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SUMMARY

The Elastic Foundation Analysis (EFA) is one of the approaches that could be used

to analyze a face/core debond in a closed form. It can be used to model the effects of

the core and bottom face on the top face in sandwich composites. A sandwich beam is

considered with an elastic foundation introduced in the bonded section of the beam between

the top face sheet and the substrate (core and the bottom face). Sandwich beams also

have an issue unique, it has large transverse shear due to presence of weak core and to

capture it, the governing equations of the beam for both the debonded section and the

bonded section are derived based on the Timoshenko beam theory. The elastic foundation

includes both the normal and the shear springs to account for the transverse displacements

and section rotations of the beam sections. The model is comprehensive and includes both

the deformation of the debonded part and the substrate.

In the elastic foundation approach, the closed form expressions for the modulus of the

normal and rotational shear springs derived based on elasticity theory are used. It is shown

that the model is applicable for both isotropic and orthotropic face and core materials.

Double Cantilever Beam (DCB) specimen with external shear loads and bending mo-

ments is chosen and the appropriate conditions are used to obtain the constant coefficients

in general solutions from the governing equations. Closed form expressions for energy re-

lease rates are obtained using J-Integral approach. Another measure for the energy release

rate in the context of the elastic foundation model is the energy stored in this differential

spring element, which would be released by the differential crack propagation. Mode par-

titioning measure based on the physical meaning of the springs in the elastic foundation

approach, which makes use of the axial and transverse displacements near the crack tip.

The model presented provides closed form solutions that are quick and reliable.

In the Single Cantilever Beam (SCB) specimen with external shear loads on the debonded

top face, the substrate part is restricted in the transverse displacement. The transverse shear

xiii



in the substrate is significant and to capture it, a linearly distributed shear reaction is con-

sidered on the fixed bottom edge of the SCB specimen. The elastic foundation approach is

modified to restrict the transverse displacement of the substrate and capture the transverse

shear. The governing equations are solved using the boundary and continuity conditions of

the SCB specimen. Closed form expressions for the energy release rates and mode parti-

tioning are obtained using similar approach to DCB specimen.

In the case of Mode-II fracture, the effects of crack face contact are usually neglected

in most models presented in the literature. The elastic foundation model is extended here

by introducing a tensionless spring foundation in the cracked region. A novel approach to

include tensionless springs to capture the compressive stresses across the interface between

the debonded face sheet and the substrate is used. Crack faces will have contact zones

and the length of the contact region also needs to be solved. The End Notched Flexure

(ENF) sandwich specimen is chosen to demonstrate Mode-II fracture and the governing

equations are obtained using Euler-Bernoulli beam theory. Using appropriate boundary

and continuity conditions, a system of non-linear equations are obtained. These are solved

to find the solutions for the constant coefficients in the general solutions of the transverse

displacement and the unknown length of crack face region. Further, the tensionless spring

foundation model is extended further to also capture the effects friction in the crack face

contact. The modified governing equations are obtained and are solved.

Expressions for energy release rates are obtained using J-Integral and J-Integral is mod-

ified to account for the energy lost due to the friction tractions.The solutions for mode

partitioning are obtained using the axial and transverse displacements near crack tip. The

model presented is simple and efficient and would not compromise the accuracy of the

results when compared with finite element models or previous models(from literature).
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Motivation

Sandwich structures are used to obtain minimum weight with maximum specific stiffness in

aerospace, marine, civil and wind turbine industries. A sandwich panel consists of two stiff

metallic or composite thin face sheets separated by a low density thick core. Due to this

configuration, sandwich structures usually have high bending stiffness and strength with

little resultant weight penalty and high energy absorption capability. Face sheets need to

be successfully bonded for the sandwich structures to have superior performance. Hence,

the interface between the face and core is considered to be the weak link. Debonding may

occur at the interface and such debonds can grow and eventually lead to complete failure

of the structure. Generally, the main cause of failure is the lack of bonding or inadequate

bonding, which will compromise the transfer of shear stress across the interface between

face and core.

Fracture mechanics is the field of mechanics concerned with understanding and pre-

dicting failure. The energy release rate and the mode mixity of the face/core debonds are

needed to assess the detrimental effects of the debonds. An issue unique to sandwich is

the very large transverse shear due to its weak core. Due to complexities and possibilities

of sandwich construction, energy release and mode mixity of interface debonds are mostly

obtained using finite element analysis. Using finite element analysis to conduct damage tol-

erance and optimization design studies is difficult and time-consuming. There are higher

order theories that can capture the effects of transverse shear and they are time consuming

and difficult. Many FAA safety rules and inspection need simple closed form solution for

sandwich beam. A simple analytical approach that can be used to obtain consistent results
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for obtaining fracture parameters of the face/core debonds in sandwich composite beams

would be really useful.

Therefore, there is a need for simple beam theory approach that can incorporate the

effect of transverse shear. One such approach that could be used to analyse a face/core

debonds and include effect of shear, is an elastic foundation approach with Timoshenko

beam theory. Such that the elastic foundation incorporates both normal and rotational

springs to capture the additional degree of freedom in Timoshenko beam theory. The elas-

tic foundation approach should be comprehensive and unlike previous models, it should

include the deformation of the substrate part. Closed form approach for obtaining energy

release rate and mode mixity values are required, such they it gives consistent results.

Single Cantilever Beam (SCB) sandwich specimen are commonly used specimens for

evaluating debond fracture toughness in mode I loading. In literature, previous models,

even models based on the elastic foundation approach, ignored the transverse shear in the

substrate and assumed it to be rigid. There is a need to extend the elastic foundation ap-

proach to capture the effect of transverse shear in substrate and obtain closed form expres-

sions for the energy release rate and mode partitioning values.

Also the effects of contact in the debonded section are mostly neglected. But in Mode

II/III fracture, it has been shown in literature that crack face contact is the reason for poor

reproducibility of the values of mode II/III fracture toughness. In the contact region, there

will be compressive stresses across the interface between the crack faces. The influence of

contact in the debonded section is usually modeled using the finite element method. So,

a quick and easy way to model contact and friction using simple beam theory and elastic

foundation approach would be valuable to quickly and accurately estimate the values for

energy release rate, mode mixity and contact region. By capturing all these effects, elastic

foundation approach would provide an easy way to obtain simple and accurate results for

face/core debonds in sandwich beams.
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1.2 Literature Review

Sandwich structures have been well summarized and discussed in many books[1, 2, 3, 4].

Principal aspects of sandwich construction and assumptions on which it is based on is well

defined in the book by Howard [1]. The book by Carlsson and Kardomateas [2] focuses

on the structural behaviour and failure characteristics of sandwich materials and structures.

In addition, it also covers the failure mechanisms and the associated fracture mechanics

treatment.

Debonds in the sandwich beam are sensitive to compressive loading. These debonds

are susceptible to buckling and subsequent rapid growth during the postbuckling phase.

The problem is pertinent to design of such structures not only because this failure mode

impairs the strength but also leads to substantial loss of stiffness. In sandwich structures,

there is a large mismatch in elastic properties of the two faces and the core. Generally these

structures are loaded in mixed mode (combined opening and shearing). And since fracture

resistance depends on mode mixity and energy release rate, a reliable way for obtaining

these values is needed. Experimental evaluation of fracture energy using sandwich speci-

mens are presented in Ref.[5][6][7]. These experiments showed that the type of adhesive

is important when failure occurs by interfacial crack propagation. Interfacial crack growth

occured at the bondlayer/core interface which evidently is a critical zone. A Mixed Mode

Beam (MMB) delamination test procedure was presented for a split unidirectional lami-

nate by Reeders and Crews[8]. It was created by combining the mode I loading for the

DCB test with that for the mode II ENF test. This approach provided delamination fracture

toughness data over a wide range of GI /GII ratios using identical test specimens and pro-

cedures. Balaban and Tee[9] studied the effect of different variations in core densities and

thicknesses on strain energy release rate(SERR) of the sandwich composite were evaluated

experimentally, analytically and numerically.

In literature various models have been developed to study the debonding in beam struc-
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tures. A simple analytical model based on potential energy of the system to predict stress

intensity factors was developed by Zenkert[10]. Expressions for energy release rate are

very useful and it was first derived by Yin and Wang[11] for a delaminated homogeneous

composite. The expressions were then extended by Suo and Hutchinson[12] to a delami-

nated bimaterial. The sandwich configuration is, however, a trimaterial with two face sheets

and a core in the middle. Closed form algebraic expressions for the energy-release rate and

the mode mixity were obtained for a debonded sandwich by Kardomateas[13]. Similarly,

fracture of a sandwich specimen loaded with axial forces and bending moments was ana-

lyzed by Ostergaard[14]. Saseendran et al.[15] further extended it for sandwich composite

double-cantilever beam fracture specimen with the face sheets reinforced by stiff plates.

Here, the expressions for the energy release rate and mode mixity phase angle for a rein-

forced double-cantilever beam loaded with uneven bending moments were derived using

a superposition scheme and laminate beam theory. A laminated beam analysis was done

by Carlsson et al.[16] to predict if the crack would propagate self-similarly, or if it would

kink upwards or downwards although it cannot predict magnitude of the kink angle. The

analysis could be used to design a DCB sandwich specimens to achieve a certain desired

crack propagation path. Ratcliffe and Reeder[17] developed a procedure for sizing a single

cantilever beam (SCB) that are used to characterize facesheet-core debonding in sandwich

structure. The characterization is accomplished by measuring the critical strain energy re-

lease rate Gc. An analytical analysis based on LEFM to give energy release rates and mode

mixity for both isotropic and orthopic materials were conducted in Ref.[18]. Crack root

rotation is a measure of deviation from clamped boundary conditions of region in front

of crack tip. The root rotation depends on the shear force and the bending moment act-

ing at the crack tip. Such rotation significantly affects the compliance and energy-release

rate[19]. In experiments[20, 21, 22], it has been shown that fracture energy can depend on

the mode mixity. Hence, a complete analysis of the interface debonds require the determi-

nation of both the energy release rate and the mode mixity. In the all the discussed studies,
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the effect of transverse shear deformation, crack face contact and crack face friction have

all been neglected.

1.2.1 Effects of Transverse Shear

Studies have shown that the effects of shear provide additional terms to the general steady-

state solutions and the shear component of the energy release rate contains a contribution

from the interaction of the shear force with the compliance associated with the defroma-

tions at the crack tip [23, 24]. Various models have been developed to study and capture

these effects. Morais and Pereiera [25] developed a modified beam theory and used it to

predict the compliance and the total energy release rate G of glass/epoxy multidirectional

specimens. Various layerwise theories were developed and used for bi-material beams. In-

terface cracks between two shear deformable elastic layers were studied [26, 27]. A method

based on first-order shear deformable theory was developed to calculate the energy release

rate and stress intensity factor for bi-layer structure. Deformation of crack tip was derived

based on shear deformable bi-layer beam theory and the associated energy release rate was

derived using J-Integral. Further, a novel interface deformable bi-layer beam theory ac-

counting local effects at crack tip was developed by Qiao and Wang [28]. Two interface

compliances were introduced to account for the effect of interface stress on the crack tip

deformation, which can be referred to as elastic foundation effect.

Various numerical models have been developed to obtain energy release and compli-

ance. In bimaterial crack problem, Li et al. [29] studied the effect of shear by a semi

numerical approach. Similar semi-numerical approaches were used by Andrews [23] and

Barbieri et al. [30] for homogeneous solid and symmetric sandwich specimen respectively.

Sun and Pandey developed a model [31] based on an approximate 2-D elasticity solution,

the flexibility of the joint of beam segments in cracked beam was explicitly derived. Nu-

merical evaluation of energy release rate for various cracked specimens using modified

beam model was done. These models have been shown to improve the accuracy of re-
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sults for materials that have high stiffness value and are shown to be inaccurate when the

materials are soft(low stiffness). Several models to model flexible core were developed to

overcome this limitation. In 1992, Frostig et al. [32] proposed the High-Order Sandwich

Panel Theory (HSAPT), in which the transverse compressibility and the shear effects of the

core sheets are both included. It was then extended by including axial rigidity to obtain the

Extended High-Order Sandwich Panel Theory (EHSAPT) by Phan et al. [33]. By compar-

ison to the elasticity solution, the EHSAPT shows high accuracy in both displacement and

stress distributions for a wide range of core materials. Odessa et al. [34, 35] formulated a

unified nonlinear model with Extended High Order Sandwich Panel Theory (EHSAPT) for

the analysis of the process of debonding between a face sheet and the core in sandwich pan-

els. Mode-mixity is also an important parameter that is necessary to characterize face/core

debonds. A different mode-mixity approach [36] based on extrapolation of crack flank dis-

placement results of the Crack Surface Displacement Extrapolation (CSDE) method was

presented for 2-D applications. It is a finite element based structural propagation model.

It is able to simulate crack propagation in and out of a sandwich interface consisting of

orthotropic bimaterials using fracture toughness distributions as input. A number of zigzag

theories have been developed where the displacements have a piecewise variation through

the thickness [37, 38]. Irularo et al.[38] modeled multilayered composite and sandwich

plates as mixed cubic zigzag model. The in-plane displacements follow a piece-wise cubic

distribution and the transverse displacement has a parabolic variation through thickness.

These numerical models and approaches are difficult and time consuming. Hence, there is

a need for simple analytical approach.

A simple beam theory approach that could be used to analyze a face/core debond, and

include the effect of shear, is the elastic foundation approach. Elastic foundation analy-

sis have been used for a long time to study crack propagation [39, 40, 41, 42, 39, 43].

It was used by Kanninen[39] to study the mid-thickness crack in double cantilever beam

(DCB) specimen in a homogeneous material. Williams[40] extended it further by using

6



Timoshenko beam theory. Both used similar expressions for the stiffness of the elastic

foundation. Li and Carlsson[42] analyzed the Tilted Sandwich Debond specimen using

elastic foundation approach to predict its compliance. Elastic foundation analysis of force

and moment - loaded single cantilever sandwich beam specimen was presented by Saseen-

dran [44]. In these elastic foundation analyses, the substrate was assumed to be rigid and

the effects of the end fixity at the bonded segment were not included. An important concern

in elastic foundation analyses is the formula for the elastic foundation modulus. Kanninen

[39] has used simple approximate formulas (accurate) for modulus. Kardomateas et al. [45]

conducted a comprehensive study that resulted in a closed form expression for both the nor-

mal and shear spring stiffnesses. These formulas were derived based on both the elasticity

solution and the extended high - order sandwich panel theory. A closed form expressions

for the energy release rate and mode partitioning of face/core debonds in sandwich beams

were obtained by Kardomateas et al.[43] using elastic foundation approach. Unlike earlier

studies, it included the deformation of substrate part as well. It was then further extended

and the closed form expressions for the case of Single Cantilever Beam(SCB) Specimen

were obtained in Ref.[46]. But, these studies[43][46] used Euler-Bernoulli beam theory

and were not able to capture the effects of transverse shear in sandwich beam.

1.2.2 Crack Face Contact

Initiation and growth of delamination is in many cases caused by interlaminar normal stress

[47, 48, 49, 50]. However, interlaminar shear stresses may also cause delamination [51].

And to determine the interlaminar strength, End Notched Flexure(ENF) specimen is widely

accepted. Experimental characterization of mode II fracture was done by Kageyama et al.

[52]. Carlsson et al. [53] studied the ENF specimen and found that the interlaminar shear

deformation may influence the evaluation of the interlaminar mode II fracture toughness.

Corleto and Hogan [54] used simple modified beam theory analysis with elastic foundation

to evaluate the mode II delamination fracture toughness. Thouless [24] developed ana-
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lytical expressions for the energy-release rate and phase angle of ENF, End-Loaded Split

(ELS) and 3-Point flexure specimens. It was derived based on steady-state energy balance

and the effects of shear are added as an additional term to it. Lu et al. conducted a nu-

merical study on a straight beam under transverse load and a curved beam under constant

moment[55]. It uses orthotropic rescaling technique to solve the straight beam and thin

beam theory to solve curved beam problem. A Cracked Sandwich Beam (CSB) specimen

was presented as a candidate for shear fracture characterization of the bondline between

facings and core in a sandwich[56]. A CSB specimen consists of a sandwich panel under

three-point loading scheme. Experimental results of interfacial debonding with a global

mode II loading scheme using CSB specimens[57]. Strain energy release rates of an CSB

specimen were investigated using refined zigzag theory[58]. Comparisons of the refined

zigzag theory solutions to first-order shear deformation theory(FSDT) and FEM solution

were made.

Due to the bimaterial character of the face/core interface in a sandwich, the analysis of

fracture must recognize the mixed mode loading and that the fracture toughness depends

on the relative amount of Mode I and Mode II at the debond tip. The mixed mode bending

(MMB) test has been used for measuring the mixed mode interlaminar fracture toughness of

monolithic composite materials in Ref.[8, 59, 60]. Quispitupa[61] derived expressions for

compliance and energy release rate for MMB using superposition analysis of solutions for

the DCB and CSB specimens by applying a proper kinematic relationship for the specimen

deformation combined with the loading. Mixed mode cyclic growth in foam core sandwich

specimens have been examined using the MMB test priciple. A modified Paris-Erdogan law

was found to represent the experimentally measured crack growth rate data in Ref.[62].

All these models neglect the interactions between crack faces and ignore the effects they

have on the fracture parameters. This is part of the reason why there is poor reproducibility

of the values of Mode II fracture toughness GIIC .

Interaction between crack faces occur only when they are in contact and they are com-
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pressive in nature. Tensile stresses cannot be transmitted across the interface between crack

faces. The absence of tensile stresses in the cracked region is because the debonded face

sheet lifts away from the substrate. Extending the elastic foundation to account for only

compressive stresses can be done using Tensionless springs in the foundation. Weitsman

[63] has worked on foundation that react in compression only. The model employed in

the study involved only linear differential equations. And when a foundation is tension-

less, the existence of gaps between the structure and the foundations introduces additional

unknowns into the problem. It was further extended in several studies [64, 65] for beams

resting on the tensionless foundation. Ma et al.[66] addressed the static response of infinite

beam supported on a unilateral two-parameter Pasternak foundation and subjected to trans-

verse loads. Using this approach, we can extend the Elastic foundation approach to capture

the compressive stresses across the interface and can improve the accuracy of the results.

1.2.3 Crack Face Friction

Fracture surface interactions can significantly affect the energy release rates and stress in-

tensity factors. Comninou and Dundurs [67] developed an analytical model for stick-slip

behaviour of interface cracks. A numerical model called Boundary Element Method was

used by Mantic et al. [68] to solve interface crack problems in composites including the

effects of crack face contact. Davies et al. [69] showed that it is important to account for

crack face contact when calculating Mode II fracture toughness. And that the main reason

behind this, could be the effects of friction. Russel and Street [70] conducted a experi-

mental loading-unloading cycling test and found that the error in GIIC ignoring friction

was around 2%. Further experiments conducted in Ref.[71, 72] concluded that friction

accounted for about 2% to 5% of the measured values of GIIC from their tests. A model

estimating the magnitude of the frictional Mode II stress intensity factor was developed

by Bian et al. [73]. Other models too predicted the reduction of Mode II stress intensity

factors by fracture surface roughness [74, 75].
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Cohesive Zone Modeling has been used to analyze fracture problems in composite ma-

terials. It is usually implemented in numerical methods and is used in investigation of

fracture process in different material systems[76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86,

87]. Ouyang and Li[88] developed a Cohesive Zone Model (CZM) for the interface shear

fracture of end notched flexure (ENF) specimen. Rabinovitch [89] developed a nonlinear

analytical model that combines an extended high order multi-layer consideration of the

strengthened beam with a cohesive interface modeling of its physical interfaces. Biel and

Stigh[90] made a comparison of J-integral methods to experimentally determine cohesive

laws in shear for adhesives. Further, a finite element model[91] with cohesive elements is

used to determine the relationship between moment ratio and a stress based mode-mixity.

It was found that almost any mode-mixity from pure Mode I to pure Mode II may be ob-

tained by varying M1/M2. Other finite element models were presented to study the energy

release rate of ENF specimen[92] [93, 94]. A finite element model based on virtual crack

closure and compliance techniques was developed to calculate the strain energy release

rate in Ref.[93]. Frictional effects were investigated by including the contact problem in

the finite element model.

1.3 Research Goals

From the above discussions of the literature, these following things can be concluded:

• Most finite element tools and numerical approaches to obtains solutions for debonds

in sandwich beam are mostly only applicable to isotropic material. For orthotropic

materials, there is a need for extension of these tools.

• Closed form solutions have not been able to capture the transverse shear effects.

Various assumptions are adopted in the literature for the elastic foundation analysis.

• There is poor reproducibility of Mode II fracture toughness values, this has been

mainly attributed to contact effects. But, these contact effects are mostly neglected

10



in analytical approaches.

• Need a consistent and reliable analytical approach that can be used to quickly and

accurately estimate the energy release rate and mode mixity values.
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CHAPTER 2

ELASTIC FOUNDATION ANALYSIS OF DOUBLE CANTILEVER BEAM

Interface debonds are common cause for failure in sandwich structures. Due to the presence

of a soft core, the effect of transverse shear is significant. In order to model the effects of the

core & the bottom face on the top face in sandwich beams, the elastic foundation approach

is used. The elastic foundation approach provides a way to obtain closed/near-closed form

solution for debond problems in sandwich composite beams.

x

y

z

b

Figure 2.1: Sandwich beam

A tri-material sandwich beam consists of two face sheets bonded to a soft core as shown

in Figure 2.1. The width of the beam is b. The top and bottom face sheets have thickness

ft & fb, axial young’s modulus Eft & Efb and shear modulus Gft & Gfb respectively. The

core is of thickness 2c with an axial young modulus of Ec and a shear modulus of Gc. The

length of the cracked portion of the beam is a. As a plane problem, only the loading in x-z

plane and the resulting displacements are considered.

The beam is broken down into different parts to conveniently represent them in the

equations. The debonded top face sheet is denoted by ”d”, the substrate(core and the bottom

face) part is denoted by ”s” and the base(top, bottom face sheets and core) part is denoted

by ”b”. It can be seen that only the Young’s Modulus in axial direction (E11) and Shear
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NA of substrate

BOTTOM FACE

Figure 2.2: Sandwich Beam Cross Section

Modulus (G12) appear in the beam theory formulation. Hence, this model can be used for

either isotropic or orthotropic materials.

For a homogeneous beam, the neutral axis would be at the mid-thickness of the beam.

Whereas, for the substrate part, the neutral axis is no longer at the geometrical mid-point of

the section (Figure 2.2). With respect to a reference axis x through the middle of the core,

the neutral axis of the substrate part is at a distance es.

es[Ec(2c) + Efbfb] = Efbfb(
fb
2
+ 2c) (2.1)

and, the neutral axis of the base part is at a distance eb

eb[Eftft + Ec(2c) + Efbfb] = Efbfb

(
fb
2
+ c

)
− Eftft

(
ft
2
+ c

)
(2.2)

The bending rigidity of the debonded face sheet is EId

(EI)d =
Eftbf

3
t

12
(2.3)
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and the bending rigidity of the substrate is EIs

(EI)s = b

[
Ec

2c3

3
+ Ec(2c)e

2
s + Efb

f 3
b

12
+ Efbfb

(
fb
2
+ c− es

)2]
(2.4)

Similarly, the bending rigidity of base part is EIb

(EI)b = b

[
Eft

f 3
t

12
+ Eftft

(
ft
2
+ c+ eb

)2

+ Ec
2c3

3
+ Ec(2c)e

2
b

+ Efb

f 3
b

12
+ Efbfb

(
fb
2
+ c− eb

)2]
(2.5)

The sandwich tri-material beam in Figure 2.3 has a debond of length a and an intact part of

z, w

x, u

a l

ftTOP FACE

CORE

Reference (mid-core)

NA of base

NA of substrate

es
c

c

fb

Md
Vd

Ms

Vs

Vb

Mb

eb

BOTTOM FACE

ft
2

NA of debonded

Figure 2.3: Sandwich section geometry and applied loading configuration

length l. The debonded part is loaded by a shear force Vd and a moment Md; the substrate

part is loaded by a shear force Vs and a moment Ms. The shear force and bending moment

at the right end are Vb and Mb, respectively. Equilibrium of these forces and moments

yields:

Vb = Vd + Vs; Mb =Md +Ms + (Vd + Vs)(l + a) (2.6)
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It should be noted that the formulation and approach are applicable to both beams (plane

stress) and wide panels (plane strain), but different moduli should be used for plane strain

and plane stress problems. For plane strain, E should be replaced by E/(1-ν2), where ν is

Poisson’s ratio. The coordinate system is set so that x = 0 is at the end if the debond, i.e.,

the debond is for negative x and the intact part for positive x (Fig. ??). We denote by w, u,

the transverse and axial displacements, respectively.

2.1 Using Timoshenko Beam Theory

2.1.1 Displacement Fields

The Timoshenko beam theory distinguishes between the angle of rotation of the beam

cross-section, ϕ, and the slope of the neutral axis, dw/dx, as shown in Fig. Figure 2.4,

which differ by the shear angle γ. The transverse displacement of the beam is ’w’. Hence,

the displacement field is given by

φ

dw
dx

Figure 2.4: Timoshenko Beam Theory assumption: Transverse shear strain = dw
dx

− ϕ
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ux(x, z) = −zϕ; (2.7)

uz(x, z) = w (2.8)

Strain Fields

Using the displacement field, the following relationship between the shear strain and the

displacements is obtained:

ϵxx =
dux
dx

(2.9)

γxz =
dux
dz

+
duz
dx

(2.10)

Resulting in,

ϵxx = −z dϕ
dx

(2.11)

γxz =
dw

dx
− ϕ (2.12)

Variational Formulation

From the principle of minimum potential, we know

δπ = 0 (2.13)

δ(U+W ) = 0 (2.14)

Here, U is the strain energy and W is the work done. The first variation of the strain energy

is given by

δU =

∫
L

[(
dM

dx
− V

)
δϕ− dV

dx
δw

]
dx+ [−Mδϕ+ V δw]L0 (2.15)
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Assuming a distributed moment ’m’ and a distributed transverse load ’q’, we obtain the

first variation of the external work as

δW =

∫
L

(mδϕ+ qδw)dx (2.16)

Using the above equation in the variation principle, we get the differential equations:

dM

dx
−V +m = 0 (2.17)

dV

dx
− q = 0 (2.18)

The beam has two portions along its length. There is an intact portion where beam is

fully bonded and a debonded portion where there is a crack between the top face and the

substrate. In the intact portion, an elastic foundation is assumed to be present between

the top face and the substrate. Here, Timoshenko beam theory is used to better capture

transverse shear effects. It introduces an additional degree of freedom and to capture it, we

additionally use rotational shear springs in the elastic foundation as shown in Figure 2.5.

The elastic foundation load is a distributed load applied to both the debonded part and

the substrate, creating a distributed load

q = −knw m = krϕ (2.19)

Here, kn is the stiffness of the normal springs and kr is the stiffness of the rotational shear

springs. It is important to have an accurate estimation of the elastic foundation stiffness

values. In 2018, Kardomateas et. al[45] proposed solutions based on Extended High-Order

Sandwich Panel theory which show very excellent agreement with the elasticity solutions.

It also provided simple closed form expressions for normal and shear springs stiffness for

the case of symmetric sandwich specimens. These stiffness expressions can be used for
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both isotropic and orthotropic materials. Shear spring stiffness can be defined in two ways

(ks and kr). One, using the displacements at the interface (ks) and the other based on the

section rotation of the beam (kr). The simple stiffness expressions for the case of symmetric

sandwich beams are:

kn = b
Ec

3

c
ks = b

Gc
13

c
kr = bGc

13

ft
2

(2.20)

In Timoshenko beam theory, the moment and shear are defined as

M = (EI)
dϕ

dx
; V = −(κGA)γ; γ =

dw

dx
− ϕ (2.21)

For the debonded part and the substrate

Md = (EI)d
dϕd

dx
; Vd = −(κGA)dγd (2.22)

Ms = (EI)s
dϕs

dx
; Vs = −(κGA)sγd (2.23)

2.1.2 Governing Equations

The governing equations of the sandwich beam with elastic foundation for the debonded

part is,

−(EI)d
d2ϕd

dx2
− (κGA)d(

dwd

dx
− ϕd) + S(x)kr(ϕd − ϕs) = 0 (2.24)

(κGA)d(
d2wd

dx2
− dϕd

dx
)− S(x)ke(wd − ws) = 0 (2.25)

(2.26)
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Debonded Face
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Core

Bottom Face

Figure 2.5: Elastic Foundation in the Bonded Section of the beam

and for the substrate,

−(EI)s
d2ϕs

dx2
− (κGA)s(

dws

dx
− ϕs) + S(x)kr(ϕs − ϕd) = 0 (2.27)

(κGA)s(
d2ws

dx2
− dϕs

dx
)− S(x)ke(ws − wd) = 0 (2.28)

The governing equations of the beam are a homogeneous system of linear coupled 2nd

order differential equations. The function S(x) is a step function allowing to separate the

portion of the beam where they are linked, x>0, and where they are not, x<0, i.e.,

S(x) =


1 if x>0 Bonded section

0 if x<0 Cracked section
(2.29)

Bonded section

In the bonded section, the governing equations are simplified to

w′′′′
d (x)− A[w′′

d(x)− w′′
s (x)] +B[wd(x)− ws(x)] = 0 (2.30)

w′′′′
s (x)− C[w′′

s (x)− w′′
d(x)] +D[ws(x)− wd(x)] = 0 (2.31)
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where,

A =

[
kn

(κGA)d
+

kr
(EI)d

]
; B =

[
kn

(EI)d
+

knkr
(EI)d(κGA)d

+
knkr

(EI)d(κGA)s

]
C =

[
kn

(κGA)s
+

kr
(EI)s

]
; D =

[
kn

(EI)s
+

knkr
(EI)s(κGA)s

+
knkr

(EI)s(κGA)d

]

Here, the governing equations are fourth order coupled differential equations and are

in terms of the transverse displacements of the debonded part and the substrate. These

equations can be solved by taking the Laplace transform as shown next:

s4Wd(s)− As2(Wd(s)−Ws(s)) +B(Wd(s)−Ws(s)) = 0 (2.32)

s4Ws(s)− Cs2(Ws(s)−Wd(s)) +D(Ws(x)−Wd(x)) = 0 (2.33)

Solving Equation 2.32 we can obtain Ws(s) in terms of Wd(s),

Ws(s) =
s4 − As2 +B

B − As2
Wd(s) (2.34)

Using this relationship in Equation 2.33, we get

s8Wd(s)− (A+ C)s6Wd(s) + (B +D)s4Wd(s) = 0 (2.35)

Now taking inverse Laplace transform of the above equation results in,

w′′′′′′′′
d (x)− (A+ C)w′′′′′′

d (x) + (B +D)w′′′′
d (x) = 0 (2.36)

This is an eighth-order linear homogeneous differential equation. Assuming a solution of
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the form erx, results in the following equation:

r8 − 2λ21r
6 + λ42r

4 = 0; or r4(r4 − 2λ21r
2 + λ42) = 0 (2.37)

Setting µ = r2, results in the quadratic equation

µ2 − 2λ21µ+ λ42 = 0 (2.38)

The discriminant of this quadratic equation is ∆ = 4(λ41 − λ42) which means that there are

three possibilities for the roots:

Case 1 : λ21 - λ22 < 0

When the discriminant is negative, the roots of the quadratic equation are complex

conjugates as follows:

µ1,2 = λ21 + i
√
λ41 − λ42 (2.39)

This implies

r1,2,3,4 = ±
√
λ21 ±

√
λ41 − λ42 r5,6,7,8 = 0 (2.40)

If we set

k1 = real

(√
λ21 −

√
λ41 − λ42

)
; k2 = im

(√
λ21 +

√
λ41 − λ42

)
(2.41)
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then the general solutions for case 1 can be written as follows

wd =c1d cosh(k1x) cos(k2x) + c2d sinh(k1x) cos(k2x) + c3d cosh(k1x) sin(k2x) (2.42)

+ c4d sinh(k1x) sin(k2x) + c5dx
3 + c6dx

2 + c7dx+ c8d

ws =c1s cosh(k1x) cos(k2x) + c2s sinh(k1x) cos(k2x) + c3s cosh(k1x) sin(k2x) (2.43)

+ c4s sinh(k1x) sin(k2x) + c5sx
3 + c6sx

2 + c7sx+ c8s

Case 2 : λ21 - λ22 = 0

When the discriminant is zero, the roots of the quadratic equation are real and equal as

follows:

µ1,2 = λ21 (2.44)

That implies

r1,2,3,4 = ±λ1 ; r5,6,7,8 = 0 (2.45)

So, the solutions for this case 2 are as follows:

wd =c1dx cosh(k1x) + c2dx sinh(k1x) + c3d cosh(k1x) + c4d sinh(k1x) (2.46)

+ c5dx
3 + c6dx

2 + c7dx+ c8d

ws =c1sx cosh(k1x) + c2sx sinh(k1x) + c3s cosh(k1x) + c4s sinh(k1x) (2.47)

+ c5sx
3 + c6sx

2 + c7sx+ c8s

Case 3 : λ21 - λ22 > 0

When the discriminant is positive, the roots of the quadratic equation are real and dis-
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tinct:

µ1,2 = λ21 ±
√
λ41 − λ42 (2.48)

This implies:

r1,2,3,4 = ±
√
λ21 ±

√
λ41 − λ42 ; r5,6,7,8 = 0 (2.49)

The roots r1,2,3,4 are real and distinct and the solution for the displacement field is as fol-

lows:

wd = c1de
r1x + c2de

r2x + c3de
r3x + c4de

r4x + c5dx
3 + c6dx

2 + c7dx+ c8d (2.50)

ws = c1se
r1x + c2se

r2x + c3se
r3x + c4se

r4x + c5sx
3 + c6sx

2 + c7sx+ c8s (2.51)

It is important to notice at this point that out of the three possible cases, the most useful

case is the one where the discriminant is negative (Case 1). An extensive examination of

material properties of most commonly used material combinations for sandwich compos-

ites (H100 core, Aluminum Foam, Aluminum Face and others) showed that and all these

material combinations would lead to Case 1 with the displacement field given by eqns (8d)

and (8e). Hence, we will be solving the debonded sandwich beam problem with the solu-

tions (8d) and (8e) for the bonded section of the beam.

Solution for the Sandwich Beam in the Bonded section

For the bonded section of the beam, 0 ≤ x ≤ l, substituting the displacement field Equa-

tion 2.42 into the differential equations Equation 2.24 to Equation 2.28 gives

Bws − Aw′′
s = w′′′′

d − Aw′′
d +Bwd (2.52)

23



Using this relationship between wd and ws, we get

c1s = F1c1d + F2c4d ; c2s = F1c2d + F2c3d (2.53)

c3s = F1c3d − F2c3d ; c4s = F1c4d − F2c1d (2.54)

cis = cid ; i = 5, 6, 7, 8 (2.55)

where,

F1 =
B2 + A2(k21 + k22)

2 + A(k21 + k22)
2(k22 − k21) + 2AB(k22 − k21) +B(k41 − 6k21k

2
2 + k42)

B2 + 2AB(k22 − k21) + A2(k21 + k22)
2

(2.56)

F2 =
4Bk1k2(k

2
1 − k22)− 2Ak1k2(k

2
1 + k22)

2

B2 + 2AB(k22 − k21) + A2(k21 + k22)
2

(2.57)

The resulting substrate displacement is:

ws =(F1c1d + F2c4d) cosh k1x cos k2x+ (F1c2d + F2c3d) sinh k1x cos k2x+

+ (F1c3d − F2c2d) cosh k1x sin k2x+ (F1c4d − F2c1d) sinh k1x sin k2x+

+ c5dx
3 + c6dx

2 + c7dx+ c8d (2.58)

The beam rotations ϕd and ϕs can be obtained using Equation 2.25 and Equation 2.28,

which can be written as:

dϕd

dx
=
d2wd

dx2
− kn

(κGA)d
(wd − ws)

dϕs

dx
=
d2ws

dx2
− kn

(κGA)s
(ws − wd)
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Substituting wd and ws in the above equation and then integrating, we get

ϕd = (M1c2d +M2c3d) cosh k1x cos k2x+ (M1c1d +M2c4d) sinh k1x cos k2x+

+(M1c4d −M2c1d) cosh k1x sin k2x+ (M1c3d −M2c2d) sinh k1x sin k2x+

+3c5dx
2 + 2c6dx+ cϕd (2.59)

ϕs = (N1c2d +N2c3d) cosh k1x cos k2x+ (N1c1d +N2c4d) sinh k1x cos k2x+

+(N1c4d −N2c1d) cosh k1x sin k2x+ (N1c3d −N2c2d) sinh k1x sin k2x+

+3c5dx
2 + 2c6dx+ cϕs (2.60)

where,

M1 =
F2k2kn + k31(κGA)d + k1[(−1 + F1)kn + k22(κGA)d]

(κGA)d(k21 + k22)
(2.61)

M2 =
F2k1kn + k2[kn − F1kn + (k21 + k22)(κGA)d]

(κGA)d(k21 + k22)
(2.62)

N1 =
F1k

3
1(κGA)s − F2k

2
1k2(κGA)s − F2k2[kn + k22(κGA)s] + k1[kn − F1kn + F1k

2
2(κGA)s]

(κGA)s(k21 + k22)

(2.63)

N2 =
F2k1[−kn + (k21 + k22)(κGA)s] + k2[(−1 + F1)kn + F1(k

2
1 + k22)(κGA)s]

(κGA)s(k21 + k22)
(2.64)

Debonded Section of the beam −a ≤ x ≤ 0

In the debonded section of the beam, there is no elastic foundation between the debonded

face and the substrate. Hence, the governing equations are simplified to:

EIdϕ
′′′
d + (κGA)d(w

′′
d − ϕ′

d) = 0 ; (κGA)d(w
′′
d − ϕ′

d) = 0 (2.65)

EIsϕ
′′′
s + (κGA)s(w

′′
s − ϕ′

s) = 0 ; (κGA)s(w
′′
s − ϕ′

s) = 0 (2.66)
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From the above equations

ϕ′′′
d = 0 ; ϕ′′′

s = 0 (2.67)

from which, we obtain the displacement field in the debonded section as follows:

wd =e1dx
3 + e2dx

2 + e3dx+ e4d (2.68)

ϕd =3e1dx
2 + 2e2dx+ eϕd

(2.69)

ws =e1sx
3 + e2sx

2 + e3sx+ e4s (2.70)

ϕs =3e1sx
2 + 2e2sx+ eϕs (2.71)

It is important to note that in these solutions there are 20 coefficients, namely, the cid,

i = 1,2,..,8; and the cϕj
, eij , i = 1, 2, 3, j = d, s. We need to solve for these unknown

coefficients in order to determine the complete displacements and rotations of the beam

sections.

2.1.3 Boundary Conditions

Double Cantilever Beam (DCB) specimen is widely used for measuring the fracture tough-

ness in mode I,GIc, of composites. The specimen is under external bending moments and

shear forces as shown in Figure 2.6.

At the crack tip, x = 0, the bending moments of the debonded face and the substrate

can be obtained in terms of the external loads

Md + Vda = (EI)dϕ
′
d|x=0 = 2(EI)de2d (2.72)

Ms + Vsa = (EI)sϕ
′
s|x=0 = 2(EI)se2s (2.73)
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Reference (Mid-Core)

Fixed Support

VsMs

Md Vd

Interface Crack

Figure 2.6: Double Cantilever Beam specimen with external moments and shear loads

which gives,

e2d =
Md + Vda

2(EI)d
; e2s =

Ms + Vsa

2(EI)s
(2.74)

Similarly, at the left end, x = -a, the bending moments of the debonded face and the sub-

strate can be obtained in terms of the external loads

Md = (EI)dϕ
′
d|x=−a = (EI)d(−6e1da+ 2e2d) (2.75)

Ms = (EI)sϕ
′
s|x=−a = (EI)s(−6e1sa+ 2e2s) (2.76)

Using Equation 2.74 results in:

e1d =
Vd

6(EI)d
; e1s =

Vsa

6(EI)s
(2.77)

Also at the left end, x = −a, the shear forces on the debonded face and the substrate are

27



known from the applied external shear loads

Vd = −(κGA)d(w
′
d − ϕd)|−a = −(κGA)d(e3d − eϕd

) (2.78)

Vs = −(κGA)s(w
′
s − ϕs)|−a = −(κGA)s(e3s − eϕs) (2.79)

In the polynomial part of the general solutions, it can be seen that the term c8d produces

no strain (since the strain in the Timoshenko beam theory is associated with the bending

moment and shearing force, which in turn are expressed in terms of the first derivative of

the displacement).

At the crack tip, x = 0, we also have continuity conditions across the debonded section

and the bonded section of the beam Displacement continuity:

e4d = c1d ; e4s = F1c1d + F2c4d (2.80)

Beam rotation continuity:

eϕd
=M1c2d +M2c3d + cϕd ; eϕs =M1c2d +M2c3d + cϕd (2.81)

Bending Moment continuity:

2e2d = c1d(k1M1 − k2M2) + c4d(k2M1 + k1M2) + 2c6d (2.82)

2e2s = c1d(k1N1 − k2N2) + c4d(k2N1 + k1N2) + 2c6d (2.83)

Shear Force continuity:

e3d =c2dk1 + c3dk2 + c7d (2.84)

e3s =c2d(F1k1 − F2k2) + c3d(F2k1 + F1k2) + c7d (2.85)
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At the right end, x = l, the beam is clamped. So, the deflection of the debonded and the

substrate part is zero:

wd(l) = c1d cosh k1l cos k2l + c2d sinh k1l cos k2x+ c3d cosh k1l sin k2l+

+ c4d sinh k1l sin k2l + c5dl
3 + c6dl

2 + c7dl + c8d = 0 (2.86)

ws(l) = (F1c1d + F2c4d) cosh k1l cos k2l + (F1c2d + F2c3d) sinh k1l cos k2l+

+ (F1c3d − F2c2d) cosh k1l sin k2l + (F1c4d − F2c1d) sinh k1l sin k2l+

+ c5dl
3 + c6dl

2 + c7dl + c8d = 0 (2.87)

It is also important to note that the hyperbolic cosine and sine functions can quickly become

very large numbers, unlike the hyperbolic tan function, and this would make the numerical

solution fail, thus we divide by cosh k1l, to obtain

c1d cos k2l + c2d tanh k1l cos k2x+ c3d sin k2l + c4d tanh k1l sin k2l+

+ (c5dl
3 + c6dl

2 + c7dl + c8d)/ cosh k1l = 0 (2.88)

(F1c1d + F2c4d) cos k2l + (F1c2d + F2c3d) tanh k1l cos k2l + (F1c3d − F2c2d) sin k2l+

+ (F1c4d − F2c1d) tanh k1l sin k2l + (c5dl
3 + c6dl

2 + c7dl + c8d)/ cosh k1l = 0 (2.89)

Similarly, at the clamped end, the section rotation of the beam is zero:

ϕd(l) = (M1c2d +M2c3d) cos k2l + (M1c1d +M2c4d) tanh k1l cos k2l+

+ (M1c4d −M2c1d) sin k2l + (M1c3d −M2c2d) tanh k1l sin k2l+

+ (3c5dl
2 + 2c6dl + cϕd

)/ cosh k1l = 0 (2.90)

ϕs(l) = (N1c2d +N2c3d) cos(k2l) + (N1c1d +N2c4d) tanh(k1l) cos(k2l)+

+ (N1c4d −N2c1d) sin(k2l) + (N1c3d −N2c2d) tanh k1l sin k2l+

+ (3c5dl
2 + 2c6dl + cϕs)/ cosh k1l = 0 (2.91)
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Also at the right end, x = l, the total bending moment and shear force are the sum of these

created at the debonded part and the substrate part, i.e,

Mb = (EI)dϕ
′
d|x=l + (EI)sϕ

′
s|x=l (2.92)

Similar to previous conditions, we again divide by cosh k1l to avoid numerical failure. This

gives:

Mb

cosh k1l
=(EI)d

[
[c1d(k1M1 − k2M2) + c4d(k1M2 + k2M1)] cos k2l+

+ [c2d(k1M1 − k2M2) + c3d(k1M2 + k2M1)] tanh k1l cos k2l+

+ [c3d(k1M1 − k2M2)− c2d(k1M2 + k2M1)] sin k2l+

+ [c4d(k1M1 − k2M2)− c1d(k1M2 + k2M1)] tanh k1l sin k2l

]
+

+ (EI)s

[
[c1d(k1N1 − k2N2) + c4d(k1N2 + k2N1)] cos k2l+

+ [c2d(k1N1 − k2N2) + c3d(k1N2 + k2N1)] tanh k1l cos k2l+

+ [c3d(k1N1 − k2N2)− c2d(k1N2 + k2N1)] sin k2l+

+ [c4d(k1N1 − k2N2)− c1d(k1N2 + k2N1)] tanh k1l sin k2l

]
+

+ (EId + EIs)(6c5dl + 2c6d)/ cosh k1l (2.93)

and for the shear

Vb = −(κGA)d(w
′
d − ϕd)|x=l − (κGA)s(w

′
s − ϕs)|x=l (2.94)
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which gives,

Vb
cosh k1l

=− (κGA)d

[
[c2d(k1 −M1) + c3d(k2 −M2)] cos k2l+

+ [c1d(k1 −M1) + c4d(k2 −M2)] tanh k1l cos k2l+

+ [c4d(k1 −M1)− c1d(k2 −M2)] sin k2l+

+ [c3d(k1 −M1)− c2d(k2 −M2)] tanh k1l sin k2l + (c7d − cϕd
)/ cosh k1l

]
−

− (κGA)s

[
[c2d(F1k1 − F2k2 −N1) + c3d(F2k1 + F1k2 −N2)] cos k2l+

+ [c1d(F1k1 − F2k2 −N1) + c4d(F2k1 + F1k2 −N2)] tanh k1l cos k2l+

+ [c4d(F1k1 − F2k2 −N1)− c1d(F2k1 + F1k2 −N2)] sin k2l+

+ [c3d(F1k1 − F2k2 −N1)− c2d(F2k1 + F1k2 −N2)] tanh k1l sin k2l+

+ (c7d − cϕs)/(cosh k1l)

]
(2.95)

We can see that equations Equation 2.78-Equation 2.95 are a system of 16 linear algebraic

equations. Here, in these equations, the unknowns cid, i = 1 . . . 8 and cϕj
, e3j , e4j , eϕj

,

j = d, s are coefficients in the general solutions. These 16 equations can be solved to obtain

the solutions for remaining 16 unknown coefficients using simple a computer program.

2.2 Fracture Parameters

2.2.1 Energy Release Rate

Once we have solved the governing equations, the displacements and the section rotations

of the beam section can be used to obtain the fracture parameters. The energy release rate

is the instantaneous loss of potential energy per unit crack growth area. J-Integral The

J-Integral represents a way to calculate the strain energy release rate. And the J-Integral is
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defined by

J =

∫
Γ

Wdz − Ti
∂ui
∂x

ds (2.96)

where W =
∫ ϵ

0
σijdϵij is the strain energy density. Ti and ui are the components of the

traction vector and the displacement vector, respectively. The integration path is shown in

the Figure 2.7 (Γ = BAA′FED′DCB). On the horizontal segments of the path, there is

no traction T⃗ = 0 and dz = 0 so J = 0. Hence, only pathsBA,A′F,ED′ andD′C contribute

to J. On the vertical sides,

Reference (Mid-Core)

B

A

A’

F E

D’

D

C

z,w

x, u

es
NA of substrate

eb
NA of base

Figure 2.7: J-Integral Path

W =
1

2
(σxxϵxx + σzzϵzz + τxzγxz) ; Ti

∂ui
∂x

= −σxxϵxx − τxzw,x (2.97)

The equivalent shear modulus for the section should be derived by assuming the constituent

sections are “springs in parallel”, as shown in Kardomateas and Simitses [95]. For the

debonded part, which is homogeneous, the equivalent shear modulus is:

Gd = Gft (2.98)
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For the substrate part which consists of the core and the bottom face:

2c+ fb
Gs

=
2c

Gc

+
fb
Gfb

(2.99)

For the base part

ft + 2c+ fb
Gb

=
ft
Gft

+
2c

Gc

+
fb
Gfb

(2.100)

Regarding the shear correction factor, for a homogeneous section, κ = 6/5. Thus, for the

debonded part:

κd =
6

5
(2.101)

The shear correction factor for the substrate part can be found using the general asymmetric

section formula in [45]:

κs =
Gsb

2(2c+ fb)

4(EI)2s

(
E2

c

Gc

q2 −
E2

fb

G−fb
q1

)
(2.102)

where

q1 = fb(c− es + fb)
4+

1

5
[(c− es + fb)

5 − (c− es)
5]−

− 2

3
(c− es + fb)

2[(c− es + fb)
3 − (c− es)

3] (2.103)

q2 = 2c(c+ es)
4 +

1

5
[(c+ es)

5 − (c− es)
5]− 2

3
(c+ es)

2[(c− es)
3 − (c− es)

3] (2.104)
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The shear correction factor for the base part can again be taken from the Huang and Kar-

domateas [96] formula for a general asymmetric sandwich section. In terms of:

at = eb + c+ ft ; bt = eb + c ; ct = eb + c+
ft
2

(2.105)

ab = −eb + c+ fb ; bb = −eb + c ; cb = −eb + c+
fb
2

(2.106)

and

di =
E2

fi

Ec

f 2
i c

2
i + Efificib

2
i +

Ec

4
b4i (2.107)

the shear correction formula for the base part is given from:

κb =
b2(fb + 2c+ ft)Gb

EI2eq
(af + ac) (2.108)

where

af =
∑
i=t,b

E2
fi

4Gi

[
a4i fi −

2

3
a2i (a

3
i − b3i ) +

1

5
(a5i − b5i )

]
(2.109)

ac =
Ec

Gc

∑
i=t,b

Ec

20
(b5i − e5b)−

(
Ec
b2i
2
+ Efifici

)
1

3
(b3i − e3b) + dic (2.110)

For a plane stress assumption, σzz = 0, and ϵxx = σxx/E, therefore, when dz = -ds,

dJ =
1

2

(
σxxϵxx + σzzϵzz + τxzγxz

)
(−ds)−

(
− σxxϵxx − τxzwi,x

)
ds (2.111)

or,

dJ =
1

2

(
σ2
xx

E
− κ

τ 2xz
2Geq

+ 2τxzwi,x

)
ds (2.112)
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Similarly, when dz = ds,

dJ =
1

2

(
− σ2

xx

E
+ κ

τ 2xz
2Geq

− 2τxzwi,x

)
ds (2.113)

Notice that for a plane strain assumption, ϵzz = 0, we would have σzz = νxzσxx, and

ϵxx = (σxx − νzxσzz)/E = (1− νzxνxz)σxx/E.

Therefore, again for a plane stress assumption:

On BA: dz = −ds,

JBA =

∫ ft
2

− ft
2

(
1

2Ed

σ2
xx −

κd
2Geq

τ 2xz + τxzwi,x|x=−a

)
ds =

=

∫ ft
2

− ft
2

(
1

2
Ed

M2
ds

2

(EI)2d
− κd

2Geq

V 2
d

A2
d

− Vd
Ad

wd,x|x=−a

)
ds (2.114)

or,

JBA =
1

2b2
[
12M2

d

Edf 3
t

− κdV
2
d

Gdft
− 2Vdb(3e1da

2 − 2e2da+ e3d)] (2.115)

On A′F : dz = −ds, and

JA′F =

∫
A′F

(
1

2
Ed

M2
s s

2

(EI)2s
− κsV

2
s

2GsA2
s

− Vs
As

ws,x|x=−a

)
ds (2.116)

or,

JA′F =
M2

s

2(EI)2s

[
Efbfb

[
(c− es)(c− es + fb) +

f 2
b

3

]
+ 2Ecc

(c2
3
+ e2s

)]
−

− ksV
2
s

2Gsb2(2c+ fb)
− Vs

b
(3e1sa

2 − 2e2sa+ e3s) (2.117)
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On EC: dz = ds, and,

JEC =

∫
CE

(
− Eb

M2
b s

2

2(EI)2b
+

κbV
2
b

2GbA2
b

+
Vb
Ab

ϕb|x=l −
V 2
b

Ab(κGA)b

)
ds =

=− M2
b

2(EI)2b

(
Efb

∫ eb−c

eb−c−fb

s2ds+ Ec

∫ eb+c

eb−c

s2ds+ Eft

∫ eb+c+ft

eb+c

s2ds

)
+

+
κbVb
2GbA2

b

∫ eb+c+ft

eb−c−fb

ds+
Vb
Ab

∫ eb+c+ft

eb−c−fb

ϕb|x=lds−
V 2
b

Ab(κGA)b

∫ eb+c+ft

eb−c−fb

ds

(2.118)

At x = l, we know from the boundary conditions that the section rotations ϕd and ϕs are

zero. This also implies that ϕb = 0. Therefore,

JEC =− M2
b

2(EI)2b

{
Efbfb

[
(eb − c)(eb − c− fb) +

f 2
b

3

]
+ 2Ecc(

c2

3
+ e2b) + Eftft

[
(eb + c)(eb + c+ ft) +

f 2
t

3

]}
+

+

(
κbV

2
b

2GbA2
b

)
(2c+ ft + fb)−

V 2
b

b(κGA)b
(2.119)

The strain energy release rate is the sum of these individual contributions (JBA, JA′F and

JEC).

J = JBA + JA′F + JEC (2.120)

Hence, the energy release rate of the double cantilever beam specimen can be obtained
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from the following expression:

J =
1

2b2

[
12M2

d

Edf 3
t

− κdV
2
d

Gdft
− 2Vdb(3e1da

2 − 2e2da+ e3d)

]
+

+
M2

s

2(EI)2s

{
Efbfb

[
(c− es)(c− es + fb) +

f 2
b

3

]
+ 2Ecc

(c2
3
+ e2s

)}
−

− ksV
2
s

2Gsb2(2c+ fb)
− Vs

b
(3e1sa

2 − 2e2sa+ e3s) +
κbV

2
b

2GbA2
b

(2c+ ft + fb)−

− V 2
b

b(κGA)b
+

M2
b

2(EI)2b

{
Efbfb

[
(eb − c)(eb − c− fb) +

f 2
b

3

]
+

+ 2Ecc(
c2

3
+ e2b) + Eftft

[
(eb + c)(eb + c+ ft) +

f 2
t

3

]}
(2.121)

Rate of Energy Released by the springs

In an elastic foundation approach, when the crack grows, it breaks the springs and,

hence, it releases the energy stored in the broken springs. We can determine the released

energy by finding the energy stored in the springs due to the deformations in the beam [9].

Let the differential spring length be da, the energy released by crack when it propagates by

length da is the energy stored in this differential spring element:

Gspring = lim
δa→0

1

2δa

∫ δa

0

σzz(r)∆w(δa− r)dr (2.122)

The normal spring stiffness is kn and, therefore, the of energy released by the normal

springs is given by:

Gspring,I =
1

2
kn[wd(0)− ws(0)]

2 =
1

2
kn(e4d − e4s)

2 (2.123)

Here, in the elastic foundation, we also have shear springs and kr is the shear spring stiff-

ness; thus the rate of energy released by the shear springs is given by:

Gspring,II =
1

2
kr(ϕd(0)− ϕs(0))

2 =
1

2
kr(eϕd − eϕs)

2 (2.124)
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The total energy release rate obtained from the springs is,

G = Gspring,I +Gspring,II =
1

2
kn(e4d − e4s)

2 +
1

2
kr(eϕd − eϕs)

2 (2.125)

Equation 2.125 can be used as another measure to find the energy release rate values. These

values will next be compared with the J-Integral values and the ones from a finite element

analysis.

2.2.2 Mode Partitioning

Mode mixity values are usually obtained using the complex stress intensity factor approach.

This approach was used by Suo and Hutchinson [12] and Kardomateas et al [13]. Using this

approach in [12] and [13] necessitated the estimation of stress intensity factor in terms of a

single load-independent parameter (the parameter “ω′′), which is numerically determined.

The aim here is to obtain closed form expressions for the fracture parameter and thus, we

use an alternate approach to obtaining mode partitioning. It makes use of the displacements

near the beginning of the elastic foundation and was introduced by Kardomateas et al [43].

Notice that displacements as an alternative approach to determine mode mixity have

been used in bi-material fracture mechanics by Berggreen et al [36]. However, the latter is

based on the fracture mechanics singular field and thus it is different conceptually than the

measure of mode partitioning, which is based on the elastic foundation model.

According to Timoshenko beam theory, the axial and transverse displacement distribu-

tion is given by Equation 2.8. Therefore, the displacements of the debonded part (notice

that the positive slope is the counter-clockwise) in the limit are:

wdo = lim
x→0

wd(x) = c1d = e4d (2.126)

udo =
ft
2
lim
x→0

ϕd(x) =
ft
2
[(M1c2d +M2c3d) + cϕd

] =
ft
2
eϕd (2.127)
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and the corresponding ones for the substrate part in the limit are:

wso = lim
x→0

ws(x) = (F1c1d + F2c4d) = e4s (2.128)

uso =− (es + c) lim
x→0

ϕs(x) = −(es + c)[(N1c2d +N2c3d) + cϕs ] = −(es + c)eϕs

(2.129)

In this case, the Timoshenko beam theory already accounts for transverse shear. So, the

mode partitioning phase angle ψEF , based on the elastic foundation approach is defined

from the relative crack flank opening and shearing displacements. It is defined so that

ϕEF = 0 if only transverse displacement occurs at the beginning of springs, x = 0 (pure

Mode I) and ϕEF = 90o if only axial displacement occurs at x = 0 (pure Mode II).

ψEF = tan−1 δu

δw
= tan−1

(
udo − uso
wdo − wso

)
(2.130)

or,

ψEF = tan−1[
ft
2
eϕd + (es + c)eϕs

e4d − e4s
] (2.131)

In the elastic foundation model, a crack does not exist, instead we have beams connected by

elastic springs. This mode partitioning is not the same conceptually as the mode mixity in

a bi-material crack, which is based on the stress intensity factors from a fracture mechanics

approach. But, as the results in the following section show, the two are very close in value.

2.3 Results and Discussion

We obtained results for a symmetrical sandwich beam with faces made out of isotropic

Aluminum (Young’s Modulus Ef = 70 GPa and Poisson’s ratio νf = 0.3) and with made

out of isotropic Aluminium Foam (Young’s Modulus Ec = 7 GPa and Poisson’s ratio νc =

0.32). We chose isotropic faces and core because we shall compare our results with the
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commercial finite element code ABAQUS. In ABAQUS, the stress intensity factors (KI

and KII) for an interfacial crack can be calculated only when the two materials are both

isotropic and linearly elastic.

We chose a beam geometry, with face thicknesses ft = fb = 2 mm and core thickness 2c

= 20mm. The total length of the beam was taken as L = 500mm. The beam has a debond

between the top face and the core of length of a = 200mm.

For validation and comparison purposes, a double cantilever beam specimen and this

material combination was modeled into ABAQUS. We create 2-D sandwich beam model

with an interface crack. The crack is modeled using seam cracks. There are shear forces

and bending moments at the left end, both on the face sheet and the substrate. We also

have end boundary conditions at the right end. For the mesh in the beam, we mostly use

second order 8-noded quad elements and few 6-noded triangle elements near the crack tip.

These crack tip elements are also modeled using singular elements, where the midpoint is

moved to one quarter side distance from the original midpoint position to the node. In the

FEA model, we ignore the large deformation effects and perform a linear analysis. Here,

we used isoparametric 8-node biquadratic plane stress (CPS8R) elements and few 6-node

modified quadratic plane stress triangle elements (CPS6M) near the crack tip. The singular

elements (CPS6M) were used near the crack tip in order to include stress singularity. Here,

J-Integral and the stress intensity factor values are evaluated using a contour integral [14].

And, KI and KII are obtained using the interaction integral method. The mode mixity

values from FEA can be obtained using the following relationship:

ψFEA = tan−1

(
KII

KI

)
(2.132)

It should be noticed that ABAQUS has the option to calculate the energy release rates of

modes I and II, GI and GII , respectively, through the virtual crack closure technique, how-

ever the values were widely varying depending on the mesh size at the crack tip. Same
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oscillation of values has been observed at other studies of interfacial cracks [15]. Thus, the

energy release rate components, GI and GII , cannot be used directly to estimate a related

energy release rate based mode mixity from ABAQUS.

Table 2.1: DCB: Energy Release Rates - Al face & Al foam core

Vd Vs Md Ms Jref43 JEF JFEA Gspring

(N) (N) (Nmm) (Nmm) (N/mm) (N/mm) (N/mm) (N/mm)

0.5 -0.5 100 -100 0.4381 0.4363 0.4356 0.4363

1.0 -1.0 50 -50 0.6920 0.6875 0.6859 0.6875

1.0 -1.0 100 100 0.9980 0.9827 0.9804 0.9817

10.0 -1.0 100 -100 48.6600 48.9263 48.3300 47.8958

1.0 -10.0 100 -100 0.8944 1.5328 1.1165 1.1083

0.5 0.0 0 0 0.1103 0.1114 0.1097 0.1084

0.0 -0.5 0 0 0.0003 0.0016 0.0003 1.2x10−5

0.0 0.0 100 0 0.1070 0.1070 0.1070 0.1068

Table 2.1 shows the values of energy release rates obtained using the closed form expression

(Equation 2.121) using the Timoshenko beam theory (JEF ). These values are obtained for a

range of loading combination and are then compared with the J-Integral values from finite

element analysis (subscript FEA). We are also comparing the energy release rate values

with the results from elastic foundation model based on Euler-Bernoulli theory (Jref43)

[43]. Here, we can see that the energy release rate values show very good agreement

with the values from FEA. We can also notice that the results (JEF ) are better than the

values from the other model (Jref43). This is mainly due to fact that the model here can

better capture the effects of transverse shear when compared to the model based on Euler-

Bernoulli beam theory.

In addition, Table 2.1 shows the values of the energy release by the springs. These

values are very close to the J-Integral values in all the cases (even in the cases where the
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substrate is heavily loaded). Notice that in load case 5 and 7, when the substrate is heavily

loaded in shear, the JEF values show a slight deviation the values from the finite element

analysis. This is due to fact that the elastic foundation model using the Timoshenko beam

theory is not able to fully capture the transverse shear effects. In fact, it has been shown

in the literature [16] that in sandwich beams we need higher order theories to fully capture

the transverse shear effect. It is also important to note that even for heavily shear loaded

cases, the estimated Gspring values show close agreement with the JFEA values.

Table 2.2: DCB: Mode Partitioning Values - Al face & Al foam core

Vd Vs Md Ms ψref43 ψEF ψFEA

(N) (N) (Nmm) (Nmm) (deg) (deg) (deg)

0.5 -0.5 100 -100 -26.70 -30.70 -28.50

1.0 -1.0 50 -50 -26.50 -30.59 -28.40

1.0 -1.0 100 100 -26.60 -30.70 -30.30

10.0 -1.0 100 -100 -26.80 -31.14 -30.80

1.0 -10.0 100 -100 -23.80 -26.59 -12.50

0.5 0.0 0 0 -26.90 -31.22 -31.20

0.0 -0.5 0 0 66.50 31.98 56.90

0.0 0.0 100 0 -27.00 -31.43 -31.50

Table 2.2 shows the mode partitioning measures for the same combination of loads.

Here, we have defined the mode partitioning measure in the context of the elastic founda-

tion analysis based on the Timoshenko beam theory (ψEF ).

It should again be emphasized that in the elastic foundation approach, there is no crack

as defined by the conventional fracture mechanics, i.e., there is no crack tip beyond which

the top face and the core are bonded and have the same axial and transverse displacements.

On the contrary, we have normal and shear springs at the interface and thus there is a gap

between the top face and the core in the mathematical elastic foundation model. Therefore,

we cannot use the mode mixity based on stress intensity factors and singular stress fields, as
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is done in conventional fracture mechanics. Instead, we use the mode partitioning measure

defined based on the transverse and axial displacements of springs at the tip (point where

the springs start). Notice that in Table 2, the mode partitioning measure (ψEF ) provides

a good estimate of the mode mixity. Table 2.2 also shows the mode partitioning measure

values obtained from previous mode (based on Euler-Bernoulli beam theory, ψref43). It can

be seen that the mode partitioning measure from this model (ψEF ) is consistently better

than the values from obtained from previous model (ψref43). For all the loading cases,

ψEF values closely follow the trend of ψFEA. Meanwhile, differences are observed in

some cases and it is natural to expect that there will be cases of material combinations

and/or loadings for which this simplified model may not be as accurate. Notice that for

case 5, there is noticeable difference between the mode partitioning measure and mode

mixity values. This is expected since the elastic foundation analysis uses a first order shear

deformation theory to account for shear contribution, but this is expected to be inadequate

in cases of large shear loading of the core.

Table 2.3: DCB: Energy Release Rates and Mode Partitioning for an Orthotropic core

Vd Vs Md Ms Jref43 JEF ψref43 ψEF

(N) (N) (Nmm) (Nmm) (N/mm) (N/mm) (deg) (deg)

0.5 -0.5 100 -100 0.6061 0.6203 33.06 41.00

1.0 -1.0 50 -50 0.9849 1.0224 33.60 40.38

1.0 -1.0 100 100 1.0988 1.1362 33.59 39.25

10.0 -1.0 100 -100 52.77 98.53 31.62 40.23

1.0 -10.0 100 -100 16.97 62.11 38.33 39.98

0.5 0.0 0 0 0.1186 0.2584 31.25 40.13

0.0 -0.5 0 0 0.0353 0.1737 41.33 39.63

0.0 0.0 100 0 0.1071 0.1070 32.09 40.14

The model presented here can be used for both isotropic and orthotropic cases. In Table 2.3,

we obtained the results for a sandwich beam with orthotropic honeycomb core material. Its
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Young’s Modulus is E1 = E2 = 0.32 GPa, E3 = 0.3 GPa, G23 = G31 = 48 MPa, G12 = 13

MPa and the Poisson’s rations: ν12 = ν32 = ν31 = 0.25. The thickness of each face sheet is

2mm and the core thickness is 20mm. Using the elastic foundation model presented here,

we obtained the energy release rate and mode partitioning values for this beam specimen.

It interesting to note that this model can be quickly used to obtain results for orthotropic

materials and can also be adapted for plane strain case. We cannot compare our results with

the values from finite element analysis because it can calculate stress intensity factorsKI,II

for an interface crack only when the two materials are both isotropic and linear elastic. We

have compared our results with the results from elastic foundation theory based on Euler-

Bernoulli theory.

Table 2.4: DCB: Energy Release Rates and Mode Partitioning - Small crack ( a/L = 1%)

Vd Vs Md Ms JEF JFEA Gspring ψEF ψFEA

(N) (N) (Nmm) (Nmm) (N/mm) (N/mm) (N/mm) (deg) (deg)

0.5 -0.5 100 -100 0.1161 0.1150 0.1162 -30.53 -30.02

1.0 -1.0 50 -50 0.0360 0.0354 0.0360 -29.62 -29.19

1.0 -1.0 100 100 0.1245 0.1224 0.1235 -31.20 -30.68

10.0 -1.0 100 -100 0.8429 0.3280 0.2997 -28.49 -27.30

1.0 -10.0 100 -100 0.6298 0.1242 0.1548 -27.61 -28.53

0.5 0.0 0 0 0.0017 0.0015 0.00012 -25.59 -23.49

0.0 -0.5 0 0 1.6x10−3 1.7x10−7 5.8x10−6 -10.07 53.6

0.0 0.0 100 0.0 0.1070 0.1070 0.1068 -31.43 -30.86

Further, we obtained data for the case of a much smaller crack (Table 2.4), namely, for

a crack length of a = 5mm (as opposed to a = 200mm). The energy release rate values

(JEF ) from the elastic foundation model presented shows very good agreement with the

values (JFEA) from finite element analysis. Similarly, the mode partitioning measures

(ψEF ) also closely follow the same trend as the mode mixity from FEA. Again, we can
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notice that there is some difference for loading case 5, it is mainly due to the shear loading

the substrate. This is expected since the Timoshenko beam theory cannot fully capture the

shear contribution from the substrate.

Table 2.5: DCB: Energy Release Rates and Mode Partitioning - Small crack (a/L=4%)

Vd Vs Md Ms JEF JFEA Gspring ψEF ψFEA

(N) (N) (Nmm) (Nmm) (N/mm) (N/mm) (N/mm) (deg) (deg)

0.5 -0.5 100 -100 0.1335 0.1334 0.1335 -28.49 -30.55

1.0 -1.0 50 -50 0.0571 0.0567 0.0571 -27.90 -29.87

1.0 -1.0 100 100 0.1615 0.1603 0.1605 -32.63 -31.16

10.0 -1.0 100 -100 1.6569 1.1340 1.076 -28.83 -29.84

1.0 -10.0 100 -100 0.6683 0.1665 0.1973 -23.31 -27.43

0.5 0.0 0 0 0.0029 0.0014 0.0012 -28.96 -29.56

0.0 -0.5 0 0 1.6x10−3 3.4x10−3 6.3x10−6 54.84 -5.57

0.0 0.0 100 0 0.1070 0.1070 0.1068 -31.47 -31.43

We also obtained data for another case (Table 2.5), namely, for a crack length of a =

20mm. For load case 2 (Vd = −Vs = 1.0 and Md = −Ms = 50.0), the model proposed here

resulted in JEF = 0.0571 Nt/mm whereas ABAQUS resulted in JFEA = 0.0567 Nt/mm.

Regarding the mode partitioning measure, the elastic foundation model resulted in ψEF−T

= -29.87 deg whereas ABAQUS resulted in ψFEA = -27.8 deg. It can be seen that the

energy release rate values obtained from this model is in agreement with the values from

ABAQUS. Similarly, the mode partitioning values follow a similar trend to that of the mode

mixity values from ABAQUS and there is only a slight variation in the value between them.

Hence, it can be concluded that the accuracy of the elastic foundation model based on

Timoshenko beam theory is not compromised when the crack lengths are smaller.

Table 2.6: DCB: Effect of Core Stiffness (a = 200mm)
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Ef/Ec JEF−T JFEA ψEF−T ψFEA

(N) (N/mm) (N/mm) (deg) (deg)

10 0.4363 0.4356 -30.7 -28.54

20 0.4390 0.4384 -24.72 -23.33

40 0.4430 0.4422 -18.86 -17.74

50 0.4447 0.4439 -16.90 -15.91

75 0.4486 0.4478 -13.09 -12.55

100 0.4521 0.4516 -10.24 -10.14

150 0.4586 0.4577 -5.64 -6.72

200 0.4645 0.4636 -1.92 -4.25

400 0.4861 0.4846 9.02 1.82

We also studied the effect of core stiffness on the fracture parameters. In Table 2.1 and

Table 2.2, we studied a beam with Alumium Faces and Aluminum Foam core (Ef/Ec

= 10). Here, Table 2.6 shows the energy release rate and mode partitioning values for

various core materials (Al Foam core, H100 core etc.). In Table 2.6, it is interesting to note

that the energy release rate values show very good agreement with the J-Integral values

from ABAQUS for even soft core materials. Also, in all the cases, the mode partitioning

measure values follow the same trend as that of the mode mixity values from the finite

element analysis. But for very soft core materials (Ef/Ec ≥ 200), we can notice that

the mode partitioning values are slightly off and this is mainly due to use of first order

shear deformation theory, which is inadequate at these very low core stiffnesses. Thus, to

completely capture the transverse shear effects in very soft core materials, there is a need

for higher order shear deformation theories.
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2.4 Conclusion

Closed form expressions for the energy release rate and mode partitioning of face/core

debonds in shear and moment loaded double cantilever sandwich beam specimen are de-

rived. The beam is divided in four parts: two along its length, namely debonded part

and bonded part and two along its thickness, namely debonded face and substrate, which

includes the core and the bottom face. An elastic foundation approach based on the Tim-

oshenko beam theory is pursued to obtain the governing equations. The model pursued

here is comprehensive and includes the deformation of the substrate in the governing equa-

tions. The solutions are obtained such that these solutions are valid for both isotropic and

orthotropic faces and core and can be applied for a general asymmetric sandwich beam

(top and bottom faces not the same). The J - Integral approach is used here to obtain a

closed form expression for the energy release rate and it shows excellent agreement with

the corresponding values from a finite element analysis. A mode partitioning measure is

defined based on the relative crack flank opening and shearing displacements. The results

show that this mode partitioning values closely follow the traditional mode mixity values

from finite element analysis.
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CHAPTER 3

ELASTIC FOUNDATION ANALYSIS OF SINGLE CANTILEVER BEAM

In recent times, Single Cantilever Beam (SCB) test has gained attention as one of the best

candidates for evaluating debond fracture toughness in mode I loading. The goal here is to

employ an elastic foundation approach and the Timoshenko beam theory to derive closed

form expressions for the energy release rate and mode partitioning of face/core debonds in

Single Cantilever Beam (SCB) Sandwich Composite testing configuration. A SCB spec-

imen of finite length is considered as having a ”debonded” section where the debonded

top face and the substrate are free and a ”bonded” section where an elastic foundation is

used between the top face and the substrate. The interaction between the top face and the

substrate in the ”bonded” section is modeled using both normal and rotational shear distri-

butions to account for transverse and rotational degrees of freedom. The elastic foundation

analysis used here is comprehensive, it includes the deformation of the substrate part and

can also capture the shear deformation effects in the beam.

Figure 3.1: Single Cantilever Beam Specimen

The Single Cantilever Beam (SCB) specimen is again divided into different regions

similar to the Double Cantilever Beam (DCB) specimen. Here, the debonded part is loaded
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by a shear force Vd and a moment Md and in the Single Cantilever Beam (SCB) specimen

the substrate part is restricted in the transverse displacement. So there is no transverse

displacement (ws = 0) in the substrate part. The coordinate system is set so that x = 0 is at

the end of the debond, i.e., the debond part for negative x and the intact part for positive x

Figure 3.1. We denote the transverse and axial displacements using w and u, respectively.

3.1 Using Timoshenko Beam Theory

The Timoshenko beam theory distinguishes between the angle of rotation of the beam

cross-section, ϕ, and the slope of the neutral axis, dw/dx, which differ by the shear angle

γ. The displacement field is given by

3.1.1 Displacement Field

ux(x, z) = −zϕ; uz(x, z) = w (3.1)

and the resulting shear strain is:

γxz = ux,z + uz,x = w,x − ϕ (3.2)

Applying the variation principle, and integrating by parts, the strain energy δU =
∫ ∫ ∫

(σxxδϵxx+

τxzδγxz)dAdx leads to:

δU =

∫
L

[(
dM

dx
− V

)
δϕ− dV

dx
δw

]
dx+ [−Mδϕ+ V δw]|L0 (3.3)

Assuming a distributed moment, m, and a distributed transverse load, q, in the external

work, we obtain the differential equations:

dM

dx
− V +m = 0 ;

dV

dx
− q = 0 (3.4)
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And in the Timoshenko beam theory, the moment and shear are defined as:

M = (EI)
dϕ

dx
; V = −(κGA)γ; γ =

dw

dx
− ϕ (3.5)

The elastic foundation load is a distributed load applied to both the debonded part and the

substrate, creating a distributed load

q = −knw ; m = krϕ (3.6)

Here, kn is the stiffness of the normal springs and kr is the stiffness of the rotational shear

springs. It is important to have an accurate estimation of the elastic foundation stiffness

values. In 2018, Kardomateas it et al [45] derived solutions based on Extended High-Order

Sandwich Panel theory which shows excellent agreement with the elasticity theory. Elastic-

ity theory solutions were also derived. They also provided simple closed form expressions

for normal and shear springs stiffness for the case of symmetric sandwich specimens. These

stiffness expressions can be used for both isotropic and orthotropic materials. Shear spring

stiffness can be defined in two ways (ks or kr). One, using the displacements at the inter-

face (ks) and the other based on the section rotation of the beam (kr). These expressions

are as follows:

kn = b
Ec

3

c
ks = b

Gc
13

c
kr = bGc

13

ft
2

(3.7)

3.2 Governing Equations

Here, we can solve for the governing equations similar to what we did with the Double

Cantilever Beam (DCB) specimen.
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Figure 3.2: Support Reaction on the substrate

3.2.1 Bonded Section of the beam: 0 ≤ x ≤ l

When we look at the top face sheet in the bonded section of the beam as in Figure 3.2, we

get the following governing equations:

(EI)d
d2ϕd

dx2
+ (κGA)d(

dwd

dx
− ϕd)− kr(ϕd − ϕs) = 0 (3.8)

−(κGA)d(
d2wd

dx2
+
dϕd

dx
)− kn(wd) = 0 (3.9)

And, in the substrate part of the SCB specimen, there is no transverse displacement and we

are only interested in the transverse shear in the substrate. To obtain the shear forces acting

on the substrate part, we will first consider a reaction on the fixed bottom edge as linearly

distributed with q1 and q2, as the intensities of the linearly distributed reaction at the ends

(as shown in Figure 3.2). Force equilibrium and moment equilibrium about the left end
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would give us:

q1 = −4
Vd
a+ l

− 6
Md

(a+ l)2
, q2 = 2

Vd
a+ l

+ 6
Md

(a+ l)2
(3.10)

And, the shear force distribution along the bottom edge of the substrate would be

qx(x) =
q2 − q1
a+ l

x+
q2a+ q1l

a+ l
; −a ≤ x ≤ l (3.11)

q1 qx

V1(x)

Elastic foundation

Figure 3.3: Shear distribution in the Substrate: Bonded section SCB

Now, using this reaction shear distribution and the spring force distribution, we can find the

shear force at any point in the substrate part as shown in Figure 3.3

Vs +

∫ x

−a

qxdx+

∫ x

0

knwddx = 0 (3.12)
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Differentiating the above equation, we get

dVs
dx

= −qx − knwd (3.13)

dϕs

dx
=
qx + knwd

(κGA)s
(3.14)

We can differentiate Equation 3.8 and substitute Equation 3.9 & Equation 3.14 to obtain

the governing equation for the top face sheet in terms of wd

w′′′′
d (x)− Aw′′

d(x) +Bwd(x) = − kr
EId(κGA)s

qx (3.15)

where,

A =

[
kn

(κGA)d
+

kr
(EI)d

]
; B =

[
kn

(EI)d
+

knkr
(EI)d(κGA)d

+
knkr

(EI)d(κGA)s

]
(3.16)

This is a fourth-order linear differential equation. And, the general solution for the trans-

verse displacement, wd, will be

wd(x) = (wd)I + (wd)II (3.17)

where, (wd)I is the general solution from the homogeneous part of Equation 3.15 and

(wd)II is the particular solution from the non-homogeneous part. Solving the homogeneous

part, we get the solution as:

(wd)I = c1d cosh k1x cos k2x+ c2d sinh k1x cos k2x+ c3d cosh k1x sin k2x+

+ c4d sinh k1x sin k2x (3.18)
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where,

k1 = real

(√
A−

√
A2 − 4B√
2

)
; k2 = im

(√
A+

√
A2 − 4B√
2

)
(3.19)

The non-homogeneous part of Equation 3.15 is linear in terms of x and hence the particular

solution will also be linear in x:

(wd)II = cp1x+ cp2 (3.20)

Substituting Equation 3.20 in the left hand side of Equation 3.15 and comparing the terms

on both sides, we get

cp1 = − kr(q2 − q1)

EId(κGA)s(a+ l)B
; cp2 = − kr(q2a+ q1l)

EId(κGA)s(a+ l)B
(3.21)

Hence, the general solution for the transverse displacement of the top face sheet in the

bonded section is:

wd(x) = c1d cosh k1x cos k2x+ c2d sinh k1x cos k2x+ c3d cosh k1x sin k2x+

+ c4d sinh k1x sin k2x+ cp1x+ cp2 (3.22)

From Equation 3.16, we know that

dϕd

dx
=
d2wd

dx2
− kn

(κGA)d
wd (3.23)
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Substituting wd in the above equation and then integrating, we get

ϕd =
1

(k21 + k22)(κGA)d

[
(
kn(−c2dk1 + c3dk2) + (c2dk1 + c3dk2)(k

2
1 + k22)(κGA)d

)
cosh(k1x) cos(k2x)+

+

(
kn(−c1dk1 + c4dk2) + (c1dk1 + c4dk2)(k

2
1 + k22)(κGA)d

)
sinh(k1x) cos(k2x)+

+

(
− kn(c4dk1 + c1dk2) + (c4dk1 − c1dk2)(k

2
1 + k22)(κGA)d

)
cosh(k1x) sin(k2x)+

+

(
− kn(c3dk1 + c2dk2) + (c3dk1 − c2dk2)(k

2
1 + k22)(κGA)d

)
sinh(k1x) sin(k2x)

]
−

− kn
2(κGA)d

(2cp2x+ cp1x
2) + cϕd

(3.24)

From Equation 3.12, we get the section rotation in the substrate

ϕs =− kn
(κGA)s(k21 + k22)

[
(c2dk1 − c3dk2)(cosh(k1x) cos(k2x)− 1)

+ (c1dk1 − c4dk2) sinh(k1x) cos(k2x) + c4dk1 + c1dk2) cosh(k1x) sin(k2x)+

+ (c3dk1 + c2dk2) sinh(k1x) sin(k2x)

]
− kn

2(κGA)s
(2cp2x+ cp1x

2)−

− (a+ x)(2lq1 + a(q1 + q2) + (−q1 + q2)x)

2(a+ l)(κGA)s
(3.25)

From these general solutions (Equation 3.23,Equation 3.24 & Equation 3.25), we have 5

unknown coefficients c1d, c2d, c3d, c4d and cϕd

3.2.2 Debonded Section of the beam: -a ≤ x ≤ 0

In the debonded section of the beam, there is no elastic foundation between the debonded

face and the substrate. Using Timoshenko beam theory, we get the governing equations for

the debonded top face are:

EIdϕ
′′′
d + (κGA)d(w

′′
d − ϕ′

d) = 0 ; (κGA)d(w
′′
d − ϕ′

d) = 0 (3.26)
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From the above equations

ϕ′′′
d = 0 (3.27)

q1 qx

V1(x)

Figure 3.4: Shear distribution in the Substrate: Debonded section SCB

In the substrate of the debonded section, there is no transverse displacement and we are

only interested in the transverse shear in the substrate. We can take the shear equilibrium

in the substrate (using Figure 3.4) to get:

Vs +

∫ x

−a

qxdx = 0 (3.28)
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From the above equations, we obtain the displacement and section rotations in the debonded

top face and the substrate:

wd = e1dx
3 + e2dx

2 + e3dx+ e4d ; ϕd = 3e1dx
2 + 2e2dx+ eϕd

(3.29)

And from Equation 3.28, we get

ϕs = −(a+ x)(2lq1 + a(q1 + q2) + (−q1 + q2)x)

2(a+ l)(κGA)s
(3.30)

It is important to note that in the general solutions (Equation 3.29 & Equation 3.30) there

are 5 more unknown coefficients, namely, the eid, i =1,2,3,4; and the eϕd
. We need to

solve for these unknown coefficients in order to determine the complete displacements and

rotations of the beam sections. In total, we have 10 unknown coefficients from general

solutions in the debonded and bonded section of the beam.

3.3 Boundary Conditions

In the Single Cantilever Beam (SCB) specimen, the debonded top face sheet is under exter-

nal bending moment and shear force as shown in Figure. At the left end, x = -a, the bending

moment and the shear forces on the top face sheet are

Vd = −(κGA)d(w
′
d − ϕd)|−a = −(κGA)d(e3d − eϕd

) (3.31)

Md = EIdϕ
′
d|−a = EId(−6e1da+ 2e2d) (3.32)

At the crack tip, x = 0, the bending moment on the debonded part is

Md + Vda = EIdϕ
′
d|0 = EId2e2d (3.33)
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At the crack tip, x = 0, we also have continuity conditions on the top face sheet across the

debonded section and the bonded section of the beam. Displacement continuity:

e4d = c1d + cp2 (3.34)

Beam rotation continuity:

eϕd
=

1

(k21 + k22)(κGA)d

[
kn(−c2dk1 + c3dk2) + (c2dk1 + c3dk2)(k

2
1 + k22)(κGA)d

]
+ cϕd

(3.35)

Bending moment continuity:

2e2d = 2c4dk1k2 + c1d(k
2
1 − k22)− c1d

kn
(κGA)d

− kn
cp2

(κGA)d
(3.36)

Shear force continuity:

e3d − eϕd
=− 1

(k21 + k22)(κGA)d

[
kn(−c2dk1 + c3dk2) + (c2dk1 + c3dk2)(k

2
1 + k22)(κGA)d

]
+

+ c2dk1 + c3dk2 + cp1 − cϕd
(3.37)
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At the right end, x = l, we have free end conditions. The shear force and bending moment

on the top face sheet is zero.

ϕ′
d(l) =

(
2c4dk1k2 + c1d(k

2
1 − k22)− c1d

kn
(κGA)d

)
cosh (k1l) cos (k2l)+

+

(
2c3dk1k2 + c2d(k

2
1 − k22)− c2d

kn
(κGA)d

)
sinh (k1l) cos (k2l)+

+

(
− 2c2dk1k2 + c3d(k

2
1 − k22)− c3d

kn
(κGA)d

)
cosh (k1l) sin (k2l)+

+

(
− 2c1dk1k2 + c4d(k

2
1 − k22)− c4d

kn
(κGA)d

)
sinh (k1l) sin (k2l)−

− kn
(κGA)d

(cp1l + cp2) = 0 (3.38)

(w′
d − ϕd)(l) =

kn
(κGA)d(k21 + k22)

[
(c2dk1 − c3dk2) cosh (k1l) cos (k2l)+

+ (c1dk1 − c4dk2) sinh (k1l) cos (k2l)+

+ (c4dk1 + c1dk2) cosh (k1l) sin (k2l)+

+ (c3dk1 + c2dk2) sinh (k1l) sin (k2l)

]
+ cp1 − cϕd

+
(2cp2knl + cp1knl

2)

2(κGA)d
= 0 (3.39)

It is also important to note that the hyperbolic cosine and sine functions can quickly become

very large numbers, unlike the hyperbolic tan function, and this would make the numerical

solution fail, thus we divide by cosh k1l, to obtain

(
2c4dk1k2 + c1d(k

2
1 − k22)− c1d

kn
(κGA)d

)
cos (k2l)+

+

(
2c3dk1k2 + c2d(k

2
1 − k22)− c2d

kn
(κGA)d

)
tanh (k1l) + cos (k2l)+

+

(
− 2c2dk1k2 + c3d(k

2
1 − k22)− c3d

kn
(κGA)d

)
sin (k2l)+

+

(
− 2c1dk1k2 + c4d(k

2
1 − k22)− c4d

kn
(κGA)d

)
tanh (k1l) sin (k2l)−

− kn
cosh k1l(κGA)d

(cp1l + cp2) = 0 (3.40)
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Further,

kn
(κGA)d(k21 + k22)

[
(c2dk1 − c3dk2) cos (k2l) + (c1dk1 − c4dk2) tanh (k1l) cos (k2l)+

+ (c4dk1 + c1dk2) sin (k2l) + (c3dk1 + c2dk2) tanh (k1l) sin (k2l)

]
+

+
cp1

cosh (k1l)
− cϕd

cosh (k1l)
+

(2cp2kel + cp1kel
2)

2(κGA)d cosh k1l
= 0 (3.41)

In Equation 3.41, the term cosh (k1l) is very large and close to zero for cases when k1l is

large. While solving these equations for finding the unknown coefficients, it is necessary

to neglect this term to avoid numerical error. These terms are negligibly small (in the range

of 10−20 - 10−50) and almost zero for most beam lengths and material combinations that

are commonly used. Hence, Equation 3.39 is simplified to:

kn
(κGA)d(k21 + k22)

[
(c2dk1 − c3dk2) cos (k2l) + (c1dk1 − c4dk2) tanh (k1l) cos (k2l)+

+ (c4dk1 + c1dk2) sin (k2l) + (c3dk1 + c2dk2) tanh (k1l) sin (k2l)

]
= 0 (3.42)

We now have 9 equations (Equation 3.31-Equation 3.42), we need an additional condition

to evaluate all the unknown constants. In the SCB specimen, the bottom substrate is sup-

ported and at the right end, x = l, we can assume that the transverse displacement is zero

throughout the right end as it is far from the crack tip. So

wd(l) =c1d cosh k1x cos k2x+ c2d sinh k1x cos k2x+ c3d cosh k1x sin k2x+

+ c4d sinh k1x sin k2x+ cp1l + cp2 = 0 (3.43)

Again, to avoid numerical failure, we divide the above equation by cosh k1l to get

c1d cos k2x+ c2d tanh k1x cos k2x+ c3d sin k2x+

+ c4d tanh k1x sin k2x+
cp1l

cosh k1l
+

cp2
cosh k1l

= 0 (3.44)
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Now, we have 10 linear algebraic equations from (Equation 3.31-Equation 3.44) and the

unknown coefficients cid & eid (i = 1,2,3,4) of the general solutions can be solved for by

solving these equations using a simple computer program.

3.4 Energy Release Rate

Once we have solved the governing equations, the displacements and the section rotations

of the beam section can be used to obtain the fracture parameters. In previous chapter, we

obtained the energy release rate using J-Integral.

3.4.1 J-Integral

J-Integral defined in Equation 2.96 with the integration path shown in Figure 3.5 is used to

the obtain the energy release rate.

B

A

A’

F E

D’

D

C

2c

TOP FACE

CORE

BOTTOM FACE

ft
2

fb
2

VdMd

Figure 3.5: J-Integral path - SCB specimen

On both the top and bottom horizontal segments of the path, dz = 0. And on the top

segment, there is no traction T⃗=0, thus JCB=0. On the bottom horizontal segment (FE),

Ti
∂ui
∂x

= −τxzϵxx − σzzw,x (3.45)
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where, w is the transverse displacement and we use ”,” to denote the partial derivation.

In SCB specimen, the bottom horizontal segment has fixed support (zero transverse dis-

placement, w, throughout the segment FE) which also means that w,x=0. Moreover, since

the reaction at the bottom edge is along the transverse direction only and no additional

shear loads are applied, τxz can also be assumed to be zero. Thus, on the bottom horizontal

segment of the path, we also have JEF=0. On the vertical sides:

W =
1

2
(σxxϵxx + σzzϵzz + τxzγxz) (3.46)

On the vertical sides that are not loaded (AF’,CD and D’E), T⃗=0, which means σxx=τxz=0

and in the case of plane stress σzz=0. For a plane strain assumption (ϵzz=0) σzz=νxzσxx=0.

Therefore, on these sides, it is also W=0. As a result, on the vertical sides A’F, ED’, D’C,

we have J=0. We are left with side AB and on this segment, dz==-ds

dJ =

[
1

2
(σxxϵxx − τxzγxz) + τxzϕd)

]
ds (3.47)

We assume that the shear load creates a shear stress τxz and a shear strain γxz=κτxz/Geq,

where Geq is the equivalent shear modulus of the section and κ is the shear correction

factor, which takes into account the non-uniform distribution of shear stresses due to the

sandwich construction throughout the entire cross section. For the debonded part, which is

homogeneous, the equivalent shear modulus is the shear modulus of the top face, Geq=Gft

and the shear correction factor,

κd =
6

5
(3.48)

On the segment BA, where dz=-ds:

dJ =
1

2
(σxxϵxx + σzzϵzz + τxzγxz)(−ds)− (−σxxϵxx − τxzϕd)(ds) (3.49)
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From plane stress assumption, σzz=0, and ϵxx=σxx/Eft,

dJ =

[
1

2
(σxxϵxx − τxzγxz) + τxzϕd)

]
ds (3.50)

JBA =

∫ ft/2

−ft/2

[
1

2Eft

σ2
xx −

κd
2Geq

τ 2xz + τxzϕd|−a

]
ds (3.51)

Substituting EId = Edbf
3
t /12 and Ad = bft, we get

JBA =
6M2

d

Edf 3
t

− κdV
2
d

2Geqb2ft
− Vd

b
ϕd|−a (3.52)

To evaluate the J-integral, we need to find wd,x|−a

ϕd(−a) = 3e1da
2 − 2e2d + eϕd

(3.53)

Therefore, we obtain the J-integral as

J =
6M2

d

Edf 3
t

− κdV
2
d

2Geqb2ft
− Vd

b

(
3e1da

2 − 2e2d + eϕd

)
(3.54)

The above equation will give us the energy release release in the single cantilever sandwich

beam subjected to shear force and bending moment.

3.4.2 Rate of Energy Released by the springs

Similar to DCB specimen, the energy released released during debonding can be obtained

by finding the energy stored in the springs due to the deformations in the beam. Let the

differential spring length be da, the energy released by the crack when it propagates by

length da is the energy stored in this differential spring element. And the total energy

released by the springs in the foundation is given by
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Gspring = lim
δa→0

1

2δa

∫ δa

0

σzz(r)∆w(δa− r) dr (3.55)

We can obtain expressions for the energy released using the displacements of the springs

near the crack tip

Gspring =
1

2
ke[wd(0)− ws(0)]

2 +
1

2
kr[ϕd(0)− ϕs(0)]

2 (3.56)

The beam rotation in the substrate at the crack tip is given by Equation 3.30

ϕs(0) = −a(2lq1 + a(q1 + q2))

2(a+ l)(κGA)s
(3.57)

So, an alternate expression to find the energy released when the crack grows is

Gspring =
1

2
ke(e4d)

2 +
1

2
kr

(
eϕd

+ a
(2lq1 + a(q1 + q2))

2(a+ l)(κGA)s

)2

(3.58)

3.5 Mode Partitioning

Here, we are using an alternate approach to obtain the mode mixity, using displacements

near the crack tip. In this approach, a mode partitioning phase angle, ψEF , is defined from

the relative crack flank opening and shearing displacements (δw and δu respectively).

ψEF = tan−1 δu

δw
= tan−1

(
udo − uso
wdo − wso

)
(3.59)

It is defined such that ψEF = 0 if only crack flank opening occurs near the crack tip and

ψEF = 90 if only crack flank shearing occurs near the crack tip. Using the solutions for the
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displacements, we obtain

ψEF = tan−1

( ft
2
eϕd

+ c(ϕs(0))

e4d

)
(3.60)

3.6 Results and Discussion

We choose a symmetrical sandwich beam with faces made out of isotropic face and core

materials. The material properties used are given in Table 3.1. The geometry of the beam

was chosen to have face thicknesses ft = fb = 2mm and the core to have a thickness of 2c

= 20mm. The total length of the beam was chosen as 500mm and the debond length to be

200mm.

Table 3.1: SCB: Material Properties

Aluminium face (isotropic) Aluminium foam core (isotropic) H100 core(isotropic)

E = 70,000 MPa E = 7,000 MPa E = 130 MPa

G = 26,923 MPa G = 2651.5 MPa G = 50 MPa

ν = 0.30 ν = 0.32 ν = 0.30

Figure 3.6: FEA Mesh - SCB Beam

We chose isotropic face and core materials because commercial finite softwares can

only calculate stress intensity factors for an interfacial crack when both the face & core

materials are linear elastic and isotropic. To validate the results we obtain from the elastic

foundation approach, we model the Single Cantilever Beam (SCB) specimen in ABAQUS

using isoparametric eight-node biquadratic plane stress (CPS8R - second order 8-noded
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quad plane stress) elements. The interface crack in the SCB specimen is modeled using

seam cracks. The singular elements were used near the crack tip to include stress singular-

ity, these elements have the midpoint moved to one quarter side distance from the original

midpoint position to the node. We also use 6-noded triangle plane stress elements (CPS6M)

near the crack tip. And, the stress intensity factor values are evaluated using the contour

integral in ABAQUS. Here, KI and KII are obtained using interaction integral method. In

the FEA model, we ignore the large deformation effects and perform a linear analysis. The

mode mixity from FEA is obtained using the stress intensity values

ψFEA = tan−1

(
KII

KI

)
(3.61)

The expressions obtained for energy release rate and mode partitioning are simple.

Using these expressions, we obtained results for two different core materials (Table 3.1).

Table 3.2 shows the values of energy release rates obtained using the closed form ex-

pression (subscript EF) and also the energy release rate values from ABAQUS (JFEA).

Here, we have obtained the values for the case of SCB sandwich with Al face and Al

Foam core. In Single Cantilever beam specimen, the top face is subjected to both shear

load and bending moment. We are comparing the fracture parameters for different loading

conditions to see if there are any effects. It can be seen that values show excellent agree-

ment with each other. Also, when compared with the previous values from previous elastic

foundation model using Euler-Bernoulli [46] (Jref46), the values obtained using the model

presented here are in better agreement with the values from FEA. In addition, Jspring shows

the energy released by the springs and the value are comparable to the values from FEA.

We have also obtained the mode partitioning measure obtained using Timoshenko Beam

theory (ψEF ). It should be emphasized that in the elastic foundation approach, there is no

crack tip beyond which the top face and the core are bonded and have the same axial and

transverse displacements. Here, we have normal and shear springs at the interface and
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thus there is a gap in the mathematical elastic foundation model. Hence, we use the mode

partitioning measure values (ψEF ) and they are compared with the mode mixity values FEA

(ψFEA) and mode partitioning values from Euler Bernoulli model [10] Jref46 . It can be seen

that the JEF values are in excellent agreement with the finite element results. The mode

partitioning measure values from this model (JEF ) are consistently better than the values

from the previous elastic foundation model based on Elastic Foundation model (ψref46).

Table 3.2: SCB: Energy release rate and mode partitioning - Al Face & Al Foam Core

Vd Md Jref46 JEF JFEA Gspring ψref46 ψEF ψFEA

(N) (N-mm) (N/mm) (N/mm) (N/mm) (N/mm) (deg) (deg) (deg)

0.5 0.0 0.1111 0.1102 0.1098 0.1085 -28.0 -31.3 -31.1

0.0 100 0.1071 0.1071 0.1071 0.1054 -28.3 -31.7 -31.4

0.5 100 0.4365 0.4347 0.4338 0.4276 -28.1 -31.5 -31.3

In sandwich composite beam, the core is usually made of low density materials. The main

advantage of the model presented here is that this can be used for both isotropic and or-

thotropic materials. It can be used to quickly obtained the results for both these material

types and can be adapted for plane strain case as well. Table 3.3 we obtained the energy

release rate and mode partitioning values for a soft H100 core and beam with same geom-

etry. It can be noticed that the model presented here show very good agreement with the

FEA values and are better than the values obtained from Euler-Bernoulli beam model [46].

Table 3.3: SCB: Energy release rate and mode partitioning - Al Face & H100 Core

Vd Md Jref46 JEF JFEA Gspring ψref46 ψEF ψFEA

(N) (N-mm) (N/mm) (N/mm) (N/mm) (N/mm) (deg) (deg) (deg)

0.5 0.0 0.1183 0.1177 0.1176 0.1140 -10.9 -8.8 -9.0

0.0 100 0.1071 0.1071 0.1071 0.1033 -11.1 -10.2 -9.4

0.5 100 0.4506 0.4494 0.4491 0.4342 -11.0 -9.5 -9.2

Further, we studied the effect of core stiffness on the accuracy of the model. In Ta-

ble 3.2, we looked at the beam with Aluminium faces and Aluminium core (Ef/Ec = 10).

67



In Table 3.4 & Table 3.5, we have obtained fracture parameters for various stiffness ratios

(keeping same Al faces only changing the core material). We can see that JEF values ob-

tained for even soft core materials are in excellent agreement with the FEA values from

ABAQUS. The mode partitioning values obtained here also follow the same trend as the

values from FEA and [46]. ψEF are in better agreement with ψFEA when compared to

ψref10 . Here, we can see that for very soft core materials (Ef/Ec > 500), the mode parti-

tioning values are slightly off. It is still a very good estimate, but this difference could be

due to the use of first order shear deformation theory which is inadequate at these very low

core stiffness.

Table 3.4: SCB: Effect of Core Stiffness for Vd=0.5 Nt, Md=0. Debond length a=200mm

Ef/Ec Jref46 JEF JFEA ψref46 ψEF ψFEA

(N/mm) (N/mm) (N/mm) (deg) (deg) (deg)

10 0.1110 0.1102 0.1100 -28.0 -31.3 -31.1

50 0.1130 0.1124 0.1180 -19.0 -20.3 -21.3

100 0.1140 0.1136 0.1130 -15.7 -16.6 -17.3

200 0.1150 0.1150 0.1150 -12.7 -13.3 -13.6

500 0.1180 0.1174 0.1180 -9.0 -9.2 -9.4

800 0.1190 0.1188 0.1190 -7.2 -6.9 -7.5

1000 0.1200 0.1195 0.1200 -6.3 -5.7 -6.6

Table 3.5: SCB: Effect of Core Stiffness for Vd=0.5 Nt, Md=100Nmm. Debond length
a=200mm
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Ef/Ec Jref46 JEF JFEA ψref46 ψEF ψFEA

(N/mm) (N/mm) (N/mm) (deg) (deg) (deg)

10 0.4360 0.4347 0.4340 -28.0 -31.5 -31.3

50 0.4400 0.4390 0.4380 -19.0 -20.6 -21.5

100 0.4430 0.4414 0.4400 -15.7 -16.9 -17.5

200 0.4450 0.4442 0.4430 -12.7 -13.7 -13.8

500 0.4500 0.4488 0.4490 -9.0 -9.8 -9.6

800 0.4530 0.4515 0.4520 -7.2 -7.8 -7.8

1000 0.4540 0.4529 0.4540 -6.3 -6.7 -6.8

Table 3.4 & Table 3.5 are for different loading conditions. Table 3.4 is for Vd = 0.5N

and Md = 0 load case and Table 3.5 is for Vd = 0.5N and Md = 100Nmm. It is clear that

the model can provide very good estimate of the fracture parameters for different loading

conditions and material combinations.

Table 3.6: SCB: Results for a smaller debond length, a=20mm. Aluminium Foam (7 GPa)
Core

Vd Md JEF JFEA Gspring ψEF ψFEA

(N) (N-mm) (N/mm) (N/mm) (N/mm) (deg) (deg)

0.5 0.0 0.0014 0.0014 0.0014 -28.6 -28.3

0.0 100 0.1071 0.1070 0.1052 -31.9 -31.4

0.5 100 0.1330 0.1330 0.1306 -31.6 -31.1

Table 3.7: SCB: Results for a smaller debond length, a=20mm. H100 (0.13 GPa) Core

Vd Md JEF JFEA Gspring ψEF ψFEA

(N) (N-mm) (N/mm) (N/mm) (N/mm) (deg) (deg)

0.5 0.0 0.0023 0.0023 0.0023 -7.2 -6.3

0.0 100 0.1071 0.1070 0.1028 -11.3 -9.5

0.5 100 0.1412 0.1412 0.1357 -10.7 -9.1
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Next, we also obtained values for the case of a small crack (a = 20mm) for two different

core materials in Table 3.6. & Table 3.7. The energy release rate values and the mode

partitioning values show excellent agreement with the finite element values. It can be

safely said that the results are accurate for smaller debond length.

3.7 Conclusion

Elastic foundation analysis is used to obtain closed form solutions for energy release rates

and mode partitioning of face/core debonds in Single Cantilever beam specimen. The SCB

specimen is divided in four parts: two along its length, namely debonded part and bonded

part and two along its thickness, namely debonded face and substrate, which includes the

core and the bottom face. An elastic foundation approach based on the Timoshenko beam

theory is pursued to obtain the governing equations. The model pursued here is comprehen-

sive and includes the deformation of the substrate in the governing equations. The solutions

are obtained such that these solutions are valid for both isotropic and orthotropic faces and

core and can be applied for a general asymmetric sandwich beam (top and bottom faces not

the same). Energy release rate is obtained using J-Integral approach and it shows excel-

lent agreement with the results from finite element analysis for various loading conditions

and material combinations. A mode partitioning measure based on the relative crack flank

opening and shearing displacements is here. The results show that this mode partitioning

values closely follow the traditional mode mixity values from finite element analysis.
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CHAPTER 4

CRACK FACE CONTACT MODEL - TENSIONLESS FOUNDATION

So far, we have have looked at mode I dominant fracture specimens. When we look at a

End-Notched Flexure specimen (Figure 4.1), it is mode II dominant and in this case the

effects of crack face contact can be significant. Here, we are extending the elastic founda-

tion analysis by introducing a tensionless spring foundation in the cracked region. This is

a novel approach, where tensionless springs are used to capture the compressive stresses

across the interface between the debonded face sheet and the substrate. The absence of

tensile stresses in the foundation is because when there is tension the debonded face sheet

lifts away from the substrate. An End Notched Flexure sandwich specimen is widely used

test specimen for mode II fracture. It is a simply supported beam with a shear load at the

middle of the beam. The ENF sandwich beam is divided into 4 regions along its length as

shown in Figure 4.2. Region I & II form the cracked portion of the beam and Region III &

IV together form the bonded portion of the beam. For an ENF specimen, it has been shown

in experiments that there is a significant contact zone near the end support in the cracked

section. In the region of debond, the sandwich beam consists of two parts: the debonded

part (debonded upper face sheet) and the substrate. In the case of Mode II/III dominated

crack, there will be contact between the debonded part and the substrate. From literature, it

has been shown that the contact plays a significant role in affecting the energy release rate

and mode mixity.

Across the interface between crack faces, only compressive stresses are transmitted

when there is contact. The absence of tensile stresses in the cracked region is because the

debonded face sheet lifts away from the substrate. Tensionless spring foundation can be

used to model the crack face contact. A beam of length 2L with a crack of length a is

chosen. The beam is pinned on both the ends and has a shear load P at the middle of the
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Top Face - Eft, νft

Core - Ec, νc

Crack length - a

Bottom face - Efb,νfb

P

ft

2c

fb

L L

Figure 4.1: End-Notched Flexure Specimen

beam.

Here, the beam is divided into four regions Figure 4.2: Region III & IV together form

the bonded section of the beam. In the bonded section of the beam, we use elastic founda-

tion to capture the effects of crack tip deformations. Whereas in the cracked section, region

I & II are the regions of contact and no-contact respectively. In region I, we introduce ten-

sionless spring foundation to capture only the compressive stresses that are acting across

the crack face contact.

4.1 Governing equations

We are using elastic foundation at the interface between top face and the core in the bonded

section. The elastic foundation consists of only normal springs in the bonded section of

the beam. And in the cracked section, we have two regions, Region I - we use tensionless

spring foundation to model the contact region and Region II - free region in the cracked

section of the beam and we use simple beam theory to obtain the governing equations in

this region. This is a novel approach and we are first using Euler Bernoulli Beam theory to

develop the governing equations for this case.
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P

Tensionless foundation

Figure 4.2: Tensionless Foundation in ENF Specimen

It should also be noted that the formulation and approach are applicable to both beams

(plane stress) and wide panels (plane strain) but different moduli should be used for plane

strain and plane stress problems. The solutions provided are for the plane stress case and for

plane strain, E (Young’s Modulus) should be replaced by E/(1− ν2), where ν is Poisson’s

ratio.

4.1.1 Cracked section

In the cracked section of the beam, we are introducing tensionless spring foundation to

capture the transfer of compressive stresses across the debonded top face sheet and the

substrate. In the cracked portion, contact is present across the debonded face and substrate

only in certain zones and they are called contact zones. In this type of specimen, we will

have a contact zone near the crack tip and another contact zone near the support region.

In literature, it has been shown from various experiments that the contact zone near the

support is significant. This is Region I shown in Figure 4.2 and the tensionless foundation

is used here to model the contact zone. The length of the contact region (Region I) is

unknown. The tensionless foundation introduces a unknown contact length(X1) in addition
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to the unknown constants from the solutions of governing equations.

Weitsman [63] has worked on foundation that react in compression only. The model

employed in the study involved only linear differential equations. And when a foundation

is tensionless, the existence of gaps between the structure and the foundations introduces

additional unknowns into the problem. It was further extended in several studies [64, 65]

for beams resting on the tensionless foundation. Using this approach we extend the elastic

foundation analysis to capture the compressive stresses in region I.

TOP FACE

CORE

BOTTOM FACE

P

ft

2c

fb

X1 a-X1 L-a L

Tensionless foundation

z, w

x, u

Figure 4.3: Coordinate System in the ENF specimen

The elastic foundation here is assumed only to react when there is compression and the

modulus of the tensionless foundation is kt. At the interface between debonded part and

the substrate, compression occurs only when wd < ws. When wd > ws, it means the crack

is open and there is no contact or transfer of stresses across the debonded top face and the

substrate. The coordinate system is set so that x = 0 is at the crack tip (shown in Figure 4.3),

i.e., the debond is negative for x and the intact part is for positive x. Thus, the governing
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equations are:

EId
d4wdI

dx4
+ S(x)kt(wdI − wsI ) = 0 − a ≤ x ≤ 0 (4.1)

EIs
d4wsI

dx4
+ S(x)kt(wsI − wdI ) = 0 − a ≤ x ≤ 0 (4.2)

where kt(wdI −wsI ) term represents the compressive force distribution andX1 is the length

of the contact zone from the left end. Also,X1 is unknown and we will need to find its value

when we solve the equations. The function S(x) is a step function allowing to separate the

contact region and the non-contact region in the cracked portion of the beam. Region I and

II can be separated as:

S(x) =


1 if −a ≤ x ≤ −a+X1 Region I: wdI ≤ wsI

0 if −a+X1 ≤ x ≤ 0 Region II: wdI ≥ wsI

(4.3)

In Region I:

For the crack face contact part −a ≤ x ≤ −a + X1, S(x) = 1, substituting wd from

Equation 4.2 into Equation 4.1 results in

(EI)s
kt

d8wsI

dx8
+

[
1 +

(EI)s
(EI)d

]
d4sI
dx4

= 0 (4.4)

with

wdI =
(EI)s
kt

d4wsI

dx4
+ wsI (4.5)

Then setting,

λ1 = kt
(EI)d + (EI)s
4(EI)d(EI)s

(4.6)
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Equation 4.4 can be written in the form

d8wsI

dx8
+ 4λ41

d4wsI

dx4
= 0 (4.7)

The tensionless spring foundation modulus (kt) value is chosen based on the study by

Kardomateas et al. [45]. This modulus value is same the modulus in the elastic foundation

in region III & IV. Only difference being, foundation in region I reacts only in compression

and its modulus is given by

kt =
cc33
c
b (4.8)

where

cc33 = Ec
3

(1− νc12ν
c
21)

1− (νc12ν
c
21 + νc23ν

c
32) + νc13ν

c
31)− (νc12ν

c
23ν

c
31 + νc21ν

c
32ν

c
13)

(4.9)

where we have adopted the convention 1 ≡ x, 2 ≡ y, and 3 ≡ z; Ec
3 is the transverse

extensional modulus of the core; and the ν ′s are Poisson’s ratios of the core.

The general solutions for the transverse displacements from these governing equations

are

wdI =
−EIs
EId

[
D1 coshλ1x cosλ1x+D2 coshλ1x sinλ1x+D3 sinhλ1x cosλ1x+

+D4 sinhλ1x sinλ1x

]
+D5x

3 +D6x
2 +D7x+D8 (4.10)

wsI =

[
D1 coshλ1x cosλ1x+D2 coshλ1x sinλ1x+D3 sinhλ1x cosλ1x+

+D4 sinhλ1x sinλ1x

]
+D5x

3 +D6x
2 +D7x+D8 (4.11)

In Region I, it can be noticed that the general solutions for the displacements have
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hyperbolic functions and polynomials. There are 8 unknown coefficients in these equations.

In Region II:

In this region, there is no contact between the top debonded face and the substrate. Hence,

the top debonded part and the substrate are independent and the governing equations (Equa-

tion 4.1 & Equation 4.2) are simplified to simple beam equations

EId
d4wdII

dx4
= 0 − a+X1 ≤ x ≤ 0 (4.12)

EIs
d4wsII

dx4
= 0 − a+X1 ≤ x ≤ 0 (4.13)

And solving these equations, we get the general solutions as

wdII = e1dx
3 + e2dx

2 + e3dx+ e4d (4.14)

wsII = e1sx
3 + e2sx

2 + e3sx+ e4s (4.15)

We can the see that the general solutions for the displacements are simple polynomial

equations and we have 8 unknown coefficients from this region.

4.1.2 Bonded section

We introduce an elastic foundation in the bonded region to capture the crack tip deforma-

tions. The governing equations are same in Region III and IV. There is a shear load acting

between Region III & IV and both the regions have the elastic foundation with normal

springs between the top face sheet and the substrate. The beam is split into two regions at

x = L− a, where there is transverse shear load in the middle of the beam.
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In Region III:

Here, the elastic foundation has a distribution of normal springs and the stiffness of the

springs are kn The governing equations in region III is given by,

(EI)d
d4wdIII

dx4
+ kn(wdIII − wsIII ) = 0 0 ≤ x ≤ L− a (4.16)

(EI)s
d4wsIII

dx4
+ kn(wsIII − wdIII ) = 0 0 ≤ x ≤ L− a (4.17)

Simplifying these equations, we get

(EI)s
kn

d8wsIII

dx8
+

[
1 +

(EI)s
(EI)d

]
d4sIII
dx4

= 0 (4.18)

with

wdIII =
(EI)s
kn

d4wsIII

dx4
+ wsIII (4.19)

Then setting,

λ2 = kn
(EI)d + (EI)s
4(EI)d(EI)s

(4.20)

Equation 4.4 can be written in the form

d8wsIII

dx8
+ 4λ42

d4wsIII

dx4
= 0 (4.21)
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The general solutions obtained from solving the governing equations (Equation 4.16 &

Equation 4.17) are

wdIII =
−EIs
EId

[
C1 coshλ2x cosλx+ C2 coshλ2x sinλ2x+ C3 sinhλ2x cosλ2x+

+ C4 sinhλ2x sinλ2x

]
+ C5x

3 + C6x
2 + C7x+ C8 (4.22)

wsIII =

[
C1 coshλ2x cosλx+ C2 coshλ2x sinλ2x+ C3 sinhλ2x cosλ2x+

+ C4 sinhλ2x sinλ2x

]
+ C5x

3 + C6x
2 + C7x+ C8 (4.23)

From the general solutions, we have 8 unknown coefficients (Ci where i =1,...,8) in this

region.

In Region IV:

In this region, the governing equations are similar to region III and they can be solved in

the same way

(EI)d
d4wdIV

dx4
+ kn(wdIV − wsIV ) = 0 L− a ≤ x ≤ 2L− a (4.24)

(EI)s
d4wsIV

dx4
+ kn(wsIV − wdIV ) = 0 L− a ≤ x ≤ 2L− a (4.25)

Again the general solutions obtained from solving the governing equations are

wdIV =
−EIs
EId

[
B1 coshλ2x cosλ2x+B2 coshλ2x sinλ2x+B3 sinhλ2x cosλ2x+

+B4 sinhλ2x sinλ2x

]
+B5x

3 +B6x
2 +B7x+B8 (4.26)
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wsIV =

[
B1 coshλ2x cosλ2x+B2 coshλ2x sinλ2x+B3 sinhλ2x cosλ2x+

+B4 sinhλ2x sinλ2x

]
+B5x

3 +B6x
2 +B7x+B8 (4.27)

From the general solutions (Equation 4.26 & Equation 4.27), we have 8 unknown coeffi-

cients (Bi where i =1,...,8).

4.2 Boundary and Continuity Conditions

From the general solutions for transverse displacements in all four regions, we have 32

unknown coefficients. In addition, we also have an unknown length of contact region (X1).

So, to find all these unknowns, we need atleast 33 equations. From the ENF specimen

(shown in Figure 4.1), we have 8 boundary conditions and 24 continuity conditions (8 each

from x = -a+ X1, 0, L-a) and 1 additional condition at the end of the contact region. At

the end of crack face contact, we known that the displacements of the debonded face and

the substrate must be equal. This gives us an additional condition that we need to solve the

unknown length of crack face contact (X1).

In the End Notched Flexure specimen, the beam is pinned at the right end x = 2L− a,
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so the bending moment and displacements are

(EI)dw
′′
dIV

|2L−a = 0

= 2(−(EI)s)λ
2
2

[
B4 cosh(λ2(2L− a)) cos(λ2(2L− a))−

−B3 cosh(λ2(2L− a)) sin(λ2(2L− a)) +B2 sinh(λ2(2L− a)) cos(λ2(2L− a))−

−B1 sinh(λ2(2L− a)) sin(λ2(2L− a))

]
+ 6B5(2L− a) + 2B6 (4.28)

(EI)sw
′′
sIV

|2L−a = 0

= 2(EI)sλ
2
2

[
B4 cosh(λ2(2L− a)) cos(λ2(2L− a))−

−B3 cosh(λ2(2L− a)) sin(λ2(2L− a)) +B2 sinh(λ2(2L− a)) cos(λ2(2L− a))−

−B1 sinh(λ2(2L− a)) sin(λ2(2L− a))

]
+ 6B5(2L− a) + 2B6 (4.29)

wdIV |2L−a = 0

= (−(EI)s/(EI)d)

[
B1 cosh(λ2(2L− a)) cos(λ2(2L− a))+

+B2 cosh(λ2(2L− a)) sin(λ2(2L− a)) +B3 sinh(λ2(2L− a)) cos(λ2(2L− a))+

+B4 sinh(λ2(2L− a)) sin(λ2(2L− a))

]
+B5(2L− a)3+

+B6(2L− a)2 +B7(2L− a) +B8 (4.30)

wsIV |2L−a = 0

=

[
B1 cosh(λ2(2L− a)) cos(λ2(2L− a)) +B2 cosh(λ2(2L− a)) sin(λ2(2L− a))

+B3 sinh(λ2(2L− a)) cos(λ2(2L− a)) +B4 sinh(λ2(2L− a)) sin(λ2(2L− a))

]
+

+B5(2L− a)3 +B6(2L− a)2 +B7(2L− a) +B8 (4.31)

At the crack tip, x = 0, we have continuity conditions on the top face sheet across the

cracked section and the bonded section of the beam:
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Displacement continuity:

e4d = (−(EI)s/(EI)d)C1 + C8 (4.32)

e4s = C1 + C8 (4.33)

Slope continuity:

e3d = (−(EI)s/(EI)d)λ2(C2 + C3) + C7 (4.34)

e3s = λ2(C2 + C3) + C7 (4.35)

Bending moment continuity:

e2d = (−(EI)s/(EI)d)λ
2
2C4 + C6 (4.36)

e2s = λ22C4 + C6 (4.37)

Shear force continuity:

6e1d = 2λ32(−(EI)s/(EI)d)(C2 − C3) + 6C5 (4.38)

6e1s = 2λ32(C2 − C3) + 6C5 (4.39)

At the left end, x = -a, the ENF specimen is pinned. The bending moments and displace-

ments are
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(EI)dw
′′
dI
|−a = 0

= 2(−(EI)s)λ
2
1

[
D4 cosh(−λ1a) cos(−λ1a)−D3 cosh(−λ1a) sin(−λ1a)+

+D2 sinh(−λ1a) cos(−λ1a)−D1 sinh(−λ1a) sin(−λ1a)
]
+ 6D5(−a) + 2D6 (4.40)

(EI)sw
′′
sI
|−a = 0

= 2(EI)sλ
2
1

[
D4 cosh(−λ1a) cos(−λ1a)−D3 cosh(−λ1a) sin(−λ1a)+

+D2 sinh(−λ1a) cos(−λ1a)−D1 sinh(−λ1a) sin(−λ1a)
]
+ 6D5(−a) + 2D6 (4.41)

wdI |−a = 0

= (−(EI)s/(EI)d)

[
D1 cosh(−λ1a) cos(−λ1a) +D2 cosh(−λ1a) sin(−λ1a)+

+D3 sinh(−λ1a) cos(−λ1a) +D4 sinh(−λ1a) sin(−λ1a)
]
+

+D5(−a)3 +D6(−a)2 +D7(−a) +D8 (4.42)

wsI |−a = 0

=

[
D1 cosh(−λ1a) cos(−λ1a) +D2 cosh(−λ1a) sin(−λ1a)+

+D3 sinh(−λ1a) cos(−λ1a) +D4 sinh(−λ1a) sin(−λ1a)
]
+

+D5(−a)3 +D6(−a)2 +D7(−a) +D8 (4.43)

We also have continuity condition at the middle of the beam, x= L-a, where there is a trans-

verse shear load (P). Using this we can obtain the following equations:
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Displacement continuity:

wdIII |L−a = wdIV |L−a

= (−(EI)s/(EI)d)

[
(C1 −B1) cosh(λ2(L− a)) cos(λ2(L− a))+

+ (C2 −B2) cosh(λ2(L− a)) sin(λ2(L− a))+

+ (C3 −B3) sinh(λ2(L− a)) cos(λ2(L− a))+

+ (C4 −B4) sinh(λ2(L− a)) sin(λ2(L− a))

]
+ (C5 −B5)(L− a)3+

+ (C6 −B6)(L− a)2 + (C7 −B7)(L− a) + (C8 −B8) = 0 (4.44)

wsIII |L−a = wsIV |L−a

=

[
(C1 −B1) cosh(λ2(L− a)) cos(λ2(L− a))+

+ (C2 −B2) cosh(λ2(L− a)) sin(λ2(L− a))+

+ (C3 −B3) sinh(λ2(L− a)) cos(λ2(L− a))+

+ (C4 −B4) sinh(λ2(L− a)) sin(λ2(L− a))

]
+ (C5 −B5)(L− a)3+

+ (C6 −B6)(L− a)2 + (C7 −B7)(L− a) + (C8 −B8) = 0 (4.45)

(4.46)
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Slope continuity:

w′
dIII

|L−a = w′
dIV

|L−a

= (−(EI)s/(EI)d)λ2

[
(C2 + C3 −B2 −B3) cosh(λ2(L− a)) cos(λ2(L− a))+

+ (−C1 + C4 +B1 −B4) cosh(λ2(L− a)) sin(λ2(L− a))+

+ (C1 + C4 −B1 −B4) sinh(λ2(L− a)) cos(λ2(L− a))+

+ (C2 − C3 −B2 +B3) sinh(λ2(L− a)) sin(λ2(L− a))

]
+ 3(C5 −B5)(L− a)2+

+ 2(C6 −B6)(L− a) + (C7 −B7) = 0 (4.47)

w′
sIII

|L−a = w′
sIV

|L−a

= λ

[
(C2 + C3 −B2 −B3) cosh(λ2(L− a)) cos(λ2(L− a))+

+ (−C1 + C4 +B1 −B4) cosh(λ2(L− a)) sin(λ2(L− a))+

+ (C1 + C4 −B1 −B4) sinh(λ2(L− a)) cos(λ2(L− a))+

+ (C2 − C3 −B2 +B3) sinh(λ2(L− a)) sin(λ2(L− a))

]
+ 3(C5 −B5)(L− a)2+

+ 2(C6 −B6)(L− a) + (C7 −B7) = 0 (4.48)

Bending Moment continuity:

(EI)dw
′′
dIII

|L−a = (EI)dw
′′
dIV

|L−a

= 2(−(EI)s/(EI)d)λ
2
2

[
(C4 −B4) cosh(λ2(L− a)) cos(λ2(L− a))−

− (C3 −B3) cosh(λ2(L− a)) sin(λ2(L− a))+

+ (C2 −B2) sinh(λ2(L− a)) cos(λ2(L− a))−

− (C1 −B1) sinh(λ2(L− a)) sin(λ2(L− a))

]
+ 6(C5 −B5)(L− a) + 2(C6 −B6) = 0

(4.49)
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(EI)sw
′′
sIII

|L−a = (EI)sw
′′
sIV

|L−a

= 2λ22

[
(C4 −B4) cosh(λ2(L− a)) cos(λ2(L− a))−

− (C3 −B3) cosh(λ2(L− a)) sin(λ2(L− a))+

+ (C2 −B2) sinh(λ2(L− a)) cos(λ2(L− a))−

− (C1 −B1) sinh(λ2(L− a)) sin(λ2(L− a))

]
+ 6(C5 −B5)(L− a) + 2(C6 −B6) = 0

(4.50)

Shear Force continuity:

[(EI)dw
′′′
dIII

+ (EI)sw
′′′
sIII

− (EI)dw
′′′
dIV

− (EI)sw
′′′
sIV

]|L−a = P

6((EI)d + (EI)s)(C5 −B5) = P (4.51)

In addition, we also have a shear force condition at the right end. The shear load is acting

at the middle of the beam, hence the reaction at the pinned supports will be half of it,

[(EI)dw
′′′
dIV

+ (EI)sw
′′′
sIV

]|2L−a = −P/2

6((EI)d + (EI)s)B5 = −P/2 (4.52)

In the cracked section, between Region I and II, x = −a +X1, we have continuity condi-

tions across these two regions
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Displacement continuity:

wdI |−a+X1 = wdII |−a+X1

= (−(EI)s/(EI)d)

[
D1 cosh(λ1(−a+X1)) cos(λ1(−a+X1))+

+D2 cosh(λ1(−a+X1)) sin(λ1(−a+X1)) +D3 sinh(λ1(−a+X1)) cos(λ1(−a+X1))+

+D4 sinh(λ1(−a+X1)) sin(λ1(−a+X1))

]
+D5(−a+X1)

3 +D6(−a+X1)
2+

+D7(−a+X1) +D8 = Wd(−a+X1)
3 +Xd(−a+X1)

2 + Yd(−a+X1) + Zd

(4.53)

wsI |−a+X1 = wsII |−a+X1

=

[
D1 cosh(λ1(−a+X1)) cos(λ1(−a+X1))+

+D2 cosh(λ1(−a+X1)) sin(λ1(−a+X1)) +D3 sinh(λ1(−a+X1)) cos(λ1(−a+X1))+

+D4 sinh(λ1(−a+X1)) sin(λ1(−a+X1))

]
+D5(−a+X1)

3 +D6(−a+X1)
2+

+D7(−a+X1) +D8 = Ws(−a+X1)
3 +Xs(−a+X1)

2 + Ys(−a+X1) + Zs

(4.54)

Slope continuity:

w′
dI
|−a+X1 = w′

dII
|−a+X1

= (−(EI)s/(EI)d)λ1

[
(D2 +D3) cosh(λ1(−a+X1)) cos(λ1(−a+X1))+

+ (−D1 +D4) cosh(λ1(−a+X1)) sin(λ1(−a+X1))+

+ (D1 +D4) sinh(λ1(−a+X1)) cos(λ1(−a+X1))+

+ (D2 −D3) sinh(λ1(−a+X1)) sin(λ1(−a+X1))

]
+ 3D5(−a+X1)

2+

+ 2D6(−a+X1) +D7 = 3Wd(−a+X1)
2 + 2Xd(−a+X1) + Yd (4.55)
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w′
sI
|−a+X1 = w′

sII
|−a+X1

= λ1

[
(D2 +D3) cosh(λ1(−a+X1)) cos(λ1(−a+X1))+

+ (−D1 +D4) cosh(λ1(−a+X1)) sin(λ1(−a+X1))+

+ (D1 +D4) sinh(λ1(−a+X1)) cos(λ1(−a+X1))+

+ (D2 −D3) sinh(λ1(−a+X1)) sin(λ1(−a+X1))

]
+ 3D5(−a+X1)

2+

+ 2D6(−a+X1) +D7 = 3Ws(−a+X1)
2 + 2Xs(−a+X1) + Ys (4.56)

Bending Moment continuity:

(EI)dw
′′
dI
|−a+X1 = (EI)dw

′′
dII

|−a+X1

= 2(−(EI)s/(EI)d)λ
2
1

[
D4 cosh(λ1(−a+X1)) cos(λ1(−a+X1))−

−D3 cosh(λ1(−a+X1)) sin(λ1(−a+X1)) +D2 sinh(λ1(−a+X1)) cos(λ1(−a+X1))−

−D1 sinh(λ1(−a+X1)) sin(λ1(−a+X1))

]
+ 6D5(−a+X1)+

+ 2D6 = 6Wd(−a+X1) + 2Xd (4.57)

(EI)sw
′′
sI
|−a+X1 = (EI)sw

′′
sII

|−a+X1

= 2λ21

[
D4 cosh(λ1(−a+X1)) cos(λ1(−a+X1))−

−D3 cosh(λ1(−a+X1)) sin(λ1(−a+X1)) +D2 sinh(λ1(−a+X1)) cos(λ1(−a+X1))−

−D1 sinh(λ1(−a+X1)) sin(λ1(−a+X1))

]
+ 6D5(−a+X1)+

+ 2D6 = 6Ws(−a+X1) + 2Xs (4.58)
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Shear Force continuity:

(EI)dw
′′′
dI
|−a+X1 = (EI)dw

′′′
dII

|−a+X1

= 2(−(EI)s/(EI)d)λ
3
1

[
(D2 −D3) cosh(λ1(−a+X1)) cos(λ1(−a+X1))−

− (D1 +D4) cosh(λ1(−a+X1)) sin(λ1(−a+X1))+

+ (−D1 +D4) sinh(λ1(−a+X1)) cos(λ1(−a+X1))−

− (D2 +D3) sinh(λ1(−a+X1)) sin(λ1(−a+X1))

]
+ 6D5 = 6Wd (4.59)

(EI)sw
′′′
sI
|−a+X1 = (EI)sw

′′′
sII

|−a+X1

= 2λ31

[
(D2 −D3) cosh(λ1(−a+X1)) cos(λ1(−a+X1))−

− (D1 +D4) cosh(λ1(−a+X1)) sin(λ1(−a+X1))+

+ (−D1 +D4) sinh(λ1(−a+X1)) cos(λ1(−a+X1))−

− (D2 +D3) sinh(λ1(−a+X1)) sin(λ1(−a+X1))

]
+ 6D5 = 6Ws (4.60)

From these boundary conditions and continuity conditions (Equation 4.28 - Equation 4.60),

we have 32 equations to solve for the unknown coefficients in the general solutions. We still

need one more equation to solve all the 33 unknown coefficients. The additional equations

comes from the condition at the interface between Region I & II, we know that the contact

between the crack faces are lost at that interface. Hence, the transverse displacement of the

top debonded face and the substrate should be the same at the interface between Region I

& II (x = −a+X1). This gives us

wdII |−a+X1 = wsII |−a+X1

Wd(−a+X1)
3 +Xd(−a+X1)

2 + Yd(−a+X1) + Zd =

Ws(−a+X1)
3 +Xs(−a+X1)

2 + Ys(−a+X1) + Zs (4.61)

With all these conditions, we obtain a system of non-linear equations(Equation 4.28-Equation 4.61)
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and we can write a computer code to solve the numerical equations numerically.

4.3 Energy Release Rate

We have the general solutions for the transverse displacements of the beam section and

they can be used to find the energy release rates. J-Integral provides a way to calculate

the strain energy release rate. The ENF specimen is a standard beam for the measurement

of the mode-II toughness of composites. The J-integral was developed in 1968 by Rice to

characterize the strain concentration around cracks and notches.

Top Face

Core

Crack length - a

Bottom face

P

L L

B

A

A’

F E

D’

D

C

x, u

z, w

Figure 4.4: Zero-area path for J-Integral Calculation - ENF

The original definition of the integral is:

J =

∫
Γ

Wdz − Ti
∂ui
∂x

ds (4.62)

For the calculation we define a zero-area path [97][98] around the crack tip. The dashed

lines show the stress and displacement fields on both sides of the tip. For the calculation,
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we define a zero-area path around the crack tip (Γ = BAA’FEDD’C) as shown in Figure 5.4.

The strain energy density on along the path can be written as:

W =
1

2
(σxxϵxx + σzzϵzz + τxzγxz) (4.63)

And, the second term in Equation 4.62 can be written as

Ti
∂ui
∂x

= −σxxϵxx − τxzw,x (4.64)

The equivalent shear modulus for the section should be derived by assuming the constituent

sections are ”springs in parallel”, as shown in Kardomateas and Simitses[45].

For the debonded part, which is homogeneous, the equivalent shear modulus is:

Gd = Gft (4.65)

For the substrate part which consists of the core and the bottom face:

2c+ fb
Gs

=
2c

Gc

+
fb
Gfb

(4.66)

For the base part

ft + 2c+ fb
Gb

=
ft
Gft

+
2c

Gc

+
fb
Gfb

(4.67)

Regarding the shear correction factor, for a homogeneous section, κ = 6/5. Thus, for the

debonded part:

κd =
6

5
(4.68)

The shear correction factor for the substrate part can be found using the general asymmetric
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section formula in [96],

κs =
Gsb

2(2c+ fb)

4(EI)2s

(
E2

c

Gc

q2 −
E2

fb

G−fb
q1

)
, (4.69)

where

q1 = fb(c− es + fb)
4 +

1

5
[(c− es + fb)

5 − (c− es)
5]−

− 2

3
(c− es + fb)

2[(c− es + fb)
3 − (c− es)

3]; (4.70)

q2 = 2c(c+ es)
4 +

1

5
[(c+ es)

5 − (c− es)
5]− 2

3
(c+ es)

2[(c− es)
3 − (c− es)

3] (4.71)

The shear correction factor for the base part can again be taken from Huang and Kardo-

mateas [96] formula for a general asymmetric sandwich section:

at = eb + c+ ft; bt = eb + c; ct = eb + c+
ft
2

(4.72)

ab = − eb + c+ fb; bb = −eb + c; cb = −eb + c+
fb
2

(4.73)

and

di =
E2

fi

Ec

f 2
i c

2
i + Efificib

2
i +

Ec

4
b4i (4.74)

then the shear correction formula for the base part is given from:

κb =
b2(fb + 2c+ ft)Gb

EI2eq
(af + ac) (4.75)
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where

af =
∑
i=t,b

E2
fi

4Gi

[
a4i fi −

2

3
a2i (a

3
i − b3i ) +

1

5
(a5i − b5i )

]
(4.76)

ac =
Ec

Gc

∑
i=t,b

Ec

20
(b5i − e5b)−

(
Ec
b2i
2
+ Efifici

)
1

3
(b3i − e3b) + dic

]
(4.77)

From a plane stress assumption, σzz = 0, and ϵxx = σxx/E,thus

When dz = -ds,

dJ =
1

2

(
σxxϵxx + σzzϵzz + τxzγxz

)
(−ds)−

(
− σxxϵxx − τxzwi,x

)
ds (4.78)

dJ =
1

2

(
σ2
xx

E
− κ

τ 2xz
Geq

+ 2τxzwi,x

)
ds (4.79)

Similarly, when dz = ds,

dJ =
1

2

(
− σ2

xx

E
+ κ

τ 2xz
Geq

− 2τxzwi,x

)
ds (4.80)

Here,

σxx = Ei
Mis

(EI)eq
; τxz =

−Vi
A

; i = d, s, b (4.81)

where Ei refers to Ei = Ec if it is in the core, Ei = Ef t if in the top face etc. Also,

(EI)eq is the equivalent bending rigidity of the section, for example, for the substrate part,

(EI)eq = (EI)s, and for the base part, (EI)eq = (EI)b.

Notice that for a plane strain assumption, ϵzz = 0, we would have σzz = νxzσxx, there,

ϵxx = (σxx − νzxσzz)/E = (1− νzxνxz)σxx/E.

In the zero-area path for J-Integral, we evaluate the stresses and slopes at the crack tip

(x=0). Therefore, again for a plane stress assumption,
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On BA: dz = -ds

JBA =

∫ ft
2

− ft
2

(
1

2Ed

σ2
xx −

κd
2Geq

τ 2xz + τxzwi,x|0
)
ds (4.82)

(4.83)

=

∫ ft
2

− ft
2

(
1

2
Ed

M2
ds

2

(EI)2d
− κd

2Geq

V 2
d

A2
d

− Vd
Ad

wd,x|0
)
ds (4.84)

JBA =
1

2b2

(
12M2

d

Edf 3
t

− κdV
2
d

Gdft
− 2Vdb(e3d)

)
(4.85)

Here, Md & Vd are the bending moment and shear force on the debonded part at the crack

tip (x=0) are given by

Md = (EI)d(2e2d); Vd = (EI)d(6e1d) (4.86)

On A’F: dz = -ds

JA′F =

∫
A′F

(
1

2
Es
M2

s s
2

(EI)2s
− κsV

2
s

2GsA2
s

− Vs
As

ws,x|0
)
ds (4.87)

JA′F =
M2

s

2(EI)2s

[
Efbfb

[
(c− es)(c− es + fb) +

f 2
b

3

]
+ 2Ecc

(c2
3
+ e2s

)]
−

− ksV
2
s

2Gsb2(2c+ fb)
− Vs

b
(e3s) (4.88)

Here, Ms & Vs are the bending moment and shear force on the substrate part at the crack

tip (x=0) are given by

Ms = (EI)s(2e2s); Vs = (EI)s(6e1s) (4.89)

On the right side, EC, we can assume that the bonded section (actual beam structure) is
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used. This ”base” beam will have its neutral axis at a distance ”eb” from the mid-core line,

which is given by

eb[Eftft + Ec(2c) + Efbfb] = Efbfb

(
fb
2
+ c

)
− Eftft

(
ft
2
+ c

)
(4.90)

and its flexural rigidity will be

(EI)b = b

[
Eft

f 3
t

12
+ Eftft

(
ft
2
+ c+ eb

)2

+ Ec
2c3

3
+ Ec(2c)e

2
b+

+ Efb

f 3
b

12
+ Efbfb

(
fb
2
+ c− eb

)2]
(4.91)

On EC: dz = ds

JEC =

∫
CE

(
− Eb

M2
b s

2

2(EI)2b
+

κbV
2
b

2GbA2
b

+
Vb
Ab

wb,x|0
)
ds (4.92)

=− M2
b

2(EI)2b

(
Efb

∫ eb−c

eb−c−fb

s2ds+ Ec

∫ eb+c

eb−c

s2ds+ Eft

∫ eb+c+ft

eb+c

s2ds

)
+

+
κbVb
2GbA2

b

∫ eb+c+ft

eb−c−fb

ds+
Vb
Ab

wb,x|0
∫ eb+c+ft

eb−c−fb

ds (4.93)

Simplifying the above equation we get

JEC = − M2
b

2(EI)2b

{
Efbfb

[
(eb − c)(eb − c− fb) +

f 2
b

3

]
+ 2Ecc(

c2

3
+ e2b)+

+ Eftft

[
(eb + c)(eb + c+ ft) +

f 2
t

3

]}
+

(
κbV

2
b

2GbA2
b

)
(2c+ ft + fb)−

− Vb
Ab

wb,x|0(ft + 2c+ fb) (4.94)

Mb & Vb are the bending moment and shear force on the base part at the crack tip (x=0) are

given by

Mb = (EI)d(2e2d) + (EI)s(2e2s); Vb = (EI)d(6e1d) + (EI)s(6e1s) (4.95)
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Finally, the strain energy release rate is the sum of these individual contributions (JBA,JA′F ,JEC).

J = JBA + JA′F + JEC (4.96)

Hence, the energy release rate of the end-notched flexure sandwich specimen can be ob-

tained using the following expression

J =
1

2b2

(
12((EI)d(2e2d))

2

Edf 3
t

− κd((EI)d(6e1d))
2

Gdft
− 2((EI)d(6e1d))b(e3d)

)
+

+
((EI)s(2e2s))

2

2(EI)2s

[
Efbfb

[
(c− es)(c− es + fb) +

f 2
b

3

]
+ 2Ecc

(c2
3
+ e2s

)]
−

− ks((EI)s(6e1s))
2

2Gsb2(2c+ fb)
− ((EI)s(6e1s))

b
(e3s)−

((EI)d(2e2d) + (EI)s(2e2s))
2

2(EI)2b

{
Efbfb

[
(eb − c)(eb − c− fb) +

f 2
b

3

]
+ 2Ecc(

c2

3
+ e2b)+

+ Eftft

[
(eb + c)(eb + c+ ft) +

f 2
t

3

]}
+

(
κb((EI)d(6e1d) + (EI)s(6e1s))

2

2bGbAb

)
−

− ((EI)d(6e1d) + (EI)s(6e1s))

b
wb,x|0 (4.97)

4.4 Mode Partitioning

The goal in this thesis is to provide a closed/near-closed form solution. Hence, we use mode

partitioning approach, which makes use of the displacements. Notice that displacements

as an alternative approach to determine mode mixity have been used in bimaterial fracture

mechanics by Berggreen et al. [36]. However, the latter is based on the fracture mechanics

singular field and thus it is conceptually different and this mode partitioning approach was

introduced by Kardomateas et al. [43].

According to the Euler-Bernoulli beam theory, the displacements of the debonded part
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in the limit are

wd0 = lim
x→0

wd(x) = e4d (4.98)

ud0 =
ft
2
lim
x→0

wd,x(x) =
ft
2
e3d (4.99)

and the corresponding ones for the substrate part in the limit are

ws0 = lim
x→0

ws(x) = e4s (4.100)

us0 =− (es + c) lim
x→0

wd,x(x) = −(es + c)e3s (4.101)

We can also account for the effect of transverse shear in an approximate way by including

the shear strain γ = κV/(GeqA) in the slope. Notice that, a positive shear would create a

clockwise slope. Thus, the axial displacements at the face/core interface due to the shear,

to be added to the ud0 and us0 , respectively, are

udγ = −ft
2

κdVd
(Gdbft)

; usγ = (es + c)
κsVs

[Gsb(2c+ fb)]
(4.102)

A mode partitioning phase angle, ψTEF , based on the elastic foundation approach, is de-

fined from the relative crack flank opening and shearing displacements, δw and δu, respec-

tively, at the tip; it is defined so that ψTEF = 0 if only transverse (opening) displacement

occurs at the beginning of the springs, x = 0 (pure mode I) and ψTEF = 900 if only axial

(shearing) displacement occurs at x = 0 (pure mode II)

ψTEF = tan−1

(
δu
δw

)
= tan−1 (ud0 + udγ )− (us0 + usγ )

(wd0 − ws0)
(4.103)

97



After substituting

ψTEF = tan−1

(
ft
2
e3d − ft

2
κdVd

(Gdbft)

)
−
(
− (es + c)e3s + (es + c) κsVs

[Gsb(2c+fb)]

)
(e4d − e4s)

(4.104)

It should be noted that in the elastic foundation model, a crack does not exist, instead we

have beams connected by elastic springs. Therefore, this mode partitioning approach is not

the same as the mode mixity in a bimaterial crack, which is based on the stress intensity

factors from a fracture mechanics approach.

4.5 Results and Discussion

A symmetric sandwich configuration with faces made of isotropic aluminium with Young’s

modulusEf = 70GPa and Poisson’s ratio νf = 0.3 is chosen. The core material is isotropic

aluminium foam with Young’s modulus Ec = 7GPa and Poisson’s ratio νc = 0.32. We

chose isotropic faces and core because we are comparing our results with the commercial

finite element ANSYS, and most finite element softwares can only calculate the stress

intensity factor, KI,II , for an interfacial crack when the two materials are both isotropic

and linear elastic.

In all cases, the faces had a thickness of ft=fb=2 mm and the core had a thickness of 2c

= 20mm. The total length of the beam was L=500 mm. A debond of length a = 200 mm is

introduced between the top face and the core.

For verification, we modeled the End-Notched Flexure sandwich specimen into AN-

SYS (Figure 4.5). Here, the crack tip singularity was introduced using Pre-Meshed Crack

and a frictionless surface-to-surface contact was also introduced between the two crack

faces. We then obtained the Energy release rate values using J-Integral and Virtual Crack

Closure technique. We also obtained the mode mixity values from the stress intensity factor

values using the expression given below:
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Figure 4.5: ENF sandwich specimen with pre-meshed crack

ψ = tan−1

(
KII

KI

)
(4.105)

Table 4.1 shows the energy release rate values from the closed form expression (Equa-

tion 4.97) from the tensionless foundation analysis, JTEF in comparison with the one com-

puted from the finite element analysis, ERRFEA for a range of load values. We have used

the subscript TEF to denote results from the tensionless elastic foundation approach and

FEA to denote results from the finite element code ANSYS. It can be seen that the energy

release rate values (JTEF ) show very good agreement with the energy release rate value

from FEA (ERRFEA). In addition, by solving the unknown equations using boundary

conditions, it is interesting to note that we are able to find the crack face contact length

(X1) for each load case. We can see that there is a significant contact region from the left

support as we expected.
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Table 4.1: ENF: Energy Release Rate Values - Al Foam Core

P JTEF ERRFEA Contact Length

(Nt) (Nt/mm) (Nt/mm) mm

Tensionless Foundation VCCT Region I

10 0.0248 0.023141 129.07

15 0.0558 0.0521 160.12

20 0.0993 0.0926 160.12

40 0.3970 0.3706 157.65

60 0.8934 0.8331 157.65

100 2.4816 2.3141 157.65

150 5.5836 5.2068 157.65

250 15.5100 14.463 157.65

400 39.7055 37.026 157.65

750 139.5897 130.17 157.65

1000 248.1595 231.41 183.10

Next, we chose a soft core isotropic material with Young’s modulus Ec = 0.35GPa and

Poisson’s ratio νc = 0.32. Table 4.2 shows the energy release values (JTEF ) compared

with the finite element analysis (ERRFEA). Even for this soft core case, we can see that

the tensionless elastic foundation approach gives a very good estimation of the energy

release rate values. Also, in the soft core case, it can be noticed that the crack face contact

length X1 is significantly large.

Table 4.2: ENF: Energy Release Rate Values - Soft Core
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P JTEF ERRFEA Contact Length

(Nt) (Nt/mm) (Nt/mm) mm

Tensionless Foundation VCCT Region I

10 0.4263 0.4054 160.12

15 0.9592 0.9122 160.12

20 1.7053 1.6216 160.12

40 6.8210 6.4865 160.12

60 15.3474 14.5950 160.12

100 42.6316 40.5410 160.12

150 95.9210 91.2160 160.12

250 266.4474 253.3800 157.65

400 682.1055 648.6500 183.10

750 2398.0270 2280.4000 183.10

1000 4263.1592 4054.1000 183.10

The mode partitioning phase angles defined in the context of the tensionless elastic foun-

dation analysis, ψTEF , gives ψTEF = 900 for all the load cases and both the material

combination. This is very accurate as we know that the ENF specimen is a pure mode II

specimen and the mode mixity phase angle for the pure mode II case should be 900. We

also obtained the mixity values from ANSYS stress intensity factor values and they also

shows that the specimen is in pure mode II fracture.

It is interesting to note that in Table 4.1 & Table 4.2, there is slight difference in the

energy release rate values obtained using the tensionless foundation theory and the FEA
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values. This is expected since our elastic foundation analysis uses Euler-Bernoulli beam

theory. A Timoshenko-based, first order shear analysis or high-order shear theory could

lead to better accuracy.

4.6 Conclusion

Semi-Closed form expressions for the energy release rate and mode partitioning of End-

Notched Flexure sandwich specimen are obtained. An elastic foundation approach using

Euler-Bernoulli beam theory is used in the bonded section of the beam. In the debonded

part, crack face contact is usually neglected in literature for analytical approaches. Here,

the crack face contact is modelled using tensionless spring foundation approach. The ten-

sionless spring foundation captures the transfer of compressive stress across the crack faces.

In this approach, in addition to the transverse displacements in the debonded part and the

substrate, we also obtain the length of the crack face contact region. The model presented

here is applicable for both isotropic and orthotropic face and core materials and can also be

done for the general asymmetric sandwich beam construction. J-Integral is used to derive

a closed form expression for energy release rate and the J-Integral values shows excellent

agreement with the corresponding values from the finite element analysis. The transverse

and axial displacements at the beginning of the elastic foundation are used to define a mode

partitioning measure values. It shows that the ENF specimen undergoes pure mode II frac-

ture.
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CHAPTER 5

CRACK FACE CONTACT MODEL - WITH FRICTION

In mode II fracture specimen, when there is crack face contact, we will have friction in

the contact region. Analytical approaches usually neglect the crack face contact and fric-

tion forces. Here, we are extending the elastic foundation analysis with tensionless spring

foundation to also capture the friction between the crack faces. The same ENF sandwich

specimen is used here to include friction in the contact region. In Figure 5.1, Region I is

the contact region in the debonded portion of the beam. Here, we will introduce the effects

of crack face contact friction.

TOP FACE

CORE

BOTTOM FACE

P

ft

2c

fb

X1 a-X1 L-a L

Tensionless foundation

z, w

x, u

Figure 5.1: Tensionless Foundation with crack face friction in ENF Specimen
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5.1 Governing Equations

We are extending the elastic foundation approach with tensionless foundation in the con-

tact region to also include the friction in the contact region. In Region I, we are using

tensionless spring foundation to capture the compressive stresses across the interface be-

tween debonded top face and the substrate. Region II is the free region in the cracked

section of the beam and we simple beam theory to obtain the governing equations in this

region. Region III and IV form the bonded section of the beam, elastic foundation with

normal springs are used to capture the interaction between the face and the substrate in this

region. In this model, we are using Euler-Bernoulli beam theory to develop the governing

equations in all these regions.

It should again be noted that the formulation and approach are applicable to both beams

(plane stress) and wide panels (plane strain) but different moduli should be used for plane

stress and plane strain problems. The solutions derived here are for the plane stress case

and for plane strain, E (Young’s Modulus) should be replaced by E/(1 − ν2), where ν is

Poisson’s ratio.

5.1.1 Cracked section

In the cracked section of the beam, we have two regions, Region I is the crack face contact

region with tensionless spring foundation and friction. The tensionless spring foundation

here is assumed only to react when there is compression and the modulus of the tensionless

foundation is kt. At the interface between debonded part and the substrate, compression

occurs only when wd < ws. When wd > ws, it means the crack is open and there is

no contact or transfer of stresses across the debonded top face and the substrate. The

coordinate system is set so that x = 0 is at the crack tip (shown in Figure 4.3), i.e., the

debond is negative for x and the intact part is for positive x.
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Region I: (−a ≤ x ≤ −a+X1)

The beam element of the top debonded face shear is shown in Figure 5.2. Using the equi-

Vd

Vd +
dVd

dx ∂x

Md +
dMd

dx ∂xMd

qx

qz

Figure 5.2: Beam Element in the Debonded Face - Region I

librium equations of the beam element, we get

dMd

dx
= Vd + qx

ft
2

(5.1)

dVd
dx

= qz (5.2)

where, qz is the force distribution from the tensionless spring foundation and qx is the

frictional force distribution from the crack face contact. And similarly, the beam element

of the substrate part is shown in Figure 5.3 and if we solve the equilibrium equations, we

get

dMs

dx
= Vs + qx(es + c) (5.3)

dVs
dx

= −qz (5.4)

105



Vs

Vs +
dVs

dx ∂x

Ms +
dMs

dx ∂xMs

qz

qx

Figure 5.3: Beam Element in the Substrate - Region I

The force distribution from the tensionless spring foundation (qz) can be written as

qz = −kt(wd − ws) (5.5)

where, wd and ws are the transverse displacements in the top debonded part and the sub-

strate respectively. kt is the elastic modulus of the tensionless spring foundation and the

elastic modulus value is obtained using the same expression for the modulus of normal

springs in the elastic foundation. The only difference is that the springs in the tensionless

foundation only reacts for compressive forces. µ is the friction coefficient between the

crack faces. The friction force distribution (qx) between the crack faces is proportional to

the normal force distribution and can be written as:

qx = −µkt(wd − ws) (5.6)
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Using Equation 5.5 & Equation 5.6 in the equilibrium equations for the debonded part and

the substrate, we get

(EI)d
d3wd

dx3
=Vd − µkt(wd − ws)

ft
2

(5.7)

dVd
dx

=− kt(wd − ws) (5.8)

(EI)s
d3ws

dx3
=Vs − µkt(es + c)(wd − ws) (5.9)

dVs
dx

=kt(wd − ws) (5.10)

Simplifying this further, we get the governing equations in the Region I as

(EI)d
d4wd

dx
+ kt(wd − ws) + µkt

ft
2
(
dwd

dx
− dws

dx
) = 0 (5.11)

(EI)s
d4ws

dx
+ kt(ws − wd) + µkt(es + c)(

dwd

dx
− dws

dx
) = 0 (5.12)

The governing equations are linear fourth order coupled differential equations and are in

terms of the transverse displacements of the debonded part and the substrate. These equa-

tions can be solved by taking laplace transform

s4(EI)dWd(s) + kt(Wd(s)−Ws(s)) + µkt
ft
2
s(Wd(s)−Ws(s)) = 0 (5.13)

s4(EI)sWs(s) + kt(Ws(s)−Wd(s)) + µkt(es + c)s(Wd(s)−Ws(s)) = 0 (5.14)

Solving Equation 5.13, we can obtain Ws(s) in terms of Wd(s),

Ws(s) =
2kt + ftktµs+ 2(EI)ds

4

kt(2 + µfts)
Wd(s) (5.15)
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Substituting this into Equation 5.14 and simplifying, we get

s8wd −
ktµ

(EI)d(EI)s
[(EI)d(c+ es)− (EI)s

ft
2
]s5wd +

ke((EI)d + (EI)s)

(EI)d(EI)s
s4wd = 0

(5.16)

Now taking inverse Laplace transform of the above equation results in

w′′′′′′′′
d − 2λ21w

′′′′′
d + λ42w

′′′′
d = 0 (5.17)

where

λ21 =
ktµ

2(EI)d(EI)s
[(EI)d(c+ es)− (EI)s

ft
2
] (5.18)

λ42 =
kt((EI)d + (EI)s)

(EI)d(EI)s
(5.19)

This is a linear eight-order homogeneous differential equation. Assuming a solution of the

form erx, results in the following equation:

r8 − 2λ21r
5 + λ42r

4 = 0; or r4(r4 − 2λ21r + λ42) = 0 (5.20)

The solution for the above characteristic equation is of the form

r1,2 = −k1 ± ik2 r3,4 = −k1 ± ik3 r5,6,7,8 = 0 (5.21)
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So, the general solutions for the governing equations are

wdI =D1de
−k1x cos(k2x) +D2de

−k1x sin(k2x) +D3de
k1x cos(k3x) +D4de

k1x sin(k3x)+

+D5dx
3 +D6dx

2 +D7dx+D8d (5.22)

wsI =D1se
−k1x cos(k2x) +D2se

−k1x sin(k2x) +D3se
k1x cos(k3x) +D4se

k1x sin(k3x)+

+D5sx
3 +D6sx

2 +D7sx+D8s (5.23)

From Equation 5.11, we get

(EI)dw
′′′′
d + ktwd + µkt

ft
2
w′

d = ktws + µkt
ft
2
w′

s (5.24)

Using the above equation, substituting the general solutions (Equation 5.22 & Equation 5.23)

and comparing the coefficients on the left sides of the equation and right side of the equa-

tion, we get

D1s =
2D1dF1 + 2D2dF2 − (D1dF1 +D2dF2)ftk1µ+ (D1dF2 −D2dF1)ftk2µ

kt(4− 4ftk1µ+ f 2
t k

2
1µ

2 + f 2
t k

2
2µ

2)
(5.25)

D2s =
2D2dF1 − 2D1dF2 − (D2dF1 −D1dF2)ftk1µ+ (D1dF1 +D2dF2)ftk2µ

kt(4− 4ftk1µ+ f 2
t k

2
1µ

2 + f 2
t k

2
2µ

2)
(5.26)

D3s =
2D3dF3 − 2D4dF4 + (D3dF3 −D4dF4)ftk1µ− (D4dF3 +D3dF4)ftk3µ

kt(4 + 4ftk1µ+ f 2
t k

2
1µ

2 + f 2
t k

2
3µ

2)
(5.27)

D4s =
2D3dF3 + 2D4dF4 + (D4dF3 +D3dF4)ftk1µ+ (D3dF3 −D4dF4)ftk3µ

kt(4 + 4ftk1µ+ f 2
t k

2
1µ

2 + f 2
t k

2
3µ

2)
(5.28)

Dis =Did ; i = 5, 6, 7, 8 (5.29)
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where

F1 =2kt + 2(EI)d(k
4
1 − 6k21k

2
2 + k42)− ftktk1µ (5.30)

F2 =− 8(EI)dk1k2(k
2
1 − k22) + ftktk2µ (5.31)

F3 =2kt + 2(EI)d(k
4
1 − 6k21k

2
3 + k43)− ftktk1µ (5.32)

F4 =− 8(EI)dk1k3(k
2
1 − k23) + ftktk3µ (5.33)

In Region I, there is a slight difference in the general solutions for the case with friction.

With the crack face contact friction, we have exponential functions and polynomials in the

general solutions for the transverse displacements of the debonded part and the substrate.

There are 8 unknown coefficients in these equations.

Region II: (−a+X1 ≤ x ≤ 0)

In this region, there is no contact between the top debonded face and the substrate. Hence,

the top debonded part and the substrate are independent and the governing equations are

same and the solutions for transverse displacements are also the same as the ones in the

case of tensionless foundation with friction.

wdII = e1dx
3 + e2dx

2 + e3dx+ e4d (5.34)

wsII = e1sx
3 + e2sx

2 + e3sx+ e4s (5.35)

We can the see that the general solutions for the displacements are simple polynomial

equations and we have 8 unknown coefficients from this region.

5.1.2 Bonded section

The bonded section of the beam has the elastic foundation to capture the interaction be-

tween the top face and the substrate. The governing equations in the bonded section (both
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in Region III & IV) are the same as in previous chapter.

Region III: (0 ≤ x ≤ L− a)

Here, the elastic foundation has a distribution of normal springs and the stiffness of the

springs are kn. The general solutions for the transverse displacements in the top debonded

part and the substrate are

wdIII =
−EIs
EId

[
C1 coshλ2x cosλx+ C2 coshλ2x sinλ2x+ C3 sinhλ2x cosλ2x+

+ C4 sinhλ2x sinλ2x

]
+ C5x

3 + C6x
2 + C7x+ C8 (5.36)

wsIII =

[
C1 coshλ2x cosλx+ C2 coshλ2x sinλ2x+ C3 sinhλ2x cosλ2x+

+ C4 sinhλ2x sinλ2x

]
+ C5x

3 + C6x
2 + C7x+ C8 (5.37)

From the general solutions, we have 8 unknown coefficients (Ci where i =1,...,8) in this

region.

Region IV: (L− a ≤ x ≤ 2L− a)

Here, we obtain general solutions similar to Region III

wdIV =
−EIs
EId

[
B1 coshλ2x cosλ2x+B2 coshλ2x sinλ2x+B3 sinhλ2x cosλ2x+

+B4 sinhλ2x sinλ2x

]
+B5x

3 +B6x
2 +B7x+B8 (5.38)

wsIV =

[
B1 coshλ2x cosλ2x+B2 coshλ2x sinλ2x+B3 sinhλ2x cosλ2x+

+B4 sinhλ2x sinλ2x

]
+B5x

3 +B6x
2 +B7x+B8 (5.39)
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Similar to Region III, we have 8 unknown coefficients (Bi where i =1,...,8) in this region.

5.2 Boundary Conditions

From the general solutions in all the regions, we have 32 constant coefficients. The crack

face contact length, X1, is already found in the case without friction and we can use that

value. From the ENF specimen (shown in Figure 4.1), we have 8 boundary conditions and

24 continuity conditions (8 each from x = -a+ X1, 0, L-a)

In the End Notched Flexure specimen, the beam is pinned at the right end x = 2L− a,

so the bending moment and displacements are
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(EI)dw
′′
dIV

|2L−a = 0

= 2(−(EI)s)λ
2
2

[
B4 cosh(λ2(2L− a)) cos(λ2(2L− a))−

−B3 cosh(λ2(2L− a)) sin(λ2(2L− a)) +B2 sinh(λ2(2L− a)) cos(λ2(2L− a))−

−B1 sinh(λ2(2L− a)) sin(λ2(2L− a))

]
+ 6B5(2L− a) + 2B6 (5.40)

(EI)sw
′′
sIV

|2L−a = 0

= 2(EI)sλ
2
2

[
B4 cosh(λ2(2L− a)) cos(λ2(2L− a))−

−B3 cosh(λ2(2L− a)) sin(λ2(2L− a)) +B2 sinh(λ2(2L− a)) cos(λ2(2L− a))−

−B1 sinh(λ2(2L− a)) sin(λ2(2L− a))

]
+ 6B5(2L− a) + 2B6 (5.41)

wdIV |2L−a = 0

= (−(EI)s/(EI)d)

[
B1 cosh(λ2(2L− a)) cos(λ2(2L− a))+

+B2 cosh(λ2(2L− a)) sin(λ2(2L− a)) +B3 sinh(λ2(2L− a)) cos(λ2(2L− a))+

+B4 sinh(λ2(2L− a)) sin(λ2(2L− a))

]
+B5(2L− a)3+

+B6(2L− a)2 +B7(2L− a) +B8 (5.42)

wsIV |2L−a = 0

=

[
B1 cosh(λ2(2L− a)) cos(λ2(2L− a)) +B2 cosh(λ2(2L− a)) sin(λ2(2L− a))

+B3 sinh(λ2(2L− a)) cos(λ2(2L− a)) +B4 sinh(λ2(2L− a)) sin(λ2(2L− a))

]
+

+B5(2L− a)3 +B6(2L− a)2 +B7(2L− a) +B8 (5.43)

At the crack tip, x = 0, we have continuity conditions on the top face sheet across the

cracked section and the bonded section of the beam:
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Displacement continuity:

e4d = (−(EI)s/(EI)d)C1 + C8 (5.44)

e4s = C1 + C8 (5.45)

Slope continuity:

e3d = (−(EI)s/(EI)d)λ2(C2 + C3) + C7 (5.46)

e3s = λ2(C2 + C3) + C7 (5.47)

Bending moment continuity:

e2d = (−(EI)s/(EI)d)λ
2
2C4 + C6 (5.48)

e2s = λ22C4 + C6 (5.49)

Shear force continuity:

6e1d = 2λ32(−(EI)s/(EI)d)(C2 − C3) + 6C5 (5.50)

6e1s = 2λ32(C2 − C3) + 6C5 (5.51)

At the left end, x = -a, the ENF specimen is pinned. The bending moments and displace-

ments are
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(EI)dw
′′
dI
|−a = 0

= (D1d(k
2
1 − k22)− 2D2dk1k2)e

k1a cos(−k2a)+

+ (D2d(k
2
1 − k22) + 2D1dk1k2)e

k1a sin(−k2a)+

+ (D3d(k
2
1 − k23) + 2D4dk1k3)e

−k1a cos(−k3a)+

+ (D4d(k
2
1 − k23)− 2D3dk1k3)e

−k1a sin(−k3a)+

+ 6D5d(−a) + 2D6d (5.52)

(EI)sw
′′
sI
|−a = 0

= (D1s(k
2
1 − k22)− 2D2sk1k2)e

k1a cos(−k2a)+

+ (D2s(k
2
1 − k22) + 2D1sk1k2)e

k1a sin(−k2a)+

+ (D3s(k
2
1 − k23) + 2D4sk1k3)e

−k1a cos(−k3a)+

+ (D4s(k
2
1 − k23)− 2D3sk1k3)e

−k1a sin(−k3a)+

+ 6D5s(−a) + 2D6s (5.53)

wdI |−a = 0

= D1de
k1a cos(−k2a) +D2de

k1a sin(−k2a) +D3de
−k1a cos(−k3a)+

+D4de
−k1a sin(−k3a) +D5d(−a)3 +D6d(−a)2 +D7d(−a) +D8d (5.54)

wsI |−a = 0

= D1se
k1a cos(−k2a) +D2se

k1a sin(−k2a) +D3se
−k1a cos(−k3a)+

+D4se
−k1a sin(−k3a) +D5s(−a)3 +D6s(−a)2 +D7s(−a) +D8s (5.55)

We also have continuity condition at the middle of the beam, x= L-a, where there is a trans-

verse shear load (P). Using this we can obtain the following equations:

115



Displacement continuity:

wdIII |L−a = wdIV |L−a

= (−(EI)s/(EI)d)

[
(C1 −B1) cosh(λ2(L− a)) cos(λ2(L− a))+

+ (C2 −B2) cosh(λ2(L− a)) sin(λ2(L− a))+

+ (C3 −B3) sinh(λ2(L− a)) cos(λ2(L− a))+

+ (C4 −B4) sinh(λ2(L− a)) sin(λ2(L− a))

]
+ (C5 −B5)(L− a)3+

+ (C6 −B6)(L− a)2 + (C7 −B7)(L− a) + (C8 −B8) = 0 (5.56)

wsIII |L−a = wsIV |L−a

=

[
(C1 −B1) cosh(λ2(L− a)) cos(λ2(L− a))+

+ (C2 −B2) cosh(λ2(L− a)) sin(λ2(L− a))+

+ (C3 −B3) sinh(λ2(L− a)) cos(λ2(L− a))+

+ (C4 −B4) sinh(λ2(L− a)) sin(λ2(L− a))

]
+ (C5 −B5)(L− a)3+

+ (C6 −B6)(L− a)2 + (C7 −B7)(L− a) + (C8 −B8) = 0 (5.57)

(5.58)
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Slope continuity:

w′
dIII

|L−a = w′
dIV

|L−a

= (−(EI)s/(EI)d)λ2

[
(C2 + C3 −B2 −B3) cosh(λ2(L− a)) cos(λ2(L− a))+

+ (−C1 + C4 +B1 −B4) cosh(λ2(L− a)) sin(λ2(L− a))+

+ (C1 + C4 −B1 −B4) sinh(λ2(L− a)) cos(λ2(L− a))+

+ (C2 − C3 −B2 +B3) sinh(λ2(L− a)) sin(λ2(L− a))

]
+ 3(C5 −B5)(L− a)2+

+ 2(C6 −B6)(L− a) + (C7 −B7) = 0 (5.59)

w′
sIII

|L−a = w′
sIV

|L−a

= λ

[
(C2 + C3 −B2 −B3) cosh(λ2(L− a)) cos(λ2(L− a))+

+ (−C1 + C4 +B1 −B4) cosh(λ2(L− a)) sin(λ2(L− a))+

+ (C1 + C4 −B1 −B4) sinh(λ2(L− a)) cos(λ2(L− a))+

+ (C2 − C3 −B2 +B3) sinh(λ2(L− a)) sin(λ2(L− a))

]
+ 3(C5 −B5)(L− a)2+

+ 2(C6 −B6)(L− a) + (C7 −B7) = 0 (5.60)

Bending Moment continuity:

(EI)dw
′′
dIII

|L−a = (EI)dw
′′
dIV

|L−a

= 2(−(EI)s/(EI)d)λ
2
2

[
(C4 −B4) cosh(λ2(L− a)) cos(λ2(L− a))−

− (C3 −B3) cosh(λ2(L− a)) sin(λ2(L− a))+

+ (C2 −B2) sinh(λ2(L− a)) cos(λ2(L− a))−

− (C1 −B1) sinh(λ2(L− a)) sin(λ2(L− a))

]
+ 6(C5 −B5)(L− a) + 2(C6 −B6) = 0

(5.61)
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(EI)sw
′′
sIII

|L−a = (EI)sw
′′
sIV

|L−a

= 2λ22

[
(C4 −B4) cosh(λ2(L− a)) cos(λ2(L− a))−

− (C3 −B3) cosh(λ2(L− a)) sin(λ2(L− a))+

+ (C2 −B2) sinh(λ2(L− a)) cos(λ2(L− a))−

− (C1 −B1) sinh(λ2(L− a)) sin(λ2(L− a))

]
+ 6(C5 −B5)(L− a) + 2(C6 −B6) = 0

(5.62)

Shear Force continuity:

[(EI)dw
′′′
dIII

+ (EI)sw
′′′
sIII

− (EI)dw
′′′
dIV

− (EI)sw
′′′
sIV

]|L−a = P

6((EI)d + (EI)s)(C5 −B5) = P (5.63)

In addition, we also have a shear force condition at the right end. The shear load is acting

at the middle of the beam, hence the reaction at the pinned supports will be half of it,

[(EI)dw
′′′
dIV

+ (EI)sw
′′′
sIV

]|2L−a = −P/2

6((EI)d + (EI)s)B5 = −P/2 (5.64)

In the cracked section, between Region I and II, x = −a +X1, we have continuity condi-

tions across these two regions
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Displacement continuity:

wdI |−a+X1 = wdII |−a+X1

=D1de
−k1(−a+X1) cos(k2(−a+X1)) +D2de

−k1(−a+X1) sin(k2(−a+X1))

+D3de
k1(−a+X1) cos(k3(−a+X1)) +D4de

k1(−a+X1) sin(k3(−a+X1))+

+D5d(−a+X1)
3 +D6d(−a+X1)

2 +D7d(−a+X1)

+D8d = Wd(−a+X1)
3 +Xd(−a+X1)

2 + Yd(−a+X1) + Zd (5.65)

wsI |−a+X1 = wsII |−a+X1

=D1se
−k1(−a+X1) cos(k2(−a+X1)) +D2se

−k1(−a+X1) sin(k2(−a+X1))

+D3se
k1(−a+X1) cos(k3(−a+X1)) +D4se

k1(−a+X1) sin(k3(−a+X1))+

+D5s(−a+X1)
3 +D6s(−a+X1)

2 +D7s(−a+X1)

+D8s = Ws(−a+X1)
3 +Xs(−a+X1)

2 + Ys(−a+X1) + Zs (5.66)

Slope continuity:

w′
dI
|−a+X1 = w′

dII
|−a+X1

=(−D1dk1 +D2dk2)e
−k1(−a+X1) cos(k2(−a+X1))+

+ (D2dk1 +D1dk2)e
−k1(−a+X1) sin(k2(−a+X1))+

+ (D3dk1 +D4dk3)e
k1(−a+X1) cos(k3(−a+X1))+

+ (D4dk1 −D3dk3)e
k1(−a+X1) sin(k3(−a+X1))+

+ 3D5d(−a+X1)
2 + 2D6d(−a+X1) +D7d = 3Wd(−a+X1)

2 + 2Xd(−a+X1) + Yd

(5.67)
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w′
sI
|−a+X1 = w′

sII
|−a+X1

=(−D1sk1 +D2sk2)e
−k1(−a+X1) cos(k2(−a+X1))+

+ (D2sk1 +D1sk2)e
−k1(−a+X1) sin(k2(−a+X1))+

+ (D3sk1 +D4sk3)e
k1(−a+X1) cos(k3(−a+X1))+

+ (D4sk1 −D3sk3)e
k1(−a+X1) sin(k3(−a+X1))+

+ 3D5s(−a+X1)
2 + 2D6s(−a+X1) +D7s = 3Ws(−a+X1)

2 + 2Xs(−a+X1) + Ys

(5.68)

Bending Moment continuity:

(EI)dw
′′
dI
|−a+X1 = (EI)dw

′′
dII

|−a+X1

=(D1d(k
2
1 − k22)− 2D2dk1k2)e

−k1(−a+X1) cos(k2(−a+X1))+

+ (D2d(k
2
1 − k22) + 2D1dk1k2)e

−k1(−a+X1) sin(k2(−a+X1))+

+ (D3d(k
2
1 − k23) + 2D4dk1k3)e

k1(−a+X1) cos(k3(−a+X1))+

+ (D4d(k
2
1 − k23)− 2D3dk1k3)e

k1(−a+X1) sin(k3(−a+X1))+

+ 6D5d(−a+X1) + 2D6d = 6Wd(−a+X1) + 2Xd (5.69)

(EI)sw
′′
sI
|−a+X1 = (EI)sw

′′
sII

|−a+X1

=(D1s(k
2
1 − k22)− 2D2sk1k2)e

−k1(−a+X1) cos(k2(−a+X1))+

+ (D2s(k
2
1 − k22) + 2D1sk1k2)e

−k1(−a+X1) sin(k2(−a+X1))+

+ (D3s(k
2
1 − k23) + 2D4sk1k3)e

k1(−a+X1) cos(k3(−a+X1))+

+ (D4s(k
2
1 − k23)− 2D3sk1k3)e

k1(−a+X1) sin(k3(−a+X1))+

+ 6D5s(−a+X1) + 2D6s = 6Ws(−a+X1) + 2Xs (5.70)
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Shear Force continuity:

(EI)dw
′′′
dI
|−a+X1 = (EI)dw

′′′
dII

|−a+X1

=(3D2dk
2
1k2 −D2dk

3
2 −D1dk

3
1 + 3D1dk1k

2
2)e

−k1(−a+X1) cos(k2(−a+X1))+

+ (−3D1dk
2
1k2 +D1dk

3
2 −D2dk

3
1 + 3D2dk1k

2
2)e

−k1(−a+X1) sin(k2(−a+X1))+

+ (3D4dk
2
1k3 −D4dk

3
3 +D3dk

3
1 − 3D3dk1k

2
3)e

k1(−a+X1) cos(k3(−a+X1))+

+ (−3D3dk
2
1k3 +D3dk

3
3 +D4dk

3
1 − 3D4dk1k

2
3)e

k1(−a+X1) sin(k3(−a+X1))+

+ 6D5d = 6Wd (5.71)

(EI)sw
′′′
sI
|−a+X1 = (EI)sw

′′′
sII

|−a+X1

=(3D2sk
2
1k2 −D2sk

3
2 −D1sk

3
1 + 3D1sk1k

2
2)e

−k1(−a+X1) cos(k2(−a+X1))+

+ (−3D1sk
2
1k2 +D1sk

3
2 −D2sk

3
1 + 3D2sk1k

2
2)e

−k1(−a+X1) sin(k2(−a+X1))+

+ (3D4sk
2
1k3 −D4sk

3
3 +D3sk

3
1 − 3D3sk1k

2
3)e

k1(−a+X1) cos(k3(−a+X1))+

+ (−3D3sk
2
1k3 +D3sk

3
3 +D4sk

3
1 − 3D4sk1k

2
3)e

k1(−a+X1) sin(k3(−a+X1))+

+ 6D5s = 6Ws (5.72)

From these boundary conditions and continuity conditions (Equation 5.40 - Equation 5.72),

we have 32 equations to solve for the unknown coefficients in the general solutions. In ad-

dition, we can use the crack face contact length from the crack face contact without friction

analysis. With all these conditions, we obtain a system of linear equations(Equation 5.40-

Equation 5.72) and we can write a computer code to solve the equations.

5.3 Energy Release Rate

We have the general solutions for the transverse displacements of the beam section and they

can be used to find the energy release rates. J-Integral provides a way to calculate the strain

energy release rate. The J- Integral expression for the End-Notched Flexure specimen is

obtained in the previous chapter using the zero-area path approach. For the calculation we
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define a zero-area path [97][98] ((Γ = BAA’FEDD’C)) around the crack tip.

Top Face

Core

Crack length - a

Bottom face

P

L L

B

A

A’

F E

D’

D

C

x, u

z, w

Figure 5.4: Zero-area path for J-Integral Calculation - ENF

Around the zero-area path, we have the J-Integral contributions from each section from

Equation 4.85,Equation 4.88 & Equation 4.94

JBA =
1

2b2

(
12M2

d

Edf 3
t

− κdV
2
d

Gdft
− 2Vdb(e3d)

)
(5.73)

JA′F =
M2

s

2(EI)2s

[
Efbfb

[
(c− es)(c− es + fb) +

f 2
b

3

]
+ 2Ecc

(c2
3
+ e2s

)]
−

− ksV
2
s

2Gsb2(2c+ fb)
− Vs

b
(e3s) (5.74)

JEC = − M2
b

2(EI)2b

{
Efbfb

[
(eb − c)(eb − c− fb) +

f 2
b

3

]
+ 2Ecc(

c2

3
+ e2b)+

+ Eftft

[
(eb + c)(eb + c+ ft) +

f 2
t

3

]}
+

(
κbV

2
b

2GbA2
b

)
(2c+ ft + fb)−

− Vb
Ab

wb,x|0(ft + 2c+ fb) (5.75)

In addition, we also know that the energy release rate value reduces due to the friction be-
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tween the crack faces. The J-Integral modified with a contour integral to account for the

energy lost due to friction tractions by Palmer and Rice [99]. The definition of the modified

J-Integral [100][101][102][103] is

J =

∫
Ω

[(
σij

∂uj
∂x1

−Wδ1i
)]
dΩ−

∫
Γs

Ti
∂ui
∂x1

dΓ (5.76)

where, Ti is the traction vector on the crack faces, Ti = σjinj , and Γs = Γtop ∪ Γbottom is

the portion of the crack faces where the contour integral is performed (where crack faces

are in contact). The rest of terms are defined as customary.

When the crack face traction Ti are originated by frictional contact forces, the second

integral in Equation 5.76 can be interpreted as the dissipated energy per unit area due to

friction. The second integral is defined here as Jp

Jp =

∫
Γs

Ti
∂ui
∂x1

dΓ =

∫ −a

−a+X1

τxzd
∂Ud

∂x1
− τxzs

∂Us

∂x1
dx1 (5.77)

where, ∆U is relative tangential displacement between corresponding points at both crack

faces. The frictional force on both the surfaces will be the same (µkt(wdI − wsI ))

Jp =

∫ −a

−a+X1

µkt(wdI − wsI )

X1Gd

(−ft
2
wd,xxI

)
− µkt(wdI − wsI )

X1Gs

(
(es + c)ws,xxI

)
dx (5.78)

where, wdI & wsI are the transverse displacements of the debonded part and the substrate

in Region I. wd,xxI
& ws,xxI

are the second differentiation of the transverse displacements

of the debonded part and the substrate in Region I.

Finally, by account for the energy lost due to friction tractions, we get the total strain
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release rate as

J = JBA + JA′F + JEC − Jp (5.79)

5.4 Mode Partitioning

The mode partitioning partitioning phase angle can be obtained using the same expression

we used in the previous chapter. The expression for the mode partitioning is not affected

by the inclusion of friction

ψTEF = tan−1

(
ft
2
e3d − ft

2
κdVd

(Gdbft)

)
−
(
− (es + c)e3s + (es + c) κsVs

[Gsb(2c+fb)]

)
(e4d − e4s)

(5.80)

5.5 Results and Discussion

The same ENF sandwich beam specimen (from previous chapter) made of isotropic alu-

minium with Young’s modulus Ef = 70GPa and Poisson’s ratio νf = 0.3 is chosen. The

core material is isotropic aluminium foam with Young’s modulusEc = 7GPa and Poisson’s

ratio νc = 0.32. The face thicknesses were ft=fb=2 mm and the core had a thickness of 2c

= 20mm. The total length of the beam was L=500 mm. A debond of length a = 200 mm

was introduced between the top face and the core.

The End-Notched Flexure sandwich beam specimen is again modeled in ANSYS fi-

nite element software. In ANSYS, the debond was modeled using Pre-Meshed crack and

a surface-to-surface contact of frictional contact was also introduced between the crack

faces. Friction coefficient of µ = 0.1 was to have a look at the results from the J- Integral

expression obtained in this model and compare it with results from finite element analysis.

Table 5.1: ENF friction: Energy Release Rate Values - Al Foam Core
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P JTEFF ERRFEA

(Nt) (Nt/mm) (Nt/mm)

Friction VCCT - friction

10 0.0248 0.02298

15 0.0558 0.0517

20 0.0993 0.0919

40 0.3970 0.3677

60 0.8934 0.8274

100 2.4816 2.2983

150 5.5836 5.1711

250 15.5100 14.3640

400 39.7055 36.7720

750 139.5897 129.2800

1000 248.1595 229.8300

In Table 5.1, we have the energy release values (JTEFF ) compared with the finite element

analysis (ERRFEA). It is interesting to notice that the energy release rate values obtained

using finite element analysis have not changed much by including the effect of friction.

The ERRFEA values have reduced much less than 1% when compared to the frictionless

contact case, which indicates that the crack face contact friction does not significantly af-

fect the energy release rate values. The extended tensionless spring foundation solutions

(JTEFF ) also predicts that the friction does not affect the energy release rate values much.

The extended tensionless spring foundation approach can be very useful for cases where
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crack face contact effects can be very significant to be quick and useful solutions. The

tensionless spring foundation approach can further be extended to include the transverse

shear effects by using Timoshenko beam theory or High-Order shear deformation theories

to obtain the governing equations.

5.6 Conclusion

Semi-Closed form expressions for the energy release rate and mode partitioning of End-

Notched Flexure sandwich specimen including friction in the crack face contact region

are obtained. Friction effects are usually neglected in most analytical models. Here, the

governing equations in the crack face contact region are obtain by including the effect of

friction between the crack faces. In this approach, the crack face contact length obtained

from the previous chapter with friction is used. The model presented here is again appli-

cable for both isotropic and orthotropic face and core materials and can also be done for

the general asymmetric sandwich beam construction. The J-Integral approach is modified

with a contour integral to account for the energy lost due to friction tractions. Finite el-

ement model with frictional contact between the crack faces are chosen for comparison.

The transverse and axial displacements at the beginning of the elastic foundation are used

to define a mode partitioning measure values.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

Closed-form solutions for displacements, section rotations and fracture parameters are de-

rived and presented for the sandwich beam specimen. The approach presented here can be

used for studying the face/core debonds in sandwich structures. To analyze the face/core

debonds and obtain closed-form solutions, elastic foundation approach is used. Sandwich

beam construction have large transverse due to the presence of weak core and the modeled

presented here is based on Timoshenko beam theory (first-order shear theory) to capture

these shear effects.

The elastic foundation model proposed here is comprehensive, it includes the deforma-

tion of the substrate part in the sandwich beam, which was usually neglected in previous

models in literature. In literature, previous elastic foundation analyses, the substrate was

assumed to be rigid and the effects of the end fixity at the bonded segment were not in-

cluded. In this model, the elastic foundation in the ”bonded” section is used to model the

interaction between the top face and the substrate using both normal springs and rotational

shear springs to account for transverse displacements and section rotations of the beam.

The normal and shear spring modulus are very important in the case of elastic foun-

dation approach. The spring modulus values are obtained using expressions derived from

elasticity solution and the extended-high order sandwich panel theory. With the elastic

foundation force and shear distribution, Timoshenko beam theory is used to obtain the

governing equations in terms of transverse displacement and section rotations. The ob-

tained governing equations are linear second order coupled differential equations. These

equations are then solved to obtain the general solutions for transverse displacements and
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section rotations of the top face and the substrate part of the beam. A Double Cantilever

Beam specimen with shear and bending loads is chosen. It is common test specimen for

studying mode I fracture parameters. The constant coefficients in the general solutions are

obtained using the appropriate boundary conditions and continuity conditions.

The J-Integral is used to derive a closed form expression for the energy release rate.

In addition, it is also interesting to notice that the energy release rate is very close to the

differential energy stored in the springs at the beginning of the elastic foundation, i.e., the

energy released by the ”broken” differential spring element as the debond propagates. The

energy release rate values obtained using J-Integral show excellent agreement with the val-

ues obtained from finite element analysis where the debond is considered as interface crack.

The transverse and axial displacements at the beginning of the elastic foundation are used

to define a mode partitioning measure in the context of this elastic foundation approach.

A comparison with finite element results shows that this mode partitioning measure values

are close to traditional mode mixity values of the corresponding interfacial cracks. The

energy release rate values and the mode partitioning values showed improvement and bet-

ter captured transverse shear when compared to a previous study based on Euler-Bernoulli

beam theory.

Single Cantilever Beam specimen has gained attention as one of the best candidates for

evaluating debond fracture toughness in mode I loading. The existence of the applied shear

loading complicates the problem, as traditional approaches based on fracture mechanics

cannot lead to closed form relations. The elastic foundation approach with the Timoshenko

beam theory is extended in the model presented for the case of SCB sandwich specimen.

In the SCB specimen the substrate part is restricted in the transverse displacement. The

model presented also accounts for the transverse shear in the substrate by considering the

reaction on the fixed bottom edge as linearly distributed force distribution. The govern-

ing equations for the debonded part are obtained in terms of transverse displacements and

section rotations, they are linear second order coupled differential equations. These gov-
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erning equations are then solved to obtain the general solutions. Appropriate boundary and

continuity conditions for the Single Cantilever Beam specimen is used to get the constant

coeffiecients in the general solutions for traverse displacements and section rotations. The

solutions obtained for both the cases - Double Cantilever Beam specimen and Double Can-

tilever Beam specimen are valid for both isotropic and orthotropic face and core materials.

These solutions are applicable for asymmetric sandwich beam with different face materials

or thicknesses.

Again, the J-Integral approach is used to obtained closed form expression for energy

release rate. The energy release rate values obtained using these expressions show excel-

lent agreement with the results from finite element analysis for various loading conditions

and material combination. It is interesting to note that the solutions obtained show good

agreement with the finite element solutions even for soft core materials. In addition, the

energy released by the ”broken” differntial spring element is in very good agreement with

the energy release rate values. Mode partitioning measure values obtained using relative

crack flank opening and shear displacements closely matches the traditional mode mixity

values from finite element analysis. The proposed model for both the DCB and SCB speci-

mens provide excellent results for beam models even with small crack lengths. The elastic

foundation model presented can be used to obtain consistent results for face/core debonds

in sandwich beams.

In mode II fracture, crack face contact plays a significant role and leads to poor repro-

ducibility of fracture toughness values. The elastic foundation approach is extended with

tensionless spring foundation to capture the crack face contact effects. The tensionless

spring foundation for crack face contact modeling is a novel approach and it is used to cap-

ture the compressive forces across the top debonded face and the substrate of the sandwich

beam specimen.

An End-Notched Flexure sandwich specimen with shear load in the middle of the beam

is used in this model. In the bonded section of the beam, an elastic foundation with normal
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springs is used to model the interaction between the top face and the substrate. Euler

Bernoulli beam theory is used to derive governing equations for the all the regions of the

beam. The elastic modulus of the tensionless spring is taken to be the same as the modulus

of the normal springs in the elastic foundation, difference between that the tensionless

springs only react under compressive loads. The governing equations in the crack face

contact region and the bonded region are linear fourth-order coupled differential equations.

General solutions for transverse displacements are obtained by solving these differential

equations. In addition to contact coefficients, the crack face contact length is also unknown.

Boundary conditions and continuity conditions are used to get a system of non-linear

equations. This system of non-linear equations are numerically solved to obtain the con-

stant coefficients and the unknown crack face contact length. The energy release rate values

are obtained using J-Integral approach and a zero-area path around the crack is used obtain

a closed form expression for the energy release rate. The ENF sandwich beam specimen is

modeled in ANSYS with frictionless contact between the crack faces. The J-integral values

obtained using the model presented here show very good agreement with the energy release

rate values from the finite element analysis for various shear loads. The mode partitioning

measure values are in agreement that this ENF beam specimen is in pure mode II fracture.

Further, the tensionless spring foundation approach is further extended to include the

frictional tractions between the crack faces. This makes the elastic foundation approach

comprehensive by capturing all the crack face contact effects. Euler-Bernoulli beam theory

is used to derive the governing equations in all the regions of the beam. By including the

crack face friction, only the governing equations in Region I is modified. The governing

equations in Region I are linear fourth-order coupled differential equations and they are

solved to obtain general solutions of the transverse displacements. Using the boundary

conditions, continuity conditions and crack face contact length from frictionless case, the

constant coefficients in the general solutions are obtained.

The J-Integral is modified to account for the energy lost due to frition tractions. The
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End-Notched Flexure sandwich beam specimen with frictional crack face contact is mod-

eled in finite element software. It can be noticed that the frictional tractions have no sig-

nificant impact on the energy release rate values in this case and the comprehensive elastic

foundation approach can be used for different test specimens to obtain closed/semi-closed

form solutions for face/core debonds in sandwich composite beams.

131



6.2 Future Work

It is seen that the elastic foundation analysis proves to be a very promising in providing

closed/near-closed solutions for obtaining fracture parameters in the case of sandwich com-

posite beams. The elastic foundation model presented here is applicable for linear elastic

materials, but it can further be extended for non-linear materials or hyperelastic material

models. We can also extend the elastic foundation model using micropolar beam formula-

tion to account for the gradient in stress values in the core. In the case of mode II fracture,

the tensionless spring foundation method can be further extended to capture the effects of

transverse shear by using Timoshenko beam theory or high-order shear deformation the-

ories, which can be significant in the case of sandwich composite beam. The tensionless

foundation model can also be applied for Mode III (out-of-plane shearing) case. The elastic

foundation approach can also be extended to capture the thermal or environmental effects.

There are many more applications to which the elastic foundation model presented here

can be extended to.
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