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SUMMARY 

Soil erosion driven by hydro-climatic factors and anthropogenic activity is closely 

linked to the global carbon (C) cycle. Elucidating complex interrelations between climate, 

vegetation, soils, and human impacts is critical for advancing our understanding on how 

diverse ecosystems respond to global environmental change. This work introduces a 

spatially-explicit process-based model of soil organic C dynamics (Triangulated Irregular 

Network-based Real-time Integrated Basin Simulator-Erosion and Carbon Oxidation), 

developed within with an existing coupled physically-based hydro-geomorphic model, to 

quantify the influence of linked hydrologic and geomorphic processes on the C cycle in a 

range of ecosystems. Two sites are studied: the Calhoun Critical Zone Observatory (CZO) 

in South Carolina, USA, which has experienced some of the most serious agricultural soil 

erosion in North America, and the Luquillo CZO (Puerto Rico), a tropical site of particular 

hydro-geomorphological interest. This study uses multiple observations of hydrologic and 

geomorphic processes and soil biogeochemical properties.  

The substantial topographic variability in the redistribution of soil organic C in 

agricultural landscapes as soil erosion and deposition proceed is highlighted. The 

uncertainty characterizing estimates of the hydrologically driven CO2 exchange with the 

atmosphere in intensively managed landscapes is significant. In the Luquillo CZO, the 

capacity of contrasting tropical landscapes to act as a net atmospheric C source or a C sink 

in response to hydro-climatic perturbations is demonstrated. This work highlights that the 

natural spatial variation of soil hydrological and geotechnical properties greatly influences 

slope instability in tropical watersheds. Also, as shown, hillslope erosion and landslide 

occurrence in the Luquillo CZO are expected to remain significant in the 21st century, 
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despite a projected precipitation decline in south Caribbean. It is recommended that future 

studies assessing the contribution of erosion on atmospheric CO2, and the response of 

diverse landscapes to natural and anthropogenic perturbations systematically account for 

the fine spatio-temporal variability of linked hydro-climatic, geomorphological, and 

biogeochemical processes at a range of settings.  
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CHAPTER 1. Introduction: Significance of coupled and spatially-

explicit representations of hydro-geomorphic and biogeochemical 

processes across scales 

Soils affected by human interventions are complex systems [Doetterl et al., 2012; 

Richter and Markewitz, 2001]. They are affected by many processes, the interrelations of 

which are poorly understood [Van Oost et al., 2007]. Topsoil erodes from upland soil 

profiles in response to anthropogenic and natural perturbations, and is accumulated in 

floodplains, wetlands, and valleys, altering the hydrologic, biologic, riparian, and chemical 

functions of the disturbed environments [James, 2013]. Land use and land use change have 

accelerated soil erosion rates, effectively degrading soil structure and depleting soil fertility 

[Harden et al., 1999; Lal, 2003]. Sediment transport in mountainous landscapes is 

controlled by different interacting hydro-geomorphic processes (e.g., topsoil erosion and 

landslide occurrence), which are driven by climatic and non-climatic factors over a range 

of scales [Dykes and Warburton, 2007; Gabet et al., 2015; Kim et al., 2016; Larsen and 

Montgomery, 2012; Larsen, 2012; Larsen et al., 1999; Stark and Passalacqua, 2014]. 

Hillslope erosion rates depend on a multitude of factors including topography, lithological 

characteristics, land management, and soil and forest properties [De Rose, 2013; Formetta 

et al., 2016; Hales et al., 2009; Moos et al., 2016; Roering et al., 1999; Simoni et al., 2008], 

and on the frequency of extreme hydro-meteorological events [Casadei et al., 2003; Chen 

et al., 2013; von Ruette et al., 2014]. Understanding the associated interrelations within the 
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complex structures of the Earth’s critical zones1 [Anderson et al., 2007; Brantley et al., 

2007] remains a challenge.  

Soil erosion redistributes soil organic carbon (SOC) across the landscape. The extent 

to which eroded SOC is protected from decomposition in moist environments at 

depositional sites has significant impacts on the global C cycle [Billings et al., 2010; 

Harden et al., 1999; Stallard, 2012; Van Oost et al., 2007]. Understanding the influence of 

land management practices on C erosion and burial is hence crucial for developing 

strategies for climate change mitigation [Battin et al., 2009]. Atmospheric CO2 

sequestration at eroding soils and C burial at depositional sites have the potential to offset 

CO2 emissions due to fossil fuels and help mitigate the threat of future global warming 

[Lal, 2004]. Stallard [1998] and Harden et al. [1999] suggested that SOC burial and 

replacement by sequestered atmospheric CO2 may explain a significant portion of the so 

called “missing sink” in atmospheric CO2 [Lal, 2003; Liu et al., 2003]. Global estimates of 

this effect range from a C sink exceeding 1 Pg yr-1 [Harden et al., 1999; Stallard, 1998] to 

a C source of around 1 Pg yr-1 [Jacinthe and Lal, 2001; Lal, 2004].  

The wide range of erosion-induced C flux estimates can be attributed to diametrically 

different assumptions about the processes that drive soil erosion and C burial [Billings et 

al., 2010; Harden et al., 1999; Jacinthe and Lal, 2001; Lal, 2003; 2004; Regnier et al., 

2013; Smith et al., 2001; Stallard, 1998; Van Oost et al., 2012; Van Oost et al., 2007]. The 

variation of published estimates of the net soil-atmosphere C exchange depends on 

                                                 
1The Earth’s critical zone is defined (NRC (2001), Basic Research Opportunities in Earth Science, 

National Academy Press.) as: “the heterogeneous, near-surface environment in which complex interactions 

involving rock, soil, water, air, and living organisms regulate the natural habitat and determine the availability 

of life-sustaining resources”.  
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assumptions about the rate of C replacement at upland eroding sites, which is an important 

determinant of the contribution of erosion to atmospheric CO2. For example, according to 

Van Oost et al. [2007] 11% to 55% of eroded C can be replaced by plant inputs, while other 

studies [Smith et al., 2001; Smith et al., 2005] assume that the amount of mobilized C is 

replaced to its entirety. Moreover, different assumptions have also been invoked to explain 

the fate of eroded C. Changes in the reactivity of mobilized C may exert a strong control 

on the erosion-induced soil-atmosphere C exchange [Harden et al., 1999]. Previous studies 

have assumed that eroded C is decomposed upon transport [Lal, 1995; Schlesinger, 1995] 

while others assume that it is protected from decomposition by burial [Smith et al., 2001]. 

Models that quantify different drivers of SOC storage dynamics (e.g., [Billings et al., 

2010; Chappell et al., 2016; Coleman et al., 1997; Doetterl et al., 2016; Fiener et al., 2015; 

Harden et al., 1999; Liu et al., 2003; Rosenbloom et al., 2006; Stallard, 1998; Van Oost et 

al., 2005; Van Oost et al., 2012; Wang et al., 2015; Yoo et al., 2005]) often neglect 

fundamental linkages among coupled operating processes, and simulate linked natural 

mechanisms in isolation [Van Oost et al., 2007]. Systematically representing feedbacks 

that link geophysical and biogeochemical processes at a range of spatial scales is critical 

for understanding the influence of erosion on the soil-atmosphere CO2 exchange [Berhe 

and Kleber, 2013; Liu et al., 2003]. Also important is the representation of land 

management practices, [Abaci and Papanicolaou, 2009; Dlugoß et al., 2012; Hu and Kuhn, 

2014; Richter et al., 2007], such as enhancement or degradation of system productivity. 

Management practices may regulate the extent to which SOC oxidation and production, 

important components of the soil-atmosphere CO2 exchange, are altered by erosion 

[Billings et al., 2010; Harden et al., 1999]. The effect of management practices on SOC 
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redistribution via erosion and deposition in complex topographies remains poorly 

investigated. The net effect of erosion and deposition on the C exchange between terrestrial 

ecosystems and the atmosphere continues to be studied, and the potential of physically-

based modelling to clarify the influence of erosional processes on the C cycle has been 

widely recognized [Billings et al., 2010; Hu and Kuhn, 2014; Liu et al., 2003; 

Papanicolaou et al., 2015; Rosenbloom et al., 2006].  

The aim of this thesis is: 1) to develop a novel physically-based, spatially-explicit 

framework to assess the impact of episodic erosion on atmospheric CO2 by systematically 

accounting for dynamic feedbacks among coupled hydrological, geomorphological, and 

biogeochemical processes, 2) to assess the influence of erosion on the C cycle in a degraded 

landscape undergoing recovery from past agricultural use, much as many other regions of 

the world, and 3) to characterize different factors controlling hillslope erosion, landslide 

occurrence, and erosion-induced C fluxes in two diverse tropical watersheds underlain by 

contrasting lithology. 

This thesis presents the process-based spatially-explicit model of SOC dynamics 

tRIBS-ECO (Triangulated Irregular Network-based Real-time Integrated Basin 

Simulator-Erosion and Carbon Oxidation), which is based on an existing coupled hydro-

geomorphic model [Francipane et al., 2012; Ivanov et al., 2004a; b]. The thesis is 

organized in seven chapters that discuss in detail the development of coupled physically-

based models and model applications that use multiple observations, to elucidate linkages 

between climate, vegetation, soils, and human impacts in diverse ecosystems.  
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Chapter 2 of this thesis studies the influence of episodic erosion on the C cycle in a 

degraded agricultural landscape located at the Calhoun Critical Zone Observatory (CZO) 

in South Carolina, USA, a site that has experienced some of the most serious agricultural 

soil erosion in North America [Trimble, 1974]. This work introduces the coupled model of 

SOC dynamics tRIBS-ECO, and uses observations of hydro-geomorphic processes and of 

soil biogeochemical properties from multiple soil profiles. This study demonstrates the 

substantial topographic variability in the redistribution of SOC at agricultural landscapes 

as soil erosion and deposition proceed. 

Chapter 3 presents the implementation of a stochastic formulation in the tRIBS-ECO 

model to quantify the uncertainty introduced by land management practices on estimates 

of the net erosion driven soil-atmosphere C exchange at the landscape scale. The significant 

uncertainty characterizing published estimates of the hydrologically-induced CO2 

exchange with the atmosphere in intensively managed landscapes is highlighted. 

Chapter 4 focuses on the Luquillo CZO in northeastern Puerto Rico, a tropical site 

of particular hydrological and geomorphological interest. This work couples existing 

landslide and topsoil erosion models [Arnone et al., 2011; Francipane et al., 2012] with a 

spatially explicit model of C dynamics, to assess the capacity of diverse tropical settings to 

act as a net atmospheric C source or a C sink in response to hydro-geomorphic 

perturbations.  

Chapter 5 introduces a probabilistic approach that quantifies the significant 

uncertainty in the prediction of rainfall-triggered landslide occurrence, associated with the 

natural spatial variation of soil hydrological and geotechnical properties. The methodology 
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is used to evaluate how the spatial and temporal patterns of precipitation influence slope 

instability at the watershed scale 

Chapter 6 assesses the influence of climate change on the rates of hillslope erosion 

at two adjacent tropical watersheds in the Luquillo CZO, underlain by contrasting lithology 

(volcaniclastic rock and quartz diorite [Buss and White, 2012]). This work studies the 

landslide area frequency distributions projected in the two watersheds, and assesses the 

extent to which the two diverse landscapes reach a state of equilibrium. 

Chapter 7 compares and contrasts hydrologically-induced erosion rates of soil and 

SOC in the tropical montane ecosystem of the Luquillo CZO and in the temperate forest 

ecosystem of the Calhoun CZO, and summarizes the thesis. This chapter addresses 

implications of linked hydrologic and geomorphic processes on the global carbon cycle, 

and highlights future research needs.  
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CHAPTER 2. Topographic variability and the influence of soil 

erosion on the carbon cycle in a degraded agricultural landscape 

2.1 Introduction  

Soil erosion, particularly that caused by agriculture, is closely linked to the global C 

cycle. Assessing the role of erosion and deposition on the C cycle is critical not only for 

understanding future challenges posed by climate change, but also for providing strategies 

for climate change mitigation [Battin et al., 2009; Lal, 2004]. 

As discussed in chapter 1, global assessments of the net effect of soil erosion on the 

C cycle are currently based on a variety of different assumptions about the associated 

operating processes [Harden et al., 1999; Jacinthe and Lal, 2001; Lal, 2003; 2004; Regnier 

et al., 2013; Smith et al., 2001; Stallard, 1998; Van Oost et al., 2012; Van Oost et al., 2007]. 

This has led to a wide range of contrasting global estimates of how erosion alters soil-

atmosphere C exchange [Harden et al., 1999; Jacinthe and Lal, 2001; Lal, 2004; Stallard, 

1998], which can be partly attributed to limited understanding of how geomorphology, 

topography, and management practices affect erosion and oxidation of SOC [Van Oost et 

al., 2007]. 

This study proposes a novel approach to assess the impact of episodic erosion on 

atmospheric CO2 by systematically accounting for dynamic feedbacks among coupled 

hydrological, geomorphological, and biogeochemical processes in a physically-based, 

spatially-explicit framework, and by utilizing measurements of depth-dependent 

biogeochemical properties [Billings et al., 2010; Richter et al., 1999]. This work assesses 
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the influence of soil erosion on the net soil-atmosphere C exchange at the Calhoun Critical 

Zone Observatory, one of the most severely eroded regions in the U.S. [Trimble, 1974], 

and emphasizes the dynamic interaction between eroding and depositional sites on the 

redistribution of SOC. The fate of eroded SOC is estimated across a topographically 

heterogeneous landscape, and the role of management practices on the C exchange with 

the atmosphere is explored. The work carried out in this chapter has formed the basis of 

different publications [Dialynas et al., 2017; Dialynas et al., 2014; Dialynas et al., 2016a].  

 

2.2 Materials and methods 

2.2.1 Spatially- and depth-explicit model of carbon dynamics 

To quantify the influence of soil erosion and deposition on atmospheric CO2 the 

tRIBS-ECO (Triangulated Irregular Network-based Real-time Integrated Basin Simulator-

Erosion and Carbon Oxidation) model is introduced, a spatially-explicit model of SOC 

dynamics developed within the existing coupled physically-based hydro-geomorphic 

model [Francipane et al., 2012] discussed in section 2.2.2. The model incorporates a SOC 

mass balance equation for each computational cell. Continuous functions of depth-

dependent quantities representing SOC storage and C fluxes with the atmosphere, 

including SOC production and oxidation losses are used, in addition to lateral SOC fluxes 

due to soil erosion and deposition. Depth-dependent variables are integrated over soil 

thickness, which constitutes a temporally variant boundary condition, as it is locally 

controlled by episodic erosion and deposition. For each cell and at each time step the SOC 

mass balance equation (for a unit area) is: 
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where t is time; z denotes depth; Ht denotes temporally-variant thickness of the soil profile; 

SOC denotes SOC content; Δt is the discrete time interval; kt(z) and It(z) are the oxidation 

and production rates of soil organic carbon, respectively; ρ(z) is the bulk density; Ct(z) is 

the C mass fraction; and ht denotes the thickness of the eroded layer. At each time step, ht 

is estimated by the hydro-geomorphic model (section 2.2.2). At each Voronoi cell, the first 

two terms in equation (2.1) give the CO2 exchange with the atmosphere, resulting from C 

sequestration and from SOC decomposition and CO2 release. The third term (“out”) 

represents efflux of organic material by means of eroded sediment. The amount of eroded 

organic material in the third term is estimated by integrating the SOC content of the eroding 

cell (ρ(z)Ct(z)) over the eroded layer thickness, ht. The fourth term (“in”) represents 

organic C influx from upstream Voronoi cells (the associated SOC amount is estimated 

similar to the third transport term). SOC erosion from surficial soil horizons is mainly 

associated with the active SOC pool with turnover times from years to decades [Harden et 

al., 1999; Van Oost et al., 2007]. It(z) represents the ecosystem’s capacity to produce SOC. 

C inputs to soils associated with this term include canopy litterfall, rhizo-deposition (fine-

root sloughing and turnover), and hydrological leaching of dissolved organic C (DOC) 

[Richter et al., 1999]. 

In tRIBS-ECO the watershed's hydro-geomorphic response to hydrometeorological 

forcings leads to spatially heterogeneous, episodic erosion. Equation (2.1) is applied at 

eroding and depositional sites with a daily time resolution to systematically account for the 

fate of eroded SOC across the landscape. Eroded SOC can be oxidized upon transport or it 
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can be stored at deeper horizons at depositional sites, where oxidation is mitigated. This 

framework quantifies the watershed-integrated net contribution to atmospheric CO2 

derived from erosional processes. 

The model systematically accounts for the influence of management practices on the 

rates of C decomposition and C production. kt(z) and It(z) may significantly decline at 

relatively deep soil horizons because of reduced, for example, aeration, changes in 

temperature and moisture conditions, and recalcitrance of organic matter [Berhe et al., 

2007]) (section 2.4). Severe erosion events can significantly alter the depth-dependent SOC 

oxidation and production at disturbed sites by the lateral removal of topsoil. However, this 

can be moderated by management practices, which alter SOC oxidation and production 

over surficial and deeper horizons [Billings et al., 2010]. This study introduces coefficients 

ak and aI, corresponding to the influence of management practices on altered SOC 

oxidation and production rates, respectively. To clarify this framework an example is given 

in Figure 2-1. Assume that by time t2 removal of an eroding soil layer leads to the new 

surface having an oxidation rate 
2
( =0)tk z , which can be significantly different from the 

original rate, 
1
( =0)tk z  [Billings et al., 2010]. Management practices restore the initial 

1
( )tk z  at a rate specified by the coefficient ak. This framework is also applied to the depth-

dependent SOC production. Moreover, aI and ak are applied with no reference to ongoing 

erosion rate. Thus, the effect of management practices on disturbed soil profiles is 

represented even for periods characterized by low erosion rates. Also, while the influence 

of management practices on kt(z) and It(z) is modelled at upland eroding sites, it is assumed 

that the depth-dependence of kt(z) and It(z) at lower slopes and valleys does not change 

with sediment deposition. 
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This spatially- and depth-explicit approach has important advantages and novel 

features over existing efforts (e.g., [Billings et al., 2010; Liu et al., 2003; Rosenbloom et 

al., 2006; Yoo et al., 2005]) that attempt to describe erosion effects on soil-atmosphere C 

exchange. Advances of this physically-based framework include the coupling of 

hydrologic, geomorphic, and biogeochemical processes at the watershed scale, leading to 

an episodic representation of SOC erosion; tracking the potential of eroded SOC to undergo 

mineralization or be stabilized based on local topographic variation; and dynamically 

representing the effect of land management practices on altered SOC oxidation and 

production at eroding sites. 

 

Figure 2-1. Illustration of the effect of management practices on altered depth-dependent 

SOC oxidation ( )tk z . Assume that by time t2 soil erosion leads to the removal of a soil 

layer with the new surface having an oxidation rate 
2
( =0)tk z , altered from 

1
( =0)tk z . It is 

proposed that land management practices can have an effect on altered oxidation at a rate 

ak. The framework is also applied to SOC production [Billings et al., 2010]. 
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2.2.2 Physically-based hydro-geomorphic model 

Hydrologic and geomorphic processes are represented in this study with an existing 

spatially-explicit coupled hydro-geomorphic model. The Triangulated Irregular Network 

(TIN) - based Real-time Integrated Basin Simulator (tRIBS) simulates various hydrologic 

processes typical of a basin [Ivanov et al., 2004a; b]. tRIBS explicitly accounts for the 

spatial variability of precipitation fields and land-surface descriptors. It represents soil 

moisture dynamics and stresses the role of topography in lateral soil moisture redistribution 

by accounting for the effects of heterogeneous and anisotropic soil. The computational 

elements of the model are Voronoi polygons defined by the TIN network. The geometry 

and properties of the Voronoi polygons are described in Vivoni et al. [2004]. The basin’s 

hydrologic response can be simulated at very fine temporal (hourly) and spatial (10 to 100 

m) scales. Modelled hydrological processes include runoff routing, rainfall canopy 

interception, evapotranspiration and surface energy balance, infiltration, and lateral 

redistribution of soil moisture in the unsaturated and saturated zones. The underlying 

hydrological processes are described by a set of physically-based formulations. The model 

accounts for different soil types and vegetation species in representing hydrological 

processes in a spatially-explicit, physically-based manner. 

Infiltration is modelled by assuming gravity-dominated flow in heterogeneous, 

anisotropic soil [Garrote and Bras, 1995]. In each computational element, the evolution of 

a wetting front and a top front may lead to unsaturated, perched-, surface-, or completely 

saturated states. The unsaturated and saturated zones are coupled to account for the 

interaction of the dynamic groundwater table with the moving wetting front. Lateral 

moisture transfer in the unsaturated zone is controlled by topography, while continuous 
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soil moisture allows for redistribution during both storm and interstorm periods, which 

allows long-term simulations over a range of hydrometeorological forcings. Groundwater 

flow is represented by means of a quasi three-dimentional “cascade” model. The 

groundwater model allows for lateral redistribution in the saturated zone, in addition to 

dynamic interaction with the unsaturated zone. Surface runoff is generated by different 

mechanisms, as a result of the dynamic interaction of lateral soil moisture redistribution, 

infiltration fronts, and water table depth. Saturation excess, infiltration excess, perched 

subsurface stormflow, and groundwater exfiltration are the four runoff-generating 

mechanisms in the model.  

tRIBS was coupled with a geomorphic model (tRIBS-Erosion [Francipane et al., 

2015; Francipane et al., 2012]), which is based on CHILD, the Channel-Hillslope 

Integrated Landscape Development model [Tucker et al., 2001a; Tucker et al., 2001b]. The 

hydro-geomorphic model represents main erosive processes on hillslopes and in channels, 

including rainsplash erosion, and sheet erosion entrainment. The main modelled erosional 

processes are described below, taken directly from Francipane et al. [2012] and 

Francipane et al. [2015]: 

a) Rainsplash erosion is an important erosion-inducing mechanism on interfluves and 

hillslopes. Raindrop impact breaks soil aggregates, driving the initiation of motion of 

sediment. The geomorphic model simulates both the effects of direct rainsplash detachment 

and leaf drip. Rainsplash erosion in the modelling framework is controlled by different 

factors, including rainfall characteristics, soil type, ground and canopy cover, and depth of 

overland flow. Features such as vegetation, and bare soil, as well as the variability of 
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processes like throughfall are characterized by subgrid variation within the computational 

element through areal fractions of Voronoi cells. 

 b) Erosion and deposition by overland flow at hillslopes and channels is also 

simulated by physically-based formulations. The framework is based on shear stress-based 

expressions for sediment initiation of motion, entrainment, and transport capacity by sheet 

flow. The estimation of effective boundary stress assumes uniform water flow, and uses 

Manning’s equation for the flow velocity. The associated formulations are applied both in 

overland and channel flows.  

At each Voronoi polygon and at each time step the coupled model quantifies the rate 

of elevation change, which is either limited by the magnitude of detachment/entrainment 

erosional processes, or by the divergence of local sediment flux. Mobilized sediment is 

routed following the direction of steepest descent. The model computes sediment discharge 

and local changes in elevation at eroding and depositional sites, and modifies the associated 

terrain characteristics, accordingly. More specifically, the model applies elevation changes 

at each time step, and re-estimates the local slope, aspect, flow direction, and drainage area 

at each computational cell. The alteration of the watershed's morphological characteristics 

results in changes of the drainage network configuration, and of the available energy for 

driving hydrological and sediment fluxes. The modelled erosional processes and 

calculation steps are discussed in Francipane et al. [2012] and in Francipane et al. [2015].  
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2.2.3 SOrCERO model 

The SOrCERO (Soil Organic Carbon, Erosion, Replacement, and Oxidation) model 

was introduced by Billings et al. [2010]. The depth-explicit model quantifies the effect of 

constant erosion and altered SOC production and oxidation on CO2 release to the 

atmosphere at a single eroding soil profile. Model inputs include an assumed constant 

erosion rate, depth-dependent SOC content, oxidation and production rates. The 

moderating effect of management practices on erosion driven C fluxes is explicitly 

considered. More precisely, the mixing coefficients nox and nprod express the extent to which 

erosion alters SOC oxidation and production rates at the eroding site. Outputs include SOC 

storage and eroded SOC, and maximum C sink or source strengths depending on the 

amount of eroded SOC assumed to be oxidized. 

 

2.3 Study area 

The watershed-integrated hydro-geomorphic response of the 4.3 km2 Holcombe's 

Branch watershed (34.6177 N, 81.6914 W, Figure 2-2a) is studied in terms of SOC 

redistribution and atmospheric CO2 flux. The Holcombe's Branch is a tributary of the Tyger 

River, which drains into the Broad, Congaree, and Santee Rivers before entering the 

Atlantic Ocean. The watershed is part of the Calhoun Critical Zone Observatory and USFS 

Calhoun Experimental Forest in the southern Piedmont of South Carolina, USA. The 

region has experienced some of the most serious agricultural land degradation in North 

America [Trimble, 1974]. The mean annual precipitation is around 1,260 mm, and the mean 

annual temperature is about 17 °C. Elevation ranges from 113 m to 196 m above sea level. 
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The watershed is covered for the most part by highly weathered acidic Ultisol and 

Inceptisol soils [Richter and Markewitz, 2001; Richter et al., 2014]. The soil and vegetation 

types characterizing the study area are discussed in section 2.4. Cultivation of cotton, corn, 

wheat, and other crops led to significant soil erosion starting about 1800 and continuing to 

the early 20th century [Richter and Markewitz, 2001]. The Calhoun Experimental Forest 

includes one of the longest running experiments on soil properties and processes worldwide 

[Richter et al., 1999], providing insights that support this study [Richter and Markewitz, 

2001; Richter et al., 2006]. 

 

 

Figure 2-2. Digital Elevation Model of the Holcombe's Branch watershed (a), 

topographic classification of the watershed; initial total SOC storage (calculated in the 

upper 5 m of soil) at ridges, upper, and lower slopes is equal to 10.3 kg m-2, 12.7 kg m-2, 
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and 16.7 kg m-2, respectively (b), spatial distribution of soil textural classes (c), and of 

vegetation types (d) 

 

2.4 Model inputs 

2.4.1 Biogeochemical parameters 

Biogeochemical input variables to tRIBS-ECO were obtained from a relatively 

undisturbed soil profile in a hardwood stand nearby (site B in Figure 2-2a) which is 

considered to have never been cultivated [Billings et al., 2010; Richter and Markewitz, 

2001]. Distributions with depth of SOC content and bulk density were obtained from 

previous studies at the site [Billings et al., 2010; Markewitz and Richter, 1998; Richter et 

al., 1999]. First-order mean oxidation rate constants (k, yr-1) for the undisturbed soil profile 

were estimated in Billings et al. [2010] from mean residence times calculated using bulk 

radiocarbon signatures of organic C from several soil horizons sampled in 1962 [Richter 

et al., 1999], likely before the presence of thermonuclear bomb-produced 14C [Billings et 

al., 2010; Richter et al., 1999]. The corresponding input parameters to tRIBS-ECO were 

estimated by fitting the following exponential functions with depth to the associated data, 

by means of constrained non-linear optimization (see Figure 2-3): 

 ,( )  bC z

t a t cC z C e C  (2.2) 

 ,( )  bk z

t a t ck z k e k  (2.3) 

 ( )
       fb d

zz z

a c ez e e e  (2.4) 
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for SOC content, oxidation rate, and soil bulk density, respectively (see section 2.2.1 for 

notation), where Ca,t, Cb, Cc, ka,t, kb, kc, ρa, ρb, ρc, ρd, ρe, and ρf are parameters. Equations 

(2) and (3) correspond to dynamic exponential profiles of SOC content and of SOC 

decomposition rate (see section 2.4.2). Mechanisms that induce advection-diffusion 

phenomena (e.g., bioturbation, tillage, soil creep) may lead to the mixing of SOC content 

estimated by equation (2.1) across different horizons within the soil column [Chaopricha 

and Marín-Spiotta, 2014]. At each time step, the SOC depth-variation is estimated by 

applying equation (A.3), assuming mixing of the estimated SOC content (equation (2.1)) 

across soil horizons. Further details on the estimation of SOC content at each time step are 

given in Appendix A.  
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Figure 2-3. Exponential functions fitted to observations, to parsimoniously represent the 

depth variation of soil biogeochemical properties at multiple horizons: organic carbon 

concentration (a), bulk density (b), and oxidation rate of organic carbon (c). The 

observations were obtained from site B (Figure 2-2a). The variation of initial organic 

carbon concentration at different hillslope positions illustrated in (a) corresponds to the 

topographic classification of Figure 2-2b. The initial depth-dependent SOC concentration 

at ridges was obtained by fitting equation (2) to the observations [Billings et al., 2010]. 

The depth-dependence of initial organic carbon concentration at upper and lower slopes 

was estimated based on the analysis conducted by Rosenbloom et al. [2006] (see section 

2.4.1). The associated parameters are given in Table 2.1. 

 

To quantify erosion-induced C fluxes, steady state conditions were assumed at the 

beginning of simulation, with zero net soil-atmosphere C exchange [Billings et al., 2010; 

Jenny, 1941; Van Oost et al., 2007]. This assumption represents the state of the ecosystem 

before the extensive forest cutover that started in the area in the late 18th century, which, 
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combined with inadequate soil management practices most likely led to the beginning of 

severe erosion of millions of hectares of land in the broader region [Trimble, 1974]. The 

model is initialized with estimates of depth-dependent soil bulk density, SOC oxidation 

rate and SOC concentration. The SOC production term is assumed to exponentially decay 

with depth [Yoo et al., 2005; 2006]: 

 ,( ) bI z

t a tI z I e   (2.5) 

where Ia,t, and Ib are parameters. The estimation of the initial depth-dependent SOC 

production rate is discussed in Appendix B. 

In addition to the dependence of SOC on depth, the spatially-explicit model considers 

the variation with topography. Deep C accumulation varies topographically depending on 

slope morphology. This work systematically accounts for topographic controls on the 

initial SOC content (Figure 2-2b) based on the analysis given by Rosenbloom et al. [2006], 

who fitted exponential depth-profiles of C concentration to observations across different 

landscape positions. They reported that C concentration attenuates rapidly with depth in 

ridges in comparison to middle slopes, while lower slopes exhibit slower depth attenuation. 

They represent the C attenuation at each location with different coefficients of exponential 

decay with depth (equivalent to Cb in equation (2.2)). In this thesis the depth-dependent C 

content at the Holcombe's Branch's ridges is initialized based on observations [Billings et 

al., 2010] illustrated in Figure 2-3a. The depth-attenuation of initial C concentration at 

upper and lower slopes is captured by using different values for Cb (exponential decay of 

C concentration with depth). More specifically, the ratio of Cb corresponding to upper 

slopes over the Cb that corresponds to ridges was assumed equal to the one Rosenbloom et 
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al. [2006] derived from observations. This method was also applied for the estimation of 

the depth attenuation of initial C concentration at lower slopes. The initial spatial 

distribution of C content, and the depth-dependence of C concentration at different 

topographic locations are illustrated in Figures 2-2b and 2-3a, respectively. The associated 

parameters are given in Table 2.1. 

  

2.4.2 Carbon Oxidation and Production Parameters: Sensitivity Analysis on Effects of 

Management Practices 

The effect of land management practices on the interaction of erosion and soil-

atmosphere C exchange is represented by the coefficients ak, and aI for oxidation and 

production, respectively (see section 2.2.1). In order to clarify the role of ak, and aI on the 

net C flux and to select a set of parameters to use in the watershed simulations, a 

preliminary sensitivity analysis was conducted on an eroding site, assuming a 1 mm yr-1 

constant erosion rate in 100-year simulations. The total SOC difference (ΔSOC) for 100 

years is illustrated in Figure 2-4, which reflects the net result of SOC production, oxidation, 

and loss to erosion, based on the modelling framework. Depending on the values of ak and 

aI different scenarios range from a net increase to a net loss of SOC at the eroding soil 

profile. High values of ak (aI) represent a rapid restoration of the altered kt (It), while low 

values have little effect on eroded profiles. A high value of ak combined with low aI lead 

to a net C source (i.e., net flux of CO2 from soil to atmosphere); low values of ak combined 

with relatively high aI may lead to a net C sink.  
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Figure 2-4. Sensitivity analysis on the effect of management practices to the total 

difference in soil organic carbon storage (ΔSOC). The net result of soil organic carbon 

(SOC) production, oxidation, and SOC loss to erosion is illustrated, as the effects of 

management practices on altered oxidation and production (ak and aI, respectively) vary. 

Positive values of ΔSOC indicate net increase of SOC at the eroding site, while negative 

values represent net SOC loss to the atmosphere and to erosion. 

 

To assess the watershed's integrated response in terms of atmospheric CO2 fluxes 

three scenarios were considered: a) a maximum C sink scenario, b) a maximum C source 

scenario, and c) an intermediate scenario. For the maximum sink scenario, based on Figure 

2-4 aI=3 g m-3 yr-1 (i.e., the value for aI above which the SOC difference in Figure 2-4 does 

not significantly change) is used and ak is minimized (ak=0 yr-1). Similarly, for the 

maximum source scenario aI=0 g m-3 yr-1 and ak=0.05 yr-1 are used. For the intermediate 

scenario aI=1.5 g m-3 yr-1 and ak=0.025 yr-1 were selected. The simulated response surface 

of Figure 2-4 depends on the cumulative erosion for the time period of the simulation (100 

years). This range of ak and aI values (see Table 2.1) reflects plausible states of the 

ecosystem during its long agricultural history. 
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Table 2.1. Initial values of tRIBS-ECO and SOrCERO biogeochemical model 

parameters. Three values for Cb and for Ib are given, corresponding to ridges, upper 

slopes, and lower slopes, respectively. Observations of C content and bulk density (site B 

in Figure 2-2a) were obtained from previous studies at the site [Billings et al., 2010; 

Markewitz and Richter, 1998; Richter et al., 1999]. Three values for ak and aI (tRIBS-

ECO) and for nox and nprod (SOrCERO) are given, corresponding to the maximum sink, 

the intermediate, and the maximum source scenarios, respectively (see section 2.4.2). 

SOrCERO was initialized by the observed C concentration and bulk density illustrated in 

Figures 3a and 3b, respectively, and by the depth-dependent SOC oxidation rate 

estimated by Billings et al. [2010] (Figure 2-3c).  

Parameter Units Values Description Source 

Ca [g g-1] 0.03 

Parameters of initial 

depth-dependent C 

concentration (equation 

(2.2)) 

Fitting to Observations (Figure 

2-3a) 

Cb [m-1] 
-6.00/-4.50/ 

-3.18 

Fitting to Observations (Figure 

2-3a) and Rosenbloom et al. 

[2006] 

Cc [g g-1] 0.0005 
Fitting to Observations (Figure 

2-3a) 

ρa [g m-3] -0.42 

Parameters of bulk 

density profile (equation 

(2.4)) 

Fitting to Observations (Figure 

2-3b) 

ρb [m-1] -14 

ρc [g m-3] 1.475 

ρd [m-1] -0.0836 

ρe [g m-3] 0.05084 

ρf [m-1] 0.381 

ka [yr-1] 0.15 Parameters of initial 

depth-dependent SOC 

oxidation rate (equation 

(2.3)) 

Fitting to the SOC oxidation rate 

estimates reported by Billings et 

al. [2010] (Figure 2-3c) 
kb [m-1] -30 

kc [yr-1] 0.000417 

Ia [g m-2 yr-] 5.059 Parameters of initial 

depth-dependent SOC 

production rate 

Estimated according to Appendix 

B Ib [m-1] 
-32.5/-31.1/ 

-29.8 

ak [yr-1] 0/0.025/0.05 ak and aI in tRIBS-ECO 

represent the effect of 

management practices on 

SOC oxidation and 

production, respectively 

(section 2.2.1) 

Sensitivity analysis (Figure 2-4) 
aI [g m-2 yr-] 3/1.5/0 

nox [-] 0/0.5/1 nox and nprod in SOrCERO 

represent the effect of 

management practices on 

SOC oxidation and 

production, respectively 

Billings et al. [2010] (see section 

2.5.1) nprod [-] 1/0.5/0 
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2.4.3 Land Surface Data 

This work uses a fine (5 m) Digital Elevation Model (DEM) and information on the 

spatial distribution of vegetation from the South Carolina Department of Natural Resources 

[2009]. A 30 m mesh of computational elements was obtained based on the 5 m DEM 

(Figure 2-2a). The soil classification map (Figure 2-2c) of the area was obtained from local 

soil surveys (http://websoilsurvey.nrcs.usda.gov/) conducted by the U.S. Department of 

Agriculture (USDA). Soil textural classes characterizing the area were grouped into three 

soil types according to the corresponding USDA [1951] classification. 

The vegetation map of the area is shown in Figure 2-2d. The watershed is covered 

by several kinds of forest stands: those dominated by loblolly pine (Pinus taeda) and 

shortleaf pine (Pinus echinata), mixed stands of hardwoods such as white oak (Quercus 

alba), northern red oak (Quercus rubra) and hickory (Carya sp.), and hardwoods such as 

sweetgum (Liquidambar styraciflua), and yellow poplar (Liriodendron tulipifera). The 

pine stands are modelled [Hansen et al., 2000] as evergreen needleleaf forest with a 

vegetation height of 30 m, while hardwood forests are modelled as deciduous broadleaf 

forest with a vegetation height of 25 m. In this first order modelling approach, the observed 

vegetation patterns are assumed time invariant. Selection of soil and ecological parameters 

is discussed in section 2.4.5. 

 

2.4.4 Hydrometeorological forcing and validation of the hydrologic model 

A 100-year simulation was conducted to study the hydro-geomorphic response of the 

watershed and the influence on soil-atmosphere C exchange. Daily rainfall depth (1949-
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2005) and air temperature data (1965-1999) were used from Union Station (Cooperative 

Observer Program (COOP) ID: 388786, lat. 34.6052 N, long. 81.6627 W, east of the 

watershed), in addition to hourly records of other meteorological data (vapor pressure, 

atmospheric pressure, wind speed, and cloud cover (1987-1999)) from the Greenville-

Spartanburg airport, which are representative of the area. The data were used for the 

hydrologic model validation, and as inputs to a weather generator to reproduce a 100-year 

hydroclimatic scenario for the simulation's hydrometeorological forcing.  

Weather generators (e.g., AWE-GEN [Fatichi et al., 2011; Ivanov et al., 2007], 

Castalia [Efstratiadis et al., 2014], EARWIG [Kilsby et al., 2007]) produce random 

hydroclimatic scenarios by preserving essential statistical properties of historical records. 

The Advanced Weather Generator (AWE-GEN [Fatichi et al., 2011]) was used, which 

produces stationary climatic scenarios based on in situ observations of hydro-climatic 

variables. AWE-GEN produces hourly series of multiple hydro-meteorological variables 

(e.g., rainfall, air temperature, cloud cover, wind speed, vapor pressure, relative humidity, 

atmospheric pressure, and solar radiation) by reproducing marginal and joint statistics of 

the historical series at different timescales. A detailed description of AWE-GEN is given 

in Fatichi et al. [2011].  

Initial hydrologic conditions are specified in the hydrologic model in terms of the 

mean groundwater table depth and initial moisture profile, which can be considered as 

initial wetness conditions of the basin. An initialization (spin-up) run of the hydrologic 

model is required to define the initial conditions [Ivanov et al., 2004a; Noto et al., 2008]. 

The initialization procedure defines the mean groundwater depth corresponding to an 

equilibrium state of the basin, at which the basin discharges at a specified mean annual 
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rate. The equilibrium basin discharge at the outlet is taken as the mean annual discharge 

(e.g., 0.1 m3 s-1), which resulted in a mean initial groundwater depth of 3.5 m.  

Soil moisture data obtained with gypsum blocks (soil moisture meter model 5910A) 

were used to validate the hydrological model's performance. Four gypsum blocks buried at 

15-cm depth were monitored biweekly (site B in Figure 2-2a) at the Calhoun's Long-Term 

Soil Experiment site. The utilized soil moisture data are plotted in Figure 2-5 along with 

the model's rainfall forcing (rainfall records from Union Weather Station). Despite the 

convenient character of gypsum blocks in terms of sampling volumetric soil moisture, the 

inability to capture soil moisture dynamics at very fine (e.g., hourly) scales requires 

comparison with simulated data at coarser (e.g., weekly) scales. 

Ecological properties controlling important hydrologic processes (e.g., 

evapotranspiration, rainfall interception and canopy storage [Ivanov et al., 2004a]) were 

parameterized from literature [Bras, 1990; Ivanov et al., 2004a; b; Rutter et al., 1975; 

Rutter et al., 1971]. The most essential parameters were calibrated which characterize the 

effect of different soil textural classes on the modelled hydrologic processes: the saturated 

conductivity (Ks), the saturated volumetric water content (θs), the residual volumetric water 

content (θr), the air entry bubbling pressure (ψb), the pore distribution index (m), the 

conductivity depth decay parameter (f), the saturated anisotropy (As), and the unsaturated 

anisotropy (Au) [Ivanov et al., 2004a]. Ks represents the rate of water movement through 

saturated porous media, θs is the total soil porosity, θr expresses the minimum amount of 

soil moisture in a particular soil type, ψb represents the minimum capillary pressure in the 

porous medium, m is the exponent of the soil retention model suggested by Brooks and 

Corey [1964], f is the rate at which saturated hydraulic conductivity exponentially decays 
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with depth, and As and Au are defined as the ratios of the saturated conductivities in the 

parallel over the normal to the soil surface directions, for the saturated and unsaturated 

zones, respectively. These properties vary across different soil types [Rawls et al., 1982], 

and control the dynamics and the lateral redistribution of soil moisture at the element scale. 

A detailed description of the associated physically-based formulations of the hydrologic 

model is given by Ivanov et al. [2004b].  

Calibration of the aforementioned soil properties started from literature values 

[Arnone et al., 2011; Ivanov et al., 2004a; b; Noto et al., 2008; Rawls et al., 1982]. To 

validate the hydrologic model’s performance, simulated results at site A (Figure 2-2a), 

which is characterized by similar surface properties as site G, were compared to the soil 

moisture measurements. The final values of hydrologic soil parameters resulting from the 

calibration procedure are presented in Table 2.2. Comparison between simulated soil 

moisture against measurements is illustrated in Figure 2-5. In periods when discrepancies 

exceed the magnitude of measurement errors, the model's response to the rainfall forcing 

is rather evident compared to the response of the gypsum blocks. This can be attributed to 

the spatial gradient of rainfall between the location of the Union station and site A. 
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2.4.5 Biogeomorphic properties 

Geomorphic variables controlling raindrop impact detachment erosion and overland 

flow erosion were selected from the literature [Finney, 1984; Francipane et al., 2012; 

Meyer and Harmon, 1984; Yalin, 1977]. The most important soil properties affecting soil 

erosion are the shear stress based soil erodibility (Kb), the raindrop detachment soil 

erodibility (Kr), and the critical shear stress (τc). Kb expresses the soil tendency to be eroded 

by overland flow. Kr characterizes how susceptible the soil is on rainsplash erosion, and 

depends on soil textural classes. τc is the threshold stress value associated with particle 

entrainment. Ecological parameters controlling rainsplash erosion include the fraction of 

Figure 2-5. Hydrologic model validation in terms of soil moisture content. Soil 

moisture observations from four gypsum blocks at a depth of 15 cm versus 

simulated series, and corresponding rainfall intensity; S denotes effective 

saturation [Rawls et al., 1982]: r

s r

S
 

 





, where θ is the volumetric soil 

moisture content, θr is the residual volumetric water content, and θs is the 

saturated volumetric water content.  
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vegetation (v) of each computational element, the percentage of non-vegetated area (e.g., 

rock cover) protected against drop erosion (Cr), and the drip coefficient (Fl), which 

expresses the percentage of intercepted rainfall reaching the soil in the form of leaf drip. A 

detailed description on the structure of the geomorphic model is given by Francipane 

[2010] and by Francipane et al. [2012]. 

Starting from literature values, the soil and ecological parameters were tuned to 

mimic the history of severe erosion characterizing the area [Trimble, 1974] which led to 

the loss of the A horizon of many soil profiles [Richter and Markewitz, 2001]. This implies 

erosion rates of at least 1 mm yr-1 at eroding hillslopes across the Holcombe's Branch 

[Billings et al., 2010]. The selected values of characteristic soil properties and ecological 

parameters are given in Tables 2.2 and 2.3, respectively. Results of a 100-year scenario of 

accelerated soil erosion and redistribution are illustrated in Figure 2-6a. Erosion rates in 

the vicinity of 1 mm yr-1 or higher dominate the watershed hillslopes (illustrated in yellow 

color in Figure 2-6a). Depositional sites are mainly located in the proximity to the stream 

network. The geomorphic model parameterization is directly linked to and depends on the 

calibration of the hydrologic model. 
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Figure 2-6. Spatially-explicit representation of soil erosion and of soil organic carbon 

redistribution. Higher sediment deposition rates are illustrated in blue (e.g., across the 

stream network), while eroding sites (yellow to red) dominate hillslopes (a). Total 

difference in soil organic carbon storage (ΔSOC) across the landscape corresponding to 

the maximum source scenario (14.5 g C m-2 yr-1) (b), the intermediate scenario (0.08 g C 

m-2 yr-1) (c), and the maximum sink scenario (-18.2 g C m-2) (d). 
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Table 2.2. Hydrologic and geomorphic soil parameters for each soil type. 

Parameter Units Clay Sandy Loam Clay Loam 

Ks [mm hr-1] 1 8 6 

θs [mm3 mm-3] 0.43 0.35 0.54 

θr [mm3 mm-3] 0.15 0.13 0.04 

m [-] 0.17 0.1 0.4 

ψb [mm] -860 -750 -360 

f [mm-1] 0.006 0.005 0.1 

As [-] 150 250 200 

Au [-] 150 250 200 

θc [Pa] 0.1 0.1 0.1 

Kb [(m s-1 kg-1 s-2)1.5] 10-9 10-9 10-9 

Kr [J-1] 20 32 20 

 

Table 2.3. Ecological parameters of the hydro-geomorphic model. 

Parameter Evergreen Needleleaf Forest Deciduous Broadleaf Forest 

Fl 0.6 0.5 

v 0.7 0.6 

Cr 0.1 0.1 

 

2.5 Results 

2.5.1 Influence of episodic erosion on the carbon exchange with the atmosphere 
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To assess the influence of episodic erosion on the redistribution of SOC the results 

of tRIBS-ECO were compared to those of SOrCERO, which uses an assumed constant 

erosion rate. Because SOrCERO operates at a point in the landscape, a heavily eroding site 

(site A in Figure 2-2a) was selected. The C exchange with the atmosphere estimated by the 

two models was compered for a 100-year scenario of severe erosion (section 2.4.4). Site A 

is characterized by a mean erosion rate of around 3 mm yr-1. SOrCERO was initialized 

with depth-dependent SOC content, oxidation and production rates corresponding to the 

undisturbed site discussed in section 2.4.1. A constant erosion rate of 3 mm yr-1 was 

assumed for SOrCERO. The erosion time series simulated by tRIBS-ECO at site A is 

illustrated in Figure 2-7. The episodic character of the hydro-meteorological forcing and 

the dynamic response of the watershed lead to time-varying soil erosion.  

 

 

Figure 2-7. Temporal evolution of soil erosion at site A. The episodic character of soil 

erosion is evident (in blue), compared to the case of constant erosion (around 3 mm yr-1, 

in black). Negative values of elevation change (Δz) denote erosion-induced net 

depression of soil surface, as a result from the 100-year hydro-meteorological forcing. 
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To represent different states of the ecosystem during its agricultural history, a 

maximum C source and a maximum C sink scenario were studied based on the effect of 

management practices on CO2 release. In tRIBS-ECO the two scenarios are defined by the 

ak and aI values specified in section 2.4.2. In SOrCERO the corresponding scenarios are 

represented by the mixing coefficients nox, and nprod (described in section 2.2.3). Extreme 

values of the mixing coefficients (i.e., nox =0 and nprod =1 for the maximum sink scenario, 

and nox =1 and nprod =0 for the maximum source scenario) were selected, as discussed by 

Billings et al. [2010]. 

The fate of eroded SOC is a crucial factor to quantifying the impact of erosion on the 

atmospheric CO2 pool [Harden et al., 1999]. The influence of the decomposition of eroded 

SOC on soil-atmosphere C exchange has been studied by Billings et al. [2010], at a single 

eroding profile under different assumptions about management practices. However, 

SOrCERO does not explicitly track the dynamics of eroded SOC. Thus, assumptions are 

required about the fate of eroded SOC. These assumptions facilitate the point comparison 

between tRIBS-ECO and SOrCERO. Note that tRIBS-ECO operates at the watershed, not 

point, scale and does not require assumptions on the amount of eroded SOC that is 

protected from oxidation because its spatially (and thus topographically) explicit structure 

dictates that fate. Two extreme cases were considered for the two models: (1) all eroded 

SOC leaving the soil profile is completely oxidized during transport and burial [Lal, 1995], 

and (2) eroded SOC is stored in deeper horizons at depositional sites, inhibiting oxidation 

[Smith et al., 2001]. The two cases define the envelope of possible atmospheric CO2 fluxes 

illustrated in Figure 2-8. tRIBS-ECO results corresponding to the two cases are also plotted 

in Figure 2-8. The illustrated series of C fluxes span the full range of scenarios regarding 
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the fate of the eroded SOC. Thus, both for the maximum sink (Figure 2-8a) and maximum 

source (Figure 2-8b) scenarios (section 2.4.2), C fluxes obtained from the change in SOC 

between the uneroded profile (i.e., model start) and the model result after 100 years of 

erosion history for each model and assumption about the fate of eroded C illustrated in 

Figure 2-8. The tRIBS-ECO model thus yields a max source of 70.7 g C m-2 yr-1 and a 

maximum sink of -65.5 g C m-2 yr-1, while the maximum source and sink values using 

SOrCERO were 46.3 g C m-2 yr-1 and -199.2 g C m-2 yr-1, respectively. The range estimated 

by SOrCERO is markedly larger than the one estimated by tRIBS-ECO (section 2.6). 
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Figure 2-8. Temporal evolution of the difference in total profile soil organic carbon 

storage (ΔSOC) resulting from SOC fluxes at eroding site A for tRIBS-ECO (in blue) and 

for SOrCERO (in black), and ΔSOC based on the observations of Table 2.4 (red points; 

the associated range corresponds to one standard deviation). Maximum sink and 

maximum source scenarios for both models are illustrated in (a) and (b), respectively. 

The positive vertical axis in (a) is at a different scale. Positive and negative values of 

ΔSOC represent a net sink and source of atmospheric CO2, respectively. In (a) and (b) for 

each model two extreme cases on the fate of eroded SOC are illustrated: The series with 

relatively higher value of total ΔSOC correspond to the case where eroded SOC leaving 

the soil profile is completely oxidized during transport and burial; the series with 

relatively lower value of total ΔSOC correspond to the case where the eroded SOC is 

fully protected from oxidation. Depending on the fate of eroded SOC, estimates by the 

two scenarios are in the vicinity of the net C exchange with the atmosphere of the site. 

Simulated net SOC losses to erosion corresponding to intermediate scenarios for the two 

models are compared against the observed ΔSOC in (c). The quantitative equivalency of 
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the illustrated intermediate scenarios is discussed in section 2.5.1. The episodic erosion in 

tRIBS-ECO leads to a closer representation of the history of SOC erosion of the site. 

 

SOC content observations from four soil profiles in undisturbed hardwood stands 

were also compared with four profiles in eroded pine stands at the Calhoun CZO [Billings 

et al., 2010; Markewitz and Richter, 1998; Richter and Markewitz, 2001; Richter et al., 

1999] (Table 2.4). It is estimated that the mean SOC loss to erosion is equal to 1.7 kg m-2 

(32% loss of the original SOC storage), and the coefficient of variation (defined as the ratio 

of the standard deviation over the mean) is equal to 0.65. This estimate represents the 

cumulative SOC loss to erosion during the agricultural history of the area [Trimble, 1974], 

and is equivalent to 17 g C m-2 yr-1 over 100 years of agriculture. Figures 2-8a and 2-8b 

illustrate the observation-based ΔSOC (red points) and the associated spatial variation (one 

standard deviation), in comparison to the maximum sink and maximum source scenarios, 

respectively. For the maximum sink scenario (Figure 2-8a), simulations corresponding to 

different assumptions about the fate of eroded SOC encompass the average ΔSOC inferred 

from observations. For the maximum source scenario (Figure 2-8b), the simulations that 

assume protection of eroded SOC from oxidation (2.8 kg m-2 C loss for tRIBS-ECO and 

2.5 kg m-2 for SOrCERO, respectively) are not statistically different from observations. 
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Table 2.4. Soil organic carbon (SOC) content at soil profiles in relatively undisturbed 

hardwood stands and in eroded old-field pine stands, at the Calhoun Critical Zone 

Observatory [Billings et al., 2010; Markewitz and Richter, 1998; Richter and Markewitz, 

2001; Richter et al., 1999]. Data from four soil profiles of each forest type were 

available. The coefficients of variation are given in parentheses. The estimated mean 

difference in SOC content (ΔSOC approximately equal to 1.7 kg m-2) represents the 

cumulative SOC loss to erosion during the agricultural history of the area [Trimble, 

1974]. 

Depth (m) SOC (kg m-2) SOC (kg m-2) ΔSOC (kg m-2) 

 Undisturbed sites Eroded sites  

0-0.30 3.252 (0.24) 1.907 (0.13) 1.345 (0.62) 

0.30-0.55 0.959 (0.18) 0.760 (0.32) 0.199 (1.49) 

0.55-0.875 0.749 (0.33) 0.711 (0.54) 0.037 (12.2) 

0.875-1.1 0.347 (0.47) 0.232 (0.28) 0.114 (1.54) 

0-1.1 5.307 (0.18) 3.611 (0.16) 1.696 (0.65) 

 

The performance of the two models at site A for an intermediate scenario of SOC 

fluxes was contrasted. For tRIBS-ECO the intermediate scenario discussed in section 2.4.2 

was used. For SOrCERO nox and nprod values equal to 0.5 [Billings et al., 2010] were used. 

The quantitative equivalency of the two model runs is clear by comparing the result of 

Figure 2-4 (for aI=1.5 g m-3 yr-1 and ak=0.025 yr-1) with the sensitivity analysis of nox and 

nprod conducted by Billings et al. [2010]. The simulated time series of SOC loss to erosion 

is shown in Figure 2-8c. While SOrCERO significantly overestimated the net erosion-

induced SOC loss (3.7 kg m-2), the mean SOC flux predicted by tRIBS-ECO (2.4 kg m-2) 

is within one standard deviation of the observation-based ΔSOC (1.7 kg m-2). In this point 

comparison the two models were initialized in the same manner (i.e., with data from the 

undisturbed site discussed in section 2.4.1), and the time average of the erosion rate is the 
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same (around 3 mm yr-1) in the two simulations. The most important structural difference 

between the two models is the assumed constant erosion in SOrCERO versus the time 

varying erosion in tRIBS-ECO. The more satisfactory performance of tRIBS-ECO is 

attributed to its ability to depict episodic SOC erosion at fine time scales. The episodic 

erosion significantly affects the lateral C flux and the dynamics of oxidation and production 

of SOC, compared to the assumption of constant erosion [Billings et al., 2010]. 

 

2.5.2 Watershed-integrated analysis 

The watershed-integrated hydro-geomorphic response of Holcombe's Branch and the 

erosion-induced soil-atmosphere CO2 flux were modelled using tRIBS-ECO. The model 

was forced with the 100-year hydroclimatic scenario discussed in section 2.4.4. The effect 

of management practices on the interaction of erosion and soil-atmosphere C flux was 

illustrated using the maximum source, intermediate, and maximum sink scenarios 

discussed in section 2.4.2. Spatially-explicit results for the three scenarios are presented in 

Figure 2-6, illustrating the difference between the initial and final SOC storage at each 

computational element. The total SOC storage predicted in 5 m of soil for the three 

scenarios is illustrated in Figure 2-9. Watershed-integrated results yielded a 14.5 g m-2 yr-1 

C source for the maximum source scenario, a -18.2 g m-2 yr-1 C sink for the maximum sink 

scenario, and a relatively small (0.08 g m-2 yr-1 C source) net C exchange with the 

atmosphere for the intermediate scenario. Results correspond to 100-year mean C fluxes 

averaged over the watershed area. The simulated range of erosion-induced soil-atmosphere 

C exchange (-18.2 to 14.5 g C m-2 yr-1) encompasses net C sink estimates by Yoo et al. 



 39 

[2005] (-1.7 to -2.8 g C m-2 yr-1) and by Van Oost et al. [2005] (-3 to -10 g C m-2 yr-1), and 

is in agreement with the net C sink estimates reported in Harden et al. [1999] (-10 to -20 g 

C m-2 yr-1). Jacinthe and Lal [2001] predicted a greater erosion-induced C source strength 

(6 to 52 g C m-2 yr-1) (Table 2.5). 

Significant SOC loss is evident across hillslopes for the maximum source scenario 

(Figures 2-6b and 2-9a). For the intermediate scenario (Figures 2-6c and 2-9b) there are 

losses of SOC at eroding hillslopes and increases in the amount of SOC at depositional 

sites, across the stream network (statistics of ΔSOC are given in Table 2.6). For the 

maximum sink scenario relatively higher SOC content at the surficial horizons of eroding 

sites leads to larger amounts of SOC in the mobilized sediment (Figures 2-6d and 2-9c). 

The SOC loss to erosion estimated from observations (17 g m-2 yr-1) is in the vicinity of 

the simulated range of C fluxes, even though the exact fraction of the eroded SOC that 

contributed to atmospheric CO2 cannot be determined. 

 

Table 2.5. Comparison of watershed-integrated estimates of the net soil-atmosphere C 

exchange with published estimates. Positive and negative values correspond to net 

erosion-induced C sources and sinks, respectively (values in g C m-2 yr-1). 

Source Range 

tRIBS-ECO -18.2 to 14.5 

Harden et al. [1999]  -10 to -20 

Yoo et al. [2005] -1.7 to -2.8 

Van Oost et al. [2005] -3 to -10 

Jacinthe and Lal [2001] 6 to 52 
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Figure 2-9. Topographic variation of simulated soil organic carbon storage across the 

watershed. Total soil organic carbon (SOC) storage at the upper 5 m of soil is illustrated 

for the maximum source (a), intermediate (b), and maximum sink (c) scenarios, 

respectively. 
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The proportion of eroding C replaced by newly sequestered C [Harden et al., 1999; 

Stallard, 1998] was estimated across the watershed. The ratio of net vertical (i.e., exchange 

between the soil profile and the atmosphere) to lateral C fluxes at eroding sites across the 

watershed was studied for the 100-year intermediate scenario (Figure 2-10), which is more 

representative of the C exchange with the atmosphere at eroding sites (demonstrated in 

section 2.5.1). Table 2.6 gives the statistical properties of the total eroded and replaced 

SOC at eroding sites, respectively. On average, 34% of eroded C has been replaced by C 

sequestration. The results highlight the wide topographic variability of C replacement 

across sites with varying hillslope morphology (Figure 2-10). 

 

Table 2.6. Statistics of the total eroded and replaced soil organic carbon (SOC) at eroding 

sites, and of the net total SOC difference (ΔSOC) at the watershed scale for the 100-year 

intermediate scenario (values in kg m-2). 

 Eroding sites Watershed scale 

 Eroded SOC Replaced SOC ΔSOC 

Mean 0.97 0.38 0.01 

Standard deviation 1.52 0.56 1.59 

Minimum 0 0 -8.14 

Maximum 8.66 2.18 17.26 
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Figure 2-10. Net carbon flux into eroding soils due to replacement by vegetation inputs 

versus erosion-induced lateral carbon flux. This figure illustrates the wide topographic 

variation of carbon (C) fluxes across the landscape for the intermediate scenario. 34% of 

the eroding C is being replaced by sequestered C from the atmosphere. A significant 

coefficient of variation (defined as the ratio of standard deviation over the mean) of 

around 8 characterizes the large natural spatial variability of the C replacement ratio (i.e., 

the ratio of C uptake over C loss to erosion). 

 

2.6 Discussion 

2.6.1 Erosion-induced soil-atmosphere carbon exchange 

This work models movement of SOC across the landscape as induced by accelerated 

erosion, and how erosion and lateral SOC redistribution (Figures 2-6 and 2-9) exhibit 

significant spatial heterogeneity controlled by hillslope characteristics, variation of soil 

physical and biochemical properties, and management practices. Severe erosion can 

transfer subsoil from eroding to depositional sites, and the reallocated sediment can bury 

formerly surficial horizons at depositional areas [Quinton et al., 2010; Stallard, 1998; Van 

Oost et al., 2005]. This process combined with advection/diffusion phenomena among 

different horizons results in continuously evolving vertical profiles of SOC. Consequently, 
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in agreement with Van Oost et al. [2007], sampling of deeper C storage is required to 

strengthen previous conclusions that rely on measurements at surficial horizons. 

Based on the significant topographic variability of C fluxes presented in the results 

(section 2.5.2), this study highlights the strong control that slope morphology exerts on the 

redistribution of SOC as a function of erosion and deposition. Systematically tracking the 

dynamics of eroded SOC across the landscape (section 2.5.1) is critical for estimating the 

strength of erosion-induced atmospheric CO2 flux [Harden et al., 1999; Van Oost et al., 

2007]. In the modelling framework, eroded SOC is redistributed across the landscape, and 

can experience oxidation upon transport or storage at depositional sites. This analysis 

demonstrates that SOC burial at depositional sites is either short-term [Van Oost et al., 

2012] or long-term, depending on geomorphological characteristics, the rate of sediment 

transport, and oxidation rates at depositional sites. This representation of spatial 

heterogeneity of erosion and of the dynamics of mobilized SOC is an important 

improvement to studies based on conceptual scenarios regarding the fate of eroded SOC 

[Billings et al., 2010; Lal, 1995; Smith et al., 2001]. 

To quantify the influence of the spatially-explicit, physically-based representation of 

C erosion and deposition on the net atmospheric CO2 flux, a comparison with the 

SOrCERO model (section 2.5.1) was carried out at the watershed scale for the 100-year 

scenario of severe erosion discussed in section 2.4.4. The SOrCERO annual erosion rate 

was fixed at 1 mm yr-1 characterizing eroding sites at the Holcombe's Branch [Billings et 

al., 2010], and the input data given in Figure 2-3 were used. Maximum sink and maximum 

source scenarios were considered for SOrCERO which provided a maximum net C source 

and sink of 27.5 g m-2 yr-1 and -53.7 g m-2 yr-1, respectively. This range encompasses the 
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SOC loss of 17 g m-2 yr-1 C deduced from observations (section 2.5.1), yet is markedly 

larger than the range estimated by tRIBS-ECO (i.e., maximum net C source and sink 

strength of 14.5 and -18.2 g m-2 yr-1, respectively). The approach implemented in tRIBS-

ECO is more faithful to the actual erosion-inducing mechanisms and involves a 

significantly more detailed description of the study area (see section 2.4). The large 

discrepancies are attributed to the inability of SOrCERO to constrain the range of possible 

C fluxes by accounting for the fate of eroded SOC, including the role of depositional sites 

in storing eroded SOC, and by representing time varying erosion (section 2.5.1). 

 

2.6.2 Episodic erosion of soil organic carbon 

The watershed's response to hydro-meteorological events leads to episodic events on 

soil erosion. The magnitude and frequency of erosion events control lateral C losses 

[Dlugoß et al., 2012]. This study accounts for the episodic character of erosion rates 

resulting from the watershed's hydro-geomorphic response to hydro-meteorological 

forcings at the hourly time scale. This work demonstrates the potential of a time varying 

representation of erosion and management practices on assessing the SOC redistribution 

across a watershed, and quantifying the net atmospheric CO2 flux. For this purpose, a point 

comparison was used at an eroding profile of the results of tRIBS-ECO and SOrCERO, the 

latter assuming a constant erosion rate. The simulated scenarios were evaluated based on 

SOC erosion inferred from observations at the site (section 2.5.1). In this point comparison, 

different assumptions about management practices and the fate of eroded SOC (Figure 2-8) 

lead to a relatively wide range of erosion-induced C fluxes. Accounting for effects of 
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episodic erosion in estimates of net soil-atmosphere C exchange may lead to a significantly 

more constrained range of possible C fluxes compared to the case when a constant erosion 

rate is assumed. More precisely, while the maximum source strength estimated by 

SOrCERO is 35% lower than the one obtained by the proposed approach, the maximum 

sink strength is more than 3 times greater than the one estimated by tRIBS-ECO. As a 

result, the total range of possible C fluxes estimated by SOrCERO is 80% larger than the 

one estimated by tRIBS-ECO (Figure 2-8). Depending on the fate of eroded SOC, the 

extreme scenarios may approximate the net C exchange with the atmosphere that 

characterized the site during its agricultural history [Trimble, 1974]. The extent to which 

eroded SOC is oxidized upon transport and burial has an important role in the erosion-

induced C sink or source strength [Billings et al., 2010]. There is a clear need to 

systematically track the dynamics of eroded SOC to accurately estimate the net soil-

atmosphere C exchange. Moreover, it is reasonable that changes in management practices 

and land uses [Trimble, 1974] may lead to a transition between an erosion-induced net C 

source and a net C sink over time [Harden et al., 1999; Van Oost et al., 2012].  

Accounting for time varying erosion may lead to a more accurate representation of 

the total SOC losses to erosion at the site. The performance of the two models to mimic the 

SOC erosional history of site A was evaluated for an intermediate scenario of C fluxes 

(section 2.5.1). While SOrCERO overestimated the SOC loss to erosion by more than 

twice, the C loss estimate of tRIBS-ECO is significantly closer to the observed one. This 

point comparison demonstrates that the episodic representation of erosion and management 

practices can have a meaningful impact on soil-atmosphere CO2 exchange, and hence 

should be taken into account in studies assessing the influence of erosion on the C cycle. 
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Neglecting the fine temporal dynamics associated with the episodic character of natural 

erosion-inducing mechanisms [Billings et al., 2010; Liu et al., 2003; Rosenbloom et al., 

2006; Van Oost et al., 2005; Yoo et al., 2005] may significantly affect estimates of the net 

C exchange with the atmosphere. 

 

2.6.3 Spatial variation of carbon replacement 

Assumptions about the proportion of eroding C replaced by newly sequestered C 

(“dynamic replacement” [Harden et al., 1999; Stallard, 1998]) vary in the literature 

[Harden et al., 1999; Smith et al., 2001; Van Oost et al., 2007] leading to markedly different 

conclusions on the net C exchange with the atmosphere. Results for the intermediate 

indicate that 34% of the eroding C across the watershed has been replaced by sequestered 

C from the atmosphere, which is consistent with the range of 11% to 55% reported in the 

global study of Van Oost et al. [2007]. The associated replacement mainly occurs at the 

active SOC pool with turnover times up to decades [Harden et al., 1999; Van Oost et al., 

2007]. Though accounting for preferential erosion of varying sized soil aggregates is out 

of the scope of this study, preferential erosion of soil particles (e.g., nutrient rich clays with 

relatively high moisture retention capacity) can lead to changes in soil characteristics at the 

eroding site, altering the ability to produce and store SOC [Billings et al., 2010; Hu and 

Kuhn, 2014]. Erosion of surficial horizons may reduce the potential of the remaining soil 

system to promote SOC production [Billings et al., 2010]. As a result, in unfertilized 

systems C inputs at eroding sites may decline relative to their pre-erosion rate [Harden et 

al., 1999]. In contrast, in managed systems fertilization may enhance system productivity 
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at eroding sites [Harden et al., 1999; Stallard, 1998]. The moderating effect of 

management practices on altered SOC production at eroding sites [Billings et al., 2010] is 

explicitly accounted for by the proposed framework in the simulated scenarios. 

This study stresses the role of small scale dynamics of soil erosion driven by 

topography on the variability of C fluxes. SOC replacement varies across the landscape 

depending on a multitude of factors including SOC content, oxidation rate, and bulk 

density, and it can be influenced by management practices (chapter 7), as episodic erosion 

proceeds. The distinctive (hook-shaped) pattern formed by the relationship between net 

lateral C loss at eroding sites and net C influx from the atmosphere to the soil (Figure 2-10) 

suggests high erosion rates such as those occurring on steep hillslopes can promote C losses 

to a greater extent than SOC can be regenerated. These sites correspond to points in Figure 

2-6c with relative higher net lateral C loss. The wide topographic variation (Table 2.6) 

depicts the strong control hillslope morphology exerts on the soil's ability to store 

sequestered atmospheric C. This highlights the significant spatial variability of the 

associated C fluxes, which cannot be reflected in studies focusing at a single eroding site 

[Billings et al., 2010]. 

The natural variability on the C replacement ratio across the watershed can be 

quantified by a coefficient of variation of approximately equal to 8. The strong variation 

of C replacement (Figure 2-10) at small spatial scales (tens of meters) is comparable to that 

reported by Van Oost et al. [2007] who conducted an analysis of 1,400 profile 

measurements. The results of this study were obtained for various settings of hillslope 

characteristics, based on a detailed representation of episodic and spatially heterogeneous 

soil erosion. The large spatial variability of soil-atmosphere C flux is attributed to the 
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complexity of erosion-inducing processes at small scales, which exerts a strong control on 

depth-dependent biogeochemical properties of soils, including SOC oxidation and 

production. 

 

2.7 Summary 

This work presents a physically-based approach to assess the influence of soil erosion 

on atmospheric CO2, that stresses the heterogeneity at fine spatial scales of SOC erosion, 

SOC burial, and associated soil-atmosphere C fluxes. The Holcombe's Branch watershed, 

part of the Calhoun Critical Zone Observatory in South Carolina, USA is the case study 

used. The site has experienced some of the most serious agricultural soil erosion in North 

America. This study uses SOC content measurements from contrasting soil profiles, and 

estimates of SOC oxidation rates at multiple soil depths. The methodology was 

implemented in the tRIBS-ECO (Triangulated Irregular Network-based Real-time 

Integrated Basin Simulator-Erosion and Carbon Oxidation), a spatially- and depth-explicit 

model of SOC dynamics built within an existing coupled physically-based hydro-

geomorphic model. According to observations from multiple soil profiles, about 32% of 

the original SOC content has been eroded in the study area. The results indicate that C 

erosion and its replacement exhibit significant topographic variation at relatively small 

scales (tens of meters). The episodic representation of SOC erosion reproduces the history 

of SOC erosion better than models that use an assumption of constant erosion in space and 

time. The net atmospheric C exchange at the study site is estimated to range from a 

maximum source of 14.5 g m-2 yr-1 to a maximum sink of -18.2 g m-2 yr-1. The small-scale 
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complexity of C erosion and burial driven by topography exerts a strong control on the 

landscape's capacity to serve as a C source or a sink. 
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CHAPTER 3. Uncertainty associated with the impact of erosion and 

deposition on soil-atmosphere carbon exchange  

3.1 Introduction 

Soils disturbed by anthropogenic activity constitute dynamic and rapidly changing 

systems [Doetterl et al., 2012; Richter and Markewitz, 2001]. The extent to which land use 

and management practices (e.g., forest logging, cultivation, grazing, or fertilization) 

enhance SOC decomposition or significantly increase SOC production is important in 

quantifying the erosion-induced soil-atmosphere C exchange [Abaci and Papanicolaou, 

2009; Billings et al., 2010; Dlugoß et al., 2012; Hu and Kuhn, 2014]. The influence of 

management practices on SOC storage at eroding soils contributes to the variability of C 

erosion and replacement in diverse soil profiles [Kuhn et al., 2009; Van Oost et al., 2012] 

and to uncertainties in regional and global C budgets [Berhe et al., 2007; Billings et al., 

2010]. 

This work proposes a method to quantify the uncertainty introduced by land 

management practices on estimates of the net erosion-driven soil-atmosphere C exchange 

at the landscape scale. A stochastic formulation is used to quantify this uncertainty at 

eroding soil profiles. In particular, the variability and temporal dependence of the influence 

of management practices on SOC decomposition and production rates are represented by 

means of a bivariate stochastic process (section 3.2). The methodology is implemented in 
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the coupled and spatially-explicit biogeochemical model (tRIBS-ECO) introduced in 

section CHAPTER 2, which tracks the dynamics of mobilized organic material and 

quantifies the net effect of erosion on C fluxes using depth-dependent soil biogeochemical 

properties from multiple soil profiles at different catena positions. This study focuses on 

the Holcombe’s Branch watershed (Figure 3-1a) in the Calhoun Critical Zone Observatory, 

the environmental history of which is characterized by intensive land uses, and by land use 

change (see section 2.3). This work quantifies the potential decline in upland soil and SOC 

erosion rates driven by the rapid reforestation that characterized the study area. More 

specifically, this study extends previous modelling efforts that studied this site [Billings et 

al., 2010], as it explicitly accounts for changes in land use and land cover and associated 

controls on sediment transport and C burial, using recently obtained elevation data and 

forest cover information from two characteristic periods (agro-ecosystem and secondary 

forest ecosystem periods, respectively (section 3.3)). Unpublished data based on 

observations of alluvial sediment thickness and SOC storage in depositional sites (section 

3.5) were used to quantify rates of soil erosion and burial of organic material across the 

landscape. This work highlights the spatio-temporal variability that characterizes upland 

SOC erosion and burial, depending on land uses, land use change, and hydro-climatic 

perturbations. This chapter is a verbatim recompilation of Dialynas et al. [2017] and Bras 

et al. [2015]. 

 

3.2 Stochastic representation of the influence of land management practices 

on eroding soils 
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The spatially-explicit and physically-based model of C dynamics tRIBS-ECO 

(section 2.2) is used in this study. This work proposes a method to assess and quantify 

uncertainties associated with management practices on estimates of SOC erosion and SOC 

storage predictions by accounting for the variability of ak and aI in the tRIBS-ECO model 

and their dependence on time. In agricultural areas where management practices (e.g., 

fertilization, cultivation, grazing [Richter et al., 1999]) exhibit little variation in subsequent 

years [Harden et al., 1999; Trimble, 1974], the influence of land management on eroding 

soils can be characterized by significant temporal autocorrelation at relatively short time 

lags. Also, ak and aI may co-vary for different management regimes [Mobley et al., 2015; 

Richter et al., 2007] (section 3.3.3).  

In this study ak and aI are treated as correlated stochastic processes. The temporal 

dependence is represented by the autoregressive model of order 1 (AR(1)) [Box et al., 

2011]. The AR(1) is a simple parsimonious stationary stochastic model, widely used in 

hydrology [Bras and Rodriguez-Iturbe, 1985], and is characterized by an exponential decay 

of autocorrelation with time. The bivariate AR(1) model is given by 

 1t t t z Az Bε   (3.1) 

where tz  corresponds to the 2 × 1 vector of states at time t (T denotes transpose): 

 , ,   
T

t k t I ta a   z   (3.2) 

tε  is the 2 × 1 vector of innovations at time t, independent in time and space, Α is a 2 × 2 

matrix given by 
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A M M   (3.3) 

where M0 and M1 are lag-zero and lag-one covariance matrices, respectively: 
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  (3.4) 

ka  and 
Ia  are the lag-one autocorrelation coefficients of ak and aI, respectively. B is a 

2 × 2 matrix of parameters obtained by decomposing the variance-covariance matrix [Bras 

and Rodriguez-Iturbe, 1985; Koutsoyiannis, 1999]: 

 1

0 1 0 1

T T BB M M M M   (3.5) 

The marginal distributions of ak and aI are Normal and, by definition, time invariant.  

At time step t, the variance of ,I ta conditioned to the previous state , 1I ta   is estimated 

as a function of the statistical properties of the stationary process Ia  [Bras and Rodriguez-

Iturbe, 1985]: 

 
2

, , 1[ ] [ ](1 )t t aVar a a Var a 
       (3.6) 

The conditional variance of ,k ta  at each time step is estimated in the same manner. 
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3.3 Model inputs and parameters 

3.3.1 Evolution of vegetation cover during reforestation 

The recent history of southern Piedmont is characterized by impressive reforestation 

of the seriously eroded agricultural soils [Mobley et al., 2015; Trimble, 1974]. This study 

assesses the extent to which reforestation leads to gradual decline of erosion of upland soil 

and SOC, and quantifies the hydro-geomorphic behavior of the watershed and the 

associated SOC redistribution in a 100-year simulation. The temporal evolution of forest 

cover is represented using surface information of two characteristic periods: a) the agro-

ecosystem period, and b) the secondary forest ecosystem period [Richter et al., 2000]. The 

agro-ecosystem and the secondary forest ecosystem periods are represented in two 

consecutive 50 years of simulation. 
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Figure 3-1. The Holcombe's Branch; site A corresponds to an undisturbed soil profile; 

sites B to F correspond to sampling locations of legacy sediments (a), spatial distribution 

of vegetation cover in 1933 (agro-ecosystem period (Figure 3-2)) (b), and in 2014 

(secondary forest ecosystem period [NCALM, 2014]) (c), and spatial distribution of soil 

textural classes (d). 

 

The spatial distribution of forest cover at the late agro-ecosystem period is specified 

by analyzing a U.S. Forest Service aerial photograph obtained in 1933 [Brecheisen and 

Cook, 2015] (Figure 3-2). During the agro-ecosystem period the watershed was largely 

covered by low density mixed pine-hardwood forest, pastures, and cultivated fields 

[Richter and Markewitz, 2001]. Several parts of the watershed were characterized by little 

or no forest cover, including north-eastern slopes, areas in the vicinity of the watershed 

boundary, and the western part of the watershed. Agricultural practices are evident at the 

western ridge in Figure 3-2. Land management practices during the agro-ecosystem period 
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included the extensive use of fertilizers [Richter et al., 2000]. Based on Figure 3-2 forested 

versus non-forested areas are classified across the watershed (see Figure 3-1b). It is 

estimated that around 36% of the total watershed area was not forested during the agro-

ecosystem period. 

The forest cover at the secondary forest ecosystem period was characterized using a 

vegetation cover map obtained from recent LiDAR surface data [NCALM, 2014] (Figure 

3-1c). Naturally regenerating pine forests significantly expanded in the area during the mid-

20th century [Richter et al., 2000]. The Holcombe’s Branch is covered by various forest 

types: pine stands (loblolly pine (Pinus taeda), shortleaf pine (Pinus echinata)), mixed 

hardwood stands consisting of northern red oak (Quercus rubra), white oak (Quercus 

alba), and hickory (Carya sp.), and hardwood stands dominated by yellow poplar 

(Liriodendron tulipifera) and sweetgum (Liquidambar styraciflua). The pine forest types 

were represented as evergreen needleleaf forest [Hansen et al., 2000], and the remaining 

classes were modelled as deciduous broadleaf forest. 
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Figure 3-2. Aerial photo of the Holcombe's Branch watershed during the agro-ecosystem 

period (1933) [Brecheisen and Cook, 2015]. The black line illustrates the watershed 

divide. 

 

3.3.2 Topography, soil types, and soil biogeochemical properties 

A DEM was used [NCALM, 2014], which is significantly finer (less than 1 m) than 

the ones used in previous studies at the site [James et al., 2007]. This DEM depicts 

important morphologic features such as contributing area, slope, and curvature in detail. A 

30 m mesh of Voronoi polygons was derived based on the elevation data set (Figure 3-1a), 

to reduce computational cost [Ivanov et al., 2004a; b]. The classification of soil properties 

across the watershed (Figure 3-1b) is discussed in section 2.4.3. The selection of hydrologic 

and geomorphic soil properties for each soil type is given in section 3.3.4. 
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The tRIBS-ECO model was initialized by fitting equations (2.2) to (2.4) to the 

observations of biogeochemical properties (Ct(z), kt(z), and ρ(z)) discussed in section 2.4.1. 

The observations correspond to a relatively undisturbed soil profile located in site A 

(Figure 3-1a). The initial depth-dependent Ct(z), kt(z) are given in Figure 3-3. The depth-

variation of modelled bulk density is given in Figure 2-3b. Also, the estimation of the initial 

depth-dependent rate of SOC production assumes steady state conditions for time t=0, and 

is given in Appendix B. 

 

 

Figure 3-3. Observations and model inputs of depth-dependent soil organic carbon (SOC) 

fraction (a), and estimated SOC decomposition rate at multiple soil horizons (b) [Billings 

et al., 2010; Markewitz and Richter, 1998; Richter and Markewitz, 2001; Richter et al., 

1999]. The depth-variation of observations is represented by exponential functions. 

 

3.3.3 Uncertainty in carbon storage prediction associated with the influence of land 

management practices 



 59 

SOC can be rapidly destabilized by accelerated decomposition associated with land 

management practices (e.g., forest cutover, and cultivation) [Richter et al., 1999]. 

Systematic use of fertilizers enhanced productivity during the agricultural history of the 

site [Richter et al., 2000]. This study quantifies the variability of SOC storage at the 

Holcombe's Branch driven by the uncertainty of the influence of management practices on 

kt(z) and It(z) (section 3.2). From equation (2.1) for a discrete time step: 

 
t tΗ Η

1

0 0

( ) ( ) ( ) ( )t t t t t tSOC SOC I z dz k z z C z dz L       (3.7) 

where Lt denotes the net lateral SOC flux at each Voronoi cell: 
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By using equations (2.3) and (2.5) in equation (3.7) we obtain:  

 

t tΗ Η

1 , ,

0 0

( ) ( )b bI z k z

t t a t a t c t tSOC SOC I e dz (k e +k ) z C z dz L       (9) 

It can be shown (see Appendix C) that at each time step the variance of SOC storage, 

conditioned on the previous state, is given by: 

 1SOC T T

t t t tVar SOC 
    P BB P   (3.10) 

where SOCt-1 is the value of SOC storage estimated at time step t-1 (BBT is the covariance 

matrix given in equation (3.5)), and tP  is a 2 × 1 time variant vector of coefficients: 
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where 1,tc  and 2,tc  are given by 
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The conditional distribution of SOC storage is normal at each time step. Three 

scenarios of C fluxes are studied: a) a maximum sink, b) an intermediate, and c) a maximum 

source scenario. SOC storage at the maximum source, the intermediate, and the maximum 

sink scenario is approximated by the 1% quantile, the median, and the 99% quantile of the 

conditional normal distribution, respectively, as: 

    1 2 2 1
t

T T

SOC t t tQ SOC erf p  P BB P   (3.13) 

where SOCt is the C storage calculated at time step t by equation (3.7), erf -1 is the inverse 

error function, and p is the probability associated with the normal distribution quantile, 

equal to 0.01, 0.50, and 0.99 for the maximum source, the intermediate, and the maximum 

sink scenario, respectively. The difference of maximum source from maximum sink 

scenario estimates reflects the uncertainty associated with the influence of land 

management on the rates of C decomposition and production at eroding sites (section 

3.5.3). 

With farmers constantly fertilizing their soils in the southern Piedmont during the 

agro-ecosystem period [Metz, 1958; Richter and Markewitz, 2001], the influence of 
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management practices on the rates of SOC production and decomposition likely did not 

exhibit substantial year to year variation [Revels, 2005; Richter et al., 2000]. Systematic 

fertilization and liming of agricultural soils in the study area may lead to increase in soil 

nutrient availability and enhancement of system productivity with high biomass inputs 

from crops, promoting SOC production in eroding soil profiles (higher aI) [Stallard, 1998]. 

Soil microbes prefer nutrient rich labile SOC, which is produced at high rates in fertilized 

soils, characterized by accelerated SOC decomposition rates [Billings et al., 2010]. Tillage 

induces mixing in the soil profile [Yoo et al., 2011] exposing substrate organic matter, and 

promoting higher microbial turnover and decomposition rates, with increased aeration and 

increased soil moisture dynamics in eroding soils (high values of ak). On the contrary, 

rapidly eroding and poorly managed soils in the recent history of the study area [Metz, 

1958] can be characterized by lower production rates of labile SOC associated with crop 

inputs, and by increased proportions of recalcitrant organic matter, which is not 

decomposed by soil microbes [Billings et al., 2010]. The influence of poor management 

practices on eroding soils can be represented by relatively low values of ak and aI. Thus, 

for different management regimes aI and ak may co-vary in the soil profiles under study. 

However, the assumed influence of land management on C fluxes cannot be generalized to 

diverse ecosystems. The extent to which aI and ak are positively or negatively correlated 

may depend on the stoichiometry of surficial and deeper soil horizons, edaphic 

characteristics, climatic factors, and landscape position [Billings et al., 2010; Richter et al., 

2007]. 

The marginal statistical properties of ak and aI were selected based on the ranges of 

possible ak and aI values derived in section 2.4.2. The ranges of ak and aI values are given 
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in Table 3.1. Relatively higher values of ak and aI represent significant influence of 

management practices on kt(z) and It(z), respectively (section 2.2). Mean values of ak and 

aI were selected corresponding to the middle points of the ranges of Table 3.1. The standard 

deviations of ak and aI were selected such that the associated ranges include 95% of the 

probability mass of the normally distributed ak and aI, respectively (i.e., four standard 

deviations). Moreover, a significant lag-zero cross-correlation coefficient ( ,I ka a ) and 

relatively high values of 
k

  and of  
 were assumed (see section 3.2). The marginal and 

joint statistical properties of ak and aI are summarized in Table 3.1. 

 

Table 3.1. Marginal and joint statistical properties and ranges of aI and ak. E[·] denotes 

the mean value. Equal coefficients of variation (CV) and autocorrelation coefficients for 

aI and ak, were assumed (
ka  and 

Ia ), respectively. 

Parameter Units Value 

Min / Max aI  [yr-1] 0 / 3.0 

Min / Max ak [g m-2 yr-1] 0 / 0.050 

E[aI] [yr-1] 1.5 

E[ak] [g m-2 yr-1] 0.025 

CV [-] 0.5 

ka  or 
Ia  [-] 0.7 

,I ka a  [-] 0.5 
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3.3.4 Calibration of the hydro-geomorphic model 

The hydrometeorological forcing used in this simulation and the calibration of the 

soil hydrologic properties are discussed in section 2.4.4. The standing-wood volume 

significantly increased (probably more than doubled) in the study site between the agro-

ecosystem and the secondary forest ecosystem periods [Richter et al., 2000]. The rapid 

increase in forest density and the associated feedbacks to soil erosion are represented by 

different values of the ecological parameters v, P, and Fl (section 2.4.5) between the two 

periods. The selected ecological parameters associated with erosional processes are given 

in Table 3.2. The simulated temporal evolution of soil loss at eroding sites is presented in 

Figure 3-4. The cumulative soil loss to erosion over the 100-year simulation (i.e., the total 

topsoil removal averaged over upland eroding sites) is in agreement with reported erosion 

rates for the Calhoun CZO, i.e., at least 12 cm per 100 years [Billings et al., 2010; Trimble, 

1974]. Model validation based on alluvial deposits is discussed in section 3.5.1. 

 

Table 3.2. Ecological parameters of the geomorphic model. The first two rows (gray) 

correspond to the agro-ecosystem period; the remaining rows correspond to the 

secondary forest ecosystem period. 

Forest cover v P Cr Fl 

Non-forested  0 N/A 0.10 N/A 

Pine-Hardwood Forest  0.30 0.70 0.10 0.70 

Evergreen Needleleaf Forest 0.70 0.25 0.10 0.50 

Deciduous Broadleaf Forest 0.60 0.45 0.10 0.40 
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Figure 3-4. Temporal evolution of soil loss at eroding sites. 

 

3.4 Results 

3.4.1 Accelerated soil erosion and deposition 

The 100-year erosion and deposition of upland soil and saprolite at the study site is 

given in Figure 3-5a. The watershed's relatively steep slopes erode at rates of around 1 mm 

yr-1 or greater (illustrated in yellow and orange colors in Figure 3-5a). There is substantial 

sediment deposition (in blue) across the stream network. The mean sediment yield over the 

100 year simulation is equal to 14.7 t km-2 yr-1 (assuming bulk density equal to 1.4 g cm-3 

[Richter and Markewitz, 2001]). The sediment loss at the agro-ecosystem period (9.9 cm) 

is around 3 times greater than the one (3.4 cm) during the secondary forest ecosystem 

period (Figure 3-4). The total soil loss to erosion (13.3 cm) is consistent with the topsoil 

erosion rate of at least 12 cm per 100 years that characterizes the study area [Billings et al., 

2010; Trimble, 1974] (section 3.3.4). 
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Figure 3-5. Simulated soil erosion and deposition and net soil organic carbon content 

difference (ΔSOC) across the Holcombe’s Branch. Relatively high erosion rates 

characterize hillslopes (yellow and orange colors); depositional sites (in blue) are mainly 

located across the stream network (a). Redistribution of organic material for the 

maximum source (10.3 g m-2 yr-1 C source strength) (b), the intermediate (-1.5 g m-2 yr-1 

C sink strength) (c), and the maximum sink scenarios (-8.4 g m-2 yr-1 C sink strength) (d), 

respectively. 

 

3.4.2 Erosion-induced carbon exchange with the atmosphere at the watershed scale 

This study quantifies the erosion-driven SOC redistribution and CO2 exchange with 

the atmosphere at the watershed scale. The effect of management practices on soil-

atmosphere CO2 exchange is systematically accounted for in the three scenarios under 

study (section 3.3.3). Figure 3-4 illustrates the net ΔSOC at diverse soil profiles across the 
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landscape. Estimates of C source or sink strength at the watershed scale ranged from a net 

C source of 10.3 g m-2 yr-1 (maximum source scenario) to a net C sink of -8.4 g m-2 yr-1 

(maximum sink scenario). A net C sink of -1.5 g m-2 yr-1 was estimated for the intermediate 

scenario. The maximum source scenario is characterized by significant erosion of organic 

material, and by oxidation upon transport and burial (Figure 3-4b). At the intermediate 

scenario, eroded SOC is partially replaced at eroding hillslopes by newly sequestered 

atmospheric CO2. Eroded SOC is buried in depositional sites across the stream network 

(Figure 3-4c). The maximum sink scenario is characterized by rapid replacement of eroded 

SOC by atmospheric CO2 sequestration (Figure 3-4d). 

 

3.4.3 Soil organic carbon erosion and burial at alluvial sediments 

The temporal evolution of ΔSOC at upland eroding sites over the 100-year 

simulations for the three scenarios is given in Figure 3-6. For the maximum sink scenario, 

replacement of eroded organic material with sequestered atmospheric CO2 led to limited 

decrease in C storage (0.08 kg m-2). For the intermediate scenario the net SOC loss at 

eroding soil profiles is 2.1 kg m-2. Accelerated SOC decomposition at the maximum source 

scenario led to a significantly higher net C loss to erosion (4.3 kg m-2).  
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Figure 3-6. Simulated temporal evolution of net soil organic carbon loss (ΔSOC) at 

upland eroding sites and ΔSOC inferred from observations (section 2.5). Error bars 

correspond to one standard deviation. The total ΔSOC for the intermediate scenario is in 

close agreement with the observations. 

 

The simulated SOC storage in alluvial sediments was estimated for the three 

scenarios. Evaluation of simulations based on observations of SOC content in alluvial 

sediments is presented in section 3.5.1. Figure 3-7 illustrates the SOC storage in the upper 

1.8 m of soil for each scenario, and the associated spatial variation. The average SOC 

content is lower for the maximum source scenario, because an important part of eroded 

SOC has been oxidized upon transport before it reaches burial. At the maximum sink 

scenario, a significantly higher amount of eroded SOC is buried at depositional sites. There 

is continuous replacement of upland eroded SOC with atmospheric C sequestration and 

subsequent erosion and burial of newly sequestered C. Furthermore, the spatial variation 

of SOC storage increases when substantial depletion of SOC stocks is predicted (maximum 

source scenario). The coefficients of variation (defined as the ratio of the standard deviation 

over the mean) of SOC storage over the watershed’s depositional sites for the maximum 
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sink, the intermediate, and the maximum source scenarios are approximately equal to 14%, 

24%, and 43%, respectively (Figure 3-7). 

 

 

Figure 3-7. Observed and simulated soil organic carbon (SOC) content in alluvial 

deposits; observations at depositional sites are based on measurements from sites B, C, D, 

E, and F at the upper 1.8 m of soil (error bars correspond to one standard deviation); 

point comparisons between observed and simulated SOC storage at sites B, C, and D, 

respectively. 

 

3.5 Discussion 

3.5.1 Sediment and organic carbon transport and burial across the landscape 

The hydro-geomorphic model’s performance was evaluated by comparing simulated 

soil thickness corresponding to legacy sediments, with observations. Legacy sediments are 

defined as episodically eroded soil from upland sites following land uses that has 

accumulated in colluvial deposits at lower hillslopes and in alluvium along stream 

corridors, altering pre-existing slope morphologies and stream networks [James, 2013]. 
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Human disturbances leading to the formation of legacy sediments include plowing, 

deforestation, mining, and other land uses. Legacy sediments have led to alteration of the 

hydrological, biogeochemical, biological, and riparian functions of disturbed environments 

[James, 2013]. 

This study uses observations of legacy sediment thickness from eight depositional 

sites in the Holcombe’s Branch watershed (sites S1 to S8), conducted in 2015 and 2016 

(unpublished data of Dan Richter, 2016). The sampling sites are located at approximately 

100 - 200 m intervals along the main stream, in clayey soils and sandy loams. The observed 

legacy sediment thickness was inferred from field studies informed by soil texture, carbon, 

and nitrogen data at different soil profiles [Richter, 2016]. Figure 3-8 shows 117 cm of 

legacy sediment (site S7) deposited above redox-active Holocene sediments at the study 

site: the light brown legacy sediment is distinguished from the gray-brown pre-legacy 

sediment. A comparison between simulated legacy sediment depths against observations 

is given in Figure 3-9. Simulated soil thickness of legacy sediments was estimated based 

on the sediment accumulation at depositional sites computed by the hydro-geomorphic 

model. While this comparison does not support a robust model calibration, it shows that 

the model has the potential to reasonably simulate the accelerated legacy sediment 

deposition at the study site. 
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To evaluate the likelihood of each of the simulated scenarios of SOC erosion and 

burial, observations of SOC content in legacy sediments were used [Richter, 2016]. 

Measurements of SOC content from five soil profiles (depositional sites B to F in Figure 

3-1a) analyzed in 2015 are given in Figure 3-10. The associated analysis included 

processing of soil samples, soil texture and bulk density analysis, and combustion and 

analysis of organic matter [Richter, 2016]. The observations correspond to multiple mineral 

Figure 3-8. Approximately 117 cm of legacy sediment (light brown color) deposited 

above redox-active Holocene sediments (gray-brown color) at the Holcombe’s Branch 

(site S7) [Richter, 2016]. 
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soil horizons at the upper 1.8 m of depth. At each soil layer the standard deviation reflects 

the spatial variation among sampling locations. Comparison of the observed and simulated 

total SOC storage (upper 1.8 m of soil) at locations B, C, and D is given in Figure 3-7. The 

ranges of predicted SOC storage for different scenarios at sites B, C, and D (i.e., difference 

of maximum source from maximum sink scenario estimates at each depositional site, 

illustrated in Figure 3-7) are, respectively, 1.3, 2.6, and 2.9 kg C m-2. Observations are 

consistent with the ranges of simulated SOC content at the three sites. Moreover, the 

predicted SOC content across depositional sites was compared with measurements at sites 

B to F (Figure 3-7). For the maximum source scenario the simulated SOC content is 19% 

lower (within a standard deviation) from the mean measured one (average of all 

depositional sites). The maximum sink scenario overestimates by 24% the observed SOC 

storage. The mean SOC storage estimate for the intermediate scenario is in closer 

agreement with observations (about 4% deviation). This comparison demonstrates the 

ability of tRIBS-ECO to simulate the fate of eroded SOC at the watershed scale in response 

to hydro-geomorphic perturbations. 
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Figure 3-9. Simulated and observed legacy sediment deposition across the stream 

network. Sites S1 to S8 are located at approximately 100 - 200 m intervals along the main 

stream in the Holcombe’s Branch watershed, in clayey soils and sandy loams. 

 

The observed SOC storage (Figure 3-10) at legacy sediments presented in this study 

(e.g., 4.1 kg C m-2 in the top 20 cm of soil) is significantly greater than previous 

measurements from undisturbed (3.3 kg C m-2 in the top 30 cm of soil) and eroded soil 

profiles (1.9 kg C m-2 in the top 30 cm of soil) at slopes and interfluves [Richter and 

Markewitz, 2001]. The observed topographic controls on SOC storage are consistent with 

Rosenbloom et al. [2006]. More specifically, the mean observed C content is about 8.2, 

5.3, and 3.6 kg m-2 at depositional, undisturbed, and eroded sites, respectively (upper 1.1 

m of soil). The relatively high SOC storage at depositional sites indicates that an important 

fraction of upland mobilized organic material is only partially decomposed upon transport. 

These findings contrast with those of Schlesinger [1995], who reported that SOC lost to 

erosion is mainly oxidized, instead of being transferred with eroded sediment. Moreover, 

observations of storage suggest that eroded SOC is mainly stored in alluvial sediments, 

rather than being fluvially exported to the ocean. Therefore, the primary C export of the 
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Calhoun ecosystem is not fluvial. SOC oxidation and CO2 release to the atmosphere 

constitute the largest C output at the degraded landscape. 

 

 

Figure 3-10. Means and standard deviations of soil organic carbon (SOC) storage 

observations at different depths from alluvial sediments at depositional sites B to F. SOC 

storage across soil horizons of these alluvial sites is higher than the storage in eroded and 

relatively undisturbed soil profiles. 

 

3.5.2 Decline of upland sediment and organic carbon erosion with reforestation 

This work assesses the geomorphic behavior of the landscape under study during the 

recent agro-ecosystem and the secondary forest ecosystem periods. Rainsplash erosion and 

overland flow transfer sediment and SOC from upland sites and steep slopes to depositional 

sites (Figure 3-5a). Reforestation likely led to a substantial decline in soil erosion rates. On 

the average, erosion at the secondary forest ecosystem period is around 3 times lower 

compared to the agro-ecosystem period (Figure 3-4). However, the soil erosion estimate at 
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the reforested period (around 0.7 mm yr-1) indicates that the degraded landscape is 

characterized by significant erosional potential.  

The temporal evolution of upland soil erosion had a meaningful impact on the 

redistribution of SOC at the Holcombe's Branch. The decrease in sediment transport rates 

with reforestation led to a decline in the net lateral SOC flux (Figure 3-6). The net loss of 

upland SOC decreased during the reforestation period by 65%, 62%, and 52% for the 

maximum source, intermediate, and maximum sink scenarios, respectively. The simulated 

decline of net SOC losses at upland sites reflects the transition of the Calhoun ecosystem 

from a legacy of intensive land use practices [Trimble, 1974] to a state of partial recovery 

and reforestation [Mobley et al., 2015]. The SOC loss during the simulated 100-year period 

(Figure 3-6) was compared with the observed rate of SOC erosion of 1.7 kg m-2 (in 100 

years of agricultural practices), discussed in section 2.5.1. The SOC losses predicted at the 

maximum sink and maximum source scenario deviate from the observed SOC losses. At 

the intermediate scenario, the total SOC loss is consistent with observations. Moreover, the 

rate of C replacement at eroding sites is accelerated, because exposed soil horizons are 

characterized by significant C stabilization potential. Simulated C fluxes at the 

intermediate scenario suggest that a substantial part of eroded SOC has been rapidly 

replaced by atmospheric CO2 sequestration (see section 3.4.2), which generally agrees with 

SOC gains observed in previous long-term field studies at the site [Mobley et al., 2015; 

Richter and Markewitz, 2001].  

This work emphasizes the influence of topography and slope morphology on SOC 

erosion and burial among diverse soil profiles (Figure 3-5). In contrast to previous studies 

that quantify the erosion-induced soil-atmosphere CO2 exchange based on a priori 
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specified amounts of eroded SOC assumed to be mineralizable [Billings et al., 2010; 

Jacinthe and Lal, 2001], the distributed structure of tRIBS-ECO calculates the fate of 

eroded organic material with no a priori assumptions about mineralizable fractions. 

Episodic erosion redistributes SOC from interfluves and upper slopes to colluvial deposits, 

stream corridors, and valley bottoms. Eroded organic material undergoes decomposition in 

transport, or storage with burial. Accounting for the topographic heterogeneity of the 

dynamics of eroded SOC affected by anthropogenic perturbations is important on estimates 

of the strength of atmospheric CO2 sink or source. 

 

3.5.3 Uncertainty associated with management practices in estimates of watershed-

integrated net soil-atmosphere carbon exchange 

The uncertainty associated with the influence of management practices (chapter 7) 

on erosion-induced C flux estimates can be significant at fine spatial scales. Anthropogenic 

disturbance related to past land uses and land use changes has markedly increased the 

complexity of the associated processes at the Calhoun ecosystem. To assess different 

topographic controls on this uncertainty, the SOC storage range (i.e., difference of 

maximum source from maximum sink scenario estimates) at each Voronoi cell was plotted 

against watershed topographic characteristics (Figure 3-11), including the topographic 

index [Beven and Kirkby, 1979], which is a surrogate of flow accumulation at any point in 

the basin based on topographic information [Quinn et al., 1995]. This index is defined as 

ln(A/tanβ), where A is the upslope contributing area per unit contour length, and β is the 

local slope. Based on the analysis presented in Figure 3-11a, relatively higher ranges of 
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SOC storage are simulated at sites with gentler slopes and positive curvature, 

corresponding to alluvial deposits in the upward concave stream. Uncertainty in SOC 

prediction is also higher at sites with greater contributing area and topographic index, 

characteristic of lower elevation depositional sites with increased wetness conditions 

across the stream network (Figure 3-11b). The predicted accumulation of organic material 

at the maximum sink scenario is significantly greater compared to the maximum source 

scenario estimates at these sites. Figure 3-11 qualitatively indicates that simulated SOC 

ranges in sites across the stream network increase with upslope contributing area (and 

topographic index), which suggests that uncertainty in SOC storage prediction [Berhe et 

al., 2007] increases with the spatial scale of analysis. 
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Figure 3-11. Simulated soil organic carbon (SOC) ranges (i.e., difference of maximum 

source from maximum sink scenario estimates) at each site across the watershed versus 

slope and curvature (a), and versus contributing area and topographic index (ln(A/tanβ), 

where A is the upslope contributing area and β is the local slope) (b) 

 

According to results, the erosion driven C exchange with the atmosphere at the 

watershed scale (Figure 3-5) ranged from a C source of 10.3 g m-2 yr-1 to a C sink of -8.4 

g m-2 yr-1, for the maximum source and the maximum sink scenarios, respectively. The 

simulated spectrum of possible net C source and sink strengths characterizes the 

agricultural history of the Calhoun CZO. Changes in management practices [Harden et al., 

1999; Richter et al., 2000] may have led to transitions between erosion driven C sinks or 

sources over time [Van Oost et al., 2012]. Comparison of the observations based rate of 

upland SOC erosion (17 g C m-2 yr-1) with the watershed-integrated results also suggests 
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that a substantial part of mobilized organic material is likely preserved in depositional 

environments, with marginal net contribution to atmospheric CO2 [Smith et al., 2001]. The 

watershed-integrated results correspond to a narrower range of erosion driven C fluxes 

compared to previous estimates at the study site [Billings et al., 2010]. Results encompass 

the C sink strengths reported in Van Oost et al. [2005] (-3 to -10 g m-2 yr-1) and in Yoo et 

al. [2005] (up to -2.8 g m-2 yr-1). The estimated maximum C sink strength is smaller than 

that of Harden et al. [1999] (up to -20 g m-2 yr-1). 

 

3.6 Summary 

 This study proposes a method to quantify the uncertainty introduced by the influence 

of land management on soil organic C (SOC) generation and decomposition at eroding 

soils. The framework is implemented in tRIBS-ECO (Triangulated Irregular Network-

based Real-time Integrated Basin Simulator-Erosion and Carbon Oxidation), a spatially- 

and depth-explicit model of C dynamics coupled with a process-based hydro-geomorphic 

model. The impact of soil erosion on the net soil-atmosphere CO2 exchange was assessed 

at the Calhoun Critical Zone Observatory, one of the most severely agriculturally eroded 

regions in the U.S. Measurements of SOC storage are used from different catena positions. 

It is demonstrated that the spatio-temporal variations of land management practices 

introduce significant uncertainty in estimates of the erosion-induced CO2 exchange with 

the atmosphere. According to results, recent reforestation led to a partial decline in soil and 

SOC erosion rates. Observations and simulations suggest that a substantial portion of 

eroded organic material is buried in alluvial sediments at the study site, rather than being 
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fluvially exported to the ocean. CO2 release to the atmosphere is the primary C output at 

the Calhoun ecosystem. It is suggested that the representation of the fine spatio-temporal 

variability of the dynamics of eroded C is important in the computation of C budgets in 

regional and global scales. 
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CHAPTER 4. Impact of hydrologically driven hillslope erosion and 

landslide occurrence on soil organic carbon dynamics at tropical 

watersheds  

4.1 Introduction 

Tropical forests play an important role in the global C cycle through high rates of net 

primary production and long-term storage in biomass and soils [Ciais et al., 2013]. The 

humid tropics presently occupy about 25 % of the Earth’s land surface [Stallard, 2012]. 45 

% to 52 % of the global terrestrial biomass C, and eleven to fourteen percent of the global 

soil C is located in tropical forests [Prentice et al., 2001]. Intense hydro-meteorological 

phenomena in the humid tropics have the potential to trigger events of rapid sediment and 

C transport [Heartsill Scalley et al., 2012; Hilton et al., 2008; Larsen and Torres-Sánchez, 

1992; Ramos Scharrón et al., 2012; West et al., 2011; Wohl and Ogden, 2013]. The 

propensity for shallow landslide occurrence in montane tropical ecosystems can be 

significantly influenced by land uses and human disturbance [Gellis et al., 2006; Guns and 

Vanacker, 2014; Larsen, 2012]. Moreover, tropical vegetation, and warm and humid 

conditions favor high rates of net primary productivity (NPP) and decomposition, leading 

to highly dynamic SOC in time and space [Stallard, 2012]. Tropical forests are generally 

a net atmospheric C sink, through plant uptake and C burial [Ciais et al., 2013]. At the 

same time, land use and land cover change in the tropics have contributed large CO2 

emissions to the atmosphere [Houghton, 2012]. For these reasons, tropical ecosystems are 

important settings for studying hillslope erosion and the associated effects on C exchange 

with the atmosphere. 
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The Luquillo Critical Zone Observatory (CZO) is a tropical site of particular 

hydrological and geomorphological interest characterized by diverse topography and 

different underlying lithologies [Murphy et al., 2012]. Past land use has influenced the soils 

and the density of forest cover at the Luquillo CZO [Foster et al., 1999]. The hydro-

geomorphic behavior of different watersheds under relatively similar climatic conditions 

is strongly dependent on local topographic and lithological characteristics and on the exact 

geographic location relative to the Luquillo Mountains [Murphy and Stallard, 2012]. This 

is the case for the morphologically diverse adjacent watersheds of Rio Mameyes and Rio 

Icacos in the Luquillo CZO (section 4.3), which are characterized by comparable mean 

annual precipitation (MAP) and by contrasting lithology [Buss and White, 2012]. The 

Icacos watershed is underlain by the Rio Blanco quartz diorite, while the Mameyes is for 

the most part underlain by volcaniclastic rock [Dosseto et al., 2014]. This setting provides 

the unique opportunity to test for the effects of underlying parent material and different 

forest types on SOC erosion under comparable climatic conditions. 

In this study, a novel spatially-explicit framework was developed and used to 

quantify the impact of erosion and landslide occurrence on the redistribution of SOC and 

on the associated C exchange with the atmosphere in the Mameyes and Icacos watersheds. 

The model of C dynamics is based on tRIBS-ECO, introduced in section 2.2.1, which 

accounts for dynamic feedbacks among hydrological, geomorphological, and 

biogeochemical processes in a physically-based manner at the watershed scale. This work 

uses measurements of SOC content across a range of depths and catena locations [Johnson 

et al., 2015], and stresses the role of different forest types on the erosion-induced C 
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exchange with the atmosphere. This chapter is a verbatim recompilation of Dialynas et al. 

[2016b] and Dialynas et al. [2015]. 

 

4.2 Physical representation of hillslope erosion and landslide occurrence 

To simulate feedbacks of topsoil erosion and landslide occurrence on the dynamics 

of SOC at the Luquillo CZO, a slope stability module was included in the tRIBS-ECO 

framework. The underlying physically-based model of hydrologically-driven topsoil 

erosion is discussed in section 2.2. Previous landslide modelling efforts at the Mameyes 

basin [Arnone et al., 2011; Lepore et al., 2013] focused on landslide occurrence in response 

to tropical storms at fine (e.g., hourly) time scales, and also used versions of the tRIBS 

framework [Ivanov et al., 2008a; b; Ivanov et al., 2004a]. The slope stability component is 

based on the infinite slope model [Arnone et al., 2011], which assumes that the plane of 

failure is parallel to the soil surface. The level of stability is typically assessed by evaluating 

the factor of safety (FS), which expresses the extent to which destabilizing forces exceed 

in magnitude forces that favor slope stability. At each time step and at each computational 

element the FS is estimated by [Arnone et al., 2011]: 
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  (4.1) 

where c is the combined effect of root cohesion and effective soil cohesion, φ is the friction 

angle, hs is the thickness of the landslide soil mass, ρs and ρw are the soil and water densities, 

respectively, at is the time variant local slope angle, θt is the average soil moisture content 

in the landslide control volume at each time step, θs is the saturated volumetric water 
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content, and θr the residual volumetric water content. A detailed description of the limit 

equilibrium method of the stability module is given by [Arnone et al., 2011]. The landslide 

module explicitly accounts for the spatial heterogeneity of factors that control slope 

stability, such as the mechanical and hydrological characteristics of different soil types, 

local terrain characteristics, and the time varying soil moisture content at each Voronoi 

polygon. 

The model estimates the possible landslide deposition path based on the concept of 

run-out distance [Bathurst et al., 1997], and alters the topographic characteristics of the 

landscape to account for elevation changes caused by erosion or deposition. The length of 

the maximum run-out distance can be estimated as a proportion (e.g., 40 % [Arnone et al., 

2011]) of the elevation difference between the landslide head and the deposition starting 

point [Vandre, 1985]. Furthermore, soil deposition depends on slope morphology [Burton 

and Bathurst, 1998]. For steep slopes (typically greater than 10°-15°) landslides move 

downhill unconditionally, and for gentle slopes (usually less than 4°-5°) the detached 

material halts unconditionally. For intermediate slopes, the movement of the landslide 

material is either limited by the maximum run-out distance, or by reaching gentler slopes 

along the landslide path, as discussed above [Arnone et al., 2011]. Moreover, in the 

implemented framework the deposited landslide mass at each cell of the post-failure 

movement is inversely proportional to the local slope. Smaller sediment volumes are being 

deposited at relatively steeper slopes, and larger ones are being deposited at downhill 

gentler slopes, respectively. 

Landslides and severe rainsplash and sheet erosion are processes that both depend 

on, and alter the landscape morphology. Therefore, the geomorphic processes are 
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interconnected by dynamic feedbacks. More precisely, at each time step landslides and soil 

erosion and deposition alter the slope morphology at the watershed scale. The updated 

slopes are estimated across the watershed, which in turn control the soil erosional potential 

of the landscape. 

 

4.3 Study Area 

The hydro-geomorphic response of the Mameyes and Icacos watersheds in the 

Luquillo CZO (northeastern Puerto Rico) was simulated in terms of erosion of upland SOC 

and soil-atmosphere C exchange. The Rio Mameyes drains into the Atlantic Ocean on the 

north side of Puerto Rico. The Rio Icacos is a tributary of the Rio Blanco, which discharges 

into the Caribbean Sea on the southeast side of the island [Dosseto et al., 2014]. The 

elevation at the Mameyes watershed (Figure 4-1a) ranges from 104 to 1,046 m. The 

elevation at the Icacos watershed (Figure 4-2a) ranges from 615 to 845 m [Larsen, 2012]. 

The two watersheds have been focal points of several hillslope erosion and bedrock 

weathering studies [Buss and White, 2012; Chabaux et al., 2013; Dosseto et al., 2012; 

Dosseto et al., 2014; Larsen, 2012; Lepore et al., 2013; Stallard, 2012] because of their 

particular geomorphological interest. On average, the Mameyes watershed is characterized 

by steeper slopes compared to the Icacos watershed (mean slope of 21° for Mameyes, and 

13° for Icacos, respectively) [Larsen, 1997]. The two watersheds are characterized by 

frequent rainfall-triggered landslides [Larsen, 2012]. The spatial distribution of different 

soil textures is described in Figures 4-1b, 4-2b and section 4.4.3. The unweathered 

volcaniclastic bedrock is located at the depth of 16 m [Dosseto et al., 2012]. Soil erosion 

and the rate of regolith production control the soil thickness. The contrasting lithology in 
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the study area contributes to different morphology and sediment yield at the two 

watersheds, with direct implications on the hydrological behavior of the Mameyes and 

Icacos watersheds. Murphy and Stallard [2012] discussed the climatological and 

hydrological characteristics of the two watersheds. The mean annual temperature at the 

Mameyes and Icacos watersheds are 22.8 °C and 21.4 °C, respectively. The MAP at the 

Icacos watershed, which is characterized by a mean elevation of 686 m [Murphy et al., 

2012], is 4,150 mm yr-1. The MAP at the Mameyes watershed, with a mean elevation of 

508 m, is 3,760 mm yr-1. Rio Icacos has a mean annual discharge of 3,760 mm yr-1 with a 

drainage area of 3.26 km2. The mean annual runoff of Rio Mameyes is 2,750 mm yr-1, and 

the drainage area is equal to 17.8 km2.  
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Figure 4-1. Digital Elevation Model of the Mameyes watershed; site B corresponds to the 

location of the Bisley tower (a), spatial distribution of soil textural classes (b), spatial 

distribution of vegetation types (c). 

 

The Luquillo CZO is characterized by four forest life zones [Ewel and Whitmore, 

1973; Holdridge, 1967]: subtropical wet forest, subtropical rain forest (below 600 m of 

elevation), lower montane wet forest, and lower montane rain forest (above 600 m). Based 

on species composition, the vegetation can be classified into: tabonuco forest (dominated 

by Dacryodes excelsa), colorado forest (dominated by Cyrilla racemiflora), palm forest 

(dominated by Prestoea montana), and dwarf (cloud) forest (with Tabebuia rigida as a 

common species) [Ewel and Whitmore, 1973; Waide et al., 1998; Weaver and Murphy, 

1990]. The tabonuco forest dominates lower slopes up to elevations of around 650 m, while 

the colorado forest typically occupies higher elevations at the lower montane life zones, up 

to 900 m [Lepore et al., 2013]. Palm stands are common in most life zones throughout the 

Luquillo CZO, and they may occupy steep and poorly drained locations, while dwarf forest 



 87 

is located at higher ridges, at poorly drained soils, and corresponds to less than 10 % of the 

vegetation of Luquillo CZO [Johnson et al., 2015; Waide et al., 1998]. The spatial 

distribution of forest cover for the Mameyes and Icacos watersheds is illustrated in Figures 

4-1c and 4-2c, respectively [Helmer et al., 2002; PRGAP, 2006]. The Mameyes watershed 

is dominated by tabonuco forest. Higher elevation sites at the watershed are dominated by 

colorado and palm forest. The Icacos watershed is primarily covered by colorado forest 

with sites of palm forest at the western slopes. 

 

 

Figure 4-2. Digital Elevation Model of the Icacos watershed (a), spatial distribution of 

soil types (b), spatial distribution of vegetation species (c). 
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The patterns and density of vegetation at the Luquillo CZO have been altered by 

human land use change during the recent history of the island. Forest cutting in Puerto Rico 

started in the 16th century for pasture, cropland, timber, and fuelwood [Wadsworth, 1950], 

and peaked around 1900 [Foster et al., 1999], with almost complete deforestation of the 

island in the early 1900s [Larsen, 2012; Murphy et al., 2012]. Sites at lower elevations of 

the Luquillo mountains have been subject to land use, primarily for pasture and farming. 

Isolated selective timber harvesting and cutting of tabonuco and colorado forests for 

fuelwood and charcoal took place through 1940 [Foster et al., 1999]. Human land use 

influenced the forest density at various locations within the area [Thomlinson et al., 1996], 

which was followed by reforestation after the 1930s [Foster et al., 1999]. 

 

4.4 Input data and parameters 

4.4.1 Biogeochemical parameters 

Soil biogeochemical properties were obtained from previous studies at the site 

[Johnson et al., 2015; Wang et al., 2003; Weaver and Murphy, 1990]. Johnson et al. [2015] 

measured SOC content in the Luquillo CZO at various catena positions and from different 

soil horizons reaching deep soils (140 cm). The analysis included SOC measurements at 

different depths in colorado and palm forests at the Icacos watershed, and in tabonuco, 

colorado, and palm forest at the Mameyes watershed (three replicates were obtained per 

topographic position at each site). SOC depth profiles exhibited significant variation 

among forest types (Figure 4-3). Average SOC stocks at colorado, palm, and tabonuco soils 

were 21, 18, and 14 kg m-2 respectively. Moreover, on average Johnson et al. [2015] 
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reported a 37.5 % increase of total SOC content at the root zone (top 80 cm) in valleys 

compared to ridges. 

 

 

Figure 4-3. Observed organic carbon content [Johnson et al., 2015] and model inputs at 

different topographic locations corresponding to colorado (a), palm (b), and tabonuco (c) 

soils at the Mameyes watershed, and colorado (d) and palm (e) soils at the Icacos 

watershed, respectively 

 

In this model the depth-dependence of SOC content is represented by the following 

exponential expression: 

  ,( ) b cC z C z

t a tC z C e e    (4.2) 
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where Ca,t, Cb, and Cc are parameters (see also section 2.2.1 for notation). Equation (4.2) 

corresponds to dynamic depth-profiles of SOC content. At time t = 0 the initial SOC 

content at different catena locations within the two watersheds was represented by fitting 

equation (4.2) to the SOC profiles reported by Johnson et al. [2015] (Figure 4-3). Equation 

(4.2) roughly approximated the available SOC measurements at multiple soil profiles. At 

each time step, the depth-variation of SOC in the parsimonious model is estimated by 

calculating Ca,t based on equations (2.1) and (4.2).  

Hillslope erosion leads to the redistribution of the initial SOC content across the 

landscape. Mechanisms that drive advection-diffusion phenomena (e.g., bioturbation, 

tillage, soil creep) can lead to the mixing of the SOC content estimated by equation (2.1) 

across different horizons within the soil column [Chaopricha and Marín-Spiotta, 2014]. 

Mixing of the calculated SOC content (equation (2.1)) in the soil profile is assumed on an 

annual basis. The associated SOC depth-dependence is estimated based on equation (4.2). 

This simplifying assumption can reasonably represent the significant mixing [Koven et al., 

2013] that may characterize the SOC-rich surficial horizons. 

The depth-dependence of SOC oxidation rate is described by an exponential function 

[Wang et al., 2015; Yoo et al., 2006] (see section 2.2.1 for notation): 

 ,( ) bk z

t a tk z k e   (4.3) 

where ka,t, kb are parameters (subscripts a and b correspond to soil parameters expressing 

topsoil values, and depth-variation, respectively). The depth-dependence of the rate of SOC 

production rates is given by equation (2.5) (section 2.4.1). The topsoil values of SOC 

oxidation and production rates (ka,t and Ia,t, respectively) are time variant in eroding soils 
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(section 2.2.1). The parameters kb and Ib express the depth-dependence of SOC oxidation 

and production, respectively. Ia,t was initialized based on measured values of aboveground 

NPP [Wang et al., 2003; Weaver and Murphy, 1990] for different forest types in the 

Luquillo CZO (Table 4.1). For each soil profile, Ib was constrained such that at time t = 0 

the total SOC production over depth (equation (2.5)) is equal to the belowground NPP in 

each forest type (Table 4.1). 

 

Table 4.1. Aboveground NPP (ANPP) and belowground NPP (BNPP) values for different 

forest types across the Luquillo CZO. The ANPP values were derived from observations 

[Weaver and Murphy, 1990]. The BNPP values were reported by Wang et al. [2003], 

based on belowground and aboveground biomass estimates for the entire Luquillo CZO. 

 Tabonuco Palm Colorado Cloud 

ANPP (g m-2 yr-1) 1,404 1,268 527 540 

BNPP (g m-2 yr-1) 324 293 122 170 

 

The topsoil SOC oxidation rates (
, 0a tk 

) for each vegetation type were initialized 

based on the SOC turnover characteristics reported in Cusack et al. [2010], who performed 

radiocarbon measurements at shallow soils at the Luquillo CZO. They analyzed soils 

covered by colorado forest at the Icacos watershed (640 m of elevation) and soils from 

tabonuco-type forest located at the Bisley Experimental watersheds (260 m), which are part 

of the Rio Mameyes drainage system [Scatena, 1989]. The oxidation rates were applied to 

the corresponding forest types in the Icacos and Mameyes watersheds. Results from the 

upper-elevation site (
, 0a tk 

 of 0.095 yr-1) were applied to sites with higher altitude colorado 
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and cloud forests, which are also characterized by similar NPP (Table 4.1). Estimates from 

the lower elevation site (
, 0a tk 

 of 0.085 yr-1) were applied to tabonuco and palm forest soils 

(the NPP of which is also comparable). At time t = 0 the depth-dependence of SOC 

oxidation rate (parameter kb) was constrained by assuming steady state conditions at time 

t = 0 with zero net soil-atmosphere C exchange [Jenny, 1941; Van Oost et al., 2007]. 

 

4.4.2 Effects of land uses on soil organic carbon fluxes 

Land use plays a key role in the interaction between terrestrial sediment transport 

and soil-atmosphere C exchange [Billings et al., 2010]. In tropical forests, land use and 

land use change may have an important effect on C sequestration and on CO2 emissions to 

the atmosphere [Ciais et al., 2013]. This work explores a variety of parameterized land use 

scenarios and their effect on anthropogenic erosion at the Luquillo CZO. To define 

potential land use scenarios, a sensitivity analysis on ak and aI was conducted at single 

eroding sites at the Icacos and the Mameyes watersheds by using equation (2.1) in 100-

year simulations of eroding soil profiles, at an erosion rate of 1 mm yr-1 [Larsen, 2012]. 

The assumed erosion rate is consistent with estimates of average hillslope sediment flux at 

the two watersheds (see section 4.6.1). A soil profile in colorado forest and in tabonuco 

forest were considered for the case of Icacos and Mameyes watersheds, respectively. 

The results of the sensitivity analysis for the two watersheds are illustrated Figure 

4-4. The total net difference in SOC content (ΔSOC) at the soil profile for each set of ak 

and aI values expresses the erosion-induced net C exchange with the atmosphere. 

Relatively high values of ak represent a significant effect of land use on altered oxidation, 
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while low values reflect little effect on eroding soil profiles. Similar is the effect of aI to 

SOC production, respectively. According to Figure 4-4, a net erosion-induced C sink can 

result from relatively low values of ak and high values of aI. A net decrease in SOC storage 

can result from higher values of ak and lower aI as soil erosion proceeds (section 2.4.2). To 

assess the range of ΔSOC resulting from different values of ak and aI three scenarios of C 

fluxes were considered: I) a maximum source scenario; II) an intermediate scenario; and 

III) a maximum sink scenario (Table 4.2). At the maximum sink scenario ak is minimized, 

and aI values were selected above which the ΔSOC in Figure 4-4 does not significantly 

change. Similarly, at the maximum source scenario aI was minimized and ak was 

maximized, accordingly. At the intermediate scenario moderate values of ak and aI were 

selected, based on Figure 4-4. The three scenarios of C fluxes were defined based on the 

aforementioned simplifying assumptions (e.g., constant erosion rates) by applying equation 

(2.1) to eroding soil profiles, and they can roughly represent erosion-induced C fluxes at 

eroding soil profiles in the two watersheds. The ranges of ak and aI reflect plausible states 

of the Luquillo CZO ecosystem under different land uses (section 4.6.5). The likelihood of 

the assumed scenarios is studied in section 4.6.3. 

 



 94 

 

Figure 4-4. Sensitivity analysis on the influence of land uses to the total soil organic 

carbon storage difference (ΔSOC) for the Icacos (a) and the Mameyes (b) watersheds. 

ΔSOC results from the net effect of soil organic carbon (SOC) production, oxidation, and 

SOC loss to erosion, as the effects of land uses to SOC oxidation and production (ak and 

aI, respectively) vary. Positive values of ΔSOC indicate net increase of SOC storage, 

while negative values represent net SOC loss at the eroding site (color variation 

corresponds to vertical axis (ΔSOC)). 

 

Table 4.2. Values of ak and aI for the Mameyes and the Icacos watersheds. I, II, and III 

correspond to the maximum source, the intermediate, and the maximum sink scenarios, 

respectively. 

  Mameyes   Icacos  

 I II III I II III 

ak (yr-1) 0.00008 0.00004 0 0.0008 0.0004 0 

aI (g m-2 yr-1) 0 4 8 0 2.25 4.5 
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4.4.3 Topography and soil textural classes 

This study uses a recent fine resolution (10 m) Digital Elevation Model (DEM) 

obtained from the US Geological Survey's National Elevation Dataset [U.S.G.S., 2009]. To 

reduce the computational cost of the simulations, a 30 m mesh (Figure 4-2) of 

computational elements was obtained for the Icacos watershed (3.26 km2), and a 50 m mesh 

(Figure 4-1) for the significantly larger Mameyes watershed (17.8 km2) [Ivanov et al., 

2004a; Lepore et al., 2013; Vivoni et al., 2004]. Soil classification maps of the two 

watersheds were obtained from local soil surveys (http://websoilsurvey.nrcs.usda.gov/) 

conducted by the U.S. Department of Agriculture (USDA). According to the U.S.D.A. 

[1951] classification system, the soil textural classes of the Mameyes and Icacos 

watersheds were grouped into four soil types, i.e., clay-loam, sandy-loam, silty-clay, and 

clay (Figures 4-1b and 4-2b). 

 

4.4.4 Hydrometeorological forcing 

The redistribution of sediment and SOC was studied at the two diverse watersheds 

using a spatially-explicit simulation of hydro-geomorphic and biogeochemical processes 

in tRIBS-ECO driven by a 100-year hydro-meteorological forcing, which was obtained 

from a stochastic weather generator (AWE-GEN [Fatichi et al., 2011] (section 2.4.4)). 

Daily rainfall series (1973-2006) were used from the Pico Del Este station (NOAA, station 

ID: 666992, lat. 18.27, long. 65.76) as inputs to AWE-GEN, in addition to daily 

meteorological data (air temperature, wind speed, relative humidity (1993-2010)) from the 

Bisley tower (USGS, station ID: 50065549, lat. 18.31, long. 65.74), and to hourly time 
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series of atmospheric pressure and cloud cover (1993-2010) from the San Juan airport 

weather station (NOAA, station ID: 668812, lat. 18.44 long. 66.0), to parameterize the 

weather generator. 

 

4.4.5 Hydrologic model calibration 

Calibration of the hydrologic model of the Mameyes and Icacos watersheds was 

conducted by comparing the simulated watershed response to observed river discharge. 

Daily rainfall from the Bisley tower and the meteorological data discussed in section 4.4.4 

were used as model inputs. The corresponding rainfall time series is illustrated in Figure 

4-5. Daily river discharge records provided by the USGS at the outlets of the two 

watersheds (station ID 50065500 for Rio Mameyes, and 50075000 for Rio Icacos, 

respectively) during 2001 were used (Figure 4-5). The calibration period (01/01/2001 - 

06/24/2001) was selected based on the availability of fine hydro-climatic data and river 

discharge observations for the two watersheds. 
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Figure 4-5. Hydrologic model calibration in terms of river discharge at the Icacos (a) and 

the Mameyes (b) watersheds. The observed rainfall intensity during the calibration period 

(01/01/2001 - 06/24/2001) is also provided. 

 

In a modelling effort based on tRIBS, Lepore et al. [2013] tuned the hydrological 

parameters of the model for the Mameyes watershed using series of observed soil moisture 

content. As stated previously the response of Mameyes and Icacos watersheds was tuned 

with recorded river discharge. The values of Ks, θs, θr, , and m reported in Lepore et al. 

[2013] (Table 4.3) for each soil type were used (see section 2.4.4 for notation). As, Au, and 

f were calibrated, which are key parameters affecting the hydrological dynamics at the 

watershed scale (Table 4.3). Values from the literature [Bras, 1990; Ivanov et al., 2004a; 

b; Lepore et al., 2013; Rutter et al., 1975; Schellekens, 2000; Weaver and Murphy, 1990] 

were used for plant properties [Ivanov et al., 2004a] controlling hydrologic processes such 

as evapotranspiration, rainfall interception and canopy storage.  

b
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Table 4.3. Soil hydrological and mechanical parameters. Two sets of values of shear 

stress based soil erodibility (Kb) are given, corresponding to the Mameyes and to the 

Icacos (in parenthesis) watersheds, respectively. 

 
Clay Loam Sandy Loam Silty Clay Clay 

K
s
[mm hr-1] 50 50 50 10 

θs
 
[mm3 mm-3] 0.56 0.55 0.55 0.53 

θr [mm3 mm-3] 0.075 0.041 0.051 0.090 

m 0.200 0.322 0.127 0.130 

ψ
b 

[mm] -250 -150 -340 -370 

f [mm-1]  0.002 (0.001) 0.002 (0.001) 0.002 (0.001) 0.002 (0.001) 

As [-] 200 (100) 200 (100) 200 (100) 200 (100) 

Au [-] 200 (100) 200 (100) 200 (100) 200 (100) 

c [kPa] 8 6 6 10 

φ [deg.] 31 28 31 25 

τc [Pa] 0.5 0.5 0.5 0.5 

Kb [(m s-1 kg-1 s-2)1.5] 5 × 10-10
 (10-11) 5 × 10-10

 (10-11) 5 × 10-10
 (10-11) 5 × 10-10

 (10-11) 

Kr [J
-1] 20 32 20 20 

 

The model reasonably reproduced the hydrologic response of the two watersheds 

(Figure 4-5). The model simulation satisfactorily reproduced both baseflow and 

hydrograph recession limbs, two factors that characterize the watershed's hydrological 

behavior. Discrepancies in the Icacos watershed were attributed to the spatial gradient of 

rainfall between the watershed and the location of Bisley tower (Figure 4-1a). The 

Pearson's squared correlation (r2) among the observed and simulated discharge for the 

period of calibration, and the total water mass balance error (i.e., percentile difference of 

the simulated from the observed total water mass) are given in Table 4.4. Because r2 can 
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be sensitive to extreme events, the Nash-Sutcliffe efficiency (NSE) was estimated, which 

quantifies the variance of residuals normalized by the variance of observations [A.S.C.E., 

1993]. Acceptable NSE values range between 0 and 1, and r2 values greater than 0.5 are 

considered as generally accepted levels of performance [Bennett et al., 2013]. The 

associated values for Mameyes and Icacos watersheds are included in the acceptable 

ranges, and the percentile differences of total water volume suggest that the performance 

of the calibration procedure is satisfactory. 

 

Table 4.4. Metrics of hydrologic and geomorphic validation performances. 

 River Discharge Sediment Yield 

 Mameyes Icacos Mameyes Icacos 

Mass Balance Error -4.7% 5.4 -1.0% 2.2% 

r2 0.68 0.62 0.87 0.56 

NSE 0.62 0.61 0.85 0.28 

 

 

4.4.6 Geomorphologic model calibration 

The hydro-geomorphic model was calibrated by reproducing events and 

accumulation of sediment at the outlets of the two watersheds. Daily rainfall records from 

Pico Del Este station (section 4.4.4) were used, which cover the length of the calibration 

period (01/1995 - 11/1999). Daily series of observed sediment yield were used from the 
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USGS stations discussed in section 4.4.5. Mechanical properties of each soil type 

controlling landslide occurrence are the cohesion (c) and friction angle (φ). Soil properties 

affecting erosion are discussed in section 2.4.5. 

The geomorphic model was calibrated in terms of the observed sediment yield 

(Figure 4-6). c was calibrated for each soil texture, and Kb, θc, and Kr were tuned starting 

from literature values [Francipane et al., 2012; Meyer and Harmon, 1984; Yalin, 1977]. 

Friction angle values for each soil type were selected from the literature [Bjerrum and 

Simons, 1960; Lumb, 1966; 1970]. The soil mechanical parameters for each soil type are 

given in Table 4.3. The values of vegetation parameters used in this study are: v equal to 

0.7 and Fl equal to 0.6. The simulated accumulated volumes of sediment yield for the two 

watersheds are illustrated in Figure 4-6. Furthermore, the calibration of the geomorphic 

model was assessed using the metrics described in section 4.4.5 (Table 4.4). For both 

watersheds, the estimates were included in the ranges of acceptable performance (i.e., from 

0 to 1 for NSE, and from 0.5 to 1 for r2), and the total sediment mass balance error was 

acceptable [Moriasi et al., 2007]. This suggests that the model efficiently reproduced the 

observed accumulated sediment yield for the period of calibration at the Mameyes and 

Icacos watersheds. The simulation of geomorphic processes in this framework depends on 

the parameterization of the hydrologic model for the two watersheds. 
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Figure 4-6. Calibration of the geomorphic model in terms of accumulated sediment yield 

for the Icacos (a) and the Mameyes (b) watersheds. The calibration period starts in 

January, 1995 and ends in November, 1999. 

 

4.5 Results 

4.5.1 Hillslope erosion and deposition 

The 100-year simulated landscape evolution at the Mameyes and Icacos watersheds 

is presented in Figure 4-7. Landslides, rainsplash erosion, and overland flow erosion drive 

the redistribution of sediment. Significant loss of topsoil is evident at the eroding hillslopes 

of the two watersheds. A substantial part of the eroded material was deposited across the 

stream network. Rates of total hillslope erosion at the Mameyes and Icacos watersheds 
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were equal to 937 t km-2 yr-1, and 1,123 t km-2 yr-1, respectively. These estimates 

correspond to the total simulated hillslope erosion (i.e., topsoil erosion and landslide 

occurrence) at the two watersheds over the 100-year period. 

 

 

Figure 4-7. Heavily eroding hillslopes (yellow to red) and landslide sites (red) at the 

Icacos (a) and the Mameyes (b) watersheds. Depositional sites across river floodplains 

and at landslide run out tracks are illustrated in blue. 

 

The propensity for landslide occurrence was higher on relatively steeper slopes at the 

two watersheds. In the Icacos watershed, slope instability occurred mainly at the north-

western and south-western parts of the watershed, but there is also landslide occurrence in 
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southern and south-eastern areas. In the Mameyes watershed there was significant landslide 

occurrence in the north-western part of the watershed, and at the south-east side of the 

relatively steep south-western ridge. Also, landslides were triggered at the steep slopes in 

the proximity of Rio Mameyes in the northern part of the watershed. Landslide sediment 

was deposited along the run-out path.  

A comparison of simulated landslide occurrence with observed landslide scars 

[Larsen, 1997; Larsen, 2012] at the study site is given in Figure 4-8. The two watersheds 

are characterized by significant slope instability potential. Soil accumulation in relatively 

older landslide scars has led to the formation of landslide-prone slopes. Simulated landslide 

heads and potential deposition paths are consistent with landslide locations at the Mameyes 

watershed. More specifically, simulated run-out distances match observed landslide paths 

in different parts of the watershed (i.e., in southern, northern, and northwestern areas). 

Locations of relatively large simulated landslides are collocated with observed scars at the 

south-eastern Icacos watershed. Landslides are triggered at the relatively steeper slopes of 

the western part, which is consistent with observations. The simulated landslide locations 

and potential deposition paths at the two watersheds are in agreement with the observed 

landslide scars. 
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Figure 4-8. Comparison of the simulated landslide occurrence at the Icacos (a) and 

Mameyes (b) watersheds with the landslide scars (black) reported in Larsen [1997] and in 

Larsen [2012], who documented a total of 345 landslides in the two watersheds from 

aerial photographs (1937, 1951, 1962, 1972, 1974, 1979, 1990, and 1995). 

 

4.5.2 Watershed-integrated carbon exchange with the atmosphere 

The hydro-geomorphic response of the two watersheds to the imposed 100-year 

hydrometeorological forcings was estimated in terms of SOC redistribution and C 

exchange with the atmosphere. Watershed-integrated results for the maximum source, 

maximum sink, and intermediate scenarios are illustrated in Figures 4-9 and 4-10 for 
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Mameyes and Icacos watersheds, respectively. The simulated watershed-integrated C 

exchange with the atmosphere for the Mameyes yielded a source of 18.3 g m-2 yr-1 C for 

the maximum source scenario, a sink of 21.5 g m-2 yr-1 C for the maximum sink scenario, 

and a sink of 6.0 g m-2 yr-1 C for the intermediate scenario. The corresponding results for 

the Icacos watershed yielded a source of 14.9 g m-2 yr-1 C for the maximum source scenario, 

a sink of 17.1 g m-2 yr-1 C for the maximum sink scenario, and a sink of 3.3 g m-2 yr-1 C for 

the intermediate scenario. 
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Figure 4-9. Spatially-explicit representation of the redistribution of soil organic carbon at 

the Mameyes watershed. Total difference in soil organic carbon storage (ΔSOC) at the 

watershed scale for the maximum sink scenario (net sink strength of 21.5 g C m-2 yr-1) 

(a), the intermediate scenario (net sink strength of 6.0 g C m-2 yr-1) (b), and the maximum 

source scenario (net source strength of 18.3 g C m-2 yr-1) (c). 
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Figure 4-10. Spatially-explicit representation of the redistribution of soil organic carbon 

at the Icacos watershed. Total difference in soil organic carbon storage (ΔSOC) at the 

watershed scale for the maximum sink scenario (net sink strength of 21.5 g C m-2 yr-1) 

(a), the intermediate scenario (net sink strength of 3.3 g C m-2 yr-1) (b), and the maximum 

source scenario (net source strength of 14.9 g C m-2 yr-1) (c). 

 

4.5.3 Erosion-induced carbon fluxes in different forest types 

This work simulated SOC losses with mobilized sediment, and the influence of 

erosion on the soil’s capacity to produce SOC at tropical sites characterized by different 

forest cover. The temporal variation of SOC storage at eroding soil profiles covered by 

tabonuco, colorado, and palm vegetation at the Mameyes watershed, and by colorado and 
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palm vegetation at the Icacos watershed, respectively, for the maximum source and 

maximum sink scenarios, are illustrated in Figure 4-11. The simulated erosion rates 

corresponding to the five soil profiles were comparable, ranging from 4.0 to 6.0 mm yr-1 

(Table 4.5). The series corresponding to the two extreme scenarios in Figure 4-11 form the 

envelope of possible erosion-induced C fluxes for the soil profiles under study. 

 

 

Figure 4-11. Total difference in soil organic carbon storage (ΔSOC) at eroding sites with 

different forest cover at the Icacos (a) and Mameyes (b) watersheds. Positive and 

negative values of ΔSOC represent a net C sink and source, respectively. Maximum sink 

and maximum source scenarios are illustrated in positive and negative axes, respectively. 

The effect of erosion on SOC production and oxidation at tabonuco and palm soils is 

more significant compared to colorado soils. 

 

In the Icacos watershed, the palm forest soil profile exhibited an 85 % increase in 

SOC storage for the maximum sink scenario relative to the soil profile covered by colorado 
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forest. For the maximum source scenario the palm soil profile experienced significant 

erosion-induced SOC loss, approximately 120 % greater than the colorado forest soil 

profile. In the Mameyes watershed, significantly greater SOC loss was simulated under 

tabonuco and palm than in the colorado forest for the maximum source scenario (i.e., higher 

loss by 155 % and 137 %, respectively). The SOC production was also greater (by 151 % 

and 106 %, respectively) for tabonuco and palm soils for the maximum sink scenario, 

compared to the soil profile covered by colorado forest. The percent of total SOC losses 

due to erosion was somewhat larger for tabonuco (47 %) and palm (44 %) soils at the 

Mameyes watersheds, and for the palm (51 %) soil profile at the Icacos watershed. These 

percentile losses are lower compared to estimates of potential SOC loss to erosion reported 

in the literature [Harden et al., 1999]. The colorado soil profiles experienced relatively 

lower SOC loss (Table 4.5). 

 

Table 4.5. Total difference in soil organic carbon storage (ΔSOC) in eroding soil profiles 

at different forest cover in the Mameyes (M) and Icacos (I) watersheds. 

Forest type Erosion rate 

(mm yr-1) 

ΔSOC (kg m-2) % ΔSOC 

 Max. sink Max. source Max. sink Max. source 

Colorado (M) 5.0 0.51 -3.19 1.4 -8.5 

Palm (M) 5.2 1.05 -7.56 6.1 -43.6 

Tabonuco (M) 4.0 1.28 -8.15 7.3 -46.7 

Colorado (I) 5.1 0.41 -3.97 1.3 -12.4 

Palm (I) 6.2 0.76 -8.74 4.5 -51.3 
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4.5.4 Soil organic carbon burial in alluvial sediments 

The total simulated amount of lateral SOC influx to alluvial sediments was 

calculated, to quantify the rate of SOC burial in the floodplains of the two rivers. The 

associated SOC flux estimates for different scenarios, and the corresponding SOC 

concentrations in deposited sediment are presented in Table 4.6.  

Stallard [2012] reported total organic C (TOC) yields approximately equal to 13 t 

km-2 yr-1 for Rio Mameyes, and 32 t km-2 yr-1 for Rio Icacos, respectively. The model used 

in this study estimated that the approximate portion of the total SOC influx to depositional 

sites that undergoes long-term burial for the intermediate scenario was 49 % and 20 % of 

SOC for Rio Mameyes and Rio Icacos, respectively (see Table 4.6). The associated rates 

of C burial in alluvial sediments at the two rivers were significant at the maximum sink 

scenario. At the maximum source scenario, most of the deposited SOC was eventually 

exported fluvially in the form of particulate or dissolved organic C. 

 

Table 4.6. Soil organic carbon (SOC) deposition at the floodplains of Rio Mameyes and 

Rio Icacos. I, II, and III correspond to the maximum source, the intermediate, and the 

maximum sink scenarios, respectively 

 Lateral SOC influx to 

river floodplains  

(t km-2 yr-1) 

SOC concentration in 

sediment influx to 

river floodplains 
(%) 

Rates of long-term SOC 

burial at river floodplains  

(t km-2 yr-1) 

Observed total 

organic C 

yield  

(t km-2 yr-1) 

 I II III I II III I II III  

Mameyes 14.9 25.3 39.2 1.6 2.7 4.1 1.9 12.3 26.2 13 

Icacos 32.4 40.1 52.1 2.9 3.6 4.6 0.4 8.1 20.1 32 

  



 111 

 

4.6 Discussion 

In this study, a coupled and physically-based representation of watershed hydrology, 

and erosion and landslide processes was used to simulate the hydro-geomorphic behavior 

of two morphologically diverse watersheds in Puerto Rico. This framework reproduced the 

natural spatial variability of sediment transport at the watershed scale and the dynamics of 

mobilized SOC, which is an important advance to conceptual approaches that are based on 

simpler assumptions on the fate of eroded SOC [Billings et al., 2010; Schlesinger, 1995; 

Smith et al., 2001]. 

 

4.6.1 Hillslope erosion and landscape equilibrium 

This study modelled dynamic feedbacks of landslide occurrence and topsoil erosion 

to hydrologic and geomorphic processes at the watershed scale. Both landslides and topsoil 

erosion alter local geomorphological characteristics of hillslopes, such as the slope and 

curvature, which control the rate of soil erosion, landslide activity, and the deposition of 

detached soil. Exposed landslide scars and depositional sites characterized by 

heterogeneous unconsolidated soil can be susceptible to runoff-driven erosion [Stark and 

Passalacqua, 2014] at higher rates compared to undisturbed soils. Severe soil erosion and 

deposition at steep hillslopes may alter the limit equilibrium that controls shallow landslide 

occurrence, and may therefore feed back to slope stability. The complexity that 

characterizes this dynamic interrelation can be significant, given the large small-scale 



 112 

variability of the natural processes that drive erosion and shallow landslides at the 

watershed scale [Bras, 2015; Kim et al., 2016]. 

The calculated hillslope erosion rates of Mameyes and Icacos watersheds (937 t km-

2 yr-1 and 1,123 t km-2 yr-1, respectively) derive from a physically-based representation of 

the hydro-geomorphic behavior of the two watersheds. Larsen [2012] reported a range of 

total hillslope erosion for the Mameyes watershed equal to 523 to 2,143 t km-2 yr-1, and a 

hillslope erosion estimate for the Icacos watershed equal to 750 t km-2 yr-1. These rates are 

in acceptable agreement with the results of this study, yet they include relatively large 

inherent uncertainties in the measuring and in the estimation procedures (e.g., uncertainty 

on landslide scars dating). 

The soil thickness in the two tropical watersheds can be determined by the relative 

balance between erosion and bedrock conversion to soil. This modelling study assessed 

whether the landscape at the two watersheds, which are characterized by contrasting 

lithology (quartz diorite in Icacos, and volcaniclastic rock in Mameyes watersheds, 

respectively) had reached a state of equilibrium. The estimated magnitudes of total 

hillslope erosion at the two watersheds were compared with the results of recent studies, 

which used Uranium-series isotopes to quantify weathering rates leading to regolith 

production. Chabaux et al. [2013] reported that the quartz diorite at the Icacos watershed 

is characterized by a weathering rate of around 45 mm kyr-1. Dosseto et al. [2012] reported 

a markedly larger weathering rate for the volcaniclastic rock of the Mameyes watershed, 

equal to 335 mm kyr-1. The rates of total hillslope erosion simulated in this study are 

equivalent to 1,123 mm kyr-1 for Icacos, and 937 mm kyr-1 for Mameyes watersheds, 

respectively (assuming an average soil density of 1 t m-3, as suggested by Larsen [2012]). 
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The erosion rate in Icacos exceeds regolith production by a factor of 25. High estimates of 

sediment export for Rio Icacos were also reported by McDowell and Asbury [1994], 

Shanley et al. [2011], and Stallard and Murphy [2012]. The comparison of simulated 

results with observations suggests that there is a significant rate of landscape denudation 

at the landscape underlain by quartz diorite. For the Mameyes watershed, soil erosion is in 

the same order of magnitude with the rate of bedrock weathering. The landscape underlain 

by volcaniclastic rock may therefore be closer to a state of equilibrium. This is in agreement 

with the findings of Stallard [2012]. Results for the Icacos watershed contrast the findings 

of Brown et al. [1995] and Brocard et al. [2015] who used cosmogenic 10Be to estimate 

landscape denudation rates of 43 mm kyr-1 and up to 100 mm kyr-1, respectively (see 

chapter 6). The simulated erosion estimate of 1,123 mm kyr-1 suggests that cosmogenic 

rates underestimate the erosional potential of the current state of the system. This may be 

attributed to the relatively larger time scales (tens of thousands of years) 10Be derived 

denudation rates are averaged over, which may not reflect short-term fluctuations of soil 

denudation rates driven by climatic oscillations, vegetation dynamics, and land use 

[Brocard et al., 2015]. 

 

4.6.2 Soil organic carbon redistribution across the landscape 

The importance of the episodic nature of erosion on the estimation of the associated 

C exchange with the atmosphere was demonstrated in chapter 2. According to the results 

of this study, the amount of mobilized organic material by landslides and by episodic 

erosion exhibits significant topographic variation (Figures 3-9 and 3-10). This variation is 
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controlled by slope morphology, forest cover, and by the depth-dependence of soil 

biogeochemical properties.  

This work quantitatively estimated the amount of SOC that is transported with 

sediment from eroding hillslopes and landslide sites across the watershed. For the time 

scales under study, the length of possible SOC transport paths depended on local 

geomorphological characteristics and surface descriptors (e.g., forest cover). The SOC 

transport path can be relatively short in the case of slope failure, where SOC is rapidly 

transferred from unstable slopes to depositional sites, located directly downhill. Longer 

paths are associated with soil aggregates travelling from upland eroding sites to river 

floodplains. During transport, SOC may experience oxidation which depends on the length 

of the transport path and on the stability of soil aggregates [Lal, 1995].  

According to the simulations conducted in this study, relatively flat ridge tops did 

not have significant landslide occurrences (Figure 4-7). Geomorphically-stable ridges 

favor SOC accumulation, and the average biomass turnover time associated with 

geomorphic perturbations was significantly higher compared to lower catena positions 

[Scatena and Lugo, 1995]. Moreover, the residence time of buried SOC at depositional 

sites depended on local rates of sediment transport, and on the extent to which SOC burial 

effectively mitigates oxidation [Chaopricha and Marín-Spiotta, 2014; Van Oost et al., 

2012]. Therefore, this study emphasizes that systematically tracking the dynamics of 

mobilized SOC at the watershed scale is crucial for estimating the combined effects of 

hillslope erosion [Harden et al., 1999], and landslide activity [Stallard, 2012] on soil-

atmosphere C exchange. 
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4.6.3 Assessing the likelihood of modelled scenarios 

To evaluate the extent to which modelled scenarios represent the erosion-induced 

SOC redistribution across the two watersheds, the deposition rate of upland eroded SOC 

was quantitatively estimated at the floodplains of Rio Mameyes and Rio Icacos (section 

4.5.4). The relatively large simulated estimates of total SOC deposition in alluvial 

sediments (Table 4.6) suggest that the two watersheds are characterized by significant rates 

of upland SOC erosion. Soils that have been forming uplands for hundreds to thousands of 

years may erode at rates greater than their rate of development [Stallard, 2012]. Hillslope 

erosion at relatively steep slopes and interfluves may lead to depletion of upland SOC 

stocks. The results of this study suggest that the dynamics of soil thickness (section 4.6.1) 

exert a strong control on the soil’s capacity to produce and store SOC. 

The SOC concentration in the surficial mineral soils of the Luquillo CZO roughly 

ranges from around 1 % to 3 % [Beinroth et al., 1992; Johnson et al., 2015]. The 

preferential mobilization of soil aggregates that contain SOC can lead to the enrichment of 

the eroded sediment in SOC [Berhe et al., 2012; Wilson et al., 2009]. The enrichment factor 

that expresses the associated increase in SOC concentration has been estimated to be equal 

to 1.7 or lower [Kuhn et al., 2009; Polyakov and Lal, 2004; Rumpel et al., 2006]. Thus, it 

is reasonable that SOC concentrations in mobilized sediments at the Luquillo CZO are 

greater than 1 % and up to around 5 %. This range encompasses the simulated SOC 

concentration in eroded soils for the scenarios explored here (Table 4.6), and indicates that 

the three scenarios may reasonably quantify the SOC concentration in eroded sediment that 

is transferred to alluvial sites.  
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4.6.4 Influence of forest types on the erosion-induced carbon fluxes 

The most important C export from the tropical ecosystems at the Luquillo CZO is 

SOC oxidation to atmospheric CO2 [Stallard, 2012]. This study demonstrates the 

importance of forest type on the net erosion-induced C exchange with the atmosphere at 

the study site (section 4.5.3). Severely eroding soil profiles under different forest types at 

the Mameyes and Icacos watersheds were compared, for the simulated maximum sink and 

maximum source scenarios (Figure 4-11). In the maximum source scenario, erosion of 

surficial soil horizons reduced the potential of the remaining soil system to produce SOC. 

In the maximum sink scenario soil erosion may significantly alter the depth-dependent rate 

of SOC oxidation in the soil profile. 

Tabonuco and palm forests are characterized by markedly greater (more than double) 

NPP values compared to colorado forests (Table 4.1). Despite differences in NPP, the 

depth-dependence of SOC production rate can be similar for soil profiles across different 

forest types in the Luquillo CZO [Wang et al., 2003]. Lateral removal of topsoil may alter 

the rate of SOC production in tabonuco and palm soils more significantly, compared to 

colorado soils. This was reflected in the considerably higher C loss to erosion at tabonuco 

and palm soils, simulated in the maximum source scenario (Figure 4-11 and Table 4.5). In 

the maximum sink scenario the erosion-induced alteration of the SOC oxidation rate was 

more significant in tabonuco and palm soils, while SOC production was maintained at high 

levels. This led to a greater net increase of SOC storage at tabonuco and palm soil profiles. 

Thus, the range of possible erosion-induced C fluxes illustrated in Figure 4-11 for the 
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maximum sink and maximum source scenarios was greater for palm and tabonuco soils. 

As a result, in the extreme scenarios modelled here, sediment transport had a stronger effect 

on the C exchange with the atmosphere at palm and tabonuco soils, compared to colorado 

soils. The results of this study highlight that the spatial distribution of forest types is a key 

factor that controls the simulated erosion-induced soil-atmosphere C exchange at the 

watershed scale. 

 

4.6.5 Net atmospheric carbon sink or source 

The hydro-geomorphic response of the sites under study was quantitatively estimated 

in terms of SOC erosion and C exchange with the atmosphere at the watershed scale. SOC 

loss to erosion at the maximum source scenario was significant across the two watersheds. 

The maximum sink scenario is characterized by rapid replacement of eroded C by 

atmospheric C sequestration. The results of this study ranged from a maximum source 

strength of 18.3 g C m-2 yr-1, to a maximum sink strength of 21.5 g C m-2 yr-1 for Mameyes, 

and from a maximum source strength of 14.9 g C m-2 yr-1, to a maximum sink strength of 

17.1 g C m-2 yr-1 for Icacos watersheds. The inferred range encompasses the previous 

estimates of erosion-induced C sink strengths by Harden et al. [1999] (10 to 20 g C m-2 yr-

1), Van Oost et al. [2005] (3 to 10 g C m-2 yr-1), and Yoo et al. [2005] (up to 2.8 g C m-2 yr-

1). The simulated soil-atmosphere C exchange for the intermediate scenario (6.0 g m-2 yr-1 

C sink for Mameyes, and 3.3 g m-2 yr-1 C sink for Icacos, respectively) is in agreement with 

the C sink strength estimates reported by Van Oost et al. [2005], and Yoo et al. [2005]. The 

different scenarios may reflect changes in the effect of hillslope erosion on the soil-
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atmosphere C exchange as a result of different perturbations at the Luquillo CZO [Stallard, 

2012]. Changes in land use and extreme hydro-climatic phenomena [Larsen and Torres-

Sánchez, 1992; Scatena and Larsen, 1991] may lead to a transition between a net C source 

and a net C sink over time at the watershed scale in tropical ecosystems [Ciais et al., 2013; 

Harden et al., 1999; Van Oost et al., 2007]. 

This work studied how the spatial distribution of forest cover is inferred to control 

the ranges of potential erosion-induced C exchange with the atmosphere at the watershed 

scale. Colorado forest primarily (around 86 % of the area) covers the Icacos watershed 

(Figure 4-2c), while the Mameyes watershed is for the most part (around 87 % of the area) 

covered by tabonuco and palm trees (Figure 4-1c). As discussed in section 4.6.4, sediment 

transport can have a stronger impact on soil-atmosphere C exchange in tabonuco and palm 

soils, which are characterized by greater maximum C sink and C source strengths, 

compared to soils covered with colorado forest. Therefore, the watershed-integrated 

response to geomorphic perturbations at the Icacos watershed resulted in a narrower range 

of potential C fluxes with the atmosphere, compared to the Mameyes watershed. 

 

4.6.6 Soil organic carbon replacement at landslide scars 

According to the findings of this study, landslides removed surficial and deeper soil 

layers and associated SOC. This work assumed rapid revegetation at landslide sites. Part 

of the eroded C at fresh scars may be rapidly replaced by atmospheric C sequestration 

during succession [Stallard, 1998; 2012; Zarin, 1993; Zarin and Johnson, 1995]. For the 

maximum sink scenario, C sequestration led to rapid SOC production at fresh landslide 
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scars. At the intermediate scenario, a substantial part of the eroded SOC was rapidly 

replaced at landslide sites. The rate of SOC replacement at landslide sites decreases with 

time [Stallard, 2012; Zarin and Johnson, 1995]. At the maximum source scenario, C 

replacement was limited, and the net erosion-induced SOC loss was higher at landslide 

sites (Figures 4-9 and 4-10). 

Simulations suggest that on the average, 62 % of eroded SOC at landslide scars has 

been replaced by atmospheric CO2 sequestration in 100 years at the Mameyes watershed. 

The corresponding SOC replacement in the Icacos watershed was estimated equal to 67 %. 

The rapid rates of dynamic C replacement at landslide scars highlight the crucial role of 

landslide occurrence on C erosion and accumulation in tropical watersheds. The estimated 

rates of C replacement are in agreement with the ones reported by Stallard [2012], who 

used measurements from Zarin [1993] in a simple single-site mass balance model, to 

quantify the rate of C replacement at landslide scars in the Luquillo CZO. The data set 

characterized the regeneration of soils in chronosequences of landslide scars in the 

Mameyes and Icacos watersheds, in addition to other sites [Zarin and Johnson, 1995]. 

Stallard [2012] estimated that about half the eroded SOC can be replaced in approximately 

80 years, and that replacement of the entire SOC loss occurs over 200 years. The 

congruence of the results of this study with Stallard's [2012] analysis is notable, as the two 

estimates derive from different approaches. 
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4.6.7 Potential limitations of the approach 

Different simplifying assumptions were invoked in the coupled spatially-explicit 

framework. While this study uses SOC observations for the two watersheds under study, 

SOC content was represented for entire soil profiles by the means of continuous functions 

with depth (equation (4.2)), which roughly approximated the initial SOC content from 

diverse soil profiles (Figure 4-3). The soil properties discussed in sections 4.4.5 and 4.4.6 

were assumed time invariant and constant with depth for each soil textural class (except 

the depth-dependent hydraulic conductivity [Ivanov et al., 2004a]), and the spatial variation 

of forest types and parameters Fl and v are constant in time [Francipane et al., 2012; Lepore 

et al., 2013]. The initial rates of SOC production in surficial soil horizons were assumed 

spatially uniform (section 4.4.1) within each forest type. This approach does not account 

for potential feedbacks of SOC content on soil erodibility, which was calibrated (section 

4.4.6) and assumed time invariant over the simulation period. Also, the tRIBS-ECO models 

hydrologically-induced fluvial transport of organic material at the two watersheds, yet it 

does not explicitly represent sources and sinks of particulate organic C (POC) and 

dissolved organic C (DOC) in the stream network [Shanley et al., 2011; Stallard, 2012; 

Stallard and Murphy, 2012]. 

 

4.7 Summary 

The dynamics of soil organic carbon (SOC) in tropical forests play an important role 

in the global carbon (C) cycle. Past attempts to quantify the net C exchange with the 

atmosphere in regional and global budgets do not systematically account for dynamic 
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feedbacks among linked hydrological, geomorphological, and biogeochemical processes, 

which control the fate of SOC. This work quantifies effects of geomorphic perturbations 

on SOC oxidation and accumulation in two adjacent wet tropical forest watersheds 

underlain by contrasting lithology (volcaniclastic rock and quartz diorite) in the Luquillo 

Critical Zone Observatory. This study uses the spatially-explicit and physically-based 

model of SOC dynamics tRIBS-ECO (Triangulated Irregular Network-based Real-time 

Integrated Basin Simulator-Erosion and Carbon Oxidation) and measurements of SOC 

profiles and oxidation rates. The results suggest that hillslope erosion at the two watersheds 

may drive C sequestration or CO2 release to the atmosphere, depending on the forest type 

and land use. The net erosion-induced C exchange with the atmosphere was controlled by 

the spatial distribution of forest types. The two watersheds were characterized by 

significant erosion and dynamic replacement of upland SOC stocks. Results indicate that 

the landscape underlain by volcaniclastic rock has reached a state close to geomorphic 

equilibrium, and the landscape underlain by quartz diorite is characterized by greater rates 

of denudation. These findings highlight the importance of the spatially-explicit and 

physical representation of C erosion driven by local variation in lithological and 

geomorphological characteristics and in forest cover. 
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CHAPTER 5. Uncertainty in rainfall-triggered landslide modelling 

associated with the spatial variation of soil hydrological and 

geotechnical properties 

 

5.1 Introduction 

Rainfall-triggered landslides are among the most common types of landslides, which 

every year cause fatalities and economic losses globally [Keefer and Larsen, 2007]. 

Coupled spatially-explicit hydrological-stability models can be used to evaluate the risk of 

shallow rainfall-triggered landslide hazards at catchment scale (section 4.2). The practice 

is, typically, to utilize the basin hydrological response, evaluated in terms of soil moisture 

and groundwater fields, to assess a spatially distributed Factor of Safety (FS) by using the 

infinite slope model [Arnone et al., 2011; Capparelli and Versace, 2010; Montgomery and 

Dietrich, 1994; Rosso et al., 2006; Simoni et al., 2008]. Mechanical and hydrological soil 

properties play a crucial role in such an evaluation, and the importance of appropriately 

modelling soil water dynamics has been clearly demonstrated in some studies [Lanni et al., 

2009; Lepore et al., 2013]. 

A limitation in using physically-based and spatial distributed models is the relatively 

large numbers of model parameters whose reliable estimation is not always possible in a 

natural catchment. The inability to fully characterize hydrological and geotechnical 

behavior of soil may have a significant impact on model results. To account for this 

uncertainty, FS can be computed within a probabilistic framework, by considering soil 
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parameters as random variables. This practice has received considerable attention in the 

geotechnical engineering literature, which proposes different methodologies for modelling 

and analyzing the uncertainty related to the shear strength parameters (i.e., soil cohesion 

and friction angle) at the hillslope scale [Abbaszadeh et al., 2011; Malkawi et al., 2000; 

Ray and Baidya, 2011]. Based on similar approaches, some studies have been conducted 

for basin scale applications within coupled hydrological-stability models [Frattini et al., 

2009; Melchiorre and Frattini, 2012; Pack et al., 1998; Simoni et al., 2008]; in such 

applications, the probability of failure, conditioned to soil moisture, is dynamically 

estimated across the basin, whereas the probability distributions of the shear strength 

parameters are time independent. However, the uncertainty of soil hydrological properties, 

which may be predominant in case of unsaturated conditions, is typically neglected in the 

literature. In particular, soil retention curve parameters are the most significant in 

determining the contribution of the soil matric suction to slope stability. 

The probability distribution of FS can be derived numerically, analytically or through 

analytical approximations. The Monte Carlo simulation method uses independent sets of 

soil properties, generated through a priori assigned probability distributions at fixed 

topographic (i.e., slope) and hydrological (i.e., soil moisture) conditions to obtain a 

solution. However, such an approach may have significant computational cost for basin 

scale applications, since the aforementioned conditions change in time and space. The FS 

probability distribution can be analytically derived in the case where solely geotechnical 

parameters (i.e., cohesion and friction angle) are considered as random variables (e.g., for 

saturated conditions) and the infinite slope model is used for the slope stability analysis 

[Abbaszadeh et al., 2011; Malkawi et al., 2000]. If the soil retention curve parameters are 
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also assumed to be random (e.g., for unsaturated conditions), the derivation of FS 

distribution is not analytically tractable. In this case, the First Order Second Moment 

(FOSM) method [Benjamin and Cornell, 1970] can be used to approximate the spatio-

temporal statistics of FS (i.e. mean and variance), to ultimately fit a theoretical probability 

distribution for FS and estimate the spatio-temporal dynamics of probability of failure 

(section 5.2.2). 

In order to systematically account for the parameter uncertainty, this study proposes 

a probabilistic approach for coupled distributed hydrological-stability models based on the 

FOSM method, which was implemented in the tRIBS-VEGGIE (Triangulated Irregular 

Network (TIN)-based Real-time Integrated Basin Simulator - VEGetation Generator for 

Interactive Evolution) - Landslide module [Lepore et al., 2013]. The proposed 

methodology was applied to the Rio Mameyes Basin in the Luquillo CZO (section 4.3), a 

site particularly susceptible to rainfall-triggered landslides [Larsen, 2012]. The spatial and 

temporal patterns of precipitation may have different impacts on the hydrologic response 

[Ogden and Julien, 1993; Singh, 1997; Wilson et al., 1979] and also influence slope 

stability [D'Odorico et al., 2005]. In addition to the description and implementation of the 

probabilistic framework in the coupled physically-based model, this study also aims to 

assess the effects of different rainfall hyetographs on landslide initiation across the basin. 

This chapter is a verbatim recompilation of Arnone et al. [2016], Arnone et al. [2014], and 

includes material directly from Dialynas et al. [2013], and Arnone et al. [2013]. The 

significant contribution of Elisa Arnone to this chapter is acknowledged. 
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5.2 Methods 

5.2.1 Coupled Hydrological-Stability Model 

The methodology is built around the tRIBS-VEGGIE-Landslide model [Lepore et 

al., 2013] which was developed by embedding a limit equilibrium analysis into the eco-

hydrological model tRIBS-VEGGIE [Ivanov et al., 2008a]. The model inherits from tRIBS 

(see section 2.2.2) the capability to simulate most of the hydrological processes (e.g. 

infiltration, evapotranspiration, interception, lateral redistribution, soil moisture 

dynamics), by explicitly considering the spatial variability of land-surface properties as 

well as in precipitation fields. An irregular triangulated spatial mesh [Vivoni et al., 2004] 

is used to describe topography (section 5.3.2). The vegetation module (VEGGIE) simulates 

the plant physiology, and in particular the biophysical energy processes (e.g. transpiration), 

biophysical hydrologic processes (e.g. unsaturated zone flow) and biochemical processes 

(e.g. photosynthesis, plant respiration). A detailed description of model is given in Ivanov 

et al. [2008a]. Some key characteristics of the model are discussed below:  

 The infiltration module is based on a numerical approximation of the one 

dimensional Richards’ equation [Hillel, 1980], which provides the moisture 

transfer in the subsurface within an element. Subsurface and surface moisture is 

then laterally redistributed among the elements along the direction of steepest 

descent in a rate depending on the unsaturated hydraulic conductivity of the 

receiving cell.  

 As a consequence of the Richard’s equation resolution scheme, soil moisture is 

estimated in a multi-layer scheme parallel to the slope surface, with a number of 

layers equal to 25. 
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 The Brooks and Corey [1964] (BC) parameterization scheme is used to model the 

soil retention curve and the unsaturated hydraulic conductivity, as a function of 

saturated hydraulic conductivity in the normal to the soil surface direction, air entry 

bubbling pressure, and pore-size distribution index.  

The coupled model is capable to dynamically compute the factor of safety, FS(t), 

across a basin as a response of the soil moisture dynamics, by applying the infinite slope 

analysis. The implemented equation is the following [Lepore et al., 2013]:  
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where FS(t) is the time dependent factor of safety (hereinafter simply FS), c’ is the effective 

soil cohesion, s is the total unit weight of soil (varying with soil moisture), w is the water 

unit weight, zn is the soil depth measured along the normal direction to the slope; is the 

slope angle,  is the soil friction angle, b is the air entry bubbling pressure, is the pore-

size distribution index, (t) is the time depended volumetric water content (hereinafter 

simply ), and r and s are the residual and saturated soil moisture contents, respectively. 

b, r and s are the Brooks-Corey equation parameters used to represent the soil 

retention curve. As a result of the multi-layer representation of soil moisture, the final 

products of the module are dynamic maps of instability areas as well as dynamic FS profiles 

at selected areas. 
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5.2.2 Probabilistic Framework 

A probabilistic framework was developed to take into account the soil parameters 

uncertainty that characterizes slope stability analyses. The methodology consists of i) 

treating the soil hydrological and geotechnical parameters of the FS equation equation 

(5.1)as random variables, ii) approximating FS moments using the FOSM method, and 

iii) fitting a theoretical FS distribution to estimate the probability of failure across the basin.  

The FOSM method is the most widely used approximate method in engineering 

design for the analytical estimation of the mean and variance of a random function and it 

is based on a Taylor series expansion. Consider a function of variables, X1,…,Xn: 

Y=y(X1,…,Xn). The approximation used here expands up to second order terms in the 

Taylor series (e.g., as opposed to Formetta et al. [2016], who considered first order terms), 

resulting in: 
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where E[·] denotes the expectation, Var[·] denotes the variance, Cov[Xi, Xj] denotes the 

covariance between Xi and Xj and n is the number of random variables. The variance of the 

random function Y is approximated by the FOSM method as follows: 
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Derivatives of y in equations (5.2) and (5.3) are estimated around the mean values μXi.  
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Given the marginal (means and variances) and joint statistics (covariances) of the 

assumed random variables (c, , r, s ,b, and), equations (5.2) and (5.3) approximate 

the mean, and variance of FS, E[FS] and Var[FS] respectively. Equation (5.1) is 

continuously differentiable with respect to each assumed random variable, a condition 

required for the analytical implementation of the FOSM method. First, second and mixed 

derivatives of equation (5.1) with respect to each of the six parameters were derived. Each 

term is thus a function of the topographic characteristics and the soil moisture spatial and 

temporal dynamics (, leading the statistics E[FS] and Var[FS] that are dependent on both 

space and time, via changes in the moisture and topography.  

By fitting a two-parameter probability distribution to the FS moment 

approximations, the soil moisture dependent probability of failure can be estimated, i.e., 

the probability that FS is less than a given critical value, FScrit, Pr[FS<FScrit]. This critical 

value is the one that delimits stable and unstable conditions, and based on the definition of 

FS (equation (5.1)), is typically assumed equal to 1. The best-fit theoretical FS distribution 

can be identified by Monte-Carlo experiments with fixed hydrologic and topographic 

conditions (see section 5.4). The Normal distribution has been used in the literature to 

describe the random character of FS [Abbaszadeh et al., 2011; Malkawi et al., 2000; Simoni 

et al., 2008]. However, in those studies only the geotechnical parameters were considered 

as random variables. Nevertheless, Frattini et al. [2009] found that the FS may exhibit 

significant positive skewness, with the tail of the distribution located on the right, with 

considerable probability mass concentrated on the left side of the distribution. In order to 

capture the asymmetry of the FS distribution, they used the lognormal distribution, that 

was verified for different soil formations. 
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Under saturated conditions, matric suction vanishes and FS is independent of the BC 

parameters, becoming a linear function of the normally distributed soil cohesion and 

friction angle [Lepore et al., 2013]. In this case, the FS distribution is analytically derived 

and the use of an approximate method is not required. More precisely, by applying the 

convolution integral [Feller, 1971] it can be shown that the FS becomes also a normally 

distributed random variable, and the FS statistics (i.e., E[FS] and Var[FS]) are given by: 
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where c, 2
c, and tan, 2

tan are the statistics of cohesion and friction angle respectively, 

hs the soil thickness and hw the water level. Given the FS distribution, the probability of 

failure for saturated conditions is then computed as the cumulative probability that FS is 

less than 1: 
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where erf is the error function.  

The framework described above was implemented in the tRIBS-VEGGIE-Landslide 

model to dynamically evaluate the landslide hazard at basin scale. In particular, 

probabilities of failure are computed for each time step, Voronoi element and soil vertical 

layer (i). The probability of FS being equal or lower than a critical value at the ith layer 
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(here referred to as event Ei, corresponding to the Probability of Failure at the ith layer, PrFi) 

is computed. At each timestep, the model estimates the spatial map of the probability of 

landslide occurrence at each soil column, here referred as Probability of Failure of the soil 

Column (PrFC). The PrFC is equal to the probability of occurrence of the union of events 

Ei for the entire soil column. Furthermore, at each soil column the probability of the 

landslide depth is estimated. The probability that the plane of failure is located at the ith 

layer (here referred as Probability of Plane of Failure at ith layer, PrPFi) is given by the 

joint probability of FS being equal or lower than FScrit at layer i, while there is no failure 

above that layer. The simplifying assumption of independent and mutually exclusive events 

among different soil layers allows the estimation of PrPFi at each time step. The landslide 

depth corresponding to the maximum value of PrPFi represents the most probable depth 

of failure. Thus, the model is able to evaluate when and where failure is most probable to 

be initiated within each soil column and across the basin. 

 

5.3 Case study 

The Rio Mameyes basin (Figure 4-1a), described in section 4.3 is used as a case 

study. The Mameyes basin is characterized by a rapid change in elevation from 104.2 m to 

1046 m across a horizontal distance of 3 km. An analysis of the slope distribution derived 

from a 30 m DEM (Figure 4-1a) showed that 10% of the basin area is characterized by 

slopes greater than 30°, and 30% of the basin area by slopes greater than 25°. The Mameyes 

basin has been previously modeled in terms of spatio-temporal dynamics of hillslope 

stability by [Lepore et al., 2013] using the tRIBS-VEGGIE-Landside model. Most of the 
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required input data, data description and model setup are described in detail in Lepore et 

al. [2013]. The main model data and parameters are described in the following sections. 

  

5.3.1 Input data and model parameters  

The meteorological data used were obtained from the Bisley Tower (section 4.4.4). 

The selection of the DEM used to construct the model’s Triangulated Irregular Network 

(TIN) is discussed in section 5.3.2. The modelled soil types are discussed in section 4.4.3 

(Figure 4-1b). The main hydrological soil properties (e.g., saturated hydraulic conductivity, 

anisotropy ratio) were obtained through a validation/confirmation procedure conducted by 

Lepore et al. [2013], based on soil moisture data. In particular, nine soil moisture hourly 

series measured at a 30 cm depth were used for the model confirmation. The measurements 

were taken at three locations close to the Bisley Tower (Figure 4-1) and each using three 

time-domain reflectometry (TDRs) Campbell Scientific Model CS616 instruments. Also, 

tRIBS-VEGGIE defines the anisotropy ratio as the ratio of the saturated hydraulic 

conductivities in the directions parallel to the slope and normal to the slope. In this work, 

an anisotropy ratio of 100 was assumed [Lepore et al., 2013].  

The BC soil retention parameters, i.e. r, s, b, and, and their statistics were 

estimated from a generalized soil properties database available in the literature (Table 5.1). 

In particular, Brakensiek et al. [1981] suggested transformations of the BC parameters to 

normality and reported their statistical properties for different soil types. McCuen et al. 

[1981] reported BC parameters statistics and demonstrated the variation that the BC 

parameters exhibit across different soil textural classes. Rawls et al. [1982] provided BC 
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marginal statistical properties. Meyer et al. [1997] and Flores et al. [2010] reported 

marginal distributions of BC parameters by applying parameter equivalency relationships 

between BC and van Genuchten [1980] soil retention parameters. This study uses the 

statistical properties (i.e., means, variances and cross-correlation coefficients) reported in 

Brakensiek et al. [1981] and McCuen et al. [1981] and the corresponding transformations 

of BC parameters to normal random variables (Table 5.1), which allowed the use of the 

joint Normal distribution for the BC soil retention parameters (section 5.4). 

 

Table 5.1. Hydrological and mechanical soil properties and their statistics for the four soil 

types present in the Mameyes basin.  

Parameter Description Units Clay – Loam Sandy – Loam Silty - Clay Clay 

Ks Saturated hydraulic conductivity [mm/hr] 50.0 50.0 50.0 10.0 

S Mean of saturated soil moisture,S [mm3/mm3] 0.56 0.55 0.55 0.53 

R Mean of residual soil moisture,R [mm3/mm3] 0.075 0.041 0.051 0.09 

 Mean of pore-size distribution index, [-] 0.200 0.322 0.127 0.130 

b Mean of air entry bubbling pressure,b [mm] -250 -150 -340 -370 

c’ Mean of soil effective cohesion, c’ [N/m2] 3000 3000 3000 3000 

 Mean of soil friction angle, [°] 25 25 25 25 

c’ Standard deviation of c’ [N/m2] 1200 1200 1200 1200 

 Standard deviation of  [°] 2.5 2.5 2.5 2.5 

b Standard deviation of b [mm] 290 210 390  600 

S Standard deviation of S [mm3/mm3] 0.054 0.076 0.064  0.040 

R Standard deviation of R [mm3/mm3] 0.007 0.004 0.022  0.011 

 Standard deviation of  [-] 0.113 0.145 0.094 0.098 

b-S Coefficient of correlation b-S [-] 0 0 0 -0.216 

b-R Coefficient of correlation b-R [-] 0.203 0 0 0.154 

b- Coefficient of correlation b- [-] 0.151 0.274 0 0.128 

S-R Coefficient of correlation S-R [-] 0.307 0 0 0 

S- Coefficient of correlation S- [-] 0.168 0 0 0 

R- Coefficient of correlation R- [-] 0.429 0.518 0.476 0.442 
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With regard to the geotechnical parameters, Simon et al. [1990] and Lohnes and 

Demirel [1973] reported values for cohesive strength and friction angle for some of the 

geological units of the study area, and illustrated the expected high variability of these two 

quantities. As in Lepore et al. [2013], this study assumed spatially homogenous properties 

over the entire basin following the predominant geological unit [Simon et al., 1990]. The 

uncertainty characterizing estimates of soil cohesion and friction angle has been thoroughly 

studied in the literature. Lumb [1966] suggests that c’ and  can be described by the Normal 

distribution. This assumption has been widely used in the literature [Abbaszadeh et al., 

2011; Frattini et al., 2009; Langejan, 1965; Malkawi et al., 2000; Melchiorre and Frattini, 

2012; Rackwitz, 2000; Simoni et al., 2008; Tobutt, 1982; Wu and Kraft, 1967]. Fredlund 

and Dahlman [1972], Lumb [1974] and Schultze [1975] provided statistical properties of 

geotechnical parameters. Matsuo and Kuroda [1974] and Lumb [1974] suggested that 

correlation between cohesion and friction angle is negligible, and independence between 

the two random variables has been assumed in past studies [Abbaszadeh et al., 2011; 

Christian et al., 1994; Dettinger and Wilson, 1961; Malkawi et al., 2000; Yucemen MS et 

al., 1975]. Therefore, this work assumes that c’ and  are independent Normal random 

variables. The associated statistics of the geotechnical parameters are reported in Table 5.1. 

Incorporating marginal distributions consistent with the literature is an advantage of the 

implemented framework over simpler approaches (e.g., Pack et al. [1998] who assume 

input parameters which follow a uniform distribution). 

As for the vegetation characteristics, only the Tabonuco forest is considered in this 

study, because it is the predominant vegetation type of the basin, and it is present where 

both the meteorological and the soil moisture measurements were taken [Lepore et al., 
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2013]. The forest is modeled as broadleaf evergreen tropical (BET) class, with vegetation 

height of 20 m and a LAI of 6 m2 m−2 [Wang et al., 2003; Weaver and Murphy, 1990]. The 

root component was modeled with a rectangular density function through a depth of 40 cm 

(typical of the Tabonuco forest). Other parameters used in the vegetation modelling were 

obtained from the literature [Ivanov et al., 2008a; b; Wang et al., 2003; Weaver and 

Murphy, 1990]. 

 

5.3.2 Selection of Digital Elevation Model  

The extraction of topographical information from DEMs (e.g., slope, aspect, flow 

path, and upstream contributing area) is of great interest in landscape modelling. 

Particularly, the catchment slope distribution directly affects the location of landslide prone 

areas, because slope impacts the equilibrium of the involved stabilizing and destabilizing 

forces [Keijsers et al., 2011; Tarolli and Tarboton, 2006]. Errors in the extraction of slope 

from DEMs (and other topographical properties, in general) may derive not only from the 

corresponding applied algorithms, but also from the quality and resolution of the geospatial 

information depicted in DEMs. In fact, slope frequency distributions vary with different 

DEM resolutions [Claessens et al., 2005].  

The impact of DEM resolution to the simulation of landside occurrence was studied 

using different DEM resolutions (i.e., 20, 30, 50, and 70 m), resampled from a 10 m DEM, 

available from the USGS National Elevation Dataset 

(http://nationalmap.gov/elevation.html). The nearest neighbor resampling technique was 

used, which is a typical interpolation method that does not alter the value of the input cells. 
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More precisely, the output cell center is located on the input grid dataset. Then, the location 

of the closest cell center on the input grid is determined, and the value of that cell is 

assigned to the corresponding output cell. Figure 5-1 illustrates the catchment slope 

cumulative frequency distribution for different DEM resolutions. DEM resolutions coarser 

than 10 m underestimate the frequency of steep slopes. 

 

 

 

Figure 5-1. Catchment slope cumulative frequency distribution for different DEM 

resolutions. 

 

A TIN was constructed for each DEM resolution. The hydrographic TIN method was 

used to derive the hydrologically-significant TIN from the gridded DEM [Vivoni et al., 

2004]. The TIN representation of surface aims at reducing the number of elevation nodes, 

while preserving the distribution of topographic attributes such as slope and curvature, as 

well as hydrographic features. Moreover, the topographic approach used for the 
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construction of TINs was the Latticetin sampling method [Lee, 1991]. This traditional 

approach preserves the catchment slope distribution in a robust and accurate manner (e.g., 

Vivoni et al. [2004]). This method successively removes DEM points, and retains 

significant points that result in a TIN surface following a specified elevation tolerance. The 

number of the preserved DEM elevation points was selected according to a reasonable 

balance between feasible computational cost and efficient preservation of topographic 

characteristics (e.g., catchment slope distribution). The number of points for each DEM 

and TIN, and the percentage of retained points are given in Table 5.2: the coarser the 

resolution, the higher the percentage of points required to preserve the slope frequency 

distribution. 

 

Table 5.2. Number of DEM cells, TIN nodes, and Voronoi cells for each Grid-DEM 

resolution. 

Grid-DEM 

Resolution (m) 
DEM Cells TIN Nodes TIN to DEM Ratio Voronoi Cells 

10 169,615 6,974 4% 6,276 

20 42,400 3,605 9% 3,131 

30 18,837 2,603 14% 2,190 

50 6,782 2,274 34% 1,908 

70 3,462 2,416 70% 2,177 

 

Furthermore, for each DEM resolution, the model’s mesh of computational elements 

(Voronoi cells) was constructed [Ivanov et al., 2004a; Vivoni et al., 2004]. The geometry 

of the Voronoi cells closely follows the TIN network [Ivanov et al., 2004a]: each TIN node 
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corresponds to a Voronoi cell, the boundaries of which consist of the perpendicular 

bisectors of the associated TIN edges (similar to Thiessen polygons). Because some nodes 

are used as catchment boundaries (closed mesh boundary node), the final number of 

Voronoi cells is lower than the TIN nodes (Table 5.2). Although the TIN construction 

preserves topographic features such as the catchment slope frequency distribution, the 

Voronoi construction method may alter the DEM slope frequency distribution (Figure 5-2). 

Analysis at different resolutions showed that Voronoi meshes tend to exhibit higher 

frequency of occurrence of steeper slopes, compared to the original DEM slope 

distributions (Figure 5-2). Voronoi meshes also exhibited a smoothing effect within gentler 

slope classes (< 20°). Spatial slope distributions of Voronoi cells corresponding different 

DEM resolutions are given in Figure 5-3. 
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Figure 5-2. Catchment slope cumulative frequency distributions corresponding to the 10 

m (grid) DEM, and to Voronoi meshes derived from 10 m, 20 m, 30 m , 50 m, and 70 m 

DEMs. 
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Figure 5-3. Spatial slope (in radians) distribution of voronoi cells corresponding different 

DEM resolutions: 10 m (a), 20 m (b), 30 m (c), and 50 m (d). 

 

The Voronoi meshes for each DEM resolution were used as inputs to the tRIBS-

VEGGIE landslide model (section 5.2.1) in order to compare the results in term of slope 

stability. The model inputs used for the analysis (meteorological forcing, soil properties, 

model parameters) are the same described in section 5.3.1 and in Lepore et al. [2013]. 

Particularly, the case of anisotropy ratio (ratio of the saturated hydraulic conductivities in 

the directions parallel to the slope and normal to the slope) equal to 1 was considered. 

Results of this sensitivity analysis are presented in Figures 5-4 and 5-5. Figure 5-4 shows 

the FS spatial distributions at a selected hour (i.e., rainfall of around 100 mm) for Voronoi 

meshes derived from DEM resolutions of 10, 20, 30 and 50 m (from left to right): black 

elements denotes areas where FS ≤ 1.  



 140 

 

 

Figure 5-4. Spatial model outputs: FS distributions for Voronoi meshes corresponding to 

DEM resolutions of 10, 20, 30 and 50 m. The percentage of failing Voronoi cells for each 

depth (and up to of 2 m) is shown in the relative frequency histogram reported on top of 

each map. 

 

According to Figure 5-4, the finer the resolution, the slightly larger the area affected 

by landslide occurrence, particularly in the north-western part of the basin which is 

characterized by the steepest hillslopes [Lepore et al., 2013]. For all mesh resolutions, 

failure mainly occurs with similar frequency at depths of about 400 and 500 mm. Figure 

5-5 illustrates box plots of failure slope values (i.e., slope at which each element has failed) 

for each case, confirming the consistent behavior depicted in Figure 5-4 throughout the 

four DEM resolutions. The average failure slope is equal to about 0.58 rad for each DEM 

resolution, with minimum and maximum values of about 0.3 and 0.9 rad. The 50 m case 

exhibits a slightly different range. 
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Figure 5-5. Box plots of failure slope values (i.e., slope at which each element has failed) 

for Voronoi meshes corresponding to DEM resolutions of 10, 20, 30 and 50 m. 

 

This preliminary analysis showed that the use of different DEM resolutions did not 

lead to significant difference in the watershed-scale landslide model outputs. This can be 

justified by the tendency of the Voronoi-constructing algorithm to generate steeper slopes 

compared to the original DEM slope distributions, as previously discussed. Therefore, in 

this study a 30 m DEM of the Mameyes watershed was selected for the construction of the 

Voronoi mesh (Figure 5-3c), which significantly reduces computational cost (i.e., 

compared to the use of a 10 m DEM (Table 5.2)). Also, in cases where model inputs are 

available in finer spatial scales, high-resolution inputs of hydro-meteorological forcings, 

soil properties, and forest cover may also become important factors in creating accurate 

representations of landslide phenomena, and in selecting the optimal scale of Voronoi 

elements. 
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5.4 Factor of safety probability distribution 

As previously discussed, the selection of the probability distribution was based on 

Monte Carlo experiments for various hydrological and topographical conditions (i.e., soil 

moisture and slope values and soil depth). First, values of BC parameters, soil cohesion, 

and friction angle are sampled from the corresponding assumed theoretical distributions 

(as explained section 5.2.2), given the moments reported in Table 5.1. Then, the FS is 

estimated (equation (5.1)) for each set of sampled values, and for the given hydrological 

and topographical conditions. The results are then used to obtain the empirical distribution 

of FS. The procedure was repeated for different sets of slope, soil depth and soil moisture, 

and for all different soil types characterizing the area, i.e., clay, clay-loam, silty-clay, and 

sandy-loam. The empirical FS distributions were compared to different analytical 

probability distributions, based both on Kolmogorov-Smirnov goodness of fit statistics and 

visually. The graphical method of Quantile-Quantile (QQ) plots [Wilk and Gnanadesikan, 

1968] was used for visual comparison. This study focuses on reproducing the values of FS 

probability around 1, which is the FScrit for failure. Thus, it is important that the theoretical 

quantiles be as close as possible to the empirical ones around values of FS=1. 

Several two-parameter theoretical distributions were compared against the empirical 

FS distribution as well as different combinations of fixed values of slope, depth of failure, 

and volumetric water content. For the sake of brevity, the comparison of only three 

probability distributions is shown against the empirical FS distribution (Figure 5-6), i.e., 

the normal, lognormal, and inverse gamma distributions, for the case of slope, depth of 

failure, and volumetric water content equal to 40°, 1000 mm, and 0.3 mm3/mm3, 

respectively, and for hydrological and soil properties given in Table 5.1. The inverse 
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gamma distribution, which constitutes a special case of Pearson V distribution [Pearson, 

1895], is a non-negative skewed distribution, characterized by a heavy tail on the right.  

 

 

Figure 5-6. Comparison of the empirical FS quantiles vs the theoretical FS quantiles of 

Normal (purple), Lognormal (blue), and Inverse Gamma (red) distributions, for (a) clay, 

(b) clay-loam, (c) sandy-loam, and (d) silty-clay. The values of slope, depth of failure 

surface and volumetric water content correspond to 40°, 1000 mm, and 0.3 mm3/mm3, 

respectively, while the associated statistical properties are reported on Table 5.1. 
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The ideal agreement between theoretical and empirical quantiles is depicted by the 

diagonal gray line in the QQ plots of Figure 5-6. This figure demonstrates that the normal 

distribution (purple dots) is the worst in terms of reconstruction of the empirical quantiles 

whereas the best results correspond to the inverse (red dots) and the lognormal (blue dots) 

distributions. Given that the goal is to identify the distribution that provides the most 

accurate estimation of FS quantiles close to the critical value (1 in this case), the inverse 

gamma distribution can be considered as the most appropriate distribution for the 

estimation of the probability of failure. Similar results were obtained for other 

combinations of slope, depth of failure, and volumetric water content. 

The inverse gamma distribution was then used in tRIBS-VEGGIE-Landslide for the 

dynamic computation of the FS distribution at each cell. The probability of failure for 

unsaturated conditions is then computed as the cumulative probability that FS is less than 

1: 
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where  and  are the parameters of the distribution, defined as a function of the mean and 

variance of FS: 
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Note that the results are strictly dependent on the assumed moments of the random 

variables (i.e., values given in Table 5.1).  

 

5.5 Rainfall analysis 

In order to evaluate the effect of the temporal rainfall distribution and provide 

generalized landslide probability maps for the study area, different synthetic hyetographs 

representative of extreme rainfall observations were used to force the model. The 

hyetographs were derived from the precipitation frequency estimates provided by the 

NOAA Atlas 14 Volume 3 [Bonnin et al., 2006] for Puerto Rico and the U.S. Virgin Islands 

(available at http://hdsc.nws.noaa.gov/hdsc/pfds). Estimates are provided for several 

durations and return periods and are based on statistical analysis of annual precipitation 

maxima. These estimates were derived based on a regional frequency analysis that uses the 

L-moments method [Hosking and Wallis, 1997] for selecting and parameterizing 

probability distributions. The quantiles are provided at a spatial resolution of 3 arc-seconds 

(80  80 m) obtained by spatially interpolating the mean annual maximum of the series at 

each station and duration. In particular, data were spatially interpolated by using the 

PRISM (Parameter-elevation Regressions on Independent Slopes Model) model [Daly and 

Neilson, 1992; Daly et al., 2003; Daly et al., 2002], a hybrid statistical-geographic tool for 

mapping climate data that generates spatial distribution of estimated climatic parameters 

based on the correlation between point data and other geographic and climatic information. 

This procedure takes into account the topographic effect on climate and in particular 

precipitation patterns, which are known to be significant in Puerto Rico [Daly et al., 2003; 

http://hdsc.nws.noaa.gov/hdsc/pfds


 146 

Garcia-Martino et al., 1996]. Further details on this analysis are given in Bonnin et al. 

[2006]. This analysis provided spatial distribution of the total precipitation depth at given 

duration and return period that characterize the study site, as specified above. 

NOAA also provides the associated normalized temporal distributions of 

precipitation corresponding to durations of 1, 6, 12, 24, 96 hours. The temporal 

distributions are expressed in probabilistic terms as cumulative percentages of precipitation 

and duration at various percentiles. The data were also subdivided into four categories 

(identified as “quartiles” in Bonnin et al. [2006]) based on where the most precipitation 

occurred in the distribution. For example, first-quartile group consist of hyetographs where 

the greatest percentage of the total rainfall precipitates during the first quarter of the time 

period. This procedure led to four different hyetographs which characterize the area 

[Bonnin et al., 2006]. A return period of 100 years and duration of 24 hours was selected, 

which represents a typical event duration that may cause initiation of landslide events 

according to [Larsen and Simon, 1993]. Figure 5-7 shows the corresponding time 

distributions for each category, which are representative of four different types of 

precipitation events [Rosso, 2002]: in Q1 most of the rainfall precipitates at the beginning 

of the event (typical of heavy storms), whereas in Q2 and Q3, the peak of precipitation is 

expected around the middle part of the event (frontal precipitations); finally, in Q4 most of 

the rainfall volume falls towards the end of the event (typical of tropical cyclones).  
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Figure 5-7. Different types of rainfall temporal distributions of 24 hours duration. 

 

For the selected duration, 32% of precipitation types follow the Q1 pattern; 27% 

follow Q2; 22% follow the Q3 type; and 19% follow Q4 (for more details see NOAA 

report, A. 1-3 [Bonnin et al., 2006]). Given the temporal distribution and the spatial 

distribution of total precipitation at selected duration and return period it is then possible 

to derive, cell by cell, the corresponding hyetographs by simply distributing the total 

volume through the duration according to the curves showed in Figure 5-7. As an example, 

Figure 5-8 shows the obtained hyetographs at a selected location (in particular, at the 

location of the Bisley tower (Figure 4-1a)) for the four types of hyetographs. 
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Figure 5-8. Hyetographs at Bisley tower location (indicated in Figure 4-1a) for each type 

of rainfall events. Total precipitation volume is about 500 mm. 

  

The spatially-averaged precipitation volume for this 24 hr, 100-yr event is around 

500 mm; in particular, Figure 5-9 shows the map of the total rainfall estimate of hyetograph 

Q1. Precipitation is heavier at higher elevations (west and south corners of the basin), with 

values up to 615 mm, and lower in the extreme north-east area (close to the outlet zone), 

with values up to 485 mm. The resulting spatial coefficient variation is 0.05. It is worth 

highlighting that the four types of rain storms have a stationary spatial pattern responding 

only to elevation (i.e., no dynamic propagation of precipitation has been considered). 
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Figure 5-9. Spatial distribution of total rainfall estimate of hyetograph Q1. Total rainfall 

ranges from 485 mm of the zone approaching to the basin outlet, to 615 mm of the 

highest zones. The spatial coefficient of variation is 0.05. 

 

5.6 Results 

As discussed above, four 24 hour, 100-year return period events with different 

temporal distributions were used to force the model. The initial conditions of the basin 

were identified using a spin-up procedure, which consists of running the model 

continuously for a long period (in this case one year) such that the model reaches 

equilibrium [Lepore et al., 2013]. Equal initial conditions were thus imposed to the 4 

storms; the effect of different initial conditions is not analyzed in this work. Results will 

be analyzed in a time window of 48 hours, which includes 24 hours of no rainfall after the 

end of the event, to account for soil moisture redistribution effects. 
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The model output includes: the time series and depth profiles of volumetric soil 

moisture (), probability that FS≤1 (PrFi) and probability that the plane of failure is located 

at a given depth (PrPFi), for a given computational element. Spatially, the model provides 

the distribution of the probability that failure occurs at any depth within the element-soil 

column (PrFC) and the distribution of the most probable depth of failure. In order to 

provide a comprehensive description of the model variables, section 5.6.1 discusses results 

of a single model application, i.e., results of the model forced with a single rainfall series, 

whereas the analysis of the effect of different rainfall temporal distributions is discussed in 

section 5.6.2. 

 

5.6.1 Time series model output 

A time series output is given in Figure 5-10, which shows the response to the rainfall 

type Q1 (Figure 5-10a) at the element scale (the time window includes a period before the 

event, useful to assess the initial conditions in terms of soil moisture profiles, which are 

different across the basin). The selected element falls within the clay-loam soil type and 

has a slope value of 52°, and thus can be considered as relatively steep. The element is 

located upstream and has a small contributing area of about 1.3 ha. The soil moisture 

distribution (Figure 5-10b) shows moderately fast dynamics within the shallow layers of 

the column, down to 600 mm of depth where the soil reaches full saturation at the time of 

rainfall peak. Although this part of the basin is characterized by high value of hydraulic 

conductivity (see Table 5.1), saturation is not reached throughout the entire column 
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because a significant portion of water is laterally redistributed, at a rate which depends on 

the local steepness and which is governed by the anisotropy ratio coefficient.  

 

 

Figure 5-10. Time series model output response of a clay loam element (52°): rainfall 

type Q1 (a); volumetric soil content (θ) profile and time series (b); probability of failure 

at each layer at selected times, PrFi (c); profile and time series of probability of plane of 

failure at given depth, PrPFi (d); PrPFi at selected times (e). 

 

Figure 5-10c shows the probability of failure (PrFi) for a selected time at each soil 

depth. This type of probability is representative of the likelihood of failure occurrence at 

each depth conditioned on the local soil moisture content (time variant) and soil weight 

(time invariant). At t1 the probability of failure is zero along the entire column and  

corresponds to the initial conditions, with the soil water content uniform with depth. At t2 

the soil moisture rapidly increases to a depth of 600 mm where the PrFi reaches its peak 
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(0.58). Apart from the soil moisture conditions, the cohesion and the soil weight are also 

important factors controlling the model estimates. Thus, the probability of failure is 

generally very low at shallow depths, due to relatively low soil weight. At t3 the PrFi 

reaches its maximum value (0.65) at a depth of 800 mm where both the contribution of 

moisture and soil weight are significant. Panels d and e show the probability that the failure 

occurs at a given depth. At each layer, the PrPFi depends on the probability that the failure 

does not occur in the above layers (see definition in section 5.2.2). Consequently, the most 

probable planes of failure (i.e., where PrPFi is high) are located at the medium depth layers 

where the effects of soil moisture and soil weight are significant, which, in this case, is 

around 300-500 mm at the time of rainfall peak (dark red area in Figure 5-10d). Deeper 

layers have lower probability of becoming failure planes, as shown in Figure 5-10d for 

timesteps t3 and t4. Finally, Figure 5-10d also shows how the high risk of failure 

occurrence is prolonged in time and the probability gradually decreases at shallower layers 

and increases at deeper layers, as long as the soil moisture conditions are close to saturation. 

Figure 5-11 shows the response to the same rainfall type Q1 of a silty-clay element 

with a slope value of 21°, gentle relative to the previous case. Note that the hyetograph 

over this element (Figure 5-11a) is slightly different than that over the previously discussed 

element, as a result of the spatially distributed precipitation across the basin. The element 

is located in the downstream flatter part of the basin, with a contributing area of about 2.5 

ha. In this case, the initial soil moisture profile (Figure 5-11b) is wetter than the previous 

case (due to slightly higher convergence of fluxes and lower redistribution to adjacent to 

the cells) and is not homogeneous with depth, with dryer conditions at shallower layers, 

due to the evapotranspiration processes. At the rainfall peak the column almost reaches full 
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saturation. In fact, the combination of gentler topography and medium-high hydraulic 

conductivity results in faster soil moisture dynamics within the column but slower among 

the adjacent cells, since the lateral redistribution is slower for gentler slopes. 

 

 

Figure 5-11. Time series model output response of a silty-clay element with gentler slope 

(21°): rainfall type Q1 (a); volumetric soil moisture content (θ) profile and time series 

(b); profile and time series of probability of plane of failure at given depth, PrPFi (c); 

time series of the probability of failure of the column, PrFC (d) (see section 5.2.2) 

 

In terms of probability of failure, the PrPFi distribution (Figure 5-11c) depicts a 

restricted risk of failure limited to depths between 600 and 800 mm and to the peak of the 

storm. Figure 5-11d shows the probability of failure associated with the entire column 
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(PrFC). This variable takes into account the model assumption that failure may occur 

anywhere within the soil column, rather than occurring exclusively at an a priori defined 

depth. Here the maximum value is reached at the peak of the storm and is strictly dependent 

on the fully saturated conditions. 

 

5.6.2 Effect of rainfall temporal distribution 

The basin response to the four different hyetographs described in section 5.5 was 

analyzed in terms of the probability of landslide occurrence. Variables are dynamically 

evaluated by the model, which produces a spatial distribution of the most probable areas 

of failure at each computational time step. The most severe scenario associated with each 

event is evaluated as the maximum value of the probability of failure anywhere in the 

column, PrFC, recorded at each voronoi cell over the entire run time (e.g., the peak shown 

in Figure 5-11d). Maps illustrating PrFC for each rainfall forcing are shown in Figure 5-12. 

Across the four maps, the likelihood of failure occurrence is particularly high in the steepest 

part of the basin (yellow regions). The dark green regions depict the areas where the 

probability of failure is zero or close to zero, which correspond mostly to the flat areas. In 

the remaining part of the basin, the probability of failure is the result of the interaction of 

rainfall type with basin soils and morphology. 
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Figure 5-12. Spatial distribution of the maximum values of PrFC recorded at each pixel 

across the run time for each rainfall type. 

 

In order to compare the results better, five classes of landslide hazards are defined 

(in terms of probability of landslide failure) at equal intervals: very low (VL), 0-0.2; low 

(L), 0.2-0.4; medium (M), 0.4-0.6; high (H), 0.6-0.8; very high (VH), 0.8-1.0. Differences 

are then quantified in terms of relative frequency distribution over the basin. Results across 

the four rainfall events (Figure 5-13a) indicate that events Q2 and Q3 resulted in the safest 

scenarios, with highest landslide frequency in the VL class, and lowest in the remaining 

classes, respectively. Q4 is the rainfall event that provides the most severe landslide hazard, 

with the highest relative frequency within the VH landslide probability class and the lowest 
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within the VL class. The response to the Q1 event exhibits an intermediate behavior 

between Q4 and Q2-Q3, with a frequency distribution similar to Q2 and Q3 within the 

most hazardous class, and similar to Q4 for H, M, and L landslide probability classes. The 

VL class is slightly less frequent during events Q2 and Q3, yet more frequent for the Q4 

event. 

 

 

Figure 5-13. Relative frequency distribution across the basin of (a) the PrFC occurrence 

for the 4 rainfall events, (b) the time of occurrence of the maximum value of PrFC and 

(c) 1m depth average soil moisture at time of maximum PrFC values. 

 

The analysis discussed above highlights the clear and strong effect of the hyetograph 

type on the probability of landslide occurrence. This effect depends on the complex 

interactions between rainfall forcing, topography and soil characteristics, which induce 

different soil moisture redistribution and, in particular, it depends on the extent to which 

complete saturation is achieved. In fact, saturation leads to the loss of suction with a 

significant increase of probability of failure. The Q1 and Q4 events induce saturation in a 

larger portion of the basin, leading to higher failure probability, although the timing of the 
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maximum landslide probability is different over the run time. This is depicted in Figure 

5-13b which shows the frequency distribution of the time of occurrence of the maximum 

value of PrFC. The peak of the distributions follows the peak of the rainfall intensity for 

each hyetograph, with 1 hr time lag (i.e., at times corresponding to 7, 11, 17 and 23 hour 

respectively). Q1 and Q4 exhibit the highest peaks of frequency. Moreover, for the Q1 

event, the effects of the rainfall are more prolonged. PrFC remains at relatively high levels 

after 13 hours from the rainfall peak. Q3 is the event that provides the highest probability 

of failure almost throughout the entire duration of the precipitation event. These results can 

be particularly interesting in terms of basin risk assessment, since the high probability of 

failure is significantly different for the four cases, despite the same total precipitation 

volume over the 24 hr period. The fact that the maximum PrFC for Q4 is higher than the 

one corresponding to the Q1 event, highlights the importance of the moisture conditions 

prior to the rainfall peak. Although Q1 and Q4 have comparable storm peaks, the response 

with respect to landslide occurrence does differ because soil moisture conditions at time of 

the rainfall peak are not the same for the two scenarios.  

In order to understand how the rainfall forcing interacts differently with the soil types 

of the basin, the responses in terms of soil moisture were analyzed in conjunction with the 

main basin characteristics (i.e. topography and soil types). Figure 5-13c shows the relative 

frequency distribution of the average (in depth) soil moisture in the root zone (equal to 1 

m) reached at time of the maximum value of PrFC across the basin. Clearly, the response 

to the Q4 event exhibited the highest occurrence of failing elements at saturation (here 

equal to 0.55 mm3/mm3). In order to identify the portion of the basin that experiences the 

highest differences in terms of probability of failure, the spatial distribution of the 
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difference in maximum PrFC was analyzed between the events Q4 and Q3 (which are the 

two configurations that differ the most), denoted as Q4Q3 and evaluated for each single 

element. The corresponding map is depicted in Figure 5-14 and it reports the differences 

that exceed a threshold, fixed at 0.05; in several cases, this difference is greater than 0.5 

(blue). Because soil moisture redistribution processes are driven by topography (i.e., slope) 

and hydrological soil properties (i.e., hydraulic conductivity and anisotropy), it may be 

reasonable to expect that this difference follows somewhat similar patterns to either soil 

types (Figure 5-14a) or slope distributions (Figure 5-14b). However, the map in Figure 

5-14a highlights that Q4Q3 values greater than the threshold are distributed all over the 

basin, falling within all soil types, with absence of a clear spatial pattern related to soil 

characteristics. Instead, Figure 5-14b clearly shows that the spatial distribution of Q4Q3 

values fall within the part of basin characterized by a particular slope range i.e., between 

0.20 and 0.45 rad (10° and 25°), which is the only interval shown in the map.  

The reason for this behavior is the relative contribution of soil moisture and soil 

weight to landslide occurrence. Flat areas (saturated or not) are very likely to be stable (or 

‘unconditionally stable’, as defined by Montgomery and Dietrich [1994]); steep areas, 

although they may not reach complete saturation, can be characterized by relatively high 

probability of failure, given the significant component of destabilizing forces due to local 

steepness (‘unconditionally unstable’ as defined by Montgomery and Dietrich [1994]). 

Therefore, as previously discussed, different rainfall forcings influence mostly areas where 

both factors, soil moisture and soil weight, primarily control landslide initiation. In this 

case, those are areas of medium slope (from 10° and 25°). 
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Figure 5-14. Spatial distribution of the difference of maximum PrFC between Q4 and Q3 

(Q4Q3) overlapped with the maps of soil type (a) and slope range 0.20 and 0.45 rad (10° 

and 25°) (b). 

  

Figure 5-15 provides a confirmation of these results. Figure 5-15a shows the 

relationship, for each element, between slope and the max value of PrFC for Q1, Q3 and 

Q4 (Q2 is not discussed, because of its similarity to Q3). Clearly, the PrFC increases with 

slope following a well-defined trend (at given soil moisture and for fixed hydrological 

parameters, probability of failure only changes with slope, according to equation (5.1)). At 

a given slope (i.e., within a given Voronoi cell) Q4 results are shifted up with respect to 

Q1 (blue) and Q3 (red), i.e., corresponding to higher values of maximum PrFC. Figure 
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5-15b shows the distribution of Q4Q3 values with the slope, separately for each soil type. 

The variable jumps to high values within the slope range 0.2 – 0.45, except for the clayey 

soil where differences are not significant, due to the substantially slower soil moisture 

dynamics (i.e., lower hydraulic conductivity). 

 

 

Figure 5-15. Distribution of maximum PrFC with slope for Q1, Q3 and Q4 (Q2 is 

omitted because it is similar to Q3). (a); distribution of difference of maximum PrFC 

between Q4 and Q3 (Q4Q3) with slope (b). 

 

5.6.3 Discussion  

The results of this study show the capability of the proposed methodology in 

accounting for uncertainty of soil parameters, and in evaluating how the temporal 

variability of storms may influence the initiation of shallow landslides in terms of 

probability of failure. The model considers different definitions of probability of failure, 

and estimates the likelihood of landslide initiation at multiple soil depths. The most 

probable depth of failure and the probability of failure of the soil column (generated 
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anywhere within the column) are the two main representative model outputs. The results 

demonstrate that, in agreement with typical depths of shallow landslide occurrence, the 

most probable failure surfaces occurred at depths between 300 and 1000 mm.  

The precipitation fields in the case study area are strongly variable both in space and 

in time. The analysis of the influence of different hyetograph shapes indicates that heavy 

rainfall concentrated during the latter part of event (as the case of Q4) leads to higher 

probability of failure across the basin, making Q4 the most critical type of event. This 

agrees with Odorico et al. [2005] who demonstrated that hyetographs with the peak near 

the end of the storm produce peak pressure heads higher compared to uniform hyetographs, 

decreasing the return period of rainfall events that trigger landslides. Although events Q1 

and Q4 correspond to equal maximum rainfall intensity (55 mm/hr at the selected location 

reported in Figure 5-7), the Q1 event has the maximum rainfall intensity closer to the 

beginning of the storm, resulting in a less hazardous scenario. These outcomes depend on 

how the rainfall distribution affects the hydrological basin response, which is mainly driven 

by the hydraulic-hydrological soil properties and topography. The spatial analysis of the 

differences in the maximum PrFC between Q3 and Q4 (Q4Q3), clearly demonstrates that 

the shape of the hyetograph, and in particular the timing of the peak, controls the resulting 

stability mainly at moderate slopes (from 10° and 25°). As previously discussed, at these 

slopes, both the soil moisture and soil weight contribute to instability. Events Q2 and Q3, 

which are characterized by a lower peak rainfall intensity (45 mm hr-1 for the location 

shown in Figure 5-7) and a less skewed hyetographs, resulted in larger portions of the basin 

with lower probability of failure.  
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In order to evaluate the consistency of the model results, the classified map of 

probability of failure obtained for Q4 is compared with the map of historical landslide scars 

(Figure 5-16). The study area is historically characterized by a high frequency of landslide 

occurrence, with a multitude of landslide events mapped over the years. Landslide scars 

reported in Figure 5-16 are obtained from Larsen [2012], who mapped historical landslide 

scars at the study site (section 4.5.1). According to Larsen and Simon [1993], 61% of the 

rainfall triggered landslides were likely triggered by the tropical disturbances that struck 

the central mountain of Puerto Rico between 1960 and 1990. Also, the reported map 

includes different type of movements, i.e., shallow soil slip, debris avalanche, debris flow, 

slump). Soil slips are the second most common type of scar after debris flow [Larsen, 

2012], and both these landslide types are characteristic of high-intensity, short-duration 

storms. Figure 5-16 reports also some landslide scars identified from more recent satellite 

images (2006-2014) obtained from Google Earth.  
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Figure 5-16. Comparison between historical landslide scars caused by intense or 

prolonged storms during the 20th century [Larsen, 2012] and observed through recent 

satellite images (from Google Earth) with the classified maximum PrFC of Q4. 

 

Visual comparison indicates that the areas of high and very high probability of 

landslide occurrence are consistent with areas of past landslide zones. For instance, the 

northwest, south, and southeast parts of the basin correspond to areas dense in landslide 

scars which are adequately reproduced by the model. Other areas classified as probable to 

fail are not included in the historical record of landslide scars (central north-eastern part of 

the basin). Part of the southwest strip of the watershed perimeter is mostly classified as 

stable by the model, while in the past it did experience various failure events. 

This comparison cannot be interpreted as model validation, because a rigorous 

validation of dynamic modelling approaches requires a functional database which records 
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the locations of failure associated with the exact timing of the failure, the corresponding 

meteorological data, and the topographical data prior to the failure events, information that 

is not available at the study site. Moreover, the map reported by Larsen [2012] includes 

various type of landslides (mainly debris flow) that are not of the nature represented in this 

work. About 43% of historical landslide mapped in the Mameyes basin were associated 

with road construction and maintenance, anthropogenic disturbance that is not accounted 

for in this study. Nevertheless, the rough comparison between historical landslides and 

model results demonstrate the model capability in identifying the most critical landslide 

areas of the basin. 

 

 

5.7 Summary 

A probabilistic approach for coupled distributed hydrological-hillslope stability 

models is proposed that accounts for soil parameters uncertainty at basin scale. The 

geotechnical and soil retention curve parameters are treated as random variables across the 

basin and theoretical probability distributions of the Factor of Safety (FS) are estimated. 

The derived distributions are used to obtain the spatio-temporal dynamics of probability of 

failure, in terms of parameters uncertainty, conditioned to soil moisture dynamics. The 

framework has been implemented in the tRIBS-VEGGIE (Triangulated Irregular Network 

(TIN)-based Real-time Integrated Basin Simulator-VEGetation Generator for Interactive 

Evolution)-Landslide model and applied to a basin in the Luquillo Critical Zone 

Observatory (Puerto Rico) where shallow landslides are common. In particular, the 

methodology was used to evaluate how the spatial and temporal patterns of precipitation, 
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whose variability is significant over the basin, affect the distribution of probability of 

failure, through event scale analyses. Results indicate that hyetographs with heavy 

precipitation towards the end of the event may lead to the most critical conditions in terms 

of probability of failure. 
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CHAPTER 6. Lithological control on the hydro-geomorphic 

response of tropical watersheds to changing climate 

6.1 Introduction 

Climatic extremes and anthropogenic perturbations have influenced soil erosion rates 

in mountainous landscapes globally. Soil mantled hillslopes are complex systems shaped 

by bedrock weathering and by different interacting erosional processes (e.g., topsoil 

erosion and landslide occurrence), which are driven by climatic and non-climatic factors 

over a range of scales [Bestland et al., 2016; Dykes and Warburton, 2007; Gabet et al., 

2015; Kim et al., 2016; Larsen and Montgomery, 2012; Larsen, 2012; Larsen et al., 1999; 

Stark and Passalacqua, 2014]. Weathering processes lead to depletion of primary minerals 

increasing the soil’s erosional potential, and are influenced by climate through moisture 

and temperature controls [Dixon and Earls, 2009; White and Brantley, 2003], and by local 

environmental factors (e.g., by the rate of supply of weatherable minerals) and landscape 

characteristics [Dietrich et al., 1995; Heimsath et al., 1999; Riebe et al., 2003]. Hillslope 

erosion is controlled by rainfall-triggered landslides, which constitute an important source 

of soil and saprolite. The propensity for shallow landslides depends on a multitude of 

factors including slope morphology and soil and forest properties [De Rose, 2013; 

Formetta et al., 2016; Hales et al., 2009; Moos et al., 2016; Roering et al., 1999; Simoni 

et al., 2008], and on the frequency of extreme hydro-meteorological events [Casadei et al., 

2003; Chen et al., 2013; von Ruette et al., 2014]. Clarifying the relative contribution of 

climatic vs. nonclimatic factors to hillslope erosion and landscape denudation is no trivial 

task [Cook et al., 2015; Riebe et al., 2003]. Understanding the associated interrelations in 
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the complex structure of the critical zone at diverse landscapes [Anderson et al., 2007; 

Brantley et al., 2007] remains a challenge.  

The Luquillo Mountains (Luquillo Critical Zone Observatory (CZO)) are of 

particular hydro-geomorphological interest because they are characterized by different 

bedrock and diverse landscape morphologies. For this reason, several studies have focused 

on landscape processes at the Luquillo CZO [Brocard et al., 2015; Brown et al., 1995; Buss 

and White, 2012; Chabaux et al., 2013; Dosseto et al., 2012; Dosseto et al., 2014; Larsen, 

2012; Larsen et al., 1999; Lebedeva and Brantley, 2013; Lepore et al., 2013; Murphy et 

al., 2012; Pike et al., 2010; Riebe et al., 2003; Stallard, 2012]. An episode of tectonic uplift 

that occurred a million years ago in Puerto Rico, followed by gradual erosion, have shaped 

the Luquillo Mountains into morphologically different domains [Brocard et al., 2015]. 

Knick points in the Luquillo CZO have segmented longitudinal river profiles, which 

deviate from smooth concave-upward profiles [Pike et al., 2010]. Erosion rates at diverse 

watersheds in the Luquillo CZO depend on local geomorphological and lithological 

characteristics [Murphy and Stallard, 2012]. This study focuses on the Mameyes and 

Icacos watersheds, which are characterized by similar climatic conditions and by 

contrasting lithology (chapter 4). The Mameyes watershed is underlain by volcaniclastic 

rock, and the Icacos watershed in underlain by the Rio Blanco quartz diorite [Buss and 

White, 2012]. Shallow landslide initiation constitutes the main erosion mechanism at the 

two watersheds [Larsen, 2012]. This site provides the opportunity to assess the role of 

contrasting bedrock and diverse landscape morphology on hillslope erosion rates under 

similar climatology [Dosseto et al., 2012]. 
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The Icacos watershed is one of the very first sites where detrital 10Be methods have 

been used to estimate erosion rates [Brown et al., 1995; Brown et al., 1998]. These studies 

relate production rates of cosmogenic nuclides in quartz grains with landscape denudation 

rates. While the use of cosmogenic nuclides has provided important insights on denudation 

rates at the Luquillo CZO landscape [Brocard et al., 2015; Riebe et al., 2003], this approach 

may have potential limitations [Carretier et al., 2015], which depend on the spatial and 

temporal scales of analysis. Because cosmogenic nuclides are used to estimate total 

denudation rates, the use of 10Be may not quantify the relative contributions of saprolite 

lowering and topsoil erosion on landscape denudation [Riebe et al., 2003]. This method 

may consider steady-state soil thickness [Brown et al., 1995], an assumption likely not 

representative of the present state of the Luquillo CZO landscape (section 4.6). Also, 

providing short-term estimates of erosional potential using 10Be can be challenging, 

because cosmogenic rates are typically averaged over tens of thousands of years, and may 

not capture fluctuations in the magnitude of erosion rates at relatively fine time scales 

[Brocard et al., 2015; Kirchner et al., 2001]. 

 Landscape denudation modelling [Lebedeva and Brantley, 2013; Lebedeva et al., 

2010] can be used to clarify the relative influence of climatic and nonclimatic factors on 

the current and future states of the Luquillo CZO landscape. Process-based models 

[Arnone, 2011; Bovy et al., 2016; Burton and Bathurst, 1998; Casadei et al., 2003; Dietrich 

et al., 1995; Francipane et al., 2012; Kim et al., 2013; Lepore et al., 2013; Simoni et al., 

2008; Tucker et al., 2001a] have the potential to quantify physical mechanisms controlling 

landscape dynamics at different spatio-temporal resolutions. This work uses a high 

resolution coupled hydro-geomorphic model and observations on hillslope erosion and 
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bedrock weathering in the Mameyes and Icacos watersheds to characterize the current and 

future hydro-geomorphic behaviors of diverse landscapes in the Luquillo CZO. Landslide 

occurrence and topsoil erosion are simulated in morphologically different watersheds in 

response to changing climate. This study quantifies soil thickness dynamics based on the 

relative contribution of hillslope erosion (landslides and topsoil erosion) and saprolite 

deepening. Hydro-meteorological forcings corresponding to a range of climatic projections 

are used to investigate whether the equilibrium conditions characterizing the Luquillo CZO 

landscapes are likely to remain relatively invariant with future climatic perturbations. This 

chapter is a verbatim recompilation of Dialynas and Bras [2017], and Dialynas and Bras 

[2016].  

 

6.2 Materials and methods 

6.2.1 Study area 

This study uses the physically-based hydro-geomorphic model described in sections 

2.2.2 and 4.2. The model was applied in the Mameyes and Icacos watersheds, discussed in 

section 4.3. The 17.8 km2 Mameyes watershed is underlain by Cretaceous, marine-

deposited, quartz-poor volcaniclastic rocks, while the 3.26 km2 Icacos watershed is 

underlain by Upper Cretaceous and Tertiary granitic rocks [Murphy et al., 2012]. The 

Icacos watershed is primarily underlain by Rio Blanco quartz diorite, which intruded the 

surrounding volcaniclastic rock about 49 to 42 Ma [Smith et al., 1998]. The unweathered 

parent material is located 16 m deep [Dosseto et al., 2012].  
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The contrasting lithology in the study site influences the diverse landscape 

morphologies and sediment properties at the two tropical watersheds [Murphy et al., 2012]. 

Relatively steeper slopes characterize the Mameyes watershed (mean slope of 21°) 

compared to the Icacos watershed (mean slope of 13°) [Larsen, 1997]. Rainfall-triggered 

landslides are the primary hillslope erosion component at the two watersheds, i.e., 93 % 

and 98 % of the total hillslope erosion at the Mameyes and Icacos watersheds, respectively 

[Larsen, 2012]. The influence of geology on channel morphology is evident in the bed 

material and sediment size [Murphy et al., 2012]. Sandy beds and floodplains characterize 

the stream network in the Icacos watershed. The fine sediment bed (median grain size (D50) 

is 0.6 mm) is mobilized by moderate runoff [Larsen, 1997]. The bed material in the 

Mameyes watershed is significantly coarser (D50 equal to 70 mm). The channels are 

characterized by little or no floodplains, and they are lined with boulders and cobbles 

[Murphy et al., 2012]. 

As discussed in section 4.4.3, a 30 m mesh was used to represent the topography of 

the Icacos watershed (Figure 4-2a), and a 50 m mesh was used for the 17.8 km2 Mameyes 

watershed (Figure 4-1a). The soils of the two watersheds were classified into four soil types 

based on the U.S.D.A. [1951] classification system (Figures 4-1b and 4-2b). The vegetation 

cover of Icacos and Mameyes watersheds is given in Figures 4-1c and 4-2c, respectively 

[Helmer et al., 2002; PRGAP, 2006]. Calibration of tRIBS for the Icacos and Mameyes 

watersheds was conducted in section 4.4.5, by comparing simulated river discharge with 

daily records. The geomorphic model was calibrated by reproducing events and total 

sediment yield at the Icacos and Mameyes watersheds (see section 4.4.6). 
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6.2.2 Climatic scenarios and projected change 

This study uses daily projections (2016-2099) of climatic variables (precipitation, 

temperature, cloud cover, sea level pressure, wind speed, and vapor pressure) for the study 

site, based on the B1 and A2 IPCC (Intergovernmental Panel on Climate Change) SRES 

(Special Report on Emission Scenarios [2000]) climatic scenarios, corresponding to the 

Canadian General Circulation Model (CGCM3.1(T47); Canadian Centre for Climate 

Modelling and Analysis). The B1 and A2 scenarios are the two of the three scenarios that 

have been the focus of model intercomparison studies, and predict the lowest and highest 

global temperature increases by 2099, respectively [IPCC, 2007]. The selection criteria for 

the climatic projections were:  

a) the relatively good performance of the CGCM3.1 in reproducing the precipitation 

seasonality and the sea surface temperature at the Central Caribbean compared to other 

General Circulation Models (GCM), as demonstrated in Ryu and Hayhoe [2013], and  

b) the completeness of selected climatic scenarios: in contrast to other GCM projections, 

the selected records for the B1 and A2 scenarios are continuous at the daily scale for the 

entire period under study (2016-2099). 

This work uses precipitation and temperature projections (CGCM3.1) which have 

been downscaled for the Luquillo CZO area [Hayhoe, 2013; Ryu and Hayhoe, 2013] based 

on the statistical downscaling method recently proposed by Stoner et al. [2013]. The 

method (asynchronous regional regression model (ARRM)) uses piece-wise regression to 

correct for bias in low resolution hydro-climatic predictions. Downscaled climate 

projections indicate a significant future increase in temperature coupled with decrease in 
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precipitation at the study site. More precisely, the precipitation decline at the Luquillo CZO 

is projected (when compared to the 2090-2099 average) to be 23% and 31%, for B1 and 

A2 scenarios, respectively. These trends are consistent with the findings of Campbell et al. 

[2011], with Hayhoe [2013] who compared several climatic predictions, and with the 

analysis of IPCC [2007] which included results from 21 global models.  

Temperature in the entire Caribbean is projected to increase by 2099 at rates that by 

far exceed natural variability [Campbell et al., 2011]. Puerto Rico may warm more rapidly 

compared to the global average, with increases in both average and extreme temperatures 

[Hayhoe, 2013]. Different atmospheric and oceanic drivers likely contribute to a future 

precipitation decline in Puerto Rico [Hayhoe, 2013]. Annual rainfall in the Caribbean is 

projected to increase north of 22 °N, and significantly decrease (around 25-50%) south of 

22 °N, with decline in precipitation intensity and more dry days in the southern Caribbean 

[Campbell et al., 2011]. The projected pattern exacerbates during the dry season 

(December to April). This gradient is linked to tropical circulations (Hadley circulation of 

the North tropical Atlantic), and is characteristic of the dry season for warm phases of the 

El Niño–Southern Oscillation (ENSO) [Campbell et al., 2011; Stephenson et al., 2007]. 

Climatic projections suggest that observed circulation patterns in the Caribbean are 

expected to strengthen by 2099 [IPCC, 2007]. Also, a substantial drying of the wet season 

(May to November) is projected for the central Caribbean [Hayhoe, 2013]; precipitation is 

expected to decline, with more frequent dry days. 
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6.3 Results 

6.3.1 Projected rates of hillslope erosion and deposition 

The simulated topsoil erosion and landslide occurrence for the two climatic scenarios 

(2016-2099) are illustrated in Figures 6-1 and 6-2 for the Icacos and Mameyes watersheds, 

respectively. The two landscapes are characterized by substantial topsoil erosion rates and 

slope instability. Hydrologically-induced erosion and landslide occurrence lead to the 

accumulation of eroded soil and saprolite in colluvial deposits and in alluvial sediments at 

lower valleys. Soil redistribution alters local topographic gradients and the stream 

configuration in the two watersheds. The simulated total hillslope erosion rates are given 

in Table 6.1. Erosion rates at the two watersheds are lower for the A2 scenario, which is 

characterized by greater reduction in precipitation (section 6.2.2). The simulated erosion 

rates for the Icacos watershed are consistent with the erosion rates Larsen [2012] derived 

from multiple observations. The projected erosion rate for the Mameyes watershed is at the 

lower end of the erosion spectrum reported in Larsen [2012] (Table 6.1). 
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Figure 6-1. Spatially explicit representation of hillslope erosion and deposition in the 

Icacos watershed for climatic scenarios B1 (a) and A2 (b). Eroding slopes (yellow to red), 

landslide locations (red) and depositional sites (blue) are illustrated across the watershed. 
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Figure 6-2. Hillslope erosion and deposition across the Mameyes watershed in response 

to climatic projections B1 (a) and A2 (b). Eroding sites (yellow to red) and landslide 

locations (red) are illustrated, in addition to depositional sites (blue) in valleys and lower 

slopes. 

 

Table 6.1. Comparison of simulated rates of hillslope erosion with reported erosion rates 

in the Mameyes and Icacos watersheds. Simulations correspond B1 and A2 scenarios of 

climatic projections (section 6.2.2). 

Erosion rate 

(mm kyr-1) 

Scenario 

B1 

Scenario 

A2 
Chapter 4 

Larsen 

[2012] 

Brown et al. 

[1995], Brocard 

et al. [2015] 

Icacos watershed 887 815 1,123 750 43 - 100 

Mameyes 

watershed 
738 703 937 523 - 2,143  
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6.3.2 Simulated slope instability 

According to results, landslides mainly occur at the relative steep slopes of the 

southern, south-western and north-western Icacos watershed. At the Mameyes watershed, 

there is significant landslide occurrence at the southern and north-western parts of the 

watershed, and at the northern slopes in the in the vicinity of the main stream. The total 

simulated landslide area is greater for the B1 scenario in both watersheds (Table 6.2). The 

landslide area is compared with Larsen [1997], who documented a total of 345 landslides 

in the two watersheds from aerial photographs (section 4.5.1). Table 6.2 presents area 

estimates of landslide scars, as approximately dated by Larsen [2012]. This includes area 

estimates of relatively recent scars, and total landslide area, which includes larger scars 

that occurred during the last 1,000 years. The landslide area estimates reported in Larsen 

[2012] correspond to different climatic conditions, yet they encompass the simulated 

landslide area for the two climate scenarios in the Mameyes and Icacos watersheds (see 

section 6.4.1). 

 

Table 6.2. Observed and simulated (B1 and A2 scenarios) landslide area at the two 

watersheds. Observations [Larsen, 1997; Larsen, 2012] correspond to relatively recent 

scars, and to total observed scars which include landslides dated up to 1,000 years. 

Landslide area (103 m2) Scenario B1 Scenario A2 Recent landslide scars 
Total observed 

landslide scars 

Mameyes watershed 680.0 665.0 70.6 1,101.6 

Icacos watershed 98.1 93.6 42.0 194.0 
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This work assesses the extent to which the coupled physically-based model 

reproduces the natural spatial variation of landslide magnitude. The capability of the hydro-

geomorphic model to simulate the propensity for relatively larger and smaller landslides at 

the Mameyes and Icacos watersheds is examined. More specifically, the frequency 

distributions of landslide area for B1 scenario were estimated at the two watersheds (Figure 

6-3). Different studies focusing on diverse regions [Guzzetti et al., 2002; Pelletier et al., 

1997; Stark and Hovius, 2001] have demonstrated that landslides naturally exhibit a fractal 

(or scale invariant) character. More precisely, the landslide area frequency distribution 

tends to follow a power law [Hergarten and Neugebauer, 1998]: 

 log N a bA    (6.1) 

where N is the number of landslides in the set with areas greater than A, and a and b are 

parameters. Power type distributions are called scale-invariant because they are not 

restricted by characteristic scales describing different phenomena. More precisely, the 

number of landslides of area A or greater differs from the number of events of area λA or 

greater by λ-b, where λ is an arbitrary factor [Hergarten, 2002]. Results suggest that the 

projected landslide occurrence at the Mameyes and Icacos watersheds over the simulation 

period can be roughly approximated by scale-invariant distributions (Figure 6-3). The 

associated b exponents are equal to 1.3 and 2.2 for Icacos and Mameyes watersheds, 

respectively (see section 6.4.1). The range of b values reported in Hergarten [2003] (0.7 - 

2.3), which is based on several landslide mapping studies, encompasses the b values 

estimated here. 
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Figure 6-3. Landslide area distributions for Icacos (a) and Mameyes (b) watersheds. 

Fitted power-type distributions corresponding to exponents b (equation (6.1)) equal to 1.3 

for Icacos and 2.2 for Mameyes watersheds, respectively 

 

6.4 Discussion 

6.4.1 Propensity for landslide occurrence 

The simulated landslide locations for B1 and A2 scenarios were compared with 

observed scars [Larsen, 1997; Larsen, 2012] in the study sites (Figures 6-4 and 6-5 for 

Icacos and Mameyes watersheds, respectively). While landslides that occurred in the past 

1,000 years [Larsen, 2012] have led to partial diffusion of topographic gradients, the two 

landscapes are characterized by several landslide-prone slopes. The two tropical 

watersheds are dominated both by shallow soil-slips, slumps, debris-flow, and by relatively 

larger landslides, and are characterized by slopes that are only conditionally stable (i.e., the 



 179 

stability of which depends on soil moisture fluctuations) [Arnone et al., 2011]. The 

simulated unstable slopes and landslide deposition paths are consistent with observations 

in the Mameyes watershed (Figure 6-5). Projected landslide run-out distances are in 

agreement with observed landslide paths at the northern, southern, and northwestern parts 

of the watershed. Large landslides simulated at the south-eastern Icacos watershed (Figure 

6-4) are collocated with past landslide scars. Simulated landslides at the relatively steep 

slopes of the western Icacos watershed are in reasonable agreement with observations.  
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Figure 6-4. Comparison of observed landslide scars with predicted landslides (red) at the 

Icacos watershed for climatic scenarios B1 (a) and A2 (b). 

 

The predicted climate change at the study site is depicted in a range of hydro-climatic 

scenarios in the Luquillo CZO (section 6.2.2). Despite the projected decrease in the mean 

precipitation, the simulated landslide frequency is significant, and is comparable to past 

landslide activity. This is attributed to the key role of lateral soil moisture redistribution at 

the steep slopes of the two tropical watersheds [Schellekens et al., 2004], and to the 
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nonlinear threshold behavior of shallow landslides [Frattini et al., 2009; Huggel et al., 

2012]. The initiation of mass movement heavily depends on the rate of water infiltration 

and on capillary forces in unsaturated soils, processes that are related non-linearly with the 

rate of moisture influx, and depend on topography and on soil mechanical and hydrological 

properties [Brooks and Corey, 1964; Iverson, 2000]. The lateral redistribution of soil 

moisture in the vadose and saturated zones during interstorm periods exerts a strong control 

on landslide initiation [Formetta et al., 2016; Simoni et al., 2008]. Lateral moisture flux 

after tropical storms leads to increase in the degree of saturation at conditionally stable 

slopes, inducing exceedance of the slope stability threshold and subsequent slope failure 

[Lepore et al., 2013]. Results suggest that the role of this landslide-triggering factor 

remains important during the relatively drier 21st century. The combined effects of water 

infiltration during tropical storms and moisture increase at interstorm periods lead to 

significant landslide occurrence in the two watersheds by 2099. Also, the total simulated 

landslide area for each watershed did not substantially vary for different GCM scenarios 

(Table 6.2). While the exact timing of landslide initiation at the study site depends on storm 

hyetograph characteristics and land surface descriptors (chapter 5), the cumulative 

frequency and magnitude of landslide occurrence in the 21st century exhibited small 

variation over the range of imposed hydro-meteorological forcings. This analysis suggests 

that the time-integrated slope instability projected by 2099 is also controlled by non-

climatic factors, including local soil characteristics, forest cover, and by the steep 

geomorphic gradients of the Luquillo Mountains. 
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Figure 6-5. Comparison of landslide scars with predicted landslides (red) at the Mameyes 

watershed corresponding to climatic scenarios B1 (a) and A2 (b). 

 

Despite simplifying assumptions invoked in the landslide failure criterion [Bellugi et 

al., 2015], the simulated landslide occurrence at the two watersheds can be roughly 

represented by power type distributions (see section 6.3.2), which are often used to describe 

critical phenomena [Hergarten, 2003]. The fractal behavior of landslide occurrence is 

characteristic of the concept of self-organized criticality (SOC) in natural systems, 
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according to which the system exhibits self organization towards critical states [Bak et al., 

1987]. SOC has a meaningful role in the evolution of landslide dominated landscapes 

[Hergarten and Neugebauer, 1998], such as the Luquillo Mountains. It is possible that the 

combined effects of the island’s tectonic uplift and dissipative erosional processes may 

lead to quasi-stationary states, characteristic of the SOC concept. In this case, the timing 

and magnitude of hillslope erosional events may occur such that the system moves towards 

critical states. SOC models [Hergarten and Neugebauer, 1998] can be applied to predict 

locations and timing of slope instability, and potentially improve landslide hazard 

assessment. However, records of system outputs (e.g., sediment yield) over significantly 

longer time scales are required to verify that the evolution of the two tropical landscapes 

in fact follows SOC [Sapozhnikov and Foufoula-Georgiou, 1996]. 

The relative frequency of predicted landslide magnitudes differs significantly 

between the two watersheds. Larger values of the exponent b (equation (6.1)) indicate that 

smaller landslides are more frequent compared to large landslide events. On the contrary, 

lower values of b correspond to natural systems characterized by lower relative occurrence 

of small landslides. According to the simulated frequency of landslide magnitudes, b is 

lower for the Icacos (b = 1.3) than the Mameyes watershed (b = 2.2). Simulations and 

observations in the Icacos watershed indicate several large landslides. As illustrated in 

Figure 6-4, large slides occur at the steep slopes of the Icacos watershed, depositing soil 

and saprolite in the vicinity of the stream network. In the Mameyes watershed, landslides 

of smaller magnitude are more frequent. The occurrence of multiple intermediate and small 

landslides across the Mameyes watershed is demonstrated in Figure 6-5. The relative 

response of the modelled watersheds in terms of landslide occurrence is in agreement with 



 184 

previous studies [Larsen, 1997; Larsen, 2012] which report a mean area of recent scars 

equal to 600 m2 and 400 m2 for Icacos and Mameyes watersheds, respectively. The 

magnitude of landslides heavily depends on soils mechanical properties (e.g., cohesion and 

friction angle) and on local slope morphology. The contrasting lithology at the study area 

significantly influences the landscape formation and pedogenesis in the two diverse 

watersheds [Buss and White, 2012; Dosseto et al., 2012]. The weathered soil and saprolite 

from the quartz diorite underlying the Icacos watershed can be more susceptible to 

landslide occurrence, compared to the volcaniclastic landscape [Stallard, 2012], leading to 

frequent occurrence of larger landslides. In contrast, according to the observed scars given 

in Figure 6-5, the Mameyes watersheds is characterized by higher occurrence of small 

slumps and shallow soil slips. This behavior is consistent with the simulated distributions 

of landslide magnitudes (Figure 6-3). 

 

6.4.2 Landscape equilibrium in changing climate 

The projected decline in precipitation at the Luquillo Mountains could have 

important impact on hydrologically-induced topsoil erosion and rainfall-triggered landslide 

occurrence. Rainsplash erosion and topsoil entrainment are likely reduced with the 

projected decline in surface water flow. The projected rates of total hillslope erosion are 

lower compared to the ones reported in chapter 4 (Table 6.1). Simulated erosion rates for 

the two watersheds are lower for the A2 scenario, which is characterized by greater 

precipitation decline and temperature increase (see section 6.2.2). The simulated erosional 

potential did not exhibit substantial differences between the climate change scenarios. The 
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significant topsoil erosion at the steep slopes of the Mameyes and Icacos watersheds is 

linked with dynamic feedbacks to shallow landslides. Sediment mass movement across the 

landscape is quantified by the coupled model, effectively altering slope morphology as 

erosion and deposition proceed. The dynamic response of the landscape feeds back to the 

erosional potential of diverse hillslopes. The interacting physical mechanisms (e.g., 

landslides, sheet erosion, and raindrop impact detachment) that drive hillslope erosion and 

deposition constitute key processes in the evolution of the contrasting landscapes under 

study. Understanding the relative contribution of different erosional processes and 

associated feedback loops is crucial in attempts to quantify erosion rates in response to a 

range of hydro-climatic perturbations. 

According to this analysis, topsoil erosion and shallow landslides control the 

dynamics of soil thickness at different topographic locations. Rainfall-triggered landslides 

constitute instantaneous events of disproportionally large magnitude compared to 

rainsplash and overland flow erosion (chapter 4). Substantial part of the soil profile is 

excavated in landslide sites and is mainly deposited locally, across the landslide deposition 

path (Figures 6-1 and 6-2). Hillslope erosion in response to different hydro-climatic 

scenarios drives the redistribution of upland soil and saprolite across the landscape, and 

exerts a strong control on the spatial variation of soil thickness. The significant rates of 

simulated divergent soil transport exceed the magnitude of local regolith production at the 

hillslopes of the two watersheds, leading to gradual exposure of deeper soil horizons and 

of emerging bedrock. The soil thickness at the Icacos and Mameyes watersheds likely 

increases at lower slopes and valleys characterized by substantial rates of colluvial and 

alluvial sediment deposition. The net effect of lower erosion rates and bedrock weathering 
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at relatively flat ridges may lead to quasi-stationary states of soil thickness equilibrium. 

Moreover, if the dynamics of soil thickness influence the rate of saprolite deepening 

[Dietrich et al., 1995; Heimsath et al., 1997], then the spatio-temporal variation of topsoil 

erosion and landslide occurrence at the two diverse landscapes subsequently affects the 

rates of regolith production at different catena positions. Results suggest that the 

assumption of steady-state soil thickness invoked in previous studies [Brown et al., 1995; 

Riebe et al., 2003; Stallard, 2012] may not be entirely valid across different landscape 

positions in the Luquillo CZO.  

This work assesses the influence of simulated erosion rates on the landscape 

equilibrium of the two diverse watersheds. Comparison of total hillslope erosion with 

reported weathering rates at the two contrasting landscapes is given in Table 6.3. A 

relatively high weathering rate of 335 mm kyr-1 was estimated in the Uranium-series 

isotopes based study of Dosseto et al. [2012] for the volcaniclastic landscape. This 

weathering rate is in the same order of magnitude of the erosion rates simulated over a 

range of climate projections. This suggests that the landscape underlain by volcaniclastic 

rock may potentially reach a state close to dynamic equilibrium. In contrast, erosion rates 

in the granitic landscape are significantly higher than the quartz diorite weathering rate (45 

mm kyr-1) reported in Chabaux et al. [2013] (Table 6.3). Relatively high rates of erosion 

in the Icacos watershed over the last decades are also reported in recent studies [McDowell 

and Asbury, 1994; Shanley et al., 2011; Stallard, 2012; Stallard and Murphy, 2012]. 

Comparison of hillslope erosion with bedrock weathering rates suggests that the granitic 

landscape may be characterized by significant denudation rates. Simulations suggest that 

the present states of landscape equilibrium in the Mameyes and Icacos watersheds (section 
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4.6), are expected to remain relatively invariant by 2099. These results are in contrast to 

Brown et al. [1995] and Brocard et al. [2015], who estimated significantly lower 

denudation rates at the Icacos watershed (Table 6.1). These studies apply methods that use 

cosmogenic 10Be for the estimation of total erosion rates. However, cosmogenic estimates 

of watershed-averaged denudation rates in sites that include deep landslides, such as the 

Rio Icacos watershed, can be significantly biased [Riebe et al., 2003]. Moreover, the 

episodic character of hillslope erosion may not be reflected by cosmogenic rates averaged 

over relatively large (e.g., 104-107 yr) time scales [Kirchner et al., 2001]. This may 

potentially explain the fact that 10Be methods [Brocard et al., 2015; Brown et al., 1995] do 

not capture the recently observed [McDowell and Asbury, 1994; Shanley et al., 2011; 

Stallard, 2012; Stallard and Murphy, 2012] increase in erosion rates at the Icacos 

watershed. 

 

Table 6.3. Comparison of projected hillslope erosion rates (B1 and A2 climatic scenarios) 

with recently reported bedrock weathering rates (values are given in mm kyr-1). 

Watershed 
Erosion rate 

(scenario B1) 

Erosion rate 

(scenario A2) 

Bedrock weathering 

rate 

Icacos (quartz diorite) 887 815 45* 

Mameyes (volcaniclastic) 738 703 335** 

*Chabaux et al. [2013] 
**Dosseto et al. [2012] 
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6.5 Summary 

The potentially important influence of climate change on landscape evolution and on 

the critical zone is not sufficiently understood. Quantifying the relative contribution of 

different hydro-climatic factors on the rates of hillslope erosion and soil accumulation 

across the complex morphology of a watershed remains a challenge. This study quantifies 

topsoil erosion and landslide occurrence in response to a range of climatic projections in 

the Luquillo Critical Zone Observatory, a site of particular geomorphological interest. The 

adjacent Mameyes and Icacos watersheds are studied, which are underlain by contrasting 

lithologies. A high resolution coupled hydro-geomorphic model based on tRIBS 

(Triangulated Irregular Network-based Real-time Integrated Basin Simulator) is used. 

Observations of landslide activity and hillslope erosion are used to evaluate the model 

performance. The process-based model quantifies feedbacks among different hydrologic 

processes, landslide occurrence, and topsoil erosion and deposition. Simulations suggest 

that the propensity of landslide occurrence in the Luquillo Mountains is controlled by 

tropical storms, soil moisture redistribution, and by non-climatic factors, and is expected 

to remain significant through 2099. The Icacos watershed, which is underlain by quartz 

diorite, is dominated by relatively large landslides. The relative frequency of smaller 

landslides is higher at the Mameyes watershed, which is underlain by volcaniclastic rock. 

According to the results, the projected precipitation decrease at the study site may lead to 

moderate decline in erosion rates. Yet the simulated erosional potential of the two diverse 

landscapes likely remains at significant levels. Comparison of projected erosion rates with 

recent bedrock weathering estimates indicates substantial denudation rates in the granitic 

landscape. The volcaniclastic landscape is likely characterized by a state of dynamic 
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equilibrium. Results suggest that the equilibrium conditions in the two contrasting 

landscapes may remain reasonably invariant with climate change.  
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CHAPTER 7. Thesis summary and future research 

7.1 Hydrologically-induced erosion of soil organic carbon in diverse tropical 

montane and temperate forest ecosystems 

The hydrologically driven soil erosion and SOC redistribution were studied at the 

diverse ecosystems of the Calhoun CZO and the Luquillo CZO. The Holcombe’s Branch 

watershed in the Calhoun CZO was studied, located in the southern Piedmont of USA. This 

temperate forest ecosystem has experienced some of the most serious agricultural erosion 

in the USA [Trimble, 1974], starting about 1800 with cultivation of cotton and other crops, 

and continuing to the early 20th century [Richter and Markewitz, 2001]. The environmental 

history of the Calhoun CZO is characterized by rapid reforestation of eroded agricultural 

soils (chapter 3). Located in the northeastern Puerto Rico, the Luquillo CZO is a tropical 

montane forest ecosystem characterized by steep geomorphic gradients and by different 

lithological characteristics (section 4.3). This work focused on the adjacent watersheds of 

Rio Mameyes and Icacos, which are characterized by comparable climatic conditions and 

by contrasting underlying lithologies. The Mameyes watershed is primarily underlain by 

volcaniclastic rock, and the Icacos watershed is underlain by quartz diorite [Murphy et al., 

2012]. The different geological characteristics have also influenced landscape 

morphologies and sediment properties at the two watersheds (see section 6.2.1). 

The mean annual precipitation (MAP) and mean annual temperature at the study sites 

are summarized in Table 7.1. The mean temperature is lower in the Holcombe’s Branch, 



 191 

which is located in a higher latitude (34.6177 N, 81.6914 W). The MAP in the two 

tropical watersheds [Murphy and Stallard, 2012] is significantly higher compared to the 

Calhoun CZO (Table 7.1). Different erosional mechanisms controlled by topography, 

vegetation cover, and soil hydrological and geomorphic properties (Figure 7-1), are 

dominant in the two study areas. Shallow landslides are the main hillslope erosion drivers 

in the Luquillo CZO [Larsen, 2012]: 93 % of the total hillslope erosion at the Mameyes 

watershed corresponds to rainfall-triggered landslides. The contribution of landslides to 

total hillslope erosion at the Icacos watershed is 98 %. In the Calhoun CZO, extensive 

logging and abandonment of agricultural sites led to accelerated erosion and to the 

development of large gully systems. Gully erosion (e.g., sidewall erosion) is the main 

erosional mechanism in this degraded landscape [James et al., 2007]. Biogeochemical 

characteristics of different soil types at the two sites are given in sections 2.4.1 and 4.4.1. 

 

Table 7.1. Mean annual precipitation (MAP) and mean annual temperature at the 

Holcombe’s Branch (Calhoun CZO) and at the Mameyes and Icacos watersheds 

(Luquillo CZO). 

 Holcombe's Branch Rio Mameyes Rio Icacos 

MAP (mm yr-1) [Murphy and Stallard, 2012] 1,260 3,760 4,150 

Mean annual temperature (°C) (section 2.3) 17 23 21 
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Figure 7-1. Conceptual diagram of feedbacks among coupled hydrological, geomorphic, 

and biogeochemical processes modelled using tRIBS-ECO at diverse ecosystems. 

Geophysical and biogeochemical properties (section 2.4) controlling different processes 

are given in parentheses. Geomorphic processes include topsoil erosion, which is the 

primary erosional mechanism in the Calhoun CZO, and shallow landslides, which are the 

main erosional drivers at the Luquillo CZO [Larsen, 2012]. Arrows denote dynamic 

feedbacks among linked processes. For example, increase in moisture conditions at soils 

characterized by low values of cohesion and friction angle (e.g., sandy loam) may lead to 

instability of relatively steep slopes. Dynamic replacement of eroded soil organic C 

(SOC) at landslide sites by C sequestration [Harden et al., 1999] and subsequent SOC 

burial can drive a net atmospheric C sink (chapter 4). Depending on the rates of SOC 

oxidation and production, and on the influence of land management practices on C 

fluxes, soil C sequestration and SOC erosion may induce a net atmospheric C sink or a 

net C source (see sections 3.4.2 and 4.6.5). 

 

The simulated erosion rates at the study sites are given in Table 7.2. The simulated 

erosion rates correspond to 100-year averages based on stationary hydro-climatic forcings 
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(see sections 2.4.4 and 4.4.4). Slope instability in the Luquillo CZO induced significant 

soil loss at landslide sites [Larsen, 2012]. Yet the total hillslope erosion rates averaged over 

upland eroding sites in the Mameyes and Icacos watersheds (0.93 and 1.12 mm yr-1, 

respectively) are comparable with the rate of accelerated erosion simulated in the 

Holcombe’s Branch (1.33 mm yr-1). 

 

Table 7.2. Simulated soil erosion rates at the Holcombe’s Branch (Calhoun CZO) and at 

the Mameyes and Icacos watersheds (Luquillo CZO). 

 Holcombe's Branch Rio Mameyes Rio Icacos 

Soil erosion rate (mm yr-1) 1.33 0.93 1.12 

 

The net erosion-induced C exchanges with the atmosphere simulated at the Calhoun 

CZO and at the Luquillo CZO are given in Table 7.3, for the maximum source, the 

intermediate, and the maximum sink scenarios of C fluxes (sections 3.3.3 and 4.4.2). The 

simulated soil-atmosphere C exchange in the Calhoun CZO ranged from a net source of 

10.3 g C m-2 yr-1 to a net sink of -8.4 g C m-2 yr-1. The C exchange with the atmosphere in 

the Luquillo CZO ranged from a net source of 17.8 g C m-2 yr-1 to a net sink of -20.8 g C 

m-2 yr-1. The simulated ranges are controlled by forest types, management practices, and 

plant inputs to SOC in eroding soils at the two diverse ecosystems (Figure 7-1). According 

to the analysis of section 4.6.4, in soils covered with forests a high NPP, such as the 

Tabonuco forest (which dominates the Luquillo CZO), lateral removal of topsoil layers 

may alter the depth-dependent SOC production rates more significantly, leading to higher 
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net SOC loss to erosion (maximum source scenario). The maximum C sink strength is also 

greater for the Luquillo CZO, because the alteration of the SOC oxidation rate at the 

maximum sink scenario was more significant in the tropical eroding soils (see section 

4.6.4), compared to the eroding soils at the Calhoun CZO. As a result, in the modelled 

extreme scenarios of soil-atmosphere C exchange, soil erosion led to a wider range of C 

fluxes in the tropical soils of the Luquillo CZO, compared to the eroding soils of the 

Calhoun CZO. 

 

Table 7.3. Simulated erosion-induced soil-atmosphere C exchange in the Calhoun CZO 

and the Luquillo CZO for the maximum source, the intermediate, and the maximum sink 

scenarios (sections 3.3.3 and 4.4.2) of C fluxes (values in g C m-2 yr-1). 

 Calhoun CZO Luquillo CZO 

Max. sink scenario -8.4 -20.8 

Intermediate scenario -1.5 -5.6 

Max. source scenario 10.3 17.8 

 

In agricultural landscapes, removal of atmospheric CO2 by plants, accelerated 

erosion and burial of fixed C as soil organic matter at depositional environments may lead 

to a net atmospheric C sink [Lal, 2004]. According to results for the intermediate scenario 

of C fluxes, the influence of accelerated soil erosion on the degraded landscape of the 

Calhoun CZO leads to a net atmospheric C sink of -1.5 g C m-2 yr-1. In montane ecosystems, 

landslides remove surficial soil horizons at upper slopes leading to deep burial of organic 

material across the landscape. This study suggests that atmospheric CO2 sequestration, 
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hillslope erosion, and shallow landslide occurrence in the tropical watersheds of the 

Luquillo CZO likely induce a net atmospheric C sink of significant strength (-5.6 g C m-2 

yr-1 for the intermediate scenario of Table 7.3). C erosion and burial in diverse ecosystems 

have the potential to offset the anthropogenic enrichment of atmospheric CO2 [IPCC, 

2007], and therefore have an important impact on the global C cycle [Lal, 2003]. Removal 

of atmospheric CO2 and increase of SOC storage can be achieved by increasing the input 

rates of SOC to deep soils, and by changing decomposability of organic matter inputs [Post 

and Kwon, 2000]. Recommended management practices driving soil C sequestration 

include conservation tillage, no till, and mulch farming, integrated nutrient management, 

integrated pest management, and precision farming [Lal, 2004]. Site-specific adaptation of 

such land management practices can lead to enhancement of the SOC pool with reduction 

of tillage-induced soil disturbances, increase in plant C inputs, and increase of the organic 

matter mean residence time in soils [Lal, 2004]. 

The influence of wet versus dry climatic regimes on the erosion rates of SOC was 

studied at the two sites. This analysis classified years with annual precipitation lower that 

the MAP at each site as “dry”, and as “wet” those years exceeding the MAP (Table 7.1). 

The percentile C erosion from upland sites corresponding to wet and dry years is given in 

Table 7.4: around 59 % of C erosion occurred during wet years in the Holcombe’s Branch. 

The relative amount of C erosion during wet years at the Luquillo CZO was approximately 

equal to 69% and 65% for the Mameyes and Icacos watersheds, respectively. The 

proportions of hydrologically-induced erosion of organic material were also analyzed in 

24-hour precipitation intervals, which represent the influence of significant hydro-

meteorological events on the watershed’s response in terms of landslide occurrence 
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[Larsen and Simon, 1993] and upland SOC erosion, integrated over 24-hour periods (Table 

7.4). Days where precipitation exceeded the daily mean at each site were characterized as 

“relatively wet”. Days where precipitation occurred with intensities lower than the mean 

daily one were considered as “relatively dry”. According to this analysis, 56.4 % of C 

erosion occurred in response to relatively wet events in the Calhoun CZO (Table 7.4). The 

contribution of intense hydro-climatic events on the erosion of organic material at the 

Mameyes and Icacos watersheds was important (62.2 % and 58.3 %, respectively). 

Results indicate that the annual precipitation depth influences the cumulative C 

erosion in the Calhoun CZO and the Luquillo CZO. The influence of relatively wet days 

on the rates of hydrologically-induced SOC transport is also important in the study sites. 

This reflects the episodic character of C erosion in response to hydro-meteorological 

events, per findings of chapter 2. The relative contribution of wet days on SOC 

mobilization is more significant in the Mameyes and Icacos watersheds, where shallow 

landslides triggered by intense precipitation events remove surficial and deeper soil layers 

and associated organic material (chapter 4), at higher rates than the topsoil C erosion that 

characterizes upland soil profiles in the Calhoun CZO (Table 7.4). 
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Table 7.4. Proportions of C erosion occurring in dry vs. wet years, and in relatively dry 

vs. relatively wet days, in the Calhoun CZO and in the Luquillo CZO. 

 Holcombe's Branch Rio Mameyes Rio Icacos 

Dry years 41.2 % 33.2 % 35.1 % 

Wet years 58.8 % 66.8 % 64.9 % 

Relatively dry days 43.6 % 37.8 % 41.7 % 

Relatively wet days 56.4 % 62.2 % 58.3 % 

 

7.2  Conclusions 

7.2.1 Understanding a severely degraded agricultural landscape: Soil erosion and burial 

of soil organic carbon 

This study introduced a parsimonious, spatially- and depth-explicit biogeochemical 

model, the tRIBS-ECO (TIN-based Real-time Integrated Basin Simulator-Erosion and 

Carbon Oxidation), to examine whether soil erosion at the landscape scale enhances net C 

sequestration or CO2 return to the atmosphere. The model is based on existing physically-

based hydrologic and geomorphic components [Francipane et al., 2012; Ivanov et al., 

2004a; b]. This is the first study that couples physically-based formulations to represent 

dynamic feedbacks among linked hydrological, geomorphological, and biogeochemical 

processes in a novel spatially-explicit framework, to assess the impact of episodic soil 

erosion and deposition on atmospheric CO2. This work focused on the Calhoun Critical 

Zone Observatory (CZO), a region undergoing recovery from past intensive agricultural 

use much as many other regions of the world, and used multiple measurements of 
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biochemical variables extending to deep soils and observations of hydro-geomorphological 

processes. 

According to results, accelerated erosion at the anthropogenically disturbed 

Holcombe’s Branch watershed (Calhoun CZO) led to the redistribution of relatively large 

amounts of upland soil and SOC from interfluves and slopes to depositional sites and 

alluvial sediments (legacy sediments). This study demonstrated that the physically-based 

representation of the spatial heterogeneity of erosion and of the dynamics of mobilized 

SOC have a significant influence on the net soil-atmosphere C exchange. Observations 

suggested that 32% of the original SOC content at the study area has been eroded. The 

episodic representation of erosion reproduced the SOC loss in eroded sites better than a 

model that assumed a constant erosion rate, suggesting that time varying erosion may be 

an important feature for accurate representation of erosion-induced SOC dynamics. 

A stochastic representation of the variability and temporal dependence of the 

influence of management practices on C fluxes was proposed (chapter 3). Land use 

practices (e.g., fertilization and associated enhancement of system productivity) can have 

a substantial influence on SOC production and oxidation rates at eroding sites, which can 

significantly impact the net C exchange with the atmosphere. Depending on the influence 

of land management practices on C fluxes at eroding soils, watershed-integrated estimates 

of erosion-induced soil-atmosphere C exchange ranged from a net C source to a net C sink 

of significant strengths, encompassing C fluxes inferred from observations, and published 

estimates of the contribution of erosion to atmospheric CO2. SOC sequestration and burial 

can induce a net atmospheric C sink (chapter 2), which could lead to a potential short-term 

strategy for mitigating anthropogenic enrichment of atmospheric CO2 [Lal, 2004]. This 
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study emphasizes the crucial importance of land management practices and conservation 

methods in preventing agricultural erosion and soil degradation [Montgomery, 2007], and 

in promoting human and ecosystem health and sustainability. 

This work highlighted the important topographic heterogeneity that characterizes 

erosion and burial of organic material, driven by land use and land use change. The hydro-

geomorphic behavior of the Holcombe’s Branch watershed in the Calhoun CZO was 

simulated during the recent agro-ecosystem and the secondary forest ecosystem periods, 

that characterize the study area (chapter 3). Although rapid reforestation of the region likely 

led to a decline in erosion rates, the present state of the degraded landscape is characterized 

by important erosional potential of soil and organic material. Observations and model 

results indicated substantial SOC storage at depositional sites, suggesting that a significant 

fraction of eroded SOC is only partially oxidized upon transport. For the most part, the 

eroded organic material has been buried in alluvial deposits, rather than travelling down 

the stream network to the ocean. 

On average, 34% of eroded C has been replaced by C sequestration at an intermediate 

scenario of C fluxes (chapter 2). The simulated topographic variation of the C replacement 

at small spatial scales is comparable to the variability among multiple point estimates 

reported in a global-scale study [Van Oost et al., 2007]. The strong spatial heterogeneity is 

attributed to the small-scale complexity of natural processes that drive C erosion. This 

variability is sometimes partially neglected with landscape- or global-scale studies that are 

often based on domain averaged C fluxes, or on scarce point measurements, yet it appears 

to be an important feature to consider in modelling efforts. Though such an approach 

necessarily adds significant complexity to modelling efforts, accounting for small-scale 
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heterogeneity in topography and temporally varying erosion rates can have meaningful 

influence on model projections of erosion-induced, vertical and lateral SOC fluxes and 

resulting SOC profile storage. It is recommended that future attempts to quantify the 

contribution of erosion on atmospheric CO2 explicitly account for the fate of eroded SOC, 

and for the significant uncertainty pertinent to the fine spatio-temporal variation of hydro-

geomorphic and biochemical processes that drive C erosion. 

 

7.2.2 Hillslope erosion, landslide occurrence and carbon dynamics at tropical watersheds 

This work studies hydrologically-driven hillslope erosion, landslide occurrence and 

SOC redistribution in the Mameyes and Icacos watersheds at the Luquillo CZO, a tropical 

site of particular hydrological and geomorphological interest, characterized by diverse 

topographies and contrasting underlying lithologies (chapter 4). To quantify effects of 

geomorphic perturbations on the dynamics of SOC in the Luquillo CZO, an existing slope 

stability component [Arnone et al., 2011] was coupled with tRIBS-ECO. The model 

accounts for feedbacks between hydrologically-induced topsoil erosion and landslide 

occurrence, and simulates the fate of eroded SOC across the landscape. Measurements of 

diverse SOC profiles and oxidation rates were used to initialize the model, and observations 

of hydrologic and geomorphic processes were used for model evaluation. 

Based on the spatially-explicit physical representation of SOC erosion this work 

highlighted the capacity of tropical watersheds to serve as a net C sink or a C source in 

response to hydro-geomorphic perturbations. Simulations suggested that the type of forest 

controls the erosion-induced C exchange with the atmosphere in these montane tropical 
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watersheds. Hillslope erosion altered SOC production and decomposition rates in tabonuco 

and palm forests, characterized by markedly greater NPP values relative to colorado forests 

(section 4.4). The associated effects on colorado forest soil profiles were less significant. 

The two tropical watersheds are characterized by significant rates of hillslope erosion 

and landslide occurrence. According to simulations, frequent events of sediment transport 

lead to significant SOC erosion across the Luquillo CZO. SOC is transported with sediment 

from eroding hillslopes and landslide sites across the landscape. Also, landslides occurring 

at relatively steep slopes remove surficial and deeper soil layers and associated organic 

matter. Soil profiles at fresh landslide scars undergo rapid C replacement by atmospheric 

C sequestration during succession.  

To quantify the uncertainty in landside hazard prediction associated with the natural 

spatial variation of soil properties, a probabilistic approach for the prediction of rainfall-

triggered landslide occurrence at basin scale (chapter 5) was implemented in an existing 

distributed eco-hydrological and landslide model, the tRIBS-VEGGIE-landslide (TIN-

based Real-time Integrated Basin Simulator - VEGetation Generator for Interactive 

Evolution) model [Lepore et al., 2013]. The model assesses the likelihood of shallow 

landslides by accounting for uncertainty related to geotechnical and hydrological factors 

that directly affect slope stability. The methodology was used in the Mameyes basin 

(Luquillo CZO). Effects of different hyetograph shapes on shallow landslide occurrence 

were also studied. 

The use of this physically-based approach allowed the simulation of the complex 

nonlinear interactions between rainfall forcing and soil basin characteristics (mainly 
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topography and soil types) in evaluating the hydrological and slope stability basin 

responses. The parsimonious probabilistic approach is computationally feasible, as 

opposed to numerical probabilistic analyses at basin scale that require prohibitive numbers 

of model runs. Results indicated that hyetographs with a rainfall peak near the end of the 

event, typical of tropical cyclones, can be most catastrophic in terms of rainfall-triggered 

landslide occurrence. Events with maximum intensities around the middle part of their 

duration (frontal events) resulted in lower probabilities of failure. Also, differences in 

probability of failure due to diverse hyetograph shapes were observed at intermediate 

slopes, where the stability is controlled by the combined impact of soil moisture and soil 

weight, in contrast to steeper or flatter slopes. The overlap between simulated landslide 

occurrence and historical landslide events confirmed the model capability to identify the 

areas at dense frequency of landslides, even if this comparison cannot be considered a 

rigorous validation procedure. The use of the proposed probabilistic approach for shallow 

landslide prediction was able to reveal and quantify landslide risk at slopes assessed as 

stable by simpler deterministic methods.  

To quantify the influence of climate change on the rates of hillslope erosion and soil 

accumulation at the contrasting landscapes of the Luquillo CZO, the hydro-geomorphic 

models of the Mameyes and Icacos watersheds were forced with a range of hydro-climatic 

projections (chapter 6). The rates of hillslope erosion and landslide occurrence at the 

diverse watersheds of Rio Icacos and Rio Mameyes were quantitatively estimated by 

systematically accounting for dynamic feedbacks among linked hydrologic and 

geomorphic processes. Observations were used to confirm model behavior, including 

multiple landslide scars and recent sediment exports.  
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By the means of the process based and spatially-explicit representation of slope 

instability, this modelling study demonstrated that the propensity for landslide occurrence 

at the Luquillo Mountains is expected to remain significant in the 21st century. The 

simulated landslide occurrence at the two watersheds over the simulation period can be 

roughly approximated by scale-invariant distributions, which can be characteristic of 

landslide frequency distributions observed in natural systems [Bak et al., 1987; Hergarten, 

2003]. The projected landside frequency distributions suggest that landslides of relatively 

larger magnitudes are expected to persist at the Icacos watershed, underlain by quartz 

diorite. The occurrence of smaller shallow landslides at the volcaniclastic Mameyes 

watershed will likely remain relatively high. While the exact timing of landslide occurrence 

depends on storm hyetograph characteristics, the cumulative frequency of slope instability 

simulated in the 21st century exhibited small variation over the range of hydro-climatic 

scenarios. The time-integrated landslide occurrence projected by 2099 is heavily controlled 

by non-climatic factors, including local topographic gradients, soil characteristics and 

forest types. 

According to results, the projected climate change in the south Caribbean may drive 

a moderate decrease in hillslope erosion rates, yet the erosional potential of the two diverse 

landscapes remains significant. Comparison with recently reported rates of regolith 

production [Chabaux et al., 2013; Dosseto et al., 2012] indicates that substantial rates of 

denudation characterize the granitic landscape (Icacos watershed), while the adjacent 

volcaniclastic landscape of the Mameyes watershed likely reaches a state close to dynamic 

equilibrium. According to simulations, the soil thickness equilibrium states in the two 

diverse landscapes likely remain reasonably invariant with changing climate. It is 



 204 

suggested that high resolution process-based models that systematically account for 

dynamic feedbacks among complex hydrologic and geomorphic processes can be used to 

predict the relative influence of climatic and nonclimatic factors on landscape evolution, 

and the critical zone response to a range of natural and anthropogenic perturbations. 

 

7.3 Future Research Directions  

Future research efforts can focus on utilizing various data sets from other locations 

and sites to further evaluate the ability of this modelling framework to simulate sediment 

and SOC erosion and the soil-atmosphere C exchange. The modelling framework 

developed in this study can then be used to investigate different hypotheses addressing 

scientifically and socially significant problems.  

Prediction of the influence of hydrologically-induced erosion and landslide 

occurrence on soil-atmosphere CO2 exchange can be improved using additional 

observations of hydro-geomorphic and biogeochemical variables. Given the significant 

topographic variability of C fluxes demonstrated in chapter 2, measurements from 

interfluves, slopes, and depositional sites will help in evaluating the ability of tRIBS-ECO 

to efficiently reproduce C inventories and decomposition rates in anthropogenically 

disturbed landscapes. Measurements from long-term soil-ecosystem experiments [Richter 

and Markewitz, 2001] can be used to constrain modelled C fluxes based on the potentially 

significant [Mobley et al., 2015; Richter et al., 1999] temporal variation in plant inputs to 

the SOC pool, driven by land use and land cover change. Ecophysiological indices, such 

as the carbon use efficiency [DeLucia et al., 2007], can be used in tRIBS-ECO to represent 
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the coexistence of microbial activity and biomass production at different forest types. Also, 

the effect of land uses on SOC decomposition and production varies among differently 

managed sites [Doetterl et al., 2016]; Systematically accounting for this spatial variation 

may further constrain estimates of the erosion-induced soil-atmosphere C exchange. 14C 

based observations from eroding sites will help evaluate the statistical properties of ak 

(sections 2.4.2 and 3.3.3), and characterize better the uncertainty associated with land 

management in the prediction of SOC decomposition rates. 

Evaluation of the hydro-geomorphic model’s performance can be improved using 

additional measurements of discharge and sediment yield from future campaigns. With 

regard to modelling landslide hazard, systematic mapping and recording of the time of 

landslide events can improve model validation. This will further test the extent to which 

the simulated response to hurricanes and tropical storms [Hilton et al., 2008; Larsen and 

Torres-Sánchez, 1992; Larsen and Simon, 1993] reproduces natural landslide occurrence, 

and will hence confirm the potential of the methodology to improve landslide hazard 

assessment in montane watersheds [Larsen and Torres-Sánchez, 1998]. 

As previously discussed, the coupled and physically-based character of tRIBS-ECO 

allows the quantification of dynamic feedbacks among hydro-geomorphic and 

biogeochemical processes at fine temporal and spatial scales to test multiple hypotheses. 

The critical influence of hillslope erosion driven by different hydro-climatic projections on 

the redistribution of SOC can assessed in diverse tropical ecosystems [Fiener et al., 2015]. 

The physically-based model can be used to estimate sediment and C fluxes triggered by 

tropical hurricanes, which could potentially lead to important insights on how extreme 

hydro-climatic phenomena perturb tropical ecosystems.  
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This work highlights the episodic character of upland SOC erosion in response to 

hydro-meteorological events (chapter 2). The influence of future precipitation intensity 

change on episodic C erosion and on the soil-atmosphere CO2 exchange in the Calhoun 

ecosystem and in managed landscapes can be assessed using tRIBS-ECO. The 

hydrologically-induced movement of organic material can have important consequences 

on the net C exchange with the atmosphere in a changing climate [Battin et al., 2009; Lal, 

2004]. 

Furthermore, tRIBS-ECO can be used to evaluate seasonal or long-term controls of 

ecological, hydrological, and biogeochemical processes [Richter and Billings, 2015]. The 

uncertainty associated with the natural spatial variability of hydrological, 

geomorphological, and biogeochemical properties can be significant (chapter 5), and needs 

to be accounted for in estimates of atmospheric C fluxes derived from erosional processes. 

The spatial variation of rainfall fields driven by topography (chapter 5), forest cover, and 

atmospheric phenomena (e.g., spatial variation of cloud cover) may be important in larger 

spatial scales of analysis, and should be also accounted for in future studies. The model 

can also be used to assess how topography among contrasting depositional environments 

may influence the degree to which eroded SOC may be preserved in diverse ecosystems. 

Given our lack of knowledge about the fate of most eroded SOC on timescales of decades 

to centuries, this is of particular interest for future studies. Investigations addressing these 

issues are especially compelling in areas where soil erosion has been accelerated by 

anthropogenic activity, and in sites where extreme hydro-meteorological phenomena and 

geomorphic gradients have the potential to induce significant sediment transport. 
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APPENDIX A. Estimation of SOC content at each time step 

In the tRIBS-ECO model, the depth-dependent SOC content is estimated at each time 

step by calculating the parameter Ca,t in equation (2.2) based on the SOC difference given 

by equation (2.1). More precisely, the total SOC content (per unit area) is given by (see 

section 2.2.1 for notation): 

 
0

( ) ( )t tSOC C z z dz 
tH

  (A.1) 

Substituting ( )tC z  from equation (2.2) yields: 
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At time step t+1, the SOC content is estimated by applying equation (2.1). The value of 

Ca,t+1 is then calculated from equation (A.2) as following: 
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Expressing Ca,t as a time variant parameter implies mixing among surficial horizons in the 

soil column (see section 2.4). Equation (A.3) is applied at eroding and depositional sites 

across the watershed. 
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APPENDIX B. Estimation of initial depth-dependent SOC production rates 

The initial SOC production rate is estimated by assuming steady state conditions for 

time t=0 (section 2.4). For steady-state conditions at time t = 0: 0
SOC

t





 and therefore 

equation (2.1) yields (see section 2.2.1 for notation): 
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From equation (2.5) and (B.1) we obtain: 
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The SOC production rate at soil surface (z=0) is equal to ,a tI  (equation (2.5)). By assuming 

zero net soil-atmosphere C exchange at the soil surface [Yoo et al., 2005] at the beginning 

of the simulation we obtain: 

 , 00
( 0) ( 0) ( 0)a t t t tt

I k z z C z


      (B.3) 

The model was initialized with estimates of depth-dependent soil bulk density, SOC 

oxidation rate and SOC concentration, based on observations (see Figure 2-3 and Table 

2.1). The initial depth-dependent SOC production rates at each topographic location were 

estimated by calculating Ia,t and Ib from equations (B.3) and (B.2), respectively. The 

corresponding parameter values are presented in Table 2.1. 
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APPENDIX C. Estimation of the variability of carbon storage 

The variance of SOC storage (associated with uncertainty in the influence of 

management practices) conditioned to the previous state is obtained at each time step from 

equation (3.7) as following:  

 
t tΗ Η
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By dropping the constant terms from the right hand side of equation (C.1) we obtain 
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where 
, 1 , 1 1     a t a t tsoc   

 are the values of Ia, ka, and SOC storage estimated at time t-1, 

respectively, and c1,t and c2,t are given by equation (3.12). Based on the representation of 

the effect of management practices on kt(z) and It(z) (section 2.2.1), it can be shown that 

the conditional variances of Ia,t and ka,t are equal to the ones given in equation (3.6): 

 
 

 

2

, , 1

2

, , 1

(1 )

(1 )
k

a t a t

a t a t k

Var I Var a

Var k Var a





 

 

 



    

    

  (C.3) 

where    , ,  kVar a Var a    and 
k

  are time invariant statistical properties (variances and 

lag-1 autocorrelation coefficients, respectively) of the stationary processes aI, and ak. Also, 

at each time step , , , 1 , 1, ,a t a t a t a tCov k I   
 
  is equal to the covariance of the white noise term 
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of the bivariate stationary AR(1) model (equation (3.1)). Thus, from equations (C.2) and 

(3.11) we obtain: 

 1SOC T T

t t t tVar SOC 
    P BB P   (C.4) 
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