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Abstract 

Future reusable launch vehicles must be designed to fly a wide spectrum of missions and 
survive numerous types of failures. The X-33 Reusable Launch Vehicle Technology Demonstrator 
is used as a simulation platform for testing a neural network-based model-reference adaptive 
controller and compared to a gain scheduled controller over a wide matrix of test cases, including 
dispersions, model ing errors, and actuator failures. Actuator failures include engine out, 
aerodynamic actuator failures, and reaction control system failures. Modeling errors include 
mismodel ing of the force and moment coefficients and the addition of approximate flexible 
dynamics. The resulting control system does not use gain tables and is not tuned for particular 
missions. Several test cases are examined in detail, particularly engine failure cases, which result in 
mission abort scenarios. Over the entire test matrix, the adaptive controller is able to perform 
slightly better than a gain-scheduled controller. The significance of this fact is that the adaptive 
approach offers an approach to launch vehicle flight control design that greatly simplifies the flight 
control system design process, and that ultimately may be adaptable to a wider range of failures and 
dispersions than are anticipated within the test matrix. Moreover, since for this class of vehicles the 
flight control system is essential in evaluating the impact of configuration changes in preliminary 
design, an approach that is adaptive to these design changes is highly desirable. 
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I. Introduction 

The X-33 (Fig 1) was a proposed sub-orbital aerospace vehicle intended to demonstrate 
technologies necessary for future Reusable Launch Vehicles (RLVs). It included several key 
features of Lockheed Mart in ' s proposed VentureStar RLV, including the linear aerospike engine, 
vertical take-off, horizontal landing, heat dissipation system, and aerodynamic configuration 1 . 

To achieve the cost benefits of an operational RLV, the amount of analysis and testing 
required per mission must be reduced over that performed for the partially re-usable Space Shuttle. 
A goal for future R L V flight control is to design and test the flight control system to operate within 
a prescribed flight envelope and loading margin, requiring only payload/fuel parameters and "route" 
to be specified for a given mission. It has been estimated that this level of improvement would save 
three man-years of labor per RLV mission 2 . 

Figure 1. X-33 Reusable Launch Vehicle technology demonstrator. 

Launch vehicle flight control is conventionally linearized about a series of operating points 
and then gain-scheduled. These operating points normally include a range of either Mach number, 
velocity, altitude, t ime, or some other parameter used to determine vehicle progress with respect to 
a nominal trajectory. Separate sets of gain tables are often included for abort cases and failure cases, 
as is the case with the current X-33 design 3 . 

Gain scheduling is a very powerful and successful method, but has a distinct drawback for 
the RLV: the number of required gains to be designed and scheduled becomes very large. If one 
also imposes the design constraint that these gains must allow for a range of possible missions, 
payloads, and anticipated failure modes, then the number of required gains can become prohibitive. 

In recent years, several theoretical developments have given rise to the use of Neural 
Networks (NN) that learn/adapt online for nonlinear sys tems 4 ' 5 . The use of NN-based adaptive 
flight control has been demonstrated in piloted simulation and flight test on the X-36 aircraft 6, in 
simulation and drop tests of the J D A M attack muni t ion 7 , 8 ' 9 and in a piloted simulation on a civil 
transport aircraft 1 0 ' \ These tests included failures to the flight control system that necessitated 



adaptation. The fact that this architecture enables adaptation to an arbitrary nonlinear non-affme 
plant in real-t ime makes it an attractive candidate to replace RLV gain tables. This approach has 
the additional benefit that recovery from a class of vehicle component failures can be shown. 

This approach has been implemented on the X-33 ' demonstrating adaptation to failures. 
Also, work has been done to introduce adaptation in the outer, guidance, loop 1 . In the previous 
work a trivial choice of feedback linearization was used based on an inertia matrix calculated based 
on an estimate of the fuel consumption, neglecting aerodynamic moments not due to the control 
effectors. In addition a method for addressing nonlinear system input characteristics, Pseudo 
Control Hedging (PCH), was introduced to facilitate correct adaptation in the presence of actuator 
position and rate limits, t ime delay, and input quantization. 

The work described here is a continuation of the study described in Refs. 12 and 13. The 
adaptive controller has been improved for evaluation on a broader range of test cases, and adjusted 
so as to improve its performance in accordance with test criteria established by N A S A Marshall 
Space Flight Center 1 . The test matrix includes nominal flight, Power Pack Out (PPO), Thrust 
Vector Control (TVC) failures and mismodeling, aerosurface failures, and reaction control system 
(RCS) failures. Dispersion cases are investigated for both nominal and abort situations. The 
complete test matrix is available in Appendix B. Across the test matrix the algorithm was scored on 
actuator deflection magnitude, duty cycle (a measure of control activity) peak body rates, dynamic 
pressure profile, steady state error, and how closely the vehicle follows the intended trajectory. The 
adaptive controller presented here was compared in Ref. 15 to a sliding mode control ler 1 6 , a 
trajectory linearization control ler 1 7 , and a reconfigurable al locator 1 8 . In addition, a hybrid direct-
indirect adaptive control ler 1 9 was tested in ascent only but not compared to the other controllers. 
N A S A ' s tests are ongoing. 
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II. NN-Based State Feedback Adaptive Control 

I I . 1 C o n t r o l A r c h i t e c t u r e 

Fig 2 is an illustration of Model Reference Adaptive Control ( M R A C ) 1 2 , 2 0 with the addition 
of P C H compensation. The P C H compensator is designed to modify the response of the reference 
model in such a way as to prevent the adaptation law from seeing the effect of certain controller or 
plant system characteristics. 

I I .2 M o d e l Refe rence A d a p t i v e C o n t r o l 
For simplicity, consider the case of full model inversion, in which the plant dynamics are 

taken to be of the form 

q = Q(q,co) 

(b = f(q,G),S) (1) 

8 = g(q, co, 8 c m d ) 

where q e <R4 is a quaternion representing body attitude with respect to an inertial frame, co e $R3 is 
the angular velocity of the body in the inertial frame expressed in the body frame, and S,Scmd e SRm 

are actuator positions and actuator commands, respectively. 

W e introduce a pseudo-control input v such that the dynamic relation between it and the 
system state is linear 

cb = v (2) 

where 

v = f(q,a>tS) (3) 

The actual controls S are obtained by inverting Eq. (3). Since the function f{q,co,d) is 
usually not known exactly, an approximation is introduced 

v = f(q,co,S) (4) 

which results in a model ing error. The resulting dynamics can be written as 

cb = v + A(q,co,S) (5) 

6 
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where 



\ 
/ is assumed to have a known inverse and obeys the control effectiveness sign condition 

sign 
The actuator command is constructed as 

Scmd =f~l(x,X,v) (8) 

The model error in Eq. (5) will be adaptively compensated using a neural network trained 
on-line. 

As shown in Figure 2, the pseudo-control signal is constructed of four components 

V = +Vpd -Vad -V, (9) 

where vrm is generated by the reference model, v p d is the output of the P-D compensator, vad is 

the signal generated by the adaptive element introduced to compensate for the model inversion 
error, and vr is a robustifying term ' 

Reference 
Model 

Xrm + e 

1 9 
P-D 

Compensator o 

vh = v-f(q><»,8) 

PCH 

Approximate 
Dynamic 
Inversion 

Actuator 
8 

Plant Actuator w Plant 

—v„ 

Adaptation 
Law 

Adaptive 
Element 

T 

Figure 2. Implementation of P C H in N N adaptive control. 

For the case m>3 we assume here that a control allocation algorithm has been pre-defined. The particular allocation 
used in this implementation will be discussed in a later section. 
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II.3 Reference Model and Linear Controller Design 

The hedge signal is 

vh = f(q,co,Scmd)-f(q,coj)=v -v (10) 

where S is an estimate of the actuator positions based on actuator models incorporating rate and 
posit ion limits. The hedge signal is introduced into the reference model in the following way 

g™ =Q[q,con„ +(Q-l

niiQ(l -I)co\ 

G>rm =Vcrm(qrm,G>rm,qc®c,G>c)-Vh = V, 

( I D 
(12) 

The reference model states are quaternion quantities. Details relating to the functional forms of 
Q(f) and Vcrmi*) i n the above equations will be provided later. The reference model is 7 t h order, and 
the states of the reference model represent a desired quaternion state qrm and a desired angular rate 
vector corm. Unlike the typical standard M R A C architecture, the plant states appear in the reference 
model , which is necessary in this case in order to arrive at an error equation in a form that is suitable 
for applying adaptive control. This will be further explained below. 

Bounded external commands qc and coc are provided by the guidance algorithm, where qc is 

the commanded quaternion and & is the commanded body angular rate vector. 

The functional form of £>(*) is taken from the expression for the quaternion rate 22 

q = Q(q,0)) = -

0 -co\ -G>2 -co? -qi -q? -q\ 

co\ 0 CO? -6)2 1 
q = -

q\ -q4 qi 

COi -co? 0 2 qi -qi 

CO? a>2 -CO\ 0 _-q? qi q\ 

co = —D.aco 
2 q 

where 

(13) 

-qi -qs -q4 

+ qx -q4 +q3 

+ q4 +qx -q2 

-q2 +q2 +qx 

(14) 

-q2 +qx +q4 -q3 

-qi ~q4 +q\ +qi 

- # 4 +qs -qi +qi 

(15) 
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such that 

Q / I Q f = / (16) 

The reference model error vector is 

6rm — 
Q{gc,qrm) (17) 

Appendix A of [23] shows that the coordinates of the first term in the error vector can be expressed 

in terms of a quaternion error vector, Q(qc, qrm ) , in two ways: 

Q(qc,qrm) = -2sign(qcTqrm)fiqrm

 lqc 

Q{qc ,qrm) = 2sign(qrm

Tqc )&qc ~lq 

(18) 

Differentiating, w e have 

Qrm — 
Q(qc,qrm) 

0>c - d>rm 

^"^Irm 9° ^ ^ < 7 c qrm 

\_cbc -VCrm{q 

(19) 

The reference model tracking error is assumed to be small, and thus qc «qrm, implying that 

Qqc~lQqrm - 7 « 0 , and thus so long as the attitude tracking error does not reach a magnitude of 

180°, the first element becomes coc - corm. 

The function vrrm is chosen as 

= [Kpc Kdc\et 
(20) 

where Kdc > 0 , e $ R 3 X 3 and Kpc > 0 , G < R 3 x 3 are diagonal matrices. This ensures that 

Arm — 
0 / 

-Kpc -Kdc 
(21) 

is Hurwitz. The reference model tracking dynamics then reduce to 

&rm = Arm Qrm + Brm (o)c ~~ Vfj) (22) 

where 
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T Kdi 

Q(lc-i,qc) [fj (Oc Filter, Q(lc-i,qc) [fj 
Limit 

Kd, 
Qrin 
COrm • 

Figure 3. Reference Model . 

Brm=[0 l]T (23) 

Figure 3 shows the reference model architecture, where t is the transform from quaternions to 
body attitude. Back-differentiation is used to calculate a feed forward rate command 

W e write the tracking error dynamics as 

e = 
COrm - CO 

(24) 

Differentiating Eq. (17), we get 

e = 
Q{qrm,q) 

COrm -® 

2Q«7 Xqrm ~ IQqrm f 
|_ Venn (qrm ,a>rm,qc,G>c,<»c)-Vfi ~ f(q,CO,S)\ 

(25) 

Under a similar set of assumptions, the first element becomes corm - co as in Eq. (19). Following a 
procedure similar to that outlined above and applying Eqs. (1), (6), (9), (10), (11), (12), the second 
element simplifies to yield 

e = 
COrm-CD 

-Vpd + Vad+Vr-A 
(26) 

Choosing 

vPd = [kp Kd]e 

the error dynamics reduce to a standard form for the application of adaptive cont ro l . 2 4 

erm = Aem + B[vad + vr - A] 

(27) 

(28) 
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Arm — 
0 / 

and B = Brm . 

Figure 4 shows the manner in which this is computed. 

Qsensed 

®sensed 

Figure 4. Proportional-Derivative Controller. 

(29) 

I I . 4 NEURAL N E T W O R K FOR INVERSION ERROR COMPENSATION 

A nonlinear single hidden-layer (SHL) N N is used to compensate for the model inversion 
e r r o r . 2 5 ' 2 6 For an input vector x , the output of the SHL N N is given by 

Vad = WTa(vTx) (30) 

where V and W are the input and output weighting matrices, respectively, and a is a vector of 
sigmoid activation functions. The weights are adapted according to the following equa t ions 7 ' 2 2 : 

W = -[{a - cjVtx}] + fc\\e\^v\rw 

v = -rv\x7]WTa' + 4 4 v 

(31) 

(32) 

where Yw and Ty are the positive definite learning rate matrices, cr' is the partial derivative of the 
sigmoids cr with respect to the N N inputs x , and k is the e-modification parameter, rj is defined 
by 

rj = eTPB 

Here, P ^ 0 is a positive definite solution of the Lyapunov equation 

ATP + PA + Q = 0 

(33) 

(34) 

for any posit ive definite Q>0. A and B in the above equations are the tracking error dynamics 
matrices defined in Eqs. (21) and (23). The robustifying term in Eq. (9) is 

11 
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vr=-i\Z\ + z)Krrf (35) 

where 

Z = 
V 0 

0 w 
(36) 

Kr e 9 l 3 x 3 diagonal, ^ r < 0, and Z is such that ||z*|| < Z , where Z * denotes an unknown set of ideal 

weights. 
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III. Pseudo Control Hedging 

I I I . l H e d g e Ca lcu la t ion w i th R e d u n d a n t Ac tua t ion 

Because the X-33 has redundant actuation, care must be taken when calculated the hedging 
signal. Consider the following affine system: 

x = f(x) + B(x)S 
JK ( 3 ? ) 

y = Cx 

where x is the state vector, u is the vector of control variables and y represents the regulated output 
variables. It is assumed that dim{<5} > dim {y}. Since there are more control variables than there 
are regulated output variables, a control allocation matrix is often introduced that relates the control 
demand associated with each output variable to the actual controls. Letting Se denote the effective 
control demand, then 

S = TaSe (38) 

To compute the inversion, differentiate the output once and use equations (37) and (38) to 
obtain 

y = Cx = C[f(x) + BTaSe ] = v (39) 

where v is the required pseudo control. Assuming that CB(x)Ta is invertible for all x, then the 
effective control solution reduces to 

Se =(CB(x)Ta)-\v-Cf(x)) (40) 

where B(x) and f(x) denote estimates of B(x) and f(x). Substitution of (40) into (38) provides 
the actual control that is to be applied to the plant. The PCH signal is next introduced as an 
additional input into the reference model , forcing it to "move back". If the reference model update 
without P C H was of the form 

Xrm ~ frm (%rm •> Xrm •> Xc ) (41) 

where xc is the external command signal, then the reference model update with P C H becomes 

%rm = frm (%rm ̂ rm ĉ)-^ (42) 
The instantaneous pseudo-control output of the reference model that is used as an input to the 
linearized plant model is not changed by the use of PCH and remains 

Vrm = frm (xrm ? Xrm, Xc ) (43 ) 
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Hence, the effect of the P C H signal on the pseudo-control is introduced only through the reference 
model dynamics . This results from the stability analysis of N N based adaptive control with PCH, 
detailed in Ref. 18. 

When implementing PCH, (38) is viewed as defining the commanded control 

SC=TASE (44) 

which may be different from the actual control displacements, due to actuator position and rate 
limits, and other effects that one might choose to model. For example, with PCH one may also take 
into account the dynamics of the actuator as well, although if the bandwidth of an actuator is much 
greater than the design bandwidth set by the command filters, this effect can be ignored. The 
hedging signal is computed according to the following equation 

VH=V-C[F(X) + B(X)S] (45) 

where the elements of 5 denote estimates of the actual control positions derived by processing each 
element of the commanded control obtained from Equation (44) through a model for the 
corresponding actuator. 

I I I . 2 I N V E R S E MODEL 

The form of the inverse model F~X is shown in Figure 5. The pseudo control, V , is 
transformed from desired angular acceleration to desired torque, T, by taking the pseudo-inverse of 
the actuator effectiveness matrix and multiplication by the approximate inertia. The desired torques 
are first allocated to the aerodynamic actuators, then daisy-chained to the RCS jet selection 
allocator. The allocation is daisy-chained in order to preserve RCS fuel if possible. Figure 6 and 7 
show the aerodynamic and R C S allocations, respectively. 

V 

V 
'o m 

J E T fires 

S E L E C T . 

(KJKM) KMI 

A 

faero 

AERO 8aero 

ALLOC 

Figure 5. Inverse model dynamics. 

Figure 6 shows that as commanded moments enter the aerodynamic allocator, axis priority is 
given to yaw over roll. First both yaw and roll are subjected to estimated rate limits A and B, based 
on an estimated yaw and roll rate limits calculated from the flap rate limit and the flap effectiveness 
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in yaw and roll. The yaw moment is then magnitude-limited by e, which is found from the 
m a x i m u m flap deflection allocated to yaw and the flap effectiveness in yaw, combined with the 
m a x i m u m elevon deflection allocated to yaw and the elevon effectiveness in yaw. From these 
commands , flap and elevon 'amounts used' are calculated and sent into the two roll moment 
magnitude limiters, which have magnitudes C and D. These magnitudes are calculated in a similar 
manner, based on the desired moments and the actuator effectiveness while accounting for the 
extent to which each actuator has been used for yaw control. 

The commands in the three axes are multiplied by the actuator effectiveness matrix to get 
the desired actuator deflections and commands for each actuator are position and rate limited. 

R 

R 

- 1 

- 1 

" I 

P 

[Flap Elev 

P 

SHINS 

\ to P R ' \ 8 8 
) ~ LJ — • — • 

Figure 6. Allocation in the Aerodynamic Actuators. 

The R C S allocation for entry is shown in Figure 7. The hedge from the aerodynamic 
actuators is multiplied by the inertia matrix to determine the torque deficit that we wish to eliminate 
with R C S . Since there are only eight jets , this torque deficit is compared with every possible 
combinat ion of firings, and the errors in torque along with the number of je ts fired is used in the 
calculation of the cost function. Two versions of the cost function are used: 

COST = (TC-TA)K\ + (#Jets) 2 - £ 2 ^ 

COST = (TC-TA)K\ + # J e t s - k 3 + ARCS-K4 

The first version is engaged if there are no known failures in the system. In this case, the cost 
function heavily penalizes using too many jets at once in order to reduce fuel utilization. In the 
second case, when there are known failures, the number of jets are only penalized linearly, and the 
number of firing changes (ARCS) is penalized to prevent the jets from switching on and off 
excessively. The amount of torque achieved from the RCS system is added to the aerodynamic 
hedge signal and transformed into stability axes to get the complete hedge signal for both the 
aerodynamic and R C S actuators. 
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Figure 7. Hedge Calculation: Deficit in Aerodynamic Actuation + Deficit in RCS Actuation. 
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IV. Results 

The flight control design is evaluated from launch to the beginning of the Terminal Area 
Energy Management (TAEM) phase. Missions being with vertical launch and achieve peak Mach 
numbers of approximately 8, peak altitudes of 180,000 feet, and dynamic pressures that range from 
20-400 psf. During ascent, vehicle mass decreases by approximately a factor of 3, and vehicle 
inertia by a factor of 2. The controller was tested over a wide matrix of cases, including single tests 
of two nominal (no failure) cases, two PPO cases, four TVC failure cases, 17 aerosurface failures 
with different surfaces and different t ime of failure, four RCS failures, seven occurrences of 
unknown model ing errors, and ten dispersion tests (different random seed and season of the year) 
with both failures and the nominal cases. 

IV.l Ascent Flight Control 

The adaptive flight control design illustrated in Figures 2-6 was utilized for ascent flight 
control. Nomina l inversion consisted of multiplying desired angular acceleration by an estimate of 
vehicle inertia, and utilizing the control allocation system shown in Figure 6. N N inputs were 
angle-of-attack, side-slip angle, bank angle, sensed vehicle angular rate, and estimated pseudo-
control (v = v-Vh). This provides the 'best ' estimate for the correct position of the actuators. Four 
hidden activation functions were used; learning rates on W were unity for all axes and learning 
rates for V were 200 for all inputs. K P and K D were chosen based on a max imum natural frequency 

of 1.0 r a d / s e c for the roll, pitch, and yaw axes respectively and a damping ratio of 0.7. 

The aerodynamic surface actuator position and rate limits are included in the PCH, as is the 
posit ion and rate limits of the main engine thrust vectoring. PCH also had knowledge of the axis 
priority logic within the control allocation system, but was not given knowledge of actuation 
failures when they occurred. Knowledge of an actuation failure was used in the RCS allocation, as 
Eq. (46) shows. 

IV.2 Entry Flight Control 

At the beginning of the entry phase, the values of the N N parameters and weight matrices 
are maintained from the ascent phase. However, a slower linear response was specified in 
recognition of a reduction in available control power. K P and K D were chosen based on a natural 

frequency of 0.7, 0.8, and 0.8 r a d / s e c for stability-axis roll, pitch, and stability-axis yaw axes 
respectively, and a damping ratio of 0.9. Moreover, the natural frequencies are linearly reduced to a 
min imum of 7 0 % if the dynamic pressure falls below 50 psf. The guidance command during entry 
changes for attitude command to angle of attack and bank angle command. These commands were 
converted into an attitude command by finding the attitude that corresponds to the specified 
guidance command, assuming vehicle velocity with respect to the air-mass was fixed. 

17 



IV.3 Test Case 1 

Figures 8-15 show a comparison of the performance for the adaptive controller and the 
baseline PID controller designed by N A S A (NPID). Attitude error angles in the ascent phase are 
shown in Figure 8, and the differential throttle and aerodynamic actuator t ime histories are shown in 
Figures 9 and 10, respectively. For this baseline case, the adaptive controller seems to perform 
slightly better at regulating attitude errors. The primary difference between the control t ime 
histories for the two controllers seems to be that the adaptive controller relies more on aerodynamic 
actuation than differential throttle, and that the adaptive controller has significant actuation near t=0. 
Since the dynamic pressure is very low at this t ime, the adaptive controller should have been 
designed to avoid this. Future work will take this into account. 

Entry tracking is shown in Figures 11-13. Results for the two controllers are similar, with 
the N P I D appearing to do slightly better in regulating the sideslip angle command. Sideslip 
regulation in the adaptive architecture needs to be improved, as the vehicle is very sensitive to small 
sideslip variations in entry, especially at high dynamic pressures, where a 1° sideslip angle can 
cause departure. Figures 14 and 15 show the aerodynamic actuator and R C S t ime histories. In entry, 
the rudders are in the wake of the vehicle, and have little to no authority. The N P I D commands 
zero for most of the duration of entry, while the adaptive controller commands saturation. For the 
rudders in entry, differences in the commands are essentially moot. The adaptive controller 
saturates the differential elevon just before 250 seconds, and it remains saturated for nearly 50 
seconds. Meanwhi le , the N P I D design is using more RCS in the roll channel. The two controllers 
are using different actuators to track the roll command that occurs at about 240 seconds. The 
adaptive architecture is structured to use the aerodynamic actuators first in order to conserve RCS 
fuel. The aerodynamic actuator t ime histories for the adaptive control system are noisier than those 
of the N P I D controller. 
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IV.4 Test Case 44 

Test case 44 is a dispersion case where there is a Power Pack Out (PPO) failure at 38 seconds, 
which results in an abort of the mission to an alternate landing site. Figures 16-19 show attitude errors, 
differential throttle commands, actuator time histories, and dynamic pressures for seed 46 of test case 
44. For this case, neither the adaptive algorithm nor the NASA PID (NPED) survives past the ascent 
phase for any of the seeds examined. The figures show consistency in the performance of the first 
adaptive algorithm, which fails to track in pitch after the PPO, and quits iiinning at about 120-140 
seconds. The flaps typically saturate for a short period while attempting to track, while the elevons 
never saturate. The performance of the NPID at first glance roughly matches that of the adaptive 
algorithm. An examination of nine individual seeds (45-53) show that simply tabulating a score of 
whether the adaptive algorithm or the NPID lasts longer shows about three ties (seeds 49, 50, 51) three 
adaptive wins (seeds 45, 46, 52) and three NPID wins (seeds 47, 48, 53). Because the performance of 
the adaptive system is quite consistent, more can be learned by examining how the NPID performed. In 
cases where the NPID performs worse than the adaptive system, if primarily does so because it spins out 
of control early. In cases where it performs better, it does so by saturating both the elevons and flaps, 
and the algorithm manages to begin to regulate the pitch error. Towards the end of ascent, then, the 
vehicle spins out of control. 

Judging by the 'most successful' results from the NPID, it seemed that the primary reason why 
the adaptive algorithm was doing such a poor tracking job was that it was failing to saturate the elevons 
to drive down the pitch error. Four changes were made to tune the ascent architecture. The first can be 
seen in Figure 3. A limit is set on the commanded angular rate in the reference model This appears in 
the limit block and the block called Filter Limit, which is simply a magnitude limited first-order filter. 
This limit was previously set for each axis at [0.05 0.05 0.05] rad/sec. This value was increased to [0.10 
0.20 0.10] rad/sec. In addition, the bandwidth of the linear controller and reference models were 
increased from [0.8 0.8 0.8] rad/sec to [1.0 1.0 1.0] rad/sec. Finally, the values in the allocation matrix 
of differential thrust to pitch and flap to pitch were both cut approximately in half. Results after making 
these changes are labeled as Adaptive2 and are shown in Figures 16-19. 

The performance of the control system after the changes shows some definite improvement. For 
instance, after the initial pitch error at the point where the abort trajectory is implemented, the new 
system successfully returns to zero quickly in nearly every case. The actuator time histories reveal that 
the algorithm is now saturating both the elevons as well as the flaps in order to remove the pitch error. 
Comparison of the two results shows that only for the seed 48 case does the previous adaptive control 
system emerge the winner, by the 'time elapsed until failure' criterion. The two systems roughly tie for 
case 45 , 49, 50, 5 1 , 53, and for the majority of those the newer version lasts slightly longer. For cases 
46, 47, and 52, Adaptive2 survives the entire ascent phase, and reaches transition before the 
algorithm fails. The N P I D algorithm does not survive the ascent phase in any of the seeds 
examined. 

Full saturation of the aerodynamic surfaces is achieved for the period of ascent for which the 
vehicle fails to track the pitch attitude command. It seems unlikely that better tracking can be 
achieved for this case absent a new trajectory, which may require aborting to a different landing site 
or an overhaul of the guidance algorithm. 
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IV.5 Test Case 43 

Test case 43 is a dispersion case where there is a PPO failure at 40 seconds, which results in an 
abort of the mission to an alternate landing site. Table 2 shows the pass/fail results for 9 seeds for 
both the adaptive and the NPID algorithms. The three T A E M criteria included altitude, heading 
angle, and range. The T A E M criteria results and the total t ime elapsed in the run are shown. There 
does not appear to be a clear winner according to these criteria, so a closer look was taken at some 
individual test case runs. The number of figures required to look closely at multiple runs for both 
ascent and entry is large. So, for this report, we will focus on seed 44 of test case 43 . The 
comparison shown in Table 2 is for the adaptive algorithm prior to the changes discussed in Section 
IV.4. A s before, the N P I D algorithm tracks somewhat better in ascent, but the most noticeable 
differences are in entry. Neither the angle of attack, sideslip angle, nor roll angle commands are 
tracked well by the Adaptive controller, especially at low dynamic pressures. Examining the 
actuator command plots can explain why. At low dynamic pressures, the NPID algorithm uses 
approximately 25 degrees of differential elevon, which results in a large amount of roll authority. 
The adaptive algorithm has very little differential elevon usage, partly because there is an artificial 
limit (shown in Figure) used for allocation, and partly because the gain in that channel is small. 

It had been suspected earlier that these limits might need to be relaxed, but early efforts to 
do so had resulted in many more instances of failures in a dispersion run. A second attempt to do so 
was made , during which the nature of the failure was more closely examined. It became clear that 
the large amount of differential actuator (elevon and flap) was resulting in departure at high 
dynamic pressures while showing the expected good tracking results at the low dynamic pressures. 
Thus the allocation scheme presented in Figure 20 was implemented, resulting in a set of large 
differential limits at low dynamic pressures and a set of small differential limits at high dynamic 
pressures. 

f Differential Limit 

| 20 psf \sopsf * qbar 

Figure 20. Typical allocation scheduling diagram 

Table 1 shows the values chosen for the differential limits on the elevons and flaps for the 
lateral modes after tuning the algorithm. 

Table 1 . Differential Limits on the Actuators 

Actuator Mode 
Elevon Roll 20° 10° 
Elevon Yaw 15° 7.5° 
Flap Roll 5° 2.5° 
Flap Yaw 4° 2.0° 
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Table 3 shows the pass/fail results for the same 9 seeds for both before and after 
implementing the changes to the ascent allocation scheme, and the allocation schedule of Figure 20. 
It can be seen that with the changes, the algorithm passes more of the cases and gets nearer to 
passing the cases when it fails, yielding partial scores. Figures 21-30 also show the results for the 
three architectures on test case 43 . 



Table 2. Case 43 results for Adaptive and NPID 

Pass/Fail Criteria: 
Alt 96,000±7000ft Heading ±10° Range 30±7nm 

Seed 44 Adaptive (Pass) NPID (Fain 
Alt (ft.) 95,300 83,900 
Heading (deg) 7.9 12.56 
Range (nm) 28.6 70.7 
Time (sec) 518 447 

Seed 45 Adaptive (Fail) NPID (Fail) 
Alt (ft.) 103,800 103,000 
Heading (deg) -2.4 -1.8 
Range (nm) 61.9 40.8 
Time (sec) 495 519 

Seed 46 Adaptive (Fail) NPID (Pass) 
Alt (ft.) 109,000 95,900 
Heading (deg) 1.2 5.4 
Range (nm) 44.7 26.7 
Time (sec) 512 528 

Seed 47 Adaptive (Pass) NPID (Fail) 
Alt (ft.) 101,200 102,200 
Heading (deg) -.8 -0.8 
Range (nm) 31.9 37.8 
Time (sec) 523 519.3 

Seed 48 Adaptive (Pass) NPID (Pass) 
Alt (ft.) 101,900 96,400 
Heading (deg) -1.0 5.4 
Range (nm) 32.7 29.8 
Time (sec) 520 513 

Seed 49 Adaptive (Pass) NPID (Fail) 
Alt (ft.) 96,800 100,000 
Heading (deg) 4.6 13.2 
Range (nm) 28.9 33.4 
Time (sec) 516 506 

Seed 50 Adaptive (Pass) NPID (Pass) 
Alt (ft.) 102,200 100,700 
Heading (deg) -1.2 -0.7 
Range (nm) 61.2 33.5 
Time (sec) 490 519 

Seed 51 Adaptive (Fail) NPID (Fail) 
Alt (ft.) 93,200 87,400 
Heading (deg) -2.5 19.1 
Range (nm) 91.9 71.7 
Time (sec) 442 438 

Seed 52 Adaptive (Fail) NPID (Pass) 
Alt (ft.) 83,200 96,400 
Heading (deg) -13.8 5.6 
Range (nm) 103.4 27.1 
Time (sec) 432 529 
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Table 3. Case 43 results for Adaptive and Adaptive2 

Pass/Fail Criteria: 
Alt 96,000±7000ft Heading ±10° Range 30±7nm 

Seed 44 Adaptive (Pass) Adaptive2 (Pass) 
Alt (ft.) 95,300 95979 

' Heading (deg) 7.9 5.4 
Range (nm) 28.6 27.9 
Time (sec) 518 521 

Seed 45 Adaptive (Fail) Adaptive2 (Fail) 
Alt (ft.) 103,800 103,800 
Heading (deg) -2.4 -2.4 
Range (nm) 61.9 51.4 
Time (sec) 495 506 

Seed 46 Adaptive (Fail) Adaptive 2 (Pass) 
Alt (ft.) 109,000 102,700 
Heading (deg) 1.2 -0.2 
Range (nm) 44.7 28.0 
Time (sec) 512 533 

Seed 47 Adaptive (Pass) Adaptive 2 (Pass) 
Alt (ft.) 101,200 102,300 
Heading (deg) -.8 -0.8 
Range (nm) 31.9 34.2 
Time (sec) 523 522 

Seed 48 Adaptive (Pass) Adaptive 2 (Pass) 
Alt (ft.) 101,900 101,100 
Heading (deg) -1.0 -0.3 
Range (nm) 32.7 30.6 
Time (sec) 520 522 

Seed 49 Adaptive (Pass) Adaptive 2 (Pass) 
Alt (ft.) 96,800 94,700 
Heading (deg) 4.6 4.4 
Range (nm) 28.9 28.4 
Time (sec) 516 514 

Seed 50 Adaptive (Fail) Adaptive 2 (Fail) 
Alt (ft.) 102,200 103,300 
Heading (deg) -1.2 -1.3 
Range (nm) 61.2 46.3 
Time (sec) 490 504 

Seed 51 Adaptive (Fail) Adaptive 2 (Fail) 
Alt (ft.) 93,200 102,000 
Heading (deg) -2.5 -0.1 
Range (nm) 91.9 58.1 
Time (sec) 442 496 

Seed 52 Adaptive (Fail) Adaptive 2 (Fail) 
Alt (ft.) 83,200 104,300 
Heading (deg) -13.8 -0.2 
Range (nm) 103.4 37.6 
Time (sec) 432 520 
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It's clear that tracking is improved both in ascent as well as entry when employing the 
Adapt ive2 design. Figures 24 - 26 show that the large oscillations that appear in the Adaptive entry 
response at low dynamic pressures are now mostly eliminated in the Adaptive2 response. The 
NPID baseline fails 15/200 seeds for Test Case 43 . Adaptive and Adaptive2 failed 111/200 and 
34/100 seeds, respectively. 

36 



NPID 

00 
V 

-a 

§ 
- o 
3 

1 

50 100 150 200 
Time (sec) 
Adaptive 

250 300 

100 150 200 
Time (sec) 

Adaptive2 

150 
Time (sec) 

300 

Figure 2 1 . Attitude Errors in Ascent (Case 43 , Seed 44) 

37 



NPID 

| — LeftRudder | j 
0 50 100 150 200 250 300 

Time (sec) 

Adaptive 
30 

,i , 1 1 , 1 1 

0 50 100 150 200 250 300 
Time (sec) 

Adaptive2 

RightFlap 
LeftFlap 

— RightElevon 
— LeftElevon 

RightRudder 
— LeftRudder 

RightFlap 
LeftFlap 

— RightElevon 
— LeftElevon 

RightRudder 
— LeftRudder 

mm 

1 
1 

,1 i i i i i 1 

0 50 100 150 200 250 300 
Time (sec) 

Figure 22. Actuator Commands in Ascent (Case 43 , Seed 44) 

38 



Adaptive 

50 100 150 200 
Time (sec) 

NPID 

250 

50 100 150 200 
Time (sec) 

Adaptive2 

250 

Al 
A2 
Bl 
B2 

50 100 150 200 250 
Time (sec) 

300 

gure 23 . Throttle Commands in Ascent (Case 43 , Seed 44) 

39 



NPID 

400 450 
Time (sec) 
Adaptive 

400 450 
Time (sec) 

Adaptive2 

400 450 
Time (sec) 

550 

Figure 24. Alpha response in Entry (Case 43 , Seed 44) 

40 



NPID 

15 

10 

00 
O 

W 

00 
C 
< 
</5 

-5 

•10 

-15 

-20 

-25 
300 

400 450 
Time (sec) 
Adaptive 

550 

; i 1 
f\ i 

A 1 h 
1 r 

V 

V 
— Pc 
— P 
— Pc 
— P 

350 400 450 
Time (sec) 

Adaptive2 

500 550 

10 -

I 4 
.9* 
U 
a -10 

-20 

-25' 
300 350 400 

Time (sec) 
450 500 550 

Figure 25 . Beta response in Entry (Case 43 , Seed 44) 

41 



NPID 

Time (sec) 
Adaptive 

300 350 400 450 500 550 
Time (sec) 

Figure 26. Phi response in Entry (Case 43 , Seed 44) 

42 

2001—! ; : 



NPID 

00 
O 
3 
C 
O 

RightFlap 
LeftFlap 
RightElevon 
LeftElevon 
RightRudder 
LeftRudder 

400 450 
Time (sec) 
Adaptive 

550 

400 450 
Time (sec) 

Adaptive2 

400 450 
Time (sec) 

Figure 27. Actuator Commands in Entry (Case 4 3 , Seed 44) 

43 



x 10 NPID 

400 450 

XLO Adaptive2 

"ioo 350 

10000 

400 450 500 550 600 

600 

Figure 28. RCS Moments in Entry (Case 43 , Seed 44) 

44 



NPID 
500 j 1 ! r~ 

0 100 200 300 400 500 600 
Time [sec] 
Adaptive 

3001 ; ; : | ! I 

,1/ i i i 1 1 1 

0 100 200 300 400 500 600 
Time [sec] 

Figure 29. Dynamic Pressure (Case 43 , Seed 44) 

45 



NPID 
2.5 

Time [sec] 

Figure 30. Altitude (Case 43 , Seed 44) 

46 



IV.6 All Test Cases 

Once the changes were made to try to improve test cases 43 and 44, the entire algorithm was 
run through all the tests again to verify that none of the changes had significantly harmed our scores 
on the other tests. Figure 31 shows results for the NPID algorithm (labeled N A S A PID) and the two 
versions of the adaptive algorithm (labeled Adaptive and Adaptive 2). Overall it appears that the 
differences in scoring are small. Test cases 12, 13, 41 and 43 improved, and test cases 2, 14, 23 , 25 , 
and 36 slightly worsened between the previous adaptive algorithm and Adaptive2. 

The N P I D controller scores better on nearly every test for which both it and the adaptive 
controllers pass . The primary reasons for its higher scores are that it tracks the commands more 
closely and does so using less actuator energy, mostly because the NPID controls aren't as active. 
Over the entire test matrix, the adaptive control system scores better than the NPID because it 
passes more of the tests, reaching the T A E M conditions in cases where the NPID does not. 
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Figure 3 1 . Comparison of test results for each version of the controller. 

Table 4 shows a history of test results since November 2002. The test criteria changed in 
May 2003 , which is why the baseline algorithm's scores changed at that time. The May 2003 
changes were unfavorable to our algorithm. While we decreased the number of failed tests, the 
overall score still decreased due to the introduction of more rigorous testing criteria. After 
implementing the changes of IV.4 and IV.5, the algorithm was re-scored according to NASA's 
criteria, and the overall score increased due to passing one test more than in May, test case 26. 
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Table 4. Final Test Scores 

November 2002 March 2003 May 2003 November 2003 
Score Tests Failed Score Tests Failed Score Tests Failed Score Tests Failed 

Baseline 59.9% 12 59.9% 12 64.5% 12 64.5% 12 

Adaptive 65.8% 9 66.0% 9 63.6% 7 66.4% 6 
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V. Conclusion and Future Work 

This report details the design of a neural network based adaptive flight controller for 
NASA's X-33 launch vehicle model. Of particular interest is the design of the reference model , and 
the implementat ion of hedging to protect the adaptive process from the effects of actuator limits 
during a failure. Examples are given to illustrate the manner in which the design can be improved 
for a several failure scenarios, by modifying aerodynamic control allocation in entry and relaxing 
limits in the reference model . Improvement was shown primarily in the power pack out cases. We 
believe that further improvements are possible, both by refinement of the adaptive control algorithm 
and by implement ing changes in the guidance algorithm. 

In the follow-on work, theoretical analysis will be done with regard to adaptation to bang-
bang actuation such as that present in the reaction control system. Also, the proof of tracking error 
boundedness needs to be improved. That is, while the tracking error signals are bounded, the hedge 
signal may modify the reference model to such a degree that the reference command diverges from 
the desired command. This behavior was observed when an unachievable command is given. An 
alternative is to modify the command to ensure that the vehicle is never commanded to follow a 
trajectory for which there is insufficient control authority. In summary, we plan to: 

1. Address deficiencies that have been identified during testing at N A S A . 

2. Extend our adaptive flight control approach to include T A E M and A/L phases. 

3. Exploration of theoretical aspects including hedging in the presence of dynamic 
actuator nonlinearities and proof of absolute stability. 

4. Preparation of software for delivery and independent evaluation at N A S A Marshall. 
This will, if necessary, include updating all existing codes to a new version of 
M A V E R I C . 

5. Support of evaluation efforts at N A S A Marshall 
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Appendix A 
Neural Network-Based Adaptive Control 

A.l Approximate System Linearization 

One of the common methods for controlling nonlinear dynamical systems is based on 
approximate feedback l inearizat ion A 1 . The form that is employed in each control channel depends 
on the relative degree of the controlled variable. To simplify our discussion, we assume that the 
system has full relative degree, where each regulated variable (element of the state vector x) has a 
relative degree of two. This means that each regulated variable has to be differentiated twice before 
a control variable appears explicitly 

x = f(x,x,u) ( A l ) 

A system has full relative degree when the sum of the relative degree of each all the 
regulated variables equation the degree of the system. This requires that for the system ( A l ) 

x , w e 9 T " . A n example is the case of attitude control, x , w e $ R 3 , where the elements of x 
correspond to the roll, pitch and yaw angles, and u are the torques commanded about each axis. A 
variant of this form arises in which angular rate is regulated. Here, the equation of motion for that 
degree of freedom is expressed in first-order form. A pseudo-control v is defined such that the 
dynamic relation between it and the system state is linear 

x = v (A2) 
where 

v = f(x,x,u) (A3) 

Ideally, the actual controls (u) are obtained by inverting Eq. (A3). Since the function 

f(x, x,u) is not known exactly, an approximation is used 

v = f(x,x,u) (A4) 

which results in 

x = v + A(x, x, u) (A5) 

where the model ing error is represented by 

A(x,x,u) = f(x,x,u)-f(x,x,u) (A6) 

The approximation, / , must be chosen such that an inverse with respect to u exists. Consequently, 
the torque or effective actuator displacement in each axis is constructed as 
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cmd = f-l(x,x,v) (Al) 

A n adaptive process can be used to augment the inverting solution so as to cancel the 
model ing error represented in (A6). As shown in Figure A. 1, the pseudo-control signal in (A5) is 
constructed of three components 

rni Ic ad (A8) 

where vrm is the pseudo-control component generated by the reference model , vlc is the output of 

the linear controller, and vad is generated by the adaptive element introduced to compensate for the 

model inversion error. In the case of perfect actuation (w = ucmd) and perfect adaptation (vacj = A) , 

the commanded pseudo-control signal v equals x, the acceleration of the reference model state. 

rm 

X Reference 
Model 

Xrm _J_ Q Linear 
Controller 

Approximate 
Dynamic 
Inversion 

Plant 

Neural 
Network 

V(T) 

Figure A. 1. NN-augmented adaptive control architecture. 

Eqs . (A6-A8) imply that the model inversion error is a function of the pseudo-control v and 

consequently of the N N output v a d . This explains why V ( T ~ ) is depicted as one of the necessary 

inputs to the N N . A delayed value is used to avoid an algebraic loop. To guarantee existence and 

uniqueness of a fixed-point solution for vad such that = A , it is assumed that the map vad h-> A 

is a contraction. It is shown in [A3] that this is equivalent to the following two requirements on / : 

sign 
ydS; 

= sign 
dS 

(A13) 

dS > dS 
/ 2 > 0 (A14) 
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These conditions imply that there no unknown reversals in control effectiveness, and that the 
true control effectiveness is not underestimated by more that a factor of 2. 

A.2 Linear Controller Design 

A linear controller is designed for each degree of freedom assuming perfect inversion 
( / = / ) . In the SISO case, if the controlled variable has relative degree two (as illustrated in the 
preceding section), the inverted system and the state tracking error dynamics associated with the 
inverted plant have two poles at the origin. A linear controller is designed so that the error 
dynamics are stabilized. In the state feedback case, this can be achieved using a standard 
proportional-derivative (PD) controller, although additional integral action can be incorporated to 
improve steady state performance. In general, the linear controller can be designed using any 
technique as long as the linearized closed-loop system is stable. 

For a second order system, 

(A9) 

where the tracking error vector is defined by 

e = (A10) 

The controller gains are chosen so that the tracking error dynamics given by 

e = Ae + B{vad-A) ( A l l ) 

A = 
0 / 

KP -KD 

B = (A12) 

are stable, i.e., the eigenvalues of A are prescribed. It is evident from Eq. ( A l l ) that the role of the 

adaptive component , vad, is to cancel A. This approach extends directly to the M I M O case. 

The closed-loop system made up of the linear controller and inverted plant is driven by the 
output of an at least 2 n d order reference model. The reference model is hedged in the presence of 
saturation or failure using the pseudo-control hedging methodology, presented next. 

A.3 Pseudo-Control Hedging (PCH) 

P C H introduces a modification to NN-based model reference adaptive flight control. It is 
used to address N N adaptation difficulties arising from various actuation nonlinearities, including 
actuator posit ion and/or rate saturation, discrete (magnitude quantized) control, t ime delays and 
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actuator dynamics . N N training difficulties occur when unmodeled actuator characteristics are 
encountered. For example, the N N adaptive element will attempt to adapt to these nonlinearities, 
even when it is impossible to do so. The goal of PCH to prevent the adaptive element from 
attempting to adapt to these characteristics, while not affecting N N adaptation to other sources of 
inversion error. During periods when a control is position saturated, P C H allows the N N to 
correctly estimate A . Conceptually, P C H "moves the reference model backwards" by an estimate 
of the amount the controlled system did not move due to selected actuator characteristics (such a 
posit ion and rate limits, t ime delays, etc). The reference model is limited or hedged according to an 
estimate of the difference between the commanded and actually achieved pseudo-control 

To briefly review the P C H concept, consider the case of full model inversion, in which the 
plant dynamics are described by ( A l ) . The pseudo-control signal defined in (A4) represents the 
desired acceleration, while the actuator commands are given by (A7). The dynamic inversion 
element is designed assuming perfect actuation. Hence, during periods when the actuator is limited 
(or if the actuator is discrete rather than continuous) ucmcj ^ u. The pseudo-control hedge signal 

vh is defined as the difference between the commanded pseudo-control input and the actually 
achieved pseudo-control . To compute this difference, a measurement or an estimate of the actuator 
posit ion (u) is required. This estimate is then used to compute the pseudo-control hedge as 

vh = f(x,x,ucmd)-f(x,x,u) = v-f(x,x,u) (A 15) 

Figure A.2 illustrates the manner in which v n can be estimated for an actuator that is position and 

rate limited. 

Static Actuator Model Unit Delay 

Figure A.2. Calculation of the Hedge Signal. 

The P C H signal is introduced as an additional input into the reference model , forcing it to 
'move back". If the reference model dynamics without PCH have the form 

Xrm = frm (Xrm ' Xrm > Xc ) (A 16) 
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where xc is the external command signal, then the reference model update with P C H is set to 

*rm = frm {Xrm >Xrm>Xc)~ Vh (A ^ T) 

This is illustrated in Figure A.3 for a linear 2 n d or reference model. A theoretical justification for 
the P C H approach is provided in [A5]. 

a, 

2 + 2 1 1 

s s 

CO. 

a. 

Figure A.3 . Hedged Second Relative Degree Reference Model . 

A.4 The Neural Network 

A nonlinear single hidden layer (SHL) N N is used to compensate for inversion error. The 
SHL N N was chosen because of its universal approximation p roper ty A 6 ' A ? , and because its 
effectiveness in relation to linearly-parametered adaptive control (including linearly parameterized 
NNs) has been demonstrated for flight control appl ica t ions^ . 

For an input vector x , which is constructed from the measured states, the reference model 
outputs and the pseudo-control signal, the output of the SHL N N is given by 

Vad =VadO+Vr (A 19) 

where vad0 is defined as in (A20) and vr is a robustifying term defined below. The first term in 

(A19) is the main output signal from the N N 

VadQ=WTv^Tx) (A20) 

where V and W are the input and output weighting matrices, respectively, and <j is a vector of 
sigmoid activation functions. The N N weights are adapted in real t ime using the following N N 
weights training r u l e s : A 5 ' A 8 
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W = -[((7 - CRVTX}J + 4E\\WY» 

V = -RV\XT]WT<T' + K\\ELV] 

(A21) 

(A22) 

where YW and YV are positive definite learning rate matrices (typically chosen as a scalar t imes an 

identity matrix) , A' is the partial derivative of the sigmoids A with respect to the N N inputs X , 
and K is the known as e-modification gain for classical adaptive control theory. The training signal 
7] is defined by 

7] = eTPB 

where P > 0 is the unique positive definite solution of the Lyapunov equation 

ATP + PA + Q = 0 

(A23) 

(A24) 

for any Q >- 0 . A and B in the above equations are the tracking error dynamics matrices defined in 
Eq. (A12). 

To determine the robustifying terms, define 

Z = V 0 

0 w 
(A25) 

Let denote Frobenius norm, and assume Z < Z . The robustifying terms in (A 19) are 

vr =-<\\Z\\ + Z)KR77

T (A26) 

Kr e S K 3 * 3 diagonal, Kr < 0, and z is such that ||z*|| < Z , where Z* denotes an unknown set of ideal 

weights. 
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Appendix B 
Test Case Matrix 

Nominal Flight: 
F C 1 . Michael lOal nominal 

FC2. Michael lOdl nominal 

All remaining tests use the Michael lOal reference profile as a starting point. 

Engine Failure: 

F C 3 . 36 sec P P O (early abort to Ibex) 
FC4. 50 sec P P O (early abort to Michael) 
Thrust Vector Control Failure: 
FC5 . T V C command bias on Engine A Roll/Pitch TVC commands of + 0 . 5 % 
FC6. T V C command bias on Engine B of Roll/Pitch T V C commands of - 1 . 0 % 
FC7. T V C command bias on Yaw TVC commands o f + 1 . 0 % 
FC8. +3-s igma Fz, M y on Engine A, -3-sigma Fz, M y on Engine B 

Aerosurface Failures: 
FC 9. Right inboard elevon fails to +10 deg at 50 seconds into flight for 30 seconds 
FC 10. Left outboard elevon fails to - 1 5 deg at 275 seconds into flight for 45 seconds 
FC 11. Right flap fails to +2 deg at 150 seconds into flight for 20 seconds 
FC 12. Right flap fails to +2 deg at 300 seconds into flight for 20 seconds 
FC 13. Right rudder fails to - 3 0 deg at 30 seconds into flight for remainder of flight 
FC 14. Left inboard elevon fails to null at 35 seconds into flight 
FC 15. Right outboard elevon fails to null at 250 seconds into flight 
FC 16. Right flap fails to null at 20 seconds into flight 
FC 17. Left flap fails to null at 215 seconds into flight. 
FC 18. Right outboard elevon j ams at 58 seconds 
FC 19. Left inboard elevon j a m s at 208 seconds into flight 
FC 20. Right flap j a m s at 170 seconds into flight 
FC 2 1 . Left flap j a m s at 280 seconds into flight 
The aerosurface failures tests below occur at t=0: 
FC 22. Right inboard elevon fails to "trailing in the breeze" (coefficients set to zero) 
FC 23 . Left outboard elevon fails to "trailing in the breeze" (coefficients set to zero) 
FC 24. Right flap fails to "trailing in the breeze" (coefficients set to zero) 
FC 25. Right rudder fails to "trailing in the breeze" (coefficients set to zero) 

Reaction Control System Failure: 
FC26. Fail 1&10 at M E C O (loss of pure yaw capability) 
FC27: Fail 5&9 at M E C O (loss of pure yaw capability) 
FC28 : Fail 4 at M E C O (loss of yawroll capability) 
FC29: Fail 8 at M E C O (loss of yawroll capability) 
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Modeling Errors: 
FC30. +3-s igma Cm, +3-sigma C L , + 3-sigma C D (pitch moment , lift, and drag coefficients) 
F C 3 1 . - 4 - s i g m a Cm, -4-sigma C L , -4-sigma C D 

FC32. -3-sigma CY, -3-sigma CI, -3-sigma Cn (side force, roll moment , and yaw moment 
coefficients) 
FC33 . - 3 - s i g m a C m (body flap), +3-sigma CY,Cl,Cn (body flap) 
FC34. +3-s igma CY,Cl ,Cn (elevons) 
FC35 . +4-s igma je t effect increments 

FC36. +3-s igma adverse yaw moment increments on elevons & body flaps 

Dispersion Tests: 
FC37. Michael lOa l , 100 dispersion Monte Carlo set 
FC38 . Michael lOa l , 200 dispersion Monte Carlo set, different seed and season 
FC39. Michael lOd l , 100 dispersion Monte Carlo set 
FC40. Michael lOd l , 200 dispersion Monte Carlo set, different seed and season 
F C 4 1 . Michael lOa l , 60 sec PPO, 100 dispersion Monte Carlo set 
FC42. Michael lOa l , 112 sec PPO, 100 dispersion Monte Carlo set 
FC43 . Michael lOa l , 40 sec PPO, 200 dispersion Monte Carlo set, different seed 
FC44. Michael lOd l , 38 sec PPO, 200 dispersion Monte Carlo set, different seed 
FC45. Michael lOa l , 100 dispersion Monte Carlo set with flex filter in attitude and rate error loops. 
FC46. Michael lOd l , 100 dispersion Monte Carlo set with flex filter in attitude and rate error loops. 
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