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SUMMARY

Carefree handling refers to the ability of a pilot to operate an aircraft without

the need to continuously monitor aircraft operating limits. At the heart of all care-

free handling or maneuvering systems, also referred to as envelope protection systems,

are algorithms and methods for predicting future limit violations. Recently, envelope

protection methods that have gained more acceptance, translate limit proximity in-

formation to its equivalent in the control channel.

Envelope protection algorithms either use very small prediction horizon or are

static methods with no capability to adapt to changes in system configurations.

Adaptive approaches maximizing prediction horizon such as dynamic trim, are only

applicable to steady-state-response critical limit parameters. In this thesis, a new

adaptive envelope protection method is developed that is applicable to steady-state

and transient response critical limit parameters. The approach is based upon devis-

ing the most aggressive optimal control profile to the limit boundary and using it to

compute control limits. Pilot-in-the-loop evaluations of the proposed approach are

conducted at the Georgia Tech Carefree Maneuver lab for transient longitudinal hub

moment limit protection.

Carefree maneuvering is the dual of carefree handling in the realm of autonomous

Uninhabited Aerial Vehicles (UAVs). Designing a flight control system to fully and

effectively utilize the operational flight envelope is very difficult. With the increas-

ing role and demands for extreme maneuverability there is a need for developing

envelope protection methods for autonomous UAVs. In this thesis, a full-authority

automatic envelope protection method is proposed for limit protection in UAVs. The

xvii



approach uses adaptive estimate of limit parameter dynamics and finite-time hori-

zon predictions to detect impending limit boundary violations. Limit violations are

prevented by treating the limit boundary as an obstacle and by correcting nominal

control/command inputs to track a limit parameter safe-response profile near the limit

boundary. The method is evaluated using software-in-the-loop and flight evaluations

on the Georgia Tech unmanned rotorcraft platform- GTMax. The thesis also develops

and evaluates an extension for calculating control margins based on restricting limit

parameter response aggressiveness near the limit boundary.
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CHAPTER I

INTRODUCTION

Aircraft, both manned and unmanned, are constrained by many operating limits. En-

velope protection is the task of monitoring and maintaining vehicle operation within

these limits. Traditionally, in piloted vehicles the task of envelope protection is vested

with the pilot. Pilots are trained to monitor cockpit instruments and follow safety

guidelines for envelope protection. Experienced pilots also rely on secondary vehicle

cues such as structural vibration while operating close to the edges of the flight en-

velope. However, a pilot tasked with envelope protection invariably will have higher

workload, particularly when operating the vehicle aggressively at the edges of the

prescribed flight envelope [18]. Furthermore, safety guidelines are usually designed

conservatively and in a way that is easy for the pilot to follow. Even though the

pilot may be aware of this conservative nature, he/she will be reluctant to disregard

them even in critical situations. A pilot flying the vehicle within the constraints of

the safety guidelines is generally operating within a conservative region of the true

Operational Flight Envelope (OFE) and hence this approach does not fully qualify

for carefree handling.

With the advent of digital avionics and advanced active control technology, care-

free handling is becoming a reality [1,62]. Carefree handling [36] represents the ability

of a pilot to fly throughout an aircraft’s OFE without concern for exceeding struc-

tural, aerodynamic or control limits [33]. The anticipated benefits resulting from

carefree handling are the following:

• Improved or guaranteed safety during highly aggressive maneuvers and while

operating near the edges of the flight envelope.
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• Reduced task time by allowing the pilot to utilize maximum available perfor-

mance.

• Reduced pilot workload and improved mission related situational awareness by

relieving the pilot of the need to continuously monitor cockpit instruments for

envelope protection.

Imposing conservative safety constraints within the Flight Control System (FCS) can

prevent the aircraft from violating operating limits. However, such safety constraints

do not fully qualify for carefree handling as they do not facilitate effective usage of

the operational flight envelope and therefore restrict the performance of the vehicle.

Envelope protection is also significant for Uninhabited Aerial Vehicles (UAVs).

UAVs are emerging as new frontiers replacing piloted vehicles in many operational

roles. Advanced technologies developed previously for piloted vehicles are now being

transitioned onto autonomous aircraft. Maneuverability constraints that were im-

posed on piloted vehicles for the safety of the pilot are no longer applicable to UAVs.

Therefore, technology will enable modern UAVs to be more maneuverable and more

aggressive than manned vehicles. However, the absence of a human operator means

that the task of envelope protection must be done autonomously. Carefree maneu-

vering, i.e, the ability of the vehicle to operate within the flight envelope without

external monitoring, will be a necessary feature in the UAV system architecture.

1.1 Envelope protection system design- approach

and challenges

The main purpose of an envelope protection or limit protection system is to en-

able carefree handling/maneuvering while reducing the compromise between safety

and performance. A conventional approach for achieving carefree handling in piloted

vehicles and carefree maneuvering in UAVs is to design the flight control system incor-

porating the operating limits of the vehicle [52, 53]. The benefits gained from using
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this design strategy will vary and depend upon the time and effort expended dur-

ing the design phase. Reasonable performance improvements may not be achievable

without devoting significant financial and human resources. However, the obvious

disadvantage of such an integrated design is that it will further complicate the de-

sign of the flight control system. Furthermore, such an architecture will not facilitate

introducing new operating limits which may invariably require a complete re-design

and re-verification of the flight control system.

1.1.1 Modular envelope protection system design

In lieu of the complications and perhaps only marginal benefits gained from utilizing

an integrated design strategy, researchers have pursued a modular design approach

in which an envelope protection system is designed independently from the vehicle

flight control system. The design of an envelope protection system can be divided

into the following functional modules: limit cue modules, a limit arbitration module,

and a control interface module. The envelope protection system designer may wish to

pursue either an integrated or modular design approach for these functional modules

depending on the available resources and design goals. However, a decoupled modular

design will facilitate change and renewal of individual modules.

The design choices made during the development of an envelope protection sys-

tem and its functional modules rely heavily on how well the operating limits of the

vehicle are understood. Among the three functional modules, the limit cue modules

are the most significant and pervasive across various envelope protection systems.

In a modular design, each limit cue module within an envelope protection system

pertains to a particular vehicle operating limit, example wing loading, stall etc. A

limit cue module combines within itself both the limit prediction and the limit cueing

algorithms. The purpose of the limit prediction algorithm is to predict or anticipate

an impending limit boundary violation. The function of the limit cueing algorithm is
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Figure 1: An open limit protection architecture and vehicle control/command system
Source: Reference [23]

to provide information to the limit arbitration module that will help prevent violation

of the corresponding limit boundary, as shown in figure 1. The content and form of

this limit cueing information will depend upon the limit cue design adopted for the

operating limit and the vehicle platform. An envelope protection system may have

multiple limit cue modules, each corresponding to an operating limit. The function

of the limit arbitration module is to process and select among the multiple simultane-

ous limit cue information coming from the limit cue modules. This selection process

within the limit arbitration module depends upon the design of the control interface

module. The control interface module provides the points within the vehicle con-

trol/command path where limit cue information can be applied for limit protection.

In the case of piloted vehicles, the operator is a part of the vehicle control/command

path. Therefore, in addition to the interface points that are common to both manned
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and unmanned aircraft, piloted vehicles have operator sensory channels such as vi-

sion, touch and hearing available as additional interface points, as shown in figure 1.

The limit arbitration module must select, prioritize and distribute limit cue informa-

tion to the various points across the vehicle control/command path using the control

interface module [23].

1.1.2 Design challenges

Developing design methodologies and approaches for each functional module con-

tained within a modular envelope protection system is a challenging problem. The

focus of this thesis is the development of limit prediction and cueing algorithms that

can be used in designing arithmetic limit cue modules. Arithmetic limit cue mod-

ules [23] are those that utilize analytical methods for limit prediction and limit cue

determination. The alternative to arithmetic design approach is the logical limit cue

design method. Logical limit cue modules are designed based on known or suspected

cause and effect relationships between vehicle limits and inputs. Arithmetic limit cue

design method is adopted for implementing limit cue modules for vehicle limits that

have numerical values associated with them, such as stall, vertical load factor etc.

The approach adopted for limit cue module design, logical or arithmetic, depends

on available knowledge regarding the operating limit (limit parameter). For instance,

logical limit cue design approach is adopted when the direction but not the magnitude

of limit parameter variation with pilot control inputs are known. The next section

reviews the various existing limit prediction and cueing methods for arithmetic limit

cue module design. Also, the different approaches investigated for limit cueing in

piloted and uninhabited aircraft are presented. The review will be used to converge

upon the advantages as well as the drawbacks of existing methods. The methods

proposed in this thesis will attempt to overcome these limitations while maintaining

some of the desirable elements within the previous methodologies.
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1.2 Envelope protection- existing methodologies

and techniques

Researchers have adopted many different approaches for prediction and cueing of

arithmetic limits. As mentioned previously, arithmetic limits have numerical values

associated with them. Envelope protection in terms of arithmetic limits translates

into maintaining limit parameter values either above and or below a certain specified

value. Angle of attack, airspeed, bank angle and load factor are common examples of

arithmetic limit parameters in fixed-wing aircraft. In comparison to fixed-wing air-

craft, envelope protection for carefree handling/maneuvering in rotorcraft is a more

challenging problem. This is because, in addition to conventional limits, rotorcraft

have other unique limit parameters such as rotor flapping, hub moment etc. Fur-

thermore, rotorcraft flight characteristics vary significantly between flight conditions.

These issues prompted investigations into rotorcraft operating limits [61] and ap-

proaches for designing envelope protection system functional modules.

1.2.1 Limit cueing for aircraft envelope protection

In autonomous UAVs, limit cue information must be automatically incorporated into

the vehicle control/command path. Therefore, the control interface module can in-

ject limit cue information at two different points along the vehicle control/command

path [46]. In the first architecture, shown in figure 2, the limit cue information is

used to modify the commands from the flight control system to the vehicle actuators.

The architecture shown in figure 2 is referred to as the control limiting architecture.

The alternative to control limiting architecture is the command limiting architecture

shown in figure 3. In this architecture, the limit cue information is used to modify

higher level system commands issued to the flight control system. In most appli-

cations either one of the two architectures may be adopted for envelope protection.
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However, in UAV systems utilizing high bandwidth or adaptive controllers, the com-

mand limiting architecture is preferable because modifications to low-level actuator

commands may result in chattering or even instability. This chattering is similar to

the oscillations around the limit boundary observed in manned envelope protection

evaluations due to unexpected pilot response to force-feedback tactile cues.

Controller

Envelope Protection

system

+
Command

generator
p

y
Plant

Mission

parameters
com

δ

Figure 3: Automatic envelope protection for UAV- Command limiting architecture

1.2.1.1 Pilot cueing for limit protection

Automatic command/control limiting architectures can also be adopted for limit cue-

ing and limit protection in piloted vehicles. However, in piloted vehicles human senses

such as vision, touch and hearing are available as additional interface points for pass-

ing limit cue information. These interface points can be used for cueing the pilot

regarding an impending or anticipated limit violation. Therefore, in manned vehicles
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the envelope protection system designer can choose between voluntary pilot-in-the-

loop limit protection and autonomous involuntary limit protection [5]. In both cases,

the final decision authority for limit protection remains with the pilot. However, pilot-

in-the-loop voluntary limit protection methodology emphasizes pilot judgment more

than the safety of the vehicle and therefore, arguably leaves more decision authority

with the pilot.

Researchers at NASA Ames investigated different aural, visual and tactile cueing

methods for limit cueing [64, 41]. The study revealed that the discrete nature of

the voice cues can cause the pilot to react suddenly which, in general, may not

be desirable. The display cues were ineffective for limit parameters that change

abruptly and therefore were difficult for the pilot to track. Tactile cueing using an

active inceptor was found to be equally or more effective than other cueing methods.

Tactile cues are perceived better by the pilot without actively looking for them. Also,

specific forms of tactile cueing such as force-feedback tactile cueing can also provide

the pilot with the corrective information necessary for preventing limit violation. In

other words, force-feedback tactile cueing can be used to inform the pilot about the

magnitude and direction of corrective response required for limit protection by guiding

pilot input away from the control limit.

1.2.2 Existing limit prediction and cueing algorithms for aircraft

Implementing limit protection in manned vehicles using force-feedback tactile cueing

requires the pilot to be able to perceive the limit boundary as an equivalent control

limit in the active inceptor as shown in figure 4. The stick location on the active

inceptor that corresponds to the control limit is referred to as the critical control

position.
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Figure 4: Control limit for force-feedback tactile cueing

1.2.2.1 Prediction horizon and control limit calculation

Control limit corresponding to the upper and lower limit boundaries are called as the

upper and lower control limits, respectively. Control margin (shown in figure 4), is

the difference between the control limit and the current control input. The control

limit has to be determined from the nonlinear functional relationship that exists

between the limit parameter response (yp) and the control input (up). Since the

true form of this nonlinear relationship is unknown, all envelope protection methods

have to model or estimate this functional relationship. The control limit is defined

as the control input that results in future value of the limit parameter response to

be on the limit boundary. The prediction horizon used in calculating future limit

parameter value is selected based on the accuracy of the limit parameter model. This

prediction horizon is a critical variable that determines the effectiveness of an envelope

protection method. When this prediction horizon is small or absent (instantaneous

limit protection) the envelope protection system designer is forced to select additional

safety margins to account for the dynamic nature of the limit parameter response [37].

Inappropriate selection of these safety margins will result in failure to fully utilize the

operational flight envelope and, hence, the true performance of the vehicle. Therefore,

the development of envelope protection methods that provide estimates of control

limit, with timely prediction horizon, is a crucial requirement.

Researchers, particularly in the rotorcraft industry, have focused on developing
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better methods for estimation and prediction of limit parameter dynamics. Some

researchers such as Einthoven [7], have developed energy based methods for envelope

protection. However, such approaches are restricted in application to a small class

of limit parameters (torque). In the context of estimation and prediction of limit

parameter dynamics, neural networks were increasingly being used for their ability

to approximate continuous functions in a compact domain with any desired level of

accuracy [8]. The following subsections present an overview of neural network based

envelope protection algorithms proposed by researchers.

1.2.2.2 Neural networks for limit estimation and protection

Menon et.al [38] used artificial neural networks for both incorporating the rotorcraft

manufacturer specified limits, and for adaptively establishing the relationship be-

tween various rotorcraft variables. Both off-line and on-line trained neural networks

were used in the study to generate the limits on all rotorcraft variables using onboard

measurements. The off-line neural networks were trained to represent rotorcraft man-

ufacturer supplied limit data while the on-line trained networks (radial basis) were

used to develop functional relationships between ill-defined limit variables that are

too complex to be represented using compact expressions. The main limitation of

the approach was in the use of simplified adaptive relationships for ill-defined limit

variables, which can easily fail for complex limit parameters.

1.2.2.3 Polynomial neural networks for envelope protection

Bateman et.al [2] proposed an approach using off-line trained polynomial neural net-

works (PNN) for envelope protection. The PNNs were trained using limit parameter

time-response data generated with multiple pilots flying the simulator. The time-

response data was also generated for different flight regimes and vehicle conditions.

The PNNs were trained to represent the input-output relationship between the cur-

rent system variables and the future limit parameter response value. The prediction
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horizon for the future limit parameter response was selected to yield the best closed

loop performance, maximum linear correlation with current inceptor position and

best pilot-in-the-loop performance during simulation evaluations.

In a similar investigation Whalley et.al [63] utilized PNN for predicting finite-

time future response of Equivalent Retreating Indicated Tip Speed (ERITS) and

torque. ERITS is a limit parameter corresponding to the main rotor blade stall.

This PNN based architecture was also used by Jeram [21] for main rotor blade stall

limit cueing using ERITS as the limit parameter. These studies clearly demonstrated

the potential for using neural networks in estimation of limit parameter dynamics.

Furthermore, the simulation evaluations showed that, for effective limit protection,

reasonable amount of prediction horizon should be available.

1.2.2.4 Static neural network based dynamic trim method

Horn [14] proposed an envelope protection method based on future dynamic trim

response of a limit parameter. Dynamic trim is a quasi-steady response condition of

a limit parameter in which all the fast states affecting the limit parameter dynamics

have evolved completely compared to the slow states that continue to evolve slowly.

Dynamic trim method based envelope protection system was successfully imple-

mented for normal load factor and angle of attack limit protection within the V-22

tiltrotor aircraft simulation [9]. Dynamic trim data was generated off-line by sweeping

through a range of influencing dimensionless variables and the envelope protection

system was evaluated at the Boeing Flight Simulation Laboratory in Philadelphia.

Dynamic trim method was also evaluated within the XV-15 simulation environment

for angle-of-attack, load factor, airspeed and torque limiting using force-feedback tac-

tile cueing in the longitudinal cyclic channel [10]. Dynamic trim method was also

used to train artificial neural networks for predicting system parameters critical to

flight envelope in the Helicopter Active Control Technology program [43].
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The main drawback of the dynamic trim approach was that adequate training

of neural networks requires generating large amounts of dynamic trim data. Gen-

erating training data in the entire flight regime and particularly near the envelope

boundaries is extremely difficult. Also, the accuracy of these non-adaptive neural

networks trained off-line to represent the relationship between future dynamic trim

response of a limit parameter with the current slow states and control input, can-

not be guaranteed for flight and vehicle configurations not represented in the neural

network training data. Horn introduced limited adaptation into his approach by

utilizing a complementary filter [2] to generate time-response data of the limit pa-

rameter from the neural network dynamic trim prediction [11,13]. The output of the

complementary filter is then compared to the actual sensor measurement of the limit

parameter response and the resulting error used to adapt the neural network weights.

The problem with this approach is that the complementary filter has to be a realistic

representation of the limit parameter dynamics in order to obtain an accurate error

value.

1.2.2.5 Adaptive dynamic trim envelope protection method

Adaptive dynamic trim, proposed by Yavrucuk [71], is also based on estimating the

future dynamic trim response of a limit parameter. In the adaptive dynamic trim

method, instead of generating dynamic trim data to train a neural network off-line,

an approximate first order linear model representing the limit parameter dynamics is

augmented with an adaptive single hidden layer neural network to cancel the resulting

modeling uncertainty. The dynamic trim response of the limit parameter is then

estimated by setting the derivative of limit parameter to zero. The critical control

position is estimated as the control input for which the future dynamic trim response

of the limit parameter is on the limit boundary. The presence of an adaptive neural

network within the limit parameter estimation architecture allows the limit prediction
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algorithm to adapt to changing flight and or vehicle configurations.
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Figure 5: Limit parameter step response

The adaptive dynamic trim approach was shown to be an effective envelope pro-

tection algorithm using simulation evaluations within both manned [67,69,68,66,60]

and unmanned system architectures [46, 70]. However, the adaptive dynamic trim

approach carried over the limitations of the dynamic trim response condition. Such a

quasi-steady response condition may not exist for all limit parameters. Also, the dy-

namic trim approach was essentially developed for maximizing the prediction horizon

of the control limit calculation. However, the dynamic trim response is the maximum

future limit parameter response only in the case of steady-state-response critical limits

and not for transient-response-critical limits. A pictorial description is shown in figure

5 distinguishing the response of a steady-state-response critical limit against that of

a transient-response critical limit. As seen in figure 5, steady-state-response critical

limits are those limit parameters that reach their maximum step-response value in

steady-state (load factor, angle of attack etc.). On the other hand, transient-response

critical limits are limit parameters that reach their maximum step-response value in

the transient phase (hub moment, flapping etc.).
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1.2.2.6 Peak-response estimation method and nonlinear function response method

Envelope protection methods such as the peak-response estimation method and the

nonlinear response function method were developed mainly for transient response

critical limit parameters. The peak-response estimation method relied upon identify-

ing a linear model for the transient-response critical limit parameter [15, 51]. Such a

model may be difficult if not impossible to obtain. Furthermore, it may be valid for

a very restrictive domain of flight and vehicle configurations.

The nonlinear function response method [49] utilized simulation or flight test data

(if available) to represent limit parameter response in terms of nonlinear response

functions. These functions are identified off-line using least-squares regression or

other competent system identification schemes. Alternatively, the nonlinear response

functions can also be approximated using neural networks. Even though the limit pa-

rameter response is represented in a similar functional form to that for peak-response

estimation method, their approach for calculating control limits differ significantly.

In the peak-response estimation algorithm the functional form of the limit parameter

response is very simple because of the choice of linear model. Therefore, in the peak-

response estimation algorithm the control limit is defined to be the input that results

in the maximum step response of the limit parameter to be at the limit boundary.

Estimating the control limit using the nonlinear response function method is more

involved and complicated than the peak-estimation method because of the nonlinear

representation of limit parameter response. The nonlinear response function method

may require additional neural networks to approximate the maximum and minimum

values of non-forced time response of limit parameter. The maximum and minimum

values are then utilized to estimate the proximity of the limit parameter response

to the upper and lower limit boundaries respectively. Additionally, these proxim-

ity values referred to as upper and lower limit margins, are then translated to the

corresponding upper and lower control margin values by dividing the corresponding
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limit margin with the maximum control sensitivity value (obtained from the nonlinear

functional representation). Note that, this approach of computing control limit re-

sults in a conservative estimate of the actual control limit because control sensitivity

will not take its maximum value at all times.

1.3 Thesis objectives and outline

The following conclusions can be drawn based upon the studies conducted by re-

searchers into the various aspects of envelope protection system design, particularly

envelope protection methods for design of arithmetic limit cue modules:

• Envelope protection methods that estimate control limits for limit protection

are preferred for piloted vehicles and UAVs. This is because, in the case of

UAVs, control limits can be used to automatically modify commands/control

inputs to prevent limit violation. In piloted vehicles, control limits can be used

to implement force-feedback tactile cueing for limit protection.

• The control limits are computed by identifying the control input that results

in the future limit parameter response at the limit boundary. The prediction

time horizon used in calculating the future response must be sufficient to ac-

count for the dynamic nature of limit parameter response. Also, in the case

of manned vehicles, the prediction horizon should also account for additional

delays associated with the dynamics of the active inceptor and pilot response

to limit cues.

• Almost all the recent envelope protection methods proposed by researchers em-

ploy neural networks in some form or another to model limit parameter dy-

namics. Approaches using on-line adaptive neural networks, such as adaptive

dynamic trim, are preferred over methods using off-line trained non-adaptive

neural networks.
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• Recent envelope protection methods such as adaptive dynamic trim and non-

linear function response method have focused on identifying the functional rela-

tionship between the current control input and maximum future limit parameter

response. This emphasis was based on the assumption that the limit cue should

be available as early as possible for effective limit protection. Though this as-

sumption has some validity in manned vehicles, it is not required for unmanned

vehicles where control/command modifications can be instantly incorporated

into the vehicle control/command path.

The survey of existing envelope protection methods reveals that there is a need to

develop adaptive envelope protection methods, providing adequate prediction horizon,

for transient-response critical limit parameters. There is also a need to develop an

alternative envelope protection method to the adaptive dynamic trim method. The

dynamic trim methods rely on the existence of dynamic trim response condition which

is difficult to verify in many situations. On the basis of previous studies and current

requirements, the following are the objectives for this thesis:

• Develop new envelope protection methods for estimating arithmetic control lim-

its that can be applied within manned and or uninhabited aerial vehicles.

• Develop envelope protection methods applicable to both steady-state as well as

transient response critical limit parameters.

• Develop envelope protection methods that will be able to utilize the adaptive

estimate of limit parameter dynamics. Hence, the application of these envelope

protection methods for designing limit cue modules will not require detailed

off-line analysis or data generation.

• Develop envelope protection methods the application of which does not rely

upon identifying functional relationships for the maximum limit parameter re-

sponse. Instead, there should be design variables that can be varied to affect
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the lead time available to the pilot or FCS to take corrective action for envelope

protection.

• Develop new envelope protection methods that will aid in the full and effective

utilization of the available/prescribed operational envelope.

• Finally, demonstrate and validate the proposed envelope protection methods

using simulation and/or flight test evaluations.

There are many issues related to the application of envelope protection methods

that are important from the perspective of an envelope protection system designer

but are beyond the scope of this thesis.

• Selection of the most appropriate pilot cueing technique.

• Concerns related to incorrect pilot adaptation and adverse aircraft pilot coupling

[42] when force-feedback tactile cueing is used for limit protection.

• An envelope protection system alerts the pilot regarding impending limit vio-

lations and according to this role is an alerting system [47]. This classification

brings up issues regarding false alarms/alerts which maybe due to sensor noise

and or incorrect measurements. However, in this research it is assumed that

the designer has sufficient confidence in limit parameter measurements and the

adaptive estimation process. Therefore, the effect of sensor noise and incorrect

or insufficient adaptation resulting in false alarms is not investigated in this

research.

This thesis is organized into five chapters. The first chapter presents an introduc-

tion to the concept of envelope protection and why it is significant. A brief overview

of research related to envelope protection systems and methods is also presented.The

methodology for adaptive estimation of limit parameter dynamics is presented in the
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second chapter. This methodology for developing adaptive estimate of limit parame-

ter dynamics is an extension derived from reference [71]. The approach for generating

adaptive estimate of limit parameter dynamics is validated using linear and nonlinear

simulation examples in chapter 2.

In chapter 3 a new envelope protection method is developed mainly for limit pro-

tection, using force-feedback tactile cueing, in manned systems. The approach is

based on finding an optimal control profile that takes the limit parameter response,

from its present value, to the limit boundary while minimizing an objective func-

tion with both time and control effort. A detailed description of the underlying

methodology is presented along with the formulation for computing control limit us-

ing the optimal control profile. The proposed envelope protection method is then

implemented within the Open Platform for Limit Protection (OPLP) as a limit cue

module for longitudinal hub moment limit protection. This module is used to place

softstops on an active inceptor for providing force-feedback tactile cues in the longi-

tudinal cyclic channel of an active inceptor. The results from the pilot-in-the-loop

simulation evaluations within the Real-time Interactive Prototype Technology In-

tegration/Development Environment (RIPTIDE) are presented along with detailed

analysis of the performance and effectiveness of the approach. The results from the

Nonlinear Trajectory Generator (NTG) based limit cue module is also compared

against a limit cue module designed using the nonlinear function response method

for hub moment limit protection.

Chapter 4 presents a new automatic envelope protection method developed mainly

for application in uninhabited aerial vehicles. This approach, referred to as reac-

tionary envelope protection method, does not rely on translating the limit boundary

information into its equivalent limit in the control channel. Instead, the method uses

adaptive estimate of limit parameter dynamics and finite-time horizon predictions to

predict or detect envelope violations. The limit boundary is treated as an obstacle
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against which collision must be avoided. Limit boundary violations are prevented

by correcting nominal system command/control inputs [see figures 2 and 3] so that

the true limit parameter response is forced to track a prescribed safe-response profile

near the boundaries. The proposed approach is demonstrated first using simple linear

examples. A reactionary load factor limit protection system is implemented within

the GTMax integrated simulation and flight test architecture. The results from the

Software-in-the-loop (SITL) and flight test evaluations of this load factor limit pro-

tection system are presented. Reactionary envelope protection scheme is also used

to implement and successfully evaluate a flap angle limit protection system for R22

using SITL tests. Furthermore, an extension to the reactionary envelope protection

scheme is proposed that allows the approach to be used for estimating control limits

for force-feedback tactile cueing. The control limits computed using this proposed

extension scheme are compared against control limits estimated by the NTG based

and nonlinear function response method for hub moment limit protection.

Finally, chapter 5 states the conclusions and presents suggested future work based

upon this research.
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CHAPTER II

ADAPTIVE ESTIMATE OF LIMIT

PARAMETER DYNAMICS

The envelope protection methods proposed in this thesis, like many other competing

approaches, requires a limit parameter model to be available. The main drawback

of the existing model construction/estimation schemes used in envelope protection

methods has been the lack of adequate adaptability or flexibility. This means that

during any operation a vehicle is made to go through various flight and system config-

urations that influence the limit parameter dynamics. The most common and simple

examples are weight and CG location changes. The limit parameter model used for

envelope protection must be capable of adapting or modifying itself with changes

in system configuration. However, most of the existing approaches either use static

models based on off-line analysis of the system [15, 43] or use dynamic models with

limited adaptation capability [50, 54]. A limit parameter estimation model that per-

forms well for a wide range of vehicle/flight configurations and designed based on

detailed model analysis would result in higher design costs and model complexity.

Neural networks have powerful function approximation capabilities and have re-

cently emerged as significant components in adaptive control system design architec-

tures [28, 65]. In this chapter, motivated from the use of neural networks in control

system design, an adaptive architecture for estimation of limit parameter dynamics

is presented. A single hidden layer neural network is trained on-line using gradient

based weight update laws to cancel modeling uncertainties arising from approximate
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modeling of limit parameter dynamics and/or system changes affecting limit param-

eter dynamics. Lyapunov analysis is used to show that under certain assumptions

the error in neural network weights and limit parameter estimation will be ultimately

bounded.

2.1 Problem formulation

The nonlinear system for which envelope protection system is being developed can

be represented in the following generic state-space form:

ẋ = f(x,u) (1)

where x ∈ <n and u ∈ <p denotes the system states and control inputs respectively.

Consider yp ∈ < to be a limit parameter which in general will be a nonlinear function

of the system states as given in equation 2.

yp = h(x) (2)

The relative degree of an output is defined as the minimum number of differentiations

of the output required for the control variable to appear explicitly in the dynamic

relationship. Therefore, if r is the relative degree of the limit parameter yp then

according to the definition of relative degree

y(r)
p = hr(x, yp, y

(1)
p , . . . , y(r−1)

p , up) (3)

where up is an element in the control vector u. The following assumptions are required

to develop the methodology for adaptive estimation of limit parameter dynamics.

Assumption 2.1.1. The limit parameter has a well-defined and known relative de-

gree.

Assumption 2.1.2. The limit parameter value is available or can be calculated from

the available sensor measurements.
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Assumption 2.1.3. The sign of the limit parameter control sensitivity (∂hr

∂up
) is known

and the magnitude is also known to a reasonable upper bound.

An approximate linear model is chosen for the limit parameter dynamics based

on the relative degree and available system information.

ŷ(r)
p = ĥr(ŷp, ŷ

(1)
p , . . . , ŷ(r−1)

p , up) =
r−1∑
i=0

aiŷ
(i)
p + bup (4)

where ĥr =
∑r−1

i=0 aiŷ
(i)
p + bup represents the approximate linear model chosen for the

limit parameter dynamics. Rewriting equation 4 in state-space form results in the

following relation:

˙̂
Yp = AŶp + Bup (5)

where Ŷp =

[
ŷp ŷ

(1)
p . . . ŷ

(r−1)
p

]T

and

A =



0 1 0 0 . . . 0

0 0 1 0 . . . 0

...
...

...
...

...
...

a0 a1 a2 a3 . . . ar−1


, B =



0

...

0

b


(6)

Assumption 2.1.4. The linear approximate model for the limit parameter dynamics

[see equation 4] is stable with the matrix A being Hurwitz.

2.2 Neural networks

The response of the linear approximate model in equation 4, in general, will not

match the true nonlinear limit parameter dynamics in equation 3. Therefore, it is

necessary to augment the approximate model with an additional adaptive element

that can capture the modeling error given in equation 7.

∆(x, yp, y
(1)
p , . . . , y(r−1)

p )
∆
= hr(x, yp, y

(1)
p , . . . , y(r−1)

p , up)− ĥr(yp, y
(1)
p , . . . , y(r−1)

p , up) (7)
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A NN has been used as an adaptive element in many recent control architectures

[17, 24]. A single hidden layer neural network with sufficient number of neurons and

the appropriate interconnection weights can approximate any continuous function in

a compact domain to desired level of accuracy [8]. For obtaining an adaptive estimate

of limit parameter dynamics the output of a single hidden layer neural network (SHL-

NN), shown in figure 6, is used to augment the linear model in equation 5.

)(1
1

)(
cxae

x

)( TT
ad NM

x
Basis function

b2
b1

.........
Nout

.......

.........

Ninp Nhid

NoutNhidM )1(

NhidNinpN )1(

1

2

Ninp

- Neuron

Figure 6: Generic structure of a single hidden layer neural network

A SHL-NN, as shown in figure 6, consists of three layers namely- input, hidden

and output layer. Each layer contains a fixed number of neurons and each neuron

represents a summing junction adding up all the incoming signals. Besides these

fixed number of neurons, the input layer and hidden layer each contain a bias neuron.

Every layer in this structure is connected to its adjacent layers and therefore the

hidden layer is connected to both the input layer and output layer. The output from

each neuron in the hidden layer, except for the bias neuron, passes through a function

block called as the network basis function.

Each bias and non-bias neuron in the hidden layer is connected with every other
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non-bias neuron in the adjacent layers. These interconnections have certain values

associated with them called weights. For example, the values of interconnections

between the input layer and hidden layer can be represented in a matrix form and

is referred to as the hidden layer weight matrix. Similarly, the output layer weight

matrix represents the value of interconnections between the output of the basis func-

tion blocks and the output layer. The dimension of these weight matrices are based

upon the number of neurons that are contained in the individual layers. Let Ninp,

Nhid and Nout be the number of neurons in the input, hidden and output layers

respectively. Then,

The hidden layer weight matrix- N ∈ <(Ninp+1)×Nhid and

the output layer weight matrix- M ∈ <(Nhid+1)×Nout (8)

Notice that the dimensions of the weight matrices also incorporate the intercon-

nections between the bias neuron, which is treated separately, and the neurons in the

adjacent layer. The phrase neural net training refers to tuning of the hidden layer

and output layer weight matrices using gradient based back-propagation or similar

methods. The weights of a SHL-NN can be tuned to adequately approximate any

continuous function of input variables (µ̄) in a compact domain. When this tuning is

done in real-time, with the event of interest taking place simultaneously (for example

control), the process is called on-line training. The process of tuning weights on-line

is simply referred to as weight adaptation.

A SHL-NN output is utilized to augment the linear approximate model in equation

4. The NN input vector consists of a normalized set of system variables that determine

the value of the modeling error ∆. For example, in case of limit parameters with

r > 1, higher order derivatives of limit parameter are usually not available. Therefore,

adequate number of delayed values of limit parameter measurement are used instead
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in the NN input vector [32].

µ̄ =

[
yp(t) yp(t− td) . . . yp(t− ntd)

]T

(9)

Plant

pu
Linear
Model +

LDC

+

+
-

pŷ

py

w
adν

extd

dcν

Error
observer

SHL-NN
... μ

+

+ -

Ê

e

b

Figure 7: Block diagram representation of the adaptive estimation architecture

As the neural network weights are tuned on-line, the estimate of limit parameter

dynamics obtained by augmenting the linear approximate model with the neural

network is referred to as the adaptive estimate of limit parameter dynamics. A block

diagram representation of the adaptive estimation architecture is presented in figure

7. The final differential equation form of the adaptive estimate is given in equation

10.

ŷ(r)
p = ĥr(ŷp, ŷ

(1)
p , . . . , ŷ(r−1)

p , up) + νad(µ̄)− νdc

ŷ(r)
p =

r−1∑
i=0

aiŷ
(i)
p + bup + νad(µ̄)− νdc (10)
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Notice that in addition to the neural network the linear approximate model is also

augmented by a linear dynamic compensator. The linear dynamic compensator pro-

vides additional stability to the error dynamics by attenuating the effect of modeling

error (∆ − νad) and external disturbances (dext) on the limit parameter estimation

error dynamics. The limit parameter estimate error (e) is defined as:

e
∆
= ŷp − yp (11)

The limit parameter estimation error dynamics is obtained by subtracting equation

3 from equation 10,

e(r) =
r−1∑
i=0

aie
(i) + (νad(µ̄)−∆(µ̄))− νdc (12)

The error dynamics in equation 12 can transformed into state-space representation

of equation 13 using the following state vector E
∆
=

[
e e(1) . . . e(r−1)

]T

Ė = AE + B(r,r)(νad −∆)−B(r,r)νdc (13)

where B(j,r) ∈ <r is a r- dimensional unit vector with its jth element equal to one.

The adaptive estimation architecture in figure 7 is structurally equivalent to a Robust

internal-loop compensator (RIC) architecture shown in figure 8 [65].

Furthermore, the RIC architecture has been shown to be equivalent to a disturbance

observer. If equation 14 presents the state-space form of the linear dynamic com-

pensator then the matrices Al,Bl,Cl,Dl can be designed such that the closed loop

system in figure 8 satisfies desired robustness criteria.

η̇ = Alη + Ble

νdc = Clη + Dle (14)

Assumption 2.2.1. There exist ideal output layer and input layer weight matrices

M and N that can approximate the modeling error within a ball of radius ε.
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Figure 8: Robust inner-loop compensator architecture

According to assumption 2.2.1 the modeling error ∆ can be computed using the

SHL-NN if the ideal weights are known, i.e,

∆ = MTσ(NT µ̄) + ε(µ̄) (15)

where ε(µ̄) is the function reconstruction error and ‖ε(µ̄)‖ < ε∗. However, the ideal

weights are not known and therefore NN adaptation laws must be formulated in such

a way that the SHL-NN output tries to minimize the modeling uncertainty (νad−∆).

νad −∆ = M̂Tσ(N̂T µ̄)−MTσ(NT µ̄)− ε(µ̄) (16)

In equation 16 M̂, N̂ are the neural network output and input layer weight matrices,

respectively. Using the Taylor series expansion formula

MTσ(NT µ̄) = MTσ

(
N̂T µ̄+ (N− N̂)T µ̄

)
= MT

(
σ(N̂T µ̄)− σ′ÑT µ̄+O(Ñ2)

)
(17)
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where Ñ
∆
= N̂−N and M̃

∆
= M̂−M. Substituting equation 17 into equation 16 we

get,

νad −∆ = M̂Tσ(N̂T µ̄)−

(
MT

(
σ(N̂T µ̄)− σ′ÑT µ̄+O(Ñ2)

))

= (M̂−M)Tσ(N̂T µ̄) + MTσ′ÑT µ̄−MTO(Ñ2)

= M̃Tσ(N̂T µ̄) + M̂Tσ′ÑT µ̄+ w (18)

where w = −M̃σ′ÑT µ̄ −MTO(Ñ2). The form of modeling uncertainty in equation

18 derived using Taylor series expansion of the modeling error will be used in the sub-

sequent Lyapunov analysis of the error dynamics with the postulated weight update

laws.

2.3 Reduced order error observer

The limit parameter estimate error vector E is required for adaptation of the SHL-NN

weights. However, it maybe difficult to obtain accurate measurements for derivatives

of the limit parameter. Therefore, an error observer [shown in figure 7] is used to

construct an estimate of limit parameter estimate error vector. In the present formu-

lation, a reduced order error observer [30, 31] is used for estimating limit parameter

estimate error vector. A reduced order observer is of the form given in equation 19-

˙̂
E = AÊ −K(ẑ − z)

where ẑ = CÊ

z = CE (19)

Also, the matrix gain K is chosen to place the eigenvalues of matrix (A−KC) at

desired locations. The error observer in equation 19 is referred to as a reduced order

observer because alternate version exists that utilize a full-order error observer with

both the error vector E and LDC states η used in NN adaptation [16].
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2.4 Single hidden layer weight adaptation

The weight adaptation rules for the single hidden layer neural network are formulated

from the Lyapunov analysis of the error dynamics. Lyapunov analysis is done over

the limit parameter estimate error dynamics and the error dynamics of the error

observer. The limit parameter estimate error dynamics is given in equation 13. The

error dynamics for the error observer can be obtained by subtracting equation 13

from equation 19. From the perspective of a RIC architecture [see figure 9], the linear

dynamic compensator can provide additionally stability and robustness to the error

observer.

˙̂
E − Ė = AÊ −KC(Ê − E)−AE −B(r,r)

(
(νad(µ̄)−∆(µ̄))− νdc

)
(20)

True error
dynamics

Error 
observer ++LDC +

+

-

ê

e

w
adu

extd
+

0

K
dcu

Aee =�

Error observer dynamics

)ˆ()(ˆˆ ),( eeKBeAe dcadrr −−−∆−−= νν�Ideal error dynamics

Figure 9: Error observer RIC architecture

Using the definition Ẽ
∆
= Ê − E equation 20 can be recast into the following form,

˙̃E = (A−KC)Ẽ −B(r,r)

(
(νad(µ̄)−∆(µ̄))− νdc

)
(21)
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Let tr(.) denote the matrix trace operator then, the following Lyapunov function

candidate is defined in the vector space ζ =

[
E Ẽ M̃ Ñ

]T

L = ETPE + ẼT P̃Ẽ + tr(ÑTΓ−1
n Ñ) + tr(M̃TΓ−1

m M̃) (22)

In the Lyapunov candidate function L, the matrices P, P̃ ∈ <r ×<r are solutions to

be the Lyapunov equations 23 and 24, respectively. The matrices Γn ∈ <Nhid×<Nhid

and Γm ∈ <Nout × <Nout are positive definite and therefore non-singular matrices

related to SHL-NN weight adaptation.

ATP + PA + Q = 0 (23)

ÃTP̃ + P̃Ã + Q̃ = 0 (24)

Also, in equations 23 and 24 Q ∈ <r × <r and Q̃ ∈ <r × <r are arbitrary positive-

definite design matrices. According to assumption 2.1.4 the matrices A and Ã has

all its eigenvalues in the left-half plane. Therefore, the matrix solutions P and P̃ of

the Lyapunov equations will be unique as well as positive-definite [29]. Taking the

derivative with respect to time of the Lyapunov function candidate we get,

L̇ = ĖTPE + ETPĖ + ˙̃ET P̃Ẽ + ẼT P̃ ˙̃E + tr( ˙̃N
T

Γ−1
n Ñ) + tr(ÑTΓ−1

n
˙̃N)

+ tr( ˙̃M
T

Γ−1
m M̃) + tr(M̃TΓ−1

m
˙̃M) (25)

Substituting equation 13 and equation 21 into equation 25 we get,

L̇ =

(
AE + B(r,r)

(
(νad −∆)− νdc

))T

PE + ETP

(
AE + B(r,r)

(
(νad −∆)− νdc

))

+

(
ÃẼ −B(r,r)

(
(νad −∆)− νdc

))T

P̃Ẽ + ẼT P̃

(
ÃẼ −B(r,r)

(
(νad −∆)− νdc

))

+ tr( ˙̃N
T

Γ−1
n Ñ) + tr(ÑTΓ−1

n
˙̃N) + tr( ˙̃M

T

Γ−1
m M̃) + tr(M̃TΓ−1

m
˙̃M) (26)
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Grouping similar terms together, equation 26 can be re-cast into the following form-

L̇ = ET

(
ATP + PA

)
E + ẼT

(
ÃT P̃ + P̃Ã

)
Ẽ + 2ETPB(r,r)

(
(νad −∆)− νdc

)
− 2ẼT P̃B(r,r)

(
(νad −∆)− νdc

)
+tr( ˙̃N

T

Γ−1
n Ñ) + tr(ÑTΓ−1

n
˙̃N)

+ tr( ˙̃M
T

Γ−1
m M̃) + tr(M̃TΓ−1

m
˙̃M) (27)

The derivative of the Lyapunov function can be further simplified using equations

23 and 24. Also, the third term in equation 27 can be expanded using the relation

E = Ê − Ẽ,

L̇ = −ETQE − ẼT Q̃Ẽ + 2ÊTPB(r,r)

(
(νad −∆)− νdc

)
−4ẼTPB(r,r)

(
(νad −∆)− νdc

)
+ tr( ˙̃N

T

Γ−1
n Ñ) + tr(ÑTΓ−1

n
˙̃N) + tr( ˙̃M

T

Γ−1
m M̃) + tr(M̃TΓ−1

m
˙̃M) (28)

Proposition 2.4.1. The SHL-NN are tuned on-line using the following gradient based

adaptation laws to approximate/cancel the modeling uncertainty ∆ that influences the

estimate of limit parameter error dynamics.

˙̂
N = −Γn

[
µ̄ÊTPB(r,r)M̂

Tσ′ + κε

∥∥∥ÊTPB(r,r)

∥∥∥ N̂ + κσN̂

]
˙̂

M = −Γm

[
σ̂ÊTPB(r,r) + κε

∥∥∥ÊTPB(r,r)

∥∥∥ M̂ + κσM̂

]
(29)

Using equation 18 and the weight update laws given in proposition 2.4.1, equation

28 can be re-written into the following form:

L̇ = −ETQE − ẼT Q̃Ẽ + 2ÊTPB(r,r)

(
M̃T σ̂ + M̂Tσ′ÑT µ̄

)
+2ÊTPB(r,r)(w − νdc)

− 4ẼTPB(r,r)

(
νad −∆− νdc

)
−2tr

(
ÑT

[
µ̄ÊTPB(r,r)M̂

Tσ′ + κε

∥∥∥ÊTPB(r,r)

∥∥∥ N̂

+ κσN̂

])
−2tr

(
M̃T

[
σ̂ÊTPB(r,r) + κε

∥∥∥ÊTPB(r,r)

∥∥∥ M̂ + κσM̂

])
(30)

In equation 30 the trace identity tr(A) = tr(AT ) has been invoked to get the following

relations

tr( ˙̃N
T

Γ−1
n Ñ) = tr(ÑTΓ−1

n
˙̃N) (31)

tr( ˙̃M
T

Γ−1
m M̃) = tr(M̃TΓ−1

m
˙̃M) (32)
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also if a ∈ < then,

a = tr(a) (33)

Using equation 33 along with the identity tr(AB) = tr(BA) the following trace

relations can be derived,

ÊTPB(r,r)M̃
T σ̂ = tr

(
ÊTPB(r,r)M̃

T σ̂

)
= tr

(
M̃T σ̂ÊTPB(r,r)

)
(34)

ÊTPB(r,r)M̂
Tσ′ÑT µ̄ = tr

(
ÊTPB(r,r)M̂

Tσ′ÑT µ̄

)
= tr

(
ÑT µ̄ÊTPB(r,r)M̂

Tσ′
)

(35)

The trace relations in equations 34 and 35 can be used to further simplify, equation

30 into equation 36.

L̇ = −ETQE − ẼT Q̃Ẽ + 2ÊTPB(r,r)(w − νdc)− 4ẼTPB(r,r)

(
νad −∆− νdc

)
− 2

(
κε

∥∥∥ÊTPB(r,r)

∥∥∥+ κσ

)(
tr(ÑT N̂) + tr(M̃TM̂)

)
(36)

As mentioned earlier, the role of the linear dynamic compensator is to compensate

for modeling uncertainty which includes correcting for higher order terms. Therefore,

‖νad −∆− νdc‖ ≤ αẼ1

∥∥∥Z̃∥∥∥
F

+ αẼ2 (37)

‖νdc − w‖ ≤ αÊ1

∥∥∥Z̃∥∥∥
F

+ αÊ2 (38)

where,

Z
∆
=

 M 0

0 N

 , Ẑ
∆
=

 M̂ 0

0 N̂

 , Z̃
∆
= Ẑ− Z (39)

‖νad −∆‖ ≤ α1

∥∥∥Z̃∥∥∥
F

+ α2 (40)

Also,

−2tr(ÑT N̂)− 2tr(M̃TM̂) = −2tr

(
Z̃T Ẑ

)
= −2tr(Z̃T Z̃)− 2tr(Z̃TZ)

≤ −2
∥∥∥Z̃∥∥∥2

F
+ 2

∥∥∥Z̃∥∥∥
F
‖Z‖F

≤ −2
∥∥∥Z̃∥∥∥2

F
+
∥∥∥Z̃∥∥∥2

F
+ ‖Z‖2

F (41)
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∴ −2tr(ÑT N̂)− 2tr(M̃TM̂) ≤ −
∥∥∥Z̃∥∥∥2

F
+ Z∗ (42)

In deriving the trace relation in equation 42 the following identities were used,

|tr(ATB)| ≤ ‖A‖F ‖B‖F (43)

+2ab ≤ a2 + b2 (44)

‖Z‖2
F = Z∗ (45)

Using equations 37,38 and 41 the derivative of Lyapunov function in equation 36 can

be upper bounded as,

L̇ ≤ −λmin(Q) ‖E‖2 − λmin(Q̃)
∥∥∥Ẽ∥∥∥2

+ 2
∥∥∥ÊTPB(r,r)

∥∥∥(αÊ1

∥∥∥Z̃∥∥∥
F

+ αÊ2

)
+ 4

∥∥∥ẼTPB(r,r)

∥∥∥(αẼ1

∥∥∥Z̃∥∥∥
F

+ αẼ2

)
+

(
κε

∥∥∥ÊTPB(r,r)

∥∥∥+ κσ

)(
Z∗ −

∥∥∥Z̃∥∥∥2

F

)
(46)

≤ −λmin(Q) ‖E‖2 − λmin(Q̃)
∥∥∥Ẽ∥∥∥2

+ 2
∥∥∥Ê∥∥∥(ᾱÊ1

∥∥∥Z̃∥∥∥
F

+ ᾱÊ2

)
+ 4

∥∥∥Ẽ∥∥∥(ᾱẼ1

∥∥∥Z̃∥∥∥
F

+ ᾱẼ2

)
+

(
κ̄ε

∥∥∥Ê∥∥∥+ κσ

)(
Z∗ −

∥∥∥Z̃∥∥∥2

F

)
(47)

where ᾱÊi =
∥∥PB(r,r)

∥∥αÊi and κ̄ε = κε

∥∥PB(r,r)

∥∥. Now using the property 2xy ≤

x2 + y2 equation 47 can be re-written into the following form-

L̇ ≤ −λmin(Q) ‖E‖2 − λmin(Q̃)
∥∥∥Ẽ∥∥∥2

+
∥∥∥Ê∥∥∥(1 + ᾱÊ1

∥∥∥Z̃∥∥∥2

F

)
+
∥∥∥Ê∥∥∥2

+ ᾱ2
Ê2

+ 4
∥∥∥Ẽ∥∥∥2

+ 2ᾱ2
Ẽ1

∥∥∥Z̃∥∥∥2

F
+ 2ᾱ2

Ẽ2

+ κ̄ε

∥∥∥Ê∥∥∥Z∗ − κ̄ε

∥∥∥Ê∥∥∥∥∥∥Z̃∥∥∥2

F
− κσ

∥∥∥Z̃∥∥∥2

F
+ κσZ

∗ (48)

Collecting common terms and re-arranging equation 48 results in the following equa-

tion:

L̇ ≤ −λmin(Q) ‖E‖2 −
(
λmin(Q̃)− 4

)∥∥∥Ẽ∥∥∥2

+ ‖E‖+
∥∥∥Ẽ∥∥∥

+

(
‖E‖+

∥∥∥Ẽ∥∥∥)2

+ᾱ2
Ê2

+ 2ᾱ2
Ẽ2

+ κ̄ε

(
‖E‖+

∥∥∥Ẽ∥∥∥)Z∗
−
(
κ̄ε − ᾱÊ1

)∥∥∥Ê∥∥∥∥∥∥Z̃∥∥∥2

F
−
(
κσ − 2ᾱ2

Ẽ1

)∥∥∥Z̃∥∥∥2

F
+ κσZ

∗ (49)
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Choose κ̄ε ≥ ᾱÊ1 and let q̄ = min

{
λmin(Q), λmin(Q̃)− 4

}
then the RHS of equation

49 can be upper bounded as follows:

L̇ ≤ −(q̄ − 1)

(
‖E‖+

∥∥∥Ẽ∥∥∥)2

+

(
1 + κ̄εZ

∗
)(

‖E‖+
∥∥∥Ẽ∥∥∥)

+ ᾱ2
Ê2

+ 2ᾱ2
Ẽ2
−
(
κσ − 2ᾱ2

Ẽ1

)∥∥∥Z̃∥∥∥2

F
+ κσZ

∗ (50)

Let β2 = (q̄ − 1) and completing squares for ‖E‖+
∥∥∥Ẽ∥∥∥ we get,

L̇ ≤ −

[
β

(
‖E‖+

∥∥∥Ẽ∥∥∥)−Γ1

]2

−
(
κσ − 2ᾱ2

Ẽ1

)∥∥∥Z̃∥∥∥2

F
+ Γ2 (51)

where Γ1 = 1+κ̄εZ∗

2β
and Γ2

2 = ᾱ2
Ê2

+ 2ᾱ2
Ẽ2

+ κσZ
∗ +

(
1+κ̄εZ∗

2β

)2

. Therefore, if β > 0

and κσ > 2ᾱ2
Ẽ1

then the time derivative of the Lyapunov function will be negative

definite whenever either one of the following conditions are satisfied-

‖E‖ > Γ1 + Γ2

β
(52)∥∥∥Ẽ∥∥∥ > Γ1 + Γ2

β
(53)∥∥∥Z̃∥∥∥

F
>

Γ2

κσ − 2ᾱ2
Ẽ1

(54)

Equations 52, 53 and 54 together define a bounded set in the error vector space ζ.

2.5 Simulation results

To illustrate the application of adaptive estimate of limit parameter dynamics two

different cases are presented. In the first example shown, an adaptive estimate, start-

ing from two different approximate models, is constructed for a linear system with

third order limit parameter dynamics. In the second example, the limit parameter is

an output variable of a nonlinear plant controlled by a nonlinear adaptive controller.

The plant is the classic van der Pol oscillator system coupled to a lightly damped

mode [19].
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2.5.1 Linear plant

The true limit parameter dynamics, as given in equation 55, is a third order linear

system with eigenvalues -1,-2,-3.

...
y + 6ÿ + 11ẏ + 6y = 6u. (55)

2.5.1.1 Approximate model-1

The linear approximate model, given in equation 56 is chosen to have eigenvalues as

{−1, −2, −2.5} with uncertainty only in the fastest mode.

...
ym + 5.5ÿm + 9.5ẏm + 5ym = 4u. (56)

For the adaptive estimation process the LDC was designed using LQG design tech-

niques. The dynamic compensator design matrices obtained using this method are:

Ac =


−2.0334 1.0000 0

−2.0674 0 1.0000

−67.2142 −50.3522 −10.5809

 Bc =


2.0334

2.0674

−3.6731



Cc =

[
65.8872 40.8522 5.0809

]
, Dc =

[
0

]
Neural network implemented for this case has 10 hidden neurons and 4 input neu-

rons. It is assumed that no measurements of limit parameter time derivatives are

available. To compensate for the lack of limit parameter derivative information, the

neural network input vector is chosen to contain delayed values of limit parameter

measurement.

µ =

[
y(t) y(t− td) y(t− 2td) u(t)

]
The adaptation gains are chosen to be Γm = 5I, Γn = 2I and κε = 0.7. Also,

the matrix K used in the reduced order error observer is selected to be KT =[
22 107 −177.5

]
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Figures 10, 11 and 12 present the results for this case. Figure 10 compares the

actual limit parameter response to the model response when adaptation is off. The

network output is also plotted along with the modeling error in the same figure.

Without adaptation the network output is zero, and hence, the approximate model

is unable to match the true response.
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Figure 10: Linear plant- Response comparison with adaptation OFF-Approximate
model-1

With adaptation on, the results are shown in figure 11. Figure 12 presents the vari-

ation in neural network weights during adaptation. A comparison of figures 10 and

11 shows a significant improvement in the estimated response when the adaptation is

switched on. Due to the presence of LDC and the NN that is continuously adapting

to the modeling error, the model response is seen to match the true limit parameter

response quite well.
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Figure 11: Linear plant- Response comparison with adaptation ON-Approximate
model-1
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Figure 12: Linear plant- Variation in neural network weights during adaptation
-Approximate model-1
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2.5.1.2 Approximate model-2

The linear approximate model obtained from choosing eigenvalues as -1.2,-1.3,-3 is

given in equation 57. Note that in this case the modeling uncertainty is in the first

two modes.

...
ym + 6.5ÿm + 13.26ẏm + 8.28ym = 4u (57)

For the same control input as the previous case the model response with adaptation

off is compared to the actual limit parameter response in figure 13. Notice that

this choice of approximate linear model results in larger limit parameter estimate

error than in the previous case. To correct for these modeling errors, the adaptation

process begins with the design of the LDC. Again LQG design technique is used which

produces the following matrices for the compensator:

Ac =


−1.5270 1.0000 0

−1.1658 0 1.0000

−67.7776 −51.1364 −10.8629

 , Bc =


1.5270

1.1658

−3.4162



Cc =

[
62.9138 37.8764 4.3629

]
, Dc =

[
0

]
The NN input vector and structure is kept the same but the adaptation gains are

chosen as, Γm = 10I,Γn = 5I and κε = 1. The gain matrix for the reduced order

error observer is chosen to be KT =

[
26.0 149.24 −288.1

]
Figures 14 and 15 present results when adaptation is on. Notice from figure 14

that the model response shows significant improvement with adaptation. The NN

output tries to approximate the modeling uncertainty, which is shown in figure 14.

In computing the matrix P, the matrix Q is selected to be 5I in case of approximate

model I and 6I in case of approximate model 2.
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Figure 13: Linear plant- Response comparison with adaptation OFF-Approximate
model-2
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Figure 14: Linear plant- Response comparison with adaptation ON-Approximate
model-2
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Figure 15: Linear plant- Variation in neural network weights during adaptation-
Approximate model-2

2.5.2 Van der Pol oscillator

A block diagram representation of the nonlinear controller-plant system is shown in

figure 16. The input to this system is the tracking command yc. The controller used

is a nonlinear adaptive NN based controller, details about which are provided in [19].

The plant, Van der Pol oscillator, is modeled by the following equations:

ẋ1 = x2,

ẋ2 = −α(x1
2 − 1)x2 − x1 + u,

ẋ3 = x4,

ẋ4 = −x3 − 0.2x4 + x1. (58)

The control input u is generated by a first order actuator with dynamics as given

below.

u̇ =
1

τa
(uc − u), (59)
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with a time constant τa = 0.1 seconds. The “damping” parameter α is set to 0.8. The

output of the plant (y), given by equation 60, is coupled with the internal dynamic

states of the system x3 and x4.

y = x1 + εx3, (60)

These states are not directly influenced by the control input u but are driven by the

Van der Pol oscillator state x1. The coupling parameter ε in equation 60 is set to 0.2.

+

-

Adaptive neural

network

based controller

Van der Pol

oscillator
Actuator

c
y

c
u u y

inputcontrolorcommand-
c

y

parameterlimitoroutput-y

Figure 16: Block diagram representation of the nonlinear controller Van der Pol
oscillator system

The approximate model is chosen to be

...
ym + 10ÿm + 17ẏm + 8ym = 5yc (61)

with eigenvalues {-8, -1 ,-1}. Repeated eigenvalue -1 corresponds to approximation of

the van der pol oscillator dynamics and eigenvalue −8 represents actuator dynamics.

In figure 17 this approximate linear model response is plotted along with the true

response of the nonlinear system. Notice that without adaptation the responses do

not match. The adaptation process begins with augmentation of the approximate

model with a LDC and a SHL NN. The LDC is designed using LQG design technique

and produces the following matrices:

Ac =


−1.1603 1.0000 0

−0.6731 0 1.0000

−98.48 −62.46 −13.82

 , Bc =


1.1603

0.6731

−1.8367


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Figure 17: Van der Pol oscillator limit estimation with adaptation OFF

0 10 20 30 40 50 60
−1.5

−1

−0.5

0

0.5

1

1.5

Li
m

it 
P

ar
am

et
er

True
Estimate

0 10 20 30 40 50 60
−3

−2

−1

0

1

2

3

C
on

tr
ol

 in
pu

t

0 10 20 30 40 50 60
−15

−10

−5

0

5

10

15

Time (sec)

N
N

 o
ut

pu
t &

 m
od

el
in

g 
er

ro
r

∆
ν

ad
ν

ad
−ν

dc

Figure 18: Van der Pol oscillator limit estimation with adaptation ON
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Cc =

[
92.32 45.46 3.18

]
, Dc =

[
0

]
The neural network is once again chosen to have four input neurons and ten hidden

neurons with adaptation gains Γm = 12I,Γn = 5I and κε = 1.0.

The response of adaptive estimate of limit parameter dynamics is compared against

the true response in figure 18. Observe that with adaptive augmentation the esti-

mate of the limit parameter comes significantly closer to the true response. This

improvement is a result of the adaptive neural network and LDC trying to minimize

the modeling uncertainty present in the estimate of limit parameter dynamics.
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CHAPTER III

OPTIMAL CONTROL FORMULATION AND

NONLINEAR TRAJECTORY GENERATION

FOR ENVELOPE PROTECTION

Envelope protection methods such as dynamic trim [12], nonlinear function response

method [15] and peak-estimation method [54] are based on identifying the functional

relationship to calculate the maximum future response of the limit parameter for a

given control input. In case of steady-state response critical limit parameters (limit

parameters that attain their maximum absolute step-response value in the steady-

state) the future dynamic trim response is also the maximum value that the limit

parameter response can attain. The functional form of the future dynamic trim

response value is then used to estimate the control limit, identified as the input that

results in the dynamic trim response of the limit parameter at the limit boundary.

Adaptive dynamic trim envelope protection method [68] uses adaptive estimate of

limit parameter dynamics and dynamic trim approach. Adaptive dynamic trim based

envelope protection method has been successfully evaluated on both piloted [60] and

uninhabited aerial vehicle platforms [70]. However, this functional form as well as

the concept of dynamic trim are only applicable to steady-state response critical

limit parameters and cannot be used to estimate control limits for transient-response

critical limit parameters (limit parameters that attain their maximum absolute step-

response value during the transient phase). Currently, no known extensions of the

dynamic trim based method exist that make it applicable to transient response critical

limit parameters.
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Motivated by the success of adaptive NN based techniques for on-line estimation

of limit parameter dynamics, a new approach is proposed for estimating control limits.

This new envelope protection method is referred to as the Nonlinear Trajectory Gen-

erator (NTG) approach and is based on determining an optimal control profile that

takes the limit parameter response to the limit boundary. The optimal control profile

minimizes an objective function which is a sum of both time and control effort. This

aggressive control profile is then used to estimate the control limits corresponding

to the limit boundary. Unlike approaches such as dynamic trim, the NTG approach

is not based on developing the functional form to represent maximum step response

of the limit parameter and therefore can be used for both steady-state as well as

transient response critical limit protection. Additionally, the approach is developed

for application within piloted vehicles, however, the estimated control limits can also

be used for automatic envelope protection [70] in unmanned autonomous systems.

3.1 Formulation of optimal control problem

Assuming the adaptive estimate of limit parameter dynamics is a good approximation

of the true limit parameter dynamics, i.e,

‖e(t)‖ = ‖ŷp(t)− yp(t)‖ ≤ ε (62)

It is proposed that the control limits can be computed by finding the optimal control

that minimizes the objective function in equation 63 for the adaptive estimate of

limit parameter dynamics.

J =

∫ tf

t0

(
1 + 0.5Wu2

p

)
(63)

In equation 63, W > 0 is a design constant referred to as control weighting. Terminal

constraints of the optimal control problem are:

ŷp(tf ) = ylim (64)
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where the final time tf is free and ylim refers to the value of limit boundary (upper

or lower). The true limit parameter dynamics, with known relative degree r can be

represented by the following equation,

y(r)
p = hr(x, yp, y

(1)
p , . . . , y(r−1)

p , up). (65)

The general functional form of the adaptive estimate of limit parameter dynamics is

given as:

ŷ(r)
p =

r−1∑
i=0

aiŷ
(i)
p +

∂ĥr

∂up

up + νad(µ̄)− νdc (66)

The problem of estimating the control limits consist of two parts:

1. Solving for the optimal control in real-time.

2. Estimating the control limit from the optimal control solution.

The objective function in equation 63 for this optimal control problem is not chosen

arbitrarily but is based on certain assumptions. Most limit boundary violations occur

when pilot is executing the mission aggressively which translates into attempting to

complete the task in shortest possible time. The first term in the objective function

represents this aggressiveness factor (minimize tf ). If the objective function is only to

minimize time, i.e, control weighting is zero, then the optimal solution will be infinite

control. The second term however, weighs the control contribution and, therefore,

the optimal control solution is guaranteed to take the limit parameter response from

its present value to the limit boundary with an acceptable measure of aggressiveness.

This acceptable measure is then imposed on the pilot by transforming the optimal

control solution into an equivalent control limit value.

Let u∗p denote the optimal control solution. In order to compute control limits from

the optimal control solution, a new functional called as the area norm is defined. The

area norm of a control signal up(t) between the time interval t0 to tf can be computed
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as:

uAN

(
up(.), [t0 tf ]

)
∆
=

√∫ tf
t0
up

2

tf − t0
. (67)

The area norm of the optimal control solution u∗p denoted as u∗AN is then given by

equation 68.

u∗AN(t0)
∆
= uAN

(
u∗p(.), [t0 t∗f ]

)
=

√√√√∫ t∗f
t0 u

∗2

t∗f − t0
(68)

where t∗f denotes the final time obtained from the optimal solution.

Proposition 3.1.1. The area norm of the optimal control solution u∗AN(t0) is an

estimate of the control limit at time t0.

Let U be a set representing all step inputs at time t0. Then, any element ūp(t) ∈ U

will be of the following form-

ūp(t) =

 up(t) t ≤ t0

k t > t0

(69)

where k ∈ <. The following analysis will prove that any element of this set that can

take the system to the limit value in shorter time t̄∗ < t∗f will have area norm greater

than u∗AN . Assume ū∗p(t) ∈ U to be such a control input that takes the adaptive

estimate of the limit parameter dynamics from its present value ŷp(t0) to the limit

boundary ylim in time t̄∗ . Let ū∗p be given as in equation 70.

ū∗p(t) =

 up(t) t ≤ t0

k∗ t > t0

(70)

Then the area norm of ū∗p(t) is k∗. According to the principle of optimality, the cost

of the optimal solution is always the smallest. Hence,∫ t̄∗

t0

(
1 + 0.5Wū∗p.ū

∗
p

)
≥
∫ t∗f

t0

(
1 + 0.5Wu∗p.u

∗
p

)
(71)
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Since t̄∗ < t∗f , the following inequality can be deduced from equation 71,∫ t∗f

t0

(
1 + 0.5Wū∗p.ū

∗
p

)
>

∫ t∗f

t0

(
1 + 0.5Wu∗p.u

∗
p

)
(72)

Using the definition of area norm in equation 67, equation 72 can be re-written as

(t∗f − t0)+0.5W (t∗f − t0)k̄
∗.k̄∗ >

(t∗f − t0) + 0.5W (t∗f − t0)u
∗
AN(t0).u

∗
AN(t0) (73)

When (t∗f − t0) > 0, equation 73 can be reduced to the following identity,

=⇒
∥∥k̄∗∥∥ > ‖u∗AN(t0)‖ (74)

The inequality in equation 74 is used to conclude the following proposition-

Proposition 3.1.2. The absolute value of any step control input that takes the limit

parameter response to the limit boundary in shorter time than the optimal final time,

will be larger than the absolute value of the area norm of the optimal control solution

(u∗AN).

Therefore, the area norm of the optimal control solution can be used as an estimate

of the control limit for envelope protection. However, as the limit parameter response

approaches the limit boundary t∗f will approach t0, i.e,

∆tcrit
∆
= t∗f − t0 → 0 as ŷp → ylim (75)

and therefore, the area norm calculation in equation 68 will become numerically

ill-defined. This problem is avoided by choice of a threshold time value ∆th and a

smoothing function S(.) based on ∆tcrit. The control limit is calculated using the area

norm of the optimal control profile and the smoothing function as given in equation

76.

ulim(t0) = up(t0) +

(
u∗AN(t0)− up(t0)

)
S(∆tcrit) (76)
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The smoothing function is designed to be such that the control limit approaches the

current control input value smoothly as ∆tcrit → 0.

S(∆tcrit) =

 1 ∆tcrit ≥ ∆th

Any smooth function ∆tcrit < ∆th

(77)

3.2 Control limit as the area norm

In the previous section it is shown that the area norm of the control input that

minimizes the objective function given in equation 63 will be smaller in value than

any step control input that would take the limit parameter response to the limit

boundary faster than the optimal control. The main reasoning behind comparing the

area norm against all possible step-control inputs arises from the traditional definition

of control limit. According to the traditional definition, control limit is defined as

the value of step control input that results in maximum value of the limit parameter

response to be at the limit boundary. Let us denote this control limit as ūlim ∈ U .

Proposition 3.2.1. Among all other step control inputs that take the limit parameter

response to the limit boundary the control limit (ūlim) has the smallest area norm.

Proposition 3.2.1 is a natural conclusion of the traditional definition of control

limit. A control input smaller than the control limit will not cause the limit parameter

response to reach the limit boundary. On the other hand any step-control input larger

than the control limit value will cause the limit parameter response to reach the limit

boundary (even in shorter time) but will have a larger area norm.

Proposition 3.2.2. Among all step control inputs, ūlim is the step control input that

will take the limit parameter response from its present value to the limit boundary

while minimizing the objective function given in equation 63.

This proposition can be proved by combining proposition 3.1.2 and 3.2.1. Ac-

cording to proposition 3.1.2 the area norm of the optimal control solution is the
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smallest among all other step-control inputs that takes the limit parameter response

to the limit boundary while minimizing the objective function in equation 63. Now

according to proposition 3.2.1 the control limit is this smallest step control input.

Therefore, if only step-control inputs are allowed in the minimization problem then

the area norm of the optimal solution will be the traditional control limit.

In the proposed approach however, a more general class of control inputs is treated

and the definition of control limit is relaxed to consider not just step inputs but

also other arbitrary control profiles. Since many of the existing envelope protection

applications require a control limit value rather than control limiting profile, the area

norm functional is utilized as a mapping tool to generate a control limit estimate

from the optimal control solution. The following proposition states a special case

under which the area norm of optimal control solution (arbitrary control profile) will

be equal to the traditional control limit value, i.e, when u∗AN(t0) will be equal to ūlim.

Proposition 3.2.3. When the optimal final time to reach the limit boundary (t∗f) is

equal to the peak time (time for step-response to reach maximum value) then the area

norm of the optimal control solution will be equal to control limit in the traditional

sense.

Proposition 3.2.3 can be proved as follows- Let us assume that for some choice of

control weighting,

u∗AN(t0) = ūlim (78)

=⇒
∫ t∗f

t0 u
∗2dt

t∗f − t0
=

∫ t∗f
t0 ū

2
limdt

t∗f − t0

=⇒ W

∫ t∗f

t0

u∗2dt = W

∫ t∗f

t0

ū2
limdt

∴ Jmin = t∗f +W

∫ t∗f

t0

u∗2dt = t∗f +W

∫ t∗f

t0

ū2
limdt

= tp +W

∫ tp

t0

ū2
limdt (79)
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when tp, time to peak is equal to t∗f . Therefore, the control limit estimated from the

optimal control solution will be equal to ūlim when t∗f = tp. This condition is rather

difficult to guarantee during practical applications but can be approximately achieved

by judicious choice of control weighting.

3.3 Control limits from optimal solution- exam-

ple

In this section, a linear spring-mass-damper example is used to demonstrate that

the area norm of the optimal control solution is indeed a reasonable measure of the

control limit.

Consider a linear spring-mass-damper system with damping coefficient ζ = 0.7

and frequency ωn = 2.0 rad/sec. This system can be mathematically represented in

the following differential equation form:

ẍ+ 2ζωnẋ+ ω2
nx = u (80)

and can be re-written in linear state-space form as ẋ1

ẋ2

 =

 0 1

−4.0 −2.8


 x1

x2

+

 0

1

u (81)

Let yp = x1 be the limit parameter with an upper limit of ylim = 5.0 and the system

is assumed to be completely determinate. The initial condition of the system states

are set as [0 0]T . Non-real time collocation method [3] is used to find the solution

of the proposed optimal control problem.

Figure 19 presents the optimal control solution for a control weighting of 1.0. Also,

figure 19 presents the state-space trajectories of the system for the optimal control

solution. The upper limit boundary appears as a horizontal line in figure 19. The

optimal final time in this case is found to be 2.0 seconds. The peak time and rise
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Figure 19: Spring-mass-damper- Optimal solution for W=1.0
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Figure 20: Spring-mass-damper- Optimal solution for W=5.0
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time of the spring-mass-damper can be calculated using the following relations:

Peak time tp =
π

ωd

= 2.2secs (82)

Rise time tr =
1

ωd

tan−1
( ωd

−σ
)

(83)

where ωd = ωn

√
(1− ζ2) and σ = ζωn. Comparison of the optimal final time with

the peak and rise time brings out some interesting trends. The optimal final time

(t∗f ) is found to be less than the peak time. Also, the optimal solution for a control

weighting of 5.0 is presented in figure 20. It is found that increasing the weighting on

the control results in the optimal time approaching the peak time, i.e, t∗f → tp and the

optimal final time for W = 5.0 is 2.1 seconds. This is consistent with the contention

that increasing control weighting corresponds to restricting pilot aggressiveness and

hence more time to reach the limit boundary. Using equation 68, the control limit can

be computed for both cases of control weighting. While the control limit for W = 1.0

is estimated to be 16.81 m/ sec2, increasing control weighting to 5.0 results in a lower

value of 16.0 m/ sec2 as expected. Therefore, the choice of the control weighting

should be made judiciously so as not to overly restrict pilot aggressiveness.

3.4 Introduction to B-splines

B-spline refers to basis splines and are extremely useful for approximating functions

in a domain with a small number of variables (B-spline coefficients). B-spline repre-

sentation or B-form of a function is utilized in a wide variety of applications because

of its ability to retain many of the important characteristics of the original function.

In this section, a brief overview of B-splines and its approximation properties are

presented.

The development of B-spline begins with a polynomial of order n, represented as:

p(x) = a1 + a2x+ . . .+ anx
n−1 =

n∑
j=1

ajx
j−1 (84)
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All polynomials of order n form a linear space, denoted as Πn−1. An important

definition necessary for both polynomial and B-spline interpolation is the divided

difference.

Definition 3.4.1. The kth divided difference of a function g at the sites τi, τi+1 . . . τi+k

is the leading coefficient of the polynomial of order k + 1 that agrees with g at the

sequence τi, τi+1 . . . τi+k. It is denoted by [τi, τi+1 . . . τi+k]g.

Based on definition 3.4.1 a polynomial function approximating function g at sites

τ1, τ2 is given by-

p(x) = [τ1]g + (x− τ1)[τ1, τ2]g (85)

The same polynomial interpolate, approximating g at sites τ1, τ2, τ3 will be represented

as,

p(x) = [τ1]g + (x− τ1)[τ1, τ2]g + (x− τ1)(x− τ2)[τ1, τ2, τ3]g (86)

Using equation 86 we get,

(τ3 − τ1)(τ3 − τ2)[τ1, τ2, τ3]g = [τ3]g − [τ1]g − (τ3 − τ1)[τ1, τ2]g

=⇒ (τ3 − τ2)[τ1, τ2, τ3]g =
[τ3]g − [τ1]g

τ3 − τ1
− [τ1, τ2]g

=⇒ (τ3 − τ2)[τ1, τ2, τ3]g = [τ3, τ1]g − [τ1, τ2]g

=⇒ [τ1, τ2, τ3]g =
[τ3, τ1]g − [τ1, τ2]g

(τ3 − τ2)
(87)

Re-sequencing the sites of interpolation 1 → 2, 2 → 3, 3 → 1 does not affect the

divided difference. Therefore,

[τ1, τ2, τ3]g =
[τ1, τ2]g − [τ2, τ3]g

(τ1 − τ3)
(88)

Generalizing equation 88 the expression for divided difference can be formulated as:

[τi, τi+1 . . . τi+k]g =
[τi, . . . , τr−1, τr+1, . . . , τi+k]g − [τi, . . . , τs−1, τs+1, . . . , τi+k]g

τs − τr
(89)
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According to definition 3.4.1, for a polynomial of order k+1 the kth divided difference

is always a constant and also, the nth divided difference (n > k+1) will be zero. The

expression for jth normalized B-spline of order k for knot sequence t̄ is given as:

Bj,k,̄t = (tj+k − tj)[tj, tj+1, . . . , tj+k](.− x)k−1
+ (90)

B-splines are easily computed using the following recurrence relation derived in ap-

pendix A.

Bj,k,̄t = ωjkBj,k−1 + (1− ωj+1,k)Bj+1,k−1 (91)

In equation 91,

ωjk
∆
=

x− tj
tj+k − tj

(92)

Note that Bj,k,̄t is zero outside the interval [tj, tj+k]. This is because when x < tj

the function (t− x)k−1
+ is a polynomial of order k whose (k + 1)th divided difference

will be zero. Also, when x > tj+k the function (t− x)k−1
+ is zero by definition. Inside

the interval [tj, tj+k] the b-spline Bj,k,̄t is positive. This is because both 0 < ωjk < 1

and using the recurrence relation of B-spline we can find that the spline, inside the

support interval, is always positive.

Definition 3.4.2. Spline Space $k,t is defined as the collection of all functions ob-

tained from the linear combinations of B-spline basis functions of order k and knot-

sequence t̄. Mathematically,

$k,t
∆
=

{∑
i

αiBi,k,̄t : αi is real ∀ i

}
(93)

Definition 3.4.3. The linear space Πk,ξ refers to a collection of piecewise polynomial

function, each of order k with break sequence ξ = (ξ)l+1
1 . What this means is that in

between two consecutive breakpoints, say [ξi, ξi+1] the polynomial Pi of order k exists.

This polynomial has k free polynomial coefficients. Now there are l such polynomial
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pieces. So the total number of degrees of freedom for this linear space is kl. In

other words, Π<k,ξ is the direct sum of l copies of Π<k. The linear space Π<k,ξ,ν is a

subspace of the linear space Π<k,ξ. The typical homogeneous conditions require that

the piecewise polynomial function f ∈ Π<k,ξ be constructed to have a certain number

of continuous derivatives. These continuity conditions are represented in the form:

jumpξi
Dj−1f = 0 j = 1, . . . , νi and i = 2, . . . , l (94)

νi counts the number of continuity conditions at ξi. The function jumpαf
∆
= f(α+)−

f(α−). Imposing these continuity conditions reduces the number of degrees of freedom

from the linear space Π<k,ξ to the space Π<k,ξ,ν. The reduced number of degrees of

freedom will be n = kl −
∑l

i=2 νi A very important theorem for B-splines is the

Curry and Schoenberg theorem.

Theorem 3.4.1. For a given strictly increasing sequence ξ = (ξi)
l+1
1 (breakpoints) and

a given non-negative integer sequence ν = (νi)
l
2 (continuity conditions at breakpoints)

with νi ≤ k, all i, set

n
∆
= k +

i=l∑
i=2

(k − νi) = kl −
l∑

i=2

νi = dimΠ<k,ξ,ν (95)

and let t
∆
= (ti)

n+k
1 be the non-decreasing sequence from ξ by the following two require-

ments:

1. for i = 2, . . . , l, the number ξ occurs exactly k− νi times in the knot sequence t.

2. t1 ≤ t2 . . . tk ≤ ξ1 and ξl+1 ≤ tn+1 ≤ . . . tn+k.

Then the sequence B1, . . . , Bn of B-splines of order k for the knot sequence t is a basis

for Π<k,ξ,ν, considered as functions on the interval Ik,t = [tk, tn+1]. In symbols,

$k,t = Π<k,ξ,ν in the interval Ik,t (96)
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Summarizing Curry-Schoenberg theorem, if we are trying to approximate a function

within an interval [a, b], first choose the number of breakpoints (points of interpo-

lation) within this interval. Additionally, the B-form of the function may need to

satisfy certain continuity conditions at each of the interior breakpoints. The knot

sequence is generated from the breakpoints based on the order of splines used for ap-

proximating the function and the continuity conditions required at each of the interior

breakpoints in the interval.

3.5 Nonlinear trajectory generation for real-time

optimal solution

The collocation method is one among the many different methods used to find solu-

tions for optimal control problems. However, this approach cannot be used to find

solutions in real-time as it is based on discretization which results in large number of

unknowns to be solved simultaneously.

Nonlinear Trajectory Generator (NTG) [40, 39] is a software package that can

be used to find optimal nonlinear trajectories for dimensionally flat systems in real-

time [40]. Dimensionally flat systems, by definition, can be completely described

using just a few variables and their derivatives. These variables are referred to as flat

outputs of the system. The adaptive estimate of limit parameter dynamics available

from the on-line tuning of SHL-NN weights is a dimensionally flat system. The flat

output of this system is the estimate of limit parameter (ŷp). Also, while using

NTG, it is important to identify any additional variables that arise in the optimal

control problem from sources other than the system. In this case, the final time in

the objective function is free. Therefore, the optimal control problem for estimating

control limits with respect to a limit parameter has two flat outputs-

1. Limit parameter estimate that describes the system

2. Final time tf which comes from the objective function
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In order to reduce computational workload in solving the optimal control problem

the flat outputs are approximated using B-spline [6] basis functions of appropriate

order and multiplicity. The order and multiplicity chosen are based upon smoothness

conditions for individual variables. For example, in the case of limit parameters

of relative degree greater than one, the estimate of limit parameter must have at

least r − 1 continuous derivatives. The choice of order, multiplicity and knots fixes

the set of basis functions that can be used to describe the flat outputs and other

variables. By varying the coefficients of the B-spline basis functions describing these

variables, different solutions can be obtained. The NTG then uses commercially

available optimization packages (NPSOL) to find the optimal set of these coefficients

that minimize the given objective function while satisfying all the constraints.

3.5.1 B-spline approximation of continuous functions

Define,

‖g‖ ∆
= max|g(x)| a ≤ x ≤ b (97)

and the modulus of continuity of function g as,

ω(g, h)
∆
= max

{
|g(x)− g(y)| : |x− y| ≤ h, x, y ∈ [a, b]

}
. (98)

Let breakpoints be chosen as ξ = (ξi)
i=l+1
i=1 . Then the spline approximation of this

function is given by,

n∑
i=1

αiBi,k,̄t where n = kl −
l∑

i=2

νi (99)

Consider a special case of the above function

Ag
∆
=

n∑
i=1

g(τi)Bi,k,̄t (100)

where τ = (τi)
n
i=1 is an arbitrary sequence of points within the interval [ξ1, ξl+1] =

[a, b]. By definition, the spline function Ag matches g at each τi. The significance of
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Ag is that it can be used to generate a useful estimate for the error in approximation.

For this consider any arbitrary location a ≤ x̂ ≤ b. Then,

Ag(x̂) =
n∑

i=1

g(τi)Bi,k,̄t(x̂) (101)

Also,

g(x̂) = g(x̂)
n∑

i=1

Bi,k,̄t(x̂) ∵
n∑

i=1

Bi,k,̄t = 1 (102)

∴ g(x̂)− Ag(x̂) = g(x̂)
n∑

i=1

Bi,k,̄t(x̂)−
n∑

i=1

g(τi)Bi,k,̄t(x̂) (103)

=

j∑
i=j+1−k

(
g(x̂)− g(τi)

)
Bi,k,̄t(x̂) Assuming τj ≤ x̂ ≤ τj+1

(104)

Therefore,

|g(x̂)− Ag(x̂)| ≤
j∑

i=j+1−k

|g(x̂)− g(τi)|Bi,k,̄t(x̂)

≤ max

{
|g(x̂)− g(τi)| : j − k < i ≤ j

}
(105)

Choose τi inside the support of each B-spline basis function. For example, the support

of the basis spline Bi,k,̄t is the non-zero interval [ti, ti+k]. Therefore, let τi = ti+k/2

when k is even and

(
ti+(k−1)/2 + ti+(k+1)/2

)
/2 when k is odd. Assuming k is even we

get,

max

{
|g(x̂)− g(τi)| : j − k < i ≤ j

}
≤ max

{
|g(x̂)− g(y)| : x, y ∈ [tj+1−k/2, tj+1] or x, y ∈ [tj, tj+k/2]

}
≤ ω(g, k|t|/2)

≤ (k + 1)

2
ω(g, |t|) (106)

where |t| ∆
= max∆ti ∀ i is the mesh size of the knot sequence t. Furthermore,

dist(g, $k,t)
∆
= min

{
‖g − s‖ : s ∈ $k,t

}
≤ ‖g − Ag‖ (107)
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since Ag ∈ $k,t. Note that if τi is chosen to be the Greville sites then the transforma-

tion Ag becomes V g which is the Schoenberg’s variation diminishing approximation.

In general,

dist(g, $k,t) ≤ constkω(g, t) (108)

From the above equation it can be concluded that the distance of any continuous

function g from the linear space $k,t will go to zero as the mesh size is made smaller.

However, for smoother functions with many continuous derivatives much better esti-

mates can be given.

3.5.2 Approximation of smooth functions using B-splines

Previously, it was shown that

dist(g, $k,t) = dist(g − s, $k,t) ∀ s ∈ $k,t (109)

However, if function g has continuous first derivative then,

dist(g, $k,t) ≤ constkω(g − s, t) ∀ s ∈ $k,t

constkt‖Dg −Ds‖∀ s ∈ $k,t ∩ C[a, b] (110)

Choose s ∈ $k,t ∩ C[a, b] such that the above bound is as small as possible.

dist(g, $k,t) ≤ constktdist(Dg, $k−1,t) (111)

since $k−1,t =

{
Ds : s ∈ $k,t ∩ C[a, b]

}
. Using the distance inequality derived earlier

once again to estimate dist(Dg, $k−1,t) in case Dg is continuous we get,

dist(Dg, $k−1,t) ≤ constk−1|t|ω(Dg, |t|)

∴ dist(g, $k,t) ≤ constkconstk−1|t|2ω(Dg, |t|) (112)
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Proceeding in this way, one obtains the Jackson’s theorem for estimate of distance of

a smooth function from $k,t.

Theorem 3.5.1. For j = 0, . . . , k− 1 there exists constk,j so that, for all t = (ti)
n+k
1

with t1 = . . . = tk = a < tk+1 ≤ . . . < b = tn+1 = . . . == tn+k and for all

g ∈ C(j)[a, b],

dist(g, $k,t) ≤ constk,j|t|jω(Djg, |t|) (113)

According to theorem 3.5.1 a set of B-spline basis functions can approximate a

function well if it is sufficiently smooth.

3.5.3 NTG real-time control limit estimation using true limit parameter
dynamics

Real-time estimation of control limits for the spring-mass-damper system of equation

80, using NTG package, is presented here. For simplicity the limit parameter dynam-

ics is assumed to be completely determinate, i.e, the optimal solution is found for

the true system- not for the adaptive estimate of limit parameter dynamics. The flat

output for this system is the position state x1 since the velocity of the system x2 can

be obtained by differentiating the position with respect to time. The final time (tf )

is free and therefore, the state-space representation of the system given in equation

81 can be rewritten in terms of non-dimensional time variable τ = t
tf

as shown in

equation 114  x′1

x′2

 =

 0 tf

−4.0tf −2.8tf


 x1

x2

+

 0

tf

up (114)

where ( )′ denotes derivative with respect to non-dimensional time τ . The spring-

mass-damper response for a sequence of step inputs without control limiting is pre-

sented in figure 21. Control limit is computed from the NTG optimal solution in the

non-dimensional time interval [0, 1] assuming an upper limit on the limit parameter
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Figure 21: Spring-mass-damper response with envelope protection OFF, W=0.5
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Figure 22: Spring-mass-damper response with envelope protection ON, W=0.5
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(ylim = 5 meters) and a control weighting of 0.5. Let ξ represent the flat outputs

of the problem. Details of their B-spline representations within the NTG are given

in table 1. The system response with envelope protection ON is shown in figure

Table 1: Modeling of flat outputs for the spring-mass-damper system by NTG
Flat outputs knots order multiplicity Number of coefficients
ξ1 = x1 (0,0.5,1) 5 3 7
ξ2 = tf (0,1) 1 0 1

22. When envelope protection is switched ON the control input is restricted to be

within the computed control limit. Consequently, the limit parameter response (x1)

is maintained below its prescribed upper limit of 5 meters.
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Figure 23: Spring-mass-damper response with envelope protection ON, W=5.0

The simulation with envelope protection ON and a control weighting value of 5.0

produces very similar results as shown in figure 23. Figure 23 also shows the variation

of the critical time of the limit parameter response (∆tcrit = tf−t0). The critical time

is a new and important parameter resulting from the proposed envelope protection

scheme. This parameter is an additional variable not available in earlier envelope
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Figure 24: Spring-mass-damper limit parameter response variation with control
weighting

protection methods and a sudden drop in its value is indicative of the limit parameter

response approaching the limit boundary. Furthermore, the critical time of the limit

parameter response in an integral part of the modified control limit calculation given

in equation 76.

A comparison of the limit parameter response based on these two distinct values of

control weighting is presented in figure 24. Figure 24 clearly shows that while the limit

parameter response in both cases are very much similar, the value of control weighting

determines how quickly the pilot is allowed to approach the limit boundary. Therefore,

a good choice of this parameter would allow the pilot to safely and effectively utilize

the envelope which is the main goal behind any envelope protection system.

Notice that the control input in figure 23 is oscillatory compared that of figure

22. This is caused due to the critical time ∆tcrit approaching zero as limit parameter

response approaches the limit boundary. These oscillations near the limit boundary

can be prevented by choosing a smoothing function, as given in equation 77, and a

threshold time. The results using adaptive estimate of limit parameter dynamics and

a smoothing function are presented in the next subsection.
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3.5.4 NTG real-time control limit estimation using adaptive estimate of
limit parameter dynamics

In the previous subsection, it has been shown that the control limits computed from

the NTG optimal solutions, when true limit parameter dynamics are known, suc-

cessfully maintain the limit parameter response within the prescribed envelope. Let

us assume now that spring-mass-damper system in equation 80 is only a linear ap-

proximation of the true limit parameter dynamics that are actually governed by the

following differential equation,

ÿp + 2.5ẏp + 8.0yp = 1.5up (115)

The estimate of the limit parameter dynamics is obtained by augmenting the linear

model in equation 80 with an adaptive SHL-NN and a static error feedback assuming

full-state information.

¨̂yp = −2.8 ˙̂yp − 4.0ŷp + up + νad(µ̄)−Kee−Kėė (116)

where e
∆
= ŷp− yp and ė

∆
= ˙̂yp− ẏp. Also, the error feedback gains in equation 116 are

chosen to be Ke = 2.0, Kė = 1.0. The simulation time step ∆tsim=0.02 seconds and

the optimal control problem is solved at each simulation step. The adaptive neural

network design and learning rate parameters are given in table 2. The neural network

input vector consists of the following normalized system values-

µ̄ =

[
1.0 yp

5

ẏp

5

ŷp

5

˙̂yp

5

]
. (117)

The system response for a series of step control inputs with envelope protection

switched OFF is given in figure 25. The response of the adaptive estimate is observed

to follow the true response closely in figure 25. An upper limit of 5 meters is imposed

on the limit parameter response and the NTG is used to find the optimal solution using

the adaptive estimate at each simulation time step. The control limit is computed

from equation 76 using the area norm of the optimal solution and the smoothing
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Table 2: NTG linear example- neural network design and learning rate parameters
Ninp 4 Output layer learning rate, Γm 5.0
Nhid 10 Hidden layer learning rate, Γn 0.2
Nout 1 E-mod parameter, κε 0.1
Basis function, σ sigmoid Sigmoid parameters a = 1.0,

1
1+e−a(x−c) c = 0

0 2 4 6 8 10 12
−10

0

10

20

P
o

si
ti

o
n

 (
x 1)

Upper limit=5.0

0 2 4 6 8 10 12
0

5

10

t f−t
0

0 2 4 6 8 10 12
−50

0

50

V
el

o
ci

ty
 (

x 2)

Plant
Model

0 2 4 6 8 10 12
−50

0

50

Time (sec)

u
 (

ft
/s

ec
2 )

input
Upper Limit

Figure 25: Spring-mass-damper control limit estimation using adaptive estimate-
Envelope protection OFF, W=5.0

function given in equation 118. The threshold time of one second (∆th = 1second )

is chosen for the smoothing function.

S(∆tcrit) =


1 tf − t0 ≥ 1.0

exp

(
10(tf − t0 − 1.0)

)
tf − t0 < 1.0

(118)

This control limit is plotted along with the actual control input in figure 25. Notice

that violation in the control channel is observed prior to the actual limit parameter

violation of the upper limit. The estimated critical time of the limit parameter re-

sponse (∆tcrit) is also presented in figure 25. In figure 25, the control margin is

observed to increase sharply as the limit violation increases. This sharp increase in

control margin corresponds to the sharp increase in critical time which in case of
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limit parameter going outside the limit boundary is the amount of time required to

aggressively bring the response back within the envelope. Figure 26 shows the limit
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Figure 26: Spring-mass-damper control limit estimation using adaptive estimate-
Envelope protection ON, W=5.0

parameter response when envelope protection is switched ON and the control inputs

are restricted to be within the estimated control limits. Correspondingly, the limit

parameter response is found to be successfully kept below the prescribed upper limit.

The response of the adaptive estimate tracks the true response closely at all times.

Also, notice that with the selection of an appropriate threshold time and a smooth-

ing function the chattering observed earlier in figure 23 with control weighting 5.0 is

removed. During simulation evaluations it was observed that the design and selection

of smoothing function is more critical for higher values of control weighting. A value

approximately near limit parameter control sensitivity is a good starting value for

control weighting.
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3.6 Extension of envelope protection to multiple

control limiting

The proposed NTG approach for estimating control limits, currently formulated for

a single control channel, can be easily extended to multiple control channels. Assume

that the nonlinear dynamics of limit parameter yp ∈ < are of the following form.

y(r)
p = hr(x, yp, y

(1)
p , . . . , y(r−1)

p , u1, u2, . . . , um). (119)

The adaptive estimate of the limit parameter dynamics generated using on-line adap-

tation of neural network weights to minimize estimation error is represented in the

following differential equation form:

ŷ(r)
p =

r−1∑
i=0

aiŷ
(i)
p +

m∑
j=0

∂ĥr

∂uj

uj + νad(µ̄)− νdc (120)

The adaptive estimate given in equation 120 can be written into the following equiv-

alent SISO representation,

ŷ(r)
p =

r−1∑
i=0

aiŷ
(i)
p +

( m∑
j=0

∂ĥr

∂uj

)
up + νad(µ̄)− νdc (121)

In equation 121 up ∈ R is some dummy control input on which limits will be

estimated using the NTG approach. These limits are then re-directed or applied to

each individual control channel. Minimum norm solution method is one such approach

of control allocation.

∵
m∑

j=0

∂ĥr

∂uj

uj =

( m∑
j=0

∂ĥr

∂uj

)
up

m∑
j=0

∂ĥr

∂uj

uj,lim =

( m∑
j=0

∂ĥr

∂uj

)
ulim(t0) (122)

where ulim(t0) is given as in equation 76. According to the minimum norm solution

method the control limits on each channel (uj,lim) can be obtained using the following

expression:

uj,lim =

∂ĥr

∂uj

(∑m
j=0

∂ĥr

∂uj

)
u∗AN(t0)∑m

j=0
∂ĥr

∂uj

2 (123)
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The application of the proposed extension is demonstrated using a modified form

of the spring-mass-damper example given in equation 115. Let the true limit param-

eter dynamics be given as:

ÿp + 2.5ẏp + 8.0yp = 0.8u1 + 0.7u2 (124)

with yp = x1 as the limit parameter. An upper and a lower limit of 5.0 and -4.0 are

imposed on the limit parameter response respectively. The system initial condition is

assumed to be [0 0]T . The adaptive estimate of limit parameter dynamics is given

by the following equation:

¨̂yp = −2.8 ˙̂yp − 4.0ŷp + 0.6u1 + 0.4u2 + νad(µ̄)−Kee−Kėė (125)

The neural network parameters and system gains are chosen to be the same values

used in the previous evaluations. The smoothing function used in both upper and

lower control limit calculation is given in equation 126.

S(∆tcrit) =


1 tf − t0 ≥ 1.0

exp

(
10(tf − t0 − 0.5)

)
tf − t0 < 0.5

(126)

The system response for a series of step control inputs with envelope protection

switched OFF is given in figure 27. The response of the adaptive estimate is observed

to follow the true response closely in figure 27. Notice that with envelope protection

switch OFF, the control inputs violate the control limits (exceed upper control limit

or go below the lower control limit) prior to the actual violation of the limit boundary.

The limit parameter response with envelope protection switched ON is shown in

figure 28. Note that the control inputs are now restricted to be within the estimated

control limits. Correspondingly, the limit parameter response is found to be success-

fully kept within the prescribed limits. Also, the response of the adaptive estimate

continues to follow the true response closely.

69



0 2 4 6 8 10 12
−10

0

10

20

Upper limit=5.0

Lower limit=−4.0P
o

si
ti

o
n

 (
x 1)

0 2 4 6 8 10 12
0

5

10

t f−
t 0

Upper Limit
Lower Limit

0 2 4 6 8 10 12
−50

0

50
V

el
o

ci
ty

 (
x 2) Plant

Model

0 2 4 6 8 10 12
−50

0

50

u
1 (

ft
/s

ec
2 )

0 2 4 6 8 10 12
−50

0

50

u
2 (

ft
/s

ec
2 )

Time(sec)

Figure 27: Spring-mass-damper control limit estimation using adaptive estimate-
Envelope protection OFF, W=1.0
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Figure 28: Spring-mass-damper control limit estimation using adaptive estimate-
Envelope protection ON, W=1.0
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3.7 Pilot-in-the-loop evaluations

Force-feedback tactile cueing has been effectively used for envelope protection in case

of pilot-in-the loop systems. While, dynamic trim based limit protection modules have

been successfully evaluated for cueing steady-state-response critical limits, the method

is not applicable for cueing transient-response critical limits such as the longitudinal

hub moment. The proposed approach is evaluated for hub moment limit protection

within a test environment that includes an active sidestick inceptor for force-feedback

tactile cueing.

3.7.1 Development and testing environment

The Real-Time Interactive Prototype Technology Integration Development Environ-

ment (RIPTIDE) served as the development and testing tool. RIPTIDE combines a

control system executable with a helicopter math model, in this case GENHEL, and

renders the states as a pilots view with OpenGL PerformerTM. GENHEL math model

provides the vehicle dynamics for the UH-60A Black Hawk and its control system,

including its SCAS.

The limit protection algorithm was created as a Simulink R© block diagram that was

auto-coded and compiled with Real-Time Workshop. It serves as a limit prediction

and avoidance cue module within the developing Open Platform for Limit Protection

(OPLP) which evolved from the design of reference [23].

This platform (see figure 29) structures limit protection mechanisms and distributes

them across the control loop for cognizant, reflexive, and autonomous limit protection.

The GENHEL model effectively served as both the Flight Control System (FCS) and

Aircraft Dynamics blocks in the figure.

RIPTIDE allows a choice of inceptors and three were used. A stirling dynamics

active sidestick model SA-S-2D-1, shown in figure 30, served as the longitudinal and

lateral cyclic and provided the active force-feedback cues for those axes. The setting
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Figure 29: Open platform for limit protection

used for the nominal force-feel system of the active sidestick are also given in figure

30. A Microsoft Precision 2 joystick provided passive collective control and CH Pro

Pedals provided passive anti-torque (yaw) control. The signals for these inceptors

were mapped to the four cockpit control inceptor axes of the GENHEL model.

The tactile avoidance cue took the form of a 30 N softstop with a 1o length. This

made it approximate a step-force softstop. Static flight simulations took place at

Georgia Tech with RIPTIDE running on a Dual XeonTM 1.7 GHz workstation with

an NVIDIA R© Quadro4 64Mb graphics card. A pilots 53o field of view was projected

1.7 meters before test subjects, who were seated with the cyclic active sidestick placed

at their right hand, the collective joystick at their left hand, and the pedals at their

feet (see figure 31). Evaluation maneuvers were performed by a rated helicopter

aviator familiar with tactile cueing and the Black Hawk.

3.7.2 Test maneuvers

The Swoop maneuver (See Table 3) is a dynamic maneuver that tests pitch related

limits from hover through high speed forward flight. From out of ground effect (OGE)
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Figure 30: Active sidestick inceptor- stirling dynamics model SA-S-2D-1

Figure 31: Carefree maneuver workshop setup at Georgia Tech

73



hover, using an abrupt forward cyclic command, the pilot rapidly pitches to a 50

degree nose down attitude. This attitude is held, allowing the diving aircraft to

accelerate, until the airspeed reaches 50 knots. Then, via a steady but rapid aft

cyclic, the pilot executes a symmetrical pull-up to a nose high +50 degree attitude.

When the decelerating aircraft reaches an appropriate airspeed, the pilot executes a

rapid pitch down to complete the maneuver at an OGE hover.

Table 3: Swoop maneuver performance specification
Desired Adequate

Begin at OGE Hover ± 5 kts ± 5 kts
Attain target pitch ± 5o ± 10 o

attitude, -50o

Begin pull-up at target ± 5 kts ± 10 kts
airspeed, 50 kts
Attain target pitch ± 10o ± 15o

attitude, +50o

Complete maneuver at ± 10 kts ± 15 kts
OGE Hover
Maintain angular deviations ± 10o ± 20o

in roll and yaw within ±X
degrees from the initial
unaccelerated level flight
condition to completion
of the maneuver
Collective pitch remains

√ √

constant throughout
the maneuver

Figure 32: Graphic representation of swoop maneuver

The collective pitch setting (for OGE power) remains fixed throughout the maneuver.

The maneuver is performed up-and-away, without a specific test course or the need
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for peripheral visual displays.

3.7.3 Force-feedback tactile cueing for hub moment limit protection

The pilot task was to execute swoop maneuvers with and without the aid of tactile

cues. Equation 127 presents the linear approximate model for the limit parameter

which is chosen based upon the off-line analysis of the swoop maneuver data using

the system identification toolbox in Matlab.

˙̂yp = −5ŷp + 400000uδ (127)

The control input uδ in equation 127 refers to the longitudinal cyclic input. The

same analysis is used to realize the limit parameter response as fourth order dynamics

with relative degree one. The linear approximate model chosen is given in equation

127 which is augmented with an adaptive SHL-NN with design and learning rate

parameters given in table 4.

Also, static error feedback with a gain of 10.0 is used in the role of linear dynamic

compensator. The resulting adaptive estimate of the limit parameter dynamics is

given by equation 128.

˙̂yp = −5ŷp + 400000uδ + νad(µ̄)−K(ŷp − yp) (128)

Table 4: Hub moment limit protection- NN design and learning rate parameters
Ninp 7 Output layer learning rate, Γm 8.0
Nhid 14 Hidden layer learning rate, Γn 0.9
Nout 1 E-mod parameter, κε 0.01
Basis function, σ sigmoid Sigmoid parameters a = 1.0,

1
1+e−a(x−c) c = 0

The simulation step size is 0.01 seconds and the NN input vector is:

µ̄ =

[
yp(t)

40000

yp(t−d)

40000

ŷp(t)

40000
uB

120
wB

50
a1
10

q

]T

(129)

where uB, wB are the body x and z velocity components, respectively. Also, q is the

pitch rate response of the vehicle and a1 is the flapping angle. The control limit is
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computed from the NTG solution of the optimal control problem which has two flat

outputs (ξ). Table 5 gives details of how these flat outputs are modeled using b-spline

curves in the non-dimensional unit time interval.

Table 5: Modeling of flat outputs for hub moment limit protection system
Flat outputs knots order multiplicity Number of coefficients
ξ1 = ŷp (0,0.5,1) 5 3 7
ξ2 = tf (0,1) 1 0 1

The limit protection system is evaluated for two different vehicle configurations to

emphasize the adaptive architecture of the proposed approach. Conf-1 is called the

nominal vehicle configuration and conf-2 is referred to as the heavy vehicle configu-

ration the details of which are presented in table 6.

Table 6: Vehicle configurations used for evaluating hub moment limit protection
system

Configuration No. CG location Weight Name
1 357.3 inches 16825 lb nominal
2 357.3 inches 20000 lb heavy

The smoothing function used in computing the control limit from the area norm of

the optimal control solution [see equation 76] is plotted in figure 33 and is obtained

from equation 130.

S(tf − t0) =


1 tf − t0 ≥ 0.05

exp

(
172(tf − t0 − 0.05)

)
tf − t0 < 0.05

(130)

Note that the threshold time value for the smoothing function is fixed as 0.05 seconds.

The hub moment response plot for a typical swoop maneuver without the aid of tactile

cue for the nominal vehicle configuration is presented in figure 34. Without tactile

cueing in the longitudinal channel of the active inceptor the hub moment response is

observed to be violating both the upper and lower response limits of 20,000 lb-ft and

-20,000 lb-ft respectively.
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Figure 33: Smoothing function for hub moment limit protection

238 240 242 244 246 248 250 252 254 256 258
−3
−2
−1

0
1
2
3

x 10
4

Lo
ng

. H
ub

 M
om

en
t

238 240 242 244 246 248 250 252 254 256 258
−1.5

−1
−0.5

0
0.5

1
1.5

Lo
ng

itd
in

al
 c

yc
lic

238 240 242 244 246 248 250 252 254 256 258
−11
−8
−5
−2

1
4
7

10

N
eu

ra
l N

et
 o

ut
pu

t

238 240 242 244 246 248 250 252 254 256 258
Time (sec)

S
ta

tu
s

NTG ON
SNN ON
DC ON
FD ON

uδ
u

crit+
u

crit−
u

SS+
u

SS−
uδeff

Figure 34: Swoop maneuver without hub moment limit protection- Nominal config-
uration
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In figure 35 the hub moment response is shown for the swoop maneuver with tactile

cueing for hub moment limit protection. The adaptive estimate approximates the hub

moment dynamics closely as observed from response plots in figure 35. The output of

the neural network is also plotted. The status of all the individual modules, involved

in the evaluation, are also shown in the plots.
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Figure 35: Swoop maneuver with hub moment limit protection- Nominal configura-
tion

For the results presented in figure 35 note that only the NTG based hub moment

limit protection system is active. The control limits prescribed by the NTG hub mo-

ment limit cue module enable the pilot to safely execute the swoop maneuver. It is

important to note that the hub moment response is very sensitive to the longitudinal

cyclic control input (see equation 127). Therefore, the calculation of control limit

relies heavily on the critical time which in this case is highly oscillatory during the

maneuver. Hence, the control limits and consequentially the softstops are observed to
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drop suddenly and approach the current stick location. This is nothing but a reflec-

tion of the high frequency and transient nature of the hub moment limit parameter

dynamics. There are in total six variables associated with the longitudinal cyclic

control channel. Among these two variables are associated with each limit boundary.

For instance, ucrit+ and ucrit− refer to the critical control positions corresponding to

the upper and lower limits respectively. Similarly, uSS+ and uSS− are the softstop

locations on the active sidestick associated with the upper and lower limits of hub

moment response. Usually, the critical control positions differ from their softstop

counterparts by just a fixed bias value. During this evaluation their relationship can

be represented by the following equation,

uSS+ = ucrit+ − 0.04 (131)

uSS− = ucrit− + 0.04 (132)

In equations 131 and 132 the bias value of 0.04 is also the length of the softstop.

Finally, the remaining two variables uδ and uδeff pertain to the control system. The

control system translates the pilot stick location into an equivalent longitudinal cyclic

command which is referred to as uδ whereas uδeff is the effective longitudinal cyclic

command that is passed on to the flight control system. In most cases these two

variables are exactly the same and a large difference in their values, for a significant

duration of time, is not desirable. For example, uδeff will be different from uδ in case

envelope protection is authorized to automatically remove control inputs exceeding

critical values. If the difference between uδ and uδeff is large then it may cause a

significant deviation in vehicle response from pilot expectations.

3.7.4 Post-inceptor command shaping for high frequency limit protection

In figure 36 the hub moment response is presented again with just the NTG limit

protection system and unlike the results in figure 35 a sharp upper limit violation is
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observed between 35 and 37 seconds of the maneuver.
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Figure 36: Swoop maneuver with hub moment limit protection- Nominal configura-
tion

This is because in some instances, while the inceptor was stationary or moving slowly

within limits, the limit cue module (with its prediction) placed the constraint inside

of the inceptor. That is, the inceptor was steady, but the softstop moved through

it because the aircraft was moving beyond its limit boundary. However, because the

inceptor has its own two degree of freedom dynamics, the net force applied by the

softstop is a forcing function that a few hundredths perhaps a tenth of a second to

accelerate the inceptor and push it back within the limit constraints. Meanwhile,

without moving, the inceptor is overriding the softstop cue. In other words, the limit

dynamics are faster than the physical dynamics of the sidestick-limb system. One

potential solution is the application of both tactile cues for the pilot and some post-

inceptor command restraint shaping to deal with the high frequency limit protection

that cannot be addressed using by the stick.
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Dynamic overshoot compensation (DC) and frequency distribution (FD) method

[22] are two schemes that have been implemented within the OPLP for this purpose.

The dynamic overshoot compensation uses a cut-off frequency to extract the high

frequency content of the softstop positions. The dynamic overshoot compensation

does not change or modify the softstop locations commanded by the envelope protec-

tion system but automatically removes the high frequency component from the pilot

command resulting in a new effective command, i.e,

uδeff − uδ = High frequency correction (133)

The hub moment response for the swoop maneuver using the NTG based hub moment

limit protection system and dynamic overshoot compensation is presented in figure

37.
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Figure 37: Swoop maneuver with hub moment limit protection and DC
compensation- Nominal configuration

Upon closer inspection of results in figure 37, the DC high frequency limit protection
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scheme is observed to modify the pilot longitudinal cyclic control commands during

time intervals 86-87, 87-88 and 90-92. The longitudinal cyclic control channel activity

during these time segments are presented in figure 38. Notice how the DC compensa-

tion scheme causes the effective longitudinal cyclic control input (uδeff ) to follow the

prescribed critical control (ucrit+) more closely than the original pilot control input

(uδ) thereby preventing hub moment upper limit violations.
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Figure 38: Post-inceptor command shaping using dynamic overshoot compensation-
Nominal configuration

Frequency distribution method on the other hand filters the softstop locations

into two components based upon a cut-off frequency. Only the low frequency com-

ponent is used to set the softstop locations on the active sidstick whereas the high

frequency component is automatically subtracted from the pilot commands resulting

in the condition of equation 133. Therefore, the main difference between the FD and

DC high frequency limit protection schemes is the way it effects the positioning of

softstops. While the DC compensation does not modify the softstop location pre-

scribed by the envelope protection module, the FD compensation scheme only allows

the slow portion of the critical control position to set the softstop locations.
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The hub moment response, without tactile cueing for the swoop maneuver when

the vehicle is in heavy configuration, is presented in figure 39. Comparing the results
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Figure 39: Swoop maneuver without hub moment limit protection- Heavy configu-
ration

for hub moment response without tactile cueing presented in figures 34 and 39, it

is observed that more severe limit boundary violations occur in the heavier configu-

ration. Now, the exact same form of the adaptive estimate (see equation 128) used

for evaluating the proposed approach in the nominal configuration is used for hub

moment limit protection in the heavy configuration. The swoop maneuver hub mo-

ment response, for the heavy vehicle configuration with tactile cueing, are presented

in figures 40, 41 and 42.

In figure 40 only the NTG based hub moment limit protection system is active.

In figure 41 NTG based hub moment limit protection system is active with dynamic

overshoot compensation. Finally, for the swoop maneuver results shown in figure 42

the NTG based limit protection system with frequency distribution method is active.
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Figure 40: Swoop maneuver with hub moment limit protection- Heavy configuration
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Figure 41: Swoop maneuver with hub moment limit protection and DC
compensation- Heavy configuration
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Figure 42: Swoop maneuver with hub moment limit protection and FD
compensation- Heavy configuration
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Notice that, even though the vehicle configuration has changed, the NTG based tactile

cueing is able to successfully maintain the hub moment response within the prescribed

limits. This is because the adaptive SHL-NN present in the adaptive estimate of limit

parameter dynamics allows it to capture modeling uncertainties resulting from change

in the vehicle configuration. As mentioned previously, DC [see figure 41] and FD [see

figure 42] high frequency limit protection schemes improve upon the pure NTG based

hub moment limit protection [see figure 40] using post-inceptor command shaping to

compensate for limitations due to stick dynamics. The effect of DC compensation

scheme on the pilot commands in the longitudinal cyclic control channel has already

been analyzed [see figure 38]. Similarly in figure 42, the FD scheme is observed to

modify the pilot longitudinal cyclic control commands during time intervals 172-173,

175-176 and 177-178. The longitudinal cyclic control channel activity during these

time segments are presented in figure 43. Notice how the FD compensation scheme
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Figure 43: Post-inceptor command shaping using frequency distribution scheme-
Heavy configuration

uses the slower component of the prescribed critical control position to determine

the softstop location for tactile cueing. At the same time, FD compensation scheme
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modifies the original pilot control input (uδ) such that effective longitudinal cyclic

control input (uδeff ) stays within the prescribed critical control (ucrit+) thereby pre-

venting hub moment upper limit violations. By using only the slower component

of the critical control position to set the softstop locations, the pilot perceives a

steady softstop rather than an oscillating control boundary that may reflect either

fast limit parameter dynamics or stick dynamic limitations. Without this frequency

separation, envelope protection for systems with fast limit parameter dynamics and

comparatively slower stick dynamics could result in pilot-induced-oscillations.

The results demonstrate that the NTG based envelope protection system was

successful in maintaining the hub moment response within the prescribed limits. Also,

post-inceptor command shaping schemes (DC, FD) when utilized in augmenting the

NTG based envelope protection system, were useful in providing high frequency limit

protection.

3.8 Safety and performance evaluation

3.8.1 Quantitative evaluation using swoop maneuver results

The performance and safety benefits of the proposed hub moment limit protection

system are studied using a number of swoop maneuvers. The NTG hub moment

limit protection system is also evaluated against the recent nonlinear function re-

sponse method based hub moment limit protection system. This alternative hub

moment limit protection system has been also implemented within the OPLP and

tested using the RIPTIDE environment. The details of the test setup and results

from the evaluation of limit protection are reported in reference [49].

Maneuver safety is quantified using the Integrated Hub Moment Limit Exceedance

Factor(IHMLEF) which is defined as the time integrated part of the hub moment

when it exceeds the prescribed limits. Equation 134 represents how IHMLEF is
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calculated:

IHMLEF =


∫
|yp − ylim|dt if |yp| > |ylim|

0 otherwise
(134)

The time the hub moment response lies within 10% of the limit boundaries is also

noted and compared for each of the individual cases. Maneuver aggressiveness is

quantified using maneuver time or time required to execute a swoop maneuver. Using

the swoop maneuver specifications listed in table 3 the maneuver start and end times

are identified. The maneuver time is then calculated as the time difference between

the start and end times.
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Figure 44: Time when limit parameter response is within 10% of the boundary vs
Integrated hub moment limit exceedance factor.

The data presented in figure 44 shows that the NTG based envelope protection

method resulted in 97.6% reduction in the average value of integrated hub moment

limit exceedance factor as compared to when no tactile cueing is present. This re-

duction in the average value of IHMLEF using NTG cueing is an additional 12.17%
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lower than the average value reported for nonlinear function response method.
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Figure 45: Time when limit parameter response is within 10% of the boundary vs
maximum absolute peak.

The integrated hub moment limit exceedance factor and maximum absolute hub

moment peak are plotted against the average time the hub moment response lies

within 10% of the limit boundaries in figures 44 and 45, respectively. Notice that the

average time the hub moment response lies within 10% of the limit boundaries in-

creases from 0.7476 seconds to 1.28 seconds when nonlinear function response method

is used. However, this average value reduces to 0.16 seconds when NTG based cueing

is utilized. This behavior is surprising for the following reasons-

• The average maneuver time with NTG hub moment limit cueing is the lowest

among all cases. This essentially means that pilot was most aggressive and

experienced when executing the maneuver with NTG based hub moment limit

protection.
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• The average integrated hub moment exceedance factor during the NTG hub

moment limit protection evaluations is the lowest. Therefore, the maneuver

was executed the safest with NTG based hub moment limit protection.

• The average maximum absolute hub moment peak during the NTG hub mo-

ment limit protection evaluations is very close to prescribed limits. This result

demonstrates that the NTG based hub moment limit protection system allowed

the pilot to effectively utilize the prescribed operational envelope.

The difference and apparent inconsistency in the average time limit parameter re-

sponse resides near 10% of the limit boundaries is due to the difference in envelope

protection philosophy between the NTG and nonlinear function response method.

The control limit in the NTG approach is an approach for informing the pilot the

limits on vehicle aggressiveness with respect to a particular limit parameter. In other

words, it warns the pilot through softstops of approaching the limit boundary ag-

gressively. Therefore, the pilot reaches the limit boundary gradually and stays near

the boundary only for a short duration. On the other hand, the nonlinear function

response method outputs stick constraints that correspond to the limit boundaries.

Hence, the pilot is warned only when the response is very close to the limit boundary

which effectively results in increasing the time the limit parameter response resides

near the limit boundaries.

In figures 46, 47 the maneuver time is plotted against the IHMLEF and maximum

absolute peak respectively. Notice that, using nonlinear function response method for

cueing results in a 25% reduction in the average value of the maximum absolute hub

moment response. Using the NTG based approach reduces this average value of

maximum absolute hub moment response by an additional 3%. This reduction in the

average absolute maximum of hub moment response together with the significantly

lower value of IHMLEF and average time near limit boundary clearly demonstrates

increased safety of the NTG based hub moment limit protection system. Furthermore,
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it is observed that while the average maneuver time increased with nonlinear function

response based cueing, the average maneuver time decreased when NTG based cueing

was used. This is due to the fact that the test-pilot, surprisingly, was more aggressive

while performing the swoop maneuver with NTG based cueing. Pilot aggressiveness

may have increased because of increased confidence and or familiarity with the test

maneuver.
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Figure 46: Maneuver time vs Integrated hub moment limit exceedance factor

Figure 48 compares the velocity and attitude variations during the swoop maneuver

with and without NTG cueing. Notice that the velocity responses for swoop maneuver

with NTG cueing are much sharper and quicker. Therefore, in summary the NTG

based cueing significantly improved safety of the swoop maneuver by reducing the

magnitude and duration of the hub moment limit violations. Furthermore, the NTG

based cueing enabled the test-pilot to execute the swoop maneuver more aggressively

and safely.
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Figure 47: Maneuver time vs maximum absolute peak
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3.8.2 Qualitative evaluation of NTG and nonlinear function response
method

Both the nonlinear function response method and NTG based envelope protection al-

gorithms cue the pilot of approaching the limit boundary by placing softstops in the

control channel. The algorithms determine the softstop locations by computing the

critical control position or control limit corresponding to the limit parameter. How-

ever, they differ in their method of control limit calculation. The differences between

these two competing approaches, with their inherent advantages and or disadvantages

are outlined below.

1. Limit parameter response modeling:

• Nonlinear function response:Limit parameter response modeled using

nonlinear response functions identified during off-line analysis.

– Advantages: The model is static and does not adapt to minimize er-

ror between model response and true limit parameter response. How-

ever, model is functionally determinate and therefore, easier to ana-

lyze.

– Disadvantages: The identification of the nonlinear response func-

tions requires generating large amounts of simulation or flight test

data. In case, simulation data is used for identification the simula-

tion model must be a good approximation of vehicle dynamics. On

the other hand, when flight test data is used for model identification,

generating data near envelope boundaries may not always be feasible.

• NTG: An adaptive estimate of limit parameter dynamics is generated

using an approximate linear model augmented with an adaptive single

hidden layer neural network.

93



– Advantages: Since the adaptive estimate is generated using on-line

training of the neural network weights there is no need to generate

large amounts of simulation or flight test data. With the appropriate

choice of learning rates and adaptation law the adaptive estimate of

limit parameter dynamics has the ability to be applicable to a wide

range of flight and vehicle configurations.

– Disadvantages: Analyzing or predicting model performance is al-

most impossible because the system continuously adapts the weights

of the SHL-NN so as to minimize limit parameter estimation error.

Also, the choice of learning rates for weight adaptation is not read-

ily available from off-line analysis and must be obtained from off-line

simulation evaluations.

2. Computation of control limit or critical control position: Both the nonlinear

function response and NTG method rely upon the limit parameter response

model to estimate the control limits. While the nonlinear function response

method uses a static input-output model of the limit parameter response, the

NTG based approach utilizes an adaptive dynamic estimate of limit parameter

dynamics for computing control limits.

• Nonlinear function response method: The control limit is computed

using a conservative estimate of the control margin. As shown in figure

4, the control margin is the difference between the critical control posi-

tion and the current control position. By definition the upper and lower

control margin correspond to the upper and lower limits respectively. The

upper(lower) control margin is estimated by dividing the difference of the

upper(lower) limit boundary and the maximum(minimum) unforced limit

parameter response with the maximum value of control sensitivity.
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– Advantages: The control margin calculation proposed by Sahani

et.al is more computationally efficient than other more accurate meth-

ods of estimating control margins such as that used in the peak re-

sponse estimation algorithm [13]. Also, in case the pilot over-rides

the limit the control margin calculation provides a relative estimate of

how far the limit the vehicle is operating.

– Disadvantages: The estimation of control margin requires additional

neural networks to represent nonlinear response functions such as min-

imum and maximum values of unforced limit parameter response and

also maximum value of control sensitivity.

• NTG: The NTG based approach uses the adaptive estimate of limit pa-

rameter dynamics to estimate control limits. The approach utilizes the

area norm [see equation 67] of the optimal control solution that takes the

limit parameter response to the limit boundary, while minimizing the ob-

jective function in equation 63, as the control limit.

– Advantages: The approach utilizes Nonlinear Trajectory Generator

package for obtaining real-time solution to the optimal control prob-

lem. The approach allows the envelope protection designer to impose

a desired level of aggressiveness by choosing the control weighting term

in objective function appropriately.

– Disadvantages: Calculating the control limit requires solving con-

strained nonlinear optimal control problem in real-time. Even though

using the Nonlinear Trajectory Generator package significantly reduces

the computational cost of solving the optimal control problem, it nev-

ertheless imposes considerable burden on the computing resources of

the system.
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3.8.3 Analysis of nonlinear function response method and NTG based
limit protection method using linear spring-mass-damper

The details regarding the application of nonlinear function response method to linear

spring-mass-damper system are given in appendix C. The nonlinear function response

method provides a conservative estimate of control margins as given below:

∆̃ulim,upper =
ylim,upper −max[Q(x, t)]

max[H(x, t)]

∆̃ulim,lower =
ylim,lower −min[Q(x, t)]

max[H(x, t)]

where ∆̃ulim,upper, ∆̃ulim,lower are the upper and lower control margins respectively,

max[H(x, t)] = 1
ωd

exp(−ζωnt2,max) sin(ωdt2,max). An upper limit of 5 meters is im-
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Figure 49: Spring-mass-damper limit parameter response comparison with NTG
and smoothing function (W = 5.0) and nonlinear function response method based
envelope protection

posed on the position response of the spring-mass-damper system given in equation

80. The limit parameter response obtained using the two different envelope protection

methods is shown in figure 49. As shown in figure 49 the nonlinear function response

method results in slightly more conservative limit parameter response.
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CHAPTER IV

REACTIONARY APPROACH FOR

AUTOMATIC ENVELOPE PROTECTION

In this chapter a new automatic envelope protection method for autonomous un-

manned aerial vehicles is proposed and developed. The method uses the adaptive es-

timate of limit parameter dynamics for prediction of envelope violation. The proposed

approach is referred to as the reactionary automatic envelope protection method.

4.1 Methodology

The idea behind the development of the reactionary automatic envelope protection

method differs significantly from the existing methods. Recent envelope protection

methods, applied to both manned and unmanned systems, rely mostly on translating

the information about the limit boundary value into the control channel in the form

of critical control position [see figure 4]. Almost all the existing approaches achieve

this by using either a static or an adaptive model for the limit parameter. The

emphasis was not only on the accuracy of the control boundary calculation but also

on maximizing the prediction horizon of the approach. However, maximization of

prediction horizon is an important issue in the design of envelope protection systems

for manned vehicles where it may be necessary to inform the pilot regarding impending

limit boundary violations as early as possible. This lead time available from the

prediction is the key to an effective manned envelope protection system because it

helps to compensate for delays associated with pilot response. But, in the case of

unmanned autonomous aircraft, the flight control system can respond instantaneously

to the command/control corrections from an envelope protection system. Hence,
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maximizing the prediction horizon is not necessary and lead time available from finite

time based prediction is sufficient for envelope protection.

4.2 Framework

The reactionary automatic envelope protection method involves three important steps

that work together in maintaining the limit parameter response within the confines

of the envelope-

1. Predict envelope violation using finite time horizon prediction of the estimate

of limit parameter response.

2. Prescribe a safe-response-profile for the limit parameter response.

3. Compute command/control corrections that will force the true limit parame-

ter response to track the safe-response-profile near the envelope boundary for

envelope protection.

The reactionary envelope protection method, as described above, is similar to ob-

stacle avoidance [48] as shown in figure 50. In obstacle avoidance when an obstacle

is detected in the path of the vehicle a new safe trajectory is computed following

which would avoid collision with the obstacle. In reactionary envelope protection,

the obstacle is the well-defined limit boundary as shown in figure 50.

4.3 Step-1: Finite time horizon based prediction

of envelope violation

The adaptive estimate obtained by augmenting an approximate linear model with an

adaptive SHL-NN [see figure 7] is considered to be a reasonable estimate of the true

limit parameter dynamics when the error in the estimate of limit parameter response

is bounded, i.e,

‖e(t)‖ = ‖ŷp(t)− yp(t)‖ ≤ ε (135)
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This adaptive estimate of the limit parameter dynamics can be used to approximately

determine the future response value of the limit parameter assuming that the com-

mand/control input remains at the present value. Let ∆tfixed be the fixed prediction

horizon used in the future limit parameter response computation. When this future

response value lies on or outside the prescribed limit parameter boundaries, then we

say that an impending limit violation has been predicted. More precisely, equation

136 predicts a lower limit violation and equation 137 predicts an upper limit violation.

ŷp(t+ ∆tfixed) ≤ ylower
lim (136)

ŷp(t+ ∆tfixed) ≥ yupper
lim . (137)

The future limit parameter response value in equations 136 and 137 can be computed

as follows,

ŷp(t+ ∆tfixed) = γ+(t, ŷp(t), ū,∆tfixed) (138)

where γ+ refers to the forward time trajectory of the estimate of limit parameter

dynamics. The control input is fixed at its current value during the computation of

forward time trajectory. An important parameter that can be identified here is the

critical time of the limit parameter response, ∆tcrit. It is defined as the estimated

time in which the limit parameter response will lie on the limit boundary assuming
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it continues to evolve at the same rate. The critical time of the limit parameter

response is a crucial variable in the generation of safe-response-profile near the limit

boundary which is the step immediately following prediction of limit violation. The

critical time, according to the definition, can be computed as follows-

0 ≤ ∆tcrit =
ylim − ŷp(t)

˙̂yp(t)
≤ ∆tfixed. (139)

where ylim is the value of the limit boundary where limit violation is predicted to

occur.

ylim =

 ylower
lim if equation 136 is satisfied

yupper
lim if equation 137 is satisfied

(140)

4.4 Step-2: Safe response profile

The next step following the prediction of envelope violation is to prescribe a safe-

response-profile near the limit boundary. The safe-response-profile in a reactionary

envelope protection architecture is the first step towards preventing an envelope vi-

olation and serves many purposes. Firstly, the safe-response-profile has to remain

within the limit boundaries. Secondly, it must prevent large envelope violations from

occurring. Finally, it is desirable that the safe-response-profile does not cause under-

utilization of the OFE.

In the proposed method, the safe-response-profile for the limit parameter response

is constructed by assuming the existence of an imaginary circular obstacle with center

at (t+ ∆tcrit, ŷp(t+ ∆tcrit)) and radius ∆tcrit. According to the definition of critical

time, this center point lies on the limit boundary where violation is predicted [see

figure 51]. Note that unless corrective action is taken, the limit parameter response

is predicted to violate the envelope and the response is directed towards the center

of the obstacle. The direction of the safe-response-profile is chosen to be along the

tangential path avoiding collision with the imaginary obstacle. Following this will
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Figure 51: Safe response profile for envelope protection near limit boundary

force the response to move away from the limit boundary at each instant in time [see

figure 51].

Let the coordinates of the point of contact of the tangent, avoiding the imaginary

obstacle, be (t+∆tcom, ycom). Then the unknown variables ∆tcom, ycom can be obtained

as functions of θ, l̂, φ as shown in figure 51. Using basic Euclidean geometry and

trigonometric identities the following relations can be obtained-

θ = arctan
‖ŷp − ylim‖

∆tcrit

, (141)

φ = arccos
∆tcrit

l̂
, (142)
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The estimated distance of the limit parameter response from the center of the obstacle,

represented as l̂, is calculated as:

l̂(t) =
√

(ylim − ŷp(t))2 + ∆tcrit
2 (143)

where ylim is limit parameter boundary value obtained from equation 140. The value

of ∆t∗, shown in figure 51 depends on the available limit margin and is given by

equation 144.

∆t∗ =

 ∆tcrit cos(π − θ − φ) if ‖ŷp(t)− ylim‖ ≥ ∆tcrit

∆tcrit cos(θ + φ) if ‖ŷp(t)− ylim‖ < ∆tcrit

(144)

Also,

(ycom − ylim)2 + ∆t∗2 = ∆tcrit
2 (145)

and therefore,

ycom =

 ylim +
√

∆tcrit
2 −∆t∗2 if ylim = ylower

lim

ylim −
√

∆tcrit
2 −∆t∗2 if ylim = yupper

lim

(146)

The obstacle avoidance based approach presented in equations 141-146 can be used

only to determine the direction of the safe-response-profile. Also, the approach out-

lined can be invoked only when the estimate of limit parameter response is within

the envelope when limit boundary violation is predicted, i.e, ylower
lim ≤ ŷp(t) ≤ yupper

lim .

However, the safe-response-profile must also be designed in the event the limit pa-

rameter response strays outside the envelope. This could occur in situations where

the safe-response-profile is not perfectly tracked. In the event that the limit param-

eter response strays into the region outside envelope, ŷp < ylower
lim or ŷp > yupper

lim , then

safe-response-profile is prescribed to bring the limit parameter response back inside

the envelope.
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4.4.1 Safe response profile for r = 1

For a limit parameter with relative degree equal to one, the safe-response-profile

must be at least continuous, i.e, ys(t) ∈ C0. Therefore, the time derivative of the

safe-response profile (ẏs) is computed using the following conditional equation-

ẏs(t) =



ycom−ŷp

∆tcom
if ylower

lim ≤ ŷp ≤ yupper
lim

0 if |ŷp| ≤ |ylim| and |ŷp − ylim| ≤ εb

c1 > 0 if ŷp < ylower
lim

c2 < 0 if ŷp > yupper
lim

˙̂yp(t) if no violation is predicted

(147)

where,

∆tcom =

 ∆tcrit + ∆t∗ if ‖ŷp(t)− ylim‖ ≥ ∆tcrit

∆tcrit −∆t∗ if ‖ŷp(t)− ylim‖ < ∆tcrit

(148)

In equation 147, c1 and c2 are design constants to be chosen by the designer to bring

the limit parameter response lying outside back inside the envelope. Furthermore,

the time-derivative of safe-response profile goes to zero when the limit parameter

response approaches very close to the limit boundary (εb) from within the envelope.

Finally, the safe response variable ys is updated as given in equation 149.

ys(t) = ŷp(t−∆tsim) + ẏs(t−∆tsim)∆tsim (149)

From equations 149 and 147, it can be deduced that the safe response profile vari-

able, when no envelope violation is predicted, is same as that of the adaptive model

response.

Remark 4.4.1. In the present formulation the radius of the imaginary obstacle is

not fixed but depends on the rate of estimated limit parameter dynamics, ˙̂yp(t) [see

equation 139]. If the dynamics are very fast close to the edge of the envelope this

would translate into a smaller size obstacle. At first glance this may seem counter
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intuitive, however, note that the safe response profile for envelope protection is not

based purely on the finite time prediction but also on the rate of the limit parameter

dynamics. If the dynamics are such that ∆tcrit → 0 then,

θ → π

2
, (150)

∆tcom → 0, (151)

resulting in,

ẏs(t) →

 +∞ if ylim = ylower
lim

−∞ if ylim = yupper
lim

(152)

Hence, when ∆tcrit → 0, equation 152 shows that the envelope protection also mimics

the fast behavior of the actual limit parameter dynamics.

4.4.2 Safe response profile for r > 1

Assumption 2.1.1 guarantees that the relative degree r of the limit parameter is well-

defined and known. Let ys(t) represent the safe-response-profile of the limit parameter

response near the limit boundary. Then application of reactionary automatic envelope

protection method requires that the safe-response profile be a smooth trajectory which

is at least (r − 1) times differentiable.

However, the approach presented in figure 51 can only be used to determine the

relative direction of the safe-response-profile with respect to the current projected

path of the response. While this information can be utilized in many ways to generate

a safe response profile that has desired smoothness properties, the following are two

viable approaches:

1. Design a command filter whose input will be ycom and output will be

ys(t), y
(1)
s (t), . . . , y(r)

s (t)

2. Fit a B-spline curve of desired smoothness from the current position of limit

parameter response (t, ŷp) to the point of contact of tangent (t+ ∆tcom, ycom).
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4.5 Tracking safe response profile

Once the appropriate safe response profile ys(t) is generated, the next step is to

provide corrections to the nominal control/command channel so that the true limit

response (yp) is able to track it for envelope protection. In this section one such

correction is proposed that is based on the adaptive estimate of limit parameter

dynamics. Further analysis of the error dynamics is used to show that the proposed

correction will result in limit parameter dynamics tracking the safe response profile

provided the adaptive element in the estimate of limit parameter dynamics, the SHL-

NN, is able to cancel modeling uncertainty.

ucorr =

[
y(r)

s −

(
r−1∑
i=0

aiy
(i)
s +

∂ĥr

∂up

up + νad(µ̄)− νdc

)
−dl(ŷp − ys)

](
∂ĥr

∂up

)−1

(153)

When this control correction is added to the original control input of the true limit

parameter dynamics in equation 3, the following form is obtained.

y(r)
p =ĥr(yp, y

(1)
p , . . . , y(r−1)

p , up) + ∆(µ̄) +
∂ĥr

∂up

ucorr

=
r−1∑
i=0

aiy
(i)
p +

∂ĥr

∂up

up + ∆(µ̄) + y(r)
s

−

(
r−1∑
i=0

aiy
(i)
s +

∂ĥr

∂up

up + νad(µ̄)− νdc

)
−dl(ŷp − ys) (154)

where,

∆(x, yp, y
(1)
p , . . . , y(r−1)

p )
∆
=hr(x, yp, y

(1)
p , . . . , y(r−1)

p , up)

− ĥr(yp, y
(1)
p , . . . , y(r−1)

p , up) (155)

This equation can be further simplified by canceling the linear control terms and

expanding the contribution of the linear dynamic compensator as given in equation

14.

y(r)
p − y(r)

s =
r−1∑
i=0

ai

(
y(i)

p − y(i)
s

)
+Clη +

[
dl(ŷp − yp)− dl(ŷp − ys)

]
+ (∆(µ̄)− νad(µ̄)) (156)
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The safe-response-profile tracking error dynamics, given in equation 156, is re-cast

into state-space representation using the following definition for safe-response-profile

tracking error vector,

Es
∆
=

[
es e

(1)
s . . . e

(r−1)
s

]T

(157)

with,

es
∆
= yp − ys and ês

∆
= ŷp − ys (158)

where es is referred to as the safe-response profile tracking error and ês is called the

estimate of the safe-response-profile tracking error. Also, E
∆
=

[
e e(1) . . . e(r−1)

]
.

Using equations 3,10,158 and 156 the final form of the complete error dynamics can

be written into the following matrix form,
Ės

η̇

Ė

 =


A Cl 0(r,r)

0(p,r) Al BlB
T
(1,r)

0(r,r) −B(r,r)Cl A− dlB
T
(1,r)



Es

η

E

+


B(r,r)

0(p,1)

B(r,r)

 (∆− νad) (159)

where 0(i,j) is the zero matrix of dimension <i×j and B(j,r) ∈ <r is a r- dimensional

unit vector with its jth element equal to one. Also, matrix A is defined in equation 6.

The stability matrix of the linearized error dynamics in equation 159 is Hurwitz and

is driven by the modeling error ∆− νad. Notice that the control correction proposed

in equation 153 is such that the estimate of limit parameter dynamics ŷp will be

asymptotically driven to the safe-response profile ys. This can be shown by deriving

the dynamics for the estimate of safe-response profile tracking error (ês) defined in

equation 158. Plugging in the control correction into the adaptive estimate of limit

parameter dynamics given in equation 10 we get,
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ŷ(r) =
r−1∑
i=0

aiŷ
(i) +

∂ĥr

∂up

up + νad(µ̄)− νdc +
∂ĥr

∂up

ucorr

=
r−1∑
i=0

aiŷ
(i) +

∂ĥr

∂up

up + νad(µ̄)− νdc

+ y(r)
s −

(
r−1∑
i=0

aiy
(i)
s +

∂ĥr

∂up

up + νad(µ̄)− νdc

)
−dl(ŷp − ys)

=
r−1∑
i=0

ai

(
ŷ(i)

p − y(i)
s

)
−dl(ŷp − ys)

The above equation can be rewritten into the state-space form as follows:

˙̂
Es =

(
A− dlB

T
(1,r)

)
Ês (160)

where Ês
∆
=

[
ês ê

(1)
s . . . ê

(r−1)
s

]
. Equation 160 clearly shows that the control

correction makes the dynamics of the estimate of safe-response profile tracking error

asymptotically stable. Therefore, ŷp → ys. Now using the error vector definitions it

can be shown that,

Es = Ês − E (161)

The adaptive neural network is designed to guarantee that the error in the estimate of

limit parameter dynamics (E) remains bounded. Also, this bound can be made suffi-

ciently small as to guarantee that the adaptive estimate of limit parameter dynamics

is a reasonable approximation of the true limit parameter dynamics. Therefore, as-

suming that a good adaptive estimate of limit parameter dynamics is available and

the fact that control correction guarantees the asymptotic convergence of the estimate

of safe-response profile tracking error to the origin, it can be concluded that Es will

be bounded.

4.6 Linear simulation results

In this section, the proposed approach is applied to a linear first order system. The

linear example will establish the ideas behind the generation of safe response profile
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and will also demonstrate the ability of computed control correction to make the true

response track the safe response profile close to the envelope boundary.

Consider a linear plant (eigenvalue -2) with first order dynamics given as in equa-

tion 162,

ẏp = −2yp − 5up (162)

A square wave input of amplitude 2 units and time period 20 seconds is applied to

this plant. A lower limit of -2 is assumed and the linear approximate model is chosen

with eigenvalue -1,

˙̂yp = −ŷp − 3up (163)

The parameter values chosen for the augmenting single hidden layer neural network

are provided in table 7. The normalized neural net input vector is µ̄ =

[
yp

5

up

2

]
.

A simple static error feedback, with gain 4, is used instead of the linear dynamic

compensator.

A comparison of the true plant response and model response, without reactionary

envelope protection system, is shown in figure 52. The simulation time step is 0.02

seconds and the prediction horizon for the response is chosen to be 0.1 seconds.

Table 7: Reactionary envelope protection linear example- neural network design and
learning rate parameters

Ninp 2 Output layer learning rate, Γm 8.0
Nhid 4 Hidden layer learning rate, Γn 0.4
Nout 1 Emod parameter, κε 0.2
Basis function, σ sigmoid Sigmoid parameters a = 1.0,

1
1+e−a(x−c) c = 0

In figure 52, the model response and the true response are on top of each other.

Also, since the prediction horizon is only 0.1 seconds it is difficult to distinguish the

predicted future response from the true response. The design parameter c1 is selected

to be 0.3249 and εb is set at 0.1. Figure 53(a) shows the plant response with envelope
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Figure 52: Linear example- Limit parameter response with reactionary envelope
protection OFF

protection system ON. The response of the estimate of limit parameter dynamics and

the finite time horizon prediction are also shown in figure 53(a). Notice that the plant

response follows the model response closely along the envelope boundary. The control

input and error, e, are plotted in subplots of figure 53(a).

The model response is compared with the safe response profile in figure 53(b). The

neural network output is plotted within a subplot of figure 53(b). The model response

and hence the true response follows the safe response profile close to the envelope

boundary as expected and therefore the limit parameter response is maintained above

its lower limit.
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Figure 53: Linear example- Limit parameter response with reactionary envelope
protection ON
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4.7 GTMax integrated simulation and flight test-

ing architecture

The GTMax [see figure 54] is a modified Yamaha RMax helicopter that uses a unique

integrated simulation and flight testing architecture. This architecture has been devel-

oped by the Georgia Tech UAV program and facilitates smooth transition from SITL

to HITL simulation, followed by flight testing. Detailed description of the GTMax

hardware configuration can be found in [25]. A simplified pictorial representation of

the overall GTMax system architecture is shown in figure 55.

Figure 54: Georgia Tech unmanned aerial vehicle testbed- GTMax

The first component in figure 55 is the trajectory generator which provides the

position, velocity and attitude commands to the flight controller as a function of time,

based on a prescribed flight plan. The flight plan consists of a set of waypoints along

with values for nominal velocity, acceleration and desired trajectory types ( stop,

aggressive turn, cut etc.) through these waypoints. The guidance system also has

provision to generate trajectory for special cases such as takeoff, landing, formation

flight etc. The guidance commands are passed into a baseline flight controller. The

default flight controller is an adaptive neural network trajectory following controller
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Figure 55: GTMax simulation architecture

with 18 neural network inputs, 5 hidden layer neurons, and 7 outputs for each of the

7 degrees of freedom [24,26]. The 7 degrees of freedom include the usual 6 rigid-body

degrees of freedom plus a degree of freedom for rotor RPM. This adaptive neural net

controller can also be configured as a conventional inverting controller. Also, included

in the system architecture, but not shown in figure 55, is a baseline navigation system.

The navigation system is a 17 state Extended Kalman Filter that fuses information

from the five related sensors (GPS, IMU, sonar, radar, and magnetometer) to provide

estimates of vehicle position, velocity, attitude (quaternion), accelerometer biases,

gyro biases, and terrain height error. The navigation software also estimates whether

the aircraft is on the ground or in the air by estimating the height of the airplane

above the ground and assuming it is on the ground if this height is below the threshold

value. The system is all-attitude capable and updates at 100 Hz. The flight controller
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determines actuator commands based on the navigation system output, and the guid-

ance system commands. The flight controller and navigation system, coupled with

the trajectory generator, is capable of automatic takeoff, landing, hover, aggressive

maneuvering at flight up to a maximum attainable speed of around 85 feet/sec.

GTMax helicopter model (shown in figure 55), the helicopter interface model, and

sensor models have been developed as simulator tools. These simulator tools, like most

of system components, are written primarily in C/C++ and have been developed to

allow the test architecture to run on a high-end personal computers or laptops that

uses the Windows 2000/NT or Linux operating system. The GTMax helicopter model

has six rigid-body degrees of freedom plus engine, fuel, and rotor dynamics. The

simulation also includes a helicopter interface model that simulates the servo interface

unit functionality and RS-232 serial interface. The sensor models (IMU, GPS, sonar

altimeter, magnetometer, radar altimeter) have been designed incorporating detailed

information such as sensor errors, mounting location and orientation, time delays,

and digital interfaces.

A previously-developed ESim simulation environment is used to produce a Graph-

ical User Interface (GUI) as a simulator tool to this otherwise-basic C/C++ code.

The GUI allows real-time 3-D display of the aircraft and the terrain, and has addi-

tional functionality to aid in data visualization or use in the Ground Control Station

(GCS) during flight tests. The data visualization functionality can be used for plot-

ting, data logging and easily modifying any data during the simulation (for example

changing controller parameters). Furthermore, it also allows the simulator to run

the simulation in real-time or batch mode (faster than real-time). The development

of these simulator tools enables rigorous and extensive testing of any new and/or

existing system modules in a way that is not possible to do in flight tests.

The test architecture also includes a generic and highly capable data communica-

tion software that has been developed to support a large number of potential flight
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and simulator test configurations. This data communication software is made up of

routines that support serial data reading and writing between the Commercial Off

The Shelf (COTS) sensors and other custom components used on the GTMax. Also,

these same routines can be used to re-route any data through Ethernet or as memory

within a single executable.

4.8 Software-in-the-loop evaluation of reactionary

load factor limit protection system

The reactionary envelope protection method is evaluated on the GTMax by using

it to implement a load factor limit protection system. The objective of this load

factor limit protection system is to prevent load factor response of the vehicle from

exceeding 1.5g by modifying the guidance commands from the trajectory generator

to the flight controller.

The first step in the design process is to choose an approximate linear model to

represent load factor dynamics. In this case, the approximate linear model used to

represent the load factor response is given by equation 164,

˙̂
Nz = −(N̂z − 1) + 4qc. (164)

where qc is the pitch rate command provided by the trajectory generator to the

adaptive neural net based controller [see figure 55].

Table 8: GTMax load factor limiting- neural network design and learning rate pa-
rameters

Ninp 5 Output layer learning rate, Γm 4.0
Nhid 8 Hidden layer learning rate, Γn 0.1
Nout 1 Emod parameter, κε 0.02
Basis function, σ sigmoid Sigmoid parameters a = 1.0,

1
1+e−a(x−c) c = 0

A single hidden layer neural network, with design and learning rate parameters as

provided in table 8, is used to augment this linear model. The normalized input

114



vector to the neural net is selected to be the following-

µ̄ =

[
qc

Nz

2

vx,B

80
0

vz,B

50

]
. (165)

where Nz is the load factor response of the vehicle estimated from sensor measure-

ments. Also, vx,B and vz,B are the aircraft velocities expressed in the body x and z

frame, respectively. The noise is filtered from the acceleration sensor measurements

by using a second-order low pass digital butterworth filter with a cut-off frequency

of 0.2. Actual load factor response of the vehicle is then computed from the filtered

acceleration measurements (aI) using the following expression-

Nz =
‖aI‖
g

(166)

where ‖.‖ represents the 2-norm. In equation 166, subscript I is used to denote that

the acceleration measurements are expressed in the inertial frame. Also, the variable

g represents the value of acceleration due to gravity. The final form of the adaptive

estimate used to represent load factor dynamics, within the reactionary envelope

protection system, is given in equation 167.

˙̂
Nz = −(N̂z − 1) + 4qc + νad(µ̄)− 8.0(N̂z −Nz) (167)

Notice that in equation 167 static error feedback with gain 8 is used instead of a

linear dynamic compensator.

The reactionary envelope protection system is implemented as a software mod-

ule on the secondary flight computer. In the test architecture, shown in figure 56,

a communication link is established between the primary and secondary flight com-

puters using routines contained within the data communications software. When

this datalink is enabled the following information is sent from the primary to the

secondary flight computer-

• time onboard the primary flight computer.
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Figure 56: GTMax software-in-the-loop evaluation architecture

• vehicle position vector expressed in inertial frame.

• vehicle velocities expressed in body frame.

• vehicle acceleration measurements expressed in inertial frame.

• vehicle angular rate commands expressed in body frame.

• switch to enable/disable data recording within the envelope protection system.

The reactionary load factor limit protection system, running onboard the secondary

flight computer, gets updated whenever the primary flight computer updates the

datalink. A fixed time horizon of 0.4 seconds is used for predicting upper limit

violations. The design parameter c2 in equation 147 is selected to be -0.1 and εb is

set at 0.01. The safe-response profile is updated according to equations 147 and 149

where ∆tsim is around 0.02 seconds. The exact value of ∆tsim is calculated based

upon the onboard time sent through the datalink.
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The reactionary load factor limit protection system is first evaluated on a desktop

computer using Software-in-the-Loop simulation evaluations. Software-in-the-Loop

(SITL) simulation configuration refers to the combined simulation of the GCS, on-

board routines, and simulated sensor and vehicle dynamics, as a single executable,

on any desktop computer. In this configuration, all hardware (including the heli-

copter itself, sensors, etc.) is simulated to the level of its digital communication to

other components. This configuration is useful for rigorous software testing without

requiring any actual flight hardware.

Start from
hover

Aggressive
pull-upAccelerate

forward

Velocity
zero

Return to
hover

Start
deceleration

Velocity
increasing

Deceleration

Figure 57: Graphic representation of the aggressive turn maneuver

An aggressive turn maneuver is designed for evaluating the load factor limit pro-

tection system. In the aggressive turn maneuver, as shown in figure 57, the vehicle

starts from hover and accelerates to a certain forward speed. The vehicle then decel-

erates by pulling up, turns around and returns back to hover at the starting position.

Figure 58 presents SITL results for the GTMax load factor response for an aggressive

turn maneuver executed at 85 ft/sec.

Note that in figure 58 the estimate of load factor response follows the true response
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Figure 58: SITL results- Load factor response with envelope protection OFF

closely. The load factor response for the same maneuver with envelope protection ac-

tivated is shown in figure 59(a). The nominal pitch rate command from the trajectory

generator is zero. The load factor limit protection system calculates appropriate cor-

rections to the pitch rate command (qcorr) necessary to make the limit parameter

response track the safe-response profile for envelope protection. These corrections to

the nominal pitch rate command, injected directly into the flight controller, has no

significant effect on the vehicle response. This is mainly because the attitude as well

as the angular rate commands are used by the inner loop subsystem of the flight con-

troller (see figure 55) for calculating moment actuator commands (cyclic and pedal).

The controller architecture is designed based upon time-scale separation. The outer

loop subsystem calculates the force required or collective control necessary to follow

the prescribed velocity and position commands. The outer loop also has the authority

to modify the attitude commands to the inner loop, from the trajectory generator,
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Figure 59: SITL results- Load factor response with envelope protection ON
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in order to track the position and velocity commands. Hence, any corrections to

inner loop angular rate commands, without corresponding changes to the outer loop

commands, will be overridden. Therefore, it is necessary to translate pitch rate com-

mand corrections into appropriate corrections in acceleration, velocity and position

commands.

XI

YI

ZI, ZV

I - Inertial axis
V- Vehicle carried frame

cψ

XV

YV

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Icz

Icy

Icx

cc

cc

Vcz

Vcy

Vcx

Icz

Icy

Icx

VI

Vcz

Vcy

Vcx

a
a
a

a
a
a

a
a
a

T
a
a
a

,,

,,

,,

,,

,,

,,

,,

,,

,,

,,

,,

,,

100
0cossin
0sincos

ψψ
ψψ

(V) frame carried Vehicle to
 (I) Inertial frommatrix tion Transforma -VIT

simcorrc tq Δ=Δθ

Outerloop commands required to achieve attitude correction

Attitude 
correction

ccIcycIcxcVcxVcz

cVczVcx

aaaa
aa

θψψθ
θ

Δ+=Δ=Δ

Δ−=Δ

)sincos( ,,,,,,,,

,,,,XV

ZV

ccIcycIcxVcxIcz

cVcyIcy

cVcxIcx

aaaa

aa
aa

θψψ

ψ
ψ

Δ+=Δ=Δ

Δ=Δ

Δ=Δ

)sincos(

sin
cos

,,,,,,,,

,,,,

,,,,

cθΔ

Figure 60: Pictorial representation of inertial and vehicle carried reference frames

Corrections to the acceleration commands are calculated by reasoning that track-

ing a pitch rate command corresponds to rotating the desired force vector. Accord-

ingly, corrections to the nominal acceleration commands are calculated from equations

168 and 169.

∆ax,c,V = az,c,Iqcorr∆tsim (168)

∆az,c,V =

(
ax,c,I cosψ + ay,c,I sinψ

)
qcorr∆tsim. (169)
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The corrections given in equations 168 and 169 are based upon the pitch rate com-

mand corrections (qcorr) and the simulation time-step (∆tsim). Furthermore, ∆ax,c,V

and ∆az,c,V represent corrections to the acceleration command along the x and z di-

rections, respectively of the vehicle carried frame [see figure 60]. Also, ax,c,I , ay,c,I

and az,c,I are the acceleration commands along the inertial x, y and z directions,

respectively. The results presented in figure 59(b) show that with these corrections,

the envelope protection system successfully maintains the load factor response within

the set upper limit of 1.5g. Also, in the test results with envelope protection active

[see figure 59(a)] the response from the adaptive estimate of load factor dynamics

continues to track the true response well.
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Figure 61: SITL results- Load factor response comparison with and without envelope
protection

Figure 61 compares the load factor response with and without envelope protection

and for this particular maneuver the proposed envelope protection approach results

in maximum utilization of available envelope.

Also, the vehicle trajectory with and without imposing load factor limit protection

is shown in figure 63. Notice that the pull-up during the aggressive turn maneuver,

with load factor limit protection active, is less steeper compared to that with limit

protection switched off. This observation is easily corroborated by comparing the

velocity responses with and without envelope protection. In figure 62, when load
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Figure 62: SITL results- Velocity response profiles with and without envelope pro-
tection
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Figure 63: SITL results: aggressive turn trajectory with and without load factor
limit protection
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factor limit protection is active the vehicle decelerates more slowly than without

envelope protection. This prevents large pitch rate responses from developing and

causing load factor upper limit violations. Furthermore, the vehicle is prevented from

developing large vertical acceleration responses during the pull-up by limiting the

vertical acceleration commands. This difference is easily noticed by comparing the

vertical velocity responses with and without envelope protection in figure 62. As a

penalty to limit protection, the vehicle takes longer to complete the aggressive turn

maneuver. In a real scenario, where the limit protection is critical for the safety of

the vehicle, this penalty on aggressiveness should be weighed against maintaining the

overall safety of the vehicle.

4.9 Flight evaluation of reactionary load factor

limit protection system

The simulator tools developed make software execution possible on the actual flight

hardware (HITL). Hardware-in-the-Loop (HITL) simulation test is done as an inter-

mediatory step prior to the flight evaluation. HITL test configuration is shown in

figure 64. In this configuration, the onboard software is compiled and executed on

the actual flight computer as shown in figure 64. The sensor and vehicle interface

models are used to interface the flight computer with the simulation-host computer.

The simulation-host computer is used to execute the combined vehicle, actuator and

sensor model simulation. The configuration of the primary and secondary flight com-

puter in HITL test is identical to that used in flight test. The HITL simulation

configuration is used to test all guidance, navigation, and control algorithms software

and as much of the hardware as practical, in real-time. The hardware under test are

the servos and the flight computers with software running on them.

The flight test configuration is very similar to the HITL test configuration. In

the flight test configuration the simulation-host computer, in figure 64, is replaced
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Figure 64: Hardware-in-the-loop test architecture

by the actual vehicle. Also, during flight tests the GCS software is run on one or

more laptop computers and is used by human operators to interact with the onboard

systems. The GCS is also equipped to read differential correction data from a GPS

reference system and send it to the vehicle. The datalink software provides connection

between the GCS and onboard software. It is optimized to minimize bandwidth use

(for example, by sending “float” instead of “double” wherever possible) and also

supports communication redundancy. Currently, a message sent at 10 Hz is used to

update status and current state information on the GCS. A 1 Hz message provides

other significant onboard data.

The flight test results for aggressive turn at 85 ft/sec, without activating reac-

tionary load factor limit protection system, is shown in figure 65. As observed previ-

ously in SITL tests, the load factor response exceeds the upper limit of 1.5g during

aggressive pull-up phase of the maneuver.

The same maneuver is now repeated with envelope protection active and the results

are shown in figures 66(a) and 66(b). Observe that in both test cases, with and
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Figure 65: Flight test results- GTMax load factor response with envelope protection
OFF

without envelope protection, the estimate of the limit parameter dynamics follows

the true load factor response closely. Also, notice in figure 66(b) that when load

factor limit protection is switched on, the true load factor response is made to track

the safe-response profile. This safe-response profile will differ from the estimate of the

limit parameter dynamics only when envelope violation is predicted or detected. The

corrections estimated by the envelope protection system to the pitch rate command

are also shown in figure 66(b). As mentioned before, these corrections are translated

into acceleration command corrections within the trajectory generator according to

equations 168 and 169.

The effect of reactionary envelope protection on the overall performance can be stud-

ied using figures 67, 68 and 69. In figure 67 a comparison of load factor response with

and without envelope protection is presented. Notice that using the envelope protec-

tion does not cause the load factor response to be overly conservative with respect to
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Figure 66: Flight test results- GTMax load factor response with envelope protection
ON
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Figure 67: Flight test results- GTMax load factor response comparison with and
without envelope protection
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Figure 68: Flight test results- GTMax velocity response profiles with and without
envelope protection

Figure 68 shows the differences in the velocity responses. The differences observed are

similar to those seen during SITL evaluations. The reactionary envelope protection

modifies the nominal commands by reducing the rate of deceleration and the rate

of climb during the pull-up. This inturn has the effect of increasing the distance
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Figure 69: Flight test results- aggressive turn trajectory comparison with and with-
out load factor limit protection

and height the vehicle gains during the pull-up as shown in figure 69. Overall the

performance of the reactionary load factor limit protection system in flight test is

similar to that observed during SITL evaluations.

4.10 R22 longitudinal flap angle limiting

The aerospace engineering UAV research lab at Georgia Tech participated in the

DARPA HURT project that involves the use of Maverick UAV. The Maverick UAV

is sold by Frontier systems now currently owned by Boeing R©. It is a retrofitted

commercially available helicopter to the U.S. Special Operations Command and has

been used as a test bed for A-160 (Hummingbird) technologies.

The UAV research lab has incorporated a Flightlab R© generated math model of the

Maverick UAV, as the vehicle model, within the existing GTMax control architecture

[see figure 55]. For this the GTMax math model in figure 55 is replaced with an

equivalent high fidelity math model of the Maverick UAV. The vehicle math model

within the control architecture has been tested and verified using SITL simulation
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Table 9: Maverick UAV flap angle limit protection- neural network design and learn-
ing rate parameters

Ninp 12 Output layer learning rate, Γm 2.0
Nhid 13 Hidden layer learning rate, Γn 0.2
Nout 1 Emod parameter, κε 0.01
Basis function, σ sigmoid Sigmoid parameters a = 1.0,

1
1+e−a(x−c) c = 0

evaluations.

Flapping angle is an important limit parameter for the Maverick UAV that needs

to be monitored and maintained within reasonable values. A longitudinal flap an-

gle limit protection system is implemented using the reactionary envelope protection

method. The flap angle outputs from the math model are used since sensor measure-

ments are unavailable. MATLAB R© system identification toolbox is used for off-line

analysis of data recorded during the aggressive turn maneuver [see figure 57]. The

analysis is used to conclude that the order of the flapping dynamics is four and that

relative degree with respect to pitch rate command is one. The system identification

is also used for choosing the approximate linear model for flapping dynamics given in

equation 170.

˙̂
βlon = −β̂lon + 10qc (170)

The linear approximate model in equation 170 is augmented with a SHL-NN the

parameters of which are given in table 9. The input to the network is given in

equation 171. Also, a simple static error feedback with gain of 10 is used in place of

linear dynamic compensator.

µ̄ =

[
βlon(t) . . . βlon(t− 3d) β̂lon(t) . . . β̂lon(t− 3d) uB

80
q wB

20

]T

(171)

The final form of the adaptive estimate of the flapping dynamics is given in equation

172-

˙̂
βlon = −β̂lon + 10qc + νad(µ̄)− 10(β̂lon − βlon) (172)

129



0 5 10 15 20 25 30 35
−6

−4

−2

0

2

4

6

β lo
n
− 

L
o

n
g

.F
la

p
 a

n
g

le

Upper Limit=3.0
True
Est

0 5 10 15 20 25 30 35
−10

−5

0

5

10

ν ad

0 5 10 15 20 25 30 35

0

0.5

1

β lo
n
 p

ro
te

ct
io

n

Time(sec)

ON

OFF

Figure 70: R22- Response with envelope protection OFF

For evaluating the effectiveness of the reactionary flap angle limit protection sys-

tem an artificial upper limit of 3.0 is imposed on the flap angle response during

turn. Figure 70 shows the response during an aggressive turn maneuver of the earlier

specifications without envelope protection. Notice that the response of the adaptive

estimate tracks the true response closely. In figure 70 without envelope protection

two significant upper limit boundary violations occur.

The response with reactionary envelope protection switched on is shown in figures

71 and 72. In figure 71 the response of the adaptive limit parameter estimate is

compared to the true response and found to be close to each other. When the flap

angle reactionary envelope protection system is activated it prevents the response

from violating the prescribed upper limit. The nominal pitch rate command from

the trajectory generator is zero. The corrections to this nominal pitch rate command

are shown in figure 72. These corrections, translated into acceleration command

correction as given in equations 168 and 169, force the flap angle response to track
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Figure 71: R22- Response with envelope protection ON

the safe-response profile near the upper limit boundary as shown in figure 72.
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Figure 72: R22- Safe response tracking for envelope protection

A comparison of the longitudinal flap angle with and without reactionary envelope

protection is shown in figure 73. The simulation evaluations using the turn maneu-

ver clearly demonstrates that reactionary envelope protection method is a promising

approach for longitudinal flap angle limit protection in the Maverick UAV.

131



0 5 10 15 20 25 30 35
−3

−2

−1

0

1

2

3

4

5

Time (sec)

β lo
n
− 

L
o

n
g

.F
la

p
 a

n
g

le Upper Limit=3.0

Envelope Protection OFF
Envelope Protection ON

Figure 73: R22- Comparison of flap angle response with and without envelope pro-
tection

4.11 Calculation of control margin using reac-

tionary envelope protection method

The idea of reactionary envelope protection can be extended to construct an estimate

of the available control margin which, as mentioned earlier, is useful for manned

envelope protection systems.

Proposition 4.11.1. The control margin corresponding to a limit boundary (upper

or lower) of a limit parameter response can be estimated from the following equation:

umarg =

[
y(r)

s −

(
r−1∑
i=0

aiy
(i)
s +

∂ĥr

∂up

up + νad(µ̄)− νdc

)
−dl(ŷp − ys)

](
∂ĥr

∂up

)−1

(173)

by choosing appropriate values for safe-response profile variables (ys, y
(1)
s , . . . , y

(r)
s ).

Equation 173 is of the same form as that of the control correction proposed for

safe-response profile tracking in equation 153. However, the safe-response profile

variables used in equation 173 do not vary based on the aggressiveness of the limit

parameter response. Instead, they are set to pre-determined values based on the

acceptable limit parameter response aggressiveness near the limit boundaries. In

other words, the control margin is based upon the notion that the limit parameter

response, when it reaches near the limit boundary, should slow down sufficiently

enough not to violate the boundary and the pre-determined characteristic represents

the limits on the aggressiveness of the limit parameter response as it approaches the
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limit boundary. In case of relative degree one (r=1) limit parameter response for

example, the safe-response profile is set as:[
ys ẏs

]T

=

[
ylim 0

]T

(174)

Notice that the above settings for r = 1 is similar to that used in the adaptive dynamic

trim method [68]. For relative degree two limit parameter dynamics, (r=2) control

margin is calculated by setting the safe-response profile variables as-[
ys ẏs ÿs

]T

=

[
ylim 0 k

]T

(175)

where

k =

 ≤ 0 for upper limit

≥ 0 for lower limit
(176)

Henceforth, without loss of generalization, assume that the control sensitivity (∂ĥr

∂up
)

is positive.

Proposition 4.11.2. The control margin, for the upper limit, goes from positive

to negative as the limit parameter response approaches the limit boundary and the

available limit margin, when control margin is zero, will be positive. Furthermore, the

amount of limit margin available at the point of zero control margin increases as the

aggressiveness of limit parameter response increases.

The control margin with respect to the upper limit is referred to as the upper

control margin and according to proposition 4.11.2 this upper control margin goes to

zero prior to the actual violation of the upper limit boundary. Further analysis will

show that this prediction horizon is implicitly present in the proposed control margin

calculation.

Re-arranging terms in equation 10 we get,

bup + νad(µ̄)− νdc = ŷ(r)
p −

r−1∑
i=0

aiŷ
(i)
p (177)
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Substituting equation 177 into equation 173 we get the following,

umarg =

[
y(r)

s −

(
r−1∑
i=0

aiy
(i)
s + ŷp

(r) −
r−1∑
i=0

aiŷp
(i)

)
−dl(ŷp − ylim)

](
∂ĥr

∂up

)−1

(178)

=

[
y(r)

s − ŷp
(r) −

r−1∑
i=0

ai(y
(i)
s − ŷp

(i))− dl(ŷp − ylim)

](
∂ĥr

∂up

)−1

(179)

=

[
y(r)

s − ŷp
(r) −

r−1∑
i=1

ai(y
(i)
s − ŷp

(i))− (a0 − dl)(ylim − ŷp)

](
∂ĥr

∂up

)−1

(180)

In equation 180, (a0 − dl) < 0 for stability. Therefore, when the limit parameter

response is far away from the limit boundary then the term (a0−dl)(ylim− ŷp) is much

greater than the other terms in equation 180. Therefore, the control margin will be

positive (negative for negative control sensitivity) far away from the limit boundary

and negative (positive for negative control sensitivity) near it. The value of limit

margin (ylim − ŷp) for which control margin is zero is obtained from equation 180 by

setting umarg = 0.

(ylim − ŷp) =
y

(r)
s − ŷp

(r) −
∑r−1

i=1 ai(y
(i)
s − ŷp

(i))

(a0 − dl)
(181)

Analyzing equation 181 for the special case of r = 1 we can see that as the limit

parameter approaches the upper limit boundary 0− ˙̂yp is negative and (a0 − dl) < 0.

Therefore, control margin becomes zero before approaching the limit boundary which

signifies a lead in prediction of envelope violation. Furthermore, equation 181 can be

used to deduce that the limit margin corresponding to the zero control margin will

vary depending on the aggressiveness of the limit parameter response (a0 − dl). The

more aggressive the limit parameter response is, the larger is the limit margin (or

control limiting starts further away from the limit boundary). This is an extremely
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desirable behavior for an envelope protection method. The pilot of a manned vehicle

would expect to be informed sooner about approaching the limit boundary for a faster

limit parameter response than the one which is more gentle and non-aggressive. Note

that the proposed approach for computing control margin is based on extending the

idea underlying the reactionary envelope protection method. It does not utilize any

functional forms for estimating maximum peak response corresponding to a given

control input. The proposed method is based on how aggressively the limit param-

eter response is approaching the limit boundary and whether this aggressiveness is

within the specified safety settings pre-determined by the envelope protection system

designer.

4.11.1 Reactionary envelope protection method for hub moment limit
protection

The NTG based envelope protection method and nonlinear function response method

have been successfully tested for preventing hub moment limit exceedances by using

force-feedback based tactile cueing to inform the pilot when approaching the esti-

mated longitudinal cyclic control limits. Similar to the NTG approach, control mar-

gin calculations in the reactionary envelope protection method are also based upon

the adaptive estimate of limit parameter dynamics.

Figure 74 presents the hub moment response during a swoop maneuver with the

vehicle in nominal weight configuration. The envelope protection is not active, i.e the

softstop locations are not set based on critical control position calculations to cue the

pilot. In figure 74 the control limits calculated using the nonlinear function response

method are presented in the second subplot. Also, the control limits calculated using

the reactionary control margin are presented in the fourth subplot. The safe-response

profile settings used in the reactionary control margin calculations are ys = ylim and

ẏs = 0.0. It is observed that the control limits calculated using reactionary envelope
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protection method are violated prior to the occurrence of corresponding limit bound-

ary violation. Furthermore, the reactionary control margins go to zero (control limit

violation) slightly ahead of the control margins calculated using nonlinear function

response method. This signifies that an additional lead time would be available to

cue the pilot if reactionary envelope protection method were to be used.
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Figure 74: Control limits for hub moment limit protection- Reactionary vs nonlinear
function response method

The control limit calculations of the reactionary envelope protection method for

the same maneuver are compared to those of the NTG based approach in figure 75.

The results presented in figure 75 show that the NTG based approach is comparable to

the reactionary envelope protection method in terms of the lead time or time between

the control limit violation and the actual limit violation. However, the control limit

calculations in the NTG approach are based not only on the aggressive control profile

but also the critical time of the limit parameter response. Therefore, when the critical

time of the limit parameter response is close to zero the control margins are also

nearly zero. The exact control margins are calculated using the smoothing function.
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Figure 75: Control limits for hub moment limit protection- Reactionary vs NTG
method

Hence, in the NTG case whenever the critical time of the limit parameter response

takes very low values the control limits follow the control input closely signifying zero

control margin. In an actual test case with envelope protection active the softstop

is place slightly ahead of the critical control position to account for very low values

of control margin. The results presented in figures 74 and 75 clearly show that the

control margins based upon reactionary envelope protection method are comparable

to that obtained using the nonlinear function response method or the NTG approach.

Therefore, the proposed extension is a viable envelope protection method for piloted

vehicles.

4.11.2 Example simulation- R-22 engine manifold pressure limit protec-
tion

As a part of the DARPA Software Enabled Control (SEC) [59] technology transition

project Boeing is developing a commercially available R22 Robinson helicopter as an

UAV test platform. The idea is to implement, evaluate and demonstrate emerging
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technologies on this platform before they are transitioned into other current and future

UAV platforms. Envelope protection is one among many other advanced technologies,

such as vision-based autonomous landing, aggressive maneuvering etc., that will be

implemented and tested using this platform.

A reactionary envelope protection module for engine manifold pressure limit pro-

tection is implemented within the Boeing Open Control Platform (OCP). The OCP

is a middleware platform that facilitates easy integration and rapid prototyping of

advanced control technologies that are being developed under the SEC program [45].

Engine intake manifold pressure is available as a sensor measurement on the vehicle

and is a limit parameter monitored by R-22 pilot. A recent safety alert issued by the

Robinson helicopter company on December of 2004 warned against premature fatigue

failure of R-22 blades. This occurs when engine manifold pressure limits are exceeded

producing repeated and excessive over-stressing of the blades [20]. Also, exceeding

manifold pressure limits in a nominal R-22 helicopter will be followed by loss of main

rotor RPM. If corrective action is not taken quickly and RPM is allowed to drop then

rotor stall will occur. During rotor stall, the blades come to a full stop and experience

excessive blade flapping can cause the tail boom section to be cut-off. In the current

R22 helicopter, being developed as a UAV technology demonstrator, this situation is

prevented from occurring by the addition of a turbo to the engine. However, this does

not prevent the over-torquing of the transmission and engine resulting in excessive

fatigue damages. Therefore, the large excursions of engine manifold pressure, from

manufacturer specified limits, must be avoided.

The proposed test architecture will include envelope protection as a mid-level

component within the OCP based system architecture as shown in figure 76. The

envelope protection system will be designed to modify or input vertical velocity com-

mands to the OCP controller such that the engine manifold pressure is maintained

below the prescribed upper limit.
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A linear model for engine manifold pressure has been developed using MATLAB R©

system identification toolbox. The engine manifold pressure dynamics is identified as

a first order system given in equation 182. The input to this system are the collective

(δcoll), percentage of main rotor rpm (ΩMR) and the vertical velocity (vz). As shown

in figure 77, the manifold pressure variations predicted by the model match well with

the flight test data.

Ṗm = −0.3733Pm + 1.579δcoll − 0.02868ΩMR + 0.07709vz. (182)

The manifold pressure dynamics represented by equation 182 is included as a part of

the R-22 model in the simulation architecture of figure 76. The R-22 vehicle model is

obtained from the model parameters generated using Flightlab R©. The model response

has recently been validated against flight test data using inverse simulation [44].

Figure 78 shows a simplified architecture used for Software-in-the-loop simulation

evaluations of the engine manifold pressure reactionary envelope protection system.
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Figure 77: Engine intake manifold pressure model validation

Tr
aj

ec
to

ry
 

ge
ne

ra
to

r

Trajectory
setpoints

Adaptive neural
net controller

C
om

m
an

d
fil

te
r

Command
hedging states

control
inputs

Vehicle

A
 c

 t 
u 

a 
t o

 r 
s

Sensorscp

ca

Reactionary
Envelope Protection

System
czv ,

mod,zv

cycx vv ,,

MRcollmP Ω,,δ
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As shown in figure 78 the nominal vertical velocity command from the trajectory gen-

erator to the command filter (vz,c) is modified by the reactionary envelope protection

system in order to keep the manifold pressure below the prescribed upper limit. In

simulation, the vehicle is commanded to climb at a constant rate of 5 ft/sec from

hover.
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Figure 79: Engine manifold pressure response- Envelope protection OFF

In order to evaluate the reactionary engine manifold limit protection system an ar-

tificial limit of 28 inHg is imposed on the response. The engine manifold pressure

response with envelope protection switched OFF violates this upper limit as shown

in figure 79.

The engine manifold pressure response for the same maneuver with reactionary

envelope protection system switched ON is shown in figure 80. Notice the system

successfully prevents manifold pressure upper limit violations by modifying the rate

of increase of vertical velocity (vertical acceleration) during the maneuver.
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Figure 80: Engine manifold pressure response- Envelope protection ON
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CHAPTER V

THESIS CONTRIBUTIONS, CONCLUSIONS

AND RECOMMENDED FUTURE WORK

5.1 Conclusions and contributions

Envelope protection in manned systems requires timely cues to be conveyed to the pi-

lot/operator regarding limit proximity. Limit proximity information, provided to the

pilot using force-feedback tactile cueing, has been found to significantly improve vehi-

cle handling qualities and reduce pilot workload during highly aggressive maneuvers

near the limit boundary. Also, when reliable estimates of control limits corresponding

to limit boundary are available, force-feedback tactile cueing for envelope protection

will allow maximum utilization of the OFE.

Effective envelope protection methods must have the ability to adapt. Adaptive

envelope protection methods that are able to capture changes in envelope limit pa-

rameter dynamics caused due to variations in flight and or vehicle configurations will

in general perform better than static model based methods. Existing envelope pro-

tection methods either use simplified models for limit parameter dynamics or require

large amounts of data to generate accurate models. These non-adaptive models may

not perform well in unmodeled configurations. Adaptive dynamic trim is a recently

developed approach that uses an adaptive SHL-NN based architecture to estimate

limit parameter dynamics on-line. However, dynamic trim based methods can only

be applied to steady-state-response critical limit parameters [see figure 5]. Nonlinear

function response method is a recently developed envelope protection method that
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overcomes this limitation. However, the approach relies on identifying a static input-

output relationship between the current value of limit parameter and other system

variables using neural networks. This static relationship is then used to estimate the

non-forced maximum future limit parameter response at any given time and subse-

quently the control margin. This non-adaptive approach will provide a reliable but

conservative estimate of the control limits.

In this thesis a new approach is developed for estimating control limits from the

adaptive estimate of limit parameter dynamics. This approach is based on obtaining

real-time solutions of an optimal control problem and is applicable to both steady-

state and transient response critical limit parameters. The optimal control problem

is formulated assuming that the pilot is typically striving to complete the maneuver

in the shortest possible time (infinite aggressiveness). The objective of an envelope

protection system is to curtail this very high value of pilot aggressiveness near the

envelope boundary. Therefore, the objective function chosen for the optimal control

problem is such that the control solution will take the limit parameter response to the

limit boundary in the shortest possible time but with a finite measure of aggressiveness

(Control weighting). An optimal trajectory generation package called the NTG is

used to obtain real-time solutions for this nonlinear optimal control problem. The

proposed approach and the NTG formulation can be used in conjunction with the

adaptive estimate of limit parameter dynamics. Analysis and simulation evaluations

using linear spring-mass-damper system is used to show that the area norm [see

definition 67] of the optimal control solution is truly a reasonable estimate of the

control limit. The proposed approach, combined with NTG package for generating

real-time optimal solutions, is evaluated for imposing an artificial upper limit on a

linear spring-mass-damper system. The results show that the proposed NTG based

envelope protection system is effective in maintaining the limit parameter response

within the prescribed limits. Finally, the NTG based envelope protection system is
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implemented as a limit cueing module within the OPLP architecture for hub moment

limit (transient-response critical limit) protection. The envelope protection system is

evaluated using pilot-in-the-loop tests at the Georgia Tech Carefree Maneuver Lab.

The simulation results showed that the NTG based envelope protection system was

successful in maintaining the hub moment response within the prescribed limits. The

performance of the NTG based hub moment limit protection system is comparable to

that of the non-adaptive nonlinear function response method based hub moment limit

protection system. Also, post-inceptor command shaping schemes (DC, FD) were

utilized in augmenting the NTG based envelope protection system and were useful

in providing high frequency limit protection. Safety and performance comparisons

between the NTG limit cue module and existing nonlinear linear function response

method implementation for hub moment limit protection is also conducted. The

evaluations clearly demonstrate increase in maneuver safety with NTG hub moment

protection inspite of higher pilot aggressiveness during the tests.

The second envelope protection method developed in this thesis is an automatic

limit protection method proposed mainly for application within UAVs. The approach

uses adaptive estimate of limit parameter dynamics and finite-time horizon predic-

tions for detecting impending limit boundary violations. Limit violations are pre-

vented by treating the limit boundary as an obstacle and by correcting nominal con-

trol/command inputs to track a limit parameter safe-response profile near the limit

boundary. Therefore, the approach allows the designer to choose the prediction hori-

zon for switching between passive estimation and active command/control correction

for envelope protection. The approach was first demonstrated using a simple linear

example. Reactionary envelope protection method is used to implement an automatic

load factor limit protection system within the GTMax integrated flight and simula-

tion architecture. A detailed description of the GTMax integrated simulation and

flight test architecture is presented. The design of this envelope protection system is
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shown to be independent of the overall system architecture. In the synthesis, design

and implementation of reactionary load factor limit protection system, no assump-

tion is made regarding the response type (steady-state or transient response critical).

Therefore, the reactionary envelope protection method can be easily applied to both

steady-state response critical and transient response critical limit parameters.

This reactionary load factor limit protection system is tested using Software-in-

the-Loop and flight evaluations. Load factor upper limit (1.5g) violations during an

aggressive turn maneuver are prevented by computing corrections to the nominal

pitch rate command. These corrections force the load factor response to follow a

safe-response profile near the limit boundary. The inner and outer loop command

architecture currently used in the GTMax does not permit directly altering the pitch

rate commands in the inner loop without significant changes to the control architec-

ture. Therefore, these pitch rate command corrections are transformed into equiv-

alent acceleration command corrections within the trajectory generator. This form

of envelope protection implementation is an example for cases where limit parameter

influencing command/control inputs are not directly available in achieving envelope

protection. The flight test results show that the reactionary load factor limit pro-

tection system is successful in maintaining the vehicle load factor response within

prescribed upper limit while executing an aggressive turn maneuver. The simula-

tion and flight test results clearly show that the reactionary envelope protection is a

promising new approach for use in future UAV envelope protection systems. The suc-

cessful flight evaluation of reactionary envelope protection method on the GTMax is

also significant because GTMax is a rotary-wing platform and rotorcraft operational

envelope, compared to fixed-wing vehicles, is typically constrained by a large number

of complex limit parameters.

The reactionary envelope protection method has also been extended to estimate

control margins for force-feedback tactile cueing applications in manned vehicles. The
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hub moment control margins estimated from this extension are found comparable to

that obtained from the NTG and nonlinear function response method. Upon closer

inspection, it is observed that the lead time available from the reactionary control

margins are comparable to that of the NTG method and slightly higher than that

obtained from the nonlinear function response method.

5.2 Recommended future work

1. Development of probabilistic methods- In this thesis analytical methods

have been used to design limit cue modules. Alternative approaches, such as

probabilistic modeling have not been investigated. Development of equivalent

or alternative probabilistic methods for limit parameter modeling and envelope

protection is a viable research topic.

2. Adaptive synergetic design- In manned systems, the pilot is an adaptive

element. Recent control technologies, including envelope protection, have in-

creasingly relied on using adaptive technologies for capturing more information

about the vehicle and its behavior on-line. On the GTMax for example, the

low level controller is an adaptive neural network controller and the load fac-

tor limit protection system is also an adaptive system. The presence of these

multiple adaptive components makes overall system analysis difficult and brings

into focus concerns related to interaction between these adaptive components.

Future researchers should investigate how to implement multiple adaptive sys-

tems within the same architecture in a synergetic fashion. This investigation

can also include issues addressing pilot adaptation and effect of limit cueing on

pilot response. In the case of manned vehicles, these studies can help in charac-

terizing the content and form of limit cue information which will help increase

pilot confidence in envelope protection and adaptive systems in general.
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3. Development of envelope detection methods for envelope expansion-

This thesis has focused on the development of new envelope protection methods.

Specifically, these methods aid in the timely prevention of large and undesir-

able violations of the flight envelope by restricting limit parameters within pre-

scribed boundaries. The method has assumed that either sensor measurements

or estimates of limit parameters are available. However, there are many other

phenomena that define an envelope boundary, for example, retreating blade stall

or rotor stall, vortex ring state etc. It is very difficult to determine whether a

rotor is experiencing stall based on a single parameter. Empirical studies have

correlated rotor stall to a parameter referred to as ERITS (Extended Retreat-

ing Indicated Tip Speed). A low value of ERITS (below 300 ft/sec) indicates

a rotor stall condition. Therefore, the methods developed in this thesis can

be used to limit or prevent ERITS from getting to low values. Even though

this approach will successfully limit ERITS above 300ft/sec it cannot guaran-

tee maximum utilization of the available OFE. This is because ERITS is only

empirically related to rotor stall. Development of envelope protection methods

that can protect the aircraft from undesirable flight conditions such as vortex

ring state or stall by detecting their onset and providing solutions for avoidance

is a significant research topic.

4. Range regulation posed as an envelope protection problem- Recently,

development of formation flight control architecture/mode has come into focus

and lot of research has been directed towards the development of new control

methods consistent with formation flight. The problem of range regulation or

regulating subtended angle (when target size is known) can be posed an envelope

protection problem with the range or subtended angle is the limit parameter.

Maintaining formation flight essentially means regulating range or subtended

angle with respect to other aircraft. The low level controller can be made
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to accomplish this task by either providing higher level trajectory commands

consistent with formation flight [27, 58, 57, 56] or providing estimates of leader

maneuver using an estimator [4, 35, 55, 34]. On the other hand range regula-

tion problem can be treated as an envelope protection problem with nominal

commands to the low-level controller being modified based on information from

a range limiting envelope protection system. This philosophy will avoid the

process of re-designing the low-level controller for formation flight mode which

in itself is a very expensive and tedious process.

5. Robust adaptive estimation techniques- The robustness and system prop-

erties of existing adaptive estimation and modeling techniques are not quantifi-

able by the same measure as current system implementations (phase margin,

gain margin etc.). Therefore, there is a need to develop more robust adap-

tive techniques the performance measure of which can be quantified in either a

similar or acceptable way as that of flight certified systems.
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APPENDIX A

COMPUTATION OF B-SPLINES AND THEIR

APPROXIMATION PROPERTIES

Derivation of B-spline recurrence relation

Bj,k,̄t = ωjkBj,k−1 + (1− ωj+1,k)Bj+1,k−1

where ωjk
∆
=

x− tj
tj+k − tj

Proof. According to the definition of B-spline-

Bj,k,̄t = (tj+k − tj)[tj, tj + 1, . . . , tj+k](.− x)k−1
+

The Leibniz formula for divided differences can be stated as follows,

[tj, tj+1, . . . , tj+k]gh =

r=j+k∑
r=j

([tj, . . . , tr]g)([tr, . . . , tj+k]h) (183)

∵ (t− x)k−1
+ = (t− x)(t− x)k−2

+

[tj, . . . , tj+k](t− x)k−1
+ =

r=j+k∑
r=j

([tj, . . . , tr](t− x))[tr, . . . , tj+k](t− x)k−2
+

=⇒ [tj, . . . , tj+k](t− x)k−1
+ = ([tj](t− x))([tj, . . . , tj+k](t− x)k−2

+ )

+([tj, tj+1](t− x)).([tj+1, . . . , tj+k](t− x)k−2
+

(184)

= (tj − x)
[tj+1, . . . , tj+k](t− x)k−2

+

(tj+k − tj)
− [tj, . . . , tj+k−1](t− x)k−2

+

(tj+k − tj)

+ 1.([tj+1, . . . , tj+k](t− x)k−2
+ ) (185)
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Substituting equation 185 into equation 90for B-spline we get

Bj,k,̄t = (tj+k − tj)

(
(1 +

tj − x

tj+k − tj
)[tj+1, . . . , tj+k](t− x)k−2

+

− (tj − x)

(tj+k − tj)
[tj, . . . , tj+k−1](t− x)k−2

+

)
=

tj+k − x

tj+k − tj+1

Bj+1,k−1,̄t +
x− tj

(tj+k − tj)
Bj,k−1,̄t

= (1− ωj+1,k)Bj+1,k−1,̄t + ωjkBj,k−1,̄t (186)

where,

ωjk
∆
=

x− tj
tj+k − tj

(187)

Marsden’s identity allows one to represent any element of Π<k in terms of B-

splines. According to Marsden’s identity for any τ ∈ <

(.− τ)k−1 =
∑

j

ψjk(τ)Bjk (188)

where

ψjk
∆
= (tj+1 − τ) . . . (tj+k−1 − τ) (189)

Any p ∈ Π<k can be expressed in the following form using Taylor series expansion

about τ .

p =
k∑

ν=1

(.− τ)k−ν

(k − ν)!
Dk−νp(τ) (190)

Differentiating equation 188 ν − 1 times we get

(.− τ)k−ν(−1)ν−1(k − 1)(k − 2)...(k − ν + 1) =
∑

j

Dν−1ψjk(τ)Bjk, ν > 0 (191)
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Substituting equation 191 into the expression for p ∈ Π<k given in equation 190 the

following is obtained

p =
k∑

ν=1

(∑
j(−D)ν−1ψjk(τ)Bjk

(k − 1)!

)
Dk−νp(τ)

p =
∑

j

(∑k
ν=1(−D)ν−1ψjk(τ)D

k−νp(τ)

(k − 1)!

)
Bjk

p =
∑

j

λjkBjk where λjk =

∑k
ν=1(−D)ν−1ψjk(τ)D

k−νp(τ)

(k − 1)!
(192)

In the special case of p = 1,

λjk =
(−D)k−1ψjk(τ)D

k−kp(τ)

(k − 1)!
= 1

∴
∑

j

Bjk = 1 (193)

A special property of B-splines can be derived for p ∈ Π<2 which is the following:

Proposition A.0.1. For any l ∈ Π<2

l =
∑

j

λjkBjk =
∑

j

(∑k
ν=1(−D)ν−1ψjk(τ)D

k−νl(τ)

(k − 1)!

)
Bjk

=
∑

j

(
(−D)(k−1)−1ψjk(τ)D

k−(k−1)l(τ)

(k − 1)!
+

(−D)k−1ψjk(τ)D
k−kl(τ)

(k − 1)!

)
Bjk

(194)

Note that

ψjk = (tj+1 + . . .+ tj+k−1)(−1)(k−2)τ (k−2) + (−1)(k−1)τ k−1

=⇒ (−D)k−2ψjk(τ) = (k − 2)!(tj+1 + . . .+ tj+k−1)− τ(k − 1)!

∴ l =
∑

j

(
tj+1 + . . .+ tj+k−1

k − 1
− τ + l(τ)

)
Bjk

=⇒ l =
∑

j

l(t∗jk)Bjk where t∗jk =
tj+1 + . . .+ tj+k−1

k − 1
(195)

The sites t∗jk are called Greville sites.
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A.0.1 Control points and control polygon

B-spline coefficients model the function that they represent. Let B-splines be used to

represent a function within an interval [a, b]. Then the knot sequence (t = (ti)
n+k
1 )

is chosen from the breakpoints using the Curry-Schoenberg theorem. Note that the

continuity conditions are imposed only at the interior points.

In the knot sequence, t1 = t2 = . . . = tk = a, tn+1 = tn+2 = . . . = tn+k = b. Let

the function be approximated using B-splines or B-form of the function be given as:

f :=
∑

j

αjBj,k,̄t (196)

The value of the function at ti ≤ x ≤ ti+1 will only depend on the non-zero B-splines

passing through x.

f(x) =

j=i∑
j=i−k+1

αjBj,k,̄t (197)

This is because Bi−k,k,̄t is non-zero only in the interval [ti−k, ti−k+k] and Bi+1,k,̄t is

non-zero only in the interval [ti+1, ti+1+k]. Therefore, the only non-zero B-splines

passing through point x are Bi−k+1,k,̄t, . . . , Bi,k,̄t. The above equation for f(x) can

also be used to conclude the following inequality:

min{αi−k+1, . . . , αi} ≤ f(x) ≤ max{αi−k+1, . . . , αi} for ti ≤ x ≤ ti+1 (198)

The inequality above states that the value of function B-form f =
∑

j αjBj,k,̄t on

the interval [ti, ti+1] is bounded, from above and below, by the k B-spline coefficients

“nearby”. This close relationship between the value of a spline and the “nearby”

B-spline coefficients has led to the definition and use of control point. This concept

is developed as follows:

x =
∑

j

t∗jkBj,k,̄t, x ∈ [a, b] (199)

It was proved earlier that for any l ∈ Π<2, l =
∑

j l(t
∗
jk)Bj,k,̄t where t∗jk are Greville

sites. When f ∈ Π<2 then αj = f(t∗jk). In general however, this is not true. Define
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the control sequence as the following:

(Pj := (t∗jk, αj) ∈ <2 : j = 1, 2, . . . , n) (200)

The control polygon Ck,̄t of a spline f ∈ $k,̄t is the broken line with the spline’s

control point sequence as vertices. There is a close connection between the spline and

its control polygon. The control polygon is an exaggerated version or caricature of the

spline which allows one to easily identify certain important features of the spline such

as regions of convexity/concavity, zeros etc. It is important however, to investigate

the relationship between the value of the spline at Greville site and αj. They are the

same when f ∈ Π<2 but otherwise the relationship is quantified as follows:

Proposition A.0.2. If a spline f ∈ $ is continuously differentiable, then

|αj − f(t∗jk)| ≤ constk |̄t|2‖D2f‖‖tj+1...tj+k−1‖ (201)

Proposition A.0.2 can be used to conclude that, for moderate k the sequence α of

B-spline coefficients (or, more precisely the control polygon) for a spline function f

gives a fair idea of the graph of f . Proposition A.0.2 and Curry-Schoenberg theorem

can be used to deduce that $k,̄t is a subspace of $k,̂t for any knot sequence t̂ that is a

refinement of t̄, i.e,

t̄ ⊂ t̂ =⇒ $k,̄t ⊂ $k,̂t (202)

Also, if one were to rewrite f ∈ $k,̄t as a spline using a refined knot sequence t̂ (say by

mid-point refinement thereby reducing the mesh size) then, the control polygon Ck,̂tf

will move closer to the spline. A refined knot sequence will reduce |̂t| in proposition

A.0.2. This has immediate appeal for generating a computer graph of spline in ap-

plications such as Computer Aided Geometric design since most graphing programs

only plot broken lines.
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A.0.2 Schoenberg’s variation diminishing spline approximation

The “shape preserving” spline approximation of a function g on [a, b] is defined by

V g
∆
=

n∑
i=1

g(t∗ikBi,k,̄t) on [a, b] (203)

Let S−α denote the number of sign changes in the sequence α. Then according to

Schoenberg-“The number of sign changes in the spline function
∑

j Bj,k,̄t is not bigger

that the number of sign changes in its B-spline coefficient sequence α”, i.e,

S−(
∑

j

αjBj,k,̄t) ≤ S−α (204)

By applying this property deduced by Schoenberg to the “shape preserving” spline

approximation and also since the sign changes in g(t∗ikBi,k,̄t) will always be less that

or equal to the actual number of sign changes in g we get:

S−V g ≤ S−(g(t∗ikBi,k,̄t)) ≤ S−g (205)

The case l ∈ Π<2 is special for the shape preserving spline approximation because

then,

V l =
n∑

i=1

l(t∗ikBi,k,̄t) = l for all straight lines l (206)

Using equations 205 and 206 it can be concluded that

S−(V g − l) ≤ S−(g − l) ∀ l ∈ Π<2 (207)

Equation 207 can be used to conclude that the maximum number of times that

the shape preserving spline approximation V g crosses any particular line l will be

bounded by actual number of crossings by the true function g. Therefore, if the

function g is always positive or always negative then so is the shape preserving spline

approximation V g. The derivative of a spline function
∑

j αjBj,k,̄t can be found using

the following formulae:

D(
∑

j

αjBj,k,̄t) = (k − 1)
∑

j

αj − αj−1

tj+k−1 − tj
Bj,k−1,̄t (208)
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From equations 205, 206 and 208 it can be deduced that if g is a monotone non-

decreasing function then

D(V g) = (k − 1)
∑

j

αj − αj−1

tj+k−1 − tj
Bj,k−1,̄t

= (k − 1)
∑

j

g(t∗jk)− g(t∗j−1,k)

tj+k−1 − tj
Bj,k−1,̄t ≥ 0 ∵ g(t∗jk) ≥ g(t∗j−1,k) (209)

Therefore, V g is also monotone non-decreasing. Similarly, if g is a convex function

then,

D2(V g) = D(D(V g)) = D

(
(k − 1)

∑
j

αj − αj−1

tj+k−1 − tj
Bj,k−1,̄t

)
= D

(
(k − 1)

∑
j

g(t∗jk)− g(t∗j−1,k)

tj+k−1 − tj
Bj,k−1,̄t

)
= D

(
(k − 1)

∑
j

βjBj,k−1,̄t

)
= (k − 1)(k − 2)

∑
j

βj − βj−1

tj+k−2 − tj
Bj,k−2,̄t

=
∑

j

(k − 1)(k − 2)

tj+k−2 − tj

(
g(t∗jk)− g(t∗j−1,k)

tj+k−1 − tj
−
g(t∗j−1,k)− g(t∗j−2,k)

tj−1+k−1 − tj−1

)
Bj,k−2,̄t

≥ 0 ∵ βj ≥ βj−1 (210)

Therefore, if g is a convex function so is the shape preserving spline approximation

V g. Note that V g the shape preserving spline approximation is only a linear approx-

imation of the original spline approximation and therefore cannot provide as good

approximation to a smooth function as splines are capable of providing. In fact, even

if g has m continuous derivatives for some m ≥ 2,

‖g − V g‖ ≤ constg,k|t|2 (211)

The order of approximation cannot be improved further by using the shape preserving

spline approximation.
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APPENDIX B

TRACE IDENTITIES

Prove that tr(AB) ≤ ‖A‖F‖B‖F

Proof. Let A ∈ <m×n and C = ATA. Then,

tr(ATA) = tr(C) (212)

=
n∑

i=1

cii (213)

=
n∑

i=1

m∑
k=1

akiaki (214)

= ‖A‖2
F (215)

Show that tr(AB) ≤ ‖A‖F‖B‖F where B ∈ <n×m. Let C = AB.

tr(AB) = tr(C) (216)

=
m∑

i=1

cii (217)

=
m∑

i=1

n∑
k=1

aikbki (218)

≤
m∑

i=1

( n∑
k=1

a2
ik

) 1
2
( n∑

k=1

b2ki

) 1
2

Cauchy-Schwartz inequality (219)

≤
[ m∑

i=1

n∑
k=1

a2
ik

] 1
2
[ m∑

i=1

n∑
k=1

a2
ik

] 1
2

Cauchy-Schwartz inequality (220)

= ‖A‖F‖B‖F (221)

Therefore, tr(AB) ≤ ‖A‖F‖B‖F .
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APPENDIX C

ANALYSIS OF SPRING-MASS-DAMPER

SYSTEM FOR APPLICATION OF NONLINEAR

FUNCTION RESPONSE METHOD

Consider a general linear spring-mass-damper given below: ẋ1

ẋ2

 =

 0 1

−ω2
n −2ζωn


 x1

x2

+

 0

b

u (222)

yp = x1 = Cx =

[
1 0

] [
x1 x2

]
(223)

Taking Laplace transform

sX(s)−X(0) = AX(s) + Bu(s)

=⇒ (sI−A)X(s) = X(0) + Bu(s)

∴ X(s) = (sI−A)−1

(
X(0) + Bu(s)

)
(224)

Now,

(sI−A)−1 =


 s 0

0 s

 −

 0 1

−ω2
n −2ζωn



−1

=

 s −1

ω2
n s+ 2ζωn


−1

=
1

s2 + 2ζωns+ ω2
n

 (s+ 2ζωn) −ω2
n

1 s


T
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∴ (sI−A)−1 = 1
s2+2ζωns+ω2

n

 (s+ 2ζωn) 1

−ω2
n s

. Also,

yp(s) = CX(s)

= C(sI−A)−1

(
X(0) + Bu(s)

)

C(sI−A)−1 =

[
1 0

]
1

s2 + 2ζωns+ ω2
n

 (s+ 2ζωn) 1

−ω2
n s


=

1

s2 + 2ζωns+ ω2
n

[
s+ 2ζωn 1

]

C(sI−A)−1B =
1

s2 + 2ζωns+ ω2
n

[
s+ 2ζωn) 1

] 0

b


=

b

s2 + 2ζωns+ ω2
n

∴ yp(s) =
s+ 2ζωn

s2 + 2ζωns+ ω2
n

x1(0) +
1

s2 + 2ζωns+ ω2
n

x2(0) +
b

s2 + 2ζωns+ ω2
n

u(s)

Note the following Laplace transforms,

L−1

(
1

s2 + 2ζωns+ ω2
n

)
= L−1

(
1

(s+ ζωn)2 + ω2
n(1− ζ2)

)
=

1

ωd

exp(−ζωnt) sinωdt

ωd
∆
= ωn

√
(1− ζ2)

L−1

(
ωd

(s+ ζωn)2 + ω2
d

)
= exp(−ζωnt) sinωdt

Similarly,

L−1

(
s+ 2ζωn

s2 + 2ζωns+ ω2
n

)
= L−1

(
s+ ζωn

s2 + 2ζωns+ ω2
n

)
+L−1

(
ζωn

s2 + 2ζωns+ ω2
n

)
= exp(−ζωnt) cosωdt+

ζωn

ωd

exp(−ζωnt) sinωdt

= exp(−ζωnt)

[
cosωdt+

ζωn

ωn

√
(1− ζ2)

exp(−ζωnt) sinωdt

]
=

exp(−ζωnt)√
(1− ζ2)

sin(ωdt+ φ)
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where,

tanφ =

√
(1− ζ2)

ζ

∴ yp(t) =
exp(−ζωnt)√

(1− ζ2)
sin(ωdt+ φ)x1(0) +

1

ωd

exp(−ζωnt) sin(ωdt)x2(0)

+
b

ωd

exp(−ζωnt) sin(ωdt)u(t) (225)

Equation 225 is of the form

yp(t) = Q(x, t) +H(x, t)u(t)

whereQ(x, t) = exp(−ζωnt)√
(1−ζ2)

sin(ωdt+φ)x1(0)+
1

ωd
exp(−ζωnt) sin(ωdt)x2(0) andH(x, t) =

b
ωd

exp(−ζωnt) sin(ωdt).

The maximum and minimum values of exp(−ζωnt)√
(1−ζ2)

sin(ωdt+φ) are exp(−ζωnt1,max)√
(1−ζ2)

sin(ωdt1,max+

φ) and
exp(−ζωnt1,min)√

(1−ζ2)
sin(ωdt1,min + φ) respectively where t1,max = 0.0 and t1,min =

π
ωd

. Similarly, the maximum and minimum values of 1
ωd

exp(−ζωnt) sin(ωdt) are

1
ωd

exp(−ζωnt2,max) sin(ωdt2,max) and 1
ωd

exp(−ζωnt2,min) sin(ωdt2,min) respectively where

t2,max = φ
ωd

and t2,min = π+φ
ωd

.

C.0.3 Maxima and minimas of : Q(x, t)

The necessary condition at extremum of Q(x, t) is:

Q̇(x, t) = 0

=
d

dt

(
exp(−ζωnt)√

(1− ζ2)
sin(ωdt+ φ)x1(0) +

1

ωd

exp(−ζωnt) sin(ωdt)x2(0)

)
=

x1(0)√
(1− ζ2)

[
−ζωn exp(−ζωnt) sin(ωdt+ φ) + ωd exp(−ζωnt) cos(ωdt+ φ)

]
+
x2(0)

ωd

[
−ζωn exp(−ζωnt) sin(ωdt) + ωd exp(−ζωnt) cos(ωdt)

]

=⇒ x1(0)√
(1− ζ2)

[
−ζ sin(ωdt+ φ) +

√
(1− ζ2) cos(ωdt+ φ)

]
+
x2(0)

ωd

[
−ζ sin(ωdt) +

√
(1− ζ2) cos(ωdt)

]
= 0
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∵ tanφ =

√
(1−ζ2)

ζ
cosφ = ζ and sinφ =

√
(1− ζ2).

∴
x1(0)√
(1− ζ2)

[
−ζ
(

sin(ωdt) cosφ+ cos(ωdt) sinφ

)
+
√

(1− ζ2)

(
cos(ωdt) cosφ− sin(ωdt) sinφ

)]
+
x2(0)

ωd

[
−ζ sin(ωdt) +

√
(1− ζ2) cos(ωdt)

]
= 0

Collecting sinωdt and cosωdt terms we get,

sin(ωdt)

[
−ζ x2(0)

ωd

+
x1(0)√
(1− ζ2)

(
−ζ cosφ−

√
(1− ζ2) sinφ

)]
+ cos(ωdt)

[
x2(0)

ωd

√
(1− ζ2) +

x1(0)√
(1− ζ2)

(
−ζ sinφ+

√
(1− ζ2) cosφ

)
= 0

=⇒ sin(ωdt)

(
−ζ x2(0)

ωd

+
x1(0)√
(1− ζ2)

)
+ cos(ωdt)

x2(0)

ωd

√
(1− ζ2) = 0

∵− ζ cosφ−
√

(1− ζ2) sinφ = 1

− ζ sinφ+
√

(1− ζ2) cosφ = 0

Let tan θ
∆
=

x2(0)
ωd

√
(1−ζ2)

−ζ
x2(0)

ωd
+

x1(0)√
(1−ζ2)

then,

Q̇(x, t) = 0 when sin(ωdte + θ) = 0

=⇒ ωdte + θ = nπ, n = 0, 1, 2, . . .

∴te =
nπ − θ

ωd

, n = 0, 1, 2, . . .

However, the above extremum time values do not include the t = 0 which could

happen to be global maxima or minima. Therefore, the search for max[Q(x, t)]

or min[Q(x, t)] should include points te = 0, nπ−θ
ωd

, n = 0, 1, 2, . . . until nπ−θ
ωd

>

5.0 seconds.
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