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SUMMARY 

Carbon dioxide is a radiatively important trace gas in the atmosphere, whose 

concentration has been rising since the industrial revolution. Understanding the sources 

and sinks that regulate carbon dioxide is crucial for scientists to assess future global 

change effects. Previous estimates of carbon dioxide reveal that a "missing" sink has 

been unaccounted for in the northern hemisphere. While various methods have attempted 

to assess the magnitude of fluxes, the location of the "missing" sink has alluded scientists 

since first published by Tans et al. (1989). 

In an effort to answer this question, an inverse method for deducing time-varying 

fluxes of trace gases is first tested and developed using a simple model and then in a full 

three-dimensional model. This method is based on the Kalman filter, which has an added 

strength over similar techniques in its use of weighting error estimates in the 

optimization. To fully utilize this potential, studies are also presented here to account for 

model error and error that arises from taking flask samples at low frequency. 

Having found satisfactory results in the testing stages, the method is then applied 

to invert for carbon dioxide fluxes based on 1992 measurements. The inverse solution 

indicated that the "missing sink" lies in the northern hemisphere biosphere, with two 

contributing components. The increased vegetative sink is due in part to an earlier 

growing season and in part to a decreased fall/winter source in America and Eastern 
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China.. Recent anecdotal evidence from satellites (Myneni et al., 1997) provides further 

support for the earlier growing season. With multiple sensitivity studies, this solution is 

found to be fairly robust. 

Observations are sparse in the Southern Hemisphere, and, therefore, the inverse 

results in these areas are limited. With future growth in developing countries and 

continued land use changes, understanding the fluxes in these regions will become 

increasingly important. One of the major recommendations from this work is the need to 

improve the measurement network in the southern hemisphere. 

This methodology can be applied to any number of gases on a variety of t ime and 

spatial scales. Future application to improve the budgets of other radiatively important 

trace gases, like carbon monoxide, methane, and nitrous oxide, is recommended. 
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CHAPTER 1 

INTRODUCTION AND BACKGROUND 

1.1 Carbon Dioxide: the Natural Component 

Carbon dioxide has been in the earth 's atmosphere since early geologic t ime, and 

its role as a greenhouse gas has made the earth a more habitable planet. Of the greenhouse 

gases other than water vapor, carbon dioxide contributes the majority of radiative forcing 

(64%) (IPCC, 1995). If the atmosphere was devoid of greenhouse gases, the surface of 

the earth would be approximately 253 Kelvin, well below the freezing point of water 

(Chameides and Perdue, 1996). At this temperature, surface water would be in a solid 

rather than liquid state, and life on earth would be extremely different, if it existed at all. 

Carbon dioxide is cycled through the atmosphere, ocean, lithosphere, and 

biosphere. Carbon is stored in several reservoirs on Earth, with the largest storage area in 

the oceans (38,100 Gt). The interaction of the various reservoirs are depicted in the 

following cartoon (Figure 1), where the reservoir amount is expressed in Gt and the 

fluxes between reservoirs are denoted by arrows. Note that there is a large amount of 

uncertainty in these numbers, particularly the fluxes between reservoirs. The values 

expressed are taken from Schlessinger (1991) and IPCC (1995) and are meant to 

represent average fluxes of the present day carbon cycle (1980's) . Each of the flux 

components will be considered in detail in this chapter. 
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Figure 1: Carbon Cycle in Gt C (adapted from Schlesinger, 1991; IPCC, 1995) 

1.1a Vegetative flux 

Vegetation, which is defined here as trees, soils, plants, and the micro-organisms 

living in them, act as sources and sinks of CO2 depending upon the season and amount of 

sunlight and rainfall. During the growing season, plants use sunlight as an energy source 

to drive photosynthesis, which converts CO2 to oxygen (O2) and hydrocarbons like 
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glucose (C6H12O6). This process is what drives vegetative growth and results in a large 

sink of atmospheric CO2 during the growing season. During other times of the year, there 

is a release of CO2 due to respiration from organisms in the soils and the decay of dead 

vegetation. The net effect of vegetation on the CO2 budget is uncertain, with estimates 

ranging from a net cancellation between the positive and negative fluxes to a net sink. 

This uncertainty will be described in more detail in section 1.3. 

1.2a Ocean flux 

In the latest Intergovernmental Panel on Climate Change (IPCC) report (1995) the 

net flux from oceans is estimated to be an uptake from the atmosphere of 2.0 ± 0 . 8 Gt 

C/yr. Despite the net effect being negative (a sink), there is actually a large amount of 

variability in ocean flux seasonally, geographically, and interannually. Ocean fluxes 

change between positive and negative fluxes depending on a number of important 

regulating physical, chemical and biological factors. These include temperature, wind 

speed, partial pressure of C 0 2 , salinity, alkalinity, and pH. These factors are highly non

linear, making the determination flux of CO2 between the ocean and atmosphere 

complicated. In the simplest of cases, without additional sources, if the atmosphere and 

ocean were in complete equilibrium, the amount of C 0 2 in each would remain constant. 

In general, if the atmosphere has greater amounts of CO2 than the ocean, then CO2 can be 

drawn into the surface water. However, the flux between mediums is actually regulated 

by the temperature, wind speed, pH, and salinity of the ocean, and the flux can move in 

both directions. Once CO2 is drawn down into the surface waters, phytoplankton utilize 
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CO2 (same as vegetation on land), converting it to hydrocarbons during photosynthesis. 

This process then changes the amount of CO2 at the surface of the oceans, which in turn 

increases the difference in the partial pressure of C 0 2 between the atmosphere and the 

ocean ( A p C 0 2 ) . The greater this difference, the more CO2 can cross between these two 

mediums. However, there is a different time scale between cycling in the surface waters 

and the deep ocean. Since the carbon can quickly be re-released via respiration and 

decay, it is only when it is converted to organic matter and sinks to the deep ocean 

reservoir that the carbon is a net sink. Despite this large amount of cycling between the 

atmosphere ( -90 Gt C/yr) and the surface waters ( -92 Gt C/yr), the annual net is the 

much smaller balance of these fluxes ( -2 Gt C/y)r. 

1.2 Carbon Dioxide: Anthropogenic Influence 

Despite carbon dioxide 's essential and natural abundance on earth, humans have 

been perturbing its distribution in the environment. Due to the burning of fossil fuels, 

deforestation, and land use changes, the natural budget of carbon dioxide has had an 

additional large anthropogenic source. In the 1950's, C. Keeling began taking 

measurements of C 0 2 at Mauna Loa, Hawaii. These measurements show that there has 

been a significant increase in carbon dioxide (Figure 2). The increase from pre-industrial 

to present day concentrations is estimated to be 75 ppm or approximately a 2 0 % increase 

(IPCC, 1995). 
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Figure 2: Mauna Loa Observations (adapted from N O A A / C M D L ) 

1.2a Fossil Fuel Source 

The largest anthropogenic source of carbon dioxide to the atmosphere is the 

burning of fossil fuels, primarily in the form of gas, coal, and oil. This source has 

increased steadily since the industrial revolution and is currently estimated for the 1980's 

to be 5.5 ± 0.5 Gt Carbon per year and for 1994 to be 6.1 Gt (IPCC, 1995). This 

component is the best constrained of all of the sources and sinks of CO2, partially due to 

the United Nations Framework Convention on Climate Change, which was drafted just 

prior to the U.N. Earth Summit in 1992 and went into force in March 1994. One 

provision of this treaty, which 167 nations have ratified as of May 1997, requires all 
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nations to estimate all sources and sinks of carbon dioxide within their country and to 

report these findings to the public. 

1.2b Land Use Change Source 

Another source of carbon dioxide is also due to vegetation; however, it is 

separated into its own category due to its anthropogenic origins. Typically called land use 

change, this source refers to the released carbon from deforestation and biomass burning. 

In the case of deforestation, carbon dioxide is released when the trees are clear-cut and 

when the debris left behind decays. Furthermore, this has a long lasting effect since the 

vegetation is no longer there to uptake CO2. Biomass burning also releases carbon 

dioxide. The land use change source is estimated for the 1980's to be 1.6 ± 1.0 Gt C/yr. 

This value is interpreted from land clearing rates, biomass inventories, satellite data, and 

modeling (IPCC, 1995). 

Due to this rapid increase in carbon dioxide and its climate forcing potential, 

knowing the regional carbon dioxide sources and sinks is essential to understanding and 

predicting global change. Without knowing exactly where the sources and sinks are, 

effective means to control atmospheric concentrations cannot be developed. However, 

as shown in Table 1, there is a large amount of uncertainty in the current best estimates of 

surface fluxes for CO2. When these fluxes are summed together and atmospheric 

increase is taken into account, the net value should be approximately zero. Instead, there 

is an imbalance, or implied sink, of, 1.3 ± 1.5 Gt C /year. In order to determine more 
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information about this sink, Tans et al. (1989) ran an atmospheric model with these 

surface fluxes and determined that the additional sink is needed in the northern 

hemisphere to explain the discrepancy between model output and observed measurements 

(Tans e t a l . , 1989). 

Table 1: Estimates of net C 0 2 Fluxes to the Amosphere for the 1980's ( IPCC, 1995) 

Sources Gt of C p e r year 

fossil fuels 5.5 + 0.5 

land use change 1.6 ± 1.0 

Sinks G t of C p e r y e a r 

oceans 2.0 ± 0.8 

northern hemisphere vegetation 0.5 ± 0.5 

Atmospheric increase 3.3 ± 0 . 2 

I m p l i e d "Miss ing" Sink G t of C p e r year 

?? 1.3 ± 1.5 

Much debate exists in the scientific community trying to explain this so termed 

"missing sink" of carbon dioxide, with discussion focusing on the relative roles of 

terrestrial and oceanic sinks. 

1.3 Methods to Determine CO z Fluxes 

Various techniques have been used in an attempt to quantify the carbon dioxide 

fluxes and settle the debate over the location of the "missing" sink. One method is to 

make use of isotopic measurements of carbon to differentiate between vegetative and 
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oceanic uptake of anthropogenic carbon dioxide. Since fossil fuel and biomass burning 

have a low CI C ratio compared to the background atmosphere, isotopic measurements 

can be used to partition the amount of anthropogenic carbon in the land, ocean, and 

atmosphere. Using this technique, Quay et al. (1992) has estimated that the oceans 

uptake 2.1 ± 0.8 Gt C /yr and the vegetative component is approximately a net zero. 

Another method to estimate the ocean flux is to make use of measurements of the 

partial pressure of carbon dioxide between the atmosphere and ocean. These 

measurements have been collected by ship cruises throughout the wor ld ' s oceans. The 

ocean flux (F) can be constrained by an exchange coefficient (k) and the average 

estimated magnitude of the difference between atmospheric and oceanic partial pressure 

of carbon dioxide (ApCCh), using the following equation: 

F=k A p C 0 2 

Using this technique, various estimates of ocean uptake have been made ranging 

from -0.5 ± 0.3 Gt C/yr by Tans et al., (1990) to -2.0 ± 0.6 Gt C/year by Siegenthaler and 

Sarmiento (1993). There are several uncertainties that exist with this method of 

calculation. First, there are discrepancies between the exchange coefficient calculated 

from the bomb experiments and laboratory calculations (Takahashi et al., 1992; 

Siegenthaler and Sarmiento, 1993). There is even a range of estimates caused by 

different interpretations of the bomb inventory, with a recent study finding that the flux 

calculated from the radiocarbon measurements is overestimated by 2 5 % (Hesshaimer et 

al., 1994). Second, the measurements of ApCC>2 are sparse (Siegenthaler and Sarmiento, 
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1993) and have been found to have extreme variations over relatively small horizontal 

distances (Watson et al., 1991). In a cruise of the North Atlantic, Watson et al. (1991) 

found variations of 10 uatm over 100 km distance. To put this into perspective, an error 

of 1 (Ltatm in the annual A p C 0 2 results in an uncertainty of 0.2 Gt C /yr (Watson et al., 

1991); thus, a range of 10 uatm results in an uncertainty of 2.0 Gt C/yr. This large amount 

of variability has significant impact on the uncertainty associated with estimating fluxes 

using an average A p C 0 2 . Table 2 summarizes the range of estimates for ocean uptake 

from the various techniques. 

Table 2: Ocean Flux Estimates Using Various Methods 

Method Source Estimate (Gt C /yr) 

1 3 C ratio Quay et al.., 1992 -2.1 ± 0.8 

flux equation Tans et al., 1990 -0.5 ± 0.5 

flux equation Siegenthaler and Sarmiento, 1993 -2.0 ± 0.6 

In addition to the previously described method using isotope measurements , there 

are also other methods to estimate the vegetative flux. The most common method relies 

on forest inventories and estimated flux rates, used in conjunction with a model 

(Houghton, 1993). In attempting to identify the northern hemispheric "missing" carbon 

dioxide sink, a wide range of estimates of the vegetative fluxes have been proposed. Two 

general camps can be identified: (1) those that believe there is a net zero flux (Melillo et 
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al., 1988; Houghton et al., 1987; 1993) and (2) those that estimate an uptake ranging from 

1 - 2 Gt C /yr (Kauppi et al., 1992; Sedjo, 1992; Dai and Fung, 1993). 

The general methodology is to estimate an accumulation of regrowth for an area 

of the northern hemisphere forest and then extrapolate to the larger regions based on 

forest inventories. These methods rely on biological models of net primary productivity, 

which have uncertainty associated with them. The types of models, the number of 

feedbacks, and the processes considered vary among the studies, accounting for the wide 

range of estimates (Taylor, 1993). Another technique employed by Tans et al. (1990) was 

to infer a vegetative sink by trying to match different scenarios with observations. Using 

various scenarios to try and improve agreement between model output to observations, 

Tans et al. (1990) estimate the vegetative uptake to be between 1.5-2.0 Gt C/yr. Table 3 

summarizes the range of estimates for vegetative uptake in the Northern Hemisphere 

forests from the various techniques. 
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Table 3: Northern Hemisphere Vegetative Flux Estimates Using Various Methods 

Method Source Estimate (Gt C /yr) 

isotope ratio Quay e ta l . . , 1992 0.0 

extrapolation / NPP Houghton, 1987; 1993; 0.0 

Melillio et al., 1988 

extrapolation / NPP Kauppi et al., 1992 -1.0 ± 0 . 2 

extrapolation / NPP Sedjo, 1992 -0.7 ± ? 

infered sink Tans et al., 1990 -1.7 ± 0 . 3 

1.4 Inverse Methods to Estimate CO? Fluxes 

Another approach to determine the poorly defined budgets of trace gases is to use 

an inverse method. This involves using a model of the atmosphere to predict atmospheric 

concentrations given an initial estimate of surface fluxes. By running a model with the 

"best" estimates of fluxes and then comparing the predicted model output to observed 

data, one can tell whether or not the initial flux values are good estimates by how well the 

resulting output matches observations. It is at this point that the inverse method is 

employed. By minimizing the difference between observations and model output, the 

inverse technique optimizes the solution to determine the best fit of fluxes. Under 

appropriate conditions, this inversion can produce an optimized and unique solution. 
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Previously, the Kalman filter has been applied to estimate fluxes for nitrous oxide 

and CFC-11 (Cunnold et al., 1983) using a 12 box model and CFC-11 (Hartley and Prinn, 

1993) using a full three-dimensional general circulation model. The Kalman filter has 

been applied to various geophysical problems including wind assimilation (Daley and 

Menard, 1993; Gauthier et al., 1993) and ocean data assimilation (Ghil, 1989; Bennett 

and Budgell , 1987). However, until this thesis, the Kalman filter has not been used for 

inferring the fluxes of the carbon dioxide. 

Studies using other inverse methods (Green's Function, Singular Value 

Decomposit ion) have been used to estimate the fluxes of carbon dioxide (Tans et al., 

1989; Enting and Mansbridge, 1989;1991; Ciais et a t , 1995) and methane (Brown, 1993). 

In all of these previous studies, only two-dimensional models have been used. While 2-D 

models are computationally less demanding, they average around a latitude circle and 

therefore, provide no insight into longitudinal variation. In the case of carbon dioxide, 

major sources are located in the industrialized northern middle latitudes, complicated by 

potential sinks (ocean and vegetative) all at the same latitude. A two dimensional model 

is not capable of distinguishing the emissions from different industrialized regions such 

as Europe, East Asia, and the United States and their surrounding oceans. Thus, there is 

no hope of resolving the issue of the "missing" sink using only two dimensions because it 

is impossible to differentiate between land and ocean. Therefore, a three dimensional 

model is essential to determine the net fluxes of these gases from such regions. This 

thesis will use a three-dimensional model. 
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The inverse with the 3-D model has been thoroughly tested with CFC-11 

including pseudo data studies and using time series of actual observations (Hartley 1992; 

Hartley and Prinn, 1993). However, there is an important issue that must be addressed 

when moving from inverse studies with CFC-11 to gases like carbon dioxide and 

methane. CFC-11 has reasonably constant annual emissions, while both carbon dioxide 

and methane have seasonally varying sources and sinks (Thompson et al., 1986; Khalil et 

al., 1990). These adaptations will be addressed in detail in the methodology section 

(Chapter 3.1). 

Another limitation that previous inverse studies (Enting and Mansbridge, 

1989; 1991; Brown, 1993) have found is an artifact termed "error amplification." Clearly, 

there is error associated with many components of the system (i.e. measurements , model, 

initial flux estimates). In order to account for error in the system, one method employed 

is to truncate the spatial and time domains, effectively smoothing the data (Enting an 

Mansbridge, 1989; 1991; Brown, 1993). Even with this step, these studies typically yield 

significant error amplification (Enting an Mansbridge, 1989; 1991; Brown, 1993). 

Rather than using truncation to control error, the Kalman filter actually weights 

the various errors in determining the optimum solution; thus, it should be a more stable 

optimal estimator for the purpose of estimating the fluxes of carbon dioxide. This ability 

to adjust for various noises and uncertainties is a strength of the Kalman filter technique. 

The Kalman filter will be described in detail in Section 3.1 and 3.2, and error estimates 

for the filter are determined and described in Sections 3.3. 
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When utilizing an inverse method to deduce flux estimates, there are several 

factors that can complicate the solution. Among these is the lifetime of the gas, which 

must be longer than the transport time to a measurement site. Carbon dioxide is long 

lived; thus, one does not have to worry about transport times for capturing the fluxes. 

Another complicating factor is chemistry. If the gas reacts chemically in the atmosphere, 

then the gases that are involved in the reaction must also be well represented in the 

model. This also is not an issue for carbon dioxide since it is essentially inert in the 

atmosphere. Despite being broken down in the terrestrial biosphere and the oceans 

(Sections 2 .1a and 2 .1b) , in the gaseous phase in the atmosphere, carbon dioxide is 

extremely stable. There is only a small in situ sink for CO2, which is photolysis to C O 

and 0 ( 3 P ) in the stratosphere and mesosphere (Warneck, 1988). Other than this small 

chemical sink, there are no in situ sinks for CO2 in the atmosphere. Therefore, carbon 

dioxide does not have chemistry complicating the relationship between sources and sinks 

within the domain of the atmosphere. While these issues do not affect the inverse for 

carbon dioxide, they should be kept in mind when applying the methodology to other 

gases in the future. 

As an outline of the dissertation, each section is described briefly here. The 

methodology is divided into two main sections: Chapter 2 and Chapter 3 . Chapter 2 

explains the Kalman filter and addresses the issue of how to adapt the optimization 

technique to deduce time varying fluxes. This development is all done using a simplified 

test model . Chapter 3 uses a full three-dimensional model and characterizes various 
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errors to augment the Kalman filter. This includes assessing model error and error that 

arises from comparing flask samples to model output. Chapter 4 presents the inverse 

results. The first section includes tests of the developed methodology using pseudo data 

in the three-dimensional model. This section includes exploring how to best group 

regions together for the inverse, as well as determining the opt imum year to invert for 

given the current measurement network. Having found satisfactory test results in this 

study, we extend the inverse methods to real observations in an attempt to deduce the 

regional CO2 fluxes in the atmosphere. These results and discussion are presented in 

section 4.2. A series of sensitivity studies explores how robust the solution is in section 

4.3 . Finally, conclusions and recommendations appear in Chapter 5. 
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CHAPTER 2 

METHODOLOGY I: KALMAN FILTER ADAPTATIONS 

2.1 Inverse Method to Deduce Fluxes 

Given the importance and current uncertainty in the various fluxes, this thesis is 

an attempt to improve our knowledge of these fluxes of CO2 utilizing an optimal linear 

estimator, known as an inverse method. Inverse methods have been employed in 

numerous fields to solve a host of problems. As a working definition of optimal 

estimators, the following is from Gelb (1994): 

An optimal estimator is a computational algorithm that processes 

measurements to deduce a minimum error (in accordance with some 

stated criterion of optimality) estimate of the state of a system by utilizing: 

knowledge of system and measurement dynamics, assumed statistics of 

system noises and measurement errors, and initial condition information. 

These methods are useful whenever one has noisy measurements of a system and a model 

of the system that can relate the state of the system to its measurements. The relationship 

between the system, its measurements, the model and the optimal filter can be visualized 

with the cartoon in Figure 3. In the figure, boxes represent the algorithms (or models) 
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and the circles are inputs and outputs of the algorithms (or models). The diagram is 

labeled in general terms with a case specific example provided in parenthesis. 

Figure 3: Diagram of Relationships to an Optimal Estimator 

The optimal estimator used in this work was first developed in 1960 by R.E. 

Kalman and is so called the Kalman filter. It is the most commonly used of the optimal 

estimators (Gelb, 1994), having been used in fields as varied as missile guidance systems, 

robotics, digital signal processing, and biological studies of yeast fermentation. One 

advantage of the Kalman filter over other inverse methods is that it includes error 

weighting functions within the filter. Thus, if a particular measurement has a large error, 

it will be given less weight than a measurement with very little error. Likewise, if the 
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initial estimate of the state vector is well known to begin with, the amount of freedom to 

change the value in the solution will be limited; whereas, if the state vector is poorly 

constrained initially, then the filter will allow large changes to the estimate. 

The Kalman filter can be derived as the minimization of a cost function, J. 

Several assumptions go into the posing of the cost function. First, a linear relationship, P, 

exists that relates emissions (E) and observations (%) described as % o b s = PE. Second, the 

A 

estimate of emissions differs from the true emissions state, E , by some value, AE, and 

this difference is defined as AE = E" 1 , - Ef 1 . Finally, the amount of error in the 

emissions estimate can be described by an error estimate G E t , where the relationship is 
est A 

Et =Et + csEA. 

With these assumptions in mind, the cost function is posed to consist of two 

components . One is the difference in observations and the opt imum model predicted 

A 

concentrations, % o b s - PEt. The other component is the size of the step change in 

emissions (AE). As described previously, the strength of the Kalman filter is that error 

estimates are contained within the actual filter. Thus, each of these components is 

weighted by associated error estimates. The covariance matrix (C) estimates the 

constraints on the initial guess, E, while the noise matrix (N) estimates the amount of 

error contained in the observations, % o b s . The cost function is given in the following 

equation: 
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J = (%TS - P t E t ) T N - 1 ( 5 C ; b 8 - P t E t ) + ( A E ) T Q 1 ( A E ) Equation 1 

A derivation of the solution can be found in Appendix A; however, the solution 

itself is shown in the following equation: 

AE, = ( C t P t

T [ P t C t P t

T +Ntr]Xx°t

bs-X7Ad) Equation 2 

A description of each of the components in the solution and how the Kalman filter 

is applied in practice is included here. Initial guesses of emissions are taken to begin the 

estimation procedure. These emissions are used to calculate the model mixing ratio 

(% m o d e l ) at the first time step. This ^ m o d e l is compared to observations in order to update 

the emissions using the following equation: 

E ^ E ^ G ^ r - X r ' 6 ' ) Equation 3 

Note that equation 3 is simplified but identical to equation 2. This sequence of steps is 

then repeated to calculate emissions at each subsequent time step. 

G t is called the gain matrix and it is defined as follows: 

G t = C t P t

T [ P t C t P t

T + N t r ' Equation4 

P t is the partial derivative matrix, 

n model 

Pt=P ikt=^=—• Equation 5 

Pj is the transpose of the P t matrix. 

The covariance matrix, C t , is initialized with diagonal elements that contain the initial 
estimate the variance in emissions, 

C t =[Okita£t]. Equation 6 
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The covariance matrix is updated throughout the inversion by the following equation: 

C t + 1 = C t - G t P t C t Equation 7 

Finally, N t is the noise matrix, which is also diagonal and defined as follows: 

N t = [ N i j t ] = [ofaf ]. E q u a t i o n s 

2.2 Adapting the Kalman Filter for Time Varying Fluxes 

The purpose of this initial test case is not an attempt to quantify emissions, but 

rather to assess how to apply the Kalman filter as in Hartley and Prinn (1993) to time 

varying sources. In this section, various adaptations that exist in Kalman filter theory will 

be explored in an attempt to identify the optimum method for deducing time varying 

regional surface sources/sinks. It is not practical to run numerous test cases in a complex 

model . In order to be able to clearly identify the components of the inverse problem and 

afford to run a wide variety of tests, a simplified analytical regional scale model is 

employed. 

2.2a Simplified Model Description 

For the transport model, we use the Effectively Sampled Region (ESR) model 

(Prinn, 1988), which provides a steady state solution to the 2-D coupled advection, 

diffusion and chemistry problem in cylindrical coordinates. The relative placement in the 

latitude/longitude plane of the assumed source regions and observation sites is shown in 

Figure 4. Note that the relative placement of the sources and observations can be 
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conceptualized as either a global scale or urban scale situation. The t ime scale would also 

change depending on the geographic scale. For example, in global problems, the model 

and observations are compared on monthly time scales; whereas, in urban studies, the 

time scale is hourly. The wind barbs drawn are for winter (easterly), summer (south

easterly), and fall/spring (east-south easterly). The magnitudes are depicted by the relative 

size of the wind barb. 

site J 
o 

o 
site 2 

Figure 4: Map of fictitious sites. 

The equation for the trace gas concentration in the ESR is as follows: 

E rcosc]) r 
Xt = exp k 

7thvt/t J 
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where /, = 
2xa t and 

1 + 2L 
v t 
v t L net 

%t = concentration (mass/volume) 

E t = emissions (mass/time) 

r = radial distance of observations from the source (length) 

at = variance of horizontal wind speed (length 2 / t ime 2 ) 

v t = average horizontal wind speed through region (length/time) 

h = boundary layer height (length) 

t n e t = the chemical lifetime (time) 

(J>t = wind direction relative from the source to the observation site (radians) 

T = time scale of mixing (time) 

ko = Bessel function of the zero order 

This transport model is run using a given set of emissions at each source, and %t is 

calculated for the time over which the emissions are valid. In lieu of real observations of 

concentrations, this ESR generated % field is used as "pseudo" data for our region, as 

previously described by Hartley and Prinn (1993). This is a crutial testing step in any 

inverse, as one must first be able to invert for a known solution before any credence may 

be given to a previously unknown solution. 
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For the inversion process, we alter the winds in the model from those used to 

calculate the "pseudo" data. In this way, we are dealing with a more realistic modeling 

situation, where the model is imperfect. W e can compare runs using the same emissions 

and these two different wind fields to calculate a transport residual, 8, defined by the 

equation, 5 = ~%™^Lt • T n i s 8 w i l 1 b e u s e d i n t n e Kalman filter equations, by 

adding it to the noise matrix. 

The noise matrix contains an estimate of the error associated with observations. 

This error is a measure of both instrument precision and natural variability at an 

observation site (Hartley and Prinn, 1993; Chang et al., 1996). In this test study, we are 

working with pseudo-data based on a simplified model, so we define N t to be greater than 

P t C t P t , as is the case with previous 3D model studies (Hartley and Prinn, 1993). W e 

then augment the noise matrix with the transport residual. Equation 7 is modified as 

follows (Hartley and Prinn, 1993): 

N t = [ N y ] = K b s G° b S ] + [ O f ] Equation 9 

Thus, the noise matrix now accounts for model error in the comparison of model 

calculated concentration and "pseudo" observations, as well as the typical error associated 

with the measurements. 

Furthermore, we account for the propagation of incorrect emissions in global 

models by augmenting the ESR during the inversion. To do this, we carry over a 
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percentage of the difference between model and "pseudo" observations through time, 

with the following equation: x%£Ly = X?odd + 0 - 0 5 ^ ( X ^ " 5C,m°del) • Thus, a poor 

i = 1 

emissions guess is propagated temporally. This error propagation is evident in the model 

results, which show increasing error as time progresses. 

2.2b Adaptations to Kalman Filter 

When we apply the Kalman filter in the ESR model to solve for constant 

emissions over t ime, the filter is consistently able to converge to the "correct" emissions 

(Figure 5). Note that the constant emissions case is the situation found in Hartley and 

Prinn (1993) when inverting for CFC-11. 
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Figure 5: Kalman filter for constant fluxes, where (a) is source 1 and (b) is source 2. 

However, when we apply the same Kalman filter in the ESR to invert for t ime varying 

emissions, the filter can no longer converge on the "correct" emissions (Figure 6). 
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Figure 6: Kalman Filter for Time Varying Fluxes 

One method used to invert for time varying emissions that has been applied in 2-D 

models solves for the coefficients of a function that includes simple harmonics to 

describe the seasonal cycle. Forms of this function include E = (Acos(cot) + Bsin(cot)), 

where 271/(0 is the period and A and B are unknown constants that represent the 

magnitude and phase of the seasonal cycle (Surendran and Mulholland, 1986). Other 
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representations for the seasonal cycle have also been used (Enting and Newsam, 1990; 

Brown, 1993) for gases like C 0 2 and CH 4 . 

In doing this type of multi-variable inversion, two issues arise. The first is that the 

inversion must solve for two or more terms (e.g. A, B) for each source region. This large 

number of unknowns will generally require a large number of independent observation 

sites in order to arrive at a unique solution. Since the networks of observation sites for 

essentially all trace gases are very sparse spatially, this is not presently a useful choice in 

3-D models , as it will result in an ill-posed problem. Furthermore, the period (i.e. GO) 

may also be a function of time, adding more unknowns and exacerbating the ill-posed 

problem. If the period is not solved for separately, the standard Kalman filter cannot 

deduce the change in period. This is further extended by the fact that the seasonal cycle 

may not be a simple harmonic. While not an issue for carbon dioxide, this would become 

a very important issue for a gas like methane. In the case for methane, each source has its 

own distinct annual cycle. For instance, in the Tae-Ahn Peninsula (TAP), Korea, the rice 

paddy emissions have a peak during the summer months, while wetlands and tundra 

emissions peak in October, and biomass burning peaks in May (Dlugokencky et al., 

1993). Since these cycles of differing amplitudes and phases overlap throughout the year, 

it is unrealistic to fit with simple harmonics. Due to these complexities in the sources and 

in the interest of developing a robust method that can be extended beyond carbon dioxide, 

we chose to be more general and make no a priori t ime dependent assumptions about the 

seasonal cycle. 

27 



Another way to make the estimated emissions approach the "correct" solution is 

to use a transition matrix, <D, that contains the seasonal cycle. Differing from the 

previous method that inverts for the coefficients in the seasonal cycle, a transition matrix 

simply prescribes a time varying function, that updates emissions as E t + 1 = O t E t (Gelb, 

1994). The transition matrix is also added to the covariance matrix, as C~+ 1 = O t C t O ^ , 

where the minus sign indicates that the step is performed prior to the update in equation 

6. Utilizing a transition matrix would be ideal if the seasonal cycle of the gases were 

known; however, the reality is that we do not positively know the seasonal cycle, as the 

goal of this work is to invert for gases with unknown emissions. When the seasonal cycle 

is unknown, utilizing a transition matrix will bias the outcome. For instance, if we 

prescribed an incorrect seasonal cycle, O = cos(cot), in our filter equations, the inverted 

emissions are shown in Figure 7. 
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Figure 7: As in Figure 6, with transition matrix (<|>) defined 

W e intentionally chose a poor, but reasonable, choice for the cycle, in order to 

show the type of error that can occur when the seasonal cycle is not prescribed correctly. 

Thus, we have only succeeded in adding an incorrect bias to the inverted emissions. In 

Kalman filter theory, the distinction in approach is that we will be using the Kalman filter 

to estimate emissions across measurements, rather than between measurements , as is 

done when using a transition matrix (Gelb, 1994). 
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However, we can take a closer look at the reason for the lack of convergence in 

Figure 6 by examining the Kalman filter equations. In equation (2), emissions are 

adjusted based on the product of the gain matrix and the residual. Initially, the covariance 

matrix is large, which results in a large gain matrix (equation 3). In time, the covariance 

matrix continually decreases in magnitude (equation 6), and the gain matrix decreases 

accordingly. Therefore, once the model predictions are in good agreement with the 

pseudo-data, both the residual and the gain matrix have greatly decreased. For time 

varying emissions, however, the residual will increase in magnitude when the emissions 

change, while the gain matrix will remain small (according to equation 3), and the overall 

desired adjustment in emissions cannot be attained. 

One solution to the problems caused by the diminishing gain matrix is to utilize 

an adaptive filter (Sastri, 1985). The adaptive filter works by resetting the covariance 

matrix when the model calculated mixing ratio begins to diverge from the observations. 

Upon detection of an increase in the magnitude of the residual (% o b s -% m o d e l ) from the 

previous time step, C t is reset to its initial value. This in turn allows G to be larger and 

the needed adjustment in emissions can be made. Applied to the same pseudo data used 

in Figure 6, the adaptive filter improves the emissions estimate (Figure 8). 
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Figure 8: As in Figure 5, with an adaptive kalman filter. 

However, there is an ensuing time lag. This time lag is more evident at the end, as the 

effect of "history" creates a deteriorating emissions estimate in time. 

Note that in the adaptive filter the C t matrix is enlarged every t ime the residual 

diverges. Therefore, the standard deviations for the estimated emissions are not truly the 

square roots of the diagonal elements of the covariance matrix. Thus, the quoted error we 
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use for the next set of runs in this section is calculated as 5 E t = P t

 ! 5 % t • Finally, the 

definition of "t ime lag" used in this thesis differs from the traditional usage in 

atmospheric science and as arises here. In atmospheric sciences, a t ime lag is thought of 

as a lag between emissions and detection at an observation site (i.e. a northern 

hemispheric source effecting a southern hemispheric observation site). This issue has 

previously been explored in 3D inverse studies with a tracer (Hartley, 1992; Hartley and 

Prinn, 1993) and found to be of second order importance with the current observational 

network. In this thesis, a time lag results from an estimation time lag in the filter (i.e. 

when there is divergence in the residual and the filter cannot adjust until after this 

divergence is detected one time step later). 

One method used in Kalman filter analysis to deal with this time lag is an optimal 

smoother (Gelb, 1994). The Rauch-Tung-Striebel fixed-interval optimal smoother (Gelb, 

1994) adjusts the emissions at the previous time step, where: 

Et-i = E t 4 - ( C t _ 1 ^ _ 1 C ^ 1 ) ( E t - E t _ j ) . The tilde indicates a new value for emissions. In 

our calculations, O , the "transition" matrix, is an identity matrix as discussed previously. 

Thus, our equation simplifies to Et-i = 2 E t - E t _ j . However, the smoother does not 

model 

correct for the effect of this time lag on the computed % in past time steps. Although 

an improvement (Figure 9) the smoother is not an ideal time lag correction because it 

does not correct errors in the model predictions. Thus, it still misses the correct solution 

as a result of "history" being propagated through the model concentrations. 
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Figure 9: As in Figure 6, with a Smoother added to the Kalman filter 

Applications of other time lag corrections also proved untenable. One such 

method, the forward-backward filter, required that all emission values be known prior to 

applying the correction (Gelb, 1994). This would not work in the case of determining 

unknown emission strengths. Another method, which uses a short period estimate, 

requires using a small inversion time step (Gutman and Velger, 1988). This is not always 

a practical option when, due to inadequate simulation of short-term transport variations, 
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model values need to be averaged in order to compare well with observed values. 

Finally, we investigate applying an adaptive-iterative method. This is the 

recursive-iterative method (Young, 1984) used with the adaptive filtering method (Sastri, 

1985). W e iterate until the change in emissions from one iteration to another is 

sufficiently small. This approach has previously been used in another application of the 

Kalman filter for yeast fermentation (Bellgardt et al., 1986) and is considered to be a 

robust method for using inverse methods to solve for time varying state vectors (Young, 

1984). The results are shown in Figure 10. 
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Figure 10: As in Figure 6, with an adaptive-iterative Kalman filter. 

W e note that in an iterative run, the covariance matrix is again allowed to update 

according to equation (6), both within each iteration and continuing to other times steps. 

In iterative filtering, the covariance matrix at the end of the first iteration at each t ime step 

is saved (Young, 1984). This value represents the statistical estimate of error as 

previously discussed. By saving the value after the first iteration, the error estimate is not 

artificially decreased based on the number of iterations at each time step. Therefore, 
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unlike the previous runs with the adaptive filter alone, the covariance matrix again 

represents the error in emissions and the error bars shown are as described previously. 

W e note that even when the filter cannot converge on the "correct" solution, the solution 

is always within the error bars. Our results are summarized in Table 4, with the final 

iterative method clearly reducing the overall error in emissions prediction. 

Table 4: Average percent difference between inverted emissions using various 
adaptations and the "correct" emissions. 

Methodology mre Reference avg. difference: avg. difference: 

region 1 (%) region 2 (%) 

non-adaptive filter mre 4 14.2 14.1 

prescribed cycle Fi^ mre 7 22.3 19.6 

adaptive filter Fi* mre 8 13.6 13.6 

smoother Fi* mre 9 7.6 6.5 

adaptive-iterative Fi* mre 10 3.8 5.6 

To summarize the development of the Kalman filter for t ime varying fluxes, we 

have attempted to simulate, using the ESR model, the behavior seen in three dimensional 

models in several ways, including adding "history" to the model, constraining the noise 

matrix to be greater than P t C t P t , and using the "imperfect" model with slightly different 

winds than those which generated the "pseudo" observations. This has all been done to 

add complexity to the ESR model so that our results extend to global transport models . 

W e tested various modifications to the standard Kalman filter including adaptive filtering 
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(Sastri, 1985), smoothing (Gelb, 1994), and iteration (Young, 1984; Bellgardt et al., 

1986). W e found that adaptive-iteration by far gave the best final solution. W e note that 

this adaptive-iterative method is identical to the recursive-iterative method in Young 

(1984) with the inclusion of adaptive filtering as in Sastri (1985). A flow chart that 

summarizes the methodology is shown in Figure 11. 
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Kalman Filter Equations: 
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Figure 11: Flow Chart of Adaptive-Iterative Kalman Filter 
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CHAPTER 3 

METHODOLOGY II: ERROR ESTIMATES 

As previously described, one of the main advantages of using the Kalman filter is 

its use of error estimates in the filter. This provides a more stable solution since it does 

not force the model to agree with observations beyond the given error limitations. To 

take full advantage of this feature of the Kalman filter, this section will explore various 

error estimates that are added to the Kalman filter. All of these studies will be based on a 

full three dimensional general circulation model. 

3.1 Description of GCM 

The model used for all subsequent studies in this thesis is the offline version the 

N C A R Communi ty Climate Model version 2 (CCM2) [Rasch et al., 1994; Hack et al., 

1993]. The model has a T42 spectral resolution, which is approximately a 2.8° x 2.8° 

transform grid, and 18 vertical levels reaching 2.917 mb. Some of the main features of 

the dynamics in the model include a semi-Lagrangian transport scheme for water vapor 

and other chemicals, and a hybrid terrain following vertical coordinate [Rasch et al., 

1994; Hack et al, 1993]. The C C M 2 has been thoroughly tested with tracers and found to 

have a realistic interhemispheric transport rate (Hartley et al., 1994). This is extremely 

important because if the concentrations build up artificially in the northern hemisphere 
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due to model transport deficiencies, the inverse could falsely identify the sources and 

sinks. A detailed description of the C C M 2 can be found in Hack et al. [1993]. 

The offline version of the model is essentially identical to the standard C C M 2 

with several exceptions. Instead of calculating the wind and temperature as the model 

moves forward in time (as in the standard CCM2) , die offline version reads archived 

climatological winds from a previous C C M 2 run. The winds and temperature are read in 

every six hours. This is an advantage over the standard C C M 2 in that it saves a 

considerable amount of computer time. A one year tracer simulation using the offline 

version was compared to a previous run using the standard C C M 2 to ensure that the 

offline version performed similarly. Further details can be found in Rasch et al. [1994] 

and Mahowald [1996]. 

3.2 Assessing Model Error in the GCM 

In section 2.2, a transport residual, 8, was added to the noise matrix to account for 

model error. In the test model, this amount was easily derived by comparing the model 

output from the perfect to imperfect model as 8 = % perfect - X̂ Jfect • F o r application in a 

G C M , we must derive a feasible, applicable methodology for assessing the contribution 

of imperfect winds to the differences between real observations and the model generated 

observations. W e specifically propose using well known trace gases, such as CFCs, 

(Hartley et al., 1994) to test how well the model predicts the observed concentrations and 
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based on this comparison arrive at the transport residual. Once this transport residual is 

determined for the well understood trace gas, we can then appropriately adapt this 

residual for use with unknown gases like CO2 and CH4. One major assumption in this 

analysis is that CFC-11 emissions are perfectly constrained and therefore any difference 

in model output and observed data can be attributed to model error. This is, of course, an 

assumption; however it is not too far fetched. Particularly in the years that we simulate 

and compare (1987-1988), the emissions are reasonably well known. 

Following analysis from Hartley et al. (1994), we compared CFC-11 

concentrations at the 5 ALE/GAGE sites and 4 N O A A / C M D L sites with model output 

from the Community Climate Model 2 (CCM2), which is a full three-dimensional 

atmospheric general circulation model. W e found there to be insignificant latitudinal 

model obs 

variation, with an average percent difference between % and % of ±1 .5%. This is 

not a bias or systematic error, as the error fluctuates between positive and negative values. 

It is a random error that is on average 1.5% of the total concentration. In the case of 

CFC-11 , this says that the model will agree on average with observations to 

approximately ± 5ppt. 

W e can extend this error to be valid for other gases by making use of the 

empirical relationship between measurement variation (a) and the lifetime of the gas 

(Junge, 1974). This relationship determines the standard deviation by the following 

equation, 
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bC 
Equation 10 a = 

1 

where , C is the time mean concentration, % is lifetime, and b is an empirically derived 

constant (0.16). As observed in the atmosphere, the longer the lifetime of a gas, the 

smaller the standard deviation in measurements. 

W e can adapt this relationship to account for changes in model error with lifetime, 

based on the fact that the model error is largely a function of different variations in 

dynamics between the model and the real world. Thus, the model error, 5, can be defined 

as follows: 

o = Equation 11 

where b ' is now 0.66, based on a CFC-11 lifetime of 44 years (Cunnold et al., 1994). 

approximate lifetime of 50, 10, and 100 years, the percent model error is calculated as 

1.32, 6.6, and 0.66% respectively for C 0 2 , C H 4 , and N 2 0 . 

A brief note on the lifetime approximation is included here. There is a distinction 

between cycling time from a reservoir (turnover time) and the adjustment or response 

time (often called lifetime), which is the characteristic decay of an instantaneous source in 

the reservoir. In the case of CFC-11 , the turnover time and the response t ime are 

equivalent, since the only source and sink for CFC-11 is atmospheric. However, as we 

have already discussed in detail in the introduction, carbon dioxide moves between many 

T 

Figure 12 shows the percent model various lifetimes. Given an 
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reservoirs (ocean, vegetation, atmosphere). The turnover time for CO2 between the 

atmosphere, ocean, and biosphere is estimated at about 4 years (IPCC, 1995). However, 

much of the CO2 that leaves the atmosphere each year and enters either the ocean or the 

biosphere is returned to the atmosphere within a few years. The adjustment (or response) 

time is instead esimtated at 50-200 years, which is the time it takes for carbon from the 

surface ocean to be deposited into the deep ocean. Since the purposes here is to 

approximate model error for the sole purpose of accounting for this error in the noise 

matrix, we will use the conservative side of this range (50 years) to ensure that we do not 

underestimate the model error. 

Figure 12: Modified Junge 's Equation for the Relationship between Lifetime and 
Measurement Error. 
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3.3 Comparison of model output to CO? measurements 

Observations of atmospheric trace gases are often compared with chemical 

transport models (CTMs) to evaluate the models (Hartley et al., 1994; Prather et al., 

1987), to assess source-sink estimates (Erickson et al., 1996), and to constrain inverse 

problems (Hartley and Prinn, 1993; Ciais et al., 1995). However, the method used for 

comparison may depend on whether the observations are collected at high or low 

sampling frequency. The carbon dioxide in situ measurements are typically made at a 

high frequency (approximately every hour) and therefore are directly comparable to 

CTMs. The discrete air samples are often collected once or twice a week, suggesting that 

model output may need to be treated similarly. As the focus of the thesis is determine the 

fluxes of carbon dioxide, we will be examining carbon dioxide data from the 

N O A A / C M D L air sampling network, which is by far the largest sampling network of its 

kind. 

It is important to recognize that the goal of the N O A A / C M D L air sampling 

network is to measure well-mixed air, not influenced by local CO2 sources or sinks 

(Komhyr et al., 1985). To that end, many sites are at remote marine locations (Conway et 

al., 1988; 1994). To further reduce the effect of local sources and sinks, samples are not 

collected when the wind is from directions likely to be contaminated. Finally, a statistical 

method is used to reject outliers before calculating monthly or annual means (Conway et 

al., 1988; 1994). 
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Previous studies that have compared the N O A A / C M D L C 0 2 flask data to model 

output have used several different approaches to make the two data sets comparable. One 

study filtered both the model and flask data with a lowpass digital filter (Erickson et al., 

1996). Another study temporally smoothed the flask data to obtain curve fitted 

concentrations at 14 day intervals and then sampled die model every 14 days (Ciais et al., 

1995). A recent study by Ramonet and Monfray (1996) specifically addressed this issue 

of how to compare model output to flask sample data at four of the N O A A / C M D L sites. 

They recommend obtaining model clean air by using back trajectories to determine if the 

model wind ever moved over a continental or typically "polluting" area. Whenever the 

back trajectory encounters an undesired region, the sample is eliminated. This is an 

extremely thorough approach and useful for ensuring that the model air comes only from 

a clean air sector. However, the same precautions are not taken in the field. When the 

flask samples are collected in the field, the only criteria for collecting a sample are wind 

speed and direction at the site at that moment. The sample is collected without any 

knowledge of whether the air has passed over a distant, undesired source. Thus, this back 

trajectory approach will result in "cleaner" air in the model than seen by the flask 

samples. 

Our original approach was to use output from the model that meets the same 

criteria as used in the field and laboratory. Upon investigating how to implement this 

approach, we found that a discussion of the "clean air sectors" for the N O A A / C M D L 

network has only been published for the C M D L baseline observatories (BRW, M L O , 
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S M O , and SPO) (Ferguson and Rossen, 1992). However, the wind direction at the time 

of sampling has been recorded digitally for all measurements starting in the middle of 

1992. Here, we present a three year statistical analysis of the wind direction during 

sampling for all N O A A / C M D L sites operational from 1993-1995. Comparing this wind 

distribution to E C M W F assimilated winds for the same three year period, we then 

determine which sites are actually screening for (or against) a particular direction(s). W e 

then compare results of sampling the model using the field consistent method versus 

simply using the model predicted data with no pre-selection. Finally, we investigate the 

issue of sampling frequency. 

3.3a Analysis of Wind Data. 

The instructions for collecting samples at the C M D L cooperative global air 

sampling network sites include general guidelines concerning wind speed and direction. 

These guidelines are primarily intended to avoid local sources and sinks of the species to 

be measured. At most of the network sites, it is not practical to specify a "clean air 

sector" from which samples are always collected. Rather, the sites have been carefully 

selected so that there is a high probability of sampling well-mixed air unaffected by local 

sources or sinks. However, at some sites the general guidelines together with the local 

meteorology result in a de facto "clean air sector" from which the majority of the samples 

is collected. 
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When a flask sample is collected, the wind direction is estimated and manually 

recorded on a record sheet. At NOAA/CMDL, this information is entered into a data 

base. In most cases the wind direction is an estimate and not an instrument reading. For 

example, the person in the field may estimate that the wind is coming from the north east 

and record " N E " on the data sheet. This is then translated to degrees at N O A A / C M D L 

and digitally recorded as a wind coming from 45°. Thus, 45° should not be interpreted as 

an exact measurement, but merely representative of the approximate wind sector. 

W e have analyzed three complete years from January 1993 through December 

1995. All of the available wind data at each of the 35 operational sites (shown in Figure 

13) during this time period were divided into bins of 10° in wind direction. From this, we 

calculated basic statistical information about the frequency of wind at each site. 
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Figure 13: N O A A / C M D L sites included in statistical analysis. 

While this analysis shows the typical wind directions during sampling at the sites, 

it does not reveal any information about whether or not the wind was actually pre-selected 

for a particular direction or if the predominant winds happen to be confined to that 

particular direction. For example, as shown in Figure 14, the wind direction when 

samples were collected at both Ascension Island (ASC) and Cape Grim (CGO) is 

confined to a particular wind sector. Examining these distributions alone, there is no way 

to determine if the wind was intentionally pre-selected or if the wind only blows in that 

sector. Thus, we need to compare the N O A A / C M D L wind direction data with a 

climatology of the wind at each site. Since actual climatologies are not available for each 
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site, we used the analyzed winds from the E C M W F . The E C M W F wind fields were 

obtained from history tapes at National Center for Atmospheric Research (NCAR) at T42 

grid resolution. 

_ 4 0 
ASC 
CGO 

cr 
£ 10 

s w N 
wind direction 

E 

Figure 14: Frequency of wind occurrence in 10° bins at ASC and C G O wind direction for 
3 year period from 1992-1995. Note: direction indicates origin of wind. 

W e performed the same statistical analysis on the E C M W F wind fields during the 

same three year time period. The resulting frequency distributions for both data sets 

( N O A A / C M D L and E C M W F ) are plotted in Figure 15. 
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w i n d d i r e c t i o n w i n d d i r e c t i o n 

Figure 15: As in Figure 14, except includes N O A A / C M D L and E C M W F analyzed wind 
fields. 
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Figure 15 (continued) 
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As discussed above, the N O A A / C M D L wind data are often reported in estimated 

quadrants and this is reflected as spikes in many of the plots. For example, at H U N the 

recorded winds occur at discrete directions that cover the entire wind spectrum because 

the data were reported as S,SSE,SE,ESE,E, etc. It is important to consider the limitations 

of the N O A A / C M D L wind data when comparing them to the E C M W F climatology. 

In comparing the two data sets, we are trying to answer the following questions: 

Which sites are preferentially screening out particular wind sectors? Which sites 

essentially match the assimilated wind for the three year period and are thus not screening 

for a particular "clean air sector"? Which sites may have local wind effects that are not 

captured in the assimilated wind data? 

Re-examining the wind direction at ASC and CGO, Figure 15 shows that A S C 

almost exactly replicates the assimilated wind data for the 3 year period, while Figure 15 

shows that the flask measurements at CGO are being carefully selected for wind in the S-

W quadrant, while avoiding air from the N-E. Thus, we see the insight that is brought in 

by comparing the C M D L wind data to climatological winds. 

Each site is grouped into one of the following categories: selection (only certain 

wind directions are sampled), no selection (all wind directions are sampled), and local 

effects (local winds differ from ECMWF) . In the case of local effects, we have also tried 

to explain the source of the local effect and which category (selection or no selection) we 

believe the site falls into. These groupings are shown in Table 5. For comparison, the 
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"clean air sectors" for the 4 C M D L baseline observatories (Ferguson and Rossen, 1992) 

(BRW, M L O , S M O , SPO) are also given. 
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Table 5: N O A A / C M D L sites grouped into 3 main categories: (1) selecting for wind 
direction, (2) no selection, (3) local wind effects not captured in E C M W F . 

Station Station name Our Analysis Fergusson and 
Rossen [1992] 

ALT Alert, Canada No Selection 
ASC Ascension Island No Selection 
B A L Baltic Sea, Poland No Selection 
B M E Bermuda, West Local / No selection 
B M W Bermuda, East No Selection 
B R W Point Barrow, Alaska No Selection selecting: N-SE 
CBA Cold Bay, Alaska No Selection 
C G O Cape Grim, Tasmania Selecting: S-W 
C M O Cape Meares, Oregon Local / No Selection 
CRZ Crozet, Indian Ocean Local / No selection 
GMI Guam No Selection 
H B A Halley Bay, Antarctica Local / No Selection 
H U N Hegyhatsal, Hungary No Selection 
ICE Heimaey, Iceland Selecting: E-N 
ITN Grifton, North Carolina No Selection 
IZO Tenerife, Canary Islands No Selection 
KEY Key Biscayne, Florida Local/ No selection 
K U M Cape Kumukahi, Hawaii Local/ No selection 
M B C Mould Bay, Canada No Selection 
M H T Mace Head, Ireland No Selection* 
MID Midway Island No Selection 
M L O Mauna Loa, Hawaii Local/ No selection no selection 
N W R Niwot Ridge, Colorado No Selection* 
PSA Palmer Station, Antarctica Local/ No Selection 
QPC Qinghai Province, China No Selection 
RPB Ragged Point, Barbados Local / No selection 
SEY Seychelles No Selection 
S H M Shemya Island, Alaska No Selection 
S M O American Samoa Selecting: NW-SSE selecting N W - S E 
SPO South Pole, Antarctica No Selection* selecting N W - S E 
STM Station M No Selection 
SYO Syowa, Antarctica Local/ No selection 
T A P Tae-ahn Peninsula, S. Korea Selecting: SW-NW 
U T A Wendover, Utah Selecting: N-NE, S* 
U U M Ulaan Uul, Mongolia No Selection 

* These sites have important qualifications made in the text. 
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For those sites grouped as "selecting" in Table 5, we present a brief explanation of 

why we believe the wind is being selected from the particular direction(s). At C G O , the 

samples are taken only when the wind is from the S-W in order to avoid air from nearby 

Australia. ICE is avoiding winds from the N-ENE quadrant, which is where local sources 

from the continent are located; thus, ICE is selecting from the E-N quadrants. At SMO, 

die winds are selected from the NW-SSE, avoiding air from the S-SW that is affected by 

vegetation on the island. TAP is selecting for air from the SW-NW, avoiding local 

sources from Korea. U T A is selecting for the N-NE and S. While these directions would 

be "clean air sectors," it is uncertain why air from the other quadrants is avoided. This 

may be a local phenomenon rather than an actual selection for wind direction. However, 

we have no clear reason not to group UTA as selecting based on the C M D L wind data. 

W e also wish to address similarities and differences for the sites where a 

discussion of the clean air sector was included in the C M D L report [1992]. Of the four 

sites, two were in agreement. At MLO, there is a diurnal wind on the mountain, but no 

"clean air sector" to limit sampling. In both the C M D L report and in the flask data, S M O 

is selecting for wind from WNW-SE. One minor difference is that our analysis showed 

that the flask samples collected at SMO also included wind from the SSE (Figure 15cc). 

At SPO (Figure 15dd), the C M D L report (1992) listed the clean air sector at SPO as N W -

SE. While this is the only sector from which samples are collected at SPO, this sector 

accounts for the majority (>90%) of wind direction in the E C M W F assimilated winds. 

There is a small frequency of wind from the W, which is the area that is avoided in the 

field (Ferguson and Rossen, 1992). This sector is avoided because the main South Pole 

56 



facilities including living quarters and power plant (diesel generators) are located there. 

Since a model will not include any local pollution from these facilities, avoiding this 

sector is an unnecessary step in selecting model output. Thus, we list SPO as a non-

selecting site. At B R W , we do not find that samples are being taken only when the wind 

is between N-SE as in Fergusson and Rossen (1992). The flask samples are taken out of 

this sector at approximately the same frequency that the E C M W F winds occur out of the 

sector (Figure 15f). Thus, we conclude that the samples are not really being taken from 

the clean air sector and observe that, in practice, B R W is a non-selecting site. 

Two other sites warrant elaboration. At NWR, the sample collectors have been 

instructed to sample only during west winds. However, the wind is almost always from 

the general direction of the west. At MHT, the wind direction is being screened for wind 

from the S-W; however, samples are collected occasionally during winds from the east to 

sample European air. These samples are subsequently flagged as not representing 

"background" conditions. Thus, M H T could be considered a selecting site; however, we 

have left it as "no selection" category, provided the outliers are removed as recommended 

later in this chapter (Section 3.3b). 

At eleven of the sites (BME, C M O , CRZ, HBA, KEY, KUM, M L O , PSA, RPB, 

SEY, SYO) , the recorded N O A A / C M D L wind is coming from directions that occur 

infrequently or not at all in the E C M W F data set. For example, at K U M the wind is 

predominately from the north, but according to the E C M W F wind analysis, the wind is 

almost never from the north in that grid cell. In the case of KUM, the site is right on the 
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shore and is greatly affected by sea breezes. This is a local effect that the E C M W F 

assimilated data would not capture due to the grid size in the assimilation process. 

To ensure that the "local" effect was really due to a local phenomenon and not to a 

misrepresentation of the site in the E C M W F grid, we analyzed the E C M W F wind in the 

adjacent grid boxes to the north, south, east and west for all ten of these questionable 

sites. W e concluded that shifting grids could not explain the differences seen between the 

assimilated wind fields and the N O A A / C M D L wind data. Figure 16 shows an example of 

the wind from the adjacent grids for KUM. 

Figure 16: As in Figure 14, except wind direction from adjacent grids are shown for the 
Cape Kumakahi site. 

Of these eleven sites, six (BME, CRZ, KEY, KUM, RPB, SEY) are located on 

islands and are experiencing sea breezes. This probably explains the local effects 

observed. Three of the sites, HBA, PSA, and SYO, are coastal Antarctic locations. These 
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sites are most likely experiencing drainage flow and/or the E C M W F analysis is simply 

not capable of reproducing the winds in Antarctica. There are interpolation and spectral 

truncation problems in the E C M W F analysis in the Antarctic (Trenberth, 1992) in the 

E C M W F winds, and we believe this is why the C M D L winds at these sites differ from 

E C M W F . M L O is located on a mountain that has a strong diurnal wind; however, this 

mountain effect would not be captured in die E C M W F grid. 

Finally, at C M O , we are not certain why the winds seem to be predominately from 

the north and south-east. However, it appears that there are no directions that are being 

avoided. C M O had the least number of samples (107) during the entire 3 year period, 

averaging only 3 samples per month. It is possible that this infrequent sampling might 

not be sufficient to capture the winds at the site. Since we have no reason to believe that 

C M O would intentionally screen for winds from the S-E, we conclude this site is local / 

not selecting. 

A brief note about SEY. W e do not believe that the wind recorded by the sample 

collectors actually reflects a local effect that is not captured by the model , but instead that 

the data recorded in the field are incorrect. At SEY the wind direction on die sample 

sheets was 270° for every sample between June 1993 and September 1995. This period 

coincides with a time when the samples were collected by a contract group. W e do not 

feel this is accurate or representative; even as an estimation, it is improbable that the wind 

was from the general direction of the west every time a sample was collected for 27 

straight months. While we cannot draw conclusions using this three year period, we 
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know of no reason that the SE quadrant (maximum frequency of wind direction) would 

be avoided, and thus group SEY as a non-selecting site. 

There are three additional sites, Azores (AZR), Christmas Island (CHR), and 

Tenerife (GOZ) that were not operational throughout the entire 3 year period. These 3 

sites are shown in the map in Figure 17. For AZR, the data are available for 1995; for 

CHR, the data are available for 1993; and for GOZ, the data are available for 1994 and 

1995. The plots of the wind data at these sites, along with the E C M W F wind data for the 

corresponding time periods are shown in Figure 17. W e group all three sites in the non-

selecting category. The subsequent model comparison includes these three sites, but we 

emphasize that the wind distributions are based on shorter data sets. 

S w N E 
wind d i r e c t i o n 

Figure 17: As in Figure 15, but each site was not operational for the full 3 year period. 

60 



3.3b Evaluating significance of filtering output in GCM. 

Having defined which sites are in fact screening for wind direction, we now assess 

the effect of applying our proposed field consistent sampling methodology to model 

output. W e do this in stages so that we can diagnose the relative importance of filtering 

for outliers, filtering for wind direction, and filtering for both outliers and wind direction. 

All of these comparisons will use a one year model simulation of CO2 that was run on the 

offline version of the N C A R Community Climate Model version 2 (CCM2). 

The method for removing outliers from the flask data has previously been 

described in Thoning et al. [1989], but we will provide a brief description here. A curve, 

f(t), consisting of a quadratic trend and a series of sines and cosines to approximate the 

seasonal cycle is fitted to the data (or model output): 

4 
f (t) = a t + a 2 t + a 3 t 2 + £ [a 2 i + 2 sin(27iit) + a 2 i + 3 cos(2Tcit)] 

i=l 

The residuals from this curve are filtered in the frequency domain with a low pass digital 

filter that has transmission of 0.5 at 4.5 y"1 and transmission of zero at ~ 7 y"1. The 

filtered result (transformed to the time domain) is added to f(t) to give the curve F(t) that 

includes the mean and interannual variations of the trend and the seasonal cycle. Data (or 

model output) points lying more than ± 3 residual standard deviations (RSD) from the 

curve are rejected, and the curve is fit again. This process is repeated until no points 

exceed the 3*RSD limit. 
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Monthly mean mixing ratios and variances were calculated for each site from the 

model output at 0.25 day resolution with no selection (Base Case). For sites that select 

for wind direction, monthly means were calculated by applying the same wind selection 

to the model output (Filtered Set I). Another set of means was calculated for all sites 

after filtering for outliers (Filtered Set II). For the wind selecting sites, a set of monthly 

means was calculated using both outlier and wind direction filtering (Filtered Set III). 

The three sets of filtered monthly means and variances were compared to unfiltered 

values using the student t test to evaluate the significance of the differences. The student 

t test equation is the following [Montgomery, 1991]: 

t = X1-X2 A N D S = ( IM -D^ + Cnz -DSz w h e r e . Equation 12 
f l O n1 + n 2 - 2 

nl n 2 

%\ (%2) average concentration of data set with no filter (with a filter); 

Si (S2) variance of data set with no filter (with a filter); 

S p common variance of both data sets; and 

ni (112) number of samples in data set with no filter (with a filter). 

For a 9 5 % confidence level with greater than 120 degrees of freedom, any site 

with t-value greater than 1.645 is statistically significant. The t-value can be positive or 

negative; however, for significance, the absolute value is used. W e derive a further value 
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from this called the common standard deviation, which is the square root of the common 

variance. This gives the average standard deviation of both sets being compared. 

W e previously determined it is necessary to select for wind direction at only five 

sites (Table 5). When the wind direction filter was applied to the model output, four sites 

had monthly means that are statistically significantly different from the means derived 

with no filter. The only site that is not statistically different is SMO. These are shown in 

Table 6, along with the common standard deviation for reference. 

Table 6: Sites with Statistically Significantly Different Means Using the Wind Filter 
Versus N o Filter. 

Sta t ion m o n t h s r a n g e of csd (ppm) 

C G O 5 0.31 - 1.32 

ICE 3 0.67 - 2.20 

T A P 5 2.86 - 6.24 

U T A 3 0.73 - 1.26 

Since most sites were not selecting for wind direction, we were particularly 

interested in the role of the outlier filter at the majority of sites. Again using the student t 

test, about half of the sites have at least one month that is statistically significantly 

different from the no selection (Base Case) mean (Table 7). The remote marine sites are 

minimally affected by the outlier filter, while sites that are near or on continents typically 

have means that are statistically different from no filtering. There are exceptions; at four 
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remote sites (CRZ, PSA, SPO, SYO), the means are found to be statistically significantly 

different. It should be noted that the csd values at these sites are very small (less than 0.5 

ppm). This means that even small deviations will be significant since the difference in 

means is being divided by a very small number. 
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Table 7: As in Table 6, but Outlier Filter Versus No Filter. 

Sta t ion m o n t h s r a n g e of csd ( p p m ) 

ALT 3 1.12- 1.47 

ASC 2 0.35 - 0.48 

BAL 2 6 . 3 1 - 7 . 4 6 

B M E 1 1.63 

B R W 1 4.23 

CBA 2 2.24 - 2.65 

C G O 5 0 . 4 0 - 1.07 

C M O 1 3.53 

CRZ 3 0 . 3 5 - 0.49 

G O Z 2 2.06 - 2.72 

ICE 2 1.39- 1.80 

KEY 3 2.06 - 3.02 

M B C 3 0.78 - 3.04 

M H T 3 1 .38-2 .56 

N W R 2 1 .81-2 .24 

PSA 1 0.23 

SHM 1 5.52 

SPO 1 0.11 

STM 3 2.68 - 4.02 

SYO 2 0.11 - 0 . 2 5 

T A P 1 3.34 

U T A 1 2.28 

The last filtering test is the case where wind direction is screened for first, and 

then this filtered model output is run through the outlier filter. Of the five sites that are 

actually screening for wind direction, all but S M O had at least one month that was 

statistically significant from no filtering (Table 8). 
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Table 8: As in Table 6, but With Wind Filter and Outlier Filter Versus No Filter. 

s ta t ion m o n t h s r a n g e of csd ( p p m ) 

C G O 8 0 . 3 1 - 1 . 1 4 

ICE 3 0.67 - 2.20 

T A P 4 1 .41-6 .12 

UTA 4 0.73 - 1.92 

To give a sense of the relative importance of the filters, we show a time series of the 

model output at C G O with each filter versus no filter in Figure 18. Also shown are the 

resulting monthly averages with the annual mean subtracted. This shows how the 

monthly average is changed based on the various filtering techniques versus no filtering. 

F rom these tests, we concluded that at the majority of sites, it is important to run the 

model output through the wind (when selecting) and outlier filters in order to be field 

consistent and to avoid biasing the monthly means. 

66 



Figure 18: Time series of model output at CGO: no filtering versus (a) the outlier filter, 
(b) the wind filter, (c) both filters, and (d) monthly averages with the mean subtracted for 
no filter versus each set of filtered model data. 

3.3c. Sampling Frequency 

The last issue that arises is how frequently to sample the model output. Flask 

samples are typically collected at low frequencies, ranging from 2 times per week to 2 

t imes per month. If we are to mimic what is done in the field, we should sample the 

model perhaps once per week. 
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All of the model output analyzed previously in this section was taken at 0.25 day 

intervals. The process of screening for wind direction and outliers is now repeated on 

model output taken once every 6 days. W e have four tests cases, each selecting the model 

output once every six days, but with four different starting points. Set 1 starts at day 0.0, 

Set 2 at day 2.0, Set 3 at day 3.0, and Set 4 at day 3.5, and each set moves forward in 6 

day intervals. 

Our first test is to determine if these 6-day samples bias the mean. If the different 

cases are not statistically different from each other after the filtering, then we can 

conclude that the model samples should be taken at the same low frequency as the field 

measurements since the "true" background is reached. However, if the four cases are 

statistically different, we then need to address how to deal with possible errors that may 

arise from the relatively low frequency of flask samples. 

The student t test was applied to the monthly means and variances from each of 

the possible combinations of the four 6-day interval sampled data sets: (A) 1-2, (B) 1-3, 

(C) 1-4, (D) 2-3 , (E) 2-4, and (F) 3-4 (Table 9). 
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Table 9: Six Cases (A-F) Compare Each of the Four Subsampled Low-Frequency Data 
Set. 

Significant c o r r e s p o n d i n g to m a x t -value 

S T N Signif icant Cases m o n t h s (#) csd ( p p m ) dif ference ( p p m ) 

A S C C A S E A 1 0.33 0.44 

AZR CASE A , B , C 4 1.65 2.66 

B A L C A S E D 1 10.46 17.75 

B M E CASE A, B 3 0.50 1.04 

B R W CASE B 1 0.36 0.44 

CBA CASE A, B, C 5 1.54 4.49 

C G O CASE A, D, E 6 0.16 0.24 

CHR C A S E E 2 0.56 0.70 

C M O CASE C, D, E, F 6 3.03 7.51 

CRZ CASE C, D, E, F 7 0.43 0.85 

GMI CASE C, F 2 0.41 0.58 

G O Z CASE A, E 2 0.63 1.11 

H U N CASE B, C, E, F 22 3.26 8.51 

ICE C A S E C 1 0.38 0.73 

ITN CASE A, B 4 0.78 1.65 

KEY CASE A, B, C, E 5 2.84 5.42 

M H T CASE A, B 2 0.78 1.45 

MID C A S E E 1 0.20 0.34 

N W R CASE A 1 0.78 0.92 

QPC CASE B 1 1.02 1.73 

RPB CASE A, B, C 5 0.83 1.38 

SEY CASE B, C, D, E 7 0.30 0.61 

S H M CASE A, B , C, E 5 0.27 0.51 

S M O CASE D, E 2 0.39 0.54 

SPO C A S E E 1 0.04 0.04 

S T M CASE A, E 6 1.25 2.53 

SYO C A S E C 1 0.03 0.05 

T A P CASE A, B, C, D, E 9 0.53 0.83 

U U M C A S E A, B 2 0.92 1.30 
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At about 80% of the sites, the difference in the means calculated from varying the 

starting t ime of the low frequency sampling was statistically significant for at least one 

month. For the months that were statistically significantly different, the difference 

between the two means was always larger than the common standard deviation. This 

implies that simply accounting for the variability in the measurements (i.e. the standard 

deviation) is not sufficient to account for error due to sampling frequency, which could 

imply a large difference between the two time series. Since it is impractical to take flask 

samples in the field more frequently or to determine an "ideal" time to take the sample in 

the field, we need to address how to deal with the low frequency flask samples when 

compared to model output. While we cannot change the frequency of flask sampling, we 

can alter the frequency of model output used to calculate the mean. Thus, the next step is 

to compare high and low frequency model output. 

W e compare each of the 6-day interval sets (1-4) to high frequency (0.25 days) 

model output (Case I, Case n, Case HI, and Case IV), and again about 80% of the sites 

had at least one month where the means were statistically different. Sites that had at least 

one month that was statistically significantly different are shown in Table 10. 
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Table 10: Four Subsampled Low-Frequency Data Sets Compared to the High-Frequency 
Model Output. 

signif icant c o r r e s p o n d i n g to m a x t -va lue 

S T N Cases m o n t h s (#) csd ( p p m ) dif ference ( p p m ) 

ALT Case IV 1 0.92 0.78 

ASC Case IB 1 0.56 0.44 

AZR Case I 1 1.74 1.53 

BAL Case IE 2 10.59 16.96 

B M E Case m 1 0.77 0.69 

CBA Case I, II, IV 6 2.08 2.96 

C G O Case I, UI, IV 12 0.29 0.60 

CHR Case I, II 2 0.45 0.37 

C M O Case II, IV 3 3.20 5.67 

CRZ Case I, HI, IV 3 0.29 0.71 

GMI Case I, UI 3 0.88 1.35 

G O Z Case II, IV 3 1.46 1.94 

H U N Case HI, IV 4 5.93 4.75 

ICE Case I 6 0.99 1.33 

ITN Case n, in 2 1.71 1.53 

KEY Case IV 3 2.18 4.15 

K U M C a s e U 1 0.73 0.55 

M B C Case HI, IV 3 0.44 0.64 
M H T Case I 1 0.85 0.88 

MID Case IU 1 0.92 1.09 

M L O Case II 1 0.73 0.58 

PSA Case IV 1 0.14 0.11 

QPC Case I 1 1.42 1.23 

RPB Case II 1 0.81 0.88 

SEY Case II, IU, IV 4 0.40 0.36 

S H M Case I, HI, IV 4 2.58 4.21 

S M O CaseUI 1 0.59 0.45 

STM Case I, II 3 1.66 3.34 

SYO Case I, IV 2 0.03 0.03 

T A P Case I, III, IV 4 4.07 8.84 
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To illustrate this further, Figure 17 shows monthly averaged model output minus 

the annual mean for CBA, GMI, HUN, and TAP, for the high frequency case and each of 

the 6-day sets (1-4). At each of these sites, the cases show different detrended means. 

10 

2 4 6 6 10 12 
months 

Figure 19: The monthly averages minus the annual mean are shown for the high 
frequency (0.25 days) model output and the four low frequency (6.0 days) cases. 
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Looking more closely at TAP, Figure 20 shows a snapshot picture for April. 

The monthly average for the "true" high frequency case and two low frequency cases are 

shown with standard deviation as error bars. If Case A (the highest) is the flask data and 

Case B (the lowest) is the model output, we have approximately doubled the bias from 

the "truth," (the high frequency output). 

Figure 20: Monthly averages mixing ratios for April at TAP. The thick line is the 
mean (365.9) from the high frequency model output and the two dashed lines are one 
standard deviation from this mean. The two circles (6.0a and 6.0b) are means from 6-day 
sub-sampling of the model with different starting sample times. 

From Figure 17 and Figure 20, it is evident that using high frequency model output is 

preferable in order to avoid exacerbating the bias in the model output mean. Using these 

modeling studies as an estimate of sampling frequency error in the field, we can estimate 

a measure of error arising from sampling frequency. To estimate this difference due to 

frequency (£f), we have created a composite average (mean absolute deviation) based on 

the difference in means for each month (1-12) from Cases I, II, HI, and IV, as in the 

equation below: 

< 6.0b 
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I 1 2 \ D , _ _ . , 

e{= — £—Ebco 2 5 - Z 6 0 > where cases A-D are 6.0 day samples at different starting 
12 j=i 4 I = a ' ' j 

t imes. Thus, any biases from the low frequency sampling in the field can be included in 

the error estimation when compared to model output. For inverse modelers, we 

recommend augmenting the noise matrix by this value. A summary of these differences 

(£f) is shown in Table 9, along with the average standard deviation from flask samples for 

comparison. W e see that in most cases, the flask sample standard deviations are larger 

than £f . Recalling that if we were to sample the model at low frequencies, this bias 

would double, the £f would then approach or outweigh the standard deviations. Thus, by 

using the high frequency data, we are minimizing the additional error as a result of low 

frequency flask samples. 
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Table 11: The average difference in monthly mean due to sampling frequency based on 
model output and the average standard deviation from flask samples in 1993. 

S T N £f ( p p m ) a (ppm) S T N £ f ( p p m ) a ( p p m ) 

ALT 0.22 1.22 K U M 0.12 0.82 

ASC 0.08 0.46 M B C 0.29 1.10 

AZR 0.28 1.28 M H T 0.26 1.28 

BAL 1.79 3.01 MID 0.17 0.90 

B M E / B M W 0.26 1.15 M L O 0.12 0.56 

B R W 0.29 1.09 N W R 0.34 0.98 

CBA 0.67 1.22 PSA 0.07 0.16 

C G O 0.17 0.20 QPC 0.42 0.93 

CHR 0.17 0.37 RPB 0.21 0.59 

C M O 0.73 1.75 SEY 0.19 0.47 

CRZ 0.10 0.34 SHM 0.54 1.32 

GMI 0.25 0.69 SMO 0.19 0.35 

GOZ 0.47 1.40 SPO 0.03 0.14 

HBA 0.03 0.11 STM 0.55 1.40 

HUN 2.99 4.95 SYO 0.02 1.02 

ICE 0.68 1.12 TAP 1.28 2.53 

ITN 0.51 2.99 UTA 0.41 1.84 

IZO 0.21 0.59 U U M 0.44 1.24 

K E Y 0.53 0.77 

W e use two tests to ensure that the model derived £ f is representative of an 

observation bias. First, we compare the average residual standard deviations for one year 

of in-situ measurements to model output at the 4 baseline sites (BRW, M L O , S M O , SPO) 

(Table 10). Overall, the model has slightly more variability than the measurements, 

although close enough to support using model output as a surrogate for the real 

measurements . Secondly, we sub-sampled the in-situ data using the same methodology at 
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the four continuous sites. The e f calculated from the model agrees well with the value 

from in-situ data (Table 12). This further supports our use of the model to calculate 8f. 

Table 12: Average of R S D from 1 Year Model Output Compared to 1 Year of In 
Situ Data. 

Average R S D (ppm) e f (ppm) 

S T N M o d e l N O A A / C M D L Mode l N O A A / C M D L 

B R W 0.66 0.62 0.29 0.42 

M L O 0.32 0.27 0.12 0.19 

S M O 0.37 0.14 0.19 0.10 

S P O 0.04 0.06 0.03 0.03 

3.4 Summary: Accounting for Errors in the Kalman filter 

W e find that there are three main issues to minimize and account for error when 

using model output and comparing to measurements. First, the model error (5) should be 

accounted for as described using the modified Junge 's equation. Secondly, when using 

flask measurements, the model should be treated in a similar way to the collection of 

samples. In the case of carbon dioxide, this includes identifying which sites are screening 

for wind direction (Table 5) and doing the same in the model , and removing the outliers 

from the model output (Table 7). This should make the comparison between model 

output and flask samples more consistent. 

Finally, an additional error should be accounted for that arises from the low 

frequency with which flask samples are collected, since we found that sub-sampling the 

data biases the mean. First, the model output should be taken at high frequency to avoid 
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further biasing the comparison (Figure 17 and Figure 20). While this may seem counter

intuitive, it avoids the potential of doubling the bias. The error that arises is characterized 

as £ f in Table 11 and this should be included in the noise matrix. Thus, we revise 

equation 8 to include both of these errors as follows: 

N, = [Ny] = [ o f o f ] + [8f SJ»] + [e° b s e° t

b s ] Equation 13 
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CHAPTER 4 

RESULTS 

The first part of this chapter (section 4.1) will show pseudo data results using the 

full three-dimensional GCM. This section will consider both the opt imum year and the 

definition of regions for which to invert based on the available measurements sites. 

After showing satisfactory results in the pseudo data section, section 4.2 will 

present the inverted fluxes when the optimization technique is applied to real 

observational data. Recall from the initial cost function (Equation 1) that there are two 

components that are minimized in the solution. The first component is the change in 

emissions (AE) and the second is the difference in observations and model output (% o b s -

% m o d e l ) . Both of these components will be discussed in section 4.2 

To determine if this inverse solution is robust, a series of sensitivity studies are 

conducted. These studies provide a framework for understanding the limitations of the 

inverted solution. These tests and results are described in section 4.3. 

4.1 Pseudo Data Tests with CCM2 

There are several components required to invert for surface fluxes, and each of 

these components is described here. First, an atmospheric model is required to generate 

model output. W e use the same offline version of the Community Climate Model 2 

78 



(CCM2) described in section 3.3a. The inverse requires initial surface flux estimates for 

carbon dioxide (section 4.1a) and observations of C 0 2 concentrations (section 4.1b). It is 

also important to divide the world into meaningful regions for the inversion (section 

4.1b). 

4.1a Initial Flux Estimates 

One of the required inputs for the inverse method is an initial estimate of surface 

fluxes. Each estimate also requires an associated confidence level. Although the general 

surface fluxes and IPCC "best" estimates were previously described in Chapter 2, the 

actual inventory that will be used for initialization is described here. 

To estimate fossil fuel sources, country by country estimates were taken from 

Energy Information Association (EIA). These estimates were then distributed within 

each country using gridded population as a proxy (Figure 21). The Consort ium for 

International Earth Science Information Network (CIESIN) provided the necessary 

population data. The net fossil fuel source used in the inversion for 1992 is 6.0 Gt C/yr, 

as compared to the IPCC estimate for the 1980's of 5.5 ± 0.5 Gt C/yr. The EIA does not 

supply an error estimate; however, it is reasonable to apply the same percentage of error 

(10%) given by IPCC for the 1980's. . The estimate is an annual value and it is evenly 

distributed over each month; likewise, the error estimate is also evenly distributed. 
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Figure 2 1 : Initial Fossil Fuel Estimate (after EIA, 1997) 

Gridded land use change data was estimated by Houghton et al., 1987 (Figure 22) 

and is also publicly available from Goddard Institute Space Science (GISS) and the 

Carbon Dioxide Information Analysis Center (CDIAC). The net source is 0.3 Gt C/yr, 

which is certainly lower than the estimated 1.6 ± 1.0 Gt C/yr given by IPCC; however, the 

GISS data is the only publicly available data set of its kind. Like the fossil fuel estimate, 

the land use estimate is an annual source and is evenly divided among the months, as is 

the associated error (order of magnitude). 

C o n t o u r s f r o m 0 t o . 0 0 5 b y . 0 0 1 ( k g / m 2 / m t h ) 
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Figure 22: Initial Land Use Change Estimate (after Houghton et a l , 1987). 

Gridded monthly vegetative fluxes were estimated by Fung et al., (1987) and are 

publicly available from GISS and CDIAC. The annual net vegetative flux is -0.03 Gt 

C/yr. To show some of this initial vegetative flux estimate, Figure 23 shows (a) January 

and (b) July respectively. 

. 0 2 4 9 1 
0 0 6 0 4 

0 7 0 1 2 

C o n t o u r s f r o m - . 0 3 6 8 8 t o . 0 7 3 1 2 b y .01 ( k g / m 2 / m t h ) 

C o n t o u r s f r o m - . 1 9 8 1 t o . 0 5 1 9 b y .05 ( k g / m 2 / m t h ) 

Figure 23 : January and July Vegetative Flux (after Fung et al., 1987) 

While the net sum is uncertain within several orders of magnitude, assigning 

monthly error estimates is not as straight forward as with fossil fuel emissions. 

Vegetative (and ocean) fluxes vary monthly by large negative and positive values, so that 

the net flux is the sum of large negatives and positives. Since no monthly error estimate 

is provided, there are two ways to distribute the error estimate. One way is to divide the 
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total error evenly over the months, as is done for the constant fossil fuel source. The 

problem with assigning error this way is that it will artificially limit the amount that each 

month is allowed to change. For example, the net vegetative flux in the northern 

hemisphere is given as -0.00058 Gt C/yr. From Chapter 1.2, we know that according to 

the literature there is a range of estimates from approximately zero to -2 Gt (Table 3), so 

the uncertainty is about 2 Gt. Divided evenly, this is an uncertainty of 0.16 Gt C / month. 

However, the initial estimate for July alone is -2.3 Gt C /month. Thus, assigning an 

uncertainty of only 0.167 Gt (or 7% of the initial estimate), the inverse would be so 

constrained that it would essentially be unable to change. This is not ideal since we know 

that there is a large amount of uncertainty with the vegetative flux in the Northern 

Hemisphere. 

The other way to assign uncertainty is to assume that each month is uncertain by 

some percentage of the initial estimate for the month. This is the method that is 

employed here, with an uncertainty of one order of magnitude given to each month (initial 

monthly estimate* 10). This allows the inverse the freedom to adjust each month within a 

reasonable amount. However, the initial net uncertainty will be considerably larger than 

the actual net uncertainty. In this case, the initial uncertainty for the Northern 

Hemisphere vegetation is 12.4 Gt compared to an uncertainty in the literature of 2.0 Gt. 

However, the inverse calculates a statistical value for the uncertainty based on the first 

update of the covariance matrix (Equation 7). Recall that this is a conservative estimate 

of the error (Young, 1984), so the calculated error will be an upper limit of uncertainty. 
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The evenly distributed error would severely limit the inverse optimization, but provide a 

realistic initial error estimate. However, in this case, the flux (and subsequently the error 

estimate) would hardly change at all from the initial condition and nothing would be 

gained from this exercise. Instead, the inverse is allowed the freedom to change and the 

inverted error is statistically calculated, but the initial error is overestimated. This 

approach is also taken for the ocean flux estimated error. 

The only available month by month gridded ocean flux estimates is from Erickson 

et al. (1996) at NCAR. The Erickson data set has a net flux of -0.25 Gt C/year, which is 

lower than the IPCC estimates (Table 13). January and July are shown in Figure 24. 

C o n t o u r s f r o m - . 0 2 9 7 3 t o . 0 1 5 2 7 b y . 0 0 5 ( k g / m 2 / m t h ) 

C o n t o u r s f r o m - . 0 2 4 8 6 t o . 0 2 5 1 4 b y . 0 0 5 ( k g / m 2 / m t h ) 

Figure 24: (a) January and (b) July initial ocean estimate (from Erickson et al., 1996) 
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It is also important to note that the monthly flux from this data set does not agree 

qualitatively with satellite measurements of chlorophyll, but instead tends to be solely 

based on temperature controls. As previously described (Chapter 2), there are many 

competing variables that control the flux of carbon in the oceans and their combined 

effects are highly non-linear. For example, chlorophyll is at its max imum intensity in the 

northern hemisphere oceans during summer, which suggests that this should be the 

max imum uptake season. From a thermal standpoint, colder water can hold more carbon 

than warmer water. Apparently emphasizing the latter rather than the former mechanism, 

the Erickson estimate is a net source during the summer. Keeping these potential errors 

in the initial distribution in mind, sensitivity studies will be presented in section 4.3 that 

estimate the influence of a regional distribution error on the inverted solution. As a 

summary, Table 13 compares the initialized estimate with the IPCC (1995) estimate. 

Table 13: Summary of balance of fluxes (Gt C/yr) with the different flux inventories. 

Sources Init ial 1992 es t imate I P C C 1980's e s t imate 

fossil fuels 6.0 + 0.5 5.5 + 0.5 

land use change 0.3 + 1.0 1 . 6 + 1 . 0 

Sinks 

oceans 0.25 ± 1.2 2 . 0 ± 0.8 

northern hemisphere vegetation 0.0006 + 12.4 0.5 + 0.5 

Atmospheric increase 1.4 + 0.1 3.3 + 0.2 

I m p l i e d "Miss ing" S ink 

?? 3.15 + 6.4 1.3 + 1.5 
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4. l b Defining regions and selecting the optimum year for inversion 

As in the study using the ESR model (section 3.2), we need to test the method 

with a known solution. Several issues need to be resolved using pseudo data studies. 

First, is the method capable of deducing regional fluxes with the available observations? 

What is the best year to simulate given the number of observations available each year? 

What is the maximum number of meaningful regions that can be resolved with the 

available data? All of the questions are interrelated. A general discussion describing 

how the world was divided into regions and how the opt imum year was chosen is given 

below. 

The first attempt at dividing the world into meaningful regions was based on 

trying to keep "l ike" regions together (Figure 26). The term "l ike" regions means regions 

of similar vegetation or regions in the ocean that generally have the same sign of flux 

throughout. For example, South America was divided into two regions to keep the rain 

forest region (7) separate from the rest of the continent (region 4). As another example, 

Europe was divided into east (21) and west (20) regions. Since the two differ from each 

other politically, it follows that their fossil fuel usage (or at least reporting of it) could be 

different. As an initial year to test the inversion, 1990 was selected for several reasons, 

including an overlap with other studies (Ciais et al., 1995), and a general lack of 

peculiarities during the year. For example, it is not an El Nino or La Nina year; there were 

no major volcanoes; and the trend in increase was similar to the rest of the 1980s. The 

available January 1990 observation sites are shown in Figure 25. 
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Figure 25: January 1990 observation sites. 

Figure 26: Initial division of regions for CO2 inverse 
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Using the grid points that represent the N O A A / C M D L network in January 1990, a 

pseudo data inverse was performed with the twenty five regions shown in Figure 26 and 

the results are shown in Figure 27. To perform the pseudo data inverse, the initial flux 

estimates were input into the model, and the model output at the same grid location as 

actual observation sites were retained for each month. Then, the model was run with a 

perturbed flux scenario (1.5*initial). Because each region was perturbed by the same 

factor, a uniform error estimate was used in the covariance matrix. The method was able 

to invert for the net flux to within 3 % of the "correct" total. 

While this is extremely good from a global standpoint, the performance within 

each region must be examined more closely. After examination, it is apparent that the 

inverse has difficulty distinguishing between East and West Europe (regions 20 and 21), 

with one over-predicting and one under-predicting. Both Africa (regions 5, 9, and 14) 

and Central/South America (regions 4, 7, and 12) have difficulty converging on the 

"correct" solution in at least one of their respective divisions. In Africa, only the middle 

region (9) performed well, with the most southern (region 5) and the most northern 

(region 12) regions having difficulty. In Latin and South America, only the northern part 

(region 7) converged well, with the southern region of South America (region 4) and 

Mexico (region 14) both failing to converge sufficiently on the "correct" solution. The 

other weak area in this pseudo data inverse was Japan (region 18). 
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Figure 27: January 1990 pseudo data results using initial regional divisions. 

The main factor affecting the convergence of a given region is the existence of an 

observation site that is sensitive to the region. For the weaker areas, we wanted to 

determine if there were any other available data sites that could improve the performance 

of the inverse. Thus, we looked at inverting for other years, as well as including data 

from other measurement groups. After searching for all available data, we wanted to 

determine the year that would allow the inverse to deduce the largest number of regions. 

To determine this, a list containing the most sensitive site for each region was created. 

Then, we assessed how many of these key sites were operational from 1990 to 1994 and 

for how many months. If the first choice of a site was not available, we determined 
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whether a second, third, or fourth most sensitive site was available. With this process of 

elimination, 1992 was selected as the best year to simulate. A map of the sites is shown 

in Figure 28. 

One of the main reasons for selecting 1992 was the important role that the South 

China Sea shipboard data had on deducing much of the Asian continental and oceanic 

regions. Although operational since 1991, the only full year of data is 1992 due to 

various problems in the field. Another key site discontinued after 1992 is the South 

Georgia Island site in South America. Other key sites (e.g. Mace Head, Ireland; N. 

Carolina, USA; Ryori, Japan) were added in late 1991 and early 1992, making the 

previous years less than ideal for inverting. 
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Figure 28: Observation sites in 1992. 

Having selected the opt imum year, the pseudo data inverse was performed again. 

Of the original regions that were poorly constrained, the 1992 pseudo data inverse is 

capable of distinguishing between West and East Europe, with the addition of several 

European sites, and of constraining Japan, with the addition of Ryori. However , there 

were no additional sites to help constrain Africa or South America. Thus, these regions 

must be regrouped. Since India and Western China (region 16) converged well and are 

similar in climate to Northern Africa, these regions were grouped together. South and 

mid-Africa were grouped into one region; similarly, all of South and Central America 

were combined into one region. The regroupings are shown in Figure 29. 
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Figure 29: Regions based on 1992 data to constrain them. 

After consideration, we also determined that the ocean region divisions needed to 

be altered. Instead of keeping them in one grouping throughout the year long inverse, we 

decided that their divisions should be more fluid to account for seasonally changing signs 

in the ocean flux. By subdividing them into positive and negative fluxes, as the seasons 

change, there will not be large positives and negatives within one region. 

At this point, a final reevaluation of the regions was conducted. W e wanted to 

determine if the northern hemisphere could be refined further, keeping in mind that the 

ultimate goal of this research is to distinguish between vegetative and oceanic regions 

(the two possible fluxes that could account for the "missing" sink). To do this, we 
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separate the fossil fuel component from the vegetative flux. By separating the fluxes in 

this manner, the strengths of the Kalman filter technique are better utilized. The Kalman 

filter allows weighting of various error components, including an initial estimate of the 

constraints on the initial state vector (fluxes). Thus, a much tighter constraint can be 

placed on the Northern Hemispheric fossil fuel source component, and looser constraints 

are given to the vegetative and oceanic fluxes. As with the ocean fluxes, when possible, 

we also further separate the vegetative flux into positive and negative regions that change 

seasonally. 

Thus, after the initial attempt at separating regions, the regions were refined until 

satisfactory convergence of the pseudo data was achieved for all regions. To ensure that 

our finalized regions are in fact an improvement over the first attempt at dividing regions, 

some comparisons are included here. Recall that we are comparing the initial pseudo data 

inverse (January 1990) results (Figure 27) to the revised pseudo data inverse (January 

1992) results (Figure 30a). From a net standpoint, the overall flux in both cases comes to 

within 3 % of the "correct" total. However, we were not initially concerned with the total 

net inversion, but instead with the performance of the individual regions. To look more 

closely at the performance of the individual regions, the following statistical measure 

called the percent aggregate error (PAE) is applied, where N is the number of regions (25 

in both cases) and E is the emissions (or flux): 
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correct • inverted 
i 

PAE = correct *100% 
E net 

The percent aggregate error in the initial pseudo data inverse is 4 .9% and this 

reduces to 2 .7% in the revised pseudo data inverse. Furthermore, in the initial pseudo 

data inverse, only 10 regions are within ± 10% of the "correct" value, compared with 16 

in the revised inverse. Additionally, in the initial pseudo data inverse, 10 regions have 

greater than ± 2 0 % difference from the "correct" solution, compared with only 5 in the 

revised regional inverse. Thus, while the revised inverse still has some troublesome 

areas, the overall improvement within the regions is evident. Note that both the initial 

and revised divisions have a total of 25 regions, so comparing the numbers of regions is a 

fair comparison. 

Since the borders of the positive and negative flux regions change seasonally and 

the fossil fuel regions are superimposed on top of the northern vegetative flux regions, 

there was no feasible way to recreate a revised Figure 29 with the new regions. Instead, a 

summary and description of the finalized regions is shown in Table 14. W e carried out 

the final pseudo data test for the entire year of inversion. The January and July pseudo 

data inverse are shown graphically in Figure 30. Two statistical measures summarize 

each regions performance in Table 15. The first is the PAE, now calculated for each 

region with N being the number of months in a year. The second is the net average 

difference, calculated as the sum inverted flux divided by the sum "correct" flux. The 
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initial estimate is 1.5 (or 50% greater than the "correct" value); therefore, a perfect 

inverse would have a normalized average of 1.00. This does not mean that every month 

is exactly 1.00, but that over the year, the inverted solution averages out to be perfect. 
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Table 14: Twenty-five Regions with Description. 

Region Location Notes / Description 

1 Southern Ocean - positive flux Defined by continuous ocean 

2 Southern Ocean - negative flux Defined by continuous ocean 

3 Mid-South Pacific - positive flux varies by season - same sign flux 

4 Mid-South Pacific & Indian Ocean-
negative flux 

varies by season - same sign flux 

5 Australia and New Zealand vegetation and fossil fuel 

6 South and Central America vegetation, land use change and 
fossil fuel 

7 Indian Ocean - positive flux varies by season - same sign flux 

8 Mid Atlantic - positive flux varies by season - same sign flux 

9 Mid Atlantic - negative flux varies by season - same sign flux 

10 Mid-South Africa vegetation, land use change and 
fossil fuel 

11 North Africa to Western China vegetation, land use change and 
fossil fuel 

12 Pacific Islands and Thailand vegetation, land use change and 
fossil fuel 

13 E. China & Japan - vegetative flux vegetation only 

14 U.S. and Canada - negative flux vegetation only 

15 North- Mid Pacific - positive flux varies by season - same sign flux 

16 U. S. and Canada - positive flux vegetation only 

17 Eurasia - negative flux vegetation only 

18 Eurasia - positive flux vegetation only 

19 North Pacific varies by season - same sign flux 

20 North Atlantic varies by season - same sign flux 

21 Western Europe fossil fuel only 

22 Eastern Europe / Eurasia fossil fuel only 

23 United States and Canada fossil fuel only 

24 E. China fossil fuel only 

25 Japan fossil fuel only 
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7 . I n d i a n O . (+) 
8 . M . A t l a n t i c ( + ) 
9 . M . A t l a n t i c ( - ) 
l O . S . M . A f r i c a 
11 . N . A f r i c a / I n d i a 
1 2 . P a c i f i c I s . 
1 3 . E . C h i n a / J a p a n V e g . 
14. N . A m e r i c a V e g (-) 
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16 .N . A m e r i c a V e g (+) 
1 7 . E u r a s i a V e g (-) 
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2 0 . N . A t l a n t i c (-) 
2 1 . W . E u r o p e F o s s i l 
2 2 . E . E u r o p e F o s s i l 
2 3 . N. A m e r i c a F o s s i l 
2 4 . E . C h i n a F o s s i l 
2 5 . J a p a n F o s s i l 

gure 30: Pseudo data results for each region in (a) January and (b) July. 
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Table 15: Summary of Pseudo Data Results, where PAE is in percent (0% is perfect) and 
the net average with possible values of 1.5 (initial) to 1.00 ("correct"). 

Region Location PAE (%) Net Average 

1 Southern Ocean - positive flux 5.1 1.13 

2 Southern Ocean - negative flux 5.4 1.15 

3 Mid-South Pacific - positive flux 1.8 1.03 

4 Mid-South Pacific & Indian Ocean-
negative flux 

4.9 1.08 

5 Australia and New Zealand 4.1 1.05 

6 South and Central America 13.6 1.32 

7 Indian Ocean - positive flux 15.2 1.38 

8 Mid Atlantic - positive flux 10.3 1.32 

9 Mid Atlantic - negative flux 4.9 1.13 

10 Mid-South Africa 5.3 1.12 

11 North Africa to Western China 1.8 1.03 

12 Pacific Islands and Thailand 5.4 1.12 

13 E. China & Japan - vegetative flux 3.1 0.99 

14 U.S. and Canada - negative flux 2.2 1.05 

15 North- Mid Pacific - positive flux 13.6 1.07 

16 U. S. and Canada - positive flux 2.3 0.96 

17 Eurasia - negative flux 1.4 1.02 

18 Eurasia - positive flux 1.9 1.00 

19 North Pacific 4.3 1.08 

20 North Atlantic 6.4 1.15 

21 Western Europe 4.9 1.09 

22 Eastern Europe / Eurasia 1.9 1.01 

23 United States and Canada 3.9 1.06 

24 E. China 4.4 1.08 

25 Japan 10.2 1.31 
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These pseudo data results show that in each region, the technique converges on or 

towards the "correct" solution. As an overall summary, the pseudo data inverse results 

are within 3.07 % of the total "correct" flux for the entire year long inverse. 

4.1c Distinguishing Land Vs. Ocean 

Although the pseudo data tests presented in the previous section suggest that the 

inverse is capable of inverting for the large number of northern hemispheric regions, we 

want to further demonstrate how the observation sites can distinguish between land and 

ocean. This section is presented not to highlight the inverse capabilities, which have 

already been demonstrated, but actually to ensure that there is sufficient data to 

distinguish the signals between and land and ocean. 

As already discussed, there must be an observation site sensitive to a change in 

flux for each region in order for the inverse to sucessfully converge on the solution. This 

information is all contained in the partial derivative matrix (Equation 5). The point that 

we wish to illustrate here is that given two sites at approximately the same latitude, one 

over land and one over ocean, the signals are different enough to distinguish between 

vegetative flux and oceanic flux. To demonstrate that there is different information, we 

can look at components of the partial derivative matrix. In Figure 3 1 , the base case and 

the two north American vegetative flux perturbations are shown for a site in North 

Carolina (ITN) and a site in Bermuda (BME). Notice that the ITN site is far more 

sensitive to vegetative perturbations than Bermuda. In Figure 32, the Atlantic Ocean 
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perturbation is shown at the same two sites. In this case, Bermuda is far more sensitive 

than ITN to a change in ocean flux. 

Figure 3 1 : Base and North America Vegetative Components of the Partial Derivative 
Matrix at (a) North Carolina and (b) Bermuda Sites. 
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Figure 32: Base and Atlantic Ocean Components of the Partial Derivative Matrix at (a) 
North Carolina and (b) Bermuda Sites. 
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Given the different sensitivity of each of these sites to the vegetative and oceanic 

flux perturbations, the inverse should be able to successfully distinguish between land 

and oceanic signals. This has already been demonstrated in the previous pseudo data 

study; however, a final rigorous test is conducted here. In this case, the "poor" guess at 

emissions is set to be equal in every region, except for the fossil fuel components (only a 

10% change). This is an extreme case that is much worse than any realistic scenario. 

This test is applied for one month, and the results are shown in Figure 33 
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ZS.Ocean(-) 
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11.N.Africa/India 
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14. Canada Veg (+) 
15.N.M .Pacific (-) 
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17.W. Europe Veg 
18.E. Europe Veg 
19.N.Pacific (-) 
20.N.Atlantic (-) 

Figure 33: Pseudo Data Results Where all Regions Have the Same Initial Estimate. 
Values are shown in terms of gross error, where zero indicates a perfect solution. 
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To summarize these pseudo data results, the net solution is able to get within 1 1 % 

of the total correct solution, and the average gross error for the regions is reduced from 

2 2 5 % to 44%. The northern hemispheric regions perform better than the southern 

hemispheric regions, but this is to be expected from the original pseudo data testing. The 

handling of the southern hemisphere will be addressed in the following section. 

Importantly though, this final test illustrates that even in an extreme case, the inverse 

solution is capable of distinguishing between land and ocean in the northern hemisphere. 

4. Id Treatment of poorly constrained regions in southern hemisphere 

While differentiation of vegetative and fossil fuel fluxes would be theoretically 

applicable to the southern hemisphere, the regions there are not as well constrained. In 

essence, the first division of regions was intended to do this by keeping vegetatively 

similar regions together; however, this inverse yielded unsatisfactory results (Figure 27) 

and the regions were regrouped to include different vegetative types. Therefore, it is not 

possible to divide the fluxes in the Southern Hemispheric continents in this manner. 

There is a potential problem with regions that contain both positive and negative 

fluxes. If the inverse solution finds that the net flux for a region should change signs, 

then a non-physical situation arises. To explain this, consider the following hypothetical 

example, where region "A" is depicted in Figure 34. Assume that the right side is sub

tropical rainforest (sink for C 0 2 ) and the left is plains and farmland (source of C 0 2 ) . 

Furthermore, there is only one measurement site that is nearby and it is marked with the 
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symbol: <S). The initial estimate (Figure 34a) shows a net positive for the whole region. 

The "correct" flux is somehow known (Figure 34b), and although the negative component 

had been initially estimated correctly, the positive component had been overestimated. 

Thus, the net flux should really be a sink. If the model were rerun with this new corrected 

flux scenario, the measurement site should show a slight decreased concentration, since it 

would be mostly affected by the east side (which stayed constant), but somewhat by the 

west (which decreased). 

Now consider how the inverse would correct the initial estimate. The way that the 

inverse is posed, the solution is only for the net flux, which we will assume arrived at the 

"correct" net flux shown in Figure 34b. Once the solution is found, the initial distribution 

of fluxes is maintained within each region and simply multiplied by the new net flux. 

Therefore, when the net is redistributed in Figure 34c, the positive region becomes 

negative and vice versa. Now, the observation site will likely see an increased 

concentration since it will be disproportionately affected by the east side of the region. 

Furthermore, with the non-physical change of signs, as the inverse moves in t ime, one 

would expect increased errors arising as the model output at the observation site is 

disproportionately changed. 
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a Initial ^ b "correct" ~ c Inverted ~ 

Net: 0.8 Net: -0.3 Net: -0.3 

Figure 34: Hypothetical Region "A" with (a) initial distribution; (b) "correct" 
distribution; and (c) typical inverted distribution. 

Clearly, it would be best to separate positive and negative flux regions (as done 

for the oceans and the northern hemisphere); however, there is not enough measurement 

information to separate these regions. The best that can be done is to ensure that the 

fluxes are not allowed to change so much that the net sign will be allowed to change. The 

only mechanism available to prevent this type of non-physical solution is to shrink the 

covariance matrix in these regions to limit the allowable step size of AE. Thus, the initial 

estimates are not as well known as the covariance matrix will suggest, but the optimized 

solution will not include these potential non-physical results. Instead, in these regions, 

the values will be constrained to the shape of the initial estimates. By limiting the step 

size, the inverted flux regions now retain the same sign on each side. As an example of 

how this would work, Figure 35c is an example of how the inverse with a tightened 

covariance matrix would look. In this case, the solution is an improvement over the 

inverted flux in Figure 34c; however, it is still not ideal. 
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a Initial ^ b "correct" ^ c Limited Inverse ~ 

Net: 0.8 Net: -0.3 Net: 0.3 

Figure 35: Hypothetical Region "A" with (a) initial distribution; (b) "correct" 
distribution; and (c) limited inverse distribution (AE constrained) 

Despite this limitation, there are ways to improve future flux estimations. To do 

this, we tested the placement of various potential sites in order to increase the spatial 

resolution of the inverse in these regions. W e find that for the northern part of Africa, a 

site in Israel that N O A A / C M D L began in late 1995 increases our capability for deducing 

this region. For the southern part of Africa, a new site around Port Elizabeth, South 

Africa would improve the inverse. To increase our capabilities in South America, it is 

crucial to re-open the SGI site that N O A A / C M D L discontinued after 1992. The addition 

of a site on the western coast of Chile will also increase capabilities for deducing South 

America, and a site in San Jereniano, Mexico (near Acapulco) will increase the resolution 

for separating central America from South America. In summary, the key to deducing a 

region is to have a site downwind that is sensitive to changes in flux from the region. If 

no site is sensitive to a region, it is impossible to invert for its flux. Thus, it is no surprise 

that the sparse CO2 network in the southern hemisphere makes it impossible to separate 

regions into the same kind of resolution we can deduce in the northern hemisphere . 
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4.2 1992 inverted fluxes 

Using the initial estimates described in section 3.3, we performed an actual 

inverse using measured mixing ratio data from 1992. In summary, the net flux of the 

inverted sources and sinks is much more balanced than the initial estimate. Overall, the 

inverted net ocean sink is 2.4 Gt C for the year, and net land (including all sources and 

sinks) is a source of 3.1 Gt C. This changed from the initial distribution of -0.25 Gt C for 

the ocean and 4.8 Gt C on land. A summary of the inverted fluxes compared to the initial 

estimate and the IPCC (1995) estimate is in Table 16. Aside from changes in the net flux, 

the regional distributions also changed considerably. Whereas the northern hemisphere 

was originally estimated as a very weak sink for vegetative uptake, the strength of the 

sink increased by 4 orders of magnitude. This change suggests that the "missing" carbon 

sink lies in the northern hemisphere biosphere. Below, each of the regions will be 

discussed in detail. 
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Table 16: Summary of balance of fluxes (Gt) with the different flux inventories. 

Flux inventory net ocean net land net N.H.veg. 

initial -0.25 ± 1.2 4.78 ± 6 . 7 -0.0006 ± 12.4 

IPCC, 1995 -2.0 + 0.8 6 . 6 + 1 . 1 -0.5 ± 0 . 5 

inverted -2.43 ± 0.5 3.09 ± 1.1 -2.15 ± 1 . 2 

4.2a Northern hemisphere vegetative flux 

Summing together the inverted vegetative flux in Canada, America, Europe and 

Russia, the net flux is -1.6 Gt C/yr. This is a change from the initial estimate of -0.00059 

Gt C/yr. Adding in the vegetative flux in Eastern China and Japan, the net northern 

hemisphere vegetative flux is -2.15 Gt C/yr. This represents a significant net difference 

from current estimates, attributable to the "missing sink" for carbon dioxide in the 

northern hemisphere. This net northern hemispheric vegetative ilux is shown for each 

month in Figure 36. 
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Figure 36: Net Northern Hemispheric Vegetative Flux 

Notice that the vegetative uptake begins in May rather than June, as initially 

estimated. This indicates an earlier growing season than originally assumed. The month 

of May alone accounts for a net difference of 1.5 Gt difference. The initial estimate was a 

release of 0.76 Gt, and the inverted solution shows an uptake of approximately 0.72 Gt. 

These results are supported by recent interpretations of satellite measurements of 

leaf index, where Myneni et al. (1997) found that the growing season has been extended 

by 10 days from 1981 to 1994, and that the magnitude of the leaf index has increased 

every year for the last 13 years, from 0.334 in 1981 to 0.361 in 1994. While this method 

cannot yet be converted into a flux of CO2, taken in combination with our inverse results, 

108 



there is strong evidence that the "missing" sink is in fact the northern hemisphere 

biosphere. Other recent studies also find increased vegetative activity in the northern 

hemisphere (Chapin et al., 1996; Keeling et al., 1996). 

Table 17 shows the net inverted flux for each of the main regions in the northern 

hemisphere. Notice that the majority of the net increased sink lies in the continental U.S. 

(60%), with the second largest component of the net sink in Eastern China (24%). 

Table 17: Net Initial and Inverted Northern Hemisphere Vegetative Flux. 

Region initial inverted 

Canada + Alaska 0.00005 -0.23 

United States -0.00003 -1.34 

West Europe -0.00007 0.12 

East Europe 0.00007 -0.18 

Russia -0.00009 0.02 

Japan -0.00001 -0.02 

E. China 0.00008 -0.52 

Sum 0.00001 -2.15 

Taking a closer look at each of these regions (Figure 37), there are two 

main differences between the initial and the inverted solution. First, in almost 

every region (except E. China), the earlier growing season is evident. Second, in 

the two largest sink regions (the U.S. and E. China), there is a decreased winter 
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source. This is not true of any of the other regions. These are the only two 

regions that contain subtropical latitudes. This suggests that the effect of year 

round photosynthesis in subtropical areas may have been underestimated 

previously. 

Figure 37: Northern Hemisphere Vegetative Flux Shown by Region. 
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Figure 37 (continued) 
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Figure 37 (continued). 

To ensure that the increased vegetative uptake in the month of May is not an 

effect of a large covariance matrix, the inverse was repeated giving an identical weighting 

to all of the regions (except northern hemisphere fossil fuel). The resulting solution 

changed the vegetative sink by - 6 % . To put this in perspective, the change from the 

initial to the inverted estimate was an order of magnitude (194%). Thus, the increased 

sink in the vegetation is not an artificat of a large uncertainty in the covariance matrix. 
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4.2b Northern hemisphere fossil fuel source 

The net fossil fuel estimate in the northern hemisphere increased by a negligible 

amount (less than 1%). However, we assumed that the emissions were initially well 

known (within 10%) and did not give these regions the flexibility to change significantly. 

Thus, we can draw no conclusions about the fossil fuel estimate based on the inverse. 

4.2c Ocean flux 

The oceans started at a net flux of -0.25 Gt C for the year, which we noted earlier 

was about an order of magnitude smaller than most commonly accepted estimates (IPCC, 

1995). The net inverted flux is -2.43 Gt C / year. This is much more inline with the 

"best" estimates. However, as discussed previously, the initial data set used here was the 

only available data set that varied by month, and it started off about an order of 

magnitude too small. Thus, the ocean now agrees with the best estimates, but is not 

contributing significantly to the "missing sink." 

The only other available gridded ocean flux estimate is available from GISS and it 

is an annual average by Broeker et al. (1986), hereafter refered to as GISS-OCN. While 

this is not a good data set to use as an initial condition, it is useful to compare the net 

annual inverted flux to this annual data set. In absolute magnitude, the two are very 

close, differing by only ~0.1 Gt C/yr; the net inverted flux is much closer to this estimate 

than the initial Erickson estimate. Regionally, however, there are some interesting 

differences. Table 18 compares the annual net flux of the initial estimate (Erickson), the 
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GISS-OCN annual estimate, and the inverted solution. Figure 38(a-c) shows the net 

inverted ocean flux, the GISS-OCN estimate, and the difference of the two data sets 

respectively. Also shown in Figure 38(c) are shaded regions of statistical significance 

from a t-test (from Equation 12). 

Table 18: Summary of Ocean Regions for Initial estimate (Erickson), GISS-OCN 
estimate and Inverted solution. 

Ocean Region Erickson 

(Gt C/yr) 

GISS-OCN 

(Gt C/yr) 

Inverted 

(Gt C/yr) 

South Ocean (> 60°) -0.22 -2.9 -0.83 

Temperate S. Pacific -0.13 -0.23 -0.51 

Temperate S. Atlantic -0.02 0.03 -0.04 

Tropical Pacific 0.49 1.0 0.07 

Tropical Atlantic 0.09 0.18 0.04 

Temperate N. Pacific -0.14 -0.01 -0.22 

Temperate N. Atlantic 0.01 -0.21 -0.16 

N. Pacific -0.01 0.20 -0.19 

N. Atlantic -0.01 -0.46 -0.25 

Indian -0.04 -0.14 -0.32 
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Figure 38: Annual ocean fluxes, with (a) the inverted solution, (b) the GISS-OCN 
estimate, and (c) the difference (a-b). (Note: solid lines are positive and dashed are 
negative, shaded values are statistically significant differences from a t-test.) 

Looking at the differences in the various ocean regions, the inverted solution of 

the north Pacific (monthly inverted values are in Figure 39) shows a net sink of -0.40 Gt 

C/yr, while the GISS-OCN estimate shows the region as a net source of 0.19 Gt C/yr. 
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The north Atlantic (monthly inverted fluxes are in Figure 40) in both estimates shows an 

net sink; however, the inverted solution is a weaker sink (-0.41 Gt C /yr) than the GISS-

O C N estimate (-0.67 Gt C /yr). Note that in both Figure 39 and Figure 40, the GISS-

O C N estimate is shown for reference. 
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Figure 39: North Pacific inverted fluxes. 
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Figure 40: North Atlantic inverted fluxes 

Both of the inverted solutions in these regions seem to oscillate in the winter 

months, with the north Atlantic oscillating into spring. There are several possible causes 

of this oscillation. First, the regions are not ideally constrained, and so in subsequent 

months the filter may be over-correcting for the estimates from previous months. 

However, from Table 15, the north pacific and north Atlantic (regions 8, 9, 15, 19, and 

20) regions except for the mid north Atlantic positive component show substantial 

improvements from the initial guess. Second, it is possible that the fluxes are actually 

oscillating due to the non-linear uptake effects in the ocean. Unfortunately, there are no 

other monthly estimates to verify this possibility. Finally, the third possibility is that the 

initial distribution may be in error and biasing the outcome. This possibility will be 

explored in detail in section 5.3 using sensitivity studies. 
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In the tropics, both the inverted solution and the GISS-OCN estimate show 

sources, but the inverted region is a weaker source. The inverted Indian ocean (monthly 

values shown in Figure 41) shows a stronger sink (-0.32 Gt C/yr) than estimated by GISS-

O C N (-0.14 Gt C/yr). The southern ocean is a net sink in both estimates, but the GISS-

OCN data set estimates a much stronger sink (-2.9 Gt C /yr) than the inverted estimate of 

-0.82 Gt C/yr. 
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Figure 4 1 : Indian Ocean inverted fluxes. 

Table 18 is a summary of the net Erickson (initial) ocean fluxes, the GISS-OCN 

ocean flux, and the inverted solution. Notice that the GISS-OCN and inverted solution 

agree more closely to each other (both in sign and magnitude) than either to the initial 

Erickson estimate. 
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4.2d Southern hemisphere land flux 

The other initial flux believed to be underestimated when compared to IPCC 

(1995) estimate was the land use change / biomass burning source. The initial estimate 

used was believed to be about an order of magnitude too small. Unfortunately, we were 

not able to separate that component since it is predominately occurs in Africa, Asia, and 

South America. Furthermore, as discussed in section 4 . 1 , we put a limit on how much we 

would allow these regions to change so that the sign of the flux would reverse. There are 

however some interesting qualitative results. The sum flux increased by 3 7 % in South 

America, as did Northern Africa and India by 3 3 % ; however, the flux in Mid-South 

Africa decreased by 98%. Thus, the combined net increase in these three regions was 

only 14% (or 0.2 Gt C). While this hardly makes up for our assumed underestimation of 

1 Gt from deforestation, the regions had to be constrained to small changes due to the 

lack of sensitive observations nearby. 

4.2e Net balance of fluxes 

Adding up the net land source and the net ocean sink, the sum is 2.12 Gt C for the 

inverted solution versus 4.54 Gt C for the initial estimate. Looking at the inverse from a 

net balance perspective, the sum of sources, sinks, and atmospheric increase should 

balance to zero. Although the IPCC (1995) estimate for atmospheric increase is 3.3 ± 0.2 

Gt C/yr, this estimate is for the 1980s. There was an observed slowing in the trend of 

atmospheric growth rate of carbon dioxide in the early 1990s (Sarmiento, 1994; Conway 
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et al., 1994). There have been several suggestions to explain this slowed rate of increase, 

including the eruption of Mt. Pinatubo (Sarmiento, 1994), changes in fossil fuel use in 

Eastern Europe after the fall of communism (Grub, 1994), and increased vegetative 

uptake due to global warming (Myneni et al., 1997). While the cause is uncertain, it is 

clear that the rate of atmospheric increase during the simulated t ime period is much 

smaller than the IPCC estimate. Using N O A A / C M D L data, Conway et al. (1994) 

estimate the atmospheric increase for 1992 to be 1.39 ± 0.11 Gt C. 

When using the Conway et al. (1994) estimate, the initial flux values are over-

predicting by 3.2 Gt, or a "missing sink" of 3.2 Gt C. The inverted estimate is now 

underpredicting by -0.7 Gt C. Since the sum should in theory be close to zero, the net 

balance for the 1992 inverse optimization is significantly improved over the initial 

estimates. As shown above (section 5.2a), this change is largely due to increased 

vegetative uptake in the northern hemisphere. The flux from the oceans also increased by 

an order of magnitude compared to the initial estimate; however, the initial value was 

approximately an order of magnitude smaller than the accepted value for oceanic uptake. 

Thus, we infer that the "missing" sink actually lies in the northern hemisphere biosphere. 

According to the inverse, there is now a "missing" source, albeit relatively small 

by comparison. One probable explanation is that there is still an underestimated land use 

change source. Since this source lies mostly in the poorly constrained southern 

hemisphere land, and the inverted solution was limited in these regions, it follows that 

there is still a large uncertainty here. 
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4.2f Model output compared to observations 

One of the main reasons to perform the inverse is because the initial flux 

estimates do not agree well with observations. Using these initial estimates, the model 

output overpredicts when compared to observations; hence, the "missing" sink. Thus, 

another way to measure the success of the inverse is to compare the model output from 

the inverse solution to real observations. For each site that had observations for a 

majority of the inverted year (1992), a month by month comparison can be found in 

Figure 42. 

Statistically, there are two measures that one can use for comparison. The first is 

the gross error, defined by the following equation: 

N 
% gross error = ^ 

However, in inverse studies, a better measure of performance is a normalized bias (Chang 

et al., 1996), since this shows whether the estimates are over or underpredicting when 

compared to observations. This can be calculated with the following equation: 

% normalized bias = V—' - -— * 100 

t! N 
Using these statistical measures, Table 19 shows the performance of the inverse and of 

the initial inventory when compared to observations. In terms of a gross error, the initial 

estimate and inverted solution have errors of 0.64% and 0.29%, respectively. In terms of 

, obs mod el obs 

N 
100 
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a normalized bias, the initial estimate under-predicts by -0 .47% and the inverted results 

over-predicts by 0.0034%. This shows a substantial improvement in the inverted solution 

over the initial in terms of agreeing with observations. 

Table 19: Statistical measure of model output compared to observations. 

flux inventory gross error (%) normalized bias (%) 

initial 0.64 -0.47 

inverted 0.29 0.003 
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Figure 42: Model output compared to observations using initial and inverted fluxes. 

Looking at Figure 42, note that at almost all observation sites, the January initial 

estimate is much closer to observations than any other time of the year. This is because 

the values were optimized to agree in the spin-up and error from a poor estimates has not 

had t ime to accumulate. Recalling that one of the possible explanations for the winter 

ocean oscillations was a poor initialization, one can see from these plots that this is not 

the case. 

4.2g Linearity of the system 

Although the inverse greatly increases agreement with observations, one final 

assurance that it is working properly is to test whether it behaves linearly. W e assume 

linearity in the system, which is to say that a change in the state vector should have an 

associated linear change in the measurement. This is an easy relationship to test. Since 

we perform the inverse off-line, we use a partial derivative matrix to predict what the 

model output will be as a result of the inverted solution. However, as described in 

section 2.2, we then re-simulate each month with the new inverted flux estimates. This 
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insures that we do not propagate a "bad" guess in time (discussion in section 2.2). By 

comparing the predicted model output to the actual model output in the rerun, we can test 

if the system is behaving linearly. Throughout the one year simulation, the average 

difference in the predicted model output versus actual was 0.014ppm. Thus, the system is 

behaves linearly. 

4.3 1992 Inverted Fluxes: Sensitivity Studies 

This section addresses the sensitivity of the inverse solution to its various input 

parameters. Although the filter accounts for errors when calculating the solution, it is 

important to test how robust the solution given realistic errors in the inputs. First, as 

described in detail in section 3.2, the observations contain errors due to various factors. 

These factors include measurement error, natural variability, and sampling frequency 

errors. To address how sensitive the inverse is to error in the observations, the first test 

(section 4.3a) adds Gaussian white noise to the observations and examines how the 

inverse solution changes as a result. 

The other main input is the initial estimate of fluxes, which consists of two parts. 

The first is the absolute magnitude of the net sum of fluxes and the second is the 

distribution of the flux within each region. From pseudo data studies, we know that the 

inverse is much more sensitive to distribution than to the net flux. This makes intuitive 

sense. If the initial distribution shifted the boreal forest in Russia by 10 degrees latitude, 

one would expect a difference in the sensitivity of the Bering Island site to Russia in the 
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partial derivative matrix. However, assuming a linear system (already shown in section 

4.2g), a change in the net magnitude should not change the partial derivative matrix. W e 

ran two tests that alter the initial distribution within a region, maintaining the same net 

value, to determine how sensitive the inverse is to errors in the distribution. 

4.3a Random noise added to observations 

To determine how the inverted solution changes due to measurement errors, 

random Gaussian white noise was added to the measurements. The random values were 

generated by a computer. Since a computer is incapable of generating truly random 

numbers, they are actually pseudo-random. The amount of noise that we added was 

Gaussian, meaning that 60% falls within one standard deviation, 9 5 % within two 

standard deviations, and 99.6% within three standard deviations. As the goal was to vary 

the observations within the range of the noise matrix, we set the standard deviation to be 

half of the actual standard deviation of the measurement. Thus, 9 5 % of the values fall 

within the actual standard deviation of the measurement. 

The net results using these measurements are summarized in Table 20, with the 

initial and regular inverted fluxes included for comparison. For the sensitivity study, the 

northern hemisphere flux is of particular interest, since this is where the inverse suggests 

the "miss ing" sink lies. Thus, we have included a column in Table 20 with the net 

vegetative uptake in the northern hemisphere. 
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Table 20: Summary of balance of fluxes (Gt) with the different flux inventories. 

Flux inventory net ocean net land net N.H.veg. 

inverted -2.43 ± 0.54 3.09 + 1.1 -2.15 ± 1.2 

inverted with noise -2.30 + 0.54 3 . 2 7 + 1 . 1 - 2 . 2 0 + 1 . 2 

From a net standpoint, there is not a significant change in the allocation of fluxes 

between ocean and land. However, when individual regions are examined, some 

interesting results arise. First, in regions that are well constrained and influenced by 

multiple sites, the fluxes change insignificantly. For example, Figure 43 is equivalent to 

Figure 36, with the new inverted flux (with noise) added. The difference in the two 

inverted fluxes is almost imperceptible. This attests to the robustness of the solution and 

supports the conclusion that the missing sink found in the northern hemisphere vegetation 

is a real effect. 
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Figure 4 3 : Northern Hemisphere Vegetative Flux including initial, inverted, and inverted 
with noise. 

However, in regions that were not as well constrained (the southern hemisphere) 

the difference between the two inverted inventories is not as trivial. The differences for 

the entire world are shown in Figure 44. Although most of the differences can be seen in 

Africa, Asia, and South America, none of these differences were statistically significant 

when a t-test was performed as in Equation 12. This shows that the inverse solution is 

robust. 
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C o n t o u r s f r o m - . 4 4 2 t o 1 . 4 0 8 b y . 0 5 ( k g / m 2 / y r ) 

C o n t o u r s f r o m - . 2 3 7 5 t o . 3 1 2 5 b y . 0 5 ( k g / m 2 / y r ) 

Figure 44: Sensitivity to white noise, where (a) is inverted flux, (b) is inverted flux with 
white noise, and (c) is the difference (a-b). 

W e already knew that the inverted results in these regions should be considered 

with caution (Section 4.1), but this sensitivity test shows the importance of improving the 

data network in the region if we ever wish be perform a meaningful inverse for these 

regions. It is interesting to note that the net balance actually improves with the added 
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noise. Accounting for most of the difference, the net source in Africa, India, and South 

America changes from 0.2 to 0.33, due only to the added Gaussian white noise to the 

observations. This illustrates how sensitive these regions are to changes in observations 

due to their poor constraint. This also adds support to the hypothesis that the 

underestimation of fluxes lies in an underestimated source in these regions. 

4.3b Shifted initial distributions within a region 

The other potential source of error is the flux distribution within a region. Only 

the net flux value is inverted for, and then the inverted solution is redistributed according 

to the initial distribution (refer back to Figure 34). To test how sensitive the inverse is to 

errors in the initial distribution, two tests were developed. The first assumes a slight error 

exists in the initial distribution, which is relevant to vegetative distributions. From 

remotes sensing techniques, the location of forests is fairly well constrained; and thus, the 

distribution of vegetative flux is fairly accurate. This is not to say that the actual initial 

magnitude of fluxes are correct, but that they are spatially representative. For example, if 

the initial distribution put a large vegetative flux in Arizona, clearly something would be 

amiss. It is more probable that the initial vegetative distribution contains small errors. 

To simulate this type of error, the vegetative flux in America was shifted by one 

grid cell from the initial distribution. After rerunning the partial derivative matrix with 

this new distribution, the inverted fluxes were recalculated. This process was performed 
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for January and July. The difference in the regular inverse and the inverse from the 

sensitivity test can be seen in Figure 45 for January and Figure 46 for July. 

C o n t o u r s f r o m - . 3 9 1 8 t o . 7 0 8 2 b y .1 ( k g / m 2 / m t h ) 

C o n t o u r s f r o m - . 3 7 5 8 t o . 6 2 4 2 b y .1 ( k g / m 2 / m t h ) 

C o n t o u r s f r o m - . 1 3 4 8 t o - . 0 3 4 7 b y .1 ( k g / m 2 / m t h ) 

Figure 45: January sensitivity test, where (a) is inverted solution, (b) is inverted with 
shift, and (c) is difference. 
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C o n t o u r s f r o m - 1 . 9 0 8 t o . 5 9 2 b y .5 ( k g / m 2 / m t h ) 

C o n t o u r s f r o m - 1 . 7 9 2 t o . 7 0 8 b y .5 ( k g / m 2 / m t h ) 

C o n t o u r s f r o m - 1 . 0 7 5 t o . 4 2 5 b y .5 ( k g / m 2 / m t h ) 

Figure 46: July sensitivity test, where (a) is inverted solution, (b) is inverted with shift, 
and (c) is difference. 

As evident in Figure 45 , there is almost no effect in January, with only small 

differences showing up in North America. However, this is not the active season for 

vegetation. Not surprisingly, July, the month of maximum uptake, shows greater 

sensitivity (Figure 46). Most obvious, is the slight northward shift of the fluxes, which is 
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the spatial change imposed by the test. In terms of actual fluxes, the net uptake changes 

from -0.83 Gt in the regular inverse to -0.97 Gt C/month with the shifted region, or a 14% 

change. Interestingly, the impact is felt elsewhere in a slightly reduced Eurasian 

vegetative flux from -0.99 Gt to -0.83. Thus, the net effect on the northern hemisphere 

vegetative uptake is negligible, changing from -2.13 to -2.09 Gt. While this amount of 

error is well within the reasonable limits, it reminds us that the inverted solution is not 

exact. However, this test gives support for the "missing" sink remaining in the biosphere. 

4.3c Equal initial distributions within a region 

While the initial distributions of vegetative flux are strongly correlated to where 

the vegetation exists, this is not necessarily true of the oceans. As discussed in Section 

2 .1 , there are a multitude of non-linear factors that regulate oceanic uptake beyond the 

location of phytoplankton. Furthermore, there are vast variations in the partial pressure of 

carbon dioxide in relatively small areas (Watson et al., 1991). Thus, there is a large 

amount of uncertainty in the initial distribution of the oceanic fluxes. To test how much 

difference this could make in the inverted solution, we ran a second sensitivity test. 

To simulate this type of uncertainty, instead of using a small variation, the net flux 

within the north Pacific ocean region was redistributed such that each grid had an equal 

mass, while maintaining the same net flux. Running this type of vast variation should 

give us a sense of the type of errors that are associated with the inverted oceanic flux. 

135 



Again, January and July were run with this sensitivity test and the results are shown in 

Figure 47 and Figure 48 respectively. 

J ^ - . l l 

C o n t o u r s f r o m - . 3 9 1 8 t o . 7 0 8 2 b y .1 ( k g / m 2 / m t h ) 

C o n t o u r s f r o m - . 4 0 2 3 t o . 6 9 7 7 b y .1 ( k g / m 2 / m t h ) 

C o n t o u r s f r o m - . 0 5 3 8 4 t o - . 0 5 3 8 4 b y .1 ( k g / m 2 / m t h ) 

Figure 47: January sensitivity test 2, where (a) is inverted solution, (b) is inverted with 
shift, and (c) is difference. 

136 



C o n t o u r s f r o m - 1 . 9 0 8 t o . 5 9 2 b y .5 ( k g / m 2 / m t h ) 

C o n t o u r s f r o m - 1 . 9 3 3 t o . 5 6 7 b y .5 ( k g / m 2 / m t h ) 

C o n t o u r s f r o m - 1 . 0 6 3 t o - . 0 6 2 b y .5 ( k g / m 2 / m t h ) 

Figure 48: July sensitivity test 2, where (a) is inverted solution, (b) is inverted with shift, 
and (c) is difference. 

The main effect of the January test is the shape redistribution in the Pacific ocean 

with the flux in the region changing from -0.21 to -0.23 Gt C. July is slightly more 

sensitive to changes in the distribution. The inverted flux changes from -0.07 to -0.03 Gt 

C in the region. While not an insignificant change, the inverted solution still moves in 
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the same direction from an initial estimate of +0.02 Gt C. This weakened sink is mainly 

countered by an increased sink in North America of -0.09Gt. Having significantly 

altered the distribution in a large region of the ocean, it is reassuring that the general 

direction and magnitude of the inverted solution is not significantly altered. This 

suggests that the inverse solution is fairly robust. 
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CHAPTER 5 

CONCLUSIONS / RECOMMENDATIONS 

The goal of this research was to develop and test an inverse method capable of 

improving the flux estimates for carbon dioxide. By inverting for the solution using the 

iterative-adaptive Kalman filter, the net balance of carbon dioxide fluxes improved over 

the initial estimate and the IPCC (1995) estimate. Furthermore, the model output agreed 

significantly better with observations than the run with the initial estimate. Much of this 

improvement can be attributed to the larger sink found in the inverted northern 

hemisphere vegetative flux. 

5.1 Northern Hemisphere Vegetative Fluxes 

Of particular interest for the carbon dioxide inverse was to locate the "missing" 

sink. The inverse solution for the northern hemisphere indicated that the "missing sink" 

lies in the vegetative flux. There were two components that account for this increased 

vegetative sink. First, the growing season begins one month earlier than the initial 

estimation. Note that since we are only inverting on time scales of one month, this does 

not necessarily mean that the growing season is actually extended by a full month, but 

that the net magnitude over the two months suggest uptake rather than release. 
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At least qualitatively, these findings are supported by satellite interpretation of 

leaf index. Myneni et al. (1997) found that the growing season has been extended by 10 

days (6 in the beginning and 6 at the end) from 1981 to 1994. Furthermore, they find that 

the magnitude of the leaf index has increased every year for the last 13 years, from 0.334 

in 1981 to 0.361 in 1994. While this method cannot yet be converted into a flux of CO2, 

taken in combination with our inverse results, there is strong evidence that the "missing" 

sink is in fact the northern hemisphere biosphere. Other recent studies also find increased 

vegetative activity in the northern hemisphere (Chapin et al., 1996; Keeling et al., 1996). 

Although we can only speculate, possible explanations for this increased vegetative 

activity are warmer temperatures (Myneni et al., 1997) and nitrogen deposition due to 

anthropogenic sources of nitrogen (Hudson et al., 1994). 

The second component of the increased vegetative sink is a decreased source in 

the continental United States and Eastern China during the fall/winter season. Since these 

are the only two regions containing sub-tropical vegetation, this suggests that the effect of 

year round photosynthesis in subtropical areas has previously been underestimated. This 

is a virtually ignored in previous work, and yet this helps explain the full amount of 

uptake that accounts for the "missing" sink. 

Further support for the credibility of the inverse solution come from three 

sensitivity studies conducted to test the robustness of the solution. Errors were 

introduced to each of the input variables and in every case the net sink remained in the 

northern hemisphere biosphere. 
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It seems that satellite's provide a potentially powerful tool in giving global 

coverage of leaf index. However, the algorithms to interpret the leaf index from a 

qualitative to quantitative measurements still need development. As a recommendation 

for improving future vegetative flux estimates, one idea is to include the results found 

here as constraints when developing an algorithm to interpret satellite leaf index into 

actual flux values. 

5.2 Southern Hemisphere Fluxes 

While the northern hemisphere remained relatively unaffected by the introduction 

of errors into the input variables, the southern hemisphere proved more sensitive. From 

pseudo data studies, Africa and South America were found to be poorly constrained by 

observations. Future work should include another inverse study after the addition of the 

latest N O A A / C M D L sites have been operational for at least a year. W e have already told 

our recommendations to N O A A / C M D L of the future sites that were determined to be 

useful in improving the constraint of these regions. If these suggestions are taken, we 

will hopefully be able to repeat the inverse in the future and gain more information about 

South America and Africa. Both of these regions are becoming increasingly important, 

particularly with the current trends in deforestation and biomass burning rising at the 

present alarming rates. Without good measurement sites in place, it will be difficult to 

identify and help control future changes that may arise. 
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5.3 Ocean Fluxes 

The inverse solution shows a net ocean sink of -2.4 Gt C, which is in relatively 

good agreement with current IPCC estimates of oceanic net sink values (-2.0 ± 0.8 Gt 

C/yr). The sign of the ocean flux is dominated by blooms rather than temperature (as 

suggested by the initial estimate). Uptake begins in late spring and continues through the 

summer season. This is in agreement with field study results by Watson et al. (1991). As 

a final comparison, the total inverted flux was compared to the annual flux estimate from 

GISS (Broecker et al., 1986). The significant differences were a weaker sink in the 

southern ocean (mid-high latitudes), a net sink rather than source in the eastern north 

Pacific, and a weaker sink in the northern mid Atlantic (refer to Figure 38). There is a 

current effort to measure the ApC02 in the Joint Ocean Global Flux Study (JGOFS) and 

the World Ocean Circulation Experiment (WOCE), as well as to develop algorithms to 

interpret satellite chlorophyll data into CO2 flux estimates. When these estimates of 

oceans fluxes are complete, it would be interesting to repeat the inverse. However, 

sensitivity studies altering the distribution of the ocean flux found that the solution was 

fairly robust, with only minor changes resulting. 

5.4 Applicability of Method to Other Trace Gas Fluxes 

The inverse technique presented has proven capable of deducing fluxes for carbon 

dioxide with reasonable success and robustness. With these promising results, this 
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technique should be employed to help improve flux estimates of other important trace 

gases. Of particular concern, carbon monoxide, methane, and nitrous oxide have all seen 

increased concentrations since the industrial revolution (Table 21). Improving the 

estimations of these fluxes is a very important next step. However, further refining of the 

method may be necessary to account for the chemistry involved with the other carbon 

cycles gases. While CO2 is essentially inert in the atmosphere, both carbon monoxide and 

methane are oxidized by the hydroxyl radical (OH). Thus, to perform an inverse for these 

gases, one has to have a reasonable budget of OH. Since O H is the main oxidizer in the 

atmosphere, there are many competing mechanisms for reacting with OH. Thus, it has a 

very complicated associated chemistry. This is not to say that inverting for carbon 

monoxide and methane is unrealistic, it is only to caution that the chemistry adds an 

additional uncertainty and additional testing would be required to account for this type of 

uncertainty. In fact, this is a challenging and exciting use for inverse methods in the 

future. This thesis lays the groundwork for a potentially powerful tool to be used in 

identifying more complicated sources and sinks in the atmosphere. In addition to 

utilizing the method described in this thesis, we recommend a detailed study of the errors 

associated with the OH chemistry. 

Table 2 1 : Greenhouse Gas Concentrations pre and post industrial (IPCC, 1995). 
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G a s P r e - I n d u s t r i a l 1994 

C 0 2 - 2 8 0 ppmv 358 ppmv 

C H 4 - 7 0 0 ppbv 1720 ppbv 

N 2 Q - 2 7 5 ppbv 312 ppbv 

5.5 Summary of Recommendations: 

To improve CO2 inverse: 

• Add measurement stations to improve estimation in Southern Hemisphere, 

particularly South America and Africa. 

• Repeat inverse for C 0 2 with the 1996 measurements, since the newest 

N O A A / C M D L sites will have been in operation for a year. This should 

improve some of the difficulty in the Southern Hemisphere, particularly 

Northern Africa with the addition of the WIS site in Israel. Additionally, it 

would be interesting to compare the results with interannual variations. 

• Repeat inverse with updated ocean flux estimates once the JGOFS and W O C E 

experiments are complete. 

• Use inverse results in conjunction with satellite estimates of leaf index to 

improve algorithms for estimating vegetative uptake of CO2. 

Apply methodology to other trace gases: 
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• As nitrous oxide emissions continue to increase with continuing land use 

change, understanding its budget becomes increasingly important. The 

inverse method developed here should be directly applicable. However, the 

regions will need to be redefined specific to N 20 and its measurement 

network. 

• Apply the methodology to methane and carbon monoxide. Whi le the 

methodology developed here is applicable, additional work will need to be 

done to assess errors arising from uncertainties in the OH budget. As with 

N2O, the regions will also have to be refined to fit with the measurement 

network for CH4 and CO. 
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APPENDIX A 

P is some relationship and E is emissions 

A 

where E is the best estimate of emissions 

and AE = E " \ - E " 1 

where G E t is the error in emissions estimation at t ime t 

Want to minimize two components in a cost function. 
A 

1. % o b s - P E the difference in observed concentrations and model calculated emissions 
2. AE = Et+\ - E j S t the change in emissions step size 

The cost function, J, is the following: 

J = ( X F 8 - P t E t ) T N - 1 ( J T F B S - P t E t ) + (AE) TC- 1(AE) 

PE e s t -PAE) + 2C _ 1 AE 

substitute in the relationship that P E e s t = ^ m o d e l

: 

0 = P T N _ 1 (%obs - % m o d e l ) - P T N _ 1 P A E - C T 1 AE 

rearrange, isolating AE: 

Assumptions: 

l . % o b s = PE 

2. E e s t + AE = E 

3. E t = E t + G E t 

Minimizing with respect to emissions, 

AR S T 

' est 3E' 
= 0 = 2 P T N _ 1 ( X ° b s -
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AE = ( P T N _ 1 P + C" 1 ) _ 1 P ^ N " 1 (% o b s - % m o d e l ) 

for simplicity, call 

AX = X° b s -

want to rearrange so that A% is on left hand side: 

AEA% _ 1 = ( P T N " 1 P + C ~ 1 ) " 1 P T N _ 1 

using the theorem that (AB) = B 1 A 1 , we invert the equation 

A%AE _ 1 = N ( P T ) ~ 1 ( P T N ~ 1 P + C~ 1) 

multiply the right hand terms together: 

A%AE _ 1 = N ( P T ) " 1 P T N ~ 1 P + N ( P T ) " 1 C " 1 

By the definition of inverse matrices, where A(A) 1 = I (the identity matrix), the 

right hand side simplifies to P + N(P ) C , where the whole eqn is now: 

A%AE _ 1 - P + N ( P T ) _ 1 C " ] 

The following is a series of steps is taken to rearrange the terms so that they are in terms 
of a gain matrix. 

First, multiply the equation by C: 

A%AE"1C = PC + N ( P T ) " 1 

Second multiply the equation by P : 
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A%AE _ 1 CP T = P C P T + N 

Multiply the equation by ( P C P T + N)" 1 

A X A E " 1 C / > T ( P C P T + N ) 1 = I 

Multiply the equation by A%1 

A E _ 1 C P T ( P C P T + N)" 1 = A% - 1 

Multiply by A% 

A E _ 1 C P T ( P C P T + N)" 1 A% = Ax" 1 A / 

Multiply by AE 

C P T ( P C P T + N ) 1 A x = AE 

Substitute G, the gain matrix for C P T ( P C P T + N)" 1 

GAx = AE 

Rearrange to get the equation into the form used in this paper: 

AE = GAx 

Substitute in for the delta terms: 

148 



— E E S T = G (x — X ) 

Rearrange into final form : 

= E( S T + G T (X° B S - X T

M O D E L ) 
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