reduced version of SCLP can be employed. 

Reduced SCLP can be much smaller than SCLP. We have found that in some instances, 

more than half of the rows and columns of the constraint matrix are removed by the 

reduction procedure. 

Algorithms for solving BLP’s often give only one optimal solution. However, the 

set of P
ℎ\�-point minimax designs can be obtained, at least in principle, using the 

following technique. Let à�∗ = 
þ��∗ , … , þj�∗ � be the optimal solution obtained by solving 

SCLP at Q = .\. Then, we add the constraint ∑ þ̈	̈ :5³a∗ k� + ∑ :1 − þ̈ <	̈ :5³a∗ k� ≥ 1 to SCLP 

to “cut off” à�∗. This would force the program to yield an alternative solution. Suppose we 

have obtained solutions à�∗ , … , à%∗ . Then, to obtain another, we add the constraint 

∑ þ̈	̈ :5³�∗ k� + ∑ :1 − þ̈ <	̈ :5³�∗ k� ≥ 1 to the program, which together with the previously 
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added constraints, would cut off à�∗ , … , à%∗ . This process is repeated until the program 

yields optimal objective function values greater than P
ℎ\� or becomes infeasible. Of 

course, we can also terminate the search after a specified number of alternative solutions 

are found. We have found that it is often feasible to find �� alternative minimax designs 

if � + �� < 250 (so that there are less than 250 constraints). Alternative minimax 

designs can be found based on Reduced SCLP so that all design points are restricted to 

candidate points corresponding to the columns of }W. However, this can yield far fewer 

alternative designs. One reason for the existence of alternative minimax designs is that it 

is often possible to substitute a few design points with some other candidate points close 

to them without changing the distance of the design. This is to be expected since the 

minimax criterion only measures the worse-case distance of the candidate points to the 

design. Another reason is that for rotationally symmetric candidate sets, any rotation of a 

minimax design would produce another minimax design.  

We suggest choosing among alternative minimax designs using a secondary 

criterion. One obvious criterion that can be used is the maximin criterion. Another 

criterion, which we have found to produce visually appealing are designs, is the 

minimization of �
S� = var{8
Ì��,… , 8
Ì¡�}, where  8
Ì1� = minsyÌ1 − Ì¨y: ^ ≠
@, ^ = 1,… , �t. This criterion is the variance of the minimum distances of each design 

point to another. Thus, a design that minimizes �
S� would tend to look evenly spaced. 

For example, the four and nine point minimax designs given in Figure 5.1 achieve a 

minimum value of �
S� = 0. Note that rotations of any (minimax) design are equivalent 

in terms of any criterion based solely on (Euclidean) distances between design points, 

which includes the maximin and �
S� criteria.  A class of minimax designs that is of 
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theoretical interest (Johnson et al., 1990) is the highest index designs. However, we have 

frequently found that all alternative designs yield an index of 1.  

Before we end this section, we present a bisection procedure for finding a tight 

interval �Qõ , Qp
 that contains the minimax distance �¡∗ . A slight modification of the 

interval can be used as input to Procedure A to determine the exact value of �¡∗ . We add 

the constraint ∑ þ̈j̈k� = � to SCLP and call the resulting BLP �-SCLP. The bisection 

procedure is based on solving �-SCLP and is given below.  

Procedure B: (Bisection procedure for finding a tight interval containing �¡∗ ) 

1. If � = �, return �¡∗ = 0 and terminate. Compute Ù′ and Θ. Set Qõ = .� and 

Qp = .°. 

2. Set Q+ = 
Qõ + Qp�/2 and determine whether �-SCLP at Q+ is feasible.  

3. If �-SCLP is feasible, set Qp = Q+. If it is infeasible, set Qõ = Q+.  

4. If =�Qõ, Qp
 ∩ Ù′= ≤  , stop. The interval �Qõ , Qp
 contains �¡∗ . Use �', (
 =

º�.£��, Qp
, z ≥ 2
�0, Qp
, z = 1 , where ℎ£ ≤ Qõ < ℎ£��, as input to Procedure A. Otherwise, 

return to Step 2. 

Remark 3.7: We can determine whether �-SCLP is feasible by working only with 

Reduced SCLP. Let �á denote the number of columns of the constraint matrix }W of 

Reduced SCLP and let Reduced SCLP with the added constraint that all its decision 

variables sum to � be called Reduced �-SCLP. Then, if �á ≤ �, �-SCLP is feasible. If 

�á > �, then �-SCLP is feasible if and only if Reduced �-SCLP is feasible.  

Remark 3.8: If �', (
 = º�.£��, Qp
, z ≥ 2
�0, Qp
, z = 1 , where ℎ£ ≤ Qõ < ℎ£��, is given as input to 

Procedure A, then Procedure A will solve SCLP at .£, … ,.Ó, where � ≤ z +  . Thus, the 
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parameter   controls the number of times SCLP needs to be solved by Procedure A. We 

suggest choosing  ≥ 10.  

5.4 Algorithms for Large Candidate Sets 

Solving SCLP as an integer program can be very time consuming when � is 

large. Because SCLP is an NP-hard problem (Current et al., 2002), there is no known fast 

(polynomial time) algorithm for solving it. In our experience with Matlab’s bintprog 

function, only problems of size up to about 200 can be solved quickly (in a few minutes) 

on a MacBook Pro laptop for all values of Q. If the candidate set is a grid, it can also be 

difficult to find global optimal minimax designs for � between around 150 to 200. As � 

grows, the number of elements of Ù� can increase rapidly and its values become more 

finely spaced. Thus, SCLP may need to be solved many times to construct a plot of P
Q�. 
In this section, we propose modifications to Procedure A that overcome these problems.  

 To overcome the limitation of solving SCLP as an integer program, we employ a 

heuristic procedure. Many heuristic algorithms have been proposed to solve large scale 

SCLP’s. Classical heuristics include the ones proposed by Chvatal (1979) and Hochbaum 

(1982). These are simple heuristics with guaranteed worst-case performance. We have 

implemented Chvatal’s (1979) and Hochbaum’s (1982) heuristics together with 

Grossman and Wool’s (1997) redundancy elimination procedure. The redundancy 

elimination procedure removes redundant design points from a heuristic solution. Based 

on our experience, the combination of Hochbaum’s and Grossman and Wool’s heuristics 

tend to give better solutions than the combination of Chvatal’s and Grossman and Wool’s 

heuristics. Hence, we shall focus on the former heuristic procedure, which we call HGW.  

We first introduce some notation. The number of rows of the reduced constraint 
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matrix }W is denoted by �	 (recall that the number of columns of }W is denoted by �á) and 

the 
@, ^� element of }W is denoted by v�1¨. We assume without loss of generality that the 

columns of }W correspond to decision variables þ�, … , þj(. The HGW heuristic is given 

below. 

HGW Heuristic 

1. Solve the LP relaxation of Reduced SCLP. The LP is obtained by replacing the 

constraints þ̈ ∈ {0,1}, ^ = 1, … , �á with the constraints 0 ≤ þ̈ ≤ 1, ^ = 1,… ,�á. 

Let àõ� = :þ�õ� , … , þj(õ�< denote the optimal solution to the LP relaxation. 

2. Let � = max�∑ v�1¨j(¨k� : @ = 1, … , �	� (� is the maximum row sum of }W) and find 

� = s^: þ̈õ� ≥ 1/�t. Set þ̈� = º1, ^ ∈ �
0, ^ ∉ �. Then, it can be shown that à� =

:þ��, … , þj(� <, which is a heuristic solution proposed by Hochbaum (1982), is 

feasible for Reduced SCLP. Set à��� = à�. 

3. Calculate the redundancy �1 = ∑ v�1¨ þ̈���j(¨k�  for @ = 1,… ,�	, i.e., for each 

constraint associated with the rows of }W. Set Ξ = s^: þ̈��� = 1t. For each ̂∈ Ξ, 

calculate the minimal redundancy }�̈ = mins�1: v�1¨ = 1t. Find ̂ ∗ such that 

}�̈ ∗ = maxs}�̈ : ^ ∈ Ξt (break ties with the minimum index rule).  

4. If }�̈ ∗ ≥ 2, set þ̈ ∗��� = 0 and return to Step 3. Otherwise, stop. 

In Step 1, the LP relaxation of Reduced SCLP rather than that of SCLP is solved. 

We recommend doing this because we can expect better results by applying Hochbaum’s 

heuristic to Reduced SCLP than SCLP. However, one may choose not to reduce SCLP to 

save computation time. The method used to solve the LP relaxation can have an effect on 
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the solution returned by HGW because different methods can give different optimal 

solutions. This chapter uses the simplex algorithm implemented in Matlab.  

We modify Procedure A so that it can be applied to find near-minimax designs of 

size � from large candidate sets. The procedure, which includes the use of HGW as a key 

ingredient, is given below.  

Procedure C (for constructing near-minimax designs) 

1. Specify a tentative design size �. Set ( = �Ó�¡�� and ' = �£�¡��, where �¡�� is the 

distance of the �-point design obtained with KS. Compute each element of Ù to 

S± decimal places. Determine Ù′ and compute Θ. Find z and � such that ℎ£�� <
' ≤ ℎ£ and ℎÓ ≤ ( < ℎÓ��. 

2. Solve SCLP with Q = .Ó using HGW. Set W = 2. 

3. Check if � �S Ààù
.Ó�\���Á� ≤ .Ó�\��, where àù
.Ó�\��� is the heuristic 

solution for SCLP with Q = .Ó�\��. If the condition is satisfied, set 

àù
.Ó�\��� = àù
.Ó�\��� and go to Step 5; otherwise, go to Step 4. 

4. Solve SCLP with Q = .Ó�\�� using HGW. 

5. If 	� − W + 1 = z, stop. Otherwise, se 	W = W + 1. Go to step 3.  

6. Denote by P̂
Q� the step function whose value at Q ∈ �ℎ% , ℎ%��� is the sum of the 

components of àù
.%�. Plot the monotone decreasing step function U
Q� with set 

of discontinuities »� = {ℎN: P̂
ℎ%� > P̂
ℎN�, z ≤ M <  ≤ �}, U
ℎ%� = P̂
ℎ%� for 

all ℎ% ∈ »�, and U
ℎ£� = P̂
ℎ£�. Let �′ ∈ sU
ℎ%�: ℎ% ∈ »�t and let  
�′� ∈
{z + 1,… , �} be such that U
ℎN
¡′�� = �′. Then, the heuristic solution àù:.N
¡′�< is 

an �′-point near-minimax design and ℎN
¡′� is the distance of the design (accurate 
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up to S± decimal places). By examining a plot of U
Q�, the user can specify the 

value of �′ to obtain near-minimax designs of several different sizes close to �. 

Remark 4.1: The choice of �Ó and �£ should be obtained by trial and error. We suggest 

trying �Ó ∈ �0.9,1
 and �£ ∈ �0.5,0.7
. We also suggest that �£ be chosen so that � <
�°�Æ = maxsU
ℎ%�: ℎ% ∈ »�t and only �′-point near-minimax designs with �′ < �°�Æ 

be used. The discussion below justifies the suggestions. Of course, �Ó should be chosen 

so that �°1¡ = minsU
ℎ%�: ℎ% ∈ »�t ≤ �. 

In the remainder of this section, we discuss the details of Procedure C. If we 

execute Procedure C by specifying �', (
 = �0,.°
, we would get an estimate of P
Q� 
which we denote by P̂��,�"

Q�. It is possible that for some .%, P̂��,�"

.%� ≠
P���
.%�, where P���
.%� is the objective function value obtained by solving SCLP 

with HGW at .%, due to the checking in Step 3 of Procedure C. Unlike P
Q�, P̂��,�"

Q� 
may not be a monotonic function of Q. Thus, a design obtained at a discontinuity of 

P̂��,�"

Q� may not be a good design. However, a good design of size � can be found at 

the discontinuity {6
�� of P̂��,�"

Q� such that P̂��,�"

{6
�� − ø� > P̂��,�"
:{6
��< = � 

for all ø > 0 (note that {6
�� may not exist for certain �). We call {6
�� a minimal 

discontinuity of P̂��,�"

Q�. The construction of P̂��,�"

Q� can be too costly because } 

can be large. To overcome this problem, we apply Procedure C by specifying �', (
 to be 

a narrower interval. This leads to an estimate P̂�õ,p

Q� of P
Q�. In the rest of the chapter, 

we shall denote P̂�õ,p

Q� by P̂
Q� since the interval �', (
 is often clear from the 

discussion. For finding �-point near-minimax designs, we recommend computing P̂
Q� 
with �', (
 = ��£�¡��, �Ó�¡��
, where �¡�� is the distance of the �-point KS design, 
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�Ó ∈ �0.9,1
 and �£ ∈ �0.5,0.7
. 
The discontinuity of P̂
Q� that is of interest is the minimal discontinuity ℎN
¡�, i.e., 

ℎN
¡� satisfies P̂
ℎ%� > P̂
ℎN
¡�� = �	, z ≤ M <  
�� ≤ �. The heuristic solution àù:.N
¡�< 

gives an �-point near-minimax design with distance ℎN
¡�. It is not necessarily a solution 

that is found by solving SCLP at .N
¡� with HGW; due to Step 3 of Procedure C, it could 

be a solution obtained with HGW at Q = .N
¡��\ but is found feasible for all Q =
.N
¡�, … ,.N
¡��\��. Note that ℎN
¡� may not exist. In this case, we can construct an �′-
point near-minimax design, where �′ is an integer close to � such that ℎN
¡�� exists. A 

graph of P̂
Q� versus Q may not show clearly the distance of near-minimax designs 

because P̂
Q� may not be a monotonic function of Q. However, the problem can be 

rectified by constructing the monotone nonincreasing step function U
Q� that envelops 

P̂
Q� from below in the tightest possible way, i.e., U
Q� has set of discontinuities »� =
{ℎN: P̂
ℎ%� > P̂
ℎN�, z ≤ M <  ≤ �}, and function values U
ℎ%� = P̂
ℎ%� for all ℎ% ∈ »�, 
and U
ℎ£� = P̂
ℎ£�. It is clear that if '′ < ', the minimal discontinuity of P̂�õ�,p

Q� that 

gives an �-point near-minimax design is always less than or equal to the corresponding 

minimal discontinuity of P̂�õ,p

Q� (assuming both exist). Thus, the value of ' or �£ should 

be small enough so that a good �-point near-minimax design is not missed. If	�′ is close 

to �°�Æ = maxsU
ℎ%�: ℎ% ∈ »�t so that ℎN
¡�� is close to ', then it is possible that a 

better near-minimax design of size �′ or less can be found by further decreasing ' 

because it may happen that for some Q < ', P̂
Q� ≤ �′. Thus, near-minimax designs of 

size �′ near �°�Æ should be avoided.  

As � gets larger, the size of Ù� increases while the differences between values in 
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Ù� get smaller. When � is large, some of the differences can be so small that it is of no 

practical interest to distinguish those values. Moreover, because there are many values in 

Ù�, SCLP may need to be solved many times even if �', (
 is narrow. In this chapter, we 

compute the elements of Ù to S± = 12 decimal places when � ≤ 200 and to S± = 2 

decimal places when � > 200. Larger values of S± give more accurate results but we 

have found that good near-minimax designs can be obtained with Procedure C even if 

S± = 2. 

It is found that when � > 2000, the Matlab implementation of Procedure C 

incurs high memory usage and long computation time on the author’s laptop, which is a 

MacBook Pro with 2.4GHz Intel® Core™ Duo Processor and 4GB of RAM. The former 

problem (high memory usage) can cause the computer to freeze when the code is 

executed. It is due to the precomputing and storing of Ù and }
Q�. Note that }
Q� (or 

}W
Q�) is a required input to Matlab’s linear program solver and the precomputed Ù is 

used to quickly generate }
Q� for various values of Q.  

5.5 Examples and Comparisons 

This section gives three examples to demonstrate the application of the proposed 

methods to three different design problems. The first example is a real problem in a 

building energy simulation project involving the author. A small dataset on the input 

variables is available and it indicates that a highly irregular design region is appropriate. 

Since it is difficult to define a continuous design region that envelops the data, it is 

convenient to construct minimax designs from the data. The second example employs the 

proposed method to construct a nested space-filling design. The third example examines 

construction of near-minimax designs from a larger dataset 
� = 458) using the 
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proposed heuristic method.  

We emphasize that minimax designs are intended to be initial designs for 

computer experiments (which are almost always sequential in nature). Choice of sample 

size for an initial design has been discussed by Box (1993), Box et al. (1978), and 

Loeppky et al. (2009). Box (1993) and Box et al. (1978) recommend 25% of the 

experimental budget (which we call Box’s rule-of-thumb). Loeppky et al. (2009) 

recommend a design of size 10� (10� rule-of-thumb), where � is the dimension/number 

of variables. After an initial experiment has been run, an analysis of the data will indicate 

whether the sample size is adequate. If the experimental objective is prediction, 

prediction intervals (Tan and Wu, 2012; Santner et al, 2003) can be used to determine 

whether follow-up runs are needed. 

In the examples, we compare the proposed method with KS, MT, and KS-MF, 

where KS-MF is an algorithm that improves KS designs with the modified Fedorov 

algorithm (MF). These algorithms are discussed in Appendix E.2. Note that MF is one of 

the best algorithms for finding optimal designs on finite candidate set (Cook and 

Nachtsheim, 1980; SAS Institute, 2010). 

5.5.1 Example 5.1: Urban Heat Island Effect 

In this problem, it is desired to construct a nonlinear emulator for a computer code 

used to predict urban heat island intensity, which is important for uncertainty 

quantification of building energy consumption (Sun et al., 2012). Interest centers on 

studying the effect of four variables, i.e., canyon height, canyon ratio, vegetation area 

fraction, and built-up area fraction, on urban heat island intensity. These variables are 

geometric parameters that characterize the layout of buildings within a city (see 
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Appendix E.3). It is not easy for the engineers to specify a design region for the four 

variables because reasonable values must correctly reflect the correlations between the 

variables.  

 

 

 
Figure 5.3: Top: 80 Data Points for the Four Urban Layout Geometry Parameters;  

Bottom: 23-Point Minimax Design that Minimizes �
S� 
 
 

Data on the geometric parameters for � = 80 real urban areas are available. The 

engineers express interest in predicting urban heat island intensity at the data points 

because this would allow direct validation of the computer model with measured data 
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from real urban areas. Since the four variables vary over quite different ranges, we first 

center and standardize each variable. The standardized data are plotted in the top of 

Figure 5.3. It is immediately clear from the figure that the region of interest cannot be 

fitted into a hypercube or hypersphere. Thus, the design region is taken as the set of data 

points. Moreover, because running the computer code at all 80 data points is costly, a 

minimax design constructed using the data as candidate set is particularly useful.    

There are a total of 2383 distinct pairwise distances between data points with 

values from 0 to 6.5932. We apply Procedure A with �', (
 = �0.4,1.6
. There are 547 

values in Ù′ ∩ �0.4,1.6
, which we denote by {ℎÓ�¾"�, … , ℎÓ}. Procedure A only requires 

about 9 seconds to find an optimal solution to SCLP for all Q ∈ {.Ó�¾"�, … ,.Ó} on the 

author’s laptop. A plot of P
Q� versus Q over �0.4,1.6
 is given in Figure 5.4. 

Discontinuities are plotted as dots in Figure 5.4. It can be seen that there are less than 40 

discontinuities since P
Q� ranges from 6 to 43 within the interval �0.4,1.6
. It is not 

possible to determine whether ℎÓ�¾"� is a discontinuity from the information we have 

since this would require solving SCLP at Q = ℎÓ�¾"�. Each ℎ¨ that is a discontinuity of 

P
Q� is the minimax distance for a P
ℎ¨�-point minimax design. A P
ℎ¨�-point minimax 

design can be obtained by solving SCLP at Q = .¨. Figure 5.4 shows that minimax 

designs of sizes 6 to 42 have minimax distances in the interval �0.4,1.6
. 
For comparison, we compute designs of size 6-42 using KS, MT, and KS-MF. 

MT uses 50 random starting designs to generate designs of each size. We have verified 

that different sets of 50 random starting designs tend to yield MT designs with similar 

distances (across replicates). KS requires a fraction of a second to compute all designs 

and their distances, KS-MF requires two seconds, and MT requires about 30 seconds. In 
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Figure 5.4, we plot the design size versus distance. It is clear from the figure that none of 

the KS and MT designs are (global optimal) minimax designs. We also see that MT 

designs can be competitive with KS designs but they have slightly larger distance values 

in most cases.  

 

 
Figure 5.4: Plot of P
Q� versus Q, and Design Size versus Distance for KS, MT, and KS-

MF Designs, Urban Heat Island Problem 
 

KS-MF performs quite well (i.e., MF is effective at improving KS designs) in this 

example. Three of the KS-MF designs are minimax designs (those of size 7, 8, and 10; 

the one of size 9 is not) while several others have close to minimax distances. However, 

some of the KS-MF designs perform unsatisfactorily compared to minimax designs (e.g., 

those of sizes 16 to 24). Observe that a KS-MF design of size 23 achieves a distance of 

���∗ = 0.74021, which is the distance of a minimax design of size 17. Thus, KS-MF 

designs are not guaranteed to perform well even for small candidate sets (they do not 

perform well for larger � as demonstrated in Examples 5.2 and 5.3). Furthermore, there 

is no obvious way to check the goodness of the KS-MF designs other than applying the 

proposed method, and the computational advantage of KS-MF is not of practical 
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significance for small candidate sets. Consequently, it seems preferable to use the 

proposed method for small candidate sets.  

The HGW heuristic gives excellent performance in this example. It yields a global 

optimal solution for each Q ∈ {.Ó�¾"�, … ,.Ó}, i.e., P���
Q� is identical to P
Q� on 

�0.4,1.6
. As a result, the estimate P̂
Q� obtained with Procedure C is identical to P
Q� on 

�0.4,1.6
, and designs produced by the procedure are minimax designs. In contrast, the 

combination of Chvatal’s (1979) and Grossman and Wool’s (1997) heuristics yields 

suboptimal solutions for many Q ∈ {.Ó�¾"�, … ,.Ó}.  
For the urban heat island experiment, Box’s rule-of-thumb suggests an initial 

design of size about 20 (which is 25% of the total budget of 80). Results of the 

computations used to construct Figure 5.4 show that P
Q� jumps from 23 to 24 as Q is 

decreased beyond 0.59573. In particular, we find that P
Q� = 24 for all Q ∈
�0.58046,0.59573� and P
Q� = 23 for all Q = �0.59573, 0.66781�. Thus, 0.59573 is the 

minimax distance of 23-point minimax designs, i.e., ��!∗ = 0.59573. Note that 0.59573 

and 0.59641 are two consecutive values in Ù�. Thus, to obtain a 23-point minimax 

design, we solve SCLP at (0.59573+0.59641)/2=0.59607. The search for alternative 

minimax designs is terminated when 150 designs are found. This takes about 83 seconds. 

Among the 150 designs, the value of the maximin criterion, i.e., Δ
S�, varies from 

0.544331 to 0.653584, and five designs achieve the maximum value. The value of the 

�
S� criterion varies from 0.14464 to 0.17989 and only one design S∗∗ gives this value. 

The design S∗∗, which has a value of Δ
S� of 0.636245, is plotted in Figure 5.3. A 

comparison of the top and bottom plots of Figure 5.3 indicates that S∗∗ is spatially 

representative of the candidate set.  
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5.5.2 Example 5.2: Nested Space-Filling Design 

This example illustrates the use of the proposed method for constructing nested 

space-filling designs. We suppose it is desired to construct a two-layer nested design for a 

problem with dimension � = 10. The 10� rule-of-thumb (Loeppky et al., 2009) suggests 

the use of designs of size 100. Since the first layer S� is used for the experiment on the 

low fidelity computer model, which is cheap to run, it seems reasonable to choose S� to 

be of size 2x100=200. On the other hand, since the second layer S� is used for the 

experiment on the high fidelity computer model, which is expensive to run, it is 

economical to choose S� to be of size 100/2=50. The first layer S� is constructed as 

follows. We generate 10,000 random Latin hypercube designs in �0,1
�� of size 200, 

select the design that is best with respect to the maximin criterion, and set S� to be the 

standardized version of that design.  

To construct S�, we use R = S� to build 50-run minimax designs. Applying 

Procedure B with � =  = 50 gives the interval 

�', (
 = �2.713445536765,2.744064182816
 (note that we give the values to S± =
12 decimal places). The computation takes 6 seconds. By applying Procedure A to 

compute P
Q� over �', (
, we find that �¾�∗ = 2.717545205187, and the algorithm 

returns .% = 2.7177296575255 as the value of Q to use to solve for alternative 

minimax designs of size 50. The computation takes 87 seconds. A total of 20 alternative 

minimax designs are found in 70 seconds. All except two designs achieve the largest 

Δ
S� value of about 1.902. The minimum �
S� value of 0.107 is achieved by only one 

design S∗∗. The design S∗∗ also achieves the largest Δ
S�. Thus, it seems desirable to 

take S� = S∗∗. Two-dimensional projections of S� are plotted in Figure 5.5. We do not 
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plot S� because its projections densely cover all of x
0 − 0.5�/:1/√12<, 
1 −

0.5�:1/√12<y� = x−√3, √3y�.  

 

 
Figure 5.5: Matrix Plot of 50-Run Minimax Design S� 

 
 

 
Figure 5.6: Plot of P
Q� versus Q, and Design Size versus Distance for  

KS and KS-MF Designs  
 
 

We construct a plot of P
Q� versus Q over �2.5,2.8
, as given in Figure 5.6. This 

takes about 330 seconds. It can be seen that minimax distances �""∗ , … , ��"∗  are in the 
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interval �2.5,2.8
. We also plot the distances of designs of sizes 44,… ,74 obtained with 

KS and KS-MF in Figure 5.6. KS-MF takes about 61 seconds to find all the designs and 

distances. Although KS-MF is an improvement over KS, none of the KS-MF designs are 

global optimal minimax designs. An undesirable feature of KS-MF is that the KS-MF 

design distance is not a monotone function of design size. Moreover, KS-MF has 

significantly poorer performance compared to minimax designs. For example, the 65-

point KS-MF design achieves �¾�∗ = 2.71274. The increase in sample size of 13 is 

substantial. 

5.5.3 Example 5.3: Forest Fires 

In this example, we apply the proposed heuristic procedure to construct near-

minimax designs for a large candidate set. We consider a hypothetical problem of 

building an emulator of a computer model of forest fires, such as the model employed by 

Miller and Urban (1999). We use the forest fire dataset collected by Cortex and Morais 

(2007), which can be downloaded from the UCI machine learning repository at 

http://archive.ics.uci.edu/ml/datasets/Forest+Fires to define the candidate set. This helps 

create a realistic design region, and also allow direct validation of the computer 

predictions. The coordinate and time variables are removed from the data, giving nine 

remaining variables. One of the variables is the total burned area, which is the response. 

The eight remaining variables are the quantities employed in the computation of the 

Canadian forest fire weather index (Cortex and Morais, 2007). Appendix E.3 describes 

the variables. We assume that these eight variables are inputs to our fictitious forest fire 

computer model.  
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Figure 5.7: Matrix Plot of Candidate Set (Top) and 69-Run Near-Minimax Design 

(Bottom), Forest Fire Data 
 
 

There are a total of 517 data points and several outliers can be seen when two-

dimensional projections of the data are plotted.  While it is of interest to run computer  

models at locations of outliers in a validation exercise, it may not be desirable to include 

these outliers in the candidate set for several reasons. First, the outliers can significantly 

influence the standardization of the variables. Second, if these outliers are included in the 

candidate set, some of them would be included in a minimax design because they are far 
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from the other candidate points. However, the computer code output may behave very 

differently at the locations of the outliers, which may have an adverse effect on the 

emulator predictions at non-outlier locations.  

In the 517-point data, the variable rain is positive in eight instances and equals 

zero in all other instances. Thus, these eight outlying data points are removed and the 

variable rain is fixed at zero in the computer experiment. We now have a 509-point 

dataset with seven variables. For this dataset, we apply the boxplot to screen out extreme 

outliers in each variable. Any data point with a variable that falls outside the outer fences 

of its boxplot is discarded. Finally, repeated points are removed from the data. A total 

� = 458 data points remain after removal of all outlying and repeated points. Two-

dimensional projections of the standardized data are plotted in the top of Figure 5.7. We 

see that the data concentrate on irregularly shaped regions. For example, in the FFMC 

versus DMC plot, the points concentrate on a “curved” region and in the DMC versus DC 

plot, the points concentrate on a highly irregular region. Note also that in the DC versus 

ISI, temp, RH, and wind plots, the points concentrate on two disjoint regions. 

It is difficult to construct global optimal minimax designs due to the size of the 

candidate set. Since there are � = 7 variables, a 70-run minimax design would be a 

suitable choice for an initial design according to the 10� rule-of-thumb. Thus, we apply 

Procedure C with ( = ����� and ' = 0.7�����. This yields a plot of P̂
Q� and U
Q� over 

�', (
 shown in Figure 5.8.  

In Figure 5.8, discontinuities of U
Q� are plotted as dots and P̂
Q� is plotted with a 

dotted line. Note that P̂
Q� is actually a continuous curve. The portions where it overlaps 

with U
Q� are superimposed with the solid line that represents U
Q�. As illustrated in 
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Figure 5.8, P̂
Q� is not monotonic. The monotonic lower envelope U
Q� is an estimate of 

P
Q� and its discontinuities give the distances of near-minimax designs. We see from the 

figure that there is a discontinuity (indicated by an arrow) in U
Q� at ℎ% = 1.51 and 

U
ℎ%� = 69. The next largest near-minimax design corresponds to the discontinuity 

ℎ%�� = 1.49 and it has size U
ℎ%��� = 73. Figure 5.7 plots the near-minimax design of 

size 69, which has a distance of ℎ% = 1.51 up to S± = 2 decimal places (a more precise 

calculation gives a value of 1.511322). It can be seen that the design is representative of 

the candidate set.  

 

 
Figure 5.8: Plot of P̂
Q� and U
Q� versus Q, and Design Size versus Distance for KS and 

KS-MF Designs 
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all greater than 1.25. For comparison, we plot the design size versus distance for KS and 

KS-MF designs of sizes 43-112 (excluding �°�Æ = 113). KS-MF takes about 500 

seconds to run. In contrast, Procedure C takes only about 180 seconds. It is clear from the 

figure that for the large candidate set in this example, MF is unable to significantly 

improve KS designs. In addition, it can be seen that KS-MF designs perform poorly 

compared to near-minimax designs. To achieve the same distance as a near-minimax 

design, the design size for KS-MF would need to be significantly larger. For example, a 

68-point KS-MF design has distance 1.8 whereas a 43-point near-minimax design has 

distance of 1.79. As another example, to achieve the distance of 1.51 of the 69-point 

near-minimax design in Figure 5.7, the KS-MF design size would have to be 98; this 

would give a design with distance 1.50.  

5.6 Conclusions 

This chapter proposes a method for constructing minimax designs from finite 

candidate sets. The method is based on solving a BLP, i.e., SCLP, at specially chosen 

values of the covering radius.  We prove that the set of minimax distances is the set of 

discontinuities of P
Q�. We show that solving SCLP at or slightly to the right of 

discontinuity points gives minimax designs. To overcome computational limitations in 

solving large SCLPs, we give a heuristic procedure that is useful for constructing near-

minimax designs for large candidate sets. Three examples are given to illustrate the 

usefulness of the proposed method. The first example is a real problem with a small 

candidate set. Minimax distances are determined via a plot of P
Q� versus Q, and 

alternative minimax designs of a specified size are found. The second example illustrates 

the use of the proposed method for constructing nested space-filling designs. In the third 
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example, we employ the proposed heuristic procedure to a problem with a large candidate 

set. In the first and third examples, the candidate points define highly irregular regions, 

and the minimax designs are spatially representative of the candidate set.  

The algorithms developed in this chapter are very different from existing 

algorithms for finding optimal designs on finite candidate set. They are based on solving 

finite sequences of SCLP’s with gradually decreasing covering radius. Since SCLP is a 

very well-studied problem in the operations research literature, there exists a wide variety 

of powerful exact and heuristic tools for solving the problem. Some of these tools are 

employed in the chapter to solve the minimax design problem while others can be tested 

in future research. Even though existing algorithms for finding optimal designs on finite 

candidate can be used to find minimax designs, there is no guarantee that these 

algorithms can produce good designs. In fact, they do not perform well on moderate and 

large candidate sets. This may be due to the fact that the number of alternative �-point 

designs increases as the number of candidate points increases. Examples 5.1-5.3 

demonstrate that as � increases, the performance of KS-MF designs relative to minimax 

or near-minimax designs deteriorates. For Example 5.1 (� = 80), many of the KS-MF 

designs have distances close to minimax distances but some of the designs perform 

poorly. For Example 5.2 (� = 200), none of the KS-MF designs perform well relative to 

minimax designs although KS-MF designs are significantly better than KS designs. 

Finally, in Example 5.3 (� = 458), Procedure C is shown to produce near-minimax 

designs that are substantially better than KS-MF designs in a much shorter time. 

Moreover, the KS-MF designs yield negligible improvements over the KS designs. 

A few areas require further research. First, extension of the proposed method to 
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construct designs for continuous regions is needed. Second, clever computational 

techniques and programming tricks can be used to improve the code for Procedure C so 

that it can work for larger candidate sets. The need to store the entire constraint matrix 

may be eliminated with delayed generation of the rows and columns of the constraint 

matrix (Bersimas and Tsitsiklis, 1997). In addition, state-of-the-art LP solvers can reduce 

the time required by Procedure C. For example, CPLEX is capable of solving LP’s with 

more than 10¾ constraints and variables in reasonable time (see Bixby (2002)). Third, 

extension of the heuristic procedure to generate more than one near-minimax designs of 

each size is needed. Fourth, we can substitute HGW with more modern and powerful 

heuristics for solving SCLP, such as the one proposed by Caprara et al. (1999).  
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APPENDIX A 

SUPPLEMENTARY MATERIAL FOR CHAPTER 1 

 

A.1 Simulation Procedure for Assessing Effectiveness of Direct Selective Assembly 

Procedure � 
1. Create the W� × �\ constraint matrix } for Program A, where } can be obtained in 

the following way: 

i. Generate a �\ full factorial design × = :�1¨<, where the � levels are labelled as 

1,2, … ,�. 

ii.  For the 1�  row of }, set the element in the ^ ℎ column equal 1 if �̈ � = 1 and 

zero otherwise. For the 2�� row of }, set the element in the ^ ℎ column equal 1 

if �̈ � = 2 and zero otherwise. Continue in this fashion until the � ℎ row of }. 

Then, generate the 
� + 1� ℎ to 
2�� ℎ row of } based on the 2�� column of 

×. Continue until all W� rows of } have been generated. 

2. For @ = 1, … , W, draw a random sample of size �, Z1�, … , Z1j from distribution �Z©.  

3. Compute all +1a1b⋯1c = mins':X1a1b⋯1c , `<, ∑ r̈�\̈k� t, where 

X1a1b⋯1c = Y
Z�1a , … , Z\1c�. Write the costs in a vector �, where the ̂ ℎ element is 

+1a1b⋯1c if the ̂  ℎ row of × is 
@�, @�, … , @\�. 
4. Solve Program A, which can be written compactly as minq	{�′q:}q = ë,q ∈

ℤjc , q ≥ ¯}, where q is the vector of decision variables, and ë is a W� vector of 1’s.  

5. Repeat steps 2-4 � times. Estimate the expected quality cost of a batch by +���� =
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�
É ∑ +�1∗É1k� , where  +�1∗ denotes the optimal objective function value obtained in the 

@ ℎ replicate.   

A.2 Illustrative Figures of Assemblies Discussed in Examples 1.1-1.4 

 

 

Figure A.1: Bimetal Thermostat 

 

 

Figure A.2: Knucle Joint Assembly 
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Figure A.3: Fortini’s Clutch 

A.3 Simulation Procedure for Assessing Effectiveness of  
Fixed Bin Selective Assembly 

 
Procedure �� 

Given a combination of « ∈ ω« and bin-formation rule, do the following. 

1. Generate the 
∑ �1\1k� � × ∏ �1\1k�  constraint matrix }. This is done as follows: 

i. Generate an �� × ⋯× �\ full factorial design × = 
�1¨�, where the �̈  levels of 

the ̂  ℎ column are labelled as 1,2, … , �̈ . 

ii.  For the 1�  row of }, set the element in the ^ ℎ column equal 1 if �̈ � = 1 and 

zero otherwise. For the 2�� row of }, set the element in the ^ ℎ column equal 1 

if �̈ � = 2 and zero otherwise. Continue in this fashion until the �� ℎ row of }. 

Then, generate the 
�� + 1� ℎ to 
�� + ��� ℎ row of } based on the 2�� 

column of }. Continue until all ∑ �1\1k�  rows of } have been generated. 
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2. Determine the �1¨’s based on the bin-formation rule. 

3. Compute all +1a1b⋯1c = mins�x':X1a1b⋯1c , `<y, ∑ r̈�\̈k� t and write the costs in a 

vector �, where the ̂ ℎ element is +1a1b⋯1c if the ̂  ℎ row of × is 
@�, @�, … , @\�.  
4. Generate ¬ = :���, … , ��¡a , ���, … , ��¡b , … , �\�, … , �\¡c<. Note that :�1�, … , �1¡©< 

has a multinomial distribution with probabilities �1¨ = �̧ ©:�1¨< − �̧ ©:�1,¨��<. 
5. Solve Program B, which can be written compactly as minq ��′q:}q = ¬,q ∈

ℤ∏ ¡©c©®a , q ≥ ¯�.  
6. Repeat Steps 4-5 � times. Denote the optimal objective function value obtained in 

the @ ℎ replicate as +�1∗. We can estimate the expected total cost of a batch by 

G�� = �
É ∑ +�1∗É1k� + �
«,��, and the expected quality cost by +���� = �

É ∑ +�1∗É1k� .  

A.4 Simulation Procedure for Estimating Expected Total Cost of 
Alternative Bin Designs 

 

Procedure ��� 
1. Select the confidence level 1 − {, practically significant difference 8, number of 

replicates � = � for Procedure II and first stage sample size }� ≥ 2. Set  =
 
��$/��a/
�oa�,°a�� and ℎ = ℎ À1 − $

� , }�, 
Á, where ℎ is Rinott’s (see Rinott, 1978) 

constant and 
 is the number of alternatives to be compared, i.e. |ω�£N|. 
2. For each ∈ ω�£N , do the following.  

i. For z = 1,… ,}�, run Procedure II with � = �. Denote the estimate of the total 

cost for alternative @ obtained in the z ℎ run by G��1£.  

ii.  Compute the sample mean G�,,,,1
�� = ∑ G��1£°a£k� /}� and sample variance �1� =
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∑ ÀG��1£ − G�,,,,1
��Á
�°a£k� /
}� − 1�.  

3. Compute /1¨ =  Ä:�1� + �̈�</}� for all @ ≠ ^. 

4. Set þ = {@: @ ∈ ω�£N 	���	G�,,,,1
�� ≤ G�,,,,̈
�� + :/1¨ − 8<�	∀@ ≠ ^}. 
5. If þ contains a single index, then stop and return that combination of « and bin-

formation rule as best. 

6. Otherwise, for all ∈ þ , compute }� = max º}�, À
Ç©6 Á�G. 
7. For all @ ∈ þ, run Procedure II 
}� − }�� additional times with � = � and compute 

the sample mean G�,,,,1
�� = ∑ G��1£°b£k� /}�. 

8. Select as best the alternative @ ∈ þ with smallest G�,,,,1
��. 
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APPENDIX B 

SUPPLEMENTARY MATERIAL FOR CHAPTER 2 

 

B.1 Cumulant Generating Function, Cumulants, and Moments of Quadratic Forms 

Lemma B.1: Let X = �X�X��~� bé = Àé�é�Á , í = Àí�� ¯
¯ ¯Áe, where í�� is positive 

definite, and ê be a symmetric matrix. Write ê = �ê�� ê��ê�� ê���, where ê�� is a square 

matrix with the same number of rows as X� and ê�� is a square matrix with the same 

number of rows as X�. Denote the minimum and maximum eigenvalues of í��
�/�ê��í��

�/� 

by �°1¡�  and �°�Æ�  respectively. Then, the quadratic form + = XdêX has the cumulant-

generating function given by 

ô
 � =  
édêé� − �
� ln�det	
à − 2 í��ê���
 + 2 �
é�dê�� + é�dê���
í���� −

2 ê�����
ê��é� + ê��é��            (B.0) 

for  ∈ 
−|2min
�°1¡� , 0�|��, �2max
�°�Æ� , 0�
���.      

Proof: This result follows easily from Equation (2.6) of Feuerverger and Wong (2000).            

 

Theorem B.1: Let X~�
é, í�, where í is positive semidefinite, and let í�/�êí�/� =
ñòñd be the spectral decomposition of í�/�êí�/�, where ò is a diagonal matrix with 

diagonal elements λ� ≤ ⋯ ≤ λ£. Then, the cumulant-generating function of + = XdêX is 

given by 

ô
 � =  édêé − 1
2 ln�det	
à − 2 íê�
 + 2 �édêí�/�
à − 2 í�/�êí�/����í�/�êé 



 216

=  édêé − �
� ∑ ln
1 − 2 λ1�£1k� + ∑ �NbÓ©b

���Nö©
õ1k� ,       (B.1) 

where �1 is the @ ℎ element of the vector ñdí�/�êé, and the expression holds for 

 ∈ :
−|2min
λ�, 0�|��, �2max
λ£, 0�
���<. Moreover, we have 

ô′
 � = édêé + ∑ ö©
���Nö©

õ1k� + 4∑ N
��Nö©�Ó©b

���Nö©�b

õ1k� ,        (B.2) 

ô′′
 � = 2∑ ö©b

���Nö©�b

õ1k� + 4∑ Ó©b

���Nö©�l

õ1k� ,                    (B.3) 

and 

ô′′′
 � = 8∑ ö©l

���Nö©�l

õ1k� + 24∑ Ó©bö©

���Nö©��õ1k� .        (B.4) 

Proof: Let � be an orthogonal matrix such that = � = ������~�
�,�� = 

� b������ , À��� ¯
¯ ¯Áe, where ��� is diagonal matrix with strictly positive diagonal 

elements, � = �é, and � = �í�d. Hence, we have + = XdêX = Xd�d�ê�d�X =
�d��, where � = �ê�d. 

Let us write 

� = ������, � = ������ = �é = ���é��é�, 

� = À��� ¯
¯ ¯Á = �í�d = b��í��d ��í��d��í��d ��í��d

e, and 

� = �ê�d = b��ê��d ��ê��d��ê��d ��ê��d
e = ���� ������ ����.  

All identity matrices are denoted by à, and the dimension of each à shall be clear from the 

context. By (B.0), we have 

ô
 � = log	��
 �
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=  
�d��� − 1
2 ln�det	
à − 2 �������
 

+2 �
��d��� +��d����
����� − 2 ������
����� + ������ 

=  
éd�d�ê�d�é� − 1
2 ln�det	
à − 2 ���
 

+2 �
éd��d��ê��d + éd��d��ê��d�
����� − 2 ������
��ê��d��é + ��ê��d��é� 
=  
édêé� − �

� ln�det	
à − 2 �í�d�ê�d�
 + 2 �édê��d
����� − 2 ��������êé  

=  
édêé� − �
� ln�det	
à − 2 íê�
 + 2 �édêí�/�
à − 2 í�/�êí�/����í�/�êé,  

where the last equality follows from the fact that               

í�/�
à − 2 í�/�êí�/����í�/� 

= ��d���
�/���
à − 2 ��d���

�/���ê��d���
�/��������d���

�/��� 

= ��d���
�/���
�d�− 2 ��d���

�/�������
�/��������d���

�/��� 

= ��d���
�/����d �Àà ¯

¯ àÁ − 2 Àà¯Á���
�/�������

�/�
à ¯�������d���
�/��� 

= ��d���
�/�
à ¯� �à − 2 ���

�/�������
�/� ¯

¯ à�
��

Àà¯Á���
�/��� 

= ��d���
�/�
à − 2 ���

�/�������
�/�������

�/��� = ��d
����� − 2 ��������. 

 Note that (B.1) holds for  ∈ 
−|2min
�°1¡� , 0�|��, �2max
�°�Æ� , 0�
���, where 

�°1¡�  and �°�Æ�  are the minimum and maximum eigenvalues of ���
�/�������

�/�.  Since 

�í�/�êí�/��d = ����
�/�������

�/� ¯
¯ ¯�, we have �°1¡� = �� if �°1¡� < 0 and �°�Æ� = �£ 

if �°�Æ� > 0.  

 

Corollary B.1: Let X~�
é,í�, where í is positive semidefinite. Then, the cumulants 

for the quadratic form + = XdêX are given by 
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ô	 = 2	��
� − 1�! { ��r��
êí�	
 + �éd
êí�	��êé}, � ∈ ℕ.      (B.5) 

Proof: This result follows by expanding 
à − 2 í�/�êí�/���� and − �
� ln�det
à −

2 íê�
 in the expression for ô
 � as power series in   (see Equations (5.10) and (5.11) 

in Khuri (2009)). 

 

Theorem B.2: Let X be a multivariate   random variable with � degrees of freedom, 

location parameter é, and scale matrix í, i.e., X =� �/ýRï�/� + é, where �~�
¯,í�, 
Rï� is a chi-squared random variable with � degrees of freedom and � and Rï� are 

independent. Then, + = XdêX has first three central moments given by 

�� = �
+� = r��� + ��, � > 2, 
�� = ��
+ − ����
 = r�
��� + ��� + r�
2���� + ��� + ��� − ���, � > 4, 
�! = ��
+ − ���!
 = r!
��! + 3���� + �!� + r�
3����� + 3���� + 3���� + �!� +
r�
3����� + 3����� + ��! − 3���� − ��!, � > 6, 

where �	 = 2	��
� − 1�!  ��r��
êí�	
, �	 = 2	���! éd
êí�	��êé, and r	 =
�
1 − 2/��
1 − 4/��⋯ 
1 − 2�/��
��.  

Proof: We have + = XdêX =� :�/ýRï�/� + é<dê:�/ýRï�/� + é<. Thus, 

�/ýRï�/� + é=Rï� =� �
é, 
�/Rï��í�. It follows that +|Rï� = :�/ýRï�/� + é<dê:�/
ýRï�/� + é<Ã Rï� has cumulants given by 

ô	 = 2	��
� − 1�! {
�/Rï��	 ��r��
êí�	
 + 
�/Rï��	���éd
êí�	��êé} 
= �	
�/Rï��	 + �	
�/Rï��	�� = �	k	 + �	k	��, 

where k = �/Rï�. Now, we can obtain �
+	|Rï�� using the relationship between moments 

and cumulants. Since �
+	|Rï�� can be expressed as a polynomial of degree � in k, we 
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can obtain the raw moments �
+	� using the fact that 

�
k	� = � �À ï
ç[bÁ

	� = �
1 − 2/��
1 − 4/��⋯ 
1 − 2�/��
�� = r	.  
The central moments can then be obtained from the raw moments. 

B.2 Data for Examples 

Table B.1: Data for Example 2.1 
BHF 
�� 

Friction 
�� 

Material 
�! 

Part Thickness 
�" 

�� �� 

13.6492 0.1405 1.0819 11.8017 16.1242 12.3581 
13.7553 0.0904 0.9814 11.9484 16.5589 12.1747 
13.7211 0.1534 0.8811 11.9619 12.5694 9.4674 
2.3992 0.1512 0.9933 11.9606 18.442 11.0999 
24.9033 0.097 1.0923 11.9473 19.8823 13.4837 
2.5053 0.1005 1.0913 12.0388 17.8932 11.0234 
25.0027 0.1466 1.0063 12.0067 17.0396 11.4995 
2.4711 0.1521 0.991 12.0383 17.5935 10.8937 
2.5291 0.1016 1.0999 12.0638 15.0679 11.1937 
13.7791 0.0404 0.8937 11.9781 14.1995 11.092 
24.997 0.0536 1.016 11.9351 17.7311 12.976 
2.5072 0.0958 0.8941 12.0725 9.8603 10.0025 
2.4983 0.0422 0.9933 11.8973 14.9086 9.9908 
13.7572 0.0995 1.0031 12.0039 16.452 12.23 
13.7483 0.0959 1.0025 12.0272 16.6234 12.2783 
13.7372 0.0555 0.9081 11.9032 15.399 11.3933 
2.4872 0.097 0.8889 12.0405 14.7347 9.3532 
13.792 0.1035 1.0077 11.9982 16.3857 12.243 
24.9737 0.0527 0.9922 11.9569 17.2571 12.6146 
13.7809 0.1515 0.9056 12.0172 12.6997 9.7055 
24.9978 0.0977 0.8982 12.0322 15.9928 11.2144 
13.7721 0.0484 1.1079 11.9815 18.508 13.6613 
13.7187 0.0964 0.9919 11.8797 16.5546 12.2819 
24.9718 0.1483 1.0078 11.9887 17.0759 11.555 
13.7858 0.1407 1.1077 12.0855 17.0869 13.951 
25.0469 0.1037 0.9091 11.8921 16.4418 11.4263 
13.7685 0.0428 1.0955 12.0642 18.7483 14.9717 
13.7511 0.096 0.9936 12.0129 16.4303 12.1832 
2.542 0.048 1.0014 11.9466 15.2362 10.1161 
24.988 0.1004 1.0918 12.0695 18.7641 14.3375 
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Table B.2: Data for Example 2.3 
v	 �	 �	 �	 }	 ��	 � 

502.1 710.8 0.0067 0.125 0.7 0.75 328.75 

553.1 600.8 0.0268 0.234 1 0.31 346.64 

604.1 490.8 0.0067 0.343 1.3 0.27 461.21 

655.1 600.8 0.0134 0.234 1 0.325 349.87 

502.1 490.8 0.0067 0.343 0.7 0.625 538.07 

553.1 600.8 0.0134 0.016 1 0.82 297.08 

604.1 710.8 0.0201 0.343 1.3 0.035 358.65 

553.1 600.8 0.0134 0.234 1.6 0.15 380.1 

553.1 820.8 0.0134 0.234 1 0.25 344.98 

502.1 490.8 0.0201 0.343 1.3 0.2 434.53 

553.1 600.8 0.0134 0.452 1 0.18 456.77 

502.1 710.8 0.0067 0.343 1.3 0.108 433.48 

604.1 490.8 0.0201 0.125 1.3 0.375 341.5 

553.1 380.8 0.0134 0.234 1 0.63 442.39 

502.1 710.8 0.0201 0.125 1.3 0.25 315.75 

451.1 600.8 0.0134 0.234 1 0.44 436.15 

604.1 710.8 0.0201 0.125 0.7 0.72 306.88 

604.1 710.8 0.0067 0.125 1.3 0.325 325.09 

604.1 710.8 0.0067 0.343 0.7 0.425 435.75 

604.1 490.8 0.0067 0.125 0.7 0.79 342.89 

502.1 710.8 0.0201 0.343 0.7 0.37 419.73 

553.1 600.8 0.0134 0.234 0.4 0.85 394.89 

553.1 600.8 0 0.234 1 0.47 459.84 

502.1 490.8 0.0067 0.125 1.3 0.52 426.87 

604.1 490.8 0.0201 0.343 0.7 0.56 415.21 

502.1 490.8 0.0201 0.125 0.7 0.81 357.67 

553.1 600.8 0.0134 0.234 1 0.375 385.27 
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B.3 Supplementary Figure for Section 2.7.1 

 

 
Figure B.1. Empirical Coverage of 90% Credible Intervals for Response ��, Posterior 

Normal Process. The empirical coverage is evaluated at 125 points on the control factor 
space �0,1
!, Ìá� and Ìá�. 

 

B.4 Parameter Settings of Pattern Search Algorithm 

We only changed the maximum number of iterations, tolerance of function, and 

tolerance of variable to make sure that the algorithm converges, as indicated by the 

exitflag output. All other settings remained as default values. For finding MLE’s, we set  

psoptimset( 'display' , 'off' , 'MaxIter' ,90000, 'TolFun' ,10^-6, 'TolX' ,10^-6)  

For finding optimal settings in Example 2.1, all algorithm parameter values are 

default values. For Example 2.2, we use a 10-point grid to identify a close-to-optimal 

control factor setting, and then we refine the setting using a crude patternsearch with 

parameter values 

psoptimset( 'display' , 'off' , 'MaxIter' ,90000, 'TolFun' ,10^-3, 'TolX' ,10^-3)  

Careful use of other optimization packages should produce the same results.  
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APPENDIX C 

SUPPLEMENTARY MATERIAL FOR CHAPTER 3 

 

C.1 Covariance Matrices and Data for Examples  

C.1.1 Covariance Matrix for Example 3.1 

0.6952 0.2133 0.9125 0.3183 -0.023 0.0074 0.2711 0.5471 0.0857 -0.1293 -0.4068 -0.3014 

0.2133 0.2033 0.4661 -0.0033 0.0425 0.128 0.0834 0.3103 0.0458 -0.16 -0.2934 -0.2345 

0.9125 0.4661 1.7496 0.3168 0.0584 0.2637 0.3879 1.0961 0.0909 -0.4433 -0.877 -0.7561 

0.3183 -0.0033 0.3168 1.045 -0.3363 -0.2946 0.3119 0.2712 0.2634 0.4661 0.077 0.3024 

-0.023 0.0425 0.0584 -0.3363 0.2524 0.1839 -0.0717 0.0683 -0.111 -0.2382 -0.1413 -0.2186 

0.0074 0.128 0.2637 -0.2946 0.1839 0.4899 0.0156 0.4161 -0.0313 -0.3132 -0.3254 -0.3152 

0.2711 0.0834 0.3879 0.3119 -0.0717 0.0156 0.2783 0.3853 0.0363 -0.012 -0.104 -0.0991 

0.5471 0.3103 1.0961 0.2712 0.0683 0.4161 0.3853 1.1345 0.1296 -0.3019 -0.6347 -0.4795 

0.0857 0.0458 0.0909 0.2634 -0.111 -0.0313 0.0363 0.1296 0.3016 0.1946 -0.1296 0.1436 

-0.1293 -0.16 -0.4433 0.4661 -0.2382 -0.3132 -0.012 -0.3019 0.1946 0.5211 0.3287 0.4919 

-0.4068 -0.2934 -0.877 0.077 -0.1413 -0.3254 -0.104 -0.6347 -0.1296 0.3287 0.6865 0.4841 

-0.3014 -0.2345 -0.7561 0.3024 -0.2186 -0.3152 -0.0991 -0.4795 0.1436 0.4919 0.4841 0.669 

 

C.1.2 Covariance Matrices for the Example 3.2 

Covariance Matrix 1 
0.1964 0.1323 0.0615 -0.1305 0.1137 -0.0881 
0.1323 1.8235 0.2952 -1.2099 0.3865 -0.1227 
0.0615 0.2952 0.184 -0.2689 0.0944 -0.0752 

-0.1305 -1.2099 -0.2689 1.1715 -0.4383 0.3145 
0.1137 0.3865 0.0944 -0.4383 0.386 -0.1177 

-0.0881 -0.1227 -0.0752 0.3145 -0.1177 0.2915 
 
 

Covariance Matrix 2 
0.511 0.0374 -0.176 -0.4448 0.624 0.835 

0.0374 0.2593 0.0128 -0.3342 0.111 0.0288 
-0.176 0.0128 0.1999 0.0381 -0.1952 -0.2217 

-0.4448 -0.3342 0.0381 1.8928 -0.9916 -1.4821 
0.624 0.111 -0.1952 -0.9916 1.1354 1.5288 
0.835 0.0288 -0.2217 -1.4821 1.5288 2.6812 
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Table C.1: Data for Example 3.4 

Var 1 
(LYS)1 

Var 2 
(ARG) 

Var 3 
(ASP) 

Var 4 
(SER) 

Var 5 
(GLU) 

Var 6 
(PRO) 

Var 7 
(GLY) 

Var 8 
(ALA) 

Var 9 
(VAL) 

Var 10 
(PHA) 

Var 11 
(GABA) 

0.48 5.81 2.12 4.68 0.78 12.41 0.31 0.96 0.18 0.2 4.73 
0.47 5.25 2.75 4.42 0.88 14.72 0.3 1.04 0.19 0.22 3.96 
0.42 4.98 2.79 3.85 0.75 12.13 0.32 0.99 0.15 0.2 3.94 
0.35 4.79 2.79 3.39 0.81 12.77 0.25 0.75 0.16 0.15 3.69 
0.43 4.92 2.88 3.53 0.78 13.11 0.25 0.91 0.16 0.15 4.23 
0.4 5.61 2.26 3.39 0.69 12.69 0.2 1.06 0.16 0.18 3.76 
0.35 4.54 2.96 3.89 0.88 14.01 0.24 0.86 0.16 0.12 3.92 
0.34 3.82 2.86 3.63 0.86 15.73 0.22 1.34 0.14 0.12 2.88 
0.27 3.42 2.27 4.81 0.9 8.99 0.23 1.43 0.1 0.1 2.68 
0.39 3.6 2.99 5.03 0.92 13.71 0.28 1.99 0.13 0.1 2.88 
0.37 3.39 2.78 5.96 0.84 12.92 0.24 1.76 0.12 0.14 3.01 
0.26 2.72 3.82 6.03 1.17 7.18 0.15 1.3 0.11 0.07 3.4 
0.24 3.13 3.35 5.76 0.96 6.75 0.21 1.14 0.11 0.08 2.43 
0.2 2.15 3.28 5.8 1.04 5.34 0.22 1.06 0.12 0.08 2.41 
0.26 2.89 3.67 6.34 1.22 5.87 0.18 1.1 0.14 0.12 2.4 
0.52 5.53 2.97 3.37 0.78 10.74 0.24 0.96 0.1 0.16 3.4 
0.42 5.07 3.06 4.32 0.91 15.37 0.47 1.32 0.16 0.2 3.63 
0.45 5.46 3.06 4.68 0.84 16.52 0.39 1.35 0.14 0.18 3.89 
0.47 5.79 2.91 4.44 0.8 16.21 0.35 1.2 0.2 0.18 4.52 
0.44 2.52 2.4 4.09 0.72 12.81 0.28 0.86 0.18 0.23 4.43 
0.48 5.14 2.66 4.04 0.94 16.77 0.33 0.97 0.22 0.23 4.9 
0.49 4.77 2.42 5.92 1 15.62 0.34 1.93 0.5 0.15 4.05 
0.37 4.35 3.04 5.07 0.87 15.81 0.31 2.08 0.19 0.1 4.17 
0.36 4.01 2.37 3.93 0.76 11.28 0.22 0.75 0.12 0.12 3.27 
0.46 4.26 2.51 7.29 1.07 18.57 0.37 2.67 0.19 0.1 2.95 
0.34 3.46 2.2 3.8 0.93 11.73 0.26 1.4 0.18 0.1 3.06 
0.34 4.13 2.72 6.01 0.95 13.96 0.34 2.3 0.1 0.08 3.06 
0.31 3.7 2.77 5.29 0.85 10.8 0.22 1.68 0.1 0.01 2.61 
0.3 3.18 2.54 5.04 0.95 11.25 0.21 1.84 0.1 0.01 2.48 
0.3 3.57 2.45 5.7 1.06 12.28 0.26 1.53 0.1 0.1 2.46 
0.3 3.31 2.53 5.21 0.88 9.1 0.23 1.37 0.08 0.01 2.55 
0.3 3.13 2.82 5.85 1 10.31 0.21 1.55 0.1 0.08 2.69 
0.33 3.1 3.01 7.15 1.04 12.71 0.23 1.79 0.09 0.1 3.52 
0.32 3.84 3.79 6.08 1.01 10.13 0.18 1.3 0.09 0.01 3.67 
0.3 3.75 2.83 6.24 0.71 6.2 0.16 1.2 0.05 0.08 3.01 
0.26 3.34 3.46 7.01 1.02 6.68 0.2 1.52 0.1 0.08 2.18 

1LYS=Lysine, ARG=Arginine, ASP=Aspartic acid, SER=Serine, GLU=Glutamine acid, 
PRO=Proline, GLY=Glycine, ALA=Alanine, VAL=Valine, PHA=Phenyl alanine, 
GABA=Gamma-amino butric acid 
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C.2 Additional Figures for Example 3.4 
 
 

 

 

 

 
 

Figure C.1: Plot of Phase I and Phase II Observations for Example 3.4 
 

C.3 Matlab Code for Implementing the Empirical Bayes Approach  

Note: This code was used to obtain the results in Example 3.4. 
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function  EmpiricalBayes  
format short  g 
global  PhaseI OC  
%Phase I global variable should contain the phase I  data  
%OC global variable should contain the out-of-contr ol sample  
[N p]=size(PhaseI);  
[n ~]=size(OC);  
  
abststat=sqrt(n)*abs((mean(OC)-mean(PhaseI))./(std( PhaseI)));  
ind=find(abststat>2);  
lambda=abststat(ind);  
h=mean(lambda)  
a0=std(lambda)*sqrt(N/n);  
  
Xbb=mean(PhaseI)';  
Sigma=cov(PhaseI);  
S=Sigma*(N-1);  
  
Sf=(n-1)*cov(OC);  
Xbf=mean(OC)';  
  
C=h*sqrt(diag(Sigma))/sqrt(n);  
a=max(max(a0,(h/2)*sqrt(N/n)-1),1)  
a=a*ones(p,1);  
  
sigma2hat=diag(Sigma)/(N);  
  
Nruns=20000;  
tau=10000;  
q=Nruns-tau;  
  
t=(N-p-2)/2;  
v=n+2*t+p+1;  
  
Del=zeros(p,1);  
Prob=[repmat([0.25 0.5 0.25],p,1)];  
mu=Xbb;  
T=Sf+S;  
  
for  i=1:Nruns  
  
Scale=inv(T+n*(Xbf-mu)*(Xbf-mu)');  
Sigmainv=wishartrnd(Scale,v,p);  
psi=sigma2hat.*(a.^(2*abs(Del)));  
psiinv=diag(1./psi);  
Theta=Xbb+Del.*C;  
g=(psiinv+n*Sigmainv)\(psiinv*Theta+n*Sigmainv*Xbf) ;  
V=inv(psiinv+n*Sigmainv);  
  
mu=(mvnrnd(g',V))';  
Smu(:,i)=mu;  
  
for  k=1:p  
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for  j=1:3  
    Del2(k)=j-2;  
    psi2=sigma2hat(k)*(a(k)^(2*abs(Del2(k))));  
    psiinv2=1/psi2;  
    Theta2(k)=Xbb(k)+Del2(k)*C(k);  
    probdel=Prob(k,j);  
    const(j)=psiinv2^0.5*exp(-0.5*psiinv2*(mu(k)-Th eta2(k))^2)*probdel;  
end  
Del(k)=randsample([-1 0 1],1,true,const);  
end  
  
SDel(:,i)=Del;  
end  
  
SDel2=SDel(:,(tau+1):Nruns);  
for  i=1:p  
    [ 'Marginal posterior distribution of delta' ,num2str(i)]  
    tabulate(SDel2(i,:))  
end  
  
count=zeros(3^p,1);  
  
index=zeros(q,1);  
for  i=1:q  
    for  j=p:-1:2  
        index(i,1)=index(i,1)+(SDel2(j,i)+1)*3^(j-1 );  
    end  
    index(i,1)=index(i,1)+(SDel2(1,i)+2);  
    count(index(i,1),1)=count(index(i,1),1)+1;  
end  
  
[val index2]=max(count);  
posteriormode=indexconvert(index2,p)  
display( 'Posterior probability of mode' )  
val/(Nruns-tau)  
  
function  wishartrnd=wishartrnd(Sigma,n,p)  
if (n>=p)  
L=chol(Sigma)';  
A=zeros(p,p);  
for  i=1:p  
A(i,i)=sqrt(chi2rnd(n-i+1));  
end  
for  i=2:p  
    for  j=1:i-1  
        A(i,j)=normrnd(0,1);  
    end  
end  
temp=L*A;  
wishartrnd=temp*temp';  
%wishartrnd=L*A*A'*L';  
elseif (n<=p-1)  
for  i=1:n+1     
X(:,i)=(mvnrnd(zeros(1,p),Sigma))';  
end  
wishartrnd=(X-repmat(mean(X,2),1,n+1))*(X-repmat(me an(X,2),1,n+1))';  
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end  
  
function  indexconvert=indexconvert(no,p)  
u=1;  
remainder=no;  
for  i=p:-1:2  
    remainder2=rem(remainder,3^(i-1));  
    if (remainder2==0&u==1)  
        index(i)=(remainder-remainder2)/(3^(i-1))-2 ;  
        u=0;  
    elseif (remainder==0&u==0)  
        index(i)=1;  
    else  
        index(i)=(remainder-remainder2)/(3^(i-1))-1 ;  
    end  
    remainder=remainder2;  
end  
if (remainder==0)  
    index(1)=1;  
else  
    index(1)=remainder-2;  
end  
indexconvert=index;  
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APPENDIX D 

SUPPLEMENTARY MATERIAL FOR CHAPTER 4 

 

D.1 Wholeplot and Subplot Type I and Type II Error Rates for Simulation in 

Section 4.6.1.1  

 

 
Figure D.1: Type I and Type II Wholeplot Error Rates for Proposed Method (Bayesian 
(FS)) and Lenth’s Method with IER=0.1 and IER=0.05 (Lenth IER0.1, Lenth IER0.05); 


H, I� ∈ {3,6,9} × {0.2,0.5,0.8}; Model 1 (left) and Model 2 (right) 
 
 

 
Figure D.2: Type I and Type II Subplot Error Rates for Proposed Method (Bayesian (FS)) 

and Lenth’s Method with IER=0.1 and IER=0.05 (Lenth IER0.1, Lenth IER0.05); 

H, I� ∈ {3,6,9} × {0.2,0.5,0.8}; Model 1 (left) and Model 2 (right) 
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Figure D.3: Type I and Type II Wholeplot Error Rates for Best Model Found with GS; 


H, I� ∈ {3,6,9} × {0.2,0.5,0.8}; Model 3 (left) and Model 4 (right) 
 
 

 
Figure D.4: Type I and Type II Subplot Error Rates for Best Model Found with GS; 


H, I� ∈ {3,6,9} × {0.2,0.5,0.8}; Model 3 (left) and Model 4 (right) 
 

D.2 Theoretical Results 

Lemma D.1: For ÖX given by 

ÖX = �Iëëd + 
1 − I�à ¯ ⋯ ¯
¯ Iëëd + 
1 − I�à ⋯ ¯
⋮
¯

⋮
¯

⋱
⋯

⋮
Iëëd + 
1 − I�à

� =

à⨂�1 I ⋯ I
I 1 ⋯ I
⋮
I

⋮
I ⋱

⋯
⋮
1
�, 
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ÖX�� = à⨂�1 I ⋯ I
I 1 ⋯ I
⋮
I

⋮
I ⋱

⋯
⋮
1
�

��

= �và + �ëëd ¯ ⋯ ¯
¯ và + �ëëd ⋯ ¯⋮
¯

⋮
¯

⋱
⋯

⋮
và + �ëëd

�, 

where v = 
1 − I��� and � = − X

��X�
��
	���X�. Moreover, we have ëdÖX��ë =

�/�1 + 
� − 1�I
. 
Lemma D.2: Set XÅ = �,ë, where �, = ∑ ∑ �1¨	̈k�j1k� /�. Then, 
XÅ − Ñ�ë�dÖX��
X − XÅ −
ZÍ� = 0 and 
X − ZÍ − Ñ�ë�dÖX��
X − ZÍ − Ñ�ë� = 
X − XÅ − ZÍ�dÖX��
X − XÅ −
ZÍ� + 
XÅ − Ñ�ë�dÖX��
XÅ − Ñ�ë�. 
Lemma D.3: Assume ZdZ + -�� has an inverse (this would be true if - is diagonal with 

positive elements on the diagonal so that Z`Z + -�� is positive definite). Define 

uQQ�,á,X = 
X − XÅ�dÖX��/� �à − ÖX��/�Zx:ZdÖX��Z< + -�,á��y��ZdÖX��/��ÖX��/�
X − XÅ� 

and a�,á,X = :ZdÖX��Z + -�,á��<��
. Then, 

à − Z
ZdZ + -�����Zd = 
à + Z-Zd���,          (D1)  

uQQ�,á,X = 
X − XÅ�d:ÖX + Z-�,áZd<��
X − XÅ�,         (D2) 

a�,á,X = -�,á − -�,áZd:ÖX + Z-�,áZd<��Z-�,á.         (D3) 

Proof: Equations (D1) and (D3) follow from the Woodbury Matrix Identity. Equation 

(D2) follows from (D1). 

Lemma D.4: =:ZdÖX��Z< + -�,á��=��/�=-�,á=��/�=ÖX=��/� = =Z-�,áZd + ÖX=��/�
. 

Proposition D.1: The joint posterior distribution of 
Ñ�, Í, 5�, �, r, I� is 

�
Ñ�, Í, 5�, �, r, I|X� ∝ '
Ñ�, Í, 5�, �, I|X��
Ñ���
Í|5�, �, r��
5���
���
I��
r� 
∝ 
5���
¡�Ð�ï���/�=ÖX=��/��2� À− \]�����,(,_

�<b Á �2� �− �
�<b :Í −`�,á,X<da�,á,X�� :Í −
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`�,á,X<� �2� b− 
c#�æ,�b
�<b:ëdÖ_oaë<oae =-�,á=��/��
���
I��
r�,                              (D4) 

where '
Ñ�, Í, 5�, �, I|X� is the likelihood,  

a�,á,X = -�,á − -�,áZd:ÖX + Z-�,áZd<��Z-�,á, ̀ �,á,X = a�,á,XZdÖX��
X − XÅ�, XÅ = �,ë, 

�, = ∑ ∑ �1¨	̈k�j1k� /�, uQQ�,á,X = 
X − XÅ�d:ÖX + Z-�,áZd<��
X − XÅ�, and ëdÖX��ë =
�/�1 + 
� − 1�I
. 
Proof: The result follows by writing down 

'
Ñ�, Í, 5�, �, I|X��
Ñ���
Í|5�, �, r��
5���
���
I��
r� and applying Lemmas D.1-

D.3. 

Proposition D.2: The posterior distribution of � is given by 

�
�|X� = � � �
�, r, I|X��
� �r�I�

� ∝ � � x^�+ uQQ�,á,Xy�
¡���ï�/�=Z-�,áZd +�
�

�
�

ÖX=��/�:ëdÖX��ë<��/��
���
I��
r��r �I.                                                     (D5) 

Proof: This follows by first integrating out Ñ�, Í, and 5� from the joint posterior (D4) 

given in Proposition D.1. The result is the integrand of the integral with respect to r and 

I given above. 

Proposition D.3: The posterior distribution of Í conditional on � is given by 

�
Í|X, �� = ô � �  :Í;`�,á,X, 
� + � − 1���:^� + uQQ�,á,X<a�,á,X, � + � − 1<�
�

�
�   

:^� + uQQ�,á,X<�
¡�ï���/�=ÖX + Z-�,áZd=��/�:ëdÖX��ë<��/��
I��
r��r�I,     (D6) 

where  

 ÀÍ;`�,á,X, :\]�����,(,_<a�,(,_
¡�ï�� , � + � − 1Á = hÀ31[oa10

b ÁhÀ31[oa
b Á
¡�ï���0/b�0/b Ã:\]�����,(,_<a�,(,_

¡�ï�� Ã��/�
  

�1 + �
¡�ï�� :Í −`�,á,X<d �:\]�����,(,_<a�,(,_

¡�ï�� ��� :Í −`�,á,X<��
¡�ï���Ð�/�
      (D7) 
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is the multivariate student   probability density function with mean ̀�,á,X, scale matrix 

:^� + uQQ�,á,X<a�,á,X/
� + � − 1� and � + � − 1 degrees of freedom, and  

ô =

�� � :^� + uQQ�,á,X<�
¡�ï���/�=Z-�,áZd + ÖX=��/�:ëdÖX��ë<��/��
I��
r��
� �r�I�

� ���
. 

Remark: The distribution Í|X, � is a mixture of multivariate   distributions with weight 

function 

»
r, I� = ô:^� + uQQ�,á,X<�
¡�ï���/�=Z-�,áZd + ÖX=��/�:ëdÖX��ë<��/��
I��
r�. 
Proof: This result follows by dropping all terms involving � only in (D4), and integrating 

out Ñ�, and 5�. The result is the integrand in (D6).  

Corollary D.1:  The posterior mean of Í conditional on � is given by 

�
Í|X, �� = � � `�,á,X�
�

�
� »
r, I��r�I.          (D8) 

Proof: This follows from (D6) and the fact that `�,á,X is the mean of the density given in 

(D7). 

Proposition D.4: Let }1 denote the @ ℎ component of ̀ �,á,X, Ò1 denote the @ ℎ diagonal 

element of 
� + � − 1���:^� + uQQ�,á,X<a�,á,X. Then, 	
�
Ñ1|X, �� = � � »
r, I� 
Ñ1;}1 , Ò1 , � + � − 1��

�
�
� �I�r,        (D9) 

where  
Ñ1;}1 , Ò1 , � + � − 1� is the univariate  -distribution with mean }1, scale Ò1, and 

� + � − 1 degrees of freedom. Thus, 

±
Ñ1 ≤ 2|X, �� = � � »
r, I�±: ¡�ï�� ≤ 
2 − }1�/ýÒ1<�
�

�
� �I�r,    (D10) 

where  ¡�ï�� is a   random variable with mean 0, scale 1, and � + � − 1 degrees of 

freedom. 

Proof: This result follows from Proposition D.3 and the fact that if 
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Í~ ÀÍ;`�,á,X, :\]�����,(,_<a�,(,_
¡�ï�� , � + � − 1Á, then 
Ñ1 − }1�/ýÒ1~ ¡�ï��. 

Proposition D.5: The posterior distribution of correlation parameter I given � ∈ ℳ is  

�
I|X, � ∈ ℳ� ∝ ∑ � x^� + uQQ�,á,Xy�
¡���ï�/��
�

	�∈ℳ    

=Z-�,áZd + ÖX=��/�:ëdÖX��ë<��/��
r��r�
���
I�.                             (D11) 

Proof: This result follows by integrating out Ñ�, Í, and 5� from (D4). The result is the 

integrand in (D11). 

D.3 Gaussian Quadrature Method for Discretizing a Density 

Miller and Rice (1983) propose the Gaussian quadrature method for constructing 

an '-point discrete approximation of a density. Let }¨ be the ̂ ℎ moment of the 

distribution. Then, the procedure for constructing the discrete approximation is given in 

the steps below. 

1. Solve the system of equations 

U }� ⋯ }õ��⋮ ⋱ ⋮
}õ�� ⋯ }�õ��

VU ��⋮
�õ��

V = U −}õ⋮
−}�õ��

V       (D12) 

for ��, … , �õ��. 

2. Find the roots 
��, … , �õ� of the polynomial ∑ �121õ��1k� + 2õ. These are the 

support points of the discrete approximation. 

3. Solve the system of equations 

U 1 ⋯ 1
⋮ ⋱ ⋮��õ�� ⋯ �õõ��VU��⋮

�õ
V = U }�⋮

}õ��
V        (D13) 

for ��, … , �õ. The values ��, … , �õ are the probability masses for the support 

points ��, … , �õ respectively. 
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The discrete approximation given above would be simple to construct if the first 

2' − 1 moments of the density are easy to compute. For the beta distribution with 

parameters � and �, the W ℎ moment can be easily obtained from the recursion  

}\ = \������\�>�� }\��,           (D14) 

where }� = 1.    

D.4 Data Used in Examples 

 
Table D.1: Split Plot Design Derived from an OA
27, 3&� (for Example 4.1) 

Wholeplot 
Factor A B C D E F G H J 

Subplot Coded Factor Levels 

1 
1 1 1 1 1 1 1 1 1 1 
2 1 1 1 1 2 2 2 2 2 
3 1 1 1 1 3 3 3 3 3 

2 
4 1 2 2 2 1 2 3 3 3 
5 1 2 2 2 2 3 1 1 1 
6 1 2 2 2 3 1 2 2 2 

3 
7 1 3 3 3 1 3 2 2 2 
8 1 3 3 3 2 1 3 3 3 
9 1 3 3 3 3 2 1 1 1 

4 
10 2 1 2 3 1 1 1 2 3 
11 2 1 2 3 2 2 2 3 1 
12 2 1 2 3 3 3 3 1 2 

5 
13 2 2 3 1 1 2 3 1 2 
14 2 2 3 1 2 3 1 2 3 
15 2 2 3 1 3 1 2 3 1 

6 
16 2 3 1 2 1 3 2 3 1 
17 2 3 1 2 2 1 3 1 2 
18 2 3 1 2 3 2 1 2 3 

7 
19 3 1 3 2 1 1 1 3 2 
20 3 1 3 2 2 2 2 1 3 
21 3 1 3 2 3 3 3 2 1 

8 
22 3 2 1 3 1 2 3 2 1 
23 3 2 1 3 2 3 1 3 2 
24 3 2 1 3 3 1 2 1 3 

9 
25 3 3 2 1 1 3 2 1 3 
26 3 3 2 1 2 1 3 2 1 
27 3 3 2 1 3 2 1 3 2 
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Table D.2: Split Plot Design and Data for the First Part of Section 4.6.1.3 

Wholeplot A B C D E F �� �� 

1 
-1 -1 1 -1 1 1 26.0454 11.0454 
-1 -1 -1 1 -1 1 10.1488 19.1488 
-1 -1 -1 -1 -1 -1 16.5896 13.5896 

2 
-1 1 1 -1 1 1 13.454 14.454 
-1 1 -1 1 1 -1 24.1056 23.1056 
-1 1 1 1 -1 -1 16.2053 21.2053 

3 
1 -1 1 1 -1 1 31.6942 22.6942 
1 -1 -1 -1 1 -1 13.9312 26.9312 
1 -1 1 1 1 -1 25.7543 22.7543 

4 
1 1 -1 1 1 1 23.9856 16.9856 
1 1 -1 -1 -1 1 24.3905 23.3905 
1 1 1 -1 -1 -1 14.2034 25.2034 

 
 

Table D.3: Split Plot Design and Data for the Second Part of Section 4.6.1.3 
Wholeplot A B C D E �! �" 

1 
-1 -1 1 -1 1 20.0454 26.0454 
-1 -1 -1 1 -1 8.1488 26.1488 
-1 -1 -1 -1 -1 10.5896 26.5896 

2 
-1 1 1 -1 1 19.454 29.454 
-1 1 -1 1 1 12.1056 30.1056 
-1 1 1 1 -1 14.2053 30.2053 

3 
1 -1 1 1 -1 33.6942 37.6942 
1 -1 -1 -1 1 29.9312 33.9312 
1 -1 1 1 1 37.7543 37.7543 

4 
1 1 -1 1 1 15.9856 25.9856 
1 1 -1 -1 -1 14.3905 26.3905 
1 1 1 -1 -1 24.2034 30.2034 
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Table D.4: Heat-Exchanger-Fan Casing Experiment 

 
M 1 1 2 2 3 3 
N 1 2 1 2 1 2 

A B C D 
 

1 1 1 1 1.23 0.99 1.4 1.19 1.56 1.38 
1 2 2 2 1.8 1.48 2.05 1.76 2.28 2.03 
1 3 3 3 2.31 1.89 2.61 2.23 2.9 2.57 
2 1 2 3 1.29 1.02 1.47 1.24 1.65 1.44 
2 2 3 1 2.02 1.66 2.29 1.97 2.55 2.26 
2 3 1 2 2.09 1.73 2.35 2.04 2.61 2.33 
3 1 3 2 1.49 1.19 1.7 1.44 1.9 1.67 
3 2 1 3 1.61 1.31 1.79 1.54 1.99 1.77 
3 3 2 1 2.26 1.87 2.55 2.2 2.83 2.52 

 
 

Table D.5: Split Unit Design and Data 

Wholeplot 
Factor A B C D E F G H J Bulk Specific 

Gravity Subplot Coded Factor Levels 

1 
1 1 1 1 1 1 1 1 1 1 0.728 
2 1 1 1 1 2 2 2 2 2 0.634 
3 1 1 1 1 3 3 3 1 3 0.59 

2 
4 1 2 2 2 1 2 3 1 3 0.56 
5 1 2 2 2 2 3 1 1 1 0.538 
6 1 2 2 2 3 1 2 2 2 0.741 

3 
7 1 3 1 1 1 3 2 2 2 0.668 
8 1 3 1 1 2 1 3 1 3 0.742 
9 1 3 1 1 3 2 1 1 1 0.581 

4 
10 2 1 2 1 1 1 1 2 3 0.754 
11 2 1 2 1 2 2 2 1 1 0.502 
12 2 1 2 1 3 3 3 1 2 0.559 

5 
13 2 2 1 1 1 2 3 1 2 0.638 
14 2 2 1 1 2 3 1 2 3 0.657 
15 2 2 1 1 3 1 2 1 1 0.724 

6 
16 2 3 1 2 1 3 2 1 1 0.568 
17 2 3 1 2 2 1 3 1 2 0.754 
18 2 3 1 2 3 2 1 2 3 0.661 

7 
19 3 1 1 2 1 1 1 1 2 0.736 
20 3 1 1 2 2 2 2 1 3 0.515 
21 3 1 1 2 3 3 3 2 1 0.698 

8 
22 3 2 1 1 1 2 3 2 1 0.693 
23 3 2 1 1 2 3 1 1 2 0.607 
24 3 2 1 1 3 1 2 1 3 0.733 

9 
25 3 3 2 1 1 3 2 1 3 0.597 
26 3 3 2 1 2 1 3 2 1 0.768 
27 3 3 2 1 3 2 1 1 2 0.547 
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APPENDIX E 

SUPPLEMENTARY MATERIAL FOR CHAPTER 5 

 

E.1 Theoretical Results 

In this section, we give important theoretical results that justify the proposed 

method for constructing minimax designs. Note that the results hold for any distance 

metric ‖∙‖ used to measure the distance between candidate points. 

We shall give seven propositions, which we summarize in this paragraph. 

Proposition E.1 needs no explanation. Proposition E.2 states the important fact that the 

set of feasible solutions of SCLP with Q = G is the set of all designs with distance less 

than or equal to G. In Proposition E.3, we prove that P
Q� is a right continuous, 

nonincreasing function with discontinuities that are a subset of the design distances. 

Proposition E.4 gives bounds for the minimax distance �¡∗ . It says that if Q� < Q�, and 

P
Q�� > P
Q��, then for any � ∈ �P
Q��, P
Q�� − 1
, we have �¡∗ ∈ 
Q�, Q�
. It is easy to 

see that Proposition E.4 justifies Procedure B: �-SCLP is infeasible at Q = Q� if and only 

if P
Q�� > �, and it is feasible at Q = Q� if and only if P
Q�� ≤ �. Proposition E.5 states 

that the discontinuities of P
Q� are a subset of Ù� and that the set of feasible solutions of 

SCLP remains the same for all Q ∈ �ℎ% , ℎ%���. Propositions E.3 and E.5 imply that to 

construct a plot of P
Q� versus Q, we merely need to find the value of P
Q� at .�, … ,.° 

(which justify Procedure A). Propositions E.6 and E.7 establish the relationship between 

minimax designs and SCLP, indicating how minimax designs can be obtained. First, if ℎ\ 

is a discontinuity of P
Q�, then à∗ is an optimal solution for SCLP at Q ∈ �ℎ\, ℎ\��� if and 

only if S
à∗� is a P
ℎ\�-point minimax design. Second, for � ∈ �P
ℎ\�, P
ℎ\��� − 1
, 
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�¡∗ = ℎ\ and an �-point minimax design can be obtained by adding � − P
ℎ\� points to 

S
à∗�. Third, the set of minimax distances is the set of discontinuities of P
Q�.  
Proposition E.1: For any � = 1, … ,�, an �-point minimax design always exists. 

Proof: This follows from the fact that there are only a finite number of designs. 

Proposition E.2: S is a design with �
S� ≤ G if and only if à
S� is a feasible solution of 

SCLP with Q = G. 

Proof: Suppose S is a design with �
S� ≤ G. For @ = 1,… ,�, min{‖w1 − Ì�‖, … , ‖w1 −
Ì¡‖} = �
w1, S� ≤ max{�
w1, S�,… , �
w¡, S�} = �
S� ≤ G. Thus, there exists 

Ì\
1� = w¨
1� ∈ S such that yw1 − w¨
1�y ≤ G.  This implies that ∑ þ̈	̈ ∈|© ≥ þ̈ 
1� = 1. 

Conversely, if à
S� is a solution of SCLP with Q = G, then for @ = 1,… ,�, ∑ þ̈	̈ ∈|© ≥ 1. 

Thus, there exists ^
@� ∈ Ω1 such that þ̈ 
1� = 1, i.e., there exists Ì\
1� = w¨
1� ∈ S such 

that yw1 − w¨
1�y ≤ G. It follows that �
w1, S� = min{‖w1 − Ì�‖, … , ‖w1 − Ì¡‖} ≤
yw1 − Ì\
1�y = yw1 − w¨
1�y ≤ G. Thus, �
S� = max{�
w1, S�, … , �
w¡, S�} ≤ G. 

Corollary E.1:  The set of feasible solutions of SCLP is given by sà ∈ Λ:	�:S
à�< ≤ Qt, 
where Λ = {à�, … , à	} is the set of all nonzero binary �-vectors. 

Proposition E.3: The function P
Q� is right continuous and nonincreasing with range 

{1, … ,�}. It has a finite set of discontinuities » which satisfies » ⊆ {��, … , ��}, where 

��, … , �� are the distinct values of �:S
à��<, … , �:S
à	�<.  
Proof: The fact that P
Q� has range {1, … ,�} is obvious. By Corollary E.1, P
Q� =
mins‖à‖�:	à ∈ Λ, �:S
à�< ≤ Qt. From this, it clearly follows that P
Q� is a nonincreasing 

function since sà ∈ Λ: �:S
à�< ≤ Q�t ⊆ sà ∈ Λ: �:S
à�< ≤ Q�t if Q� < Q�. It is also clear 

that the discontinuities of P
Q� is a subset of {��, … , ��}. Suppose that à̈  is an optimal 
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solution for SCLP with Q = Q̈ > � ÀS:à̈ <Á. Then, it must be an optimal solution for all 

Q ∈ �� ÀS:à̈ <Á , Q̈ �. So, P
Q� is constant for Q ∈ �� ÀS:à̈ <Á , Q̈ �. This implies that P
Q� 
is right continuous. 

Lemma E.1: Let S be a design and let S� = S ∪ {Ì′}. Then, �
S′� ≤ �
S�. 
Proof: This follows from the fact that �
w1, S� = min{‖w1 − Ì�‖, … , ‖w1 − Ì¡‖} ≥
min{‖w1 − Ì�‖, … , ‖w1 − Ì¡‖, ‖w1 − Ì′‖} = �
w1, S′�. 
Proposition E.4: If Q� < Q�, and P
Q�� > P
Q��, then the minimax distance �¡∗  of a 

minimax design S¡∗  with � ∈ �P
Q��, P
Q�� − 1
 points satisfies �¡∗ ∈ 
Q�, Q�
. 
Proof: For �′ = P
Q��, a minimax design S¡�∗  with �′ points must have minimax distance 

�¡�∗ ≤ Q� since there exists a design with �′ points that has distance at most Q� (by 

Proposition E.2). For � ∈ �P
Q��, P
Q�� − 1
, let S¡ be any �-point design with S¡�∗ ⊆
S¡. Then, by Lemma E.1, we have �
S¡� ≤ �¡�∗ ≤ Q�. Since �¡∗ ≤ �
S¡�, it follows that 

�¡∗ ≤ Q�.  

It is clear that we must also have �¡∗ > Q� for any � ∈ �P
Q��, P
Q�� − 1
. 
Otherwise, by Proposition E.2, S¡∗  is a feasible solution to SCLP with Q = Q�, and 

� < P
Q��, which is a contradiction. 

Proposition E.5: Let the set of distinct values of Ù = sℎ1¨ = yw1 − w¨y: @, ^ = 1,… ,�t 
be written as Ù� = {ℎ�, … , ℎ°}, where 0 = ℎ� < ⋯ < ℎ°. Then, » ⊆ Ù�, where » is the 

set of discontinuities of P
Q�. Moreover, for any M = 1,… ,}, the set of feasible solutions 

of SCLP is the same for all Q ∈ �ℎ% , ℎ%���, where ℎ°�� = ∞. 

Proof: By Proposition E.3, » ⊆ {��, … , ��}. Since S:à̈ < = sw\: þ̈ \ = 1t, where þ̈ \ is 

the W ℎ component of à̈ , we have � Àw1, S:à̈ <Á = mins‖w1 − w\‖:w\ ∈ S:à̈ <t ∈ Ù� 
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for all @ = 1,… ,�. Thus, � ÀS:à̈ <Á = max �� Àw1, S:à̈ <Á : @ = 1,… ,�� ∈ Ù�. It follows 

that » ⊆ {��, … , ��} ⊆ Ù� and the set of feasible solutions must remain the same for all 

Q ∈ �ℎ% , ℎ%���.  
Remark E.1: Proposition E.5 says that the set of discontinuities of P
Q� can be identified 

by solving SCLP at midpoints between consecutive values in Ù�. 

Remark E.2: It follows from Proposition E.5 that for any M ∈ {1, … ,}}, a solution that 

is optimal for some Q ∈ �ℎ% , ℎ%��� must be optimal for all Q in that interval. 

Proposition E.6: Let à�∗ be an optimal solution of SCLP for Q� ∈ �ℎ\��, ℎ\�, à�∗  be an 

optimal solution for Q� ∈ �ℎ\, ℎ\���, and �� = ‖à�∗‖� = P
ℎ\��� > �� = ‖à�∗‖� = P
ℎ\�. 
Then, for any � ∈ ���, �� − 1
, the minimax distance �¡∗  of a minimax design with � 

points is �¡∗ = ℎ\, à�∗  is an ��-point minimax design, and an �-point minimax design can 

be obtained by adding � − �� points to S
à�∗�. 
Proof: Since à�∗ is the optimal solution for all Q� = �ℎ\��, ℎ\� and ‖à�∗‖� > ‖à�∗‖�, à�∗  

must be infeasible for SCLP for any Q < ℎ\. By Proposition E.2, S
à�∗� must have 

distance ℎ\, i.e., �:S
à�∗�< = ℎ\. Thus, a minimax design with �� points must have 

minimax distance �¡b
∗ ≤ ℎ\. However, we cannot have �¡b

∗ < ℎ\ since the smallest 

designs with distance at most � ∈ �ℎ\��, ℎ\� have �� points. This implies that �¡b
∗ = ℎ\ 

and à�∗  is a minimax design. 

Let � ∈ ���, �� − 1
. Then, by Proposition E.4, �¡∗ ∈ 
ℎ\ − ø, ℎ\
 for all 0 < ø ≤
ℎ\ − ℎ\��. Thus, �¡∗ = ℎ\. By Lemma E.1, a minimax design of size � can be obtained 

by adding � − �� points to S
à�∗�. 
Remark E.3: Proposition E.6 says that a minimax design can be obtained by solving 
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SCLP a small distance to the right of a discontinuity but before the next distance value in 

Ù�.  

Remark E.4: If �� > �� + 1, then we must have more than one @ such that 

�:w1, S
à�∗�< = maxs�:w1, S
à�∗�<,… , �:wj, S
à�∗�<t = �:S
à�∗�<. 
Proposition E.7: If ℎ\ ∈ Ù′ is a discontinuity of P
Q�, then the set of optimal solution of 

SCLP for any Q ∈ �ℎ\, ℎ\��� is the set of P
ℎ\�-point minimax design. Moreover, the set 

of minimax distances is the set of discontinuities of P
Q�. 
Proof: By Proposition E.6, any optimal solution of SCLP at Q ∈ �ℎ\ , ℎ\��� is a P
ℎ\�-
point minimax design with distance ℎ\. Conversely, let S be a P
ℎ\�-point minimax 

design. Then, �
S� = ℎ\. Thus, à
S� is a feasible solution of SCLP for Q ∈ �ℎ\, ℎ\���. 
Since ‖à
S�‖� = P
ℎ\�, à
S� is an optimal solution.  

The set of minimax distances is the set of distances for 1-point to �-point 

minimax designs. Note that the value of P
Q� changes from 1 to � as Q is decreased from 

ℎ° to 0. This fact and Propositions E.5 and E.6 imply that the set of minimax distances is 

the set of discontinuities of P
Q�. 

E.2 Alternative Algorithms for Finding Space-Filling Designs on  

Finite Candidate Sets 

KS starts with a two-point design that consists of points furthest apart. It then 

sequentially adds points with the largest distance to the design. Thus, KS can be viewed 

as a heuristic method for generating near-minimax designs. Designs obtained from KS 

can be improved by a modified Fedorov algorithm (hereafter abbreviated as MF) (Cook 

and Nachtsheim, 1980; SAS Institute, 2010). In each iteration of MF, design point 1,… , � 

is exchanged (in that order) with a nondesign point that gives the largest increase in 
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distance. The algorithm stops when no improvement is made in an iteration. We call the 

combined method KS-MF. MT is a Fedorov algorithm (FA) (Cook and Nachtsheim, 

1980; SAS Institute, 2010) that starts with a random design. At each step, it exchanges a 

design point Ì1 with a nondesign point w\ such that �
w\;Ì1� = maxs�:w£;Ì¨<: Ì¨ ∈
S,w£ ∈ R\St > 1, where �:w£;Ì¨< = minsyw£ − Ì%y: M ≠ ^, M = 1,… , �t /
minsyÌ¨ − Ì%y: M ≠ ^, M = 1,… , �t. Because of this, we may view MT as a method for 

generating maximin designs.  

SAS can be used to construct S and U optimal space-filling designs from finite 

candidate sets (SAS Institute, 2010). SAS constructs these designs by generating an 

initial design and then improving it. Options for generating an initial design include 

sequential and random search while two options for improving the initial design are FA 

and MF (which SAS Institute (2010) says usually give better designs than the other 

methods). Thus, SAS uses the same algorithms as KS-MF and MT. Moreover, since the S 

and U optimality criteria are modifications of the maximin and minimax criteria 

respectively, the S and U optimal designs produced by SAS are likely to be similar to the 

designs obtained with MT and KS-MF.  As with Procedure C, high memory usage and a 

large amount of computation is incurred when MF or FA is used to optimize the minimax 

criterion (e.g., KS-MF) for large �. The former problem is due to storage of Ù. The latter 

problem arises from the large number of possible exchanges of a design point with a 

nondesign point, and the computation of the minimax criterion. If Ù cannot be stored in 

memory, its elements must be recomputed as needed, causing further increases in amount 

of computation. SAS User Guide (SAS Institute, 2010) states that: “the U-optimality 

criterion can be very difficult to optimize, especially if the matrix of all pairwise 
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distances between candidate points does not fit in memory.” However, as shown in 

Example 5.3, Procedure C can outperform KS-MF significantly both in terms of design 

distance (the minimax criterion) and time needed. Moreover, Examples 5.1-5.3 suggest 

that the improvements in KS-MF designs over KS designs decrease and the performance 

of KS-MF designs relative to minimax or near-minimax designs deteriorates as � 

increases.  

E.3 Description of Variables for Examples 5.1 and 5.3 

 
Example 5.1: The canyon height is the average height of buildings along streets, the 

canyon ratio is the canyon height divided by the average street width, the vegetation area 

fraction is the percentage of total horizontal area covered by vegetation, and built-up area 

fraction is the percentage of total horizontal area covered by the roofs of buildings (see 

Erell et al. (2010)). 

Example 5.3: see Table E.1. 

Table E.1: Description of Variables in Forest Fire Dataset 

Variable Description 

FFMC Fine Fuel Moisture Code (represents the moisture content of surface litter) 

DMC Duff Moisture Code (represents the moisture content of shallow organic layers) 

DC Drought Code (represents the moisture content of deep organic layers) 

ISI Initial Spread Index (score that correlates with fire velocity spread) 

temp Outside temperature in ℃ 

RH Outside relative humidity in % 

wind Outside wind speed in km/h 

rain Outside rain in mm/m� 

area Total burned area in ha 
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E.4 Reduced Versions of SCLP  

This section gives a detailed discussion of row and column reductions of SCLP. 

We work with the general SCLP, defined by  

General SCLP 

min 	{ þ̈�
¨k�

 

s.t. �à ≥ ë, 

þ̈ ∈ {0,1}, ^ = 1,… ,/, 

where � is an arbitrary matrix of 0’s and 1’s, and ë is a vector of 1’s. 

Section E.4.1 defines redundant rows and columns of the constraint matrix �. 

Section E.4.2 gives the column redundancy elimination procedure that we use. The row 

redundancy elimination procedure is similar. In Chapter 5, we obtain Reduced SCLP by 

applying the row redundancy elimination procedure followed by the column redundancy 

elimination procedure. In Section E.4.3, we prove that SCLP and any reduced version of 

it have the same optimal objective function value, and an optimal solution to the former 

can be obtained from an optimal solution to the latter by setting to zero decision variables 

that have been removed. Note that any reduced version of SCLP is a general SCLP. 

Section E.4.4 reports the gains we achieve by solving Reduced SCLP instead of SCLP for 

Example 5.1 and Example 5.2.  

In the following sections, the notation V ⊂ �, where V and � are sets,  means that 

V is a strict subset of �. The notation V ⊆ � means that either V ⊂ � or V = �. 

E.4.1 Redundant Rows and Columns 

Let � be the constraint matrix of a general SCLP (i.e., an arbitrary matrix of 0’s 
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and 1’s), and �1¨ denote the 
@, ^� element of the matrix. Define �\ = {@: �1\ = 1} and 

u1 = {W: �1\ = 1}. Then, column W of � is redundant if there exists z ≠ W such that 

�\ ⊆ �£. On the other hand, row @ of � is redundant if there exists ^ ≠ @ such that u1 ⊇
ü . 

E.4.2 Column Redundancy Elimination Procedure 

1. Set �þ = {1,… ,/}, @ = 1, and � = /. 

2. If @ < �, set W = @ + 1. Otherwise, stop.  

3. Label the elements in �þ as ̂� < ^� < ⋯ < ^¡. Check the following conditions: 

i) If �̈ © ⊂ �̈ c , then set �þ = �þ\{^1}, � = � − 1 and go to Step 2. 

ii)  If �̈ c ⊆ �̈ ©, then set �þ = �þ\{^\}, � = � − 1 and go to Step 4.  

iii)  If neither i) nor ii) holds, set W = W + 1 and go to Step 4. 

4. If W > �, set @ = @ + 1 and go to Step 2. Otherwise, return to Step 3. 

Let �þ = s^�, … , ^�(t be the remaining set of columns. Then, �þ cannot be further reduced 

because ^1 have been compared to ^1��, … , ^�( for all @ = 1,… ,/á − 1.  

E.4.3 Relationship between SCLP and Reduced Versions of SCLP 

Definition:  A row reduced version of a general SCLP is obtained from the general SCLP 

by removing some redundant rows of the constraint matrix. A column reduced version of 

a general SCLP is obtained from the general SCLP by removing some redundant columns 

of the constraint matrix and corresponding decision variables. 

 

Proposition E.8: Let Program R be any general SCLP that has a feasible solution. Then, 

both Program R and a row reduced version of it have the same set of feasible solutions. 



 246

Proof: Let � denote the constraint matrix of Program R and let �W denote the constraint 

matrix of the row reduced version of it. Let à denote a binary /-vector. In reducing � to 

�W, only redundant rows are removed. Thus, �à ≥ ë if and only if �Wà ≥ ë. In other 

words, à is a feasible solution of Program R if and only if it is a feasible solution of the 

row reduced version of Program R. 

 

Proposition E.9: Let Program R be any general SCLP that has a feasible solution. Then, 

both Program R and a column reduced version of it have the same optimal objective 

function values. If àß�∗  is the /- vector obtained from an optimal solution àß∗ of the column 

reduced SCLP by setting to zero decision variables that have been removed, then àß�∗  is an 

optimal solution to Program R. 

Proof: Let � denote the constraint matrix of Program R and let �W denote the constraint 

matrix of the column reduced version of it. Suppose that à∗ = 
1,… ,1,0, … ,0� is an 

optimal solution of Program R, where the first � components equal 1 and the rest of the 

components equal 0. In reducing � to �W, only redundant columns are removed. Let the 

indices of nonredundant columns of � be denoted by ^�, … , ^�(. Construct a new binary 

/á-vector à�∗  from à∗ as follows: First, set the @ ℎ component of à�∗  equal to the ^1 ℎ 

component of à∗ for all @. For each column z ∈ {1, … , �} that is removed from �, choose a 

^�
£� ≠ z such that the indices of 1’s in column z is a subset of the indices of 1’s in column 

^�
£�. Change the B
z� ℎ component of à�∗  to 1.  

By construction, ‖à�∗ ‖� ≤ ‖à∗‖�. Moreover, since �à∗ ≥ ë, we must have 

�Wà�∗ ≥ ë. Thus, the column reduced version of Program R is feasible and yàß∗y� ≤
‖à�∗ ‖� ≤ ‖à∗‖�, where àß∗ is an optimal solution of the reduced program. 
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Now, it is clear that if �Wàß ≥ ë, where àß is a binary /á-vector, the /-vector àß� 

obtained from àß by adding 0’s must satisfy �àß� ≥ ë. Thus, àß�∗  (which is defined in the 

statement of the proposition) is a feasible solution to Program R and yàß�∗y� ≥ ‖à∗‖�. On 

the other, by construction of àß�∗  and the inequality yàß∗y� ≤ ‖à∗‖� established in the 

previous paragraph, we have yàß�∗y� = yàß∗y� ≤ ‖à∗‖�. We conclude that yàß�∗y� =
yàß∗y� = ‖à∗‖�.  

Thus, both Program R and the column reduced version of it have the same 

optimal objective function values and any optimal solution àß∗ to the column reduced 

version gives an optimal solution àß�∗  to Program R. 

 

Proposition E.10: Both SCLP and a reduced version of it (as defined in Chapter 5) have 

the same optimal objective function values. If àß�∗  is the �-vector obtained from an 

optimal solution àß∗ of the reduced version of SCLP by setting to zero decision variables 

that have been removed, then àß�∗  is an optimal solution to SCLP. 

Proof: This follows from Proposition E.8 and Proposition E.9. 

E.4.4 Sizes of Reduced SCLP and SCLP for Examples in Chapter 5 

In Example 5.1, SCLP needs to be solved with a branch-and-bound algorithm a 

total of 85 times for �', (
 = �0.4,1.6
. Up to 80% of the 80 columns and 72.5% of the 80 

rows of the constraint matrix are removed in the 85 instances of SCLP that are solved. 

The average number of rows of Reduced SCLP is 39.7 and the average number of 

columns is 30.9. 

In Example 5.2, SCLP needs to be solved with a branch-and-bound algorithm a 
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total of 67 times for �', (
 = �2.5,2.8
. Up to 42% of the 200 columns and 27.5% of the 

200 rows of the constraint matrix are removed in the 67 instances of SCLP that are 

solved. The average number of rows of Reduced SCLP is 154.3 and the average number 

of columns is 140.1. 
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