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SUMMARY

Gamma-TiAl is an ordered intermetallic compound characterized by high strength to density
ratio, good oxidation resistance, and good creep properties at elevated temperatures. However, it
is intrinsically brittle at room temperature. This thesis investigates the potential for the use of
grinding to process TiAl into useful shapes. Grinding is far from completely understood, and many
aspects of the individual mechanical interactions of the abrasive grit with the material and their
effect on surface integrity are unknown. The development of new synthetic diamond superabrasives
in which shape and size can be controlled raises the question of the influence of those variables on
the surface integrity.

The goal of this work is to better understand the fundamentals of the abrasive grit/material
interaction in grinding operations. Experimental, analytical, and numerical work was done to
characterize and predict the resultant deformation and surface integrity on ground lamellar gamma-
TiAl

Grinding tests were carried out, by analyzing the effects of grit size and shape, workpiece
speed, wheel depth of cut, and wear on the subsurface plastic deformation depth (PDD). A prac-
tical method to assess the PDD is introduced based on the measurement of the lateral material
flow by 3D non-contact surface profilometry. This method combines the quantitative capabilities
of the microhardness measurement with the sensitivity of Nomarski microscopy. The scope and
limitations of this technique are analyzed. Mechanical properties were obtained by quasi-static and
split Hopkinson bar compression tests. Residual stress plots were obtained by x-ray, and surface
roughness and cracking were evaluated.

The abrasive grit/material interaction was accounted by modeling the force per abrasive grit
for different grinding conditions, and studying its correlation to the PDD. Numerical models of this
interaction were used to analyze boundary conditions, and abrasive size effects on the PDD. An
explicit 2D triple planar slip crystal plasticity model of single point scratching was used to analyze

the effects of lamellae orientation, material anisotropy, and grain boundaries on the deformation.
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CHAPTER I

INTRODUCTION

1.1 Historical Perspective

Grinding is one of the earliest shaping processes known to man. In the Neolithic Period (15000 to
5000 B.C.) it was used to shape stone tools. Grinding is based on the progressive abrasive wear of
the workpiece by a number of hard grits embedded in a matrix. Mechanization of grinding had been

developed by the middle of the 15" century but the first grinding machine was not built until about

1830 (Woodbury} {1959). Early research on grinding was based on empirical knowledge but the need

for precision and speed required by the 20" century’s industry provided the driving force for more

specialized research in the area. During the 1970’s and 1980’s numerous phenomenological models

were developed as shown in[Shaw] (1972)), [{ahn and Lindsay] (T982al[blldld]), and [Malkin] (T989). This

trend faded for several reasons: basic industry needs were met, the work yielded only particular

results, the models needed to be calibrated with extensive, time consuming and expensive tests,
and during the last years cylindrical grinding has been replaced by hard turning. The research
reported in this thesis re-examines grinding as a cost effective technique for shaping intermetallic
compounds, and its implications for surface integrity. Intermetallic compounds refer to a phase type
formed when atoms of two or more metals combine in relatively simple stoichiometric proportions to
produce a crystal different in structure from the individual metals. The constituent elements have
strong bonds, that typically include metallic, ionic or covalent types and are usually ordered in two
or more sublattices, each with its own distinct population of atoms. Intermetallics have long-range
order on their crystal structure below a critical temperature. Deviations from precise stoichiometry
on one or both sides of the nominal ideal atomic ratios produces partial disorder. The relatively high
activation energy for chemical diffusion in the ordered lattice causes high creep resistance at elevated
temperatures. The ordered intermetallic structure is characterized by a high strength to density
ratio, good oxidation resistance, and good creep properties at elevated temperatures. However, this

intrinsically strong atomic bonding is often associated with brittleness at room temperature (Larsen




1996)), making the shaping process critical to structural integrity. The interest in v — T3 Al
intermetallic compounds started in the 1950’s motivated by its light weight and its potential for

the kind of high temperature applications such as needed by the aeronautical industry 1995

Dimiduk et al] [1992} [Austin et al] [1997). Potential applications in combustion engines include

valves, turbine wheels of exhaust gas turbochargers, connecting rods, and piston pins. The mass
reduction leads to improved fuel economy and higher engine performance due to a considerable
decrease of inertia and friction losses. Grinding of v — T Al holds the promise of precision high

performance components free of critical defects at minimum time and cost.

1.2 Gamma-TiAl

Intermetallic T'iAl-based alloys are well suited for rotary and reciprocating components in en-

gines under high thermal and mechanical load because of their high-temperature properties (Kim|

1989} [Kim and Dimiduk], [I991} [Clemens et all] [1999} [Clemens and Kestler], 000} [Knippscheer and]

[Frommeyer] [1999). These properties include low density (~ 3.8g/cm?), acceptable yield strength

(400 — 650M Pa), high specific stiffness (E/p ~ 46GPa cm?®/gm), and good oxidation resistance

and creep up to 700°C, at which limitations might arise from microstructural instabilities (Chat-

[terjee et all [2000) which degrade the creep properties, and from an insufficient oxidation resis-

tance (Brady et all] [1996). From room temperature to 800°C' the thermal expansion coefficient

ranges from 11.5 1076 K~1 to0 12.5 107K ~!, while the thermal conductivity ranges from 19W/m K

to 43W/m K. These values exhibit sufficient thermal compatibility to other engine materials, such

as steels or Ni-based alloys (Knippscheer and Frommeyer] [1999). These properties make T Al also

appealing for applications as thin films for structural coatings (Kim et al.} [2004]).

1.2.1 Phase Diagram and Microstructure

Figure shows the binary equilibrium phase diagram of Ti-Al (Kattner et al {1992} [Ohnumal

[2000). Most of the research has been focused on the Ti-(45-48)Al (at.%) composition, where
balanced properties of fracture toughness, fatigue life, and tensile strength are achieved. At the
binary composition of Ti-47Al the material begins to solidify partially in the two-phase region
L—L+ 3, (8 being a disordered BCC (body centered cubic) phase. The material then goes through

a transformation L + 8—L + «, in which « is a disordered HCP (hexagonal closed packed) phase.



During cooling it follows the solid-solid, diffusion controlled, eutectoid transformation a—a + 7,
where v is an ordered FCT (face centered tetragonal) superlattice with the structure L1y (Struk-
turbericht symbol) or P2 (Pearsons symbol). The final transformation is « 4+ y—aa + 7; e being
an ordered HCP superlattice with D019 or A P2 structure. At the binary phase zone the as phase is
Ti3Al (L1g) while the «y is T%Al (D0;g). The v FCT unit cell is only slightly distorted (¢/a ~ 1.02)
and consists of alternating planes of Ti and Al atoms in the [001] direction. From the phase di-
agram the proportion of v phase is significantly greater than that of ag at Ti-47Al composition.

Figure [I.2) represents the TiAl and TigAl crystal structures.
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Figure 1.1: Equilibrium phase diagram of TiAl (Kattner et al] [[992} [Dhnuma et al] R000).
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Figure 1.2: TiAl (left) FCT-like structure and Ti3 Al (right) HCP-like structure. Ti atoms in red.

The lamellar structure is formed by nucleation and growth of -y plates (Yamabe et al.} [{1994) from




the a phase with little compositional adjustment, in which layers of as-v are piled up with crys-
tallographic alignment at the phases interface such that {111},/(0001),, and [111],]| < 1120 >,,.
However, the [110] direction and the other two [101], and [011] directions on (111) in the  phase
are not equivalent to each other because of the tetragonal L1 structure of the ~ phase, while
directions of (1120) on the basal plane in the ay phase are all equivalent. Thus, when the v phase
precipitates from the a parent phase, the L1g structure can be formed in six orientation variants

corresponding to the six possible orientations of the [110] direction on the o phase along a reference

(1120) direction on the as phase (Yamaguchi and Inui [1993]). Adjacents ~ plates can be rotated

by 60°n with 0 < n < 5, and/or translated by 0, 1/2(101], 1/6(112] or 1/6(121] lattice vectors,

with respect to the other 4 plate (Yamaguchi et al] [2000). Domains of different variant types can

coexist within each vy lamella (Feng et al] [1989} [Inui et al} [1992b]). Such domain boundaries as

well as v/v lamellar boundaries are all v/~ intervariant boundaries.
1.2.2 Thermal Treatment and Alloys

In the disordered-ordered transformation at high cooling rates a massive transformation occurs,
and at slower cooling rates a lamellar transformation takes place as pointed out by
and shown in Figure A microstructural classification system has been proposed by
, which defines four types of microstructure: near-gamma, duplex, nearly lamellar and fully
lamellar. The Al-deficient T Al alloys can be subject to different heating/quenching/annealing
cycles transforming to the 7, «, and as single and multi-phase regions of the phase diagram to

produce ag-v fully lamellar, equiaxed (with small amounts of «3), and duplex equiaxed +lamel-

lar +ag microstructural morphologies (Yamabe et al] [1995} [Zhang et al] 000). Multiple heat

treatments have also been used as a grain refining method (Cao et al] [2000). Generally, the in-

fluence of microstructure on mechanical properties of v — TiAl-based alloys can be summarized
as follows: coarse-grained fully lamellar microstructures exhibit relatively good fracture toughness
and excellent creep resistance, but poor tensile ductility and strength especially at room temper-
ature. Relatively fine-grained equiaxed primary annealed, near-gamma, duplex microstructures

with only small amounts of lamellar colonies show low fracture toughness and creep resistance



but moderate tensile ductility and strength at room temperature and elevated temperatures

[ketz et al] 2003)). [Clemens and Kestler (2000)) have shown that thermomechanical processing and

heat treatments have a strong influence on the actual v/ag-volume fraction in v — TiAl-based al-

loys. In thermodynamic equilibrium, the /s volume fraction is controlled by the Al-content and

additional alloying elements and is typically in the range of 0.05 — 0.2 (Kim} [1989)] [1994)).

Several alloying elements are utilized to improve the mechanical and chemical properties of 17 Al.

The composition (in at.%) of conventional engineering v — T'iAl-based alloys can be summarized

as follows (|Marketz et al.l, |2003|):

Tigs—52 — Alys—4g — X1-3 — Yo 5 — Zy

where
X=Cr, Mn, V; Y =Nb, Ta, W, Mo, Z=5i, B, C

The alloying elements marked with X, Y, and Z all affect more or less the position of the phase

boundaries in the Ti-Al binary phase diagram (Kim] [T1989} [Kattner et al] [1992} [Hall and Huang]

1991)). The addition of C'r appears to reduce the 7opgs (critical resolved shear stress) for 1/2(110]

dislocation motion, while Mn and V appear to reduce the Torsg for 1/2(110] dislocations and the

the stacking fault energy (Hao et al) [1999)), and thus increase the ductility of the alloys at room

temperature by increasing the propensity for mechanical twinning (Kawabata et al] [1989)). The

other elements are used to improve high temperature characteristics such as oxidation resistance

(Nb, [Shemet et al][1999} Ta, [Yamaguchi and Umakoshi][1990} Mo, [Perez et al]R000} Zr, [Shemet]

1999)), high temperature strength (Nb, 2002)), and creep resistance (Si,|Noda et al.|[1995}
[Viswanathan et al.[[1999 W, [Seo et al 2001} C,[Viswanathan et al[[1999)). Boron is typically used as

a grain refining agent. In alloys with a trace amount of Boron (B < 0.03at.%), the solute drag effect
of Boron atoms appears to be the controlling factor on the lateral thickening of v lamellae, resulting
in fine lamellar spacing. In alloys containing a certain amount of Boron (B > 0.1 — 0.2at.%), the

presence of fine boride particles reduces the undercooling required for lamellar formation and as a

result, coarse lamellar spacing was observed (Zhang and Deevi, 2002)). McQuay et al] (1999) have

shown that the minimum creep rate is a decreasing function of the volume fraction of lamellar

grains in near lamellar and duplex T — 47Al — 2Nb — 2Mn with TiBs alloy.



Textures play a special role in the v — T'i Al based intermetallic alloys. Under industrial con-
ditions with relatively slow solidification the ingots have a dendritic growth in the direction of
heat flow and a very strong local texture. The lamellae planes {111} are aligned normal to the
solidification direction and are parallel to the cylindrical surfaces of the ingots. Pores and micro-
scopic shrinkage cavities within the as-cast material can be eliminated by an adequate hot isostatic

pressing (HIP) process or thermomechanical treatment.
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Figure 1.3: CCT curves showing the solid-solid transformation on Ti-48A1 (Hono et al| [1996]).

1.2.3 Deformation Mechanisms

The deformation modes of v — TiAl-based alloys strongly depend on their microstructure, alloy
composition and temperature. The single ay — TigAl phase is more hard and brittle than the

~v — Tt Al phase and it has a significant effect on the mechanical properties, deformation behavior

and ductility of v —T7 Al two phase alloys. It is well established ([nui et al} [1992a} [Yamaguchi and|

[Umakoshi}, {1990} [Appel and Wagner] [1998)) that deformation of v — T%WAl under most conditions

occurs on {111} planes by activation of ordinary dislocations with the Burgers vector b = 1/2(110)
and superdislocations with the Burgers vector b = (101) and b = (112), respectively. In addition
mechanical twinning along 1/6(112){111} occurs that does not alter the ordered L1y structure of
the v — T Al. Figure[l.5]shows the potential slip and twinning systems of the L1y structure, in the
schematic drawing of a three-layer sequence of atom stacking on the (111) plane. It can be seen
from Fig. that along the (110)-directions there is only one type of atom (either Ti or Al). This
type of dislocation is called ordinary dislocation, and referred to as “easy slip”. By contrast Ti-

atoms and Al-atoms interchange in (011)-directions and, therefore, the so-called superdislocations



must activate in (011)-directions which are dissociated into two 1/2(101)-dislocations separated by
an APB (antiphase boundary). This is referred to as “hard slip”. Additionally, the L1y structure
can be twinned by the {111}(112] variants of the normal FCC twinning mode. As shown in
Fig. the Burgers vector by = 1/6[112] preserves the order of v — TiAl and this twinning
mode is, therefore, called true twinning. Partial dislocations by Burgers vectors b = 1/6[211], and
by = 1/6[121], respectively, change the order of y—T7 Al and these modes are called pseudo twinning.
The relative contributions of the individual mechanisms to the deformation mainly depend on the

aluminium concentration, the content of ternary elements and the deformation temperature (Appel

land Wagner] [1998)). In the as — Ti3Al phase the possible slip modes are 1010(1210) prism slip;

(0001)(1210) basal slip, and (1126) pyramidal slip with very different values of 7cgss (Umakoshi

(1993).
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Figure 1.4: Lamellae colony showing the ay phase and different variants of v phase.
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Figure 1.5: Potential slip and twinning systems of the L1 structure (Appel and Wagner| [1998]).




1.3 Grinding

Grinding is a material removal process that is used to achieve fine surface finishes, tight geometric
tolerances, and complex contours. Grinding is a multipoint machining process with a stochastic
distribution of tool geometries like grain size, rake (attack) angle, etc., producing a distribution on
process parameters such as grit force, grit depth of cut, among others. Due to the negative rake
angle of the grinding wheel abrasive grits, the specific cutting energy (energy consumed to remove

a unit volume of material) of this process is higher than in other machining processes like turning,

milling, etc. (Wang and Subhash| [2002)). Consequently the material is subjected to high plastic

deformation and temperature gradients. There are four primary types of grinding according to the
workpiece desired geometry: surface, cylindrical, internal, and centerless grinding .
Although surface grinding is the focus of this research the results can be utilized for other grinding
operations. Also, grinding can be categorized according to the DoC', as creep-feed grinding used
for stock removal where the DoC' is of the order of several millimeters; and finish grinding where
DoC' is of the order of a micron to several tens of microns as in the present work. Figure [1.6
shows a schematic of a surface grinding process. In this case, the wheel of diameter ds is rotating

grinding
wheel

abrasive

grains workpiece

Figure 1.6: Schematics of grinding.

counterclockwise, while the workpiece is moving from right to left; the wheel peripheral speed
Vs and the workpiece speed V,, are in opposite directions; this kinematic configuration is called
upgrinding. The wheel DoC' (a) is typically 10-50um, but it should be noted that the penetration

depth of single abrasive grits on the material is much smaller than this DoC. The wheel is in



contact with the workpiece along the contact length [., in a width b, perpendicular to the page and
parallel to the axis of rotation. Conventional grinding uses AlO3 (aluminum oxide), and SiC (silicon
carbide), and with the industrial production of synthetic superabrasive particles, CBN (cubic boron
nitride) and diamond have come into current use. These superabrasives are considerably harder
than conventional abrasives allowing the machining of hard materials while presenting less wear.
Figure shows a simplified schematic of the input-output variables in grinding. The wheel
topography is defined by the size, size distribution, shape, and concentration of the abrasive used
along with the dressing tools and kinematics. During grinding, forces are applied to the abrasive
grits which are embedded in a matrix. The elastic displacements of individual engaged grits are of

the order of magnitude of the abrasive grit DoC, therefore, the knowledge of the wheel topography

and the kinematic conditions are the base for modeling the chip geometry (Verkerk and Peters|

1977)). With the consideration of the workpiece mechanical properties and cooling conditions, single
grit forces can be obtained . Output variables such as forces, power, temperature,
geometry, surface integrity, and wheel wear are obtained. It has to be noted that most of the
variables are stochastic in nature and strongly coupled, which complicates the understanding of
grinding and is the main reason why the empirical knowledge of the process is far ahead of theoretical

developments. As an example, wheel wear will affect wheel topography and all linked variables. The

complexity of wear can be appreciated from the work of [Meng and Ludemal (1995)); and [Ludema)

(1996]) where more than 300 equations were surveyed for modeling friction and wear and the reason
of this diversity (and lack of fitness) were analyzed.

Abrasive grit size affects the amount of material that is involved in the deformation process.
Wheel grit size varies typically from 40pum to 300um, but only a small fraction of an abrasive grit is
actually interacting with the material. Typically the depth of cut of each grain is of the order of a few

microns and the width of the groove left is of the order of tens of microns. One question that arises

is if the same deformation mechanisms are acting with different grit sizes (Begley and Hutchinson]

1998)), since at different grinding operation conditions the cutting specific energy depends of the

DoC' ([Hwang et al [1999} [Wang and Subhash], 2002)).

Numerous studies in machining have shown that different tool geometries (rake angle, nose

radius, etc.) have a great influence on the machining forces and surface finishing (Briscoe et al|
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Figure 1.7: Input/output variables in grinding (modified from [Chen et al] 2002)).

[1991} [TTusty] [1999) and it is well known (Hutchingd [1992} Williams] [T999)) that given certain

geometrical conditions there is a threshold of grit rake angle below which plowing occurs without
material removal. There is not a precise definition of the grain shape to describe abrasive grits.
Several factors are considered in defining the abrasive grit geometry as more “angular” or more
“blocky”. These factors take into account parameters like the area to perimeter ratio, deviation
from a perfect sphere, and others not disclosed by manufacturers. It can be argued that blocky
shaped grits will produce a greater hydrostatic stress state in the material compared with angular
shapes. In several models the abrasive grit tip radius is considered spherical with the radius as

a fraction of the grain size (Shaw], [1972]), some other models simplify it as conical (Badger and|
[Torrance] [2000]).

Another consideration involves the material time-dependent behavior. At low deformation rates
material deformation mechanisms are allowed to act and redistribution of deformation (and stresses)
takes place, preventing localized plastic flow in specific shearing bands and/or planes of fracture

with the consequent material removal. The deformation rate in high speed machining is in the

range of 103 — 10°sec™! (Subhash et all] [1999).
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1.4 Effects of Machining on Gamma-TiAl

Machining processes can have an effect on the mechanical properties of the workpiece, in particular

they can impact the high cycle fatigue (HCF) performance which is different from the one predicted

using polished samples ([Trail and Bowen] [1995} [Bentley et al] [1999} Pones and Eylon] [1999} [Sharman]

let all] [2001bf [Novovic et all [2004), and tensile properties (Schneibel et all] [1993} [Darolia and]

1996)). These effects can be positive in incrementing the HCF life by leaving a surface

layer with compressive residual stress (Balart et al} [2004) or recrystallized material of smaller

grain size compared to the parent (Jones and Eylon] [1999)); but detrimental effects are more often

observed due to generation of cracks or tensile residual stress.
The high energy input during grinding creates a temperature gradient with the consequent

thermal deformation gradient and the possibility of generating tensile residual stresses (Mahdi and

1997)), cracking (Eda et al} [1983)), and dimensional instabilities (Kagiwada and Kanauchi

. Also, the material thermomechanical history has to be considered. As grinding is a multipass
process, subsurface material layers are subjected to thermal and mechanical deformation cycles.
Also, it is important to consider that plastic deformation and damage are cumulative in the material
where usually no healing processes take place during machining. Therefore low cycle fatigue may
be the cause of fracture in some brittle intermetallic compounds or ceramics during grinding.
Residual stresses (RS) in grinding can originate from a contribution of thermomechanical ef-
fects that produce inhomogeneous deformation. Some causes are the scratching of abrasive grits,

cumulative deformation leading to fracture, thermally-induced deformation, or due to phase trans-

formations in which there is a volume change (Mahdi and Zhang] [1997). Grinding operating

conditions can leave either compressive, in what was called “gentle grinding conditions” or tensile
residual stresses in “abusive grinding conditions” as shown in Fig. [I.§ by the early work of
(1972). During grinding thermal effects become important when material properties are sensitive
to temperature, where phase transformations or thermal cracking may take place .
Thermally activated mechanisms will be favored, with eventual changes of the material behav-

ior (i.e. brittle/ductile transition, dislocation annihilation, etc). The compressive/tensile residual

stress transition is due in part to thermal effects as shown by [Balart et al (2004]), who have found

that a material dependent critical surface temperature has to be reached to left tensile residual
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stresses. Measurements of residual stress on v — TP Al by use of different techniques has been made

by [Kondoh et al] (1999), [Richter and Hofmann| (2002), and [Bentley et al] (2001]).
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Figure 1.8: Residual stress for an AISI 4340 steel under different grinding conditions ([Field} [1972]).

1.5 Surface Integrity Evaluation

Surface integrity refers to studies of the changes of surface topography and geometry, and subsurface
physical and chemical characteristics such as composition, microstructure, phases, residual stresses,

hardness, cracking, and embrittlement among other effects due to machining or another surface gen-

erating operation. A review done by [Field et al| (1972)), and [Brinksmeier| (1989)) describes some

of the techniques to evaluate surface integrity such as optical and electronic microscopy, x-ray in
both the diffraction and the fluorescent mode, ultrasound used in scanning acoustic microscopy to
give information on the physical or even chemical nature of superficial layers, Raman spectroscopy
for studying superficial structures, chemical composition and stresses in crystalline and amorphous
materials, instrumented microindentation for evaluating mechanical material properties like hard-
ness and Young’s modulus, and photothermal microscopy for the non-destructive testing of the
local thermal properties of materials among others. The work reported here is not only related to
the evaluation of the plastic deformation depth, but also residual stress, cracking, and machined

surface roughness as measures of surface integrity.
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1.5.1 Plastic Deformation Depth Measurement

Measurement of hardness due to cold work in the subsurface is one of the most widespread methods
for determining deformed zones. These measurements are usually represented as plots of hardness

versus depth taking as a base line the bulk hardness such as shown in the work of[Field et al](1972));

[Bentley et al|(1999);[Jones and Eylon|(1999). The size of the hardened zone is of the order of tens to

hundred of microns, and microhardness techniques need to be used in order to measure the hardness
gradient. Some techniques are the micro-Vickers, Knoop, and Berkovich, whose description can be
found somewhere else, for example in . Scratching is a derivation of the microhardness
technique, and it consists of scratching the material with a given force and then measuring the
scratched groove width as a function of distance to the edge. Simple models can be applied to

determine the hardening (Liu et al] 2002). A disadvantage of this technique is the scatter that

usually accompanies the results. This scatter is due to uncertainties in measurement of the indent
diagonals, and in the case of v — TiAl, its anisotropic mechanical behavior, and heterogeneity of
properties between the as and - phases, that distorts the indent geometry. Another disadvantage
is that microhardness cannot be measured close to deformed edges, not only because of lack of
surrounding material, but also because the lack of surface planarity impairs indentation.

Optical microscopy is another technique to evaluate PDD (plastic deformation depth) and it
is based on the observation of ridges at surfaces. It usually uses Nomarski illumination which is

especially suited for the evaluation of surface quality and defects that otherwise with regular mi-

croscopy/SEM would not be visible (see|Robinson and Bradbury] [1992]). The Nomarski illumination

method incorporates polarization and phase shift techniques that cause minute departures of the
surface from a perfect plane to appear as different colors. All quantitative measurements are made
by using a reticule in the optics objective. As with any observational technique the disadvantage

is that it is subjective.

[Xu and Jahanmir| (1994]) developed the bonded interface, or split specimen technique, to observe

damage on machined ceramics using Nomarski microscopy. Damage was defined in their work as
the presence of cracks, and/or twins, and/or slip bands. In their technique two polished surfaces
of the (split) sample are glued together with cyanoacrylate (super glue), the specimen is machined

and the two surfaces are separated and placed under the microscope.
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utilized the bonded interface technique to observe the PDD on ground T75Al
samples and further implemented the use of a profilometer to evaluate the damaged zone by changes
in the surface roughness. Under conditions of plastic deformation, twins/shear bands will produce
some roughness on the polished surfaces of the sample. , and later had
used the same technique for measuring PDD in their work. The disadvantage of this technique
lies in the difficulty of surface sample preparation, and the resulting variable spacing of the glued
interfaces in the sample and, between samples, that leads to a large variability of results due to

variable mechanical constraint conditions.
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CHAPTER II

PRESENT WORK

2.1 Motivation

Grinding of v — TG Al is far from completely understood, and many aspects of the individual me-
chanical interactions of the abrasive grit with the material and their effect on surface integrity are
unknown.

Data on machinability, surface integrity, and fatigue performance of v — TiAl-based alloys have

been published by researchers at The University of Birmingham (Trail and Bowen] [1995} [Bentley]

et al] [1999] R001} [Sharman et al] R001al[b} [Mantle and Aspinwalll 2001} [Novovic et al] 2004]). They

have carried out hardness profiling, 2D surface roughness parameters determination, microscopy
cracking evaluation, and in some cases residual stress measurements by using the hole drilling
method and strain gages. All the experimental data were analyzed statistically with the operation

parameters and their conclusions based on that analysis.

[Joned| ([1997)); [Jones and Eylon| (1999) have worked on the fatigue resistance of machined 7 Al

at RT on samples with and without heat treatment after machining. After a comprehensive fracto-
graphic analysis and microstructure evaluation, they concluded that the fatigue life is affected by
machining conditions and that at high temperatures the fatigue crack initiation site changes from
surface to bulk. They have observed that a recrystallized zone of smaller grain size is formed on
machined surfaces after they were heat treated at 750°C for lhr. Surface integrity was evaluated
with the Nomarski microscopy and hardness profiling. Machining parameters were not explic-
itly considered nor was a model proposed for the relation of these parameters with the observed

behavior.

The work performed at The Georgia Institute of Technology by [Nelson| (1997])); [Razavi| (2000));

and (2003) has been based on the use of the split-sample technique and 2D profilometry to

measure subsurface damage, and the use of the model of[Lawn and Wilshaw] (1975)) and [Aurora et al]

(1979) to relate the total grinding normal force with the damage. Even though the model of




[and Wilshaw] (1975)) and [Aurora et al] (I979) relates the indentation force, material hardness and

indenter geometry to the PDD for a single indenter, [Nelson] (1997); [Razavi] (2000]); and
(12003)) related the total normal force in grinding with the PDD without considering the indentation

process itself. Furthermore, the technique utilized for PDD determination was dependent on the
user’s experimental skills in sample preparation, selection of the site to measure the profile, and
criteria to separate the deformed from the undeformed zone.

The individual mechanical interactions of the abrasive grit in grinding differs from material to
material. Models for PDD prediction should account for the interaction of single abrasive grits
with the material to have some physical insight of the process. This interaction is produced at
the microscopic length scale, and material dependent deformation mechanisms at that scale level
should be accounted for. In the present case those are individual lamellae colonies presenting elastic
and viscoplastic anisotropy, grain boundaries and their effect on local deformation behavior that
can yield to localized failures, and relative abrasive grit/lamellae size effects that will also influence
strain localization and failure.

There is also the need to develop a validated and systematic experimental technique to obtain

information which could be related to mechanical performance, in particular to HCF. As reported

by Jones| (1997); [Jones and Eylon| (1999)), the technique of microhardness evaluation is not as

sensitive as the Nomarski microscopy to define the PDD because of measurement uncertainties.

The development of new synthetic superabrasives in which shape and size can be controlled
raises the question of the influence those variables may have on surface integrity since it can be
argued that blocky shaped grits will produce a greater hydrostatic stress state than angular grits.

The progress on testing instrumentation, and specifically the advent of 3D non-contact surface
profilometry allows to perform quantitative evaluation of deformed surfaces. Ver-
tical resolution of the order of nanometers can be easily achieved and the possibility of analyzing
relatively large areas (of several mm?) with resolution of the order of microns allows the study of
quantitative deformation inhomogeneity i.e. due to grain size effects. The advance in numerical
computer software along with computer power allows huge amounts of experimental data to be
analyzed in a reasonable time.

The recent advances in crystal plasticity models of v — TiAl, along with the improvement on
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the kinematics of grinding modeling, present the opportunity to relate the macroscopic grinding
variables to the individual grit forces and better understand the fundamentals of the interaction

between individual abrasive grits and individual lamellar colonies.

2.2 Objective

To better understand the fundamentals of the abrasive grit/material interaction in grinding oper-

ations, and resultant deformation and surface integrity on lamellar v — T3 Al.

2.3 Methodology and Outline

The present work contains experimental, analytical, and numerical developments as shown in the
overview of Fig. In the experimental part of the work, Chapter [3| presents the chemical, mi-
crostructural and mechanical properties of the present alloy either found in the literature (elastic
constants) or obtained through dynamic, and quasi-static compression tests and instrumented in-

dentation. Chapter [4] presents the detailed experimental technique developed for the evaluation

of the PDD based on the works of [Xu and Jahanmir| (1994)); and (11997), with the range

of applicability and limitations. Chapter p| presents the grinding experimental methodology and
statistical analysis of results, including PDD, surface parameters, and cracking. Appendix [4] com-
pletes the chapter with the table of the complete set of grinding experimental data. Chapter [6]

presents the methodology utilized to measure and analyze RS on the surface and subsurface of

selected ground samples, based on the work of [Winholtz and Cohen| (1988)); [Wagner et al. (1983]);

and [Richter and Hofmann| (2002), as well as the RS data analysis. Appendix [B] completes the

chapter with the data obtained by analysis as well as experimental vs. analytical comparison plots
of strain. Chapter [7] presents the modeling of the force per abrasive grit for different grinding con-
ditions based on the work of . The analysis of the correlation of this parameter with
PDD is also presented. Chapter [8] presents the two numerical models used to simulate indentation
and scratching of abrasive grits on the material. One model utilizes isotropic elastic-viscoplastic
properties and it is utilized to obtain the difference in PDD under PE (plane strain) and PS (plane
stress) conditions of indentation and relate the PDD measured at the sample free surface with the

one at the material bulk. 3D scratching models were utilized to analyze the variation of PDD
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with the applied normal force. An anisotropic elastic-viscoplastic crystal plasticity model based

on the works of [Kad et al] ([1995); [McGinty] (2001); [Dimiduk et al] (2001)); and [Brockman] ([2003))

was further extended to analyze the effect of lamellar colony/indenter relative size, and lamellae

orientation on plastic deformation.
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Figure 2.1: Thesis overview.
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CHAPTER III

MATERIAL CHARACTERIZATION

This Chapter presents the metallurgical and mechanical material characterization section that was
needed for input into the numerical models. Chemical composition and microstructure were an-
alyzed, and the elastic constants of individual phases, and lamellae obtained from the literature.
Dynamic and quasi-static compression tests as well as instrumented indentation tests were per-

formed at RT.

3.1 Chemaical Composition and Metallography

The alloy used for this research was Howmet’s 47X D Titanium Aluminide with a composition of
Ti-47Al-2Nb-2Mn-0.3B at. %, produced by induction skull melting into slabs of 25mm thickness.
In order to reduce porosity and homogenize the microstructure, the slabs were HIPped at 1300°C
at 166MPa for 4hs with a subsequent heat treatment at 1010°C for 50hs. Figure shows the
phase diagram of Ti-Al indicating the different phase crystal structure. TiAl-based alloys with
slightly Al-deficient compositions exhibit /o microstructures and often contain a considerable
volume fraction of morphologically lamellar colonies as in the present case. The lamellar colonies

consist of a majority of variants of v-TiAl and as-Ti3Al lamellae. The addition of Mn improves the

RT ductility (Kawabata et al| [1989} [Hao et al)] [1999)); the addition of Nb improves the oxidation

resistance ([Shemet et al] [1999), and high temperature strength (Tetsui 2002)), the addition of
Boron is used for grain refinement (Zhang and Deevi} [2002]), and improved creep resistance (McQuay

1999). Figure shows the microstructure of the material used where lamellae colonies of
250pum average size can be observed, while Fig. [3.3] shows a lamellae boundary, where the different

orientation of adjacent colonies can be observed.
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Figure 3.1: Equilibrium phase diagram of Ti-Al (Kattner et al] [1992} [Dhnuma et al] 2000)).

Figure 3.2: Microstructure of the utilized T'7 Al showing lamellae colonies of 250um average size.
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10.0 um

Figure 3.3: Microstructure of the utilized TiAl showing a lamellar colony boundary.

3.2 FElastic Constants

The studied alloy is a two phase lamellar structure, which is the result of phase transformations
and ordering reactions occurring during solidification and cooling in which layers of ag-v are piled

up with crystallographic alignment at the phases interface such that

{111},]/(0001)4, and [111],]] < 1120 >,, (Yamabe et al][1994)

A laminate material is formed where the ratio of the two phases as well as the thickness of each
layer will influence the overall elastic behavior of the colony. It is impractical to model the lamellae
explicitly in a polycrystalline material since layer thickness is of the order of 10nm to a few microns.

Therefore the effective elastic properties for the lamellar colonies calculated from the constituent

properties have to be used. [Yoo and Fu| (1998 had determined the elastic properties of v — T Al

and ao — Ti3Al phases. [Frank et al] (2003) and [Brockman| (2003) had used these constants to

find the effective elastic constants of lamellar colonies of different ao to v ratios using the method

proposed by (1974) developed for laminated orthotropic materials. The elastic constants
for colonies with a ratio aws-v of 1:10, which is the one used in this work, as well as the constants
for each constituent are presented in Table For the v — Ti Al with a L1j structure, directions

1, 2, and 3 correspond respectively to the [100], [010], and [001] crystal directions. In the case of
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ag — TizAl with a D0qg structure the direction 1 corresponds to the crystal axis [1120] and the 3

axis is parallel to [0001].

Table 3.1: Elastic constants.

~ —TiAl
EH = 140GPa V19— 0.284 G12 = 78GPa
E22 = 140GPa V13— 0.298 G13 = 105GPa
E33 = 135GPa V93= 0.298 G23 = 105GPa
a9 — TigAl
Ell == 125GPa Vig= 0.454 G12 = 43GPa
E22 = 125GPa V13— 0.154 G13 = 62GPa
E33 = 191GPa V93— 0.154 Ggg = 62GPa
1:10 ratio ap — TigAl : v — Ti Al
E11 = 187.0GPa V19— 0.284 G12 = 72.6GPa
E22 = 187.0GPa V13— 0.146 G13 = 66.9GPa
E33 = 218.9GPa V93= 0.146 G23 = 66.9GPa

Using the Voigt notation, where indices contract as 11 — 1, 22 — 2, 33 — 3, 12 — 4,
13 — 5, and 23 — 6, the fourth order stiffness tensor will be written as shown in Eq. for
general orthotropic material. The relation between the engineering elastic constants presented in
Table B.J and the component of the stiffness matrix are given in Eq. with the restrictions given
by Eq. In this case, the material presents transverse isotropy having the stiffness matrix with
only 5 independent constants. In its principal direction this matrix is represented by Eq. The
spatial variation of the directional elastic constant Cp , is shown in Fig. where 6, and p define
the direction of the generic polar unit vector n as shown in Eq. @ Figurerepresents the planar

variation of the elastic constants for the [100][010] isotropic plane and the [100][001] plane.

Cnu Ci2 Ci3 0 0 0
Cor Cp Co3 0 0 0
C31 C3p C33 0 0 0
- 0 0 0 Cu O 0
0 0 0 0 Cs5 O

0 0 0 0 0 Ces
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Ci1 = E1 (1 —v03v32) T
Coz = B3 (1 —v13v31) T
Cs3 = E3 (1 —v12v91) Y
Cr2 = By (vo1 + v31193) T
C13 = By (131 + 1o1v32) T

Coz = E3 (v32 + v12131) T

Cu = G2
Cs5 = G
Ces = G23
Y 1

1 — viov01 — Vo332 — V31113 — 2101032013

Ci1, Ca2, C33, Cu4, Css, Cee >0

N[

|C12| < (C11C22)

N[ =

|C13] < (C11C33)

N[ =

|Cas| < (C22C33)

det (C) >0

211.6 66.0 406 0O 0 0
211.6 40.6 O 0 0
2328 0 0 0
[GPal
726 0 0
Sym 669 0
66.9 |
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Figure 3.4: 3D representation of spatial variation of elastic constants.

270

Figure 3.5: 2D representation of directional variation of elastic constants. Blue [100][010] isotropic
plane. Red [100][001] plane .
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3.3 Quasi-static and Dynamic Compression Tests

True stress versus true strain curves were obtained at three different deformation rates, one a quasi-
static compression test (deformation rate ~ 0.01sec™!) and two using the dynamic split Hopkinson
bar tests. Three tests were averaged at each deformation rate. Samples were prepared using an
EDM having in the case of quasi-static tests a nominal diameter of 12mm and length of 24mm.
For the split Hopkinson tests, samples of 4mm diameter by 4mm in length were utilized enclosing
several thousand grains and assuring an average behavior.

The split Hopkinson bar apparatus consists of a striker bar, an incident bar, the test specimen,
strain gages, and the output bar as shown in Figure 3.6} A rectangular compression wave of well
defined amplitude and length is generated in the incident bar when the striker rod is fired from
a gas gun and impacts the incident bar. When the wave reaches the specimen some of its energy
is transmitted through it and some is reflected back through the incident bar. Strain gages are
attached on the incident and output bars as shown in Figure [3.7] and the incident, transmitted,
and reflected pulses are monitored and recorded by an oscilloscope. Figure |3.8] represents these
pulses recorded in the experiment.

One dimensional wave propagation analysis determines high strain rate stress-strain curves
from measurements of strain in the incident and output bars. Equation [3.6] converts the strain
gages transmitted and reflected voltage signals V¥ / fsVe and V§/ fs Ve respectively into strain, being
fs = 2.02 the strain gage constant and V, = 30V the applied strain gage voltage. The reflected
pulse measured by an oscilloscope is used to calculate the strain rate in a specimen as shown in
Eq. where Lg is the instantaneous specimen length, and Cj the longitudinal wave speed in the
rod. Equation was used to compute Cp, in which £, = 200G Pa and p, = 8100 kg/m? are the
bar Young’s modulus and density respectively. This strain rate is integrated with respect to time
in order to obtain the strain (¢) in the specimen, as represented by Eq. The transmitted pulse
is used to calculate the true stress in the specimen with Eq. being Aj, = 285.0mm? the area

of the bar, and A; the instantaneous area of the specimen, which is computed assuming volume

conservation (Eq.[3.11)).
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ET (t) =
r (5.6)
ER (t) = f ‘Ij,
¢(1) =250 (3.7)
Co = f;’ (3.8)

g (t) = EbeT (t) (3.10)
As
V, = A;L, = constant (3.11)
output bar  specimen incident bar  striker bar

ettt o
/

output strain gage incident strain gage

Figure 3.6: Split Hopkinson bar test rig.

output bar transmitted wave reflected wave incident wave
L] — i — [0 ~—
T T incident bar
output strain gage sample incident strain gage

Figure 3.7: Split Hopkinson bar test rig. Close-up of sample and strain gages.

Figure [3.10] shows the results of the average of 3 compression tests at each strain rate. The

static tests were stopped when the machine limit load was achieved (~ 180kN). The signal on the
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Figure 3.8: Strain gages signal obtained from split Hopkinson bar test.
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Figure 3.9: True stress and strain rate vs. true strain from split Hopkinson bar test. Three tests
averaged.
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dynamic tests was valid until the reflected wave from the end of the bars reached the strain gages

(~ 0.3msec).
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Figure 3.10: True stress vs. true strain curves. Average of 3 compression tests at each strain
rate.

3.4 Indentation Tests

The elastic-plastic material response was also evaluated by indentation tests. Two different types of
indentations were carried out, a Vickers microhardness test to obtain the material hardness value,
and instrumented tests using a conical diamond indenter of 200um tip radius to obtain hysteresis
curves. The indentation of the Vickers test was smaller than the lamellae colony size and due to the
material anisotropy indents were not symmetric. Six measurements were averaged giving a mean of
266 H V5 with a standard deviation of 6 H V5. The relatively small deviation of the average value was
achieved by using the largest load admissible for the instrument (~ 20N, which averaged properties
over a relatively large area. For the instrumented tests an Instron 5867 universal testing machine
was utilized, acquiring load and machine head displacement under three maximum loads of 500V,

1000N, and 1500N. The displacement rate was 0.05mm/min. Figure shows the force versus
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displacement load and unload curves, with each curve being the average of three measurements.
Machine compliance was accounted for with calibration curves. Figure[3.12]shows the macrography
and 3D surface profilometry of an indentation edge, where the inhomogeneous deformation due to
the different lamellae orientations can be seen in the out of roundness of the indentation edge and

uneven surface topography.
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—— 500N
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Figure 3.11: Indentation force versus displacement load unload curves.

Figure 3.12: Macrography and 3D surface profilometry of indentation edge. Inhomogeneous
deformation can be appreciated.

29



CHAPTER IV

PLASTIC DEFORMATION DEPTH MEASUREMENT
METHOD

4.1 Introduction

Among the techniques utilized for measuring PDD, profiling of subsurface hardness is one of the

most widespread, as that shown in the work of [Field et al] (1972)); [Bentley et al] (1999); PJones|

[and Eylon| (1999). Since the size of the hardened zone is of the order of tens to hundred of mi-

crons, low load microindentation should be utilized and relatively large scatter accompanies the

results, decreasing the sensitivity of the method. Optical microscopy utilizing Nomarski illumi-

nation (Robinson and Bradbury] [1992)) is another technique to evaluate PDD. It is based on the

observation of surface irregularities and a quantitative analysis can be made by using a reticle in the
optics objective. As with any observational technique, the disadvantage is that the measurement
is subjective.

The experimental technique which is developed in this chapter to quantify the PDD is based
on the fact that in the machining of materials that exhibits a certain degree of ductility, a burr
is formed at the lateral edges of the workpiece. This burr is caused by material side flow due
to the unconstrained conditions at the workpiece boundaries along with the deformation imposed
by a tool path close to the workpiece edge. This burr formation is schematically represented in
Fig. |4.1] where the top surface is machined, V,, being normal to the page. This is sometimes called
“Poisson” burr . Here a difference should be made between different types of burrs.
What is usually seen in machine shops and removed by deburring is what is called a “hanging”
burr . Once this hanging burr is removed, there is still a “side flow” type of burr,
which is the one relevant for this study.

The implications of this burr formation are two fold. Firstly, the magnitude of this lateral flow

should be taken into account for high precision parts. Tight fitting matching parts, such as seals,
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might not be functional if this effect is not considered. Secondly, this lateral flow can be a sensitivity
parameter to account for the interaction of material properties and machining conditions. If it is
true, and an appropriate technique for its measurement can be developed, this can be a practical

tool for machining evaluation.

Surface to grind Gro d surface

Plastic
deformation
ridge

Figure 4.1: Exaggerated view of burr formed at the material lateral edges due to surface grinding.

4.2 Background of Method

The proposed technique is based on the works of [Xu and Jahanmii (1994)), and [Nelson] (1997).

[and Jahanmir| (1994)) developed the bonded interface, or split specimen technique, to observe dam-

age on machined ceramics using Nomarski microscopy. In their technique two polished surfaces
of the sample are glued together with cyanoacrylate, the specimen machined and the two surfaces
separated and placed under the microscope. utilized the bonded interface technique
on ground T3 Al samples and further implemented the use of a profilometer to evaluate the damaged
zone by changes in the surface roughness. , and later had used the same
technique for measuring subsurface damage in their work. The technique requires that bonded sur-
faces spacing be of the order of 1um or less to effectively neglect the effects of the interface.
reported surface flatness values of 4004 over an area of 0.25mm?2. Nevertheless, on
samples with mating areas of 20mm by 10mm, as the ones used for grinding experiments, the final
surface separation might be of orders of magnitude larger than the one reported, in particular with
relatively soft materials such as metals. The disadvantage of this technique lies in the difficulty of
surface sample preparation, and the resulting variable spacing of the glued interfaces in the sample
and, between samples, that leads to large variability of results due to variable mechanical constraint

conditions.
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Figure 4.2: Bonded interface technique sample schematics.

4.3 Proposed Method

The proposed method is based on the measurement of the side flow, or the out of planarity of the
surface. Since measurements are performed on a free surface, the variable constraint condition of
the previous technique is eliminated. Surface preparation is also less stringent.

The experimental procedure to acquire the raw data for evaluation of PDD is detailed in Fig. [£.3]
for surface grinding. Samples of 15mm high, 25mm long, and 5mm and 10mm wide were used.
The lateral free surfaces of the sample were polished up to a roughness and planarity < 1um over
a length of at least twice the expected value of PDD. Grinding was performed using a grinding
wheel wider than the specimen width, allowing the analysis of PDD at both lateral surfaces of each
sample in a single experiment. During grinding, side flow occurs beneath the new created surface.
The displacement magnitude is a function of the material properties as well as of the machining
conditions. A non-contact, three-dimensional, white-light optical scanning interferometry was uti-
lized to acquire the data to be analyzed , . An infinite conjugate interferometric
objective of 2.5x magnification was chosen giving a field of view of 2.82mm by 2.11mm. The fringe
images were digitized with a camera resolution of 640x480pixels giving a spatial sampling of 4.4pm.

The vertical scan was of 40um with a vertical resolution of the order of a few nanometers.
4.3.1 Consistency of Results

In order to obtain consistency of results, precautions were taken on PDD measurements. Figure [£.4]
shows the sample lateral free surface with the different zones.

A coarse deburring of hanging burrs took place before measurements to avoid interfering shad-
ows over the region of interest.

The measured surface was placed at normal incidence with respect to the microscope objective,
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Figure 4.3: Experimental steps to obtain the raw data to analyze PDD.

and the sample edge parallel to the image border to minimize errors.

Sample edge identification is relevant for precision measurements. It has been observed that
usually the edge of the specimen is less reflective than the polished zone. This is mainly due to
the different roughness between both surfaces and also due to a burned zone that might be formed
beneath the new created surface. Due to this difference in contrast it might be difficult to identify
the sample edge, producing an error in the measurement. To avoid this error a sample clamp was
made with a reflectivity of the same order as the one at the zone of interest on the sample.

For statistical purposes three images were taken at each lateral side giving a total of 384 PDD

data points.

ground surface

deformation traces

’
lateral surface

- 0.010mm ]

=

Figure 4.4: Lateral free surface on a sample showing different zones.
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4.4 Data Analysis

Raw data were extracted from the profilometer and processed in order to obtain the value of PDD.
Data analysis was implemented using Matlab v6.5.1, and it was composed of two main parts: data
conditioning, and PDD measurement. For the data conditioning the processing steps taken were
unwrapping, filtering, offset removal, and trimming. For the PDD measurements the process steps
were fitting with the best plane on the undeformed zone of the scanned surface; defining a threshold
value for PD; and finding the threshold value from the surface.

The raw data from the profilometer came in binary format giving information of intensity and
phase. Data type conversion and unwrapping was done obtaining as a result the x, y, z coordinates
of the discrete surface. This followed by assigning noisy pixels (the ones with amplitude outside
a given threshold) the weighted average by distance of the nearest valid neighbor points. These
noisy pixels were mainly caused by missing data, and a large default value was placed instead on
the DAQ process. The image was trimmed at the lateral edges other than the edge where the new
surface was created, removing the remaining noisy pixels. The last stage in conditioning involved
data filtering by the implementation of a median filtering algorithm in which each output pixel was
set to the median of the pixel values of its nearest neighbors. The median was chosen instead of
the mean because it is less sensitive to extreme values. Figure [4.5|shows an example of conditioned
data.

A contour plot and an averaging analysis were performed to determine the PDD, as shown
in Figs. and respectively. In both methods a datum plane was fitted in the undeformed
zone of the scanned area as a reference, and a threshold value was assigned to the magnitude of
lateral displacement in order to separate the deformed from the undeformed zone. In the averaging
method the vertical coordinate of each set of points parallel to the ground edge was averaged,
and the distance to the datum plane computed. This distance is the mean value of the lateral
displacement as shown in Fig. .7} A single value of PDD is obtained from each image by defining
a lateral displacement threshold value as a criterion. The second method used contour plots at
different threshold levels. For consideration of automatic analysis of the image, this method gives
at least as many values as the sample wide/resolution gives, which might not give a function but a

poly-valued relation of PDD in the sample wide, as shown in Fig.
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Figure 4.5: Conditioned data from 3D profilometer.

4.5 Clapabilities and Limaitations of the Method

The averaging method for determining PDD gives an average out-of-planarity measurement, with
one data point/scanned image based on the fitting of best plane on the undeformed area and the
measure of the surface average vertical deviation from a fitted plane as a function of distance from
the ground surface. This method is robust with respect to missing points and surface finishing.
Figure [4.8 shows the comparison of PDD for threshold values of 1um and 3um. It can be seen that
a good correlation exists between them. Figure shows the comparison of PDD for threshold
values of 1um and 0.25um. It can be seen that the data spreads, being this threshold the limit of
applicability of this technique.

The contour plot method gives a number of data points (image width/lateral spatial sampling
resolution), allowing the computation of PDD variability with respect to grain morphology and
material anisotropy. Since no data averaging takes place, this method is very sensitive to sur-
face finishing giving false positives values of PDD for small deformation thresholds as shown in
Figure Therefore lower thresholds values of PDD can be adopted in the averaging method
than in the contour one. Figure compares the determination of PDD for these two different

approaches for a threshold value of 1um. It can be seen that a good agreement exits between them.
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Figure 4.6: PDD contour plot for 3, 1 and 0.25um of threshold.

4.6 Conclusions

The PDD evaluation method proposed, combines the quantitative capabilities of the microhardness
measurement with the sensitivity of Nomarski microscopy. Quantitative analysis of the surface can
be performed and an algorithm with the criterion to define the PDD zone can be used. This
approach is less biased from the user’s experience.

The method can be used to obtain a unique parameter for PDD or a complete mapping of the
surface, according to the data analysis performed.

The averaging method of determining PDD is based on averaging the out-of-planarity of lines
parallel to the surface. This method gives a unique value for PDD and it is robust with respect to
missing points and surface finishing.

The contour plot method allows the computation of PDD variability with respect to grain
morphology and material anisotropy. Since no data averaging takes place, this method is very
sensitive to surface finishing.

The practical limitation of these methods is given by the quality of surface preparation, e.g.
the surface roughness more important than its waviness. With a surface roughness of Ra < 1um it

has been possible to work with an out-of-planarity threshold of 1um, thereby obtaining consistent
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Figure 4.7: Plot of the mean value of the lateral material flow-datum distance.

results between replications and analysis techniques. An out-of-planarity threshold of 0.25pum has

been of limited applicability for the present work.
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Figure 4.8: Comparison of PDD for threshold values of 3um and 1pum for the averaging method.
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Figure 4.9: Comparison of PDD for threshold values of 0.25um and 1um for the averaging method.
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Figure 4.10: PDD contour plot for 3um, 1um and 0.25um of threshold. Technique limitation by

data scatter.
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Figure 4.11: Comparison of PDD for 1um threshold values for the averaging and contour plot

methods.
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CHAPTER V

GRINDING EXPERIMENTS

5.1 Introduction

This chapter describes the experimental technique employed in the surface grinding tests, includ-
ing the design of experiments, precautions taken for consistency of results, data acquisition, and
results in terms of obtained specific normal (F}) and tangential (F7.) force, specific energy (Ej),
surface average roughness (R,), bearing area (BA), grinding friction coefficient (Cf), and PDD.
The main operation variables were the wheel’s abrasive grit size (G,) and shape (G},), wheel depth

of cut (DoC'), workpiece or table speed (V,), and wheel wear (W,.).

5.2 Design of Experiments

The objective of the grinding tests was to evaluate the effect of the wheel G,, G}, DoC, and V,,
on the final grinding variables, in particular on the PDD. A two-level, five-variable, full factorial
design of experiments was planned, with 32 different treatments and 2 replications, giving a total
of 64 experiments. To increase the statistics of the results on the determination of the PDD, 3
measurements of PDD were made at the lateral sides of each specimen giving a total of 384 data
points. Table[5.1]shows the levels used for each variable. Wheel peripheral speed was kept constant

at 30m/sec.

Table 5.1: DOE for grinding tests.

G, G, DoC Vi W,

pm pm  mm/sec  mm3/mm?
Low 54 angular (Ag) 20 20 0.05 (dressed)
High 232 blocky (Bk) 50 80 2.5 (worn)
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5.3 Wheel Characteristics

Grinding wheels consist of abrasive grits bonded together by a matrix of resins, epoxy, rubber,
metal, or vitrified glass materials. Because of the availability in different shapes and sizes and

its adequacy for grinding intermetallic compounds (Kumax], [T990] [1993)), diamond superabrasives

were used in this research. Polycrystalline synthetic diamond manufactured by General Electric
was embedded in a Ni based alloy by Noritake Abrasives in a wheel type 1A1 (peripheral, straight
face with no recess). Wheel size was 178mm diameter, 12.2mm wide, and 32mm bore diameter,
grade N, with an abrasive rim of 3.17mm on a steel core, and concentration 100 (25% of the volume
is occupied by diamond). Since the bonding was Ni based, no metal clad grain was necessary to
enhance abrasive retention. Abrasive grits are defined by their shape and mechanical properties,
in particular friability, or the ability of the grit to fracture when the force is increased due to
generation of wear flats. Friability is tested by means of statistical analysis of dynamic compressive
fracture strength tests where grinding conditions are simulated. Shape classification is based on
parameters such as “tau” which is a continuous parameter to measure more cubic or
octahedral shapes, and the eccentricity factor or aspect ratio. Figure shows the 4 different
abrasive grits of the MBG300 and MBG660 types utilized. While the MBG660 is a low eccentricity
crystal exhibiting well defined cubo-octahedral morphology, high bulk fracture and shear strength;
the MBG300 type is of sharp, angular shape, of high eccentricity, and friable. Also two different
grit sizes were chosen with average diameter of 54um (small) and 232um (large). Size also affects
strength where the small grit is tougher than the large grit. Heat is conducted away from the
grinding interface by the diamond (thermal conductivity 1000W/m K and 2600W/m K), and the

metal bonding (thermal conductivity estimated in 100W/m K).

5.4 Consistency of Results

Grinding output parameters are very sensitive to the abrasive grit and cooling conditions. Grinding
forces can vary by more than an order of magnitude if these conditions are not carefully controlled.
Consistency of results or the possibility of conducting a literature comparison depends on the
correct specification of such conditions. Even though these parameters are relevant, they are often

neglected in literature. Precautions taken for consistency of results are presented.
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(c) Wheel 64: SB MBG660 Grit 270-325 (54um avg.) (d) Wheel 61: LB MBG660 Grit 60-80 (232um avg.)

Figure 5.1: Grinding wheel diamond abrasives.
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5.4.1 Wheel Wear

After the wheel is conditioned by truing and dressing, abrasives have sharp cutting edges that
gradually become dull with use, mainly by generation of wear flats. The more friable the abrasive,
the easier it can fracture allowing new edges to be generated. The process of wear flat generation
and grit fracture might not reach an equilibrium, therefore grinding is generally done under variable
conditions. Figure [5.2] shows the effects of the abrasive wear on the normal force. Each point on
the plot represents a grinding reciprocating cycle. The first 5 to 10 points usually showed a step
increase in the normal force due to the machine compliance and the displacement control given by
the DoC'. Machine compliance becomes irrelevant if DoC' control is used and kept constant during
the tests, while enough cycles are set and the steady state reached. The upper abscissa shows the
specific material removal per unit width. The lower one shows the wheel specific material removal
which adds the normalization by the wheel perimeter. This latter measure is not commonly used
in the literature because a unique wheel diameter is assumed. The normal force is represented by

its plateau value at each cycle, as shown in Figure One way to control the wear effects is by

implementing continuous dressing (Ohmori et al] [1996]). To obtain consistent results, the same

amount of material was removed in each test.

Material removed [mm?]

0 5 10 15 20 ’s
40 ' | | | | | ! I ' I
agugenlnn®
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Wheel specific material removed [mm]

Figure 5.2: Effects of abrasive wear on the normal force.
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Figure 5.3: Normal and tangential force in a grinding cycle.

5.4.2 Dressing Conditions

“Dressing” is a conditioning operation that exposes and sharpens abrasive grits and has a great
impact on performance. A sensitivity test for dressing was done. The wheel was trued, and one
half was completely dressed while 15% of the other half was left without dressing. Each half of the
wheel was utilized alternatively to grind the same sample under the same conditions. The tests
where the complete wheel was trued and dressed was also performed for reference. Figure[5.4]shows
the results. The black curves correspond to the two halves of the totally dressed conditions, and it
can be seen that the response is homogeneous. The red curves represent the wheel with incomplete

dressing.
5.4.3 Coolant

Coolant was utilized to remove heat and debris from the grinding zone, and reduce friction, wear

and corrosion, and has a major impact on grinding (Guo and Malkin} {1992} [Engineer et alf [1992f

[Ebbrell et al] 2000). Figure[5.5|shows an example of the effects of cooling conditions on the specific

normal force (F’y). Poorer cooling conditions increase the wear rate of the wheel. To minimize

wear, several modifications were implemented on the grinder. To obtain an homogeneous flux over

44



Specific normal force [N/mm]

50 Wheel
| |
| |
- n
40 -
|
] \
30 N
"
] Sample
20
) " L
10, = .l.=.l.I.=.=-=.I.l.l.-...l.l.-.l.l.l.l "L
. | ]
- = |ncomplete dressing
= Complete dressing
0 . . . : : : : :
0 10 20 30 40 50

Grinding cycles [-]

Figure 5.4: Plot of two different tests showing the effects of dressing on the normal force.

the wheel width, the coolant nozzles were changed from round to flat as shown in Fig. [5.6
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Figure 5.5: Effect of cooling conditions on the normal force.

flow and pressure were increased by adding a pump to enhance heat and debris removal. Measured

coolant flow was 7.2liter /min at 75k Pa for the front nozzle, and 3.3liter /min at 40k Pa for the back

nozzle. The coolant was composed of a Cimperial HD90 oil based water soluble 6% concentration.

The concentration was periodically checked by means of an optical refractometer (Fig.[5.7)).
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round nozzle flat nozzle

Figure 5.6: Nozzles modification allowing homogeneous flux on the wheel.

Figure 5.7: Refractometer and optical scale used to measure oil concentration.

5.4.4 Hydrodynamic Effects

Under some grinding conditions hydrodynamic effects may influence the measured forces as shown
by Figure [5.8f When the coolant was on, an additional force was present. This extra force is
generated by the converging gap between the wheel and the sample and their relative motion. This
effect is not observed on freshly dressed wheels and it starts to manifest itself in a measurable
way after some wear. It has to be noted that the bonding of these wheels, unlike resin or vitrified

wheels, has no pores to allow fluid pressure to be released. This effect was reported and used as a

measure of wheel wear by [Furutani et al.| (2002} [2003])
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Figure 5.8: Effect of hydrodynamic pressure of the normal force.
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5.5 Wheel Conditioning

Truing and dressing are wheel conditioning operations of great importance for consistency of results.
Figure [5.9] shows the schematic of the processes. Truing was performed by wearing the diamond
wheel with a SiC' wheel until wheel roundness was of the order of a few microns. The SiC was
driven by the diamond wheel and slipping was produced by misalignment of the rotation axes.
The wear rate of the SiC' wheel was more than an order of magnitude higher than that of the
diamond wheel. Variables for truing include: traverse feed rate, DoC, wheel type, truing device,
material removed, and coolant. Dressing was done by driving the wheel at a constant speed into
an Al3Oy dressing stick. This process exposes the abrasives by removing the bonding in front of
them. Variables for dressing include: plunge feed rate, stick type, material removed and coolant.

Tables and [5.3] show the truing and dressing conditions respectively.

Wheel

Truing wheel Dressing stick

Figure 5.9: Schematics of wheel conditioning.

5.6 Grinder and Data Acquisition

Figure shows the schematic of grinding. A Bridgeport Harig 618 EZSURF surface grinding
machine with a nominal power of 1.125kW and table speed range from 10mm/sec to 130mm/sec
was used. The table was driven by an hydraulic circuit working at open loop control. The controlling
factor in the V,, lower limit was the stick-slip of the table sliders. The V,, upper limit was given
by the limitations of the hydraulics, or the spindle power. The spindle downfeed was nominally

controlled in increments of 2.5um. The coolant system was modified as mentioned in Section [5.4.3
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Table 5.2: Truing conditions

Free wheel / non-collinear axis (7°) truing with coolant

Diamond | Conditioning Rough truing Finish truing
wheel wheel
Downfeed Crossfeed Downfeed Crossfeed
LB 75mm OD
25mm b 20pm /pass Sum /pass
37C60 - MVK 110em/min 75em/min
LA SiC
0.9mm/rev 0.6mm/rev
SB 75mm OD 0.3mm total 0.03mm total
25mm b
37C60 — MVK 55em/min 37em/min
SA Al309
0.45mm/rev 0.3mm/rev
Table 5.3: Dressing conditions
Dry plunge dressing
Diamond | Conditioning
wheel stick Conditions
LB
38A120-IVBE plunge rate:
25mm x 25mm |  40mm/min
LA
SB
38A120-IVBE | total removed:
25mm x 25mm 6.5cm?>
SA

48




The DAQ system was composed by a PCI-MIO-16E4 National Instruments card with 16 dif-
ferential analog channels, 12bits of resolution on a 10V input signal, and maximum sampling rate
of 500kS/s which ensured good resolution. Acquired variables were power, force components, and
table speed. Power was acquired by a PH-3A Load Controls transducer, and force was given by a
3-components Kistler 9257B dynamometer placed below the specimen with the output conditioned
by a Kistler 5010A charge amplifier. Since the machine lacked position output for monitoring or
control, table speed was established by the sample time under the wheel and sample length. The

speed computed in this way is the average V,, per cycle.

Grinding Wheel
~

Back
nozzle

Figure 5.10: Grinding experimental setup.

A DAQ program was written using Labview 6.1. The front interface allowed a set of the
sampling rate, power threshold for acquisition triggering and the number of points for walking

average smoothing applied to the signal, so that live plots of F'yn, F'7 and P/

s, as well as cycle

values of V,, and Cy could be obtained. Since a large number of experiments were carried out,
traceability of tests was essential. Three different files were generated with the date and time
for tracking purposes. One of them had information on the sample, wheel, process variables, and
comments. A second one with the complete acquired data of F’n, F'7, and P’,,. A third one with
the summary of the test giving a point per grinding cycle of F’y, F'7, material removed, P’,,,
Vw, and Cy. Charge amplifier drift was automatically corrected by the program for each grinding
cycle, avoiding the manual reset of the amplifiers, possible loss of data and errors introduced by

this artifact. After grinding, PDD and surface roughness parameters were measured and recorded.

49



5.7 Results

For easier data observation and due to the difference in their behavior, tests done with dressed

and worn wheels will be first analyzed separately. The complete set of results can be found in
Appendix [A]

5.7.1 Dressed Wheels

Table presents the data of the 16 different treatments and 2 replications. Data of PDD is the
average of 12 measurements. Table[5.5] presents the ordered PDD values where homogeneous groups
were evaluated using the Bonferroni test with a significance level & = 0.05. Columns numbered
1 to 5 indicate the different treatments with statistically similar results. As shown in Table
the PDD measured for small G, lies in the same range, as well as several groups of treatments for
large G,. Figures and show the ANOVA main and interaction effects respectively of the
4 predictor variables for PDD. As the plots show, the main factor is G,, there being some influence
of the G}, and the interactions between G, and Gj; and G, and DoC. Table presents the
results of the ANOVA for the PDD. It can be seen that most of the result variance is explained by
the G, factor alone, V,, not being a relevant factor. Table presents the linear model obtained
by a stepwise regression for all the main factors and their interactions, using an F-statistics (F) of
4.00. Columns numbered 1 to 4 indicate the number of variables in the model which is composed
of a constant term and the factor given in the row of the corresponding variable. The R-Sq value
for the model PDD[um] = 78.1 + 2.007Gg is 87.9%. The PDD mean and standard deviation for
small and large G, is 186 +40um, and 543 + 85um respectively. The total PDD mean and standard
deviation was of 365 £ 191pum.

Figures [5.13] and [5.14] show the ANOVA main and interaction effects respectively of the 4

predictor variables for Cy. As the plots show, all individual factors are relevant, and except for
the interaction between DoC and V,,; and G}, and V,,, all others influence C'y. Grit size and shape
have negative correlation with C'y, while the correlation with DoC and V;, is positive.

Table shows the linear models for C'; obtained by best subset regression. The right set
of columns indicates the individual and interaction variables. Column Vars indicates the number

of variables in the model, and Adj. R-Sq is the R-Sq value penalized by the number of variables
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Table 5.4: Summary for tests using dressed wheels.

Sample G, G DoC 'V, Fy P C; | PDD Std
D D e e [2]] A [ ][]
Agl | X1G19 X1GO8 | 232 Ag 50 20 15.00 139.12 0.250 | 511.5 65.2
Ag2 | X1GH4 X2G02 | 232 Ag 50 80 34.52  314.50 0.231 | 558.1 72.0
Ag3 | X1G50 X2G10 | 54 Ag 20 80 8.18  84.68 0.286 | 172.3 26.6
Agd | X1G51 X2G12 | 54 Ag 20 20 6.07  55.73 0.229 | 168.3 18.0
Agh | X1G44 X1GO7 | 232 Ag 20 20 12.45 103.89 0.213 | 459.4 49.5
Ag6 | X1GH6 X1G09 | 232 Ag 20 80 19.77 178.46 0.224 | 468.6 28.2
Ag7 | X1G58 X2G13 | 54 Ag 50 20 10.42 104.36 0.262 | 166.5 17.9
Ag8 | X1GH5 X2G14 | 54 Ag 50 80 21.81 277.66 0.315 | 208.6 69.2
Bkl | X1G10 X1G06 | 232 Bk 50 20 33.34  218.72 0.167 | 662.9 73.3
Bk2 | X2G51 X2G06 | 232 Bk 50 80 53.35 351.97 0.174 | 608.3 37.2
Bk3 | X1G14 X2GO07 | 54 Bk 20 80 10.13 107.14 0.270 | 211.2 40.2
Bk4 | X1G16 X1GO01 | 54 Bk 20 20 7.46  69.41 0.235 | 187.7 28.3
Bk5 | X2G50 X2G05 | 232 Bk 20 80 30.35 214.56 0.179 | 550.0 36.4
Bk6 | X1G11 X2G04 | 232 Bk 20 20 14.74 122.06 0.209 | 530.9 82.3
Bk7 | X1G15 X2GO08 | 54 Bk 50 20 11.03 111.08 0.262 | 173.4 10.7
Bk8 | X1G13 X2G09 | 54 Bk 50 80 1791 216.52 0.300 | 203.9 46.7

Table 5.5: Bonferroni test for homogeneous groups for dressed conditionsa = 0.05.

G. G, DoC_V, |[PDD| 1 2 3 4 5
[1im] [pm]  [%22] | [pm]

54 Ag 50 20 | 1665 | *F

54 Ag 20 20 |168.3 | **

54 Ag 20 80 | 1723 | **

54 Bk 50 20 | 1734 |**

54 Bk 20 20 | 187.7 | **

54 Bk 50 80 | 203.9 | **

54 Ag 50 80 | 208.6 | **

54 Bk 20 80 | 211.2 | **

232 Ag 20 20 | 4594 o

232 Ag 20 80 | 468.6 o

232 Ag 50 20 | 5115 ok

232 Bk 20 20 |530.9 S

9232 Bk 20 80 | 550.0 T
232 Ag 50 80 | 558.1 S
9232 Bk 50 80 | 608.3 S
232 Bk 50 20 | 662.9 o

o1
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Figure 5.11: ANOVA plot for main effects on PDD.
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Figure 5.12: ANOVA plot for interaction effects on PDD.
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Source
G,
G,

DoC
Vw
Error
Total

Table 5.7: Stepwise regression model for PDD.

Table 5.6: ANOVA for the PDD.

DF  SeqSS AdjSS Adj MS
1 6125266 6125266 6125266
1129210 129210 129210
1 89096 89096 89096
1 10848 10848 10848

187 613978 613978 3283

191 6968398

F
1865.5
39.3
27.1
3.3

Step 1 2 3 4
Constant | 78.12 78.12 78.12 65.6
G, 2.007 2.007 1.608 1.608
T-Value | 37.15 42.21 24.46 24.66
G.-Gy, 0.188 0.188 0.188
T-Value 7.5 8.61 8.69
G,-DoC 0.114 0.114
T-Value 7.82 7.89
Vi 0.25
T-Value 2.06
S 66.6 586 51.1  50.6
R-Sq 87.9 90.68 92.96 93.12
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P
0.000
0.000
0.000
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contained by the model. As can be seen, GG, is the most relevant single factor, but it is also strongly
interacting with G, as shown in the multivariable models.

No cracking was observed on the ground surface under a magnification of 60.X.

Grit Size Grit Shape DoC Vw
0.280-
0.255-
& 0.230
0.205-
0.180-
< —L
8 um r@r@‘b \oc*F\ T oum 2 P mmisec D
ba QD

Figure 5.13: ANOVA plot for main effects on CY.

Figures [5.15] and [5.16] show the ANOVA main and interaction effects respectively of the 4

predictor variables for F’n. As shown in the plots, all individual factors, and the G, and G},
interaction are relevant.

Figures and present the main effects for P/, and E’ respectively. Grit shape shows
no effect on these variables.

Surface parameters are considered in Fig. and that present the main effects for R,
and 90% of BA respectively. It can be seen that the mean R, value is in the range of 0.4um to

0.7um, and the mean 90% BA of 3.9um. As in the previous plots G, is the most relevant variable.
5.7.2 'Worn Wheels

Table presents the data of the 16 different treatments and 2 replications of the worn wheels.
Data of PDD is the average of 12 measurements. Table[5.10] presents the ordered PDD values where
homogeneous groups were evaluated using the Bonferroni test with a significance level a = 0.05.
Columns numbered 1 to 11 indicate the different treatments with statistically similar results. Unlike
the case of dressed wheels, there is no unique main factor that dominates PDD. Figures [5.21

and show the ANOVA main and interaction effects respectively of the 4 predictor variables
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Figure 5.14: ANOVA plot for interaction effects on C'y.
Table 5.8: Best subset regression model for C'y.
Adj. G, G, G, Gy
Vars R-Sq R-Sq Cp S G, DoC V, G, MRR G, DoC V, DoC
1 53.6  53.3 667  0.029905 | X
1 28.8 284 1123.8 0.037043 X
2 68.3 68 398  0.024782 | X X
2 66.3 65.9 4352 0.025558 X X
3 81 80.7 166.3 0.019242 X X X
3 75 771 231  0.020946 X X X
4 83.8 834 117 0.017826 X X X X
4 83.2 82.8 127.8 0.018147 X X X X
5 87.7 873 47 0.015573 X X X X X
5 85.1 84.7 945 0.017125 X X X X X
6 88 87.6 42,5 0.015392 | X X X X X X
6 88 87.6  43.1  0.015412 X X X X X X
7 89.8 894 12.6  0.014273 X X X X X X X
7 88.3 879  38.7 0.015227 | X X X X X X X
8 90.1 89.7 8.2 0.014066 | X X X X X X X X
8 89.8  89.3 14.4  0.014306 X X X X X X X X
9 90.1 89.6 10 0.014098 | X X X X X X X X X
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Figure 5.15: ANOVA plot for main effects on F’y.
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Figure 5.16: ANOVA plot for interaction effects on F”y.
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Figure 5.18: ANOVA plot for main effects on F',.
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Figure 5.20: ANOVA plot for main effects on 90% BA.
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for PDD. As shown in the plots, the main factors are DoC' and V,,, which have positive correlation
with PDD, therefore M RR also has a positive correlation with PDD. Grit size and shape are not
so relevant in this case. Table presents the results of the ANOVA for the PDD. The DoC
explains half of the data variance followed in importance by V,,. Table presents the linear
model obtained by stepwise regression over all the main factors and their interactions, F being
4.00. Columns numbered 1 to 7 indicate the number of variables in the model which is composed
of a constant term and the factor given in the row of the corresponding variable. Even considering
most of the controlled variables and their interaction in a linear model, the R-Sq value is less than

82%. The PDD mean and standard deviation was of 407 4 120um.

Table 5.9: Summary for tests using worn wheels.

Sample G, Gp DoC V, Fy P, C; | PDD Std
D D [p1m)] [pm] [me] | O] [ [pm]  [pm)]

Agl | X2G84 X2GT77 | 232 Ag 50 20 33.93  288.15 0.213 | 445.1 18.0
Ag2 | X2G80 X2GS81 | 232 Ag 50 80 73.48 636.64 0.223 | 466.8 16.4
Ag3 | X2G62 X2G68 | 54 Ag 20 80 38.32 434.80 0.279 | 238.0 39.2
Agd | X2G71 X2G67 | 54 Ag 20 20 30.25  360.75 0.293 | 217.8 33.0
Agh | X2G16 X2G66 | 54 Bk 20 80 62.29  559.14 0.229 | 377.7 75.3
Agb | X2G85 X2G76 | 232 Ag 20 80 40.33  381.75 0.233 | 378.0 25.7
Ag7 | X2G70 X2G69 | 54 Ag 50 20 45.23 52454 0.280 | 3524 17.6
Ag8 | X2G63 X2G64 | 54 Ag 50 80 189.72  1082.88 0.160 | 613.8 59.9
Bkl | X2G59 X2G5H5 | 232 Bk 50 20 4251 29049 0.181 | 497.9 21.2
Bk2 | X2G58 X2GH4 | 232 Bk 50 80 92.56  624.23 0.174 | 553.3 19.8
Bk3 | X2G86 X2G78 | 232 Ag 20 20 18.02 17577 0.251 | 337.7 23.6
Bk4 | X2G15 X2G1l7 | 54 Bk 20 20 35.06  407.07 0.279 | 287.1 32.2
Bk5 | X2G60 X2G5H6 | 232 Bk 20 80 52.18  394.26 0.186 | 428.3 24.6
Bk6 | X2G61 X2G5H7 | 232 Bk 20 20 16.88  165.14 0.249 | 305.1 68.4
Bk7 | X2G73 X2G72 | 54 Bk 50 20 68.04  751.17 0.261 | 452.5 31.0
Bk8 | X2G74 X2G65 | 54 Bk 50 80 162.07 1110.44 0.183 | 576.4 27.1

Figures [5.23] and [5.24] show the ANOVA main and interaction effects respectively of the 4

predictor variables for C'y. As shown in the plots, all individual factors are relevant, and their
correlation is inverse to the one shown for PDD (Fig. . The interactions between G, and the
rest of the variables are relevant as shown in Table of the linear models for Cy obtained by
best subset regression. As can be seen, M RR is the most relevant factor (V,, and DoC'), followed

by G,.
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Table 5.10: Bonferroni test for homogeneous groups for worn conditionsax = 0.05.

G, Gp DoC Vi PDD | 1 2 3 4 5 6 7T 8 9 10 11
(] [pm]  [%2] | [pm]
54  Ag 20 20 217.8 | **
54  Ag 20 80 238.0 | *k A
54 Bk 20 20 287.1 kX
232 Bk 20 20 305.1 Rk
232 Ag 20 20 337.7 o ek
54 Ag 50 20 352.4 ok Hok
54 Bk 20 80 377.7 ok K
232 Ag 20 80 378.0 ok Rk
232 Bk 20 80 428.3 R kX
232 Ag 50 20 445.1 Rk Rk
54 Bk 50 20 452.5 ok Rk
232 Ag 50 80 466.8 ok ok
232 Bk 50 20 497.9 o ek
232 Bk 50 80 553.3 ok K
54 Bk 50 80 576.4 ok
54 Ag 50 80 613.8 K
Grit Size Grit Shape DoC Vw
600
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5 400 -
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Figure 5.21: ANOVA plot for main effects on PDD.
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Figure 5.22: ANOVA plot for interaction effects on PDD.

Table 5.11: ANOVA for the PDD.

Source DF SeqSS AdjSS Adj MS F P
G, 1 65994 65994 65994  18.1  0.000
G, 1 137795 137795 137795  37.8  0.000

DoC 1 1446088 1446088 1446088 396.5 0.000
Vw 1 406972 406972 406972 111.6 0.000
Error 187 682057 682057 3647

Total 191 2738905
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Table 5.12: Stepwise regression model for PDD.

Step 1 2 3 4 5 6 7
Constant | 296.73 205.49 205.49 175.7 91.24 91.24 17.45
MRR 0.0636 0.0411 0.0411 0.0411 0.0411 0.0516 0.0261
T-Value 14.61 9.59 10.43 10.9 11.77 9.35 3.1
DoC 3.73 3.73 3.73 6.14 5.62 6.89
T-Value 9.56 10.39 10.86 11.53 9.89 10.8
Gy, 26.8 26.8 26.8 26.8 26.8
T-Value 5.95 6.22 6.71 6.8 7.06
G, 0.208 0.799 0.95 1.098
T-Value 4.31 7.02 7.4 8.48
G,-DoC -0.0169 -0.0169 -0.0169
T-Value -5.65 -5.72 -5.93
G.-Vy -0.003  -0.006
T-Value -2.43 -4.21
V 1.48
T-Value 3.88
S 82.4 67.8 62.4 59.7 55.3 54.6 52.6
R-Sq 52.91 68.25  73.28 75.69 79.25 79.89 81.41

Grit Size Grit Shape DoC Vw
0.280-
0.255-
o 0.2304
0.205-
0.180-
T T T ( T T T T T
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¥ d

Figure 5.23: ANOVA plot for main effects on CY.
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Figure 5.24: ANOVA plot for interaction effects on C'y.
Table 5.13: Best subset regression model for C.
Adj. G, G, G, Gy
Vars R-Sq R-Sq C, |G. DoC V, G, MRR () DoC V, DoC
1 449 446 3214 X
1 26.3 25.9 492.6 X
2 58.9 584 1942 | X X
2 55.8 554  222.1 X X
3 67.5 66.9 116.6 | X X X
3 67 665 121 | X X
4 71.7 711 798 | X X X X
4 71.2 70.6 84.1 | X X X
5 775 769 275 | X X X X X
5 7.1 765 318 | X X X X X
6 786 779 194 | X X X X X X
6 785 77.8 207 | X X X X X X
7 79.6 788 126 | X X X X X X X
7 79.2 784 163 | X X X X X X X
8 80.1 1793 95 | X X X X X X X X
8 79.8 789 129 | X X X X X X X X
9 80.3 793 98 | X X X X X X X X X
9 80.1 79.2 115 | X X X X X X X X X
10 804 793 11 X X X X X X X X X X




Figures [5.25 and [5.26] show the ANOVA main and interaction effects respectively of the 4

predictor variables for F’y. As shown in the plots, all individual factors and the G, and DoC;
and DoC and V,, interactions are the most relevant. Unlike the case of dressed wheels, G, has a

negative correlation with F”p.

Grit Size Grit Shape DoC
88
‘e 76
£
£
c 644
-
Q
=
8 52
o
w
40
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@ um q:bq’ 3 oc\F\ P um  F P mmisec &
v“ &

Figure 5.25: ANOVA plot for main effects on F”y.

Figures and present the main effects for P’,, and E’, respectively. Grit shape shows
a strong effect on these variables.

Surface parameters are considered in Fig. and that present the main effects for R,
and 90% of BA respectively. It can be seen that the mean R, value is in the range of 0.65um to
0.95um, with a mean value for 90% BA of 5.7um, G, being the most relevant variable.

Surface cracking was observed on tests using worn wheels, for small G, with DoC' = 50um,
and V,, = 80mm/sec for the Ag8 and BkS8 treatments. It was also observed for large G, with
DoC = 50um, and V,, = 80mm/sec for the Bk2 treatment, and only one crack in a sample with
Ag2 treatment. This cracking appears to be due to thermal effects. No single parameter correlates
with cracking, which seems to be generated when the F, ; 70N/mm, or P, > 600W/mm and
Cr < 0.2. The threshold in P, gives a level of energy to the workpiece, and the low C is indicating
that most of that energy is dissipated in friction and plowing, with a small fraction going to chip
generation. In this case the different behavior due to G} can be appreciated. While extensive

cracking was observed in the Bk2 treatment, only a single crack was observed in the Ag2 case. The
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Figure 5.26: ANOVA plot for interaction effects on F’p.
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Figure 5.27: ANOVA plot for main effects on P’,,.
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Figure 5.28: ANOVA plot for main effects on F',.
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Figure 5.29: ANOVA plot for main effects on R,.
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Figure 5.30: ANOVA plot for main effects on 90% BA.
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Ag G}, presents a higher Cy than the Bk, due to its angular shape and higher friability with respect
to the Bk. Wear flats on Bk shape abrasive grits increase redundant work and heat generation,
decreasing C'y. Figure shows the observed cracking on the ground surface. It can be observed

that the cracks are perpendicular to the grinding direction.

Figure 5.31: Observed cracking on ground surface. Cracking is perpendicular to the grinding
direction.

5.7.3 All Wheels

Figures[5.32} and [5-33]show the ANOVA main and interaction effects respectively of the 4 predictor
variables for PDD. As shown in the plots, the main individual factors are G, and DoC which have
a positive correlation with PDD. Wear strongly interacts with G, and to a lesser degree with DoC,
and V,,. Table presents the linear model obtained by the best subset regression over all the
main factors and their interactions, which corroborates that W, and G, interaction is relevant as
well as the G, and DoC. A linear regression model is given in Eq. Five variables were selected
for the linear regression model giving a R-sq of 80.8% and adjusted R-sq of 80.6%. The addition
of more variables does not improve significantly the variance explanation as seen in Table [5.14
Table [5.15] shows the ANOVA of the model. The most significant term in explaining the variance

is G, followed by the interaction of W, and DoC; and then DoC.

PDDlum] =102 + 1.11G, + 3.61DoC — 0.835W,.G, + 2.73W, DoC + 0.839W,.V,, (5.1)
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Figure 5.32: ANOVA plot for main effects on PDD.
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Figure 5.33: ANOVA plot for interaction effects on PDD.
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Table 5.14: Best subset regression model for PDD.

(=2

5 @) @) S}
|z o o SISO NIC RS IS
Sl 208 , Eo s Sc o uUo oEREE
1 429 42.8 1314 121 X
1 | 37.8 37.6 1467 126 X
2 149.2 489 1130 114 X X
2 | 484 48.1 1153 115 X X
3 | 71.4 T71.1 473.6 86.2 X X X
3 |169.6 69.3 5265 889 X X X
4 | 776 774 290.5 76.4 X X X X
4 |1 76.8 76.6 313 7.7 X X X X
5 | 80.8 80.6 197 70.8 X X X X X
5 [ 80.4 80.2 208.2 71.5 X X X X X
6 | 83.7 834 114.7 654 X X X X X X
6 | 83.6 &83.3 116.3 65.5 X X X X X X
7 | 8.4 86.1 36.6 59.8 X X X X X X X
7 1 8.3 8.1 382 59.9 X X X X X X X
8 | 8.9 86.7 215 5H86 X X X X X X X X
8 8.9 8.6 23.1 587 X X X X X X X X
9 | 87.3 87 124 579 X X X X X X X X X
9 | 87.1 86.8 185 5H83 X X X X X X X X X
10 | 87.5 87.1 10.1 576 X X X X X X X X X X
10 | 874 8&7.1 10.8 577 X X X X X X X X X X
11 | 87.6 87.2 8.5 574 X X X X X X X X X X X
11 | 87.5 &7.1 11.9 577 X X X X X X X X X X X
12 | 87.6 87.2 103 575 X X X X X X X X X X X X
12 | 87.6 &7.2 103 575 X X X X X X X X X X X X
13 | 87.6 &7.2 121 575 X X X X X X X X X X X X X
13 | 87.6 &7.2 122 575 X X X X X X X X X X X X X
14 | 87.6 8&7.1 14 56 X X X X X X X X X X X X X X
14 | 876 87.1 14.1 576 X X X X X X X X X X X X X X
15 | 87.6 8&7.1 16 577 X X X X X X X X X X X X xXx x x
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Table 5.15: ANOVA for the PDD regression model.

Source DF SS MS F P
Regression 5 7988514 1597703 318.65 0.000
Residual Error 378 1895279 5014

Total 383 9883794
Source DF  Seq SS
G, 1 3731419
DoC 1 1126537
W, Gy 1 222842
W,.DoC 1 2589681
W,V 1 318037

Figures [5.34] and [5.35] show the ANOVA main and interaction effects respectively of the 4

predictor variables for C'y. As shown in the plots, G, and G} and their interaction are the most

relevant factors, as well as the interactions between W, and the rest of the factors except Gjp,.
Figures and show the ANOVA main and interaction effects respectively for F’y. As

shown in the plots, DoC, V,, and W, are relevant, as well as most of the interactions of W, except

for the one with Gy, and the M RR.

Grit Size Grit Shape DoC Vw Wear
0.2804
0.255-
. 0.2304
0.2054
0.1804
T T T & T T T T T T T

Figure 5.34: ANOVA plot for main effects on Cy.

Figures [5.38 and show the ANOVA main and interaction effects respectively for R, while
Figures m and do so for 90% BA. It can be seen in the plots that G, and W, are the most
important variables, being the interactions not so relevant.

Figures to show plots of the mean PDD and its standard deviation vs. F'y, P/,
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Figure 5.35: ANOVA plot for interaction effects on CY.
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Figure 5.36: ANOVA plot for main effects on F”y.
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Figure 5.37: ANOVA plot for interaction effects on F” .
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Figure 5.38: ANOVA plot for main effects on R,.
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Figure 5.41: ANOVA plot for interactions on 90% BA.

E’, and Cf respectively. As shown in the plots, of Figures m to data for dressed wheels
is clustered by G, and data dispersion increases in the order of the plots. Figure [5.45] shows that
except for some points in the combination of small G, and dressed wheels, there is an inverse

correlation between Cy and PDD.

5.8 Conclusions

It has been observed that grinding is very sensitive to wheel conditioning and wear. Complete
truing and dressing conditions should be specified to obtain consistent results. Cooling conditions
are also important.

The PDD mean value extended on an average of about two grains.

It has been observed that in the case of dressed conditions the PDD strongly depends on the
G, while in the case of worn conditions it strongly depends on the M RR. It is believed that this
change in behavior is produced by the increase of thermal effects with wheel wear, and the increase
in the force per abrasive grit due to wear flats.

For large GG it has been observed that the PDD decreases with W, while the inverse behavior
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Figure 5.42: Plot of mean PDD and its standard deviation vs. F’y.
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Figure 5.43: Plot of mean PDD and its standard deviation vs. P’,,,.
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Figure 5.44: Plot of mean PDD and its standard deviation vs. E’.
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Figure 5.45: Plot of mean PDD and its standard deviation vs. Cf.

76



was observed for small G,. While the P/ was of the same order of magnitude for large G, in
the cases of worn and dressed conditions, it increased an average of 6 times for small G,. This
would indicate that in the case of large G, the thermal effects were not very different for the two W,
conditions and the PDD was determined by the G,. The decrease of the PDD could be explained by
assuming that the worn wheel presented a narrower distribution of cutting edges than the dressed
one. This could be due to some fracture of the abrasive grits during the first stages of grinding
after dressing, resulting as if having a smaller grit size. In the case of small G, can be assumed
that the generation of wear flats increased the force per abrasive grit and temperature with the
consequent increase of the PDD.

It has been observed that the PDD is inversely correlated to the Cf.

No cracking was observed on the ground surface under a magnification of 60X for dressed
wheels.

Surface cracking was observed on tests using worn wheels for small G, in the 4 treatments with
the largest M RR. This cracking appears to be due to thermal effects and it was not related to the
PDD. It has been observed that cracking was produced on treatments with high F, or high P},
and low CYy.

It was observed that the Ra and BA mean values increased with wear. This was probably due

to the effect of plowing in the formation of side ridges.

5.8.1 PDD

The PDD mean value was of the order of ~ 400um with an observed minimum and maximum
of ~ 100pum and ~ 800um respectively. Considering that the lamellae size was of the order of
~ 250um, the measured PDD extends on an average of about two grains.

In the case of dressed wheels the PDD measured for small G, statistically lies in the same range,
as well as several groups of treatments for large G,. The PDD mean and standard deviation for
small and large G, are 186 4+ 40um, and 543 + 85um respectively.

Most of the PDD variance can be explained by the G, factor alone, V,, being not a relevant
factor. There is some influence of the GG, and the interactions between G, and Gy; and G, and

DoC'. The R-Sq value for the model PDD|[um] = 78.1 + 2.007Gg is 87.9%.
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In the case of worn wheels, unlike the case of dressed wheels, there is no unique factor that
dominates PDD. The main factors are DoC and V,, which have positive correlation with PDD,
therefore M RR also has a positive correlation with PDD. Grit size and shape are not so relevant
in this case. The DoC' explains half of the data variance followed in importance by V,,. Even
considering most of the controlled variables and their interaction in a linear model, the R-Sq value
is less than 0.82. The PDD mean and standard deviation was of 407 £+ 120um for worn wheels and
365 = 191pum for dressed ones

An R-sq value of 0.84 is obtained by a linear fit of PDD with C.
5.8.2 Grinding Friction Coefficient

Grit size and shape have a negative correlation with C't, while the correlation with DoC and V,, is
positive. In the case of worn wheels all individual factors, and the interactions between GG, and the
rest of the variables are relevant for C'y, and their correlation is inverse to the one shown for PDD.
While the Cy trend with G, and G}, is the same as with dressed wheels, the dependence on DoC,
and V,, is inverse. The negative correlation of the the C'y with DoC' and V,, can be explained by

considering the shape change in the abrasives.
5.8.3 Specific Normal Force

In the case of dressed wheels, F’ 5 has a positive correlation with all the individual factors, and the
G, and G}, interaction.

In the case of dressed wheels, all individual factors and the G, and DoC'; and DoC' and V,
interactions are relevant for F’ . Unlike the case of dressed wheels, G, has a negative correlation
with F’n, which can be explained by assuming that the relative wear flat in the small grit is larger
than in the large grit. This can be due to the fact that poorer lubrication conditions might occur

with smaller grits, with higher temperatures, and increased wear rate of the diamond.
5.8.4 Surface Parameters

For the dressed conditions, the mean R, value is in the range of 0.4um to 0.7um, and the mean

90% BA of 3.9um, G, being is the most relevant factor.
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For the worn conditions, the mean R, value is in the range of 0.65um to 0.95um, with a mean
value for 90% BA of 5.7um, G, being the most relevant variable.

The Ra mean value increased ~ 0.25um from the dressed wheel condition to the worn one, and a
similar trend was observed for BA. Worn wheels have a narrower spatial cutting edges distribution
than in dressed conditions, also the chip thickness is smaller. Therefore, a possible explanation for

the increase in roughness is the plowing increase with the formation of scratching side ridges.
5.8.5 Cracking

Surface cracking was observed on tests using worn wheels, for small G, with DoC = 50um, and
Viw = 80mm/sec for the Ag8 and Bk8 treatments. It was also observed in the case of large G,
with DoC' = 50um, and V,, = 80mm/sec for the Bk2 treatment, and only one crack in a sample
with Ag2 treatment. This cracking appears to be due to thermal effects. Cracking seems to be
generated when the F) ; 7T0N/mm, or P} > 600W/mm and C; < 0.2. The threshold in P},
gives a level of energy to the workpiece, and the low Cy is indicating that most of that energy is
dissipated in friction and plowing, with a small fraction going to chip generation. In this case the
different behavior due to Gj, can be appreciated. While extensive cracking was observed in the Bk2
treatment, only a single crack was observed in the Ag2 case. The Ag G, presents a higher C'y than
the Bk, due to its angular shape and higher friability with respect to the Bk. Wear flats on Bk

shape abrasive grits increase redundant work and heat generation, decreasing Cy-.
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CHAPTER VI

RESIDUAL STRESS MEASUREMENTS

6.1 Introduction

Residual stresses are self-equilibrating internal stresses in a body without any external forces or
constraints. They can be introduced into the material by any mechanical, thermal or chemical
processes. For crystalline solids x-ray diffraction is a widely used technique to measure residual
stresses, and it is based on the measurement of the change of the interplanar spacing dpy for a
given family of planes {hkl} with respect to its relaxed state spacing d?hkl}. A basic schematic of

the interplanar spacing measurement is given in Fig. [6.1

X-rays source X-rays detector

diffraction
vector

O © Q (hkI)
d{kﬁd d{(’hﬂ}

O : O

e, .

Y I3
N Wi

Figure 6.1: Measurement of interplanar spacing dpy -

By the application of Bragg’s law the pathlength difference between beams diffracted by parallel
planes is equal to the order of the reflection n of the monochromatic wavelength AB + BC =
2d (Rt} sin© = nA where dy;y can be computed. This interplanar spacing is compared with the
stress free interplanar spacing d?hk_l}. The component £33 of the strain tensor in the sample reference

system of unit vectors e/ is given by Eq. From this strain the stress can be obtained by applying
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the appropriate coordinate transformation and linear elasticity theory.

;o dinkry — d({]hkl}

€33 = g (6.1)

0
{hkl}

This chapter describes the technique used to prepare the samples, collect, and analyze the
diffraction data. The design of experiments and the strain and stress results are reported as well as
the analysis of the obtained data. The purpose of these measurements is to evaluate the subsurface

profile of the residual stress and its correlation with PDD.

6.2 Design of Experiments

The measurement and analysis of residual stresses is a time consuming process, therefore the study
was limited to analyze the effects of the magnitude of PDD on the residual stress for dressed
conditions. A total of 4 samples were analyzed with measurement at the machined surface and
at several depths, up to around 300um. Two of the samples were taken from the batch having a
PDD mean value of 186um, and two more with a PDD mean value of 543um. Since there was no
appreciable effect of the G, on the PDD, this variable was considered irrelevant for selecting the
samples. Otherwise, the same conditions were chosen. Table [6.1] presents the specimens used and

corresponding mean PDD.

Table 6.1: DOE for residual stress measurements.

Sample | PDD
1D pm
X1G06 | 720.1
X1G10 | 605.7
X1G15 | 177.5
X2GO08 | 168.4

6.3 FExperimental Technique

The x-ray diffraction data acquisition was carried out at the ORNL (Oak Ridge National Labora-
tory) High Temperature Materials Laboratory. A rotating anode Scintag XDS 2000 diffractometer

machine with a Cu target was used with a setting of 40kV and 200mA (8kW), providing a near
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monochromatic radiation of wavelength A\ (Cug,) = 1.54059 A with a line focus of 0.5mm x 10 mm
(Figure [6.3)).

Prior to measurement the samples were ultrasonically cleaned in an acetone solution, mounted
on a quartz zero background plate and positioned for proper alignment with the collimated x-ray
beam (Figure . In the case of subsurface measurements the sample was electropolished in a
NaCl saturated water solution. A removal rate of 10um/min was used with a potential of 25V and
a current density of 6.7E3 A/m?. The samples were masked at the sides to minimize the formation
of rounded edges. To control the amount of material removed, measurements of the sample height
were made pre and post electropolishing at 3 different points, the mean height of the removed layer
was reported, and its typical relative deviation was around 3%.

Since the triaxial stress state was desired, a minimum of six 6 (polar or Bragg angle) detector
scans were made at independent pairs of ® (azimuthal) and ¥ (tilt) angles that form a non-singular
Jacobian matrix. The type of angle measurement utilized is the so-called 2-goniometer. The tilt
axis lies in the specimen surface, perpendicular to the diffraction and the diffraction vector, which

is parallel to the normal to the diffracted plane (Fig. . Scans were made either by maintaining

U constant and varying ® or vice versa (Noyan and Cohen] [1987). The intensity as a function of

the 20 angular position was acquired at regular A6 steps of typically 0.04° with a counting time
of typically 10sec/step.
The normalized detected intensity was plotted against the 20 angle or the equivalent interplanar

)

spacing “d-spacing,” calculated from Bragg’s law for each of the phases. A calculated plot of 20 vs.
relative intensity for v —T'i Al with 10% of T'i3 Al is shown in Fig.[6.5] Because the sensitivity of the
method increases with O, the selected peaks to be measured were in the range of 135° < 20 < 144°
as shown in the calculated plot in Fig. Since the T3 Al is the predominant phase, interplanar
spacing was measured in that phase. Another consideration in peak selection was that they should
be separate enough from each other to minimize overlapping. The compromise solution was to select
the {224} and {422} Ti Al peaks. An advantage of selecting these peaks is that within a reasonable
A20 scan interval, two peaks can be tracked independently increasing the data statistics. This is

possible because the tetragonality of the T Al cell (sides relation of 1.02), which is also given by the

relation of d({)22 " / d({) 122} It has to be noted that due to symmetry considerations the multiplicity of
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Figure 6.2: Angles convention.
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the dy904) family of planes is of 8 while the dy499) is of 16, having their peaks a theoretical intensity
relation of r; = 3.0/6.4.
Figure[6.7] presents an experimental plot of the normalized intensity in CPS (counts per second)

vs. 20. The {224} and {422} peaks can be clearly seen and are composed by the doublet K,

and K9 radiation from the Cu target. The standard approach (Ely et al[1999) is to separate the

total intensity as composed by the intensity of the peak, in this case a doublet, and the background

contribution (Eq. [6.2).

Iy = ILpeqr|shape function] + [background)
(6.2)

(shape function) g, = (shape function)y  + (shape function)y

Where Ig is the intensity at the specified angle 20 and the shape function can be one of several
standard functions (Gaussian, pseudo Voigt, Pearson-VII, etc.). Typically, the shape function is
defined so that it varies in magnitude between 0 and 1 hence, the need for the scale parameter Ipqs
in Eq. to adjust the fitting function to the same vertical scale as that of the data. Prior to the
data fit, the background energy was subtracted assuming a linear dependence with 20. All four
peaks were fitted together to the Pearson-VII function considering least-squares error minimization.
Figure [6.7 shows the partial fits and the total fit which is a good approximation to the acquired
data. The value of the di,zy spacing was obtained from the 20 at maximum intensity of the
respective K, peak using Bragg’s law. In theory each peak should be a Dirac delta function at
the theoretical dyz) value. In practice this is not possible. Factors such as the fact that radiation
is not monochromatic, and dpy spacing is not constant in the irradiated volume widen the peak.
Therefore, there is an associated indetermination on the position of the peak maximum which will
be propagated to the final residual stress.

Accurate lattice strain can only be determined if the irradiated area of the specimen has a
sufficient number of randomly oriented grains of the phase of interest. This condition is not fulfilled
in coarse grained material as in this case. To improve this situation, the specimen was mounted
on a reciprocating stage which was moving in the range of +5mm during the acquisition, enlarging
the irradiated area.

Another important issue is to determine d({)hkl} since the analysis is very sensitive to this value.
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In theory this value should be obtained from diffraction data from an annealed powder sample of

the same material, and no theoretical calculation is a good approximation since minimal variations

in the chemical composition or thermomechanical history have a strong effect on d?hkl}. In this

work, such value was obtained from the average of several measurements of d({)hkl} in sample zones

where it was assumed no stresses were present. Table and on Appendix [B] presents the
0 0

measurements for the determination of the d {224} and d {422} values with their respective mean and

deviation.

Figure 6.3: X-ray diffraction machine utilized for measurements.
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Figure 6.4: X-ray diffraction machine. Close-up of mounted specimen.
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Figure 6.6: Measured peaks in the calculated 20 vs. relative intensity. Range of interest.

6.4 Data Analysis

A theoretical framework is required to obtain strain and stress measures from the intensity plots.

The standard technique proposed by [Ddlle and Hauk] (1976} [1977)) is widely used, which assumes a

linear relation of the dyjy vs. sin?W plot in which the slope is related to the stress. This physically
means the absence of shear stress components and stress gradients in the irradiated volume. An-
other widely used simplifying assumption is a planar stress state with the stress component normal
to the surface o33 = 0. How well the data falls on a straight line is an indicator of how well the
results fit theory. This method is referred to as the differential sin?¥ method. A modification of
the analysis can manage the existence of shear stresses and a “W splitting” would be observed on
the dgpryy vs. sin?W plots in this case.

In this case, the data shows strong nonlinearity in the dgpp;y vs. sin?W plots invalidating this

type of analysis. Instead, a generalized statistical analysis is proposed based on
(1988). This method considerably reduces the stress variance due to counting statistics and
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Date: 1112703 23:00 Step : 0.040° Cnt Time: 10.000 Sec.
Range: 135.00 - 144.00 (Deqg) Step Scan Rate : 0.24 Deg/min.
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Figure 6.7: Acquired data, partial and total fits in the 20 vs. relative intensity plot.

gradients. In this method each strain measurement contributes to the determination of each strain

tensor, which is more efficient and accurate than the [Dolle and Hauk] (1976} [L977)) method.

[holtz and Cohen| (1988]) proposed an error propagation analysis to obtain the final measurement

error and did not include the variability on d({)hkl}. In this work the error of the strain measure-

ments are computed by a Monte Carlo method, assuming independent variability in each of the

measured values included d({)hkl}‘ Similar to what [Winholtz and Cohenl (Il988[) have proposed, the

measurements are weighted according to their variance for the obtention of the strain tensor.
For the analysis the specific coefficients of v — T4 Al were computed. The relative absorption as

a function of the depth z is given by Eq.

( . #0\)21 )
G(z)=1—e \m7 sn(26-9) (6.3)
with
O=0+V
Since two phases are present in the material, the linear absorption coefficient is given by the

weighted average of the linear absorption coefficients of the constituents which are T7Al and Ti3Al,

considering the constituent elements, i.e.,
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P
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2
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A (Cure) = 1.542 A

cm3

1 (Cugea) = 580.52em ™"

The resulting absorption as a function of depth is plotted in Fig. Also, the maximum
penetration depth for constant energy absorption and an angle 20 = 137° is obtained approximately
at = 68° as shown in Fig.

Equation gives the component €4, of the strain tensor in the laboratory (e}) reference system
as shown in Figure To obtain the strain in the sample reference system (e;) the appropriate

transformation has to applied, i.e.,

¢ = ReR" (6.5)
£=R R R eR'R'R" (6.6)
Ve XX e " w
€ €l €13 Ri1 Riz2 Ras £11 €12 €13 Ri1 Ro1 Ra
€y €93 | = | Ra1 Roa Ry €99 €23 Ris Roy Rso (6.7)
sym €33 R31 Rsz Rass sym €33 Ri3 Ros R

To solve for the strain in the sample reference system the number of measurements n needed

is 6. To improve the accuracy of the method n is usually more than 6 and each measurement
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Figure 6.10: Laboratory and sample reference systems for data acquisition. €45 is the measured
strain component.

corresponds to a set of angles ¥;, ®;, x; that gives form to a transformation matrix I , and the
1

solution is found by minimization. Each measurement has its associated variance:

U1, @1, X1 = (dgpay)y + sd (dgay), B
Wy, B, Xo — (dipuy), + 5d (diniry) ,» B
(6.8)
U, @y X — (dinray),, = 5d (dgnray),, » 13n
n>6

A Monte Carlo method was utilized to obtain the mean strain value and its deviation. For
each measurement (dypy); and the obtained d({)hkl} for that family of planes, m values of these
variables were randomly generated (Eq. , that gave a matrix of [m,n] components of the ef,

strain component on the laboratory system, i.e.,

(d{hkl})i,j = (d{hkl})l + rnd 0 1 sd (d{hk‘l})z
(d?hkl})j = (@iy) £ 70 (0,1), 5d (d({)hkl}) (6.9)

1<i<nand 1< j<m=20
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(dgniay);; — (d6™),

rY) =
(633)1,3 (d({]hk‘l}>j

A weighted minimization was performed on the square of the difference of the ¢4, strain com-

(6.10)

ponent with the same component of the theoretical strain tensor considered in the laboratory
coordinate system as shown in Eq. Since all measurements for a given family of planes {hkl}
have the same variance of d?hkl} this variance does not have any effect in the weighting and only the
variance of dypx;y was considered. In Eq. the strain at the sample reference system ¢; of the j
Monte Carlo simulation is expressed in the laboratory reference system by rotating it by the tensor
R; of the i*" measurement, and the £j44 Strain component is subtracted from the measured strain
component (633) of the i*" measurement, and j** Monte Carlo simulation. The result is squared
and weighted with the standard deviation of the i** measured strain. The sum is performed over
the m Monte Carlo simulations. For each of the m simulations, there is a strain tensor g; that min-
imizes the sum of squares. The mean strain tensor and its variance were obtained by considering

the mean of the strain tensors of the m Monte Carlo simulations and their variance (Eq. [6.12]).

m
2
min < g5 Rig;RT ) (6.11)
Jz::l Sd d{hkl} ( )17 [ =] = ]
€11 €12 €13 €11 €12 €13
€ = mean €99 €93 + sd £99 €93 (6.12)
sym £33 . sym £33 )
J J

To obtain the stress tensor Hooke’s law was used considering isotropic elastic constants with

Young’s modulus E=178MPa and Poisson’s ratio v = 0.23, i.e.,
g = C{hk’} (6.13)

Crystal orientation should be taken into account for orthotropic elastic constants. It has to be
noted that in diffraction the normals to the diffracting planes {224} and {422} are parallel to their
respective diffraction vector, but different diffracting grains can be in different planar orientations,
having as their normal the same diffraction vector (Fig.[6.11). A Monte Carlo simulation similar

to the described above should be run to obtain the stress tensor considering this uncertainty, i.e.,
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g = mean (R R C{hkl}RTRT> 1€ (6.14)

c & © ¢ ! o
Figure 6.11: Indetermination on the orientation of the crystal normal to the diffracted plane.

The stress tensor would be given by Eq

011 012 013 011 012 013
g = mean 099 093 =+ sd 099 093 (6.15)
sym 033 . sym 033 .

6.5 Results

The calculated diffraction profile is shown in Figure [6.6] A good approximation to it is shown in
Figure Several deviations from the theoretical diffraction profile were observed in the measure-
ments. Figure[6.14]shows the data obtained from the surface layer of the samples with high PDD. It
can be seen that peak widening prevents a clear definition of peak position. The material subjected
to plastic deformation formed substructures such as “crystallites” or subgrains with diverse strain
states in the irradiated volume. In order to circumvent peak broadening smaller irradiated volumes
should be scanned, with the theoretical limit of a point where the strain is uniquely defined. While
this solution is possible with the x-ray diffraction technique at a synchrotron, it is beyond the
scope of this work. As a work around the peaks corresponding to the K41} of the {224} and {422}
planes were force fit, and the result was a large indetermination on the stress state at the surface.
Figure shows the same condition for the samples with low PDD. In this case the peaks start
to be resolved.

Figure shows an unusual difference between the intensities of the {224} and {422} peaks,

which could have been caused by some texture. In these cases the low intensity peak was discarded.
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Figure @ shows K9} peaks of almost same intensity as the Ky,qy. This could be caused by the
contribution of the {254} peak in the Ti3Al phase.

In the case of subsurface measurements, electropolishing was used to remove material, which
also affected the stress state on the measured layer. Also prolonged electropolishing caused the
increase of the material surface roughness. Figure[6.1§ shows a contour plot of a 3D profilometry of
an electropolished sample. The peak to valley distance was approximately 60pum. The measurement
of a sample which such roughness would not indicate the stress state at the material bulk but rather
one at the asperities since the “shadow” produced by the asperities will prevent the radiation from
penetrating the surface below the asperities. Therefore, after electropolishing the sample was hand
polished using sand paper of grit 1200, 2400 and 4000 successively so that the surface roughness
was of a few microns. There is a modification of the residual stress due to this hand polishing
especially in the very superficial layers of the material considering that the energy of the x-rays
decays exponentially with the depth (i.e., the signal from the surface has more weight), however
this effect was not quantified in this work.

Plots for comparison of the fit of the theoretical strain to that measured are shown in Fig-
ures and The ordinates are the strain €4, while the abscissa shows the test number. The
segments joining adjacent points are only for representation purposes.

The summary of stress results is shown in Table Figure shows the longitudinal stress
for both high and low PDD. Figures[6.20} and [6.2]]show the longitudinal and transversal stresses in
the case of high and low PDD respectively. Tables with an extended summary of results separated
by sample and family of planes can be found in Appendix [B| as well as the complete results of the

measurements and plots of goodness of fit comparisons.

6.6 Conclusions

Residual stresses were measured in 4 ground samples analyzing the effect of high and low PDD

value.

A generalized statistical data analysis was proposed based on the work of [Winholtz and Cohen|

(1988). This method considerably reduces the stress variance due to counting statistics and gra-

dients. In this method each strain measurement contributes to the determination of each strain
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Figure 6.13: Comparison of the theoretical strain (red) with the measured one.
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Table 6.2: Residual stress summary of results

Mean Std
Sample Test Depth Hydro Mises oy oIl OIIl or orr oIl
ID 1D um MPa  MPa MPa MPa MPa MPa MPa MPa

X1G06 13732 0 -365.0 726.9 -1048.5 -273.6 218.8 469.8 287.7 224.1
X1G06 13802 76 -59.2 682 -107.2  -68.2 -9.3 306 304 289
X1G10 13883 124 -656.4  41.1  -101.0 -60.9 -29.9 446 44.6 446
X1G10 13919 154 -57.2 677 -121.2  -63.6 -8.0 399 396 354
X1G06 10273 254 -0.6 35.9 -35.5 4.0 35.5 54.0 513 454
X1G06 10318 318 11.0 17.3 -5.8 9.6 294 614 59.2 581

X1G08/15 711-836 0 -523.0 506.9 -832.9 -634.6 -105.6 70.1 73.6 47.5
X1G15 13853 17 -75.6 254 -94.6 -7 =546 303 323 309
X1G15 13886 47 -119.5 594  -158.8 -1186 -68.2 30.6 305 29.8
X2G08 13781 72 -85.1 100.8 -143.5 -86.7 -11.8 49.7 423 446
X1G15 13934 117 -6.1 33.5 -33.6 -2.6 177 564 57.0 56.5
X2G08 10289 122 6.04 2859 -15.22 1097 3820 34.46 35.14 3391

Date: 11705703 12:43 Step : 0.020° Cnt Time: 10.000 Sec.
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Figure 6.14: Surface layer data where peak broadening can be observed. Peaks are resolved by
force fitting.
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Figure 6.15: Surface layer data. Peaks start resolving in cases of milder grinding conditions.
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Figure 6.16: Low intensity and resolution in {224} peak, probably due to some texture formation.
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Figure 6.17: High intensity in the K, secondary peaks probably due to contribution of the {254}
peak on the Tig Al phase (green peaks in subfigure).
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Figure 6.18: Contour plot of a 3D profilometry on an electro-polished specimen. Peak to valley
distance is of the order of 50um.
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Figure 6.19: Longitudinal residual stresses results.
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Figure 6.20: Residual stresses results for samples with 600pm PDD.
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Figure 6.21: Residual stresses results for samples with 200pm PDD.

tensor, which is more efficient and accurate than the [Délle and Hauk] (1976} [T1977) method. In

this work the error of the strain measurements are computed by a Monte Carlo method, assuming

independent variability in each of the measured values included d?hk:l}' Similar to what

land Cohen| (1988)) have proposed, the measurements are weighted according to their variance to

obtain the strain tensor.

It was observed that compressive stresses are close to the GPa on the surface.

Numerous experimental difficulties produced a high variance of the results and the impossibility
to obtain data in zones which are presumed to have high stress gradients.

The RS analysis technique can be improved by considering the radiation attenuation in the

subsurface, and stress gradients (Suominen and Carr} (1999} [Behnken and Haukf [2001} [Ely et al.]

[[099} [Wer, [T999} [Zhu ot all, [[995)

The use of x-ray diffraction technique at a synchrotron can improve the stress resolution at
the surface of highly deformed materials, and avoid the artifacts introduced by the layer removal
technique, since the penetration depth of the radiation is of the order of millimeters. This solution

was beyond the scope of this work.
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CHAPTER VII

ANALYTICAL MODELING

In this Chapter the indentation model proposed by [Lawn and Wilshaw] (1975)); [Aurora et al] (T979)

and used by [Nelson| (1997); [Razavi] (2000); and [Stond] (2003) to predict the depth of damage is

analyzed. The model proposed by (2002) to find the force per abrasive grit is used to

modify the indentation model and correlate it to PDD.

7.1 Indentation Model

[Lawn and Wilshaw] (1975)) and [Aurora et al] (1979)) considered a brittle solid subjected to a normal

force F}; by a sharp pyramid indenter. A plastic zone was developed, and its extension (hg) given by
Eq. where (3 is a dimensionless constant determined by plastic deformation zone geometry and
given by the ratio of hg to half diagonal of the indentation, § is a dimensionless constant determined
by the indenter geometry, and H, is the Vickers hardness. The concept of this phenomenological
model is that the contact pressure generates a plastic zone which depends on the indenter geometry,
and the PDD, called here hg, independent of the indented size for a constant force. It assumes that

the contact pressure for inelastic deformation is independent of the indenter size and equal to the

material hardness, as assumed by the friction model proposed by [Bowden and Taboi] (T950).

32 05 0.5
. 1/0.
ho = <(S7THU) F'y (7.1)

This model developed for a single indenter was modified by (11997) to include the normal force

in grinding using geometric and kinematic variables as proposed by [Hahn and Lindsay]| (]19823]@

and shown in Eq.[7.2] where H,, is the grinding hardness, b is the grinding width, E,, the workpiece

Young’s modulus, V,, the workpiece speed, and V; the wheel’s tangential speed.
L _ (VB 05 7 aV, \ O 72)
07 \ onH, v, ‘
(I2000]) used this model under force controlled conditions. (2003) introduced the hard-

ness dependence on temperature into the model. The model proposed by [Lawn and Wilshaw]|

101



(1975); and [Aurora et al] (I979) considers an individual indenter under normal loads while in the

mentioned modifications the total grinding force was considered as the variable that controls PDD.
If the wheel total force Fiy and wheel/material area of contact (I.b) are considered for a typical
case, the mean contact pressure will be of the order of few MPa’s which could not explain the
existence of plastic deformation. Even though the original model as well as the modified model
are phenomenological in nature some physics is lost in the use of the total wheel normal force Fly
instead of the individual grit normal force Fy;. In this change in the scale of the model there is
no explicit account for the grit size of the abrasive, neither its concentration. It has been observed
in the results in Chapter [5] that wheels with different grit size produce different PDD under the
same Fp. A direct address of the number of abrasives engaged in the process seems to be a more
sensible treatment to predict PDD. From the kinematic point of view these models only addressed
the dependence of PDD with FU°. Differences in the number of active abrasives, bonding type,
and other grinding operation variables are considered by fitting the factor in front of Fj for the
different conditions, limiting the results only to the case of study. Furthermore, some deviations
of the model with the data were observed by and correction factors were applied by
considering a force controlled setup and temperature effects without
too much success.

This work proposes to explicitly address the influence of the number of abrasives in contact, find
the average force per abrasive, and used it as a predictor for PDD. The model developed by [Hecker]
(2002) was used.

7.2 Force per Abrasive Model

Several factors should be considered to model the force per grit. Grinding is a stochastic process,
with the wheel having a spatial distribution of abrasive grits. After dressing the wheel, some grits
will be exposed and a number will be active in the material removal process. In static measurements,
i.e. without any force or constraint acting on the wheel surface, it is possible to determine the
distribution of cutting edges versus distance to the wheel surface (z). With this information and
the grinding conditions it is possible to know how many abrasives will be engaged in the material

removal process in a few steps, but there are two effects that further modify this value. One is the
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local displacement the engaged abrasives are subjected to when a force is applied. This displacement
is a function of the force applied to the grit, its geometry, and the bond elastic properties where it is
attached. This effect will modify the cutting edges probability distribution function (pdf) causing
more abrasive grits to be actively engaged in material removal. A second effect is the shadow that
abrasive grits produce. If material is removed by one abrasive grit, another grit will probably pass
by the groove produced by the first one, without or partially removing material. This effect is
opposite to the first one and will decrease the number of actively engaged grits. Which effect will
predominate depends on the wheel and workpiece properties as well as on the grinding kinematic
conditions. The amount of engaged grits computed in this way is called the dynamic cutting edge
density.

The inputs to the model are: i) kinematic conditions given by the DoC, V,,, Vs; ii) geometric
characteristics as wheel diameter (ds), abrasive cone angle §,, static cutting edge density (Cs),
abrasive grit diameter (D,); iii) material properties as workpiece Brinell hardness (H B,,), grinding
coefficient of friction (C), and critical abrasive penetration (h.r). The model assumes a Rayleigh
pdf of undeformed chip thickness to find the average force per grit and integrate it to find the total
grinding force components (Fy and Fr), and power (P,). Figure shows the block diagram used

by the model. A coupled system of equations is solved to obtain the model output parameters.

INPUTS MODEL OUTPUTS
Kinematic
St E(h), sd(h) BB
Rayleigh p Force per  |“n>*t
distribution | abrasive N
Wheel A A ;
H,Dg,Cs,ds' —> t
h 4 P
W
Cd Dyna_mic
Material density
HB,f.h, |
7 il ZC Contact | g
length

Figure 7.1: Block diagram of the grinding model (Hecker} [2002)).

Figure shows a single grit that enters the contact. The abrasive is bonded to the wheel and

the bonding compliance is represented by the spring. At the initial stage of contact only friction of
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elastic bodies is generated. The second stage of plowing is produced by the abrasive pushing into
the workpiece without material removal, and at the third stage, after the critical penetration (hc;)
has been reached, material is removed. This value depends on most of the grinding variables. For
the sake of simplicity, the chip thickness is assumed with triangular uniform cross section with an
internal angle 26,. The cross section area of the chip is given by A, = h? tan 6, with b./2h = tanf,,

and b, being the undeformed chip thickness. There is a distribution of chip thickness due to the

random nature of the process. As proposed by [Younis and Alawi| (1984]) a Rayleigh pdf is used to

describe the chip thickness distribution. The shape of this probability function is similar to the

logarithmic standard distribution used to describe the chip thickness (Konig and Lortz], [1975) but

it is defined by only one variable (o) as shown in Eq.

bonding chip
compliance

abrasive

sli(iing épIOWingé cﬁtting

Figure 7.2: Schematics of single abrasive grit material interaction.

F(h) = Ly exp (_hz) (7.3)

By kinematic considerations and conservation of mass the previous expressions can be expressed

as a function of grinding variables as shown in Eq.

7 (aV, 1 1 h?2
E(h) =% _ e
(h) \/2 <2Vs I.Cqtan (6,) 2 )

4—m (aV, 1 1 h?2
td (h) = _ e
std (h) \/ 2 (21/8 1.Cy tan (6,) 2>

where the factor aV,,/V; represents the kinematic effects and 1/ tan , accounts for the cutting edge

(7.4)

geometry. The variables [, and Cy (dynamic cutting edge density) depend on the dynamic effects.
The expression used for I. is the one proposed by [Rowe et al] (1993) and shown in Eq. It
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takes into account the static contact length (a ds)°°, and the length increase by elastic contact of a
cylinder on a plane accounting for the roughness of the surfaces in contact by an empirical constant
R,. F}; is the normal force per contact length, and E* the contact modulus given by Eq. where

FE; and v; are the Young’s modulus and Poisson’s ratio of the wheel and workpiece.

SR2ZF.d,\"?
I, = <ads + 7r1;N> (7.5)
1 1—v2 1-12
= Z/S + Vw (76)

E*  E Ey,
The static cumulative pdf of cutting edges density can be described as shown in Eq. where z is

the depth into the wheel and A and k constants. The dynamic effect of the inward displacement of

the grits due to the normal force applied is considered as a local effect by [Nakayama et al.| (1971]),

and it is accounted for by the modification of the static grain distribution function as given by
Eq. where E (Fy) is the expected value of the normal force per grit and K, is the equivalent

grain spring constant

(7.8)

The dynamic cumulative pdf of cutting edges density Cgy.~) can be obtained by Eq. where

both effects, grit displacement and shadowing, are accounted for. The term tan (g5) is obtained

by Eq. as proposed by [Verkerk and Peters (1977), w, being the angle of shadow, and z* the

wheel engagement for given grinding conditions (Eq. [7.11]).

Caz) = —¢ (C) = & o (7.9)
L+ 4 tan(ws) 275
2V,a
tan (e5) = Vd. (7.10)
z* = E (h) + 3std (h) (7.11)

The specific normal force F}; (Eq.[7.12) is obtained by accounting for the normal load per grit F;

and the specific active number of cutting edges N/, (Eq. [7.13).

Fly = FILN, (7.12)
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N, =1,Cy (7.13)

The normal force per grit Fj, acting in the direction of the attack angle a4 can be obtained from
the definition of Brinell hardness (Eq.[7.14]) and basic trigonometry as shown in Eqgs. [7.15] and

and in Fig. [(.3] In Eq.[7.14 D accounts for dynamic indentation effects.

1
HB, = 2F (7.14)
DyrDy (Dy— (/D2 12,))
F! = F"(cosag — fgsinay) (7.15)
2
oy = cos ! <1 - Df;) (7.16)

I PSR

Figure 7.3: Schematics of the force per abrasive grit (Shaw| [1972]).

7.3 Implementation

The model has been implemented for tests with dressed and worn wheel conditions, separated also
by Gp. One relevant input needed by the model is the static pdf of grits. This pdf was obtained
experimentally by using a replica technique in which the wheel was pressed against
a lead block leaving the indentations of the abrasives on the lead. This block was scanned under a

3D profilometer and further analyzed to extract the peaks distribution. Other replica techniques

were used by [Blunt and Ebdon| (1996)); and [Butler et al] (2002). In the latter case a wheel surface

replica was obtained by use of Polysiloxane (used for dental replicas) and a second replica (positive
image) on the Polysiloxane was obtained by using a fast-curing methyl methacrylate-based resin.

Some other researchers have used microscopy to determine this profile (Matsuno et al} [[975).
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In this work an analytical function for the static distribution of grits is proposed. Some as-
sumptions were made: i) abrasive grits were assumed to have spherical shape, ii) during dressing
the abrasive grits which have been exposed more than Dg/2, were assumed to fall off the wheel, iii)
abrasive grits were not fractured or worn during dressing, iv) abrasive grits were homogeneously
distributed in the wheel. The wheels have an abrasive concentration of 100, meaning that 25% of
their volume is occupied by abrasive, the rest being Ni-based metal bonding. Making use of the
theorem that states that volume concentration equals area, line and point concentration
[1970)), and hypothesis (i), (ii), and (iv), the maximum area concentration of exposed abrasive
grits would be 12.5%; and by (iii) the furthest cutting edge would be at a distance Dg4/2 from the
maximum concentration plane as shown in Fig. [7.4] Also by (iv) the cumulative density function of

cutting edges will be linear with z. It remains to be determined how many abrasive grits represent

OO OO

[ cum. density cutting edges

Figure 7.4: Exposed abrasive grits after dressing showing cumulative distribution of density of
cutting edges.

a 12.5% concentration for the large and small G, which were computed considering that at D, /2
the bonding plane randomly sections abrasive grits. The mean area of the circle formed by the
intersection of a sphere with an arbitrary cutting plane is given by Eq. therefore the mean
area of an abrasive grit at D,/2 will be 31.70E — 3 mm? for the mesh 60 and 1.72E — 3 mm?
for the mesh 270, giving a maximum grit density of approximately 4#/mm? and 73#/mm? for
mesh 60 and 270 respectively. The volume density of abrasive grits in the bulk of the wheel will
be approximately 38#/mm? and 30004 /mm? for mesh 60 and 270 respectively. Therefore, the
constants for Eq. are A = 0.034# /mm?/um, and A = 2.70#/mm?/um for large and small
abrasive grit respectively, and the exponent is considered constant for all the cases (k = 1).

The grain factor (G ) parameter has been used to modify the D, in the model, and it considers
that the abrasive grit tip radius can be smaller or larger than the actual one. A wear factor (Wy)

that modifies the slope (A) has been considered in Eq. The friction coefficient has been taken
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constant for all the tests with a value f; = 1. Error minimization was considered by comparing the
model and experimental force components, and allowing the G ¢, Dy, to vary for the dressed wheel

tests, and adding W for worn wheel tests.

Ay ==-D? (7.17)

7.4 Results

Plots of test results are presented. Test numbers are labelled as shown in Tables and for
dressed and worn conditions respectively. The first 4 tests were used to adjust the model constants

and the remaining as validation. The fitted value of the model parameters are given in [7.1

Table 7.1: Fitted parameters
Parameter Gy Wy Dy

A, 1.7 1.0 20
Dressed
B, 25 1.0 20

Ay, 25 05 4.5
Worn
B, 2 06 4.0

7.4.1 Dressed Wheel Tests

In the case of tests using dressed wheels with Ag abrasive grits, Fig. presents the static and
dynamic number of cutting edges as computed by the model, Fig. presents the expected chip
thickness and its standard deviation as given by the model, Figs. [7.7] and [7.8] presents the exper-
imental vs. theoretical comparison of the P,,, and of the force components respectively. Figs.
to [7.12] present the same data for tests using dressed wheels with Bk abrasive grits.

As the plots show, the dynamic number of cutting edges is smaller than the static one indicating
that the shadowing effect is larger than the local compliance of the abrasive grit/bonding. The
cutting edge density is of the order of 3# /mm? to 6#/mm? for small G, and less than 0.5# /mm?
for large G,. Model and test P), and forces are in reasonable agreement, but in some cases all these

values differ by a factor of 2 (test Agh, Bk1, Bk6).

108



Chip thickness is of the order of 2.1um to 4.5um for large G, and in the order of 0.5um to

1.1um for small G,. These values are in agreement with the ones found in the literature (Malkin|

[59).

Fig. |7.13|, and |7.14| show a plot of the model average chip thickness and F]’\’[O'5 versus the

experimental mean PDD respectively. As shown in the plots, FZ’\’,O'5 seems to be a good predictor

for PDD.

[¢)] ~l o0
|

N

w

Bl Static
I Dynamic

N

Cutting edge density [#/mm2]
-

—

o

Test Ag,

Figure 7.5: Model dynamic and static cutting edges. Ag-dressed wheels.

7.4.2 Worn Wheel Tests

In the case of tests using worn wheels with Ag abrasive grits all the model constants were left at the
value used for dressed wheels and the best fitting of the constant of the cumulative static cutting
edge distribution on Eq.[7.7]was found. Fig. presents the static and dynamic number of cutting
edges as computed by the model, Fig. presents the expected chip thickness and its standard
deviation as given by the model, Figs. and presents the experimental vs. theoretical

comparison of the P/, and of the force components respectively. Figs. to present the

w?

same data for tests using worn wheels with Bk abrasive grits.

As shown in the plots for worn wheels, the dynamic number of cutting edges is also smaller
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Figure 7.6: Expected chip thickness and standard deviation. Ag-worn wheels.
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Figure 7.7: Model and measured P/. Ag-dressed wheels.
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Figure 7.8: Model and measured Fj, and F.. Ag-dressed wheels.
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Figure 7.9: Model dynamic and static cutting edges. Bk-dressed wheels.
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Figure 7.10: Expected chip thickness and standard deviation. Bk-worn wheels.
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Figure 7.11: Model and measured P,. Bk-dressed wheels.
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Figure 7.12: Model and measured Fj and FJ.. Bk-dressed wheels.
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Figure 7.13: Model average chip thickness versus mean PDD. Test with dressed wheels.
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Figure 7.14: Model average square root of normal force per grit versus mean PDD. Test with
dressed wheels.
than the static ones, and the number of cutting edges is larger than in the case of dressed wheels,
indicating that the distribution of abrasive grit cutting edges narrowed due to wear and fracture
effects. The cutting edge density is of the order of 4#/mm? to 8# /mm? for small G, and less
than 0.64/mm? for large G,. Model and test P/, and forces are in reasonable agreement, but the
fit is not as good as in the case of dressed wheels.

Chip thickness is of the order of 1.5um to 3.2um for large G, and in the order of 0.2um to

0.7um for small G,. As expected these values are smaller than the ones found for dressed wheels.

Fig. |7.23|, and |7.24| show a plot of the model average chip thickness and FJ’\’,O'5 versus the

experimental mean PDD respectively. Neither of the variables can predict PDD. In the case of

Fig.[7.24] the two clusters of points correspond to the small (left) and large G..

7.5 Conclusions

An analytical model was used to obtain the force per grit and tests the fitness of the indentation
model as a predictor of the PDD. By use of the analytical model, the number of active cutting

edges, chip thickness, and force per grit were obtained, and the PDD has shown a good correlation

with FZ’\’,O'S, as proposed by the indentation model of |Lawn and Wilshawl (]1975'); |Aur0ra et al.l

114



-
o

E 8 :
E

i

=

a 6, i
c

D

©

[}

2 af | -
g Bl Static

£ Il Dynamic

=

S 2

O

7 8

4Tes? Agi 6

Figure 7.15: Model dynamic and static cutting edges. Ag-worn wheels.
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Figure 7.16: Expected chip thickness and standard deviation. Ag-worn wheels.
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Figure 7.17: Model and measured P,. Ag-worn wheels.
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Figure 7.18: Model and measured F); and FJ.. Ag-worn wheels.
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Figure 7.19: Model dynamic and static cutting edges. Bk-worn wheels.
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Figure 7.20: Expected chip thickness and standard deviation. Bk-worn wheels.
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Figure 7.21: Model and measured P,. Bk-worn wheels.
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Figure 7.22: Model and measured Fy; and FJ.. Bk-worn wheels.
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Figure 7.23: Model average chip thickness versus mean PDD. Test with worn wheels.

Figure 7.24: Model average square root of normal force per grit versus

worn wheels.
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(1979). This suggests that the indentation model is still valid for grinding if the force per grit is
used instead of the total grinding force.

The model captures the difference in the number of cutting edges and chip thickness for the
different G..

The results show that the model captures the effect of wear by fitting the values of grinding
total force in an acceptable manner. Nevertheless, the model attributes the increase of the normal
force in the case of worn wheels to dynamic effects. The fitted dynamic factor Dy for the worn
wheel was twice from the one obtained for dressed wheels. The number of cutting edges and the
force per grit remains approximately in the same range for the two wear conditions, which is a
dubious result.

For the dressed conditions, the analytical model predicts a cutting edge density of the order of
34 /mm? to 64 /mm? for small G, and less than 0.5#/mm? for large G,. Model and test P! and
forces are in reasonable agreement, but in some cases all these values differ by a factor of 2.

Chip thickness is of the order of 2.1um to 4.5um for large G, and in the order of 0.5um to
1.1pm for small G,. These values are in agreement with the ones found in the literature.

The analytical model predicts for the worn conditions that‘ the cutting edge density is of the
order of 4#/mm? to 8#/mm? for small G, and less than 0.6#/mm? for large G,. The chip
thickness is of the order of 1.5um to 3.2um for large G, and in the order of 0.2um to 0.7um for
small G,. As expected these values are smaller than the ones found for dressed wheels.

The resulting fitted factors of the analytical model might indicate that the model works well
for dressed conditions by capturing expected trends, but it does not give good predictions for
worn conditions. This difference might be due to variables not accounted for such as temperature,
possible contact of bond material with the workpiece for small G, or a probability density function

of cutting edges density different from the one assumed in this work.
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CHAPTER VIII

NUMERICAL MODELING

An isotropic rate dependent elastic-plastic model, and an anisotropic elastic-viscoplastic crystal
plasticity model were used in 2D and 3D geometric models under different BC’s to analyze: i)
behavior of the PDD vs. F/ plots for different indenter sizes; ii) validity of Eq. to predict
PDD under scratching conditions; iii) PDD relation for PE vs. PS and its implications to the PDD
measuring technique described in Chapter iv) effect of lamellae orientation and lamellae boundary
on PDD; v) verification of the force per grit obtained by the model presented in Chapter [/} The
models were implemented in ABAQUS v6.3. Due to the nonlinearity of the material response and
large sliding conditions, the explicit integration scheme was used. Adaptive meshing was used to
improve the element aspect ratio under large deformations. To increase stability, bulk viscosity was
activated with a linear parameter of 0.12 and a quadratic one of 2.4 . The indenter
was modeled as an analytical surface (rigid body). The friction coefficient was set at 0.1 for all

tests.

8.1 Isotropic Elastic-plastic Model Simulations

The material isotropic elastic properties used were £ = 178 3, and v = 0.23. The isotropic plastic
properties were modeled by entering the piecewise curves of Fig.[3.10] Von Mises plasticity criterion

was used with isotropic hardening.
8.1.1 Model Validation

The model was validated by the simulation of indentation tests and their comparison with experi-
mental results. A 2D model of a 3.5mm radius by 3mm high cylinder was meshed using CAX4R
4-node bilinear, reduced integration with hourglass control, axisymmetric solid elements. The
model had 10002 elements with a total of 20404 DOF (degrees of freedom). The element resolution
at the contact zone was of 3.5um. The indenter geometry was sphero-conic with 200um tip radius

and 60° cone semiangle. Figures and show the complete, and contact zone close-up of the
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mesh respectively. Figure [B:3] shows the resulting PEEQ at the indenter zone for a case of 500N
maximum applied load after removing it. Figure shows the test and model comparison for three

load unload curves at different maximum loads, where a reasonable agreement can be seen.
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Figure 8.1: Axisymmetric indentation model mesh and BC’c.
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Figure 8.2: Axisymmetric indentation model mesh. Contact zone close-up.

8.1.2 3D Scratching

Three dimensional simulations were carried out to find the PDD vs. normal load relation for
different indenter sizes. A parallelepiped of 0.5mm long, 0.15mm wide, by 0.25mm high was
meshed using C3D4 4-node linear, tetrahedron solid elements, which represents half of the model.
The model had 32512 elements with a total of 22422 DOF. The element resolution at the contact
zone was of 2.5um. The indenter geometry was spherical with diameters of 54um, and 232um
resembling the abrasive small and large size. The sliding speed was bmm/sec. Figures and

show the total and contact zone close-up of the mesh respectively. Figures and [B-8] show

p
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Figure 8.3: PEEQ under the indenter for 500N normal load.
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Figure 8.4: Experimental and numerical comparison of indentation curves for 200pum indenter
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the resulting PEEQ at the indenter zone for a case of 0.5um penetration depth. Figure .9
and show the PDD vs. FI’\’,O'5 for different levels of PEEQ for the large and small indenter
size respectively. The plots show an approximately linear behavior, and the PDD for the smaller

indenter is larger for a given load.

2

A

Figure 8.5: Half of the 3D scratching model mesh.

Figure 8.6: Half of the 3D scratching model mesh. Close-up of sliding zone.

8.1.3 Plane Strain vs. Plane Stress Comparison

Two dimensional indentation simulations were carried out to find the PDD vs. boundary conditions
for different indenter sizes. A rectangle of 5mm long, by 2mm high was meshed using either CPE3
3-node linear, PE (plane strain); or CPS3 3-node linear, PS (plane stress), solid elements. The

model had 29246 elements with a total of 29918 DOF'. The element resolution at the contact zone
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Figure 8.8: PEEQ under the scratching zone for 0.5um penetration depth. Close-up of sliding

zone.
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Figure 8.9: PDD vs. F"n"® for different levels of PEEQ; 232um diameter indenter.
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Figure 8.10: PDD vs. F'n"° for different levels of PEEQ; 54um diameter indenter.

was of 1um. The indenter geometry was cylindrical with diameters of 54um, and 232um resembling
the small and large size grit.

One question that arises after the measurements of PDD is how this value obtained at a free
surface is related to the PDD at the bulk. It can be argued that on grinding, where usually DoC' is
the controlled variable, the abrasive grits will have a uniform distribution of penetration depths on
the workpiece width, and the forces will be given accordingly to the different constraint, i.e. lower
at active grits closer to the edge. Figures and show the total and contact zone close-up
of the mesh respectively. Figure [8.13]| shows the resulting PEEQ at the indentation zone for a case
of 1.0um penetration depth for PE and PS using the small indenter size. Figure shows the
PEEQ vs. indentation depth for PE, PS and small and large indenters. It can be observed that
the PDD is larger for PE, and as expected, is larger for the larger indenter size.

Figure [8.15] presents the PEEQ for 1.0um penetration depth for the large indenter, to the left
is shown the PE case, to the right the PS. The top part presents the PD zone for a PEEQ > 0.003
threshold, and the bottom for PEEQ > 0.055. As shown in the lower part of the figure, for a
larger threshold of PEEQ), the plastic zone for PS is larger than for PE.

The indentation model predicts that the PDD for a given force is independent of the G,.

Figure shows the PEEQ vs. F}; for PE, PS and small and large indenters. It can be observed
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Figure 8.11: Two dimensional PE-PS indentation model mesh.
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Figure 8.12: Two dimensional PE-PS indentation model mesh. Contact zone close-up.
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Figure 8.13: PEEQ under the indentation zone for 1.0um penetration depth. Left PE. Right PS.
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Figure 8.14: PEEQ under the constant indentation depth of 1.0um. PE, PS, large and small

indenter cases.
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Figure 8.15: PEEQ for 1.0um penetration depth. Left PE. Right PS. Top PEEQ > 0.003.
Bottom PEEQ > 0.055.
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that the smallest the PEEQ threshold is, the less sensitive the PDD becomes on the G,. In general,

for an arbitrary PEEQ threshold the PDD depends on the indenter size.
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Cylinder indentation
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Figure 8.16: PEEQ under the constant indentation force of 12.4N. PE, PS, large and small
indenter cases.

8.2 Huyperelastic Model

A hyperelastic rate-dependent model of (poly)crystal plasticity using an explicit integration scheme

is described based on the works of [Led (1969); [Asard ([1983allH); [Cuitio and Orti7 (1992); [Kad]

let al| (1995); McGinty and McDowell| (1999)), and [McGinty| (2001)). This model is based on the

multiplicative decomposition of the deformation gradient F' proposed by (1969)), i.e.,

F=F°F? (8.1)

Figure[R:I7shows the multiplicative decomposition of the deformation gradient, where X represents
the Lagrangian, reference, undeformed, or initial configuration; = represents the Eulerian, spatial,
deformed, or current configuration; tilde () represents the intermediate unstressed configuration
where the plasticity constitutive modeling is better described. The push-forward and backward
between the bar (7) and breve () configurations is done by accounting for the continuum rotation
tensor R. The hat (") configuration is corotational with the continuum rotation R. The figure also
describes the native or natural configuration where the several rate tensors are represented. The

only physically meaningful configuration is the current one which is coincident with the reference
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one at t = 0. The model was implemented in Abaqus explicit using the VUMAT material subroutine

Figure 8.17: Multiplicative decomposition of the deformation gradient.

in Fortran90. The VUMAT subroutine provides the deformation gradient tensor at each material

point from the previous time step F'  and at the current one F' , as well as for the right stretch
i—1 i

tensors /'  and U obtained from the multiplicative polar decomposition, i.e.,

i—1 i

F=RU=VR (8.2)

~

The subroutine asks for the Cauchy stress expressed in the corotational current configuration, along
with user defined internal state variables (ISV). The resolved shear stress in each slip system 7* was
obtained by the scalar product of the initial Schmid tensor defined in the intermediate configuration
<§8‘ ® 738‘) times the second Piola-Kirchhoff stress gP*() (Eq. . Given that §P*() is defined
in the tilde configuration there is no need to update the Schmid tensor since in classical crystal
plasticity it is assumed that the plastic part of the deformation gradient (F?) does not produce

rotation of the underlying crystal lattice.

T = (s§ @ng) : fo(f) (8.3)

This resolved shear stress is the driving force for slip system activity. The shear rate in each slip

system ¢ is given by the viscoplastic power law of Eq. where g is the reference shear rate, g%
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the drag stress in each slip system, and m the flow exponent or inverse of the strain rate sensitivity
exponent. For simplicity this flow rule does not present a threshold for stress, and the back-stress
which is related to the kinematic hardening is considered zero. The direction of the flow at each

slip system is given by the sign of its resolved shear stress.

m

sgn(7) (8.4)

«

35 = o

2
«
K3

The plastic part of the velocity deformation gradient Lp is given by Eq.

nss

L= (s§ ®nf) 4 (8.5)

a=1
The updated plastic part of the deformation gradient F? given in Eq. is obtained by the

time integral of L” computed as a truncated series expansion containing the first 4 terms of the

series(Eq.

E? = exp (Lfdt) o (8.6)

()

xp (Lfdt) - Z n!

n=0

The plastic right Cauchy-Green tensor C? defined in the reference configuration is given by Eq.

(8.7)

from where the plastic right stretch tensor UP and plastic rotation RP are obtained in Egs.

and [B:10] respectively.

CP = FPTE? (8.8)
ur = /c (8.9)
B =y (8.10)

(2 K3 K3

From Eq. the updated elastic part of the deformation gradient can be obtained (Eq.[8.11)). The

elastic right Cauchy-Green tensor @e defined in the intermediate configuration is given by Eq.[8.12

from where the elastic right stretch tensor in the intermediate configuration “ and elastic rotation

Be are obtained in Egs. [8.13 and [8.14] respectively.

Fe=F Fr! (8.11)

¢ =FTE (8.12)
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h

©=,/C° (8.13)

RS =Feye (8.14)
1 K3

i
The Green-Saint Venant strain defined in the intermediate configuration is given by Eq. from
where the updated (:fpk(2) can be obtained. This stress tensor is corotational with the underlying
crystal lattice but not with the continuum rotation as needed by the material subroutine. The
Cauchy stress can be obtained by pushing forward ka@) to the current configuration as shown in
Eq. where J¢ = det F° is the determinant of the non-singular Jacobian matrix of the transfor-
mation and represents the relative change in volume of the continuum in the current configuration

with respect to the initial one.

B =3¢ - 1) (8.15)
O (3.16)
g= JE—IE?Q’:’ pk(2)E‘eT (817)

The Cauchy stress is expressed in the corotational frame () by rotating it backwards with R as
shown in Eq. Abaqus will produce internally the inverse transformation of Eq. and use

it for force and momentum balance computation and display.

6 =R'g R (8.18)

This approach can be simplified if it is assumed that elastic deformations are small, which is true
in the case of metals at large deformations as this case. The elastic stretch from the left polar
decomposition V¢ ~ [. Therefore, the Cauchy stress in Eq. can be simplified as Eq. since
R is proper orthogonal,

g =R g"IRT (8.19)

T 1 A

that pushed-backwards to the corotational system will be expressed as Eq.

& = RTRea'pk(Q)ReTR

g=a 2 SHELS

5:( e p)TRe&pk@)ReTReRp (8.20)
g A SR S

& = RPT5Pk(2) pp

=22 g
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The updated drag stress is obtained considering the hardening the slip activity produced in the
slip systems as shown in Eq. where h,g are the coefficients of the hardening matrix given by
Eq. It has to be noted that the hardening in a slip system « does not only depend on the
dislocation activity in that system (self-hardening) but also on the activity of all other systems

(cross-hardening), being the second effect larger.

nss

g7 = g8 + D has |3 at (8.21)
B

haﬁ =qh+ (1 — q) h(sag (8.22)

The measure used to compute plastic deformation is given by (Eq. ; its integral, the cumu-
lative plastic deformation Eq. was used for plotting results. A measure of cumulative plastic

deformation per slip system is given by Eq.

2 .
By =2 (Ef : Ef) (8.23)
Elum = > AE” y (8.24)

nss
EP = EP |+ Afdt (8.25)

a=1

where

EP = In QP (8.26)

l i

8.3 Material Properties
8.3.1 Elastic Constants

Using Voigt notation, the fourth order stiffness tensor will be written as shown in Eq. LHS
for general orthotropic material. In the case of v — T Al, the material presents transverse isotropy,

having the stiffness matrix with only 5 independent constants as shown in RHS of Eq. where
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the matrix is represented in its principal direction.

Chp Cip Ci3 0 0 0 2116 660 406 0 0 0
Cy Cy Cys 0 0 0 2116 406 0 0 0
Cy Czp Csz 0 0 0 2328 0 0 0
C = = (8.27)
~ 0 0 0 Cu 0 O 726 0 0
0 0 0 0 Csp O Sym 66.9 0
0 0 0 0 0 G| | 66.9 |

8.3.2 Planar Triple Slip

A planar triple slip system was used to model the visco-plastic material behavior as proposed

by [Kad et al] (1995]) for modeling lamellar 7% Al, and (2003) for fretting of T% — 6 Al — 4V

The basal slip system was parallel to the lamellae interface and modeled as an easy slip system,

the other two slip systems were considered at an angle of 75/12rad from the basal and considered
hard slip systems. The graphic representation of the slip systems can be seen in Fig. [8.18] The

unnormalized slip systems are defined as

s = {170)0}; n = {07 _LO}
1 1
5% 5%
= —_ —_— . = 1 _—
g { tan<12),1,0}, 1, { ,tan<12>,0}
51 5m
= 22 1.0 ={-1 il
§3 {tan (12> ,1,0}; Qg {1, tan (12> ,0}

Figure 8.18: Slip systems directions and slip plane normals.
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8.3.3 Visco-plastic Parameters Calibration

The viscoplastic parameters of Eq. [§4] were calibrated by best fitting to the true strain vs. true
stress plots shown in Fig. [3.10}] The numerical model used 64 randomly oriented grains, each of
which was represented by a unique element. The elements used were CPE3, PE, 3-node linear; and
the BC’s allow stretching of the model sides. Compression was simulated, and its rate was given
by scaling the rate curves of Fig. by entering it as piecewise table. In the case of quasi static
tests, mass scaling was utilized to accelerate the computation time without appreciably affecting
the outcome. A typical representation of the deformed state is shown in Fig. [8.19] where plastic
deformation is represented. The best fitting parameters are given in Table 8] Figure [B:20] shows

the comparison of experimental and FEA true stress-true strain plots.

Table 8.1: Slip systems contants.

m 39
easy slip g9 58M Pa
hard slip gg 232M Pa

1 :j hZ’j 360M Pa

Yo 0.001

SDVZE
iAwve. Crit.: 75%)

ODB: sixtyfour e.odb 16:34:59 Eastern £

S‘L:ep: Step-25, Displacement

Incremwent 2027: Step Time = 3.0007E-03

Primary Var: 3IDVEZS

Deforwed Var: U Deformation Scale Factor: +1.000e+00

Figure 8.19: Typical representation of the deformed state for model used in parameters calibra-
tion.
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8.4 Implementation and Results

angles in which the slip systems were oriented.
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Figure 8.21
depths of 0.125um, 0.250um, 0.5um, and 1.0um with indenters of 54um and 232um diameter.
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Figure 8.22: Slip systems initial orientation angles.

The plastic deformation results are represented in Figs. and respectively. It has been
observed that in average, the larger G, produced a larger PDD. Also, the smaller G, produced a
larger deformation gradient. As shown in Fig. B.25] grain boundaries act as effective barriers for

deformation propagation, and orientation affects the local PDD.

8.5 Conclusions

From the results of the 2D models that analyzed the PE vs PS, it seems that for practical purposes
the measured PDD at the free surface can be used as a upper boundary value.

It was also shown that in the case of indentation the PDD can be considered independent of
the G, for a specific PDD threshold, being generally size dependent.

The use of an idealized crystal plasticity of the lamellar v — T Al considering triple planar slip
captures the effects of grain boundaries and material anisotropy on the PD. It has been observed
that in average, the larger GG, produced a larger PDD. Also, the smaller GG, produced a larger
deformation gradient. Grain boundaries act as effective barriers for deformation propagation, and

orientation affects the local PDD.
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Figure 8.23: Plastic deformation for small indenter. From top to bottom 0.125um, 0.250um,
0.5um, and 1um penetration depth.
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Figure 8.24: Plastic deformation for large indenter. From top to bottom 0.125um, 0.250um,
0.5pum, and 1um penetration depth.
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CHAPTER IX

DISCUSSION

9.1 Grinding

This work has shown that PDD has a negative correlation with Cy. Also, G, and G}, have a

negative correlation with C'y, while the correlation with DoC' and V,, is positive. The C involves

every variable of the process, as shown by [Meng and Ludemal (1995). The effect of G, and G},

on Cf for dressed wheels can be explained by considering factors related with chip thickness, and
coolant. Figures. and obtained with the analytical model of Chapter [7} show that chip
thickness for large and small G, as well as the Dy, is about 4/1. This means that active abrasive
grits are geometrically equivalent, in particular they exhibit the same rake angle. If size effects
on deformation mechanisms are not accounted for, this equivalency will produce the same Cf.
Therefore, lubrication could be the factor that produces the C difference, and the larger the G,
the larger the gap for the coolant between the wheel and workpiece. Also, it is possible that an
hydrodynamic lubrication film can be more effectively formed by individual large grits due to the
larger length so that a pressure build-up is produced, or the grits act as fluid impellers. The positive
correlation of the Cy with DoC and V,, can be explained by assuming that the depth of engagement
of abrasive grits correlates positively with these variables, since F. increases proportionally faster
than the F}, with the engagement depth. In the case of worn grits it can be argued that the general
trend in C'y is dominated by the wear flats of the abrasive grits, chip thickness, and the interfacial
space between wheel and workpiece. Wear flats increase the FJ, necessary for indentation but
do not proportionally increase the F7, since the same area of material has to be removed. Chip
thickness acts in a similar way. Given an indenter, and assuming scratching of a non-hardening
material for simplicity purposes, the normal force will be almost independent of the penetration
depth, while the tangential force will increase with the penetration depth due to the increase of the

chip thickness.
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9.2 PDD Controlling Factors

From the results shown in Fig. it can be seen that the PDD does not show a good correlation

with FJ’VO"E’, as proposed by [Nelson| (1997); [Razavi| (2000)); [Stone| (2003)). For dressed conditions the

PDD data in Fig. is clustered by G,.
By using the analytical model of Chapter [7} the number of active cutting edges, chip thickness,

and force per grit were obtained. Fig. shows that PDD has a good correlation with FJ’\’,O'S,

as proposed by the indentation model of [Lawn and Wilshaw] (1975); [Aurora et al] (I979)). This

suggests that the indentation model is still valid for grinding if the force per grit is used instead of
the total grinding force.

A peculiar correlation has been observed (Fig. between PDD and C}, with a R-sq value
of 0.84 obtained from a linear fit considering the complete set of data.

The PDD has been shown to be strongly dependent on G, for the dressed conditions, and on
MRR for the worn conditions, and almost independent on the GG,. Furthermore, Fig. shows
that in the case of large G, the average PDD is smaller for worn conditions, while for small G,
it is noticeably larger. This seems to indicate that other variables are controlling the PDD. For
dressed wheels, it appears that a purely mechanical approach is able describe the PDD; however
this model does not work for worn conditions. This is probably due to thermal effects. Therefore,
for large GG, in the dressed and worn conditions, and the small G, in the dressed conditions the
purely mechanical approach seems to be appropriate, while in the case of small G, in the worn

conditions, thermal effects seems to be dominant.

9.3 Force per Grit Analytical Model

Table gives the fitted factors for the dressed and worn conditions separated by G} which were
obtained by best fitting in the model presented in Chapter E The Gy > 1 for all cases, indicates
that the grit acts as if it had a larger size. In the case of dressed wheels this factor is larger in the
case of Bk Gj,. This is reasonable not only for the grit shape itself, but also for the Bk G, being less
friable than the Ag Gj,. In the case of worn wheels the model gives the inverse relation, which does
not seem to be correct. The W, modifies the slope of the static cumulative pdf of cutting edges

density in Eq. It was set to a value of 1 for tests using dressed wheels. The obtained Wy > 1

142



for worn wheels indicates that the probability distribution function is narrower, as expected.

The Dy modifies the static hardness accounting for dynamic effects. In the case of dressed
wheels the fitted values were 2.0 for the Ag and Bk G}, while for worn wheels a value of Dy = 4.5
for Ag and Dy = 4.0 for Bk. While all the values are larger than unity there is no explanation for
assuming that this value is different as a result of wheel condition.

The resulting fitted factors might indicate that the model works well for dressed conditions,
but that it breaks for worn conditions. This disagreement might be due to variables not accounted
for, such as temperature, possible contact of bond material with the workpiece for small G,, or
a different probability distribution function of cutting edges density than the one assumed in this
work.

The model is not capturing the increase on the Fy; with wear. Figure shows an individual
grit in the dressed and worn conditions. It is assumed that the same volume of chip will be removed
in both conditions, therefore the shaded area, or chip area, should be the same for both cases, and

can be computed by

tan~!

G2
Ach = Z

G-\’ G e gu?
(3) ‘1]‘4sz‘dg

It can be observed that with increase wear the abrasive grit diameter at the grit depth of cut
dy increases. The F{; will be given by the indentation depth, and if we assume an elastic perfectly
plastic material that deforms at a contact pressure equal to the material hardness, the Fy, will be
given by

Ffy = 2y Ho

The F has two components, one due to chip removal and the second due to the friction. The

chip removal component of F}/ is independent of the wear condition, while the frictional component

will depend on F}; and therefore on wear, i.e.,
Fl = AgpHv+ Fy f

The Cy can be computed by
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and the P/ proportional to FY, as
Py = (AcHv + Fn f) Vs

Figures andpresent the qualitative variation of Cy and P;, or F, with W,.. It is observed
that while grinding C'; decreases with W, the inverse behavior is shown by the forces and power.
This effect, which is not captured by the analytical model presented, explains the inverse correlation
of the PDD with W,.. It also confirms that the abrasive condition is of great importance in grinding

as observed on the tests.

N

d”
& Fa'l ~
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Figure 9.1: Dressed (left) and worn abrasive grit. Chip area is assumed constant (shaded).
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Figure 9.2: Qualitative variation of C'y with W,.
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Figure 9.3: Qualitative variation of P, with W,.

9.4 Significance of PDD Measurement Technique
9.4.1 Significance as PDD Evaluation Method

As shown by , the indentation technique is less sensitive than the Nomarski microscopy
for PDD evaluation. Since optical profilometry uses the same principle of light interference as
Nomarski microscopy, they have a similar resolution. The advantage in the proposed technique is
that quantitative analysis of the 3D profile can be performed and an algorithm with the criterion
to define the PDD zone can be used. This approach is less biased from a user’s criteria and allows

one to obtain more information from the surface, i.e. the effect of grain size on PDD.

9.4.2 Significance in Terms of Mechanical Performance

As shown by [Joneq ([1997); Jones and Eylon] (1999), Ti Al machined parts designed to be utilized

in high temperature applications, might recrystallize on a subsurface layer during operation. The
recrystallization depth depends on the machining conditions, alloy chemistry, and temperature and
time. This recrystallized zone has usually a smaller grain size than the original one, improving HCF
performance by more than an order of magnitude. Figure shows an example of a recrystallized
layer of a T'iAl machined alloy after 1hr at 750°C. The proposed PDD measurement technique

might be instrumental in predicting the depth of the recrystallized zone.
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Figure 9.4: Recrystallized zone at the machined subsurface 1997)).

9.4.3 Relation with PDD at Bulk

One question that arises after the measurements of PDD is how this value obtained at a free
surface is related to the PDD at the bulk. Figure [8.15] presented the PEEQ for two different PEEQ
thresholds. With decreasing PEEQ threshold the PDD shows to be larger at the bulk with respect
to the surface. It is not clear which is the actual deformation threshold that the proposed technique
can measure. It is also not clear which would be the necessary level of PD to produce an effect on

the material performance. Further research is necessary in this area.
9.4.4 PDD, Microstructure, and Cracking

The PDD mean value was of the order of ~ 400um with an observed minimum and maximum
of ~ 100um and ~ 800um respectively. Considering that the lamellae size was of the order of
~ 250pm, the measured PDD extends to an average of about two grains. Figure [0.5] shows the
PDD observed by Nomarski microscopy for v—T7Al after machining. It can be seen that the surface
grains have undergone plastic deformation. Also, the orientation of the deformation lines varies with
the crystallographic orientation of the lamellae colony. This was also observed by .
This behavior is captured by the proposed PDD measurement technique as shown in Fig. and
the crystal plasticity model presented in Chapter 8] where Figs. and B.24]show the deformation
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pattern for different G, and penetration depth for single grit scratching. It can be observed that
the grain boundaries act as effective barriers for plastic deformation propagation, and the lamellae
orientation also affects the local PDD.

The PDD did not present a correlation with the samples where cracking was observed. This
suggests that the PDD is restricted to the surface grains, but the amount of PD being different
in each case. This is also captured by the crystal plasticity model presented on Chapter Fig-
ures and show that the deformation depth is larger in the case of large G, and the
plastic deformation deformation gradient is larger for the small G, for constant indentation depth.
This trend is not followed in the case of the smallest indentation depth, probably due to a coarse

meshing.

MAXIMUM
DEFORMATION

| DEPTH ~70um
M

y

Figure 9.5: Plastic deformation observed on the surface grains 1997)) .

9.4.5 Scratching Model and Indentation Model

The 3D numerical scratching model presented in Chapter |8 shows a linear relation of PDD with
FJ’\’,O'5 fora PEE(Q = 0.01, this trend seems to disappear at larger PE E() values (Figs and .

Also the slope of PDD vs. FJ’\’,O'5 depends on the GG,. In the indentation model ofM

|Wilshaw| (]1975'); |Aurora et al.l (]1979[), the PDD vs. F ]’\’,0'5 relation is linear and independent of

G,. The parameter § in the indentation model relates the indentation diagonal with the PDD
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depth. Nevertheless, this parameter is loosely defined since the definition of the PDD depends on
the experimental technique. The parameter 8 may take a range of values and the linearity of PDD
with F ]’\’70'5 might not be observed for the range. The dependence of PDD with G, for a constant
load is observed for 2D modeling of indentation as shown in Fig. The PDD can be considered
independent of the G, only at a particular deformation threshold. Size dependence is also seen for
simulations of 3D scratching.

From the 3D numerical scratching model it can also be seen that a single scratching pass
produces a PDD of approximately an order of magnitude smaller than the ones measured. A
probable cause for this is that the deformation history due to successive scratching in grinding is

not accounted for in the model.

9.5 Restdual Stress

Two different types of x-ray scans were used to acquire data: the so-called detector scan, and ¥
scans. In the detector scan the azimuth angle of the x-ray changes for the different conditions,
thereby changing the beam penetration depth. In the case of presence of step stress gradients on
the specimen the hypothesis of uniform stress in the measured region would be violated. In the
case of @ scans the azimuth angle is kept constant, obtaining different measurements at different
® angles. The disadvantage of this method is that the measured interplanar distances are close to

each other, and errors are amplified.
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CHAPTER X

CONCLUSIONS AND RECOMMENDATIONS

10.1 Conclusions
10.1.1 PDD Evaluation Technique

The PDD evaluation method proposed, combines the quantitative capabilities of the microhardness
measurement with the sensitivity of Nomarski microscopy. Quantitative analysis of the surface can
be performed and an algorithm with the criterion to define the PDD zone can be used. This
approach is less biased from the user’s experience.

The method can be used to obtain a unique parameter for PDD or a complete mapping of the
surface, according to the data analysis performed.

The averaging method of determining PDD is based on averaging the out-of-planarity of lines
parallel to the surface. This method gives a unique value for PDD and is robust with respect to
missing points and surface finishing.

The contour plot method allows the computation of PDD variability with respect to grain
morphology and material anisotropy. Since no data averaging takes place, this method is very
sensitive to surface finishing.

The practical limitation of these methods is given by the quality of surface preparation, e.g. the
surface roughness is more important than its waviness. With a surface roughness of Ra < 1um it
has been possible to work with an out-of-planarity threshold of 1um, thereby obtaining consistent
results between replications and analysis techniques. An out-of-planarity threshold of 0.25um has

been of limited applicability for the present work.
10.1.2 Grinding

It has been observed that grinding is very sensitive to wheel conditioning and wear. Complete
truing and dressing conditions should be specified to obtain consistent results. Cooling conditions

are also important.
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10.1.2.1 Plastic Deformation

The PDD mean value was of the order of ~ 400um with an observed minimum and maximum
of ~ 100um and ~ 800um respectively. Considering that the lamellae size was of the order of
~ 250um, the measured PDD extends on an average of about two grains.

It has been observed that for dressed conditions the PDD strongly depends on G,. The PDD
mean and standard deviation for small and large GG, is 186 & 40um, and 543 £ 85um respectively.
Most of the PDD variance can be explained by the G, factor alone, V,, being not a relevant factor.
There is some influence of the G}, and the interactions between G, and Gy,; and G, and DoC. The
R-Sq value for the model PDD[um] = 78.1 4+ 2.007Gy is 87.9%.

In the case of worn conditions the PDD strongly depends on DoC' and V,,, therefore M RR also
correlates with PDD. The DoC' explains half of the data variance followed in importance by V.
Even considering most of the controlled variables and their interaction in a linear model, the R-Sq
value was less than 0.82. The PDD mean and standard deviation was of 407 + 120um for worn
wheels and 365 4+ 191um for dressed ones.

The change in behavior from dressed to worn conditions is believed to be produced by the
increase of thermal effects and force per abrasive grit due to wear flats.

In the case of large GG, it has been observed that the PDD decreases with W, while the inverse
behavior was observed for small G,. While the P/, was of the same order of magnitude for large
G, for worn and dressed conditions, it increased an average of 6 times for small G,. This would
indicate that for large GG, the thermal effects were not very different for the two W, conditions and
the PDD was determined by the G.. The decrease of the PDD could be explained by assuming
that the worn wheel presented a narrower distribution of cutting edges than the dressed one. This
could be due to some fracture of the abrasive grits during the first stages of grinding after dressing,
which results as if having a smaller grit size. In the case of small G, it can be assumed that the
generation of wear flats increased the force per abrasive grit and temperature with the consequent
increase of the PDD.

It has been observed that the PDD is inversely correlated to the Cy. A R-sq value of 0.84 is

obtained by a linear fit of PDD with C.
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10.1.2.2  Grinding Friction Coefficient

Grit size and shape have a negative correlation with C'y, while the correlation with DoC and V,
is positive. In the case of worn wheels all individual factors, and the interactions between G, and
the rest of the variables are relevant for C'y, and their correlation is inverse to the one shown for
PDD. While the Cy trend with G, and G}, is the same as with dressed wheels, the dependence on
DoC, and V,, is inverse. The negative correlation of the C'y with DoC and V,, can be explained by

considering the shape change in the abrasives with W,..
10.1.2.8 Specific Normal Force

In the case of dressed wheels, I’ 5 has a positive correlation with all the individual factors, and the
G, and G}, interaction.

In the case of dressed wheels, all individual factors and G, and DoC'; and DoC and V,, inter-
actions are relevant for F’ . Unlike the case of dressed wheels, G, has a negative correlation with
F'y, which can be explained by assuming that the relative wear flat in the small grit is larger than
in the large grit. This can be due to the fact that poorer lubrication conditions might occur with

smaller grits, and therefore higher temperatures increase the wear rate of the diamond.
10.1.2.4 Surface Parameters

It was observed that the Ra and BA mean values increased with wear. This was probably due to
the effect of plowing in the formation of side ridges.

For the dressed conditions, the mean R, value is in the range of 0.4um to 0.7um, and the mean
90% BA of 3.9um, G, being is the most relevant factor.

For the worn conditions, the mean R, value is in the range of 0.65um to 0.95um, with a mean

value for 90% BA of 5.7um, G, being the most relevant variable.
10.1.2.5 Cracking

The PDD was not correlated with cracking, as might be expected before the present work.
No cracking was observed on the ground surface under a magnification of 60X for dressed

wheels.

151



Surface cracking was observed on tests using worn wheels for small G, in the 4 treatments with
the largest M RR. This cracking appears to be due to thermal effects and it was not related to
PDD. It has been observed that cracking was produced on treatments with high F}, or high P,
and low Cy.

Surface cracking was observed on tests using worn wheels, for the Ag8 and BkS8 treatments. It
was also observed for the large G, for the Bk2 treatment, and only one crack in a sample with
Ag2 treatment. While extensive cracking was observed in the Bk2 treatment, only a single crack
was observed in the Ag2 case. The Ag G, presents a higher Cy than the Bk, due to its angular
shape and higher friability with respect to the Bk. Wear flats on Bk shape abrasive grits increase

redundant work and heat generation, decreasing C'y.
10.1.3 Residual Stresses

Residual stresses were measured in 4 ground samples analyzing the effect of a high and low PDD
value. It can be seen that compressive stresses are close to the GPa on the surface.
Numerous experimental difficulties produced a high variance of the results and the impossibility

to obtain results in zones of apparently high stress gradients.
10.1.4 Analytical Modeling

By use of the analytical model of the number of active cutting edges, chip thickness, and force

per grit were obtained, and the PDD has shown a good correlation with F' ]@0'5, as proposed by

the indentation model of [Lawn and Wilshaw| (1975]); |Aurora et al| (1979). This suggests that the

indentation model is still valid for grinding if the force per grit is used instead of the total grinding
force.

The model captures the difference in the number of cutting edges and chip thickness for the
different G..

The resulting fitted factors of the analytical model might indicate that the model works well for
dressed conditions by capturing expected trends, but it breaks for worn conditions. This disagree-
ment might be due to variables not accounted for such as temperature, possible contact of bond
material with the workpiece for small G, or a different probability density function of the cutting

edges density than the one assumed in this work.
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The analytical model predicts for the dressed conditions a cutting edge density of the order of
34 /mm? to 64 /mm? for small G, and less than 0.5# /mm? for large G,. Model and test P! and
forces are in reasonable agreement, but in some cases all these values differ by a factor of 2.

Chip thickness is of the order of 2.1um to 4.5um for large G, and in the order of 0.5um to
1.1um for small G,. These values are in agreement with the ones found in the literature.

The analytical model predicts for the worn conditions that the cutting edge density is of the
order of 44 /mm? to 84 /mm? for small G, and less than 0.6# /mm? for large G,. Chip thickness
is of the order of 1.5um to 3.2um for large G, and in the order of 0.2um to 0.7um for small G..
As expected these values are smaller than the ones found for dressed wheels.

The resulting fitted factors of the analytical model might indicate that the model works well
for dressed conditions by capturing expected trends, but it does not give good predictions for worn
conditions. This disagreement might be due to variables not accounted for such as temperature,
possible contact of bond material with the workpiece for small G, or a different probability density

function of the cutting edges density than the one assumed in this work.
10.1.5 Numerical Modeling

From the results of the 2D models that analyzed the PE vs PS, it seems that for practical purposes
the measured PDD at the free surface can be used as a upper boundary value.

It was also shown that in the case of indentation the PDD can be considered independent of
the G, for a specific PDD threshold, being generally size dependent.

The use of an idealized crystal plasticity of the lamellar v — Tt Al considering triple planar slip
captures the effects of grain boundaries and material anisotropy on the PD. It has been observed
that in average, the larger GG, produced a larger PDD. Also the smaller G, produced a larger
deformation gradient. Grain boundaries act as effective barriers for deformation propagation, and

orientation affects the local PDD.

10.2 Recommendations

Further characterization of the deformed zone may include not only the PDD, as in the present
work, but also the first and second derivatives of the out-of-planarity profile shown in Fig. and

their relation to cracking.
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Two relevant factors were left for modeling in future work: thermal effects, and deformation
history. While thermal effects can be added with state-of-the-art FEA, the implementation of
models that account for history effects under localized loads under large sliding and deformation
conditions presents some difficulties. Finite element codes working in an Eulerian framework might
be instrumental for these purposes.

The crystal plasticity model has shown that grain boundaries act as effective barriers for PD. An
implementation of random grain sizes and geometry by use of Voronoi tesselation would be useful
to further analyze the deformation dependence on these variables and approximate the model to
the actual test.

Other modeling improvements might include the addition of more slip systems, explicit modeling
of the two phases, improved hardening modeling, consideration of time dependent properties per
slip system, fracture and fatigue modeling, actual abrasive shape, and 3D geometry.

One of the possible reasons for the departure of the force per grit model from the tests can be
related to the use of an incorrect probability density function of the cutting edges to describe the
wheel surface. The use of replicas and the work and errors associated with them can be avoided
if modifications are introduced to present generation of 3D profilometers by designing the devices
with similar stage capabilities as metallurgical microscopes, giving room for a grinding wheel to fit
in the instrument. The inconvenience of dismounting the wheel from the grinder and later truing
processes is a minor one compared with the benefits of direct measurement.

The RS analysis technique can be improved by considering the radiation attenuation in the

subsurface, and stress gradients (Suominen and Carrf (1999} [Behnken and Haukf [2001} [Ely et al.]

[[099} [Wer, [T999} [Zhu ot al} [[995)

The measurement of residual stresses with neutron diffraction can be used to improve the
resolution of the stress at the surface of highly deformed material, and to avoid the artifacts
introduced by the layer removal technique, since the penetration depth of the radiation is of the
order of millimeters.

Machined parts designed to be utilized in high temperature applications might recrystallize
on a subsurface layer during operation. The recrystallization depth depends on the machining

conditions, alloy chemistry, temperature and time. A further correlation of the proposed PDD
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measurement technique with the recrystallized depth would be of interest.

One question that arises after the measurements of PDD is how this value obtained at a free
surface is related to the PDD at the bulk. With decreasing PEEQ threshold the PDD shows to
be larger at the bulk with respect to the surface. It is not clear which is the actual deformation
threshold that the proposed technique can measure. It is also not clear which would be the necessary
level of PD to produce an effect on the material performance. Further research is necessary in this

area.
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APPENDIX A

GRINDING EXPERIMENTAL RESULTS
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APPENDIX B

RESIDUAL STRESS MEASUREMENT RESULTS
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Table B.1: Tests for determination of the mean value of dys94} and its deviation.

Test @ W ! 1 2m dppwy Std{2E)
1.0, deg deg deg deg deqg A deg
13960 0 0 B3.9975 0 137.9949 0.8251 0.0045
13962 0 0 B3.9975 0 1379950 0.8251 0.0054
13961 0 0 B3.9962 0 1379923 0.8251 0.0057
10332 0 0 B3.9962 0 1379923 0.8251 0.0125
13918 0 0 k39323 0 137 9546 0.82652 0.0034
13317 0 0 639311 0 137 9822 0.82652 0.0036
13933 0 0 B3S732 0 1379464 0.5252 0.0090
10304 0 0 B3.9794 0 137 9587 0.82652 0.0122
10331 0 0 B3.5734 0 1379463 0.8252 0.0137
1356582 0 0 B3.59540 0 137.9079 0.5253 0.0094
10242 0 0 639560 0 1379120 0.8253 0.0140
10303 0 0 B3.9E52 0 137.9384 0.8253 0.0168
10243 0 0 B3.59G512 0 1379224 0.8253 0.0170
13581 0 0 639454 0 137.8907 0.8254 0.0078
13566 0 0 B3.9376 0 137.68752 0.8254 0.0094
13667 0 0 B3.59339 0 137.8677 0.5254 0.0125
10244 0 0 B3.9466 0 137.8931 0.8254 0.0213
10253 0 0 B3.9270 28.2 137.8540 0.8255 0.0210
10259 0 0 B3.59308 28.2 137.8615 0.5255 0.0225

Average 0.8253
Std 1.33E04

Table B.2: Tests for determination of the mean value of dy430y and its deviation.

Test @ y Q 1 2m Ak Std(2@]
1D, deq deq deg deq deg A deq
10268 1] o 700871 28.2 1401141 08124 00122
13867 1 0 7005588 0 1401195 08194 0.0058
13566 0 0 70.0808 0] 1401216 0.8194 0.0054
10331 1] 0 700742 0 14014597 0.8193  0.0085
10304 0 0 700787 0 1401573 0.8193 0.0087
10244 0 0 70.0543 0] 1401693 0.8193 0.0103
10303 1] 0 700850 0 1401699 08193  0.0075
13331 0 0 700857 0] 1401713 0.8193 0.011
13961 0 0 700877 0 1401754 0.8193 0.0022
13962 1] 0 7005 0 1401830 05192 0.0021
13960 0 0 700925 0] 1401849 0.8192 0.0019
10332 0 0 70.0942 0] 1401583 0.8152 0.0123
13662 1] 0 700981 0 140.1961 08192  0.0105
10242 0 0/ 70.0933 0] 1401976 0.8192 0.0075
10243 1] o 70101 0 1402021 081982  0.0077
13918 1] 0 701027 0 1402053  0.5192) 0.003

Average 0.8193
Std 7.75E05
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Table B.3: Extended summary of residual stress measurement results.
{224} and {422} planes can be seen.

Measurements on the

Sample | Test Depth Hydro Mises o oy (i Stdo | Stdo, | Std oy
1.D. 1.0, W WFa IWFa MFPa MPa MPa MFa MWFa WFa
224
w1506 13732 0| -282.20 551100 91030 -203.40 285,30 42410 34280 404 30
w1606 13802 76 -06.96 107 .41 -148.01 -113.66 0.80 55,39 BE.23 B5.35
w1606 10273 254 -8.67 1575 -2B.15 1235 12.50 101.86 o594 5583
w1606 10318 18 11.06 17.35 585 9R2 209 472 G1.45 o8 24 5816
»1G15 135836 0| -553.54 48340 -B099: -BY2 B3 -157.93 7099 71.45 0937
®1G15 138583 47 -143.80 49 61 -168.82  -159.31 -103.27 37.08 3715 36.22
w1515 13934 117 -5.19 3356 -33.67 -2 B2 17.72 Sk 45 5703 5553
»1:10 13781 124 59,95 33358 10099 -B56.30 -42 57 B9.93 54 30 B5.52
»1510 139159 154 57 74 37 BB -89 36 -F0.97 -12.88 113.56 107 .24 50.10
*1310 13926 154 -24.73 o7y 75 10478 -18.14 48.73 51.12 51.81 5292
w2608 13711 o) -436.30 454 58| -FO6R3| -538.B8 -63.60 05 45 a.25 45,74
w2508 13753 72 07 A4 13507 -208.26 -85.52 1.45 7776 5809 7158
w2508 10289 122 -6.66 1938 S22 28 -5.64 10.93 a7 .06 57 .59 G061
422

w1G0R 13732 0| -447 86 BU2.73 122010 -324.53 201.07 52657 247 .83 165.01
w1506 13802 76 0720 1280 17370 -11270 -5.00 2670 2550 2530
w1606 135823 76 -2B.42 26.30 -43.10 -23.60 -7.40 24.40 24.00 21.60
w1606 10273 254 7.3a 56.20 -38.95 976 51.34 36.80 34 66 o829
w1515 135836 0] -539.03 52470 -B83208 -6F4EB4 11033 4978 55 3 38.04
w1515 13853 17 -75.66 2644 -94 65 A0 -54 63 30.37 323 3092
®1G15 13883 47 -85 22 F9.28  -151.83 0027 -43.50 26.08 26.00 2544
®1510 13781 124 5579 51.91 -99.18 -53.05 -15.14 37.29 37.99 38.99
»1:10 13919 154 7352 JPa7 13745 7223 -10.86 40.00 3413 28.40
»1510 13926 154 £7.10 F0.10) -116.30 -54 50 -20.30 20.40 20.90 2290
w208 13711 0| -563.17 66519 94495 -G43.64) -100.89 71.45 9275 43 65
w2508 13753 72 7279 BB.A53  -113.17 -87.39 -17.82 36.54 3295 3243
w2508 10289 122 18.74 3778 1216 189 57 48.80 24 {3 2628 2354
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(b) plane{422}

Figure B.1: Comparison of the theoretical strain component €33 (red) with the corresponding
measured component e4g for sample X1G06 test 13733. Surface.
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Figure B.2: Comparison of the theoretical strain component €33 (red) with the corresponding
measured component g4, for sample X1G06 test 13802. 76um subsurface.
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Figure B.3: Comparison of the theoretical strain component €33 (red) with the corresponding
measured component 4, for sample X1G06 test 13823 plane {422}. 76um subsurface.
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Figure B.4: Comparison of the theoretical strain component €33 (red) with the corresponding
measured component ey for sample X1GO06 test 10273. 254um subsurface.
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Figure B.5: Comparison of the theoretical strain component €33 (red) with the corresponding
measured component 4, for sample X1G06 test 10318 plane {224}. 318um subsurface.
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Figure B.6: Comparison of the theoretical strain component €33 (red) with the corresponding
measured component e4g for sample X1G15 test 13836. Surface.
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Figure B.7: Comparison of the theoretical strain component €33 (red) with the corresponding
measured component &4 for sample X1G06 test 13853 plane {422}. 18um subsurface.
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Figure B.8: Comparison of the theoretical strain component €33 (red) with the corresponding
measured component e4s for sample X1G15 test 13883. 47um subsurface.

206



0zl 75 £4T0E EOTC- 4940 ZZFELS (9LEBL GE9EL- 09000 05280 EAPODEEL O g9z trzF- 09 BFECL
0zl = L2 BE SF0l-  E99/L £E9r- 58941 9579 52000 05280 SEEO0EEL [0 557 LFEF- OE SFECL
0zl LT F5FT =l [T BOES LLasl  FEEFR oFOO0 | LGZE0  S0REZEL (O 557 vEr 0 SFEEL
0zl 957 B00E coY A4 BOES B0B/L  ZL9F 9c000 | LGZ80  OLBBZEL (O g9z v 09E OFECL
0zl =] 7EET LB 2L B/l 0906 608/ FE90L LE00D  (ZSEE0 BTAEZEL O 997 BCTF- DR SFECL
0zl 0ED 9067 BTl B2l OTES G4/ 9908 0Z000 | 1GE80  BL4E 6L O 997 ECTF- ODE PFECL
0zl 05l =¥ ZLg 099/l FA07-  Z5AAL ZFOE- AFD00 05280 SSL0EEL (O 557 LFZF- 04 EFEEL
0zl ¥Ee S6'FT 90°0L-  B9'G/L 09FP- A28l 98B TEO00 05280 OZE0EEL (O 557 \zE- O TFECL
0zl DBl 740 ooE- BZ G/l EBE- Z60/L  BLBL-  EFDOD | 1GZ80  9R0DOBEL O g9z v ole LFEEL
0zl 0EQ (TR Al 890G/ G ECF AT 02000 | 1GE80 PELEZEL O 997 BCTF- 0Bl OFECL
0zl t'g 220E (e B39/l ZEOZ GLEBL  LEE 7000 | 1GE80 1986 ZEL (O 997 vEr 051 FCRCL
0zl 08l 55ET EOGL-  FTAL SLES (LESAL FEES- SFOD0 (05280 ROSOEEL (O 557 FTF- 0Tl 8CREL
0zl 95 0267 SFEZ-  9T/4L O0FEL- BEFAL BSBEL- A£000 (05280 FSFOEEL (O 557 rTF 06 SEREL
0zl P 5067 AUFL 42940 FAFEL D444l ZEFE- FEODD 05280 98Z0EEL (O 997 lFze- 09 OCACL
0zl L' EG N £l E99/l E99F-  ZE9.L  pPEF GZ000 05280 FALDEEL (O 997 \rzp- 0E SCRCL
0zl 05l B 67 SFa M4 BOES 755/ A0S M000  (LGZ20 ERBELEL (O 557 BETF O FEREL
wrr B Bd 5031 | 9031 | 8091 | 803l Hap v Hap fiap Hap Hap Bap ‘al
yidag | yiBlaan, PIS gedssans piS | Yloueng PIS geuelS | (@ripis lrdp &7 X o] A & s8]
B 95 CEET
edil| 6L 9 0JpAH
wr g | yidag
{rezt aue|4
51O 1 ajdwes
£505 0 0 gLl 0 0
0 £0 45 0 0 7z 0
0 0 995 0 0 29
[edw] pis [ediu] =anjes (ediouug
v0-36:£°1 90900 903005 0+3000 50-3045 903005 91 45 =4] 5990 09E 044 B0l
o0-300°7 (#0951 S0902°1 S0-30£°G  $0-304L pOFIEL L 560 1595 51 02 EA9Z- BTGl
90-300°% 5030 L vO0-3F1 90-300°8- #¥0-3EL L POELL 990 251 5C°05 801 FZGL-  99LL
[-] pis [-] uens [edw] pis [edw] 55805

-oorymsqns wirf) 11 {pgg} oueld FeaeT 1501 GTHTX o[dues 10f symsal 180T, L1 9[qeL

207



4

2t T i -
E T ¥ 4 F
8 of 4
5]

ol T L i

_4 | | | | | | | |

0 2 4 6 8 10 12 14 16 18

Figure B.9: Comparison of the theoretical strain component €33 (red) with the corresponding
measured component 4, for sample X1G15 test 13934 plane {224}. 117um subsurface.
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Figure B.10: Comparison of the theoretical strain component 33 (red) with the corresponding
measured component ey for sample X1G10 test 13781. 124um subsurface.
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Figure B.11: Comparison of the theoretical strain component 33 (red) with the corresponding
measured component e4g for sample X1G10 test 13919. 154pm subsurface.
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Figure B.12: Comparison of the theoretical strain component 33 (red) with the corresponding
measured component e4g for sample X1G10 test 13926. 154pm subsurface.
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Figure B.13: Comparison of the theoretical strain component 33 (red) with the corresponding
measured component e4g for sample X2GO08 test 13711. Surface.
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Figure B.14: Comparison of the theoretical strain component 33 (red) with the corresponding
measured component e4s for sample X2GO08 test 13753. 72um subsurface.

223



55l 05l 9357 066 89¥5L 0996  /50.L  2RES A0L00 L5280 [ LESEZEL [0 voF FSOZ- |09 Z0E0L
55l 339 =0T T v&LSL LEPS- 5579l ESEL 93100 75280 W96 4EL O ror 858z O0f Losol
55l 8B SF /T BFCl-  E9BSL  LFE- ZFEOL 9208 #RFLOD (LGE80 GBEEL D v or BS0Z-  OFC DOEOL
55l L8 85T o5 /- SCO5L  BEGL- OO0FSL FLSP ZRLO0 (25280 BLAELEL (O roF gS0z- 09l BEZ0L
55l G7C =974 LLUbL P985 (91PS- 5579 5193 G000 | MGE80 OZBEZEL O ror FS0z- 05k BEZ0L
55l 20T 9 67 e0'lg-  £8TAL WOLl- FESAL SFSEL- FEO000 L5280 SEO0EEL (O voF 98z 06 26701
55l 59 8947 vSFL- GLSOL ZZFOL- ZFSAL 5595~ 90l00 (IS280 90864EL [0 ror == 96701
0zl LEL 5T /0L (98F¥5L 7474 BROSL BFET- BLIDO 15280 FBRLEL (D g9z BoZF-  DEE 56201
0zl rEL AN oL SC0/L 9900 EEEAL Z9FF BRO00 15280 9BELEL (O 997 BCTF D4 FEZOL
0zl 9] 60T £Cog EOE9L 9209 CPT/L T2950  ZLI0D (ESES0 BELELEL O 997 9cEE- 0l EGZ0L
0zl g0c F5E7 AL 9179l LT gL0/l B A000 (75280 4996251 O 557 857 03l z670L
0zl 575 CIN=T 006 TG ABFE- FSCZL 9565 BS000 (L5280 008 LEL (O 557 BETF-  OTL LEZOL
0zl 7l BEZE CAGL-  (SZLEL G947 9/TEL PEFS EOLDO 15280 EEBRZEL (O 997 FEr 09 DEZ0L
0zl ! 8o iz vSFZ-  FCLOL TP RS EESAL S09vl- A0M00 15280 S900EEL [0 = vEr 0 FOZ0L
wrrl B Bdi 5031 | 9031 | 9031 | 903l biap v fap fiap fap fiap fiap ‘al
yida | yillaas | pIS gedssadg| pIS yLuviEns | RIS qeueds | epms | PMp @7 X &3 E t 58]
edi 526l SASIY
BdlA |99 5 oipAH
wr 77| yidag
{reel aue|4
BO9TH ajduwes
1503 0 0 E60L 0 0
0 5 /5 0 0 eges 0
0 0 9045 0 0 BT 7T
(edi] pis [edi] sanjes jediouug
y0-31571 (50-909°L S0-30F1 S0-309°8- 50-309F 50308 F |BES 8Lz B3l P3GL- 529 559
G0-309°1 #030CE 50905 F S0-309°F S0-301Z- 50-30L°G BlLE CFEg r1g 529 B4 769
CO-30F) |5090GF v0-329°1 50309 S0-3015 |S0-305 ¢ (7=} rL'g 5185 559 769 [
(-] pis [ ueng [edii] pis [edw] ssang

"oorpIMSqNS WNZET

{pgg} ouerd 6820T 3593 80DTX d[duwes 10 syNSAI 89T, 82 € O[qRL

224



55l Tl ZAELL 907 958/ 0z8s- /018 Lo 2l £900°0 |EELE0  £08L0OFL (O voF 8967 |09 Z0E0L
55l L'EL 9aCL LEEL L3R BG4 TG IZ64- 93000 (Z6LE0  ZERLOFL (O ror BT 0o Losol
55l 042 Dz EL DI7E- A9 OOLG- 458/ EOFEL-  9F000 | LELBOD  ZOEZOFL (O v or ziET- OFC DOEOL
55l it 7T EL orc- 505 EOCE b2BY Z3EL-  OLLOD  (EBLEOD  FLALOFL (O roF E36z- 09l BEZ0L
55l 2or ESTL ogC- 959,/ 9.78 6T f2lZ- G000 (EGLEOD 9FALOFL (O ror F36z- 05k BEZ0L
55l [ 84T 0o M PSS LS LFl- 209 75197- EFOOD  (DBLED  85T0FL O voF EL6C- OB 26701
55l 66 GLEL 607 (/4= G163 E91E8 ECHT 5/000 (EELE0  /85L0FL O ror 896z O 96701
ElLL 13 ZIEL cOfl- 2B e 8018 EZ /8- /000 (ZBLBO  /SELOFL (O g9z SEF- DEE 56201
Bl rE BT ElL CE0E EF G 7361 S06S 3Pl  B/000 (PELBOD JO9ZLOFL (O 997 O CF- 04 FEZOL
ELL 95| 851 ELT 0T 5059 oot £ ¥5O00 (B0 SFOLOFL (O 997 BFCF- 0lT EGZ0L
ElLL 07z 0T 7ol BST. T £91/ LOZLL L5000 (FELED LEELOFL (O 557 MEF- 03l z670L
Ell 0ve BACL T B ETTL GFLE S5 L0000 (ZELE0 EEBLOFL (O 557 BFCF-  OTL LEZOL
Bl Lo LEZL L A0ed FG /G- 5E9 909/5-  GE000  (ZELB0 JSBLOFL O 997 BFCF 09 DEZ0L
gLl [ 29T 0 E EFo R PG I0ZZ-  EFPOOD  (EGLEO  BLALOFL (O = EFCF 0 FOZ0L
wrrl B Bdi 5031 | 9031 | 9031 | 903l biap v fap fiap fap fiap fiap ‘al
yida | yillaas | pIS gedssadg| pIS yLuviEns | RIS qeueds | epms | PMp @7 X &3 E t 58]
Bdi 6225 SASIY
ediAl | 74 Bl oipAH
wr 77| yidag
{zzr! aue|4
BO9TH ajduwes
PSET 0 0 (W=§=1 0 0
0 87 GC 0 0 56l 0
0 0 B3t 0 0 ETNA
(edi] pis [edi] sanjes jediouug
S0-300°8 90-3008 90-3009 pO-3E9°L- 50-300F |S0-30F°L 99 7 GlL 930 ALl LFS 76l
O0-300°8 |5090F 8 S0-30C°1 S0-300F S0-30F9 | SO-I0GE T §1Gg Ll e B3 6l (el
90-300°9 |S0905°L 5039072 SO0-30F L SO-305E [ pOrIELT 5900 Lk FIET = At 09 iF
(-] pis [ ueng [edii] pis [edw] ssang

"oorpIMSqNS WNZET

{ggy} ouerd 6820T 3593 80DTX d[duwes 10 sYNSAI 89T, 162" O[qRL

225



. ‘
N
jV
4

|

Test #

(a) plane{224}

Strain
f=
T

Test #
(b) plane{422}

Figure B.15: Comparison of the theoretical strain component 33 (red) with the corresponding
measured component ey for sample X2GO08 test 10289. 122um subsurface.
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