
INTEGER PROGRAMMING APPROACHES FOR
SEMICONTINUOUS AND STOCHASTIC OPTIMIZATION

A Thesis
Presented to

The Academic Faculty

by

Gustavo I. Angulo Olivares

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Industrial and Systems Engineering

Georgia Institute of Technology
May 2014

Copyright © 2014 by Gustavo I. Angulo Olivares



INTEGER PROGRAMMING APPROACHES FOR
SEMICONTINUOUS AND STOCHASTIC OPTIMIZATION

Approved by:

Professor Shabbir Ahmed,
Co-advisor
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Professor Volker Kaibel
Institut für Mathematische
Optimierung
Otto-von-Guericke-Universität
Magdeburg

Professor Santanu S. Dey,
Co-advisor
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Dr. Myun-Seok Cheon
Corporate Strategic Research
ExxonMobil Research and Engineering

Professor George Nemhauser
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Date Approved: 26 March 2014



To my wife, Tamara.

iii



ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisors, Shabbir Ahmed and

Santanu Dey, for their guidance and support throughout these years at Georgia

Tech. I feel very fortunate of having had the opportunity of working with them

and learning from them.

I would like to thank the members of the thesis committee for their willingness

to be part of this process. I am in debt to George Nemhauser for his classes on

integer programming and his support during my first year. I also owe quite a

lot to Volker Kaibel for his collaboration in the forbidden-vertices problem. I also

thank Myun-Seok Cheon for his support and collaboration with ExxonMobil.

Also, many thanks to Pam Morrison and Yvonne Smith for the many many

times they helped me with paperwork and information. They are efficiency at its

best!

Of course, I am extremely grateful for having had the chance of meeting such

a great group of students. I knew some before coming to Tech, but I met most

of them just here. Some are from Chile too, but many others are not. I met their

families and friends here, and they became my friends and part of my family too. I

just prefer not to give specific names, but you know who you are and I just wanted

to say thank you so much!

And above everything, all my gratitude and recognition to my loved and excep-

tional wife, Tamara, for her love, support, patience, and encouragement through-

out our years here. We made it possible together!

iv



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 A motivating example . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Some important tools in mixed-integer programming . . . . . . . . 4

1.2.1 Cutting planes . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Extended formulations . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

II SEMI-CONTINUOUS NETWORK FLOW PROBLEMS . . . . . . . . . 12

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 The semi-continuous inflow set . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Complexity of optimization . . . . . . . . . . . . . . . . . . . 16

2.2.2 Basic polyhedral results . . . . . . . . . . . . . . . . . . . . . 18

2.3 The case t = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Inequality description of conv(S(0, h)) . . . . . . . . . . . . . 22

2.3.2 Extreme points of conv(S(0, h)) . . . . . . . . . . . . . . . . . 27

2.3.3 Extended formulation for conv(S(0, h)) . . . . . . . . . . . . 28

2.4 The case h = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.1 Inequality description of conv(S(t, 0)) . . . . . . . . . . . . . 29

2.4.2 Extended formulation for conv(S(t, 0)) . . . . . . . . . . . . . 36

2.5 A semi-continuous transportation problem . . . . . . . . . . . . . . 40

v



2.5.1 The problem and its complexity . . . . . . . . . . . . . . . . . 40

2.5.2 Analysis of a relaxation of S∗ . . . . . . . . . . . . . . . . . . 42

2.6 Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.6.1 The case t = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.6.2 The case t > 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

III FORBIDDEN VERTICES . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 General polytopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 0-1 polytopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3.1 The 0-1 cube . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3.2 General 0-1 polytopes . . . . . . . . . . . . . . . . . . . . . . . 68

3.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.4.1 k-best solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.4.2 Binary all-different polytopes . . . . . . . . . . . . . . . . . . 74

3.5 Extension to integral polytopes . . . . . . . . . . . . . . . . . . . . . 75

3.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

IV IMPROVING THE INTEGER L-SHAPED METHOD . . . . . . . . . . . 80

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Alternating cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 New optimality cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3.1 Construction of CGLP . . . . . . . . . . . . . . . . . . . . . . 88

4.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4 Combined method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5.1 Stochastic server location problem . . . . . . . . . . . . . . . 102

4.5.2 Stochastic multiple binary knapsack problem . . . . . . . . . 105

4.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

vi



4.7 Detailed computational results . . . . . . . . . . . . . . . . . . . . . . 109

4.7.1 Stochastic server location problem . . . . . . . . . . . . . . . 109

4.7.2 Stochastic multiple binary knapsack problem . . . . . . . . . 112

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

vii



LIST OF TABLES

1 Number of solved instances when t = 0. . . . . . . . . . . . . . . . . . 51

2 Number of nodes needed to prove optimality when t = 0. . . . . . . 52

3 CPU time needed to prove optimality when t = 0. . . . . . . . . . . . 53

4 Number of cuts when t = 0. . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Number of solved instances when t > 0. . . . . . . . . . . . . . . . . . 54

6 Number of nodes needed to prove optimality when t > 0. . . . . . . 54

7 CPU time needed to prove optimality when t > 0. . . . . . . . . . . . 55

8 Number of cuts when t > 0. . . . . . . . . . . . . . . . . . . . . . . . . 55

9 Complexity classification for general polytopes. . . . . . . . . . . . . 59

10 Complexity classification for 0-1 polytopes. . . . . . . . . . . . . . . . 59

11 Stochastic server location: overall results. . . . . . . . . . . . . . . . . 104

12 Stochastic server location: subproblems details. . . . . . . . . . . . . . 104

13 Stochastic multiple knapsack: overall results. . . . . . . . . . . . . . . 106

14 Stochastic multiple knapsack: subproblems details. . . . . . . . . . . 106

15 Stochastic multiple knapsack: CGLP overhead. . . . . . . . . . . . . . 107

16 Stochastic server location: overall results per instance. . . . . . . . . . 110

17 Stochastic server location: subproblems details per instance. . . . . . 111

18 Stochastic multiple knapsack: overall results per instance. . . . . . . 112

19 Stochastic multiple knapsack: subproblems details per instance. . . . 113

20 Stochastic multiple knapsack: CGLP overhead per instance. . . . . . 114

viii



LIST OF FIGURES

1 The pooling problem with a single specification s. . . . . . . . . . . . 2

2 Cutting planes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Network flow representation of the parity polytope. . . . . . . . . . . 6

4 Inflow relaxation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Nodes v and u, where u ∈ V−(v) and dv < 0. . . . . . . . . . . . . . . 16

6 Semi-continuous transportation problem. . . . . . . . . . . . . . . . . 41

ix



SUMMARY

This thesis concerns the application of mixed-integer programming techniques

to solve special classes of network flow problems and stochastic integer programs.

We draw tools from complexity and polyhedral theory to analyze these problems

and propose improved solution methods.

In the first part, we consider semi-continuous network flow problems, that is,

a class of network flow problems where some of the variables are required to take

values above a prespecified minimum threshold whenever they are not zero. These

problems find applications in management and supply chain models where or-

ders in small quantities are undesirable. We introduce the semi-continuous inflow

set with variable upper bounds as a relaxation of general semi-continuous net-

work flow problems. Two particular cases of this set are considered, for which

we present complete descriptions of the convex hull in terms of linear inequalities

and extended formulations. We also consider a class of semi-continuous trans-

portation problems where inflow systems arise as substructures, for which we in-

vestigate complexity questions. Finally, we study the computational efficacy of the

developed polyhedral results in solving randomly generated instances of semi-

continuous transportation problems.

In the second part, we introduce and study the forbidden-vertices problem.

Given a polytope P and a subset X of its vertices, we study the complexity of

optimizing a linear function on the subset of vertices of P that are not contained in

X. This problem is closely related to finding the k-best basic solutions to a linear

problem and finds applications in stochastic integer programming. We observe

x



that the complexity of the problem depends on how P and X are specified. For

instance, P can be explicitly given by its linear description, or implicitly by an

oracle. Similarly, X can be explicitly given as a list of vectors, or implicitly as

a face of P. While removing vertices turns to be hard in general, it is tractable

for tractable 0-1 polytopes, and compact extended formulations can be obtained.

Some extensions to integral polytopes are also presented.

The third part is devoted to the integer L-shaped method for two-stage stochas-

tic integer programs. A widely used model assumes that decisions are made in

a two-step fashion, where first-stage decisions are followed by second-stage re-

course actions after the uncertain parameters are observed, and we seek to mini-

mize the expected overall cost. In the case of finitely many possible outcomes or

scenarios, the integer L-shaped method proposes a decomposition scheme akin to

Benders’ decomposition for linear problems, but where a series of mixed-integer

subproblems have to be solved at each iteration. To improve the performance of

the method, we devise a simple modification that alternates between linear and

mixed-integer subproblems, yielding significant time savings in instances from the

literature. We also present a general framework to generate optimality cuts via a

cut-generating problem. Using an extended formulation of the forbidden-vertices

problem, we recast our cut-generating problem as a linear problem and embed it

within the integer L-shaped method. Our numerical experiments suggest that this

approach can prove beneficial when the first-stage set is relatively complicated.

xi



CHAPTER I

INTRODUCTION

A mixed-integer program is a mathematical optimization problem of the form

(MIP) min cx

s.t. Ax ≥ b

x ∈ Rn ×Zp.

Here the system of linear inequalities Ax ≥ b is coupled with the mixed-

integer restrictions x ∈ Rn ×Zp, leading to a usually complicated nonconvex set

S. Among all vectors x in S, we seek the one with the smallest value with respect

to the objective function c.

For more than fifty years, mixed-integer programming has drawn the atten-

tion of researchers and practitioners because of its elegant theory and modeling

power. Following the seminal works of Dantzig [13] [12] and Gomory [24] [25],

our understanding of linear and mixed-integer programming had led to the devel-

opment of algorithms and software that have become core components in many

industrial applications [2] [32] [19]. However, depending on the characteristics of

the problem at hand, mixed-integer programs might still prove very challenging

to state-of-the-art solvers. As challenge and curiosity are a irresistible combination

for researchers, substantial progress has been done in the theory, computation,

and practice of mixed-integer programming in the last decades. In this thesis, mo-

tivated by an application to the oil industry, we make further contributions to the

understanding of mixed-integer programming that can have practical impact on

solving methods.

1



1.1 A motivating example

The pooling problem arising in the oil industry has been extensively studied in the

literature [3] [45] [57] [29] . In a simple setting, it can be described as follows. There

are a number of inputs, outputs, and pools. Inputs are connected to outputs either

directly or via a pool, thus defining a directed network. At each input we have

some type of crude, which is characterized by its concentration of a given set of

components and its purchase price per unit. Crudes leaving the inputs are mixed

at pools and outputs, thus yielding different blends with varying compositions.

The final blend at an output has lower and upper bounds on the concentration of

each component and has a given selling price per unit. The objective is to find a

flow in the network subject to capacity constraints so that the final blends meet the

specifications and the profit is maximized. A graphical representation is given in

Figure 1.

Crude As = 2%

Crude Bs = 1%

Crude Cs = 3%

Pool 1

Pool 2

Blend X 1% ≤ s ≤ 2%

Blend Y 2% ≤ s ≤ 3%

Figure 1: The pooling problem with a single specification s.

As a consequence of blending, the pooling problem yields an optimization

problem with bilinear constraints for which different exact nonlinear formulations

exist [27] [6] [57] [3]. Recent work [18] shows that reasonably good approximations

2



of the pooling problem can be achieved with mixed-integer formulations. Since

the technology for solving mixed-integer programs is at a rather mature stage, it

is plausible to tackle the pooling problem, and perhaps other nonlinear problems,

with this machinery.

There are also other considerations that prompt the use of mixed-integer pro-

gramming techniques. The presence of discrete or binary decisions is one of them.

In the case of the pooling problem, or network flow problems in general, we often

find situations where the flows must take values above a given minimum thresh-

old whenever they are nonzero. A natural way of modeling this restriction is with

the use of binary variables, leading to mixed-integer formulations. However, it is

also sensible to investigate formulations that depart from the usual binary formu-

lation and study how they can be exploited to improve solution methods.

Another reason to consider mixed-integer formulations is having parameters

that are not completely known within the data defining the problem. For instance,

in the pooling problem, the future selling price of the final blends might not be

known at the time the crudes are acquired. If we have to make purchase deci-

sions now, we can wait until the true selling prices are revealed, assuming the lead

times allow us to do this, and then decide the quantities of each blend to be pro-

duced. This dynamic is commonly found in problems where planning decisions

such as investments are followed by operational decisions such as weekly produc-

tion and leads to the notion of a two-stage stochastic program. Given the existence

of a number of methods to solve stochastic integer programs, it is reasonable to

consider casting the uncertain problem within this framework and look for effi-

cient approaches to deal with the resulting model. At this point, the question of

whether existent computational methods can be improved with the aid of polyhe-

dral theory and efficient implementations arises.

3



1.2 Some important tools in mixed-integer programming

In order to succeed in solving (MIP), having tight formulations for S is of great

importance. By a formulation, we mean a linear description of a polyhedron P

such that P ∩ (Rn × Zp) = S. In other words, P contains all feasible solutions

to (MIP), but no other point in Rn × Zp lies in P. Letting conv(S) denote the

convex hull of S, by definition we have conv(S) ⊆ P. A formulation is ideal if

conv(S) = P. In many cases though, conv(S) can prove extremely difficult to

describe, in particular because of the large number of linear inequalities required.

Thus we have to rely on techniques that allows us to obtain formulations that are

as close as possible to conv(S), but still manageable from a practical perspective.

1.2.1 Cutting planes

A valid inequality, or cutting plane, is a linear inequality πx ≤ π0 that is satisfied

by all x in S, and thus, by all x ∈ conv(S). The idea is to start with some formula-

tion for S and then to add valid inequalities to strengthen it and, in some sense, get

closer to conv(S). Together with branch-and-bound, this technique constitutes one

of the main backbones of current solvers. Figure 2 illustrates an approximation of

conv(S) using cutting planes π1x ≤ π1
0 and π2x ≤ π2

0.

While solvers can derive valid inequalities from the linear system defining S,

this is usually done based on generic templates of substructures or relaxations of

S that are commonly found in mixed-integer programs. We can exploit the spe-

cific knowledge that we might have about S to obtain stronger cutting planes for

conv(S), i.e., valid inequalities that remove a greater portion of P that lies outside

conv(S). For that, we usually drop some constraints and merge variables to ob-

tain a relaxation of S that is simpler to analyze, yet retains structural information

about S. With this simplification, we can derive separation routines in the form

of combinatorial algorithms or cut-generating linear programs. In the latter case,

4



π1x ≤ π1
0

π2x ≤ π2
0

conv(S)

Figure 2: Cutting planes.

sometimes it is possible to embed the cut-generating linear program within the

original formulation, yielding a new formulation where all cuts that could be de-

rived with the separation routine are already implied from the beginning. This is

an example of an extended formulation which is described next.

1.2.2 Extended formulations

There are many examples of integer programs for which the convex hull of its fea-

sible region is completely known, but its description involves exponentially many

linear inequalities. For example, consider the parity polytope PARn defined as the

convex hull of all n-dimensional binary vectors having an even number of ones,

i.e.,

PARn := conv

{
x ∈ {0, 1}n :

n

∑
i=1

xi is even

}
.

In [28], it is shown that PARn is completely described by the system

∑
i∈S

xi + ∑
i/∈S

(1− xi) ≥ 1 ∀S ⊆ {1, . . . , n}, |S| odd

0 ≤ xi ≤ 1 ∀i ∈ {1, . . . , n}.

5



Although the system has 2n−1 nontrivial inequalities, it is also the projection

onto the x-space of the simpler polyhedron given by

−x + y + z = 0

q1 + y1 = 1

p1 + z1 = 0

pi+1 + zi+1 − pi − yi = 0 ∀i = 1, . . . , n− 1

qi+1 + yi+1 − qi − zi = 0 ∀i = 1, . . . , n− 1

qn + zn = 1

pn + yn = 0

p, q, y, z ≥ 0.

We have included 4n additional variables, but the number of nontrivial constraints

has dramatically decreased from 2n−1 to just 3n. The above system can be regarded

as the description of the network flow depicted in Figure 3 below, where one unit

of flow travels from left to right, forcing the vector y + z to have an even number

of ones.

0 1 pi

yi

i

zi+1

pi+1 n− 1 n

0 1 qi i qi+1 n− 1 n

Figure 3: Network flow representation of the parity polytope.

More formally, an extended formulation of a polyhedron P is a linear descrip-

tion of another higher-dimensional polyhedron that can be linearly mapped onto

P. A natural question that arises is that of the size of extended formulations. For

our purposes, by size we mean the number of inequalities in the extended for-

mulation. (It can be shown [21] that counting also the number of variables and

6



equalities leads to notions of size that are basically equivalent.) We say that an

extended formulation is compact if its size is polynomially bounded with respect

to the size of some natural encoding of P, which in many cases reduces to the di-

mension of this polyhedron. Having extended formulations of small size allows

us to prove tractability of some combinatorial problems and to derive separation

routines for the convex hull of the feasible set of (MIP).

1.2.3 Decomposition

Another important tool in mixed-integer programming is the application of de-

composition methods to tackle large-scale well-structured problems. The key idea

to reformulate the original problem so that it can be divided into smaller pieces

that are solved separately. A prime example are decomposition methods for two-

stage stochastic linear and mixed-integer programs.

A two-stage stochastic integer program (SIP) has the form

(SIP) min cx + Q(x)

s.t. Ax ≥ b

x ∈ Rn ×Zp,

where Q(x) is the expected second-stage cost associated to first-stage decision vari-

ables x. We usually have Q(x) = Eξ [Qξ(x)], where

Qξ(x) := min qy

s.t. Wy ≥ h− Tx

y ∈ Rs ×Zt

and the expectation is taken over the random data ξ = (q, W, T, h). Variables y =

yξ are referred to as recourse actions as they allow us to react given first-stage

decision x and outcome ξ. When ξ follows a discrete distribution with a finite

7



number of outcomes or scenarios, (SIP) can be formulated as

min cx + ∑
ξ

pξqξyξ

s.t. Ax ≥ b

Tξ x + Wξyξ ≥ hξ ∀ξ

x ∈ Rn ×Zp

yξ ∈ Rs ×Zt ∀ξ,

where pξ denotes the probability of occurrence of outcome or scenario ξ. Thus,

(SIP) reduces to a large-scale mixed-integer program. However, this formulation

can quickly become challenging as the number of scenarios increases and decom-

position approaches must be sought. In the absence of integrality requirements on

first- and second-stage variables, (SIP) reduces to a large-scale linear program for

which Benders’ decomposition is applicable.

In Benders’ decomposition, we introduce an additional variable θ, yielding the

equivalent formulation of (SIP)

min cx + θ

s.t. Ax ≥ b

θ ≥ Q(x)

x ∈ Rn

θ ∈ R.

For simplicity, let us assume that Q(x) is finite for any x satisfying Ax ≥ b. By

strong duality of linear programming, we have

Q(x) = max (h− Tx)π

s.t. πW = q

π ∈ Rm
+.

8



Moreover, we have Q(x) = max{(h− Tx)π : π ∈ Π} with Π being the set of

extreme points of the polyhedron {π ∈ Rm
+ : πW = q}. Thus, we arrive at the

equivalent formulation of (SIP)

(BD) min cx + θ

s.t. Ax ≥ b

θ ≥ (h− Tx)π ∀π ∈ Π

x ∈ Rn

θ ∈ R.

Since Π might have a large number of elements, we proceed as follows. Let

L ∈ R be a lower bound for Q(x). Let Πk ⊆ Π with Π0 = ∅. Starting with k = 0,

we solve the relaxation (BDk) below

(BDk) min cx + θ

s.t. Ax ≥ b

θ ≥ (h− Tx)π ∀π ∈ Πk

θ ≥ L

x ∈ Rn

θ ∈ R.

Given an optimal solution (x∗, θ∗) to (BDk), we compute Q(x∗). If θ∗ ≥ Q(x∗),

then the solution is feasible to (BD), and therefore it is optimal to the true problem.

Otherwise, let π∗ be an optimal solution to max{(h− Tx∗)π : π ∈ Π}. We have

Q(x∗) = (h − Tx∗)π∗ > θ∗, i.e., (x∗, θ∗) violates the inequality θ ≥ (h − Tx)π∗.

Thus, we set Πk+1 = Πk ∪ {π∗} and we solve (BDk+1) knowing that (x∗, θ∗) is not

feasible. We repeat this procedure until an optimal solution to (BD) is identified.

Finite convergence is guaranteed by finiteness of Π.

9



1.3 Overview

This thesis concerns the application of mixed-integer programming techniques to

solve special classes of network flow problems and stochastic integer programs.

We draw tools from complexity and polyhedral theory to analyze these problems

and propose improved solution methods.

First, in Chapter 2, we consider semi-continuous network flow problems, that

is, a class of network flow problems where some of the variables are required to

belong to a set of the form {0} ∪ [l, u] for some 0 ≤ l ≤ u. These problems find

applications in management and supply chain models where orders in small quan-

tities are undesirable. We introduce the semi-continuous inflow set with variable

upper bounds as a relaxation of general semi-continuous network flow problems.

Two particular cases of this set are considered, for which we present complete

descriptions of their convex hulls in terms of linear inequalities and extended for-

mulations. We also consider a class of semi-continuous transportation problems

where inflow systems arise as substructures, for which we investigate complexity

questions. Finally, we study the computational efficacy of the developed poly-

hedral results in solving randomly generated instances of semi-continuous trans-

portation problems.

In Chapter 3, motivated by an application to stochastic integer programming,

we introduce and study the forbidden-vertices problem. Given a polytope P and

a subset X of its vertices, we want to understand the complexity of optimizing

a linear function on the subset of vertices of P that are not contained in X. We

observe that the complexity of the problem depends on how P and X are specified.

For instance, P can explicitly given by its linear description, or implicitly by an

oracle. Similarly, X can be explicitly given as a list of vectors, or implicitly as a

face of P, for example. While removing vertices turns to be hard in general, it is

tractable for tractable 0-1 polytopes, and compact extended formulations can be

10



obtained. Some extensions to integral polytopes are also presented.

Finally, in Chapter 4, we address computational improvements for the integer

L-shaped method for two-stage stochastic programs with integer recourse. This

method proposes a decomposition scheme akin to Benders’ decomposition for lin-

ear problems, but where a series of mixed-integer subproblems have to be solved

at each iteration. To improve the performance of the method, we devise a sim-

ple modification that alternates between linear and mixed-integer subproblems,

yielding significant time savings in solving instances from the literature. We also

present a general framework to generate optimality cuts via a cut-generating prob-

lem. Using an extended formulation of the forbidden-vertices problem, we recast

our cut-generating problem as a linear problem and embed it within the integer L-

shaped method. Our numerical experiments suggest that this approach can prove

beneficial when the first-stage set is relatively complicated.

11



CHAPTER II

SEMI-CONTINUOUS NETWORK FLOW PROBLEMS

2.1 Introduction

A variable x is said to be semi-continuous if x is required to belong to a set of the

form {0} ∪ [l, u] for some 0 ≤ l ≤ u. We call l and u lower and upper bounds

of x, respectively. Note that in this definition we consider continuous variables

as a special case where l = 0. A semi-continuous variable can be regarded as a

generalization of a binary variable. In fact, by setting l = u = 1 in the above

definition, we have that x is binary. As such, the presence of these variables may

lead to hard optimization problems.

Semi-continuous variables appear in models for inventory management where

shippings from a given supplier are required to be between prestablished mini-

mum and maximum quantities whenever an order is placed [58]. In portfolio op-

timization, semi-continuous constraints are known as minimum transaction lev-

els, and are studied in [8] and [50]. Semi-continuous variables are also common

when modeling petrochemical processes as described in [29] and [30]. Further-

more, as [30] and [58] suggest, supply chain models may involve network flow

structures with semi-continuity constraints on flow variables whenever produc-

tion, purchases, and shipping in low quantities are undesirable from the opera-

tional point of view.

Although semi-continuity can be modeled by means of introducing additional

binary variables and constraints, this approach may have some drawbacks. We

12



increase the size of the problem at hand, which can already be large-scale. Addi-

tionally, the presence of binary variables may lead to unnecessary branching de-

cisions and large LP relaxations in a branch-and-bound procedure. On the other

hand, models that incorporate auxiliary binary variables may benefit from pre-

solve and bound tightening procedures available in state-of-the-art MIP solvers

such as CPLEX and may be solved efficiently. To overcome difficulties with auxil-

iary binary variables, branching rules and cuts without the use of binary variables

for some combinatorial problems have been studied in [15] and [16]. In particular,

in [14] and [17] the semi-continuous knapsack problem is introduced and cutting-

planes are presented.

In this chapter, we study some particular semi-continuous sets. Specifically,

given their wide applicability, we focus on network flow problems having semi-

continuous flow variables. Our main contributions are complete descriptions of

the convex hull of two particular cases of a semi-continuous inflow set with vari-

able upper bounds and a computational study of the effectiveness of the derived

inequalities on a class of semi-continuous transportation problems. We observe

that the polyhedral results derived from the semi-continuous sets can significantly

improve the performance of both the semi-continuous and the standard mixed

integer formulation involving auxiliary binary variables. The rest of the chapter

is organized as follows. In Section 2.2 we introduce the semi-continuous inflow

set along with some basic properties. In Sections 2.3 and 2.4 we present polyhe-

dral studies of two particular cases of this set. Then, in Section 2.5 we introduce

a class of semi-continuous transportation problems for which we give complexity

results. We devote Section 2.6 to computational results regarding the performance

of the polyhedral results when solving semi-continuous transportation problems.

Finally, in Section 2.7 we conclude with some remarks.

13



2.2 The semi-continuous inflow set

Consider the network substructure shown in Figure 4. Let N := {1, . . . , n} be a set

of nodes, where n ≥ 2, and let d > 0 be the required total flow from nodes in N to

another node 0. For i ∈ N, let yi be the flow from node i to node 0, and xi be the

flow into node i. Let li and hi be the lower bounds on flows xi and yi whenever

these variables are positive. Let ti be the exogenous supply into node i. The semi-

continuous inflow set with variable upper bounds is the set S(t, h) ⊆ Rn × Rn

defined as

S(t, h) :=


(x, y) ∈ Rn ×Rn :

∑
i∈N

yi ≥ d (1)

yi ≤ ti + xi ∀i ∈ N (2)

xi ∈ {0} ∪ [li, ∞) ∀i ∈ N (3)

yi ∈ {0} ∪ [hi, ∞) ∀i ∈ N (4)


.

Constraint (1) ensures that the minimum total inflow into the node 0 is met.

Constraints (2) bound yi by the total available inflow ti + xi for node i ∈ N. Finally,

constraints (3) and (4) are semi-continuity requirements on x and y, respectively.

As we shall see, the structure and tractability of the above set are essentially deter-

mined by t and h only, and therefore the dependence on l is not made explicit in

the notation.

Next we discuss how the set S(t, h) arises as a substructure in general semi-

continuous network flow problems. Consider a network represented by a directed

graph G = (V, E), where each node v ∈ V satisfies a constraint of the form

∑
u∈V+(v)

fvu − ∑
u∈V−(v)

fuv = dv, (5)

where variable fvu ≥ 0 is the flow through the arc (v, u) ∈ E, V+(v) := {u ∈ V :

(v, u) ∈ E}, V−(v) := {u ∈ V : (u, v) ∈ E}, and dv is a given real parameter.

Suppose that fuv ∈ {0} ∪ [luv, uuv], that is, fuv is semi-continuous. We refer to

14



i
xi ∈ {0} ∪ [li,∞) yi ∈ {0} ∪ [hi,∞) d > 0

N

ti ≥ 0

0

Figure 4: Inflow relaxation.

such problems as semi-continuous network flow problems. We obtain S(t, h) as a

relaxation as follows.

Consider a node v ∈ V with dv < 0 as depicted in Figure 5. Since the first sum

in (5) is nonnegative, we have

∑
u∈V−(v)

fuv ≥ −dv = |dv|,

which has the form of the semi-continuous knapsack set introduced in [14]. How-

ever, since we are dealing with a network flow problem, there is more structure

to be exploited when looking for tighter relaxations. Indeed, consider (u, v) ∈ E.

Then v ∈ V+(u) and (5) applied to u can be written as

∑
w∈V+(u)\{v}

fuw + fuv − ∑
w∈V−(u)

fwu = du. (6)

As before, since the first sum in (6) is nonnegative, we arrive at

fuv ≤ ∑
w∈V−(u)

fwu + du ≤ ∑
w∈V−(u)

fwu + max{du, 0}. (7)

Note that fu := ∑w∈V−(u) fwu is a semi-continuous variable taking values in {0} ∪
[lu, uu], where lu := minw∈V−(u){lwu} and uu := ∑w∈V−(u) uwu. We obtain the

15



system

∑
u∈V−(v)

fuv ≥ |dv|

fuv ≤ fu + max{du, 0} ∀u ∈ V−(v)

fu ∈ {0} ∪ [lu, uu] ∀u ∈ V−(v) (8)

fuv ∈ {0} ∪ [luv, uuv] ∀u ∈ V−(v), (9)

which is a relaxation for the original network flow set. Finally, removing the upper

bounds from (8) and (9) we arrive at a relaxation having the form of S(t, h).

vu

V −(v) V +(v)

du
|dv|

fuv

Figure 5: Nodes v and u, where u ∈ V−(v) and dv < 0.

A similar approach can be followed when dv > 0, in which case we drop the

second sum in (5) and relax the balance equation for nodes in V+(v). In either

case, by appropriately manipulating (5) applied to v ∈ V and u ∈ V+(v) ∪V−(v),

we obtain the set S(t, h) as a relaxation.

We omit the case d = 0 since (1) becomes redundant and then S(t, h) is the

product of n simple 2-dimensional sets.

2.2.1 Complexity of optimization

It is not difficult to verify that having finite upper bounds as in (8) and (9) would

yield a set that is already hard to deal with. We show that in our setting optimiza-

tion over S(t, h) is intractable.

Proposition 1. Optimizing a linear function over S(t, h) is NP-hard, even if l = 0.

16



Proof. We will show that the Binary Knapsack problem, which isNP-hard, can be

reduced to optimization of a linear function over S(t, h).

We start with a feasible instance of the Binary Knapsack problem of the form

min ∑
i∈N

fizi

s.t. ∑
i∈N

wizi ≥ d

zi ∈ {0, 1} ∀i ∈ N,

where d ∈ Z+, w ∈ Zn
+, and f ∈ Zn

+. Consider the change of variables yi = wizi

for all i ∈ N. Given that zi ∈ {0, 1}, we have that yi ∈ {0, wi}. Furthermore, this is

equivalent to requiring yi ∈ {0} ∪ [wi, ∞) and yi ≤ wi. Thus, the optimal value of

the instance is the same as that of

min αy

s.t. ∑
i∈N

yi ≥ d

yi ≤ wi ∀i ∈ N

yi ∈ {0} ∪ [wi, ∞) ∀i ∈ N,

where αi =
fi

wi
for each i ∈ N. Now, consider the problem

min cx + αy

s.t. ∑
i∈N

yi ≥ d

yi ≤ wi + xi ∀i ∈ N

xi ≥ 0 ∀i ∈ N

yi ∈ {0} ∪ [wi, ∞) ∀i ∈ N,

where ci = M > 0 for all i ∈ N. Let (x∗, y∗) be an optimal solution and let

N∗ := {i ∈ N : y∗i > 0}. Given that c > 0, we must have y∗i = wi + x∗i for all

i ∈ N∗. If 0 < ∑i∈N x∗i < 1, then we have

d ≤ ∑
i∈N

y∗i = ∑
i∈N∗

y∗i = ∑
i∈N∗

(wi + x∗i )

17



=⇒ d ≤
⌊

∑
i∈N

y∗i

⌋
= ∑

i∈N∗
wi = ∑

i∈N
by∗i c.

Thus, given that α > 0, rounding down each component of y∗ improves the

solution. Hence, either x∗ = 0 or ∑i∈N x∗i ≥ 1. However, if M is sufficiently large,

say M = ∑i∈N αiwi = ∑i∈N fi, then we must have x∗ = 0. Therefore, the optimal

values of this problem, which is an instance of linear optimization over S(t, h),

and the instance of the Binary Knapsack problem we started with are the same.

Given that the transformation is polynomial in the original input size, the proof is

complete.

Despite the general complexity result in Proposition 1, there are at least two

situations where S(t, h) is tractable, namely when ti = 0 for all i ∈ N and when

hi = 0 for all i ∈ N. Note that the first case is a restriction. The second one is a

relaxation as y becomes continuous. These cases will be discussed in Sections 2.3

and 2.4, respectively.

2.2.2 Basic polyhedral results

In [14], the semi-continuous knapsack is introduced. This set is of the form

K =


x ∈ Rn :

∑
i∈N

wixi ≤ r

xi ∈ [0, pi] ∪ [li, ui] ∀i ∈ N+

xi ∈ [0, pi] ∪ [li, ∞) ∀i ∈ N+
∞ ∪ N−


,

where N+, N+
∞ , N− constitute a partition of N, wi > 0 for all i ∈ N+ ∪ N+

∞ , and

wi < 0 for all i ∈ N−. Several classes of valid inequalities are presented along

with lifting procedures. Note that when r < 0 and N− = N, this set is a relaxation

of S(t, h) as we can aggregate constraints and arrive at a system having the above

form. Thus, valid inequalities for K give rise to valid inequalities for S(t, h). In

some cases, a complete description of conv(K) can be found. In particular, if N =

18



N−, pi = 0 for each i ∈ N, and r < 0, then

conv(K) =

x ∈ Rn :
∑
i∈N

wi

min{r, wili}
xi ≥ 1

0 ≤ xi ∀i ∈ N

 .

As we shall see, an exponential family of inequalities similar to the one above

will suffice to describe conv(S(t, h)) when t = 0 or h = 0. We first establish some

fundamental results regarding S(t, h).

Proposition 2. S(t, h) is full-dimensional.

Proof. Consider the point (x̄, ȳ) ∈ Rn ×Rn given by x̄i = max{d, li, hi} + 1 and

ȳi = max{d, hi} for all i ∈ N. We have that (x̄, ȳ) belongs to S(t, h), and adding

any standard unit vector from Rn ×Rn to (x̄, ȳ) yields another point that is also

feasible to S(t, h). The collection of such 2n points along with (x̄, ȳ) is an affinely

independent set, and therefore S(t, h) is of full dimension.

Proposition 3. conv(S(t, h)) is a polyhedron.

Proof. We prove a more general result of which Proposition 3 is a particular case.

Given an integer t ≥ 1, let T := {1, . . . , t}. For each r ∈ T, consider πr ∈ Rn

and πr
0, πr

1 ∈ R. We are mainly interested in the case πr
0 < πr

1, although this is not

required in what follows. Given a closed convex set C ⊆ Rn, for each Q ∈ T := 2T,

consider the set

CQ := {x ∈ C : πrx ≤ πr
0 ∀r ∈ Q, πrx ≥ πr

1 ∀r /∈ Q}.

We call the set ∪Q∈T CQ a t-branch split disjunction as defined in [43]. Let

Cπ,π0,π1 := conv
(
∪Q∈T CQ

)
.

We will prove that Cπ,π0,π1 in closed for any t ≥ 1, extending the result in [11] for

t = 1.

19



Let C∞ be the recession cone of C, and for each Q ∈ T , let CQ
∞ := CQ + C∞.

Also, let T ∗ := {Q ∈ T : CQ 6= ∅}. If T ∗ is empty, then the result holds. Thus,

assume T ∗ is nonempty.

Claim: Cπ,π0,π1 = conv
(
∪Q∈T ∗C

Q
∞

)
.

The forward inclusion is easy as ∪Q∈T CQ ⊆ ∪Q∈T ∗C
Q
∞.

For the reverse inclusion, consider x ∈ conv
(
∪Q∈T ∗C

Q
∞

)
. We can write x =

∑Q∈T ∗ λQ(xQ + yQ), where xQ ∈ CQ, yQ ∈ C∞, and λQ ≥ 0 for each Q ∈ T ∗, and

∑Q∈T ∗ λQ = 1. If we show that for any Q ∈ T ∗, xQ + yQ belongs to Cπ,π0,π1 , then

the result follows. To that end, fix Q ∈ T ∗ and let

R− := {r ∈ T : πryQ < 0},

R+ := {r ∈ T : πryQ > 0},

R= := {r ∈ T : πryQ = 0}.

Note that there exists finite λ ≥ 1 such that πr(xQ + λyQ) ≤ πr
0 for all r ∈ R−

and πr(xQ + λyQ) ≥ πr
1 for all r ∈ R+. Also, recall that xQ satisfies πrxQ ≤ πr

0

for all r ∈ Q and πrxQ ≥ πr
1 for all r /∈ Q. Thus xQ + λyQ belongs to CQ′ , where

Q′ := R− ∪ (R= ∩ Q). Finally, note that xQ + yQ ∈ conv({xQ, xQ + λyQ}), which

implies xQ + yQ ∈ Cπ,π0,π1 as desired. 3

By the claim, Cπ,π0,π1 is the convex hull of the union of nonempty closed con-

vex sets having the same recession cone. By Corollary 9.8.1 of [53], Cπ,π0,π1 is a

closed convex set. Moreover, if C is a polyhedron, then Cπ,π0,π1 is the convex hull

of the union of nonempty polyhedra having the same recession cone, which is a

polyhedron [5].

We now proceed to identify the trivial facets of conv(S(t, h)).

Proposition 4. For each each i ∈ N, yi ≥ 0 and yi ≤ ti + xi are facet-defining for

conv(S(t, h)). In addition, xi ≥ 0 is facet-defining if and only if ti > 0.

20



Proof. Let i ∈ N. Choose a point x̄ ∈ Rn satisfying x̄j > max{d, lj, hj} for all j ∈ N.

Set ȳi = 0 and ȳj = x̄j for all j ∈ N, j 6= i. We have that (x̄, ȳ) belongs to S(t, h).

Now for each j ∈ N, j 6= i, consider the points
(
xj, yj) and

(
xn+j, yn+j) given by

(
xj

k, yj
k

)
=

 (x̄j + ε, ȳj) k = j

(x̄k, ȳk) k 6= j,

(
xn+j

k , yn+j
k

)
=

 (x̄j, ȳj − ε) k = j

(x̄k, ȳk) k 6= j.

Finally, let
(
xi, yi) = (x̄, ȳ) and let

(
xn+i, yn+i) be given by

(
xn+i

k , yn+i
k

)
=

 (x̄i + ε, ȳi) k = i

(x̄k, ȳk) k 6= i.

For ε > 0 sufficiently small, the collection
{(

xj, yj) ,
(
xn+j, yn+j) : j ∈ N

}
is

contained in S(t, h). Moreover, it is an affinely independent set, and since these 2n

points satisfy yi ≥ 0 at equality, this constraint defines a facet of conv(S(t, h)). The

proof for yi ≤ ti + xi is analogous by setting ȳi = ti + x̄i and defining
(
xn+i, yn+i)

as (
xn+i

k , yn+i
k

)
=

 (x̄i + ε, ȳi + ε) k = i

(x̄k, ȳk) k 6= i.

For the last part, if ti > 0, set x̄i = 0 and ȳi = ti. Again, the proof is similar by

defining
(
xn+i, yn+i) as

(
xn+i

k , yn+i
k

)
=

 (x̄i, ȳi − ε) k = i

(x̄k, ȳk) k 6= i.

Finally, note that if ti = 0, then xi ≥ 0 is dominated by yi ≥ 0.

In the following two sections we turn our attention to polyhedral results for

S(0, h) and S(t, 0), respectively.

21



2.3 The case t = 0

In this section we assume that t = 0, and therefore S(0, h) ⊆ Rn ×Rn is the set of

vectors (x, y) satisfying

∑
i∈N

yi ≥ d (10)

yi ≤ xi ∀i ∈ N (11)

xi ∈ {0} ∪ [li, ∞) ∀i ∈ N (12)

yi ∈ {0} ∪ [hi, ∞) ∀i ∈ N. (13)

2.3.1 Inequality description of conv(S(0, h))

Define the sets

L := {i ∈ N : max{d, hi} < li},

H := {i ∈ N : hi ≥ d},

and consider the family of inequalities given by

∑
i∈T

xi

li
+ ∑

i∈N\T

yi

max{d, hi}
≥ 1 ∀T ⊆ L. (14)

Recalling that d > 0, we have that li = 0 implies i ∈ N \ L. Thus, (14) is well-

defined for all T ⊆ L. Furthermore, note that if l = 0, then L = ∅ and (14) reduces

to the single inequality

∑
i∈N

yi

max{d, hi}
≥ 1,

which in Section 2.2.2 was seen to be the semi-continuous cut derived in [14].

Proposition 5. For each T ⊆ L, (14) is valid and facet-defining for conv(S(0, h)).

Proof. To show validity, consider (x, y) ∈ S(0, h) and T ⊆ L. If for some i ∈ T

we have xi > 0, then xi
li
≥ 1. If for some i ∈ (N \ T) ∩ H we have yi > 0, then

yi
max{d,hi} =

yi
hi
≥ 1. In both cases (14) is satisfied. If none of them occur, then yi = 0

22



for all i ∈ T ∪ [(N \ T) ∩ H]. Since (x, y) ∈ S(0, h), we must have ∑i∈N yi ≥ d, and

therefore

∑
i∈(N\T)\H

yi

max{d, hi}
= ∑

i∈(N\T)\H

yi

d
= ∑

i∈N

yi

d
≥ 1.

Hence, (14) is satisfied in this case as well.

Now, given T ⊆ L, we will show that (14) is facet-defining by showing 2n

affinely independent points in S(0, h) that satisfy (14) at equality. Let
(
xi, yi) , i =

1, . . . , 2n, be such points defined as follows:

If i ∈ T, then (
xi

j, yi
j

)
=

 (li, max {d, hi}) j = i

(0, 0) j 6= i,

(
xn+i

j , yn+i
j

)
=

 (li, max {d, hi}+ ε) j = i

(0, 0) j 6= i.

If i ∈ N \ T, then

(
xi

j, yi
j

)
=

 (max {d, hi, li} , max{d, hi}) j = i

(0, 0) j 6= i,

(
xn+i

j , yn+i
j

)
=

 (max {d, hi, li}+ ε, max{d, hi}) j = i

(0, 0) j 6= i.

The points previously defined belong to S(0, h) for ε > 0 sufficiently small.

Finally,
{(

xi, yi) ,
(
xn+i, yn+i) : i ∈ N

}
is a linearly independent set of points satis-

fying (14) at equality. Thus this constraint defines a facet of conv(S(0, h)).

Theorem 6 below shows that all the non-trivial facets of conv(S(0, h)) are given

by (14).

23



Theorem 6. conv(S(0, h)) is given by the following facet-defining inequalities

∑
i∈T

xi

li
+ ∑

i∈N\T

yi

max{d, hi}
≥ 1 ∀T ⊆ L

yi ≤ xi ∀i ∈ N (15)

yi ≥ 0 ∀i ∈ N. (16)

Proof. We already showed that (14) is facet-defining for each T ⊆ L, and that (15)

and (16) are also facet-defining for each i ∈ N. To show that (14)-(16) completely

describe conv(S(0, h)), we apply the technique presented in [44]: it suffices to show

that if we optimize any non-zero linear function over S(0, h), then there exists one

inequality from (14)-(16) such that all optimal solutions, if one exists, belong to the

facet defined by that inequality.

Let (c, α) ∈ Rn ×Rn be a non-zero vector and consider the problem

min {cx + αy : (x, y) ∈ S(0, h)} .

Assumption 1: c ≥ 0 and c + α ≥ 0.

If for some i ∈ N we have ci < 0 or ci + αi < 0, then the problem is unbounded.

Thus, we may assume c ≥ 0, c + α ≥ 0. 3

In particular, Assumption 1 implies that the optimal value is nonnegative and

that an optimal solution exists. Let (x∗, y∗) be any such solution.

Assumption 2: α ≥ 0.

If for some i ∈ N, αi < 0, then y∗i = x∗i , that is, (15) is satisfied as an equality.

To see this, suppose that y∗i < x∗i . If y∗i > 0, then we can increase it and get a better

solution. If y∗i = 0, since x∗i > 0 and ci > 0 by Assumption 1 and αi < 0, we can

decrease x∗i to zero and get a better solution. Thus, we may assume α ≥ 0. 3

Assumption 3: c + α > 0.

Suppose that ci = αi = 0 for some i ∈ N. Then the optimal value is zero. Since

(c, α) 6= (0, 0), by Assumptions 1 and 2, there must exist j ∈ N, j 6= i, such that

24



either αj > 0 or cj > 0. By optimality, in the former case we must have y∗j = 0,

while in the latter x∗j = 0 must hold. Therefore, either (16) or (15) must be satisfied

at equality by all optimal solutions. Thus, we may assume c + α > 0. 3

Claim 1: y∗i > 0⇒ cix∗i + αiy∗i > 0.

If y∗i > 0, then x∗i > 0, and by Assumption 3, cix∗i + αiy∗i > 0 holds. 3

Let T = {i ∈ L : αi = 0}. Then ci > 0 for all i ∈ T by Assumption 3, and αi > 0

for all i ∈ L \ T. We claim that

∑
i∈T

x∗i
li

+ ∑
i∈N\T

y∗i
max{d, hi}

= 1.

We prove the claim by contradiction. Let T+ = {i ∈ T : x∗i > 0} and (N \
T)+ = {i ∈ N \ T : y∗i > 0}. Then

∑
i∈T+

x∗i
li

+ ∑
i∈(N\T)+

y∗i
max{d, hi}

> 1. (17)

Claim 2: T+ = ∅.

Suppose i ∈ T+, that is, x∗i ≥ li > max{d, hi}. Since αi = 0 and αj > 0 for

all j ∈ L \ T, by optimality we must have y∗j = 0 for all j ∈ L \ T. In addition,

by Claim 1, we must have y∗j = 0 for all j ∈ N \ L as well. Thus (N \ T)+ = ∅.

Moreover, given that cj > 0 for any j ∈ T+, we must have T+ = {i}. Then (17)

takes the form x∗i > li, a contradiction with optimality as ci > 0. 3

By Claim 2, we arrive at

∑
i∈(N\T)+

y∗i
max{d, hi}

> 1. (18)

Claim 3: (N \ T)+ ∩ H = ∅.

Let i ∈ (N \T)+ be such that hi ≥ d. By Claim 1 and optimality, (N \T)+ = {i}.
Then (18) implies y∗i > hi ≥ d. If i ∈ L \ T, then αi > 0 and by optimality we have

a contradiction. If i ∈ N \ L, then li ≤ max{hi, d} = hi. Since ci + αi > 0, by

optimality we must have y∗i = hi, a contradiction as well. 3

25



By Claim 3, we arrive at

∑
i∈(N\T)+

y∗i > d. (19)

Claim 4: |(N \ T)+| ≥ 2.

Since (N \ T)+ cannot be empty, suppose (N \ T)+ = {i}. Then (19) and

Claim 3 imply y∗i > d > hi. Again, if i ∈ L \ T, then αi > 0 and we have a contra-

diction. If i ∈ N \ L, then li ≤ max{hi, d} = d. Since ci + αi > 0, by optimality we

must have y∗i = d, a contradiction as well. 3

Let

i0 ∈ arg min
{

ci + αi : i ∈ (N \ T)+
}

,

and let i1 ∈ (N \ T)+, i1 6= i0, which exists by Claim 4. Recall that from Assump-

tion 3, ci0 + αi0 > 0. For ε > 0 sufficiently small, define (x̄, ȳ) as

(x̄i, ȳi) =



(
x∗i0 + y∗i1 − ε, y∗i0 + y∗i1 − ε

)
i = i0

(0, 0) i = i1

(x∗i , y∗i ) i 6= i0, i 6= i1.

Certainly x̄i ≥ li whenever x̄i > 0, ȳi ≥ hi whenever yi > 0, and ȳi ≤ x̄i for all

i ∈ N. Thus, given that ∑i∈N y∗i > d, we conclude that (x̄, ȳ) is a feasible solution.

Moreover,

∑
i∈N

ci(x∗i − x̄i) + αi(y∗i − ȳi) = −ci0(y
∗
i1 − ε)− αi0(y

∗
i1 − ε) + ci1 x∗i1 + αi1y∗i1

= −
(
ci0 + αi0

)
(y∗i1 − ε) + ci1 x∗i1 + αi1y∗i1

> −
(
ci0 + αi0

)
y∗i1 + ci1y∗i1 + αi1y∗i1

≥ 0,

where the two inequalities follow from ci0 + αi0 > 0, y∗i1 > 0, and x∗i1 ≥ y∗i1 , and

from the definition of i0, respectively.

Hence, (x̄, ȳ) improves upon (x∗, y∗) and we get the required contradiction.

26



2.3.2 Extreme points of conv(S(0, h))

Since by Theorem 6 an outer description of conv(S(0, h)) in terms of linear inequal-

ities is available, we look for an inner description in terms of extreme points.

Proposition 7. Let (x, y) be an extreme point of conv(S(0, h)). Then both x and y have

exactly one non-zero entry.

Proof. We claim that if xi > 0, then yi > 0. By contradiction, suppose xi > 0 and

yi = 0. We can set

(xi, yi) =
1
2
[(2xi, 0) + (0, 0)] .

Thus, (x, y) can be written as the average of two distinct points in S(0, h).

Now, suppose that x has more than one non-zero entry, say xi > 0 and xj > 0.

By the claim, yi > 0 and yj > 0. We can set

hi ≤ yi = λxi, 0 < λ ≤ 1

hj ≤ yj = µxj, 0 < µ ≤ 1.

Finally, we can write

(xi, xj, yi, yj) = (xi, xj, λxi, µxj)

=
λxi

λxi + µxj
(xi +

µ

λ
xj, 0, λxi + µxj, 0)

+
µxj

λxi + µxj
(0, xj +

λ

µ
xi, 0, λxi + µxj).

Hence, (x, y) can be written as a strict convex combination of two distinct points

in S(0, h).

Combining Theorem 6 and Proposition 7, we have the following result.

Proposition 8. If (x, y) is an extreme point of conv(S(0, h)), then the non-zero entries

of (x, y) are one of the following:

27



• i ∈ N \ L⇒ xi = max{d, hi}, yi = max{d, hi},

• i ∈ L⇒

 xi = li, yi = li

xi = li, yi = max{d, hi}.

Proof. Let (x, y) be an extreme point of conv(S(0, h)). From Proposition 7, (x, y)

has exactly one pair of non-zero entries, say (xi, yi). From Theorem 6, (xi, yi) has

to satisfy either yi ≥ max{d, hi} if i ∈ N \ L, or both xi ≥ li and yi ≥ max{d, hi}
if i ∈ L. From these inequalities together with yi ≤ xi, at least two have to be

satisfied at equality since xi > 0, yi > 0, and yj = xj = 0 for all j ∈ N, j 6= i. The

possible solutions are exactly the combinations indicated above.

From Proposition 8, optimization over S(0, h) can be done by enumeration in

O(n) time.

2.3.3 Extended formulation for conv(S(0, h))

Now, let us consider the separation problem associated to (14). Given (x∗, y∗), let

T∗ =
{

i ∈ L :
x∗i
li
≤ y∗i

max{d, hi}

}
.

If (14) is satisfied for T∗, then it is satisfied for any T ⊆ L, and if in addition (16)

and (15) hold, then (x∗, y∗) belongs to conv(S(0, h)). Otherwise, T∗ gives the most

violated inequality from (14), and therefore it can be used to separate (x∗, y∗) from

conv(S(0, h)). Clearly, computing T∗ and its corresponding inequality can be done

in O(n) time.

Further note that (x, y) satisfies (14) for all T ⊆ L if and only if

∑
i∈N\L

yi

max{d, hi}
+ ∑

i∈L
min

(
xi

li
,

yi

max{d, hi}

)
≥ 1.

If fact, this is the separation routine for (14) given a point (x, y). Now, the above

condition holds if and only if there exists π ∈ R|L| such that

xi

li
≥ πi ∀i ∈ L

28



yi

max{d, hi}
≥ πi ∀i ∈ L

∑
i∈N\L

yi

max{d, hi}
+ ∑

i∈L
πi ≥ 1.

Thus, introducing additional variables π, we obtain an extended formulation for

conv(S(0, h)) in a space of higher dimension given by

W =


(x, y, π) ∈ Rn ×Rn ×R|L| :

∑
i∈N\L

yi

max{d, hi}
+ ∑

i∈L
πi ≥ 1

xi

li
≥ πi ∀i ∈ L

yi

max{d, hi}
≥ πi ∀i ∈ L

yi ≥ 0 ∀i ∈ N

xi − yi ≥ 0 ∀i ∈ N


.

Let projx,y(W) denote the projection of W onto the (x, y)-space.

Corollary 9. conv(S(0, h)) = projx,y(W).

This extended formulation is compact in the sense that we have, at most, dou-

bled the number of variables and constraints.

2.4 The case h = 0

In this section we assume that h = 0 and then S(t, 0) ⊆ Rn ×Rn takes the form

∑
i∈N

yi ≥ d (20)

yi ≤ ti + xi ∀i ∈ N (21)

xi ∈ {0} ∪ [li, ∞) ∀i ∈ N (22)

yi ≥ 0 ∀i ∈ N. (23)

2.4.1 Inequality description of conv(S(t, 0))

Proposition 10. ∑i∈N yi ≥ d is facet-defining for conv(S(t, 0)).

29



Proof. Choose a point x̄ ∈ Rn satisfying x̄i > max{d, li} for all i ∈ N and set ȳi =
d
n

for all i ∈ N. We have that (x̄, ȳ) belongs to S(t, 0) and satisfies ∑i∈N ȳi = d. Now

for each j ∈ N, j < n, consider the points
(
xj, yj) and

(
xn+j, yn+j) given by

(
xj

i , yj
i

)
=

 (x̄j + ε, ȳj) i = j

(x̄i, ȳi) i 6= j,

(
xn+j

i , yn+j
i

)
=


(x̄j, ȳj − ε) i = j

(x̄n, ȳn + ε) i = n

(x̄i, ȳi) i 6= j, i 6= n.

Finally, let
(
x2n, y2n) = (x̄, ȳ) and let (xn, yn) be given by

(xn
i , yn

i ) =

 (x̄n + ε, ȳn) i = n

(x̄i, ȳi) i 6= n.

For ε > 0 sufficiently small, the collection
{(

xj, yj) ,
(
xn+j, yn+j) : j ∈ N

}
is

contained in S(t, 0). Moreover, it is an affinely independent set, and since these 2n

points satisfy ∑i∈N yi ≥ d at equality, this constraint defines a facet of conv(S(t, 0)).

Definition 11. A subset R ⊆ N is a reverse cover if dR := d−∑i∈R ti > 0.

LetR ⊆ 2N be the set of all reverse covers. For a reverse cover R ∈ R, consider

the inequality

∑
i∈R

xi

max{li, dR}
+ ∑

i∈N\R

yi

dR
≥ 1. (24)

Also, let LR := {i ∈ R : li > dR}. Note that if R = ∅, we recover (20).

Proposition 12. For each reverse cover R ∈ R, (24) is valid for conv(S(t, 0)).

Proof. Let (x, y) ∈ S(t, 0). If there exists i ∈ LR with xi > 0, then (24) is satisfied.

Otherwise, xi = 0 for all i ∈ LR. Then

d ≤ ∑
i∈N

yi = ∑
i∈LR

yi + ∑
i∈R\LR

yi + ∑
i∈N\R

yi ≤ ∑
i∈LR

ti + ∑
i∈R\LR

(ti + xi) + ∑
i∈N\R

yi

30



=⇒ dR = d−∑
i∈R

ti ≤ ∑
i∈R\LR

xi + ∑
i∈N\R

yi.

Since max{li, dR} = dR > 0 for each i ∈ R \ LR, (24) is satisfied.

Definition 13. A reverse cover R ∈ R is proper if

1. LR 6= ∅.

2. ti > 0 for all i ∈ R \ LR.

Proposition 14. For each reverse cover R ∈ R, (24) is facet-defining if and only if R is

empty or if R is proper.

Proof. The case R = ∅ follows from Proposition 10. Thus, let R be a proper reverse

cover and let i ∈ LR. For each j ∈ N, consider the points
(
xj, yj) and

(
xn+j, yn+j)

defined as follows.

If j ∈ R,

(
xj

k, yj
k

)
=


(max{lj, dR}, tj + dR) k = j

(0, tk) k ∈ R, k 6= j

(0, 0) k ∈ N \ R.

Then

∑
k∈N

yj
k = ∑

k∈R
tk + dR = d

and

∑
k∈R

xj
k

max{lk, dR}
+ ∑

k∈N\R

yj
k

dR
=

max{lj, dR}
max{lj, dR}

= 1.

If j ∈ LR,

(
xn+j

k , yn+j
k

)
=


(lj, tj + dR + ε) k = j

(0, tk) k ∈ R, k 6= j

(0, 0) k ∈ N \ R.

Then

∑
k∈N

yn+j
k = ∑

k∈R
tk + dR + ε ≥ d

31



and

∑
k∈R

xn+j
k

max{lk, dR}
+ ∑

k∈N\R

yn+j
k
dR

=
lj

max{lj, dR}
= 1.

If j ∈ R \ LR,

(
xn+j

k , yn+j
k

)
=



(li, ti + dR + ε) k = i

(0, tj − ε) k = j

(0, tk) k ∈ R, k 6= i, k 6= j

(0, 0) k ∈ N \ R.

Then

∑
k∈N

yn+j
k = ∑

k∈R
tk − ε + dR + ε = d

and

∑
k∈R

xn+j
k

max{lk, dR}
+ ∑

k∈N\R

yn+j
k
dR

=
li

max{li, dR}
= 1.

If j ∈ N \ R,

(
xj

k, yj
k

)
=


(max{lj, dR}, dR) k = j

(0, tk) k ∈ R

(0, 0) k ∈ N \ R, k 6= j,

(
xn+j

k , yn+j
k

)
=


(max{lj, dR}+ ε, dR) k = j

(0, tk) k ∈ R

(0, 0) k ∈ N \ R, k 6= j.

Then

∑
k∈N

yj
k = ∑

k∈N
yn+j

k = ∑
k∈R

tk + dR = d

and

∑
k∈R

xj
k

max{lk, dR}
+ ∑

k∈N\R

yj
k

dR
= ∑

k∈R

xn+j
k

max{lk, dR}
+ ∑

k∈N\R

yn+j
k
dR

=
dR

dR
= 1.

Given that dR < lj for all j ∈ LR and 0 < tj for all j ∈ R \ LR, for ε > 0 suf-

ficiently small, we have that
{(

xj, yj) ,
(
xn+j, yn+j) : j ∈ N

}
is contained in S(t, 0).

32



Moreover, it is an affinely independent set, and since these 2n points satisfy (24) at

equality, this constraint defines a facet of conv(S(t, 0)).

For the converse, let R be a nonempty cover that is not proper, thus either LR =

∅ or there exists i ∈ R \ LR having ti = 0. In the former case, max{li, dR} = dR for

all i ∈ R, and then (24) is generated as the sum of (20) and (21) for i ∈ R. In the

latter, since ti = 0, we have dR\{i} = dR and yi ≤ xi. Since i ∈ R \ LR, we also have

max{li, dR} = dR. Thus

∑
j∈R

xj

max{lj, dR}
+ ∑

j∈N\R

yj

dR
= ∑

j∈R\{i}

xj

max{lj, dR}
+

xi

max{li, dR}
+ ∑

j∈N\R

yj

dR

≥ ∑
j∈R\{i}

xj

max{lj, dR}
+

yi

dR
+ ∑

j∈N\R

yj

dR

= ∑
j∈R\{i}

xj

max{lj, dR}
+ ∑

j∈N\(R\{i})

yj

dR
.

Hence, the inequality given by R is implied by the one given by R \ {i}, and there-

fore it cannot be facet-defining.

We now present the main result of this section.

Theorem 15. conv(S(t, 0)) is given by the following inequalities

∑
i∈R

xi

max{li, dR}
+ ∑

i∈N\R

yi

dR
≥ 1 ∀R ∈ R

yi ≤ xi + ti ∀i ∈ N (25)

xi ≥ 0 ∀i ∈ N (26)

yi ≥ 0 ∀i ∈ N. (27)

Proof. Let (c, α) ∈ Rn ×Rn be a non-zero vector and consider the problem

min {cx + αy : (x, y) ∈ S(t, 0)} .

As in the proof of Theorem 6, we will show that if this problem has finite optimal

value, then there exists one inequality from (24)-(27) that is satisfied at equality by

all optimal solutions.

33



Assumption 1: c ≥ 0 and c + α ≥ 0.

If for some i ∈ N we have ci < 0 or ci + αi < 0, then the problem is unbounded.

Thus, we may assume c ≥ 0 and c + α ≥ 0. 3

In particular, Assumption 1 implies that the objective value is bounded and

there exists an optimal solution. Let (x∗, y∗) be any such solution.

Assumption 2: α ≥ 0.

If for some i ∈ N we have αi < 0, then y∗i = ti + x∗i by optimality, that is, (25) is

satisfied at equality. Thus, we may assume α ≥ 0. 3

From Assumptions 1 and 2, we have that the optimal value is nonnegative.

Assumption 3: cx∗ + αy∗ > 0.

Suppose that the optimal value is zero. Since (c, α) 6= (0, 0), by Assumptions

1 and 2, there must exist i ∈ N such that either αi > 0 or ci > 0. By optimality,

in the former case we must have y∗i = 0, while in the latter x∗i = 0 must hold.

Therefore, either (27) or (26) must be satisfied at equality. Thus, we may assume

cx∗ + αy∗ > 0. 3

Claim 1: c + α > 0.

If ci = αi = 0 for some i ∈ N, then the optimal value is zero, contradicting

Assumption 3. 3

Let R := {i ∈ N : αi = 0}. From Assumption 3 and the definition of R, we

have ∑i∈R ti < d, since otherwise the optimal value is zero. Hence, R is a reverse

cover. We also have ci > 0 for all i ∈ R by Claim 1, and αi > 0 for all i ∈ N \ R.

We claim that

∑
i∈R

x∗i
max{li, dR}

+ ∑
i∈N\R

y∗i
dR

= 1.

Suppose not. Let L+
R := {i ∈ LR : x∗i > 0}, (R \ LR)

+ := {i ∈ R \ LR : x∗i > 0}, and

(N \ R)+ := {i ∈ N \ R : y∗i > 0}. Then

∑
i∈L+

R

x∗i
li

+ ∑
i∈(R\LR)+

x∗i
dR

+ ∑
i∈(N\R)+

y∗i
dR

> 1. (28)

34



Claim 2: L+
R = ∅.

Suppose i ∈ L+
R , that is, i ∈ R and x∗i ≥ li > dR. Note that since αj = 0 for all

j ∈ R, we can set y∗j = tj for each j ∈ R, j 6= i, and y∗i = ti + dR without affecting the

feasibility and objective value of the solution. Recalling that ci > 0 for all i ∈ R and

αi > 0 for all ∈ N \R, from (28) and optimality we have (R \ LR)
+ = (N \R)+ = ∅

and L+
R = {i}. Then (28) implies x∗i > li > dR, contradicting optimality since

setting x∗i = li improves the objective value. 3

Now, we have

∑
i∈(R\LR)+

x∗i + ∑
i∈(N\R)+

y∗i > dR. (29)

Claim 3: (N \ R)+ = ∅.

From (29) and Claim 2, we have

d < ∑
i∈(R\LR)+

x∗i + ∑
i∈R

ti + ∑
i∈(N\R)+

y∗i = ∑
i∈R

(x∗i + ti) + ∑
i∈(N\R)+

y∗i .

If (N \ R)+ is nonempty, we can set y∗i = ti + x∗i for each i ∈ R without changing

the objective value, and then decrease y∗i for some i ∈ (N \ R)+, contradicting

optimality as αi > 0 for all i ∈ (N \ R)+. 3

We arrive at

∑
i∈(R\LR)+

x∗i > dR.

Then we can improve upon (x∗, y∗) by taking i ∈ arg min{cj : j ∈ (R \ LR)
+} and

defining (x̄, ȳ) by

(x̄j, ȳj) =


(dR, tj + dR) j = i

(0, tj) j ∈ R, j 6= i

(0, 0) j ∈ N \ R.

35



2.4.2 Extended formulation for conv(S(t, 0))

At first sight, it is not clear how to separate the inequalities given by (24). We will

show that this can be done using an extended formulation. We first state a result

similar to Proposition 7.

Proposition 16. If (x, y) is an extreme point of conv(S(t, 0)), then x has at most one

non-zero entry.

Proof. We claim that if xi > 0, then yi > ti. By contradiction, suppose xi > 0 and

yi ≤ ti. We can write

(xi, yi) =
1
2
[(2xi, yi) + (0, yi)] .

Thus, (x, y) can be written as the average of two distinct points in S(t, 0).

Now, suppose that x has more than one non-zero entry, say xi > 0 and xj > 0.

By the claim, yi > ti and yj > tj. Thus, there exist λ, µ ∈ (0, 1] such that yi =

ti + λxi and yj = tj + µxj. Then we can write

(xi, xj, yi, yj) = (xi, xj, ti + λxi, tj + µxj)

=
λxi

λxi + µxj
(xi +

µ

λ
xj, 0, ti + λxi + µxj, tj)

+
µxj

λxi + µxj
(0, xj +

λ

µ
xi, ti, tj + λxi + µxj).

Also, notice that

ti + λxi + µxj = ti + λ
(

xi +
µ

λ
xj

)
≤ ti +

(
xi +

µ

λ
xj

)
,

tj + λxi + µxj = tj + µ

(
λ

µ
xi + xj

)
≤ tj +

(
λ

µ
xi + xj

)
.

Hence, (x, y) can be written as a strict convex combination of two distinct points

in S(t, 0).

Now consider the polyhedra

S0 := {(x, y) ∈ S(t, 0) : xj = 0 ∀j ∈ N}

36



=

(x, y) ∈ Rn
+ ×Rn

+ :

∑j∈N yj ≥ d

−yj ≥ −tj ∀j ∈ N

−xj ≥ 0 ∀j ∈ N

 ,

Si := {(x, y) ∈ S(t, 0) : xi ≥ li, xj = 0 ∀j 6= i}

=


(x, y) ∈ Rn

+ ×Rn
+ :

∑j∈N yj ≥ d

xi − yi ≥ −ti

−yj ≥ −tj ∀j 6= i

xi ≥ li

−xj ≥ 0 ∀j 6= i


, i ∈ N.

Note that Si is nonempty for each i ∈ N, while S0 is nonempty if and only if

∑j∈N tj ≥ d. Set N̄ = {0} ∪ N.

For a set C, let conv(C) denote the closure of its convex hull. If C is convex,

let ext(C) and rec(C) denote the set of extreme points and the recession cone of C,

respectively.

Proposition 17. conv(S(t, 0)) = conv(∪i∈N̄Si).

Proof. The reverse inclusion is easy as Si ⊆ S(t, 0) for all i ∈ N̄ and conv(S(t, 0)) is

closed by Proposition 3.

For the forward inclusion, let (x, y) ∈ ext(conv(S(t, 0))). From Proposition 16,

(x, y) belongs to some Si, i ∈ N̄, thus ext(conv(S(t, 0))) ⊆ conv(∪i∈N̄Si). It re-

mains to show that rec(conv(S(t, 0))) ⊆ rec(conv(∪i∈N̄Si)). For this, let (x, y) ∈
rec(conv(S(t, 0))). From Theorem 15, we can conclude that x ≥ 0, y ≥ 0, and

x ≥ y. Write (x, y) = ∑i∈N(xiei, yiei), where ei is the i-th canonical vector in Rn.

On the other hand, by disjunctive programming [5], we have rec(conv(∪i∈N̄Si)) =

conv(∪i∈N̄rec(Si)). Since rec(Si) is a convex cone for each i ∈ N̄, we also have

conv(∪i∈N̄rec(Si)) = ∑i∈N̄ rec(Si). Given that (xiei, yiei) ∈ rec(Si) for each i ∈ N,

we have that (x, y) ∈ rec(conv(∪i∈N̄Si)), which completes the proof.

37



From Proposition 17, conv(S(t, 0)) admits a compact representation as the pro-

jection onto (x, y) of a higher dimensional polyhedron which can be used to find

violated inequalities. Specifically, given (x̄, ȳ) ∈ Rn × Rn, let P ⊆ R
(n+1)n
+ ×

R
(n+1)n
+ ×Rn+1

+ be the set of vectors (x, y, λ) satisfying

∑
j∈N

y0
j − dλ0 ≥ 0 (α0)

−y0
j + tjλ

0 ≥ 0 ∀j ∈ N (β0j)

−xj ≥ 0 ∀j ∈ N

∑
j∈N

yi
j − dλi ≥ 0 ∀i ∈ N (αi)

xi
i − yi

i + tiλ
i ≥ 0 ∀i ∈ N (βii)

−yi
j + tjλ

i ≥ 0 ∀i ∈ N, ∀j 6= i (βij)

xi
i − liλi ≥ 0 ∀i ∈ N (γi)

−xi
j ≥ 0 ∀i ∈ N, ∀j 6= i

xi
i = x̄i ∀i ∈ N (νi)

∑
j∈N̄

yj
i = ȳi ∀i ∈ N (ηi)

∑
j∈N̄

λj = 1 (π).

Thus, (x̄, ȳ) belongs to conv(∪i∈N̄Si), and therefore to conv(S(t, 0)), if and only

if P is nonempty. Let Q ⊆ Rn+1
+ × R

(n+1)n
+ × Rn

+ × Rn × Rn × R be the set of

38



vectors (α, β, γ, η, ν, π) such that

α0 − β0j + νj ≤ 0 ∀j ∈ N

−dα0 + ∑
j∈N

tjβ0j + π ≤ 0

αi − βij + νj ≤ 0 ∀i ∈ N, ∀j ∈ N

βii + γi + ηi ≤ 0 ∀i ∈ N

−dαi + ∑
j∈N

tjβij − liγi + π ≤ 0 ∀i ∈ N

π + ∑
i∈N

ηi x̄i + ∑
i∈N

νiȳi > 0.

After removing unnecessary variables and constraints, by Farkas’ Lemma, P

is nonempty if and only if Q is empty. Moreover, given (x̄, ȳ) in the continuous

relaxation of (20)-(23), there is a violated inequality from (24) if and only if the

problem

min ∑
i∈N

ηi x̄i + ∑
i∈N

νiȳi − π (30)

s.t. α0 − β0j − νj ≤ 0 ∀j ∈ N

−dα0 + ∑
j∈N

tjβ0j + π ≤ 0

αi − βij − νj ≤ 0 ∀i ∈ N, ∀j ∈ N

βii + γi − ηi ≤ 0 ∀i ∈ N

−dαi + ∑
j∈N

tjβij − liγi + π ≤ 0 ∀i ∈ N

∑
i∈N

ηi + ∑
i∈N

νi + π = 1

α, β, γ, η, ν, π ≥ 0

has negative optimal value. In this case, any optimal solution to (30) yields a valid

inequality for conv(S(t, 0)) that is not satisfied by (x̄, ȳ).

39



2.5 A semi-continuous transportation problem

2.5.1 The problem and its complexity

Consider now the case where we intersect m ≥ 1 sets of the form S(t, h). Specif-

ically, let M := {1, . . . , m} be a set of nodes that receive flow from nodes in N,

where each j ∈ M has a demand dj > 0 to be met. In this context, we refer to N

and M as suppliers and customers, respectively. In this setting, l ∈ Rn
+ is a vector

of lower bounds for supplier capacities, h ∈ Rnm
+ is a vector of lower bounds for

arc flows, and t ∈ Rn
+ is a vector of initial supplier capacities.

Let S∗ ⊆ Rn ×Rnm be the set of vectors (x, y) such that

∑
i∈N

yij ≥ dj ∀j ∈ M (31)

∑
j∈M

yij ≤ ti + xi ∀i ∈ N (32)

xi ∈ {0} ∪ [li, ∞) ∀i ∈ N (33)

yij ∈ {0} ∪ [hij, ∞) ∀i ∈ N, ∀j ∈ M. (34)

Constraints (31), (33), and (34) are analogous to (1), (3), and (4) of S(t, h), respec-

tively. In addition, constraints (32) ensure that the total outflow from any supplier

does not exceed its available capacity. As with the inflow set, a graphical interpre-

tation is given in Figure 6.

Now we address the complexity of optimization over S∗.

Proposition 18. Optimizing a linear function over S∗ is NP-hard, even if t = 0 and

h = 0.

Proof. We show that the Uncapacitated Facility Location Problem (UFLP), which is

NP-hard, can be reduced to optimization of a linear function over S∗. An instance

of UFLP is defined by a set of potential facilities N, a set of customers M, and cost

functions f : N → R+ and e : N ×M→ R+. The objective is to compute

min
N′⊆N

{
∑

i∈N′
fi + ∑

j∈M
min
i∈N′

eij

}
.

40



i
xi ∈ {0} ∪ [li,∞) yij ∈ {0} ∪ [hij ,∞) dj > 0

N

j

M

ti ≥ 0

Figure 6: Semi-continuous transportation problem.

We can formulate UFLP as an integer programming problem. Let zi = 1 if and

only if facility i is open, and wij = 1 if and only if customer j is assigned to facility

i. The corresponding formulation is

z1 = min ∑
i∈N

fizi + ∑
j∈M

∑
i∈N

eijwij

s.t. wij ≤ zi ∀i ∈ N, ∀j ∈ M

∑
i∈N

wij = 1 ∀j ∈ M

wij ∈ {0, 1} ∀i ∈ N, ∀j ∈ M

zi ∈ {0, 1} ∀i ∈ N.

Given an instance π1 of UFLP, we want to construct an instance π2 of linear

optimization over S∗ with the same objective value. We identify N with the set of

supply nodes and M with the set of customers. Let li = m + 1 for all i ∈ N, dj = 1

for all j ∈ M, ci =
fi

m+1 for all i ∈ N, and αij = eij for all i ∈ N and j ∈ M. We also

set ti = 0 for each i ∈ N, and hij = 0 for each i ∈ N and j ∈ M. The corresponding

41



instance π2 is then

z2 = min ∑
i∈N

fi

m + 1
xi + ∑

i∈N
∑

j∈M
eijyij

s.t. ∑
j∈M

yij ≤ xi ∀i ∈ N

∑
i∈N

yij ≥ 1 ∀j ∈ M

yij ≥ 0 ∀i ∈ N, ∀j ∈ M

xi ∈ {0} ∪ [m + 1, ∞) ∀i ∈ N.

Let (z∗, w∗) be an optimal solution to π1. If we set xi = li if z∗i = 1 and 0

otherwise, and yij = dj if w∗ij = 1 and 0 otherwise, then we get a feasible solution

(x, y) to π2 with cost z1. Hence, z2 ≤ z1.

Now, let (x∗, y∗) be an optimal solution to π2. Since c ≥ 0, α ≥ 0, and li ≥ m+ 1,

we may assume that x∗i ∈ {0, li} for all i ∈ N. In addition, by integrality property

of networks, we may also assume that y∗ij ∈ {0, dj} for any i ∈ N and j ∈ M.

Setting zi = 1 if x∗i = li and 0 otherwise, and wij = 1 if y∗ij = dj and 0 otherwise,

we get a feasible solution (z, w) to π1 with cost z2. Hence, z1 ≤ z2.

2.5.2 Analysis of a relaxation of S∗

A special case of S∗ arises when h = 0, which constitutes a relaxation for this class

of problems. In such a case, we shall present structural characteristics of the convex

hull of this set that will give us some insight into the complexity of optimization

over it. In fact, we will show some results for a slightly more general set.

For lower bounds l ∈ Rn
+, demands d ∈ Rm

+, not necessarily positive, and initial

42



capacities t ∈ Rn
+, we define

S∗(l, d, t) :=


(x, y) ∈ Rn ×Rnm :

∑
i∈N

yij ≥ dj ∀j ∈ M

∑
j∈M

yij ≤ ti + xi ∀i ∈ N

yij ≥ 0 ∀i ∈ N, j ∈ M

xi ∈ {0} ∪ [li, ∞) ∀i ∈ N


.

Once more, we begin with a result in the spirit of Propositions 7 and 16.

Proposition 19. If (x, y) is an extreme point of conv(S∗(l, d, t)), then ∑j∈M yij > ti for

all i ∈ N such that xi > 0.

Proof. Suppose that xi > 0 and ∑j∈M yij ≤ ti for some i ∈ N. Then we can write

(xi, yi1, . . . , yim) =
1
2
[(2xi, yi1, . . . , yim) + (0, yi1, . . . , yim)],

that is, (x, y) is the strict convex combination of two distinct points in S∗(l, d, t),

and thus it cannot be an extreme point of conv(S∗(l, d, t)).

For (x̄, ȳ) ∈ S∗(l, d, t), we define the support σ(x̄) of x̄ as the subset of suppliers

with positive production, that is

σ(x̄) := {i ∈ N : x̄i > 0}.

We will prove that if (x̄, ȳ) is an extreme point of conv(S∗(l, d, t)), then |σ(x̄)| ≤ m.

We need the following key lemma.

Lemma 20. If t = 0 and (x̄, ȳ) is an extreme point of conv(S∗(l, d, 0)), then |σ(x̄)| ≤ m.

Proof. For a contradiction, suppose that for some positive integers n > m the claim

does not hold. Choose n and m so that n+m is minimum among all such instances.

Note that by Proposition 16, m > 1. Let (x̄, ȳ) be an extreme point of S∗(l, d, 0)

having |σ(x̄)| > m, where l ∈ Rn
+ and d ∈ Rm

+.

43



By minimality of n + m, we may assume that |σ(x̄)| = n, since otherwise xi = 0

for some i ∈ N, and removing this supplier from the instance would yield a smaller

counterexample.

Claim 1: n = m + 1.

If n > m + 1, let N̂ := N \ {n}. We define d̂ ∈ Rm
+ by

d̂j := ∑
i∈N̂

ȳij ∀j ∈ M.

Let (x̂, ŷ) ∈ Rn−1
+ ×R

(n−1)m
+ and l̂ ∈ Rn−1

+ be the restrictions of (x̄, ȳ) and l with

respect to N̂, respectively. We have that (x̂, ŷ) is feasible for S∗(l̂, d̂, 0) and |σ(x̂)| =
n − 1 ≥ m + 1. By minimality of n + m, (x̂, ŷ) cannot be an extreme point of

conv(S∗(l̂, d̂, 0)). Thus, we can write

(x̂, ŷ) =
q

∑
p=1

λp(xp, yp),

where q ≥ 2, {(xp, yp) : p = 1, . . . , q} are distinct points in S∗(l̂, d̂, 0), λp > 0 for

all p = 1, . . . , q, and ∑
q
p=1 λp = 1. For each p = 1, . . . , q, we extend (xp, yp) to

(x̃p, ỹp) ∈ Rn ×Rnm by setting x̃p
n = x̄n and ỹp

nj = ȳnj for all j ∈ M. Since xp ≥ l̂

and x̄n ≥ ln, we have x̃p ≥ l. In addition, for each j ∈ M, we have

∑
i∈N

ỹp
ij = ∑

i∈N̂

yp
ij + ȳnj ≥ d̂j + ȳnj ≥ dj.

Thus, {(x̃p, ỹp) : p = 1, . . . , q} are distinct points in S∗(l, d, 0). We can see that

(x̄, ȳ) =
q

∑
p=1

λp(x̃p, ỹp)

and therefore (x̄, ȳ) cannot be an extreme point of conv(S∗(l, d, 0)). The claim is

thus proved. 3

Let G = (N ∪M, E) be a bipartite graph where i ∈ N is adjacent to j ∈ M if and

only if ȳij > 0. Notice that since σ(x̄) = N, by Proposition 19 we have that for each

i ∈ N, there exists j ∈ M having ȳij > 0, and therefore deg(i) ≥ 1 for all i ∈ N.

44



Furthermore, we may assume deg(j) ≥ 1 for all j ∈ M, since if deg(j) = 0, then dj =

0 and removing this customer from the instance yields a smaller counterexample.

Therefore, given that n = m + 1, there must exist some component of G having

more suppliers than customers. Hence, we may assume that G is connected, since

otherwise some component of G induces a smaller counterexample. We may also

assume that G is acyclic, since otherwise we can modify ȳ along the arcs in a cycle

and write (x̄, ȳ) as the average of two different solutions in S∗(l, d, 0). Thus, we

may assume that G is a tree.

Claim 2: deg(j) = 2 ∀j ∈ M.

We first argue that deg(j) ≥ 2 for all j ∈ M. By contradiction, we may assume

that deg(m) = 1 and that m is supplied by n. As before, let N̂ := N \ {n} and

M̂ := M \ {m}. We define d̂ ∈ Rm−1
+ by

d̂j := ∑
i∈N̂

ȳij ∀j ∈ M̂.

Taking the restrictions of (x̄, ȳ) and l with respect to N̂ and M̂, and proceeding

as in the proof of Claim 1, we conclude that (x̄, ȳ) cannot be an extreme point of

conv(S∗(l, d, 0)). Hence, deg(j) ≥ 2 ∀j ∈ M. However, since G is a tree, we have

|E| = |N ∪M| − 1 = m + 1+ m− 1 = 2m, and thus deg(j) = 2 for each j ∈ M. The

claim is thus proved. 3

Now, for each i ∈ N, let

M(i) := {j ∈ M : (i, j) ∈ E},

N(i) := {l ∈ N \ {i} : ∃j ∈ M such that (i, j), (l, j) ∈ E}.

In other words, M(i) are the customers served by i, while N(i) are the suppliers

that share a customer with i, which we refer to as its neighbors. Clearly l ∈ N(i)

if and only if i ∈ N(l). Note that since G is acyclic, any two suppliers can have

at most one common customer. Thus, given neighbors i and l in N, there exists a

unique j =: j(i, l) ∈ M connecting them in G.

45



Let (c, α) ∈ Rn ×Rnm be such that (x̄, ȳ) is the unique minimizer in S∗(l, d, 0)

with respect to this function. For each i ∈ N, consider the solution (xi, yi) given by

xi
l =


0 l = i

x̄l + ȳij(i,l) l ∈ N(i)

x̄l otherwise,

yi
l j =


0 l = i

ȳl j + ȳij(i,l) l ∈ N(i), j = j(i, l)

ȳl j otherwise.

Thus, we obtain (xi, yi) from (x̄, ȳ) by moving the production from i to its neigh-

bors and removing i from the solution. It is straightforward to verify that (xi, yi)

is feasible to S∗(l, d, 0). However, since (x̄, ȳ) is the unique minimizer for (c, α),

we have that the cost incurred by (x̄, ȳ) is less than the cost incurred by (xi, yi).

Since these solutions only differ in the variables associated to i and its neighbors,

we have

ci x̄i + ∑
j∈M(i)

αijȳij < ∑
l∈N(i)

(cl + αl j(i,l))ȳij(i,l).

Recalling that ∑j∈M(i) ȳij ≤ x̄i, we have

∑
j∈M(i)

(ci + αij)ȳij < ∑
l∈N(i)

(cl + αl j(i,l))ȳij(i,l).

Rewriting the left-hand-side in the last inequality, we obtain

∑
l∈N(i)

(ci + αij(i,l))ȳij(i,l) < ∑
l∈N(i)

(cl + αl j(i,l))ȳij(i,l).

Hence, there must exist some l ∈ N(i) such that

ci + αij(i,l) < cl + αl j(i,l).

For neighbors i and l, we say that i dominates l if the above inequality holds.

Thus, we have that any supplier has to dominate at least one of its neighbors.

Let G′ = (N, E′) be a graph where (i, j) ∈ E′ if and only if i and j are neighbors

in G, and note that G′ is also a tree. Let L ⊆ N be the set of leaves of G′. Since

n = m + 1 ≥ 3, L has at least two elements and N \ L is nonempty. Note that any

46



leaf dominates its unique neighbor. Now, pick some r ∈ L as a root of G′, and let

i ∈ N \ L be such that all of its children are leaves of G′. Since i is dominated by its

children, it must dominate its parent. Reasoning by induction, we have that any

supplier has to dominate its parent. In particular, we conclude that r is dominated

by its child, a contradiction since r is a leaf. This completes the proof.

With Proposition 19 and Lemma 20 at hand, we can prove the main result of

this section.

Theorem 21. For any t ≥ 0, if (x̄, ȳ) is an extreme point of conv(S∗(l, d, t)), then

|σ(x̄)| ≤ m.

Proof. For a contradiction, suppose that for some positive integers n > m the claim

does not hold. Let (x̄, ȳ) be an extreme point of S∗(l, d, t) having |σ(x̄)| > m, where

l, t ∈ Rn
+ and d ∈ Rm

+.

For each i ∈ N, let index j(i) ∈ M be such that ∑j∈M, j<j(i) ȳij ≤ ti and

∑j∈M, j≤j(i) ȳij > ti. Since (x̄, ȳ) is an extreme point of conv(S∗(l, d, t)), by Proposi-

tion 19, j(i) is well-defined for all i ∈ N. We define ŷ ∈ Rnm
+ and d̂ ∈ Rm

+ by

ŷij =


0 j < j(i)

∑
k∈M, k≤j(i)

ȳik − ti j = j(i)

ȳij j > j(i),

d̂j = ∑
i∈N

ŷij ∀j ∈ M.

Also, let x̂ = x̄. Then ∑j∈M ŷij = ∑j∈M ȳij − ti ≤ x̄i = x̂i for all i ∈ N. Moreover,

(x̂, ŷ) is feasible to S∗(l, d̂, 0). Since |σ(x̂)| = |σ(x̄)| > m, by Lemma 20, (x̂, ŷ)

cannot be an extreme point of conv(S∗(l, d̂, 0)). Thus, we can write

(x̂, ŷ) =
q

∑
p=1

λp(xp, yp),

47



where q ≥ 2, {(xp, yp) : p = 1, . . . , q} are distinct points in S∗(l, d̂, 0), λp > 0 for all

p = 1, . . . , q, and ∑
q
p=1 λp = 1. Notice that for each p = 1, . . . , q and i ∈ N, yp

ij = 0

for all j < j(i). Then we can define w ∈ Rnm by

wij =


ȳij j < j(i)

ȳij − ŷij j = j(i)

0 j > j(i),

and set x̃p = xp and ỹp = yp + w. Notice that for all i ∈ N,

wij(i) = ȳij(i) − ŷij(i) = ȳij(i) − ∑
j∈M, j≤j(i)

ȳij + ti = − ∑
j∈M, j<j(i)

ȳij + ti ≥ 0.

Thus, w ≥ 0 and ỹp is nonnegative for all p = 1, . . . , q. Also, for all i ∈ N we have

∑
j∈M

ỹp
ij = ∑

j∈M
yp

ij + ∑
j∈M, j≤j(i)

ȳij − ŷij(i) = ∑
j∈M

yp
ij + ti ≤ xp

i + ti = x̃p
i + ti.

Finally, for all j ∈ M we have

∑
i∈N

ỹp
ij = ∑

i∈N
yp

ij + ∑
i∈N: j≤j(i)

ȳij − ∑
i∈N: j=j(i)

ŷij

≥ d̂j + ∑
i∈N: j≤j(i)

ȳij − ∑
i∈N: j=j(i)

ŷij

= ∑
i∈N

ŷij + ∑
i∈N: j≤j(i)

ȳij − ∑
i∈N: j=j(i)

ŷij

= ∑
i∈N: j=j(i)

ŷij + ∑
i∈N: j>j(i)

ŷij + ∑
i∈N: j≤j(i)

ȳij − ∑
i∈N: j=j(i)

ŷij

= ∑
i∈N

ȳij

≥ dj.

Thus, (x̃p, ỹp) ∈ S∗(l, d, t) for all p = 1, . . . , q and are all distinct by the definition

of ỹp. Furthermore, it is straightforward to verify that ∑
q
p=1 λp(x̃p, ỹp) = (x̄, ȳ).

Hence (x̄, ȳ) cannot be an extreme point of conv(S∗(l, d, t)), yielding the required

contradiction.

Corollary 22. Minimizing a linear function over S∗(l, d, t) can be done by solvingO(nm)

linear programming problems.

48



In other words, optimization over S∗(l, d, t) can be done in polynomial time

when m is fixed.

As an algorithmic implication, we can tweak the branch-and-bound proce-

dure when we optimize over S∗(l, d, t): whenever a node of the search-tree has

m bounds of the form xi ≥ li, we can fix the production of the remaining suppli-

ers to 0. However, our experimental experience indicates that a standard branch-

and-cut solver does not need to branch that many times, rendering this approach

inapplicable for practical purposes.

On the other hand, we can construct relaxations of S∗ by considering the sub-

system defined by a few customers, say two, and taking h = 0. By Theorem 21 and

an argument similar to Proposition 17, a compact extended formulation is avail-

able for its convex hull from which strong valid inequalities for conv(S∗) may be

devised.

2.6 Computation

We test the performance of the inequalities presented in Sections 2.3 and 2.4 on

instances of the semi-continuous transportation problem described in Section 2.5.

We address the effectivity of the cuts used alone or combined with CPLEX cuts,

and the differences between semi-continuous and binary formulations.

Each instance is formulated in CPLEX either declaring all variables as semi-

continuous or using auxiliary binary variables to enforce semi-continuity. In the

latter case, we introduce constraints of the form lz ≤ x ≤ Mz, where z is a binary

variable and M > 0 is a valid upper bound that yields an equivalent problem. Let-

ting d̄ := ∑j∈M dj, l̄ := maxi∈N{li}, h̄ := maxi∈N, j∈M{hij}, and t̄ := maxi∈N{ti},
we set M = max{d̄, l̄, h̄}+ t̄.

Also, we consider the cases t = 0 and t > 0 separately. In the first case, we

ignore the initial capacities and therefore cuts of the form (14) may be generated.

49



In the second case, valid cuts may be generated using the extended formulation

(30). In both cases, to separate a fractional solution (x̄, ȳ), we consider the inflow

set corresponding to each customer j ∈ M and we try to find a cut violated by

(x̄, ȳj). Thus, we may add up to m cuts in a single round. For simplicity, cuts are

added only at the root node. In addition, when t = 0, we also test an extended

formulation where a vector π j is appended for each j ∈ M. Adding the constraints

that define W in Corollary 9 for each j ∈ M, we obtain an extended formulation

where all the inequalities describing the inflow relaxation for each customer are

already implied, and therefore there is no need to generate cuts on-the-fly. Even

though an extended formulation is also available when t > 0, its size becomes a

bottleneck even when solving the root relaxation, and thus it is not considered in

our experimental setup.

In our experiments, we use n ∈ {30, 50, 80} and m ∈ {30, 50, 80}. For each

combination of these parameters, with the exception of (n, m) = (80, 80) due to

time limits, we generate 10 instances as follows:

• li ∼ U [100, 500] ∀i ∈ N

• hij ∼ U
[
0, 2

m li
]
∀i ∈ N, ∀j ∈ M

• ti ∼ U [10, 50] ∀i ∈ N

• dj ∼ U
[
10 n

m , 50 n
m
]
∀j ∈ M

• ci ∼ U
[
40, 40 + 1000

li

]
∀i ∈ N

• αij ∼ U [−10, 90] ∀i ∈ N, ∀j ∈ M,

where X ∼ U [a, b] means that X is a random variable following a uniform dis-

tribution on the interval [a, b]. Then, for each instance and for each formulation,

we solve using CPLEX 12.2 default branch-and-cut (C), using only our cuts within

50



branch-and-cut (U), using both CPLEX and user cuts (C+U), and solving the ex-

tended formulation (E) in the case t = 0. All experiments were carried out on a

personal computer on a single thread running at 3.33 Ghz with 4 GB of RAM under

Linux environment. A time limit of 1800 CPU seconds per instance is enforced.

2.6.1 The case t = 0

Table 1 shows the number of instances solved within the time limit, Table 2 shows

the average number of explored nodes needed to reach optimality within CPLEX’s

default tolerance, and Table 3 shows the average time in CPU seconds required by

such task. In all cases, columns n and m denote the size of the problem, columns

Semi-continuous and Binary denote the type of formulation being considered, and

columns C, U, C+U, and E denote the procedure being used, as explained above.

All the averages are with respect to the number of instances that were solved. If no

instance was solved for a particular combination of n and m, a dash “-” appears in

the corresponding cell.

Table 1: Number of solved instances when t = 0.

n m Semi-continuous Binary
C U C+U E C U C+U E

30 30 10 10 10 10 10 10 10 10
30 50 10 10 10 10 10 10 10 10
30 80 10 10 10 8 10 10 10 10
50 30 10 10 10 10 10 10 10 10
50 50 10 10 10 9 9 10 10 10
50 80 4 10 5 10 1 10 4 10
80 30 5 10 4 10 10 10 10 10
80 50 0 5 0 10 4 10 2 10

Table 1 shows that not all instances were solved within the time limit. This

may be a bit surprising, as the underlying problem structure is fairly simple and

the number of variables does not exceed a few thousands. Adding our cuts alone

and the extended formulation have the best performance in this sense, specially

in the binary formulation where all instances where solved by both methods. As

51



we can see from Table 2, the node count of the extended formulation is roughly

one or two orders of magnitude smaller when compared to the other procedures

in both models. Regarding time, from Table 3 we observe that the extended for-

mulation is the best method in most cases when the semi-continuous formulation

is used, whereas this approach is the best only in the largest instances when the

binary formulation is considered. Among cutting procedures, adding only user

cuts performs better than the rest in both formulations and is the only way to solve

the largest instances within the time limit, with time reductions of up to one order

of magnitude. Again, this can be somewhat surprising in the case of the binary

formulation, as these cuts were not developed with binary variables in mind, and

in this case we expected the presolve routines and flow covers to be particularly

effective. On the other hand, combining these and CPLEX cuts decrease the overall

performance and is comparable to the default solver.

Table 2: Number of nodes needed to prove optimality when t = 0.

n m Semi-continuous Binary
C U C+U E C U C+U E

30 30 3936.2 3266.5 2919.2 72.8 313.3 808.4 268.1 32.7
30 50 6246.6 4940.7 3653.6 213.0 493.3 731.9 618.7 61.7
30 80 11764.3 9330.0 6232.5 930.3 1142.3 1042.6 840.3 206.1
50 30 24045.9 23725.8 20548.9 297.5 1501.4 4545.5 1248.5 84.8
50 50 49407.0 40399.5 54556.6 145.1 3433.0 7446.9 2382.6 135.1
50 80 81456.8 159338.0 55918.8 1019.9 2086.0 23129.2 2621.3 470.3
80 30 56262.8 210466.0 48761.0 192.8 4049.3 30828.1 4731.6 67.6
80 50 - 438369.0 - 332.3 12265.2 114003.0 17426.5 287.5

Table 4 shows information regarding number of cuts. Column headers n, m,

Semi-continuous, Binary, U, and C+U have the same meaning as in the previous ta-

bles. In addition, columns Gen denote the average number of user cuts that were

generated, while columns Appl denote the average number of cuts that were actu-

ally applied. As we let CPLEX decide whether or not to apply user cuts that are

generated by our separation routine, the numbers in these columns are different in

52



Table 3: CPU time needed to prove optimality when t = 0.

n m Semi-continuous Binary
C U C+U E C U C+U E

30 30 17.1 4.0 17.7 3.4 23.6 2.0 22.9 4.8
30 50 54.7 12.9 45.2 16.9 98.7 4.6 126.2 20.3
30 80 129.7 33.9 117.8 126.5 409.4 9.3 332.0 89.1
50 30 256.1 28.9 244.0 10.0 148.1 11.3 151.9 12.1
50 50 609.0 59.6 724.1 13.6 597.4 21.7 586.0 37.6
50 80 1399.7 316.7 1155.6 135.5 578.2 98.5 1144.6 165.3
80 30 924.7 168.2 1018.3 8.2 264.5 48.1 234.2 8.2
80 50 - 746.4 - 28.5 1438.7 354.6 1409.4 45.7

general.

Table 4: Number of cuts when t = 0.

n m Semi-continuous Binary
U C+U U C+U

Gen Appl Gen Appl Gen Appl Gen Appl
30 30 96.0 24.3 96.0 76.4 60.0 15.9 51.0 10.3
30 50 154.6 69.4 154.6 132.8 100.0 45.7 70.0 29.1
30 80 262.0 137.0 262.0 218.3 128.0 69.9 120.0 79.3
50 30 87.4 7.4 87.4 49.6 67.0 6.7 102.6 37.9
50 50 147.6 18.8 147.6 101.9 123.4 15.7 180.5 98.5
50 80 239.9 45.5 239.8 181.2 231.9 43.9 316.5 178.5
80 30 88.3 5.9 87.0 42.8 58.8 4.7 94.0 23.2
80 50 147.2 9.0 - - 101.3 6.9 173.5 75.0

First, note that more cuts are generated and applied in the semi-continuous

formulation than in the binary formulation. Now, in both cases, the proportion of

applied cuts with respect to the number of generated cuts is smaller when CPLEX

cuts are turned off. Given the results in Table 3, just a few cuts are required to get a

non-trivial improvement over the default solver, and the generation of more user

cuts than needed seems to increase the running times.

2.6.2 The case t > 0

Tables 5, 6, and 7 are analogous to Tables 1, 2, and 3, respectively, with the dif-

ference that there is no column E as no extended formulation was tested in this

53



case.

Table 5: Number of solved instances when t > 0.

n m Semi-continuous Binary
C U C+U C U C+U

30 30 10 10 10 10 10 10
30 50 7 10 8 10 10 10
30 80 2 9 8 10 10 10
50 30 0 10 3 10 10 10
50 50 0 9 1 9 10 8
50 80 0 0 0 1 10 4
80 30 0 5 0 4 10 6
80 50 0 0 0 0 10 0

From Table 5, we see that when t > 0, the instances become much harder than

in the case t = 0. The performance of the semi-continuous formulation is quite

poor in general. In contrast, the binary formulation is able to solve all small in-

stances with any procedure, but only when CPLEX cuts are turned off it is possible

to solve all large instances as well. Regarding explored nodes, Table 6 shows that

the addition of user cuts may reduce the size of the search tree. With respect to

computation times, we have that user cuts alone in the binary formulation outper-

forms all other methods, as shown in Table 7. This procedure is also the best with

the semi-continuous formulations. Once again, combining CPLEX and user cuts is

comparable to the default solver.

Table 6: Number of nodes needed to prove optimality when t > 0.

n m Semi-continuous Binary
C U C+U C U C+U

30 30 120194.0 17069.0 53748.7 603.1 852.3 433.5
30 50 137858.0 52383.7 40540.5 651.2 883.4 476.3
30 80 83006.5 112944.0 33035.1 1153.6 1103.7 901.6
50 30 - 106912.0 133777.0 3555.5 5927.4 2596.4
50 50 - 216427.0 121396.0 4991.4 10361.9 3013.5
50 80 - - - 7998.0 22166.4 2496.8
80 30 - 714998.0 - 17143.5 77894.5 16998.0
80 50 - - - - 104097.0 -

54



Table 7: CPU time needed to prove optimality when t > 0.

n m Semi-continuous Binary
C U C+U C U C+U

30 30 343.5 22.1 211.7 26.6 5.3 26.1
30 50 759.3 116.5 311.0 74.0 9.1 66.4
30 80 945.6 413.5 488.8 224.4 18.6 202.4
50 30 - 126.4 962.1 168.8 38.7 157.5
50 50 - 406.2 1283.7 601.8 93.8 469.9
50 80 - - - 1427.6 256.6 872.4
80 30 - 838.1 - 542.2 295.8 804.0
80 50 - - - - 762.9 -

Finally, Table 8 shows information regarding cuts, and it is analogous to Table 4.

As in the case t = 0, when CPLEX and user cuts are combined, the solver attempts

to generate and apply more cuts than needed, decreasing the overall performance

as follows from Table 7.

Table 8: Number of cuts when t > 0.

n m Semi-continuous Binary
U C+U U C+U

Gen Appl Gen Appl Gen Appl Gen Appl
30 30 101.7 51.2 98.7 86.6 48.0 25.6 42.0 21.1
30 50 159.0 92.1 161.9 143.1 74.9 43.8 94.9 51.8
30 80 253.0 169.4 265.0 235.1 120.0 92.4 152.0 104.7
50 30 89.8 29.5 94.3 87.7 84.0 29.1 101.2 69.4
50 50 147.7 68.8 150.0 144.0 147.9 70.4 182.9 136.5
50 80 - - - - 239.3 102.2 308.8 222.5
80 30 86.4 30.0 - - 79.0 25.1 111.2 85.3
80 50 - - - - 130.6 37.9 - -

As we have seen, the proposed valid inequalities, either in their original form

or through an extended formulation when possible, are quite useful in solving this

class of semi-continuous network flow problems. Although these cuts involve only

the original variables of the problem, the introduction of binary variables seems to

improve the overall performance.

55



2.7 Concluding remarks

In this chapter we have considered semi-continuous network flow problems from

the complexity and polyhedral perspectives. In particular, we introduced the semi-

continuous inflow set with variable upper bounds as a relaxation. Two particular

cases of this set were considered, for which we presented complete descriptions of

the convex hull in terms of linear inequalities and extended formulations. These

inequalities proved to be quite efficient in solving a class of semi-continuous trans-

portation problems. In fact, applying these cuts to a binary formulation of such

problems turned out to be the most effective method.

We envision at least two possible venues of future research, mainly based on

the semi-continuous inflow set. The first one is to consider finite upper bounds on

semi-continuous variables. In this case, further connections with [14] may be es-

tablished. Another direction is to consider semi-continuous inflows and outflows

simultaneously. This would lead to a more general set that can be a better relax-

ation for appropriate problems.

Since the computational results demonstrate that the cuts are particularly ef-

fective with a binary formulation, it would be reasonable to try strengthening the

cuts by having nonzero coefficients for the binary variables. Relaxations of {0, 1}
of the form {0} ∪ [1, ∞) might yield stronger yet tractable inflow relaxations.

56



CHAPTER III

FORBIDDEN VERTICES

3.1 Introduction

Given a nonempty rational polytope P ⊆ Rn, we denote by vert(P), faces(P),

and facets(P) the sets of vertices, faces, and facets of P, respectively, and we write

f (P) := |facets(P)|. We also denote by xc(P) the extension complexity of P, that is,

the minimum number of inequalities in any linear extended formulation of P, i.e., a

description of a polyhedron whose image under a linear map is P (see for instance

[21].) Finally, given a set X ⊆ vert(P), we define forb(P, X) := conv(vert(P) \ X).

This chapter is devoted to understanding the complexity of the forbidden-vertices

problem defined below.

Definition 23. Given a polytope P ⊆ Rn, a set X ⊆ vert(P), and a vector c ∈ Rn, the

forbidden-vertices problem is to either assert vert(P) \ X = ∅, or to return a minimizer

of cx over vert(P) \ X otherwise.

The work in this chapter is motivated by enumerative schemes for stochastic

integer programs [34], where a series of potential solutions are evaluated and dis-

carded from the search space. As we will see later, the problem is also related to

finding different basic solutions to a linear program. An implementation of some

results presented here is given in Chapter 4.

To address the complexity of the forbidden-vertices problem, it is crucial to

distinguish between different encodings of a polytope.

Definition 24. An explicit description of a polytope P ⊆ Rn is a system Ax ≤ b defining

P. An implicit description of P is a separation oracle which, given a rational vector x ∈ Rn,

either asserts x ∈ P, or returns a valid inequality for P that is violated by x.

57



Note that an extended formulation for P is a particular case of an implicit de-

scription. When P admits a separation oracle that runs in time bounded polynomi-

ally in the facet complexity of P and the encoding size of the point to separate, we

say that P is tractable. We refer the reader to [55, Section 14] for a deeper treatment

of the complexity of linear programming.

We also distinguish different encodings of a set of vertices.

Definition 25. An explicit description of X ⊆ vert(P) is the list of the elements in X. If

X = vert(F) for some face F of P, then an implicit description of X is an encoding of P

and some valid inequality for P defining F.

Below we summarize our main contributions.

• In Section 3.2, we show that the complexity of optimizing over vert(P) \X or

describing forb(P, X) changes significantly depending on the encoding of P

and/or X. In most situations, however, the problem is hard.

• In Section 3.3 we consider the case of removing a list X of binary vectors

from a 0-1 polytope P. When P is the unit cube, we present two compact ex-

tended formulations describing forb([0, 1]n, X). We further extend this result

and show that the forbidden-vertices problem is polynomially solvable for

tractable 0-1 polytopes.

• Then in Section 3.4 we apply our results to the k-best problem and to bi-

nary all-different polytopes, showing the tractability of both. Finally, in Sec-

tion 3.5, we also provide extensions to integral polytopes.

The complexity results of Sections 3.2 and 3.3 lead to the classification shown in

Tables 9 and 10, depending on the encoding of P and X, and whether P has 0-1 ver-

tices only or not. Note that (∗) is implied, for instance, by Theorem 40. Although

58



Table 9: Complexity classification for general polytopes.

P
Explicit Implicit

X
Explicit

NP-hard (Thm. 33) NP-hard for |X| = 1 (Thm. 31)
Polynomial for fixed |X| (Prop. 28)

Implicit NP-hard (Prop. 32) NP-hard (∗)

Table 10: Complexity classification for 0-1 polytopes.

P
Explicit Implicit

X Explicit
Polynomial Polynomial (Thm. 38)

Implicit (∗∗) NP-hard (Thm. 40)

we were not able to establish the complexity of (∗∗), Proposition 41 presents a

tractable subclass.

In constructing extended formulations, disjunctive programming emerges as a

practical powerful tool. The lemma below follows directly from [5] and the defini-

tion of extension complexity. We will frequently refer to it.

Lemma 26. Let P1, . . . , Pk be nonempty polytopes in Rn. If Pi = {x ∈ Rn| ∃yi ∈ Rmi :

Eix + Fiyi = hi, yi ≥ 0}, then conv(∪k
i=1Pi) = {x ∈ Rn| ∃xi ∈ Rn, yi ∈ Rmi , λ ∈

Rk : x = ∑k
i=1 xi, Eixi + Fiyi = λihi, ∑k

i=1 λi = 1, yi ≥ 0, λ ≥ 0}. In particular, we

have xc
(
conv(∪k

i=1Pi)
)
≤ ∑k

i=1(xc(Pi) + 1).

3.2 General polytopes

We begin with some general results when P ⊆ Rn is an arbitrary polytope. The

first question is how complicated forb(P, X) is with respect to P.

Proposition 27. For each n, there exists a polytope Pn ⊆ Rn and a vertex vn ∈ vert(Pn)

such that Pn has 2n + 1 vertices and n2 + 1 facets, while forb(Pn, {vn}) has 2n facets.

Proof. Let Qn := [0, 1]n ∩ L, where L :=
{

x ∈ Rn| 1x ≤ 3
2

}
and 1 is the vector

of ones. It has been observed [4] that Qn has 2n + 1 facets and n2 + 1 vertices.

59



We translate Qn and define Q′n := Qn − 1
n 1 =

[
− 1

n , 1− 1
n

]n
∩ L′, where L′ :={

x ∈ Rn| 1x ≤ 1
2

}
. Since Q′n is a full-dimensional polytope having the origin in

its interior, there is a one-to-one correspondence between the facets of Q′n and the

vertices of its polar Pn := (Q′n)∗ and vice versa. In particular, Pn has n2 + 1 facets

and 2n + 1 vertices. Let v ∈ vert(Pn) be the vertex associated with the facet of

Q′n defined by L′. From polarity, we have forb(Pn, {v})∗ =
[
− 1

n , 1− 1
n

]n
. Thus

forb(Pn, {v})∗ is a full-dimensional polytope with the origin in its interior and 2n

vertices. By polarity, we obtain that forb(Pn, {v}) has 2n facets.

Note that the above result only states that forb(P, X) may need exponentially

many inequalities to be described, which does not constitute a proof of hardness.

Such a result is provided by Theorem 33 at the end of this section. We first show

that forb(P, X) has an extended formulation of polynomial size in f (P) when both

P and X are given explicitly and the cardinality of X is fixed.

Proposition 28. Suppose P = {x ∈ Rn| Ax ≤ b}. Using this description of P, and

an explicit list of vertices X, we can construct an extended formulation of forb(P, X) that

requires at most f (P)|X|+1 inequalities, i.e., xc(forb(P, X)) ≤ f (P)|X|+1.

Proof. Let X = {v1, . . . , v|X|} and define FX := {F1 ∩ · · · ∩ F|X|| Fi ∈ facets(P), vi /∈
Fi, i = 1, . . . , |X|}. We claim

forb(P, X) = conv
(
∪F∈FX F

)
.

Indeed, let w ∈ vert(P) \ X. For each i = 1, . . . , |X|, there exists Fi ∈ facets(P)

such that w ∈ Fi and vi /∈ Fi. Therefore, letting F := F1 ∩ · · · ∩ F|X|, we have

F ∈ FX and w ∈ F, proving the forward inclusion. For the reverse inclusion,

consider F ∈ FX. By definition, F is a face of P that does not intersect X, and hence

F ⊆ forb(P, X).

60



By Lemma 26, we have xc(forb(P, X)) ≤ ∑F∈FX
(xc(F) + 1). Since xc(F) ≤

f (F) ≤ f (P)− 1 for each proper face F of P and |FX| ≤ f (P)|X|, the result follows.

Note that when X = {v}, the above result reduces forb(P, {v}) to the convex

hull of the union of the facets of P that are not incident to v, which is a more in-

tuitive result. Actually, we can expect describing forb(P, X) to be easier when the

vertices in X are “far” thus can be removed “independently”, and more compli-

cated when they are “close”. Proposition 28 can be refined as follows.

The graph of a polytope P, or the 1-skeleton of P, is a graph G with vertex set

vert(P) such that two vertices are adjacent in G if and only if they are adjacent in

P.

Proposition 29. Let G be the graph of P. Let X ⊆ vert(P) and let (X1, . . . , Xm) be a

partition of X such that Xi and Xj are independent in G, i.e., there is no edge connecting

Xi to Xj, for all 1 ≤ i < j ≤ m. Then

forb(P, X) =
m⋂

i=1

forb(P, Xi).

Proof. We only need to show forb(P, X) ⊇ ⋂m
i=1 forb(P, Xi). For this, it is enough to

show that max{cx : x ∈ forb(P, X)} ≥ max {cx : x ∈ ⋂m
i=1 forb(P, Xi)} for each c.

Given c, let v be an optimal solution to the maximization problem in the right-hand

side, and let W ⊆ vert(P) be the set of vertices w of P such that cw ≥ cv. Observe

that W induces a connected subgraph of the graph G of P since the simplex method

applied to max{cx : x ∈ P} starting from a vertex in W visits elements in W only.

Hence, due to the independence of X1, . . . , Xm, either there is some w ∈ W with

w /∈ X1 ∪ · · · ∪ Xm, in which case we have w ∈ forb(P, X) and cw ≥ cv as desired,

or W ⊆ Xi for some i, which yields the contradiction v ∈ forb(P, Xi) ⊆ forb(P, W)

with cx < cv for all x ∈ vert(P) \W.

61



Conversely, we may be tempted to argue that if forb(P, X) = forb(P, X1) ∩
forb(P, X2), then X1 and X2 are “far”. However, this is not true in general. For

instance, consider P being a simplex. Then any X ⊆ vert(P) is a clique in the graph

of P, and yet forb(P, X) = forb(P, X1) ∩ forb(P, X2) for any partition (X1, X2) of

X.

Proposition 29 generalizes the main result of [40] regarding cropped cubes.

Moreover, the definition of being “croppable” in [40] in the case of the unit cube

coincides with the independence property of Proposition 29.

Recall that a vertex of an n-dimensional polytope is simple if it is contained in

exactly n facets. Proposition 29 also implies the following well-known fact.

Corollary 30. If X is independent in the graph of P and all its elements are simple, then

forb(P, X) = P ∩
⋂

v∈X
Hv,

where Hv is the half-space defined by the n neighbors of v that does not contain v.

Proof. The result follows from Proposition 29 since, as X is simple, we have imme-

diately forb(P, {v}) = P ∩ Hv for any v ∈ X.

Observe that when P is given by an extended formulation or a separation ora-

cle, f (P) may be exponentially large with respect to the size of the encoding, and

the bound given in Proposition 28 is not interesting. In fact, in this setting and

using recent results on the extension complexity of the cut polytope [20], we show

that removing a single vertex can render an easy problem hard.

Let Kn = (Vn, En) be the complete graph on n nodes. We denote by CUT(n),

CUT0(n), and st-CUT(n) the convex hull of the characteristic vectors of all cuts,

nonempty cuts, and st-cuts of Kn, respectively.

Theorem 31. For each n, there exists a set Sn ⊆ Rn(n−1)/2 with |Sn| = 2n−1 + n− 1

and a point vn ∈ Sn such that linear optimization over Sn can be done in polynomial

62



time and xc(conv(Sn)) is polynomially bounded, but linear optimization over Sn \ {vn}
is NP-hard and xc(conv(Sn \ {vn})) grows exponentially.

Proof. Let Tn :=
{

n21e| e ∈ En
}

, where 1e is the e-th unit vector, and define Sn :=

vert
(

CUT0(n)
)
∪ Tn.

We have that linear optimization over Sn can be done in polynomial time. To

see this, suppose we are minimizing cx over Sn. Let xT and xC be the best so-

lution in Tn and CUT0(n), respectively. Note that computing xT is trivial, and

if c has a negative component, then xT is optimal. Otherwise, c is nonnegative

and xC can be found with a max-flow/min-cut algorithm. Then the best solu-

tion among xT and xC is optimal. Now, consider the dominant of CUT0(n) de-

fined as CUT0(n)+ := CUT0(n) + R
n(n−1)/2
+ . From [10], we have that CUT0(n)+

is an unbounded polyhedron having the same vertices as CUT0(n), and more-

over, it has an extended formulation of polynomial size in n. Let L := {x ∈
Rn(n−1)/2| ∑e∈En xe ≤ n2}. Then CUT0(n)+ ∩ L is a polytope having two classes

of vertices: those corresponding to vert
(

CUT0(n)
)

and those belonging to the

hyperplane defining L. Let W be the latter set. Since conv(W) ⊆ conv(Tn),

we obtain conv(Sn) = conv
(

CUT0(n) ∪ Tn

)
= conv

(
(CUT0(n) ∪W) ∪ Tn)

)
=

conv
(
(CUT0(n)+ ∩ L) ∪ Tn

)
. Applying disjunctive programming in the last ex-

pression yields a compact extended formulation for conv(Sn).

Now, let vn be any point from Tn, say the one corresponding to {s, t} ∈ E. We

claim that linear optimization over Sn \ {vn} is NP-hard. To prove this, consider

an instance of max{cx| x ∈ st-CUT(n)}, where c is a positive vector. Let c̄ :=

max{ce| e ∈ E}. Let d be obtained from c as

de =

 ce e 6= {s, t}
ce + c̄n2 e = {s, t}

and consider the problem max{dx| x ∈ Sn \ {vn}}. We have that every optimal

solution to this problem must satisfy xst = 1. Indeed, if x ∈ Tn \ {vn}, then

63



for some e ∈ En \ {{s, t}} we have dx = dexe = cen2. If x ∈ vert(CUT0(n))

is not an st-cut, then xst = 0 and thus dx ≤ c̄n2. On the other hand, if x is

an st-cut, then xst = 1 and thus dx ≥ dstxst = cst + c̄n2. Therefore xst = 1 in

any optimal solution, and in particular, such a solution must define an st-cut of

maximum weight. Finally, since xst ≤ 1 defines a face of conv(Sn \ {vn}) and

conv(Sn \ {vn}) ∩ {x ∈ Rn(n−1)/2| xst = 1} = st-CUT(n), we conclude that

xc(conv(Sn \ {vn})) is exponential in n, for otherwise applying disjunctive pro-

gramming over all pairs of nodes s and t would yield an extended formulation for

CUT(n) of polynomial size, contradicting the results in [20].

Contrasting Proposition 28 and Theorem 31 shows that the complexity of opti-

mization over forb(P, X) depends on the encoding of P. On the other hand, in all

cases analyzed so far, X has been explicitly given as a list. Now we consider the

case where X = vert(F) for some face F of P.

Proposition 32. Given a polytope P ⊆ Rn and a face F, both described in terms of the

linear inequalities defining them, optimizing a linear function over vert(P) \ vert(F) is

NP-hard. Moreover, xc(conv(vert(P) \ vert(F))) cannot be polynomially bounded in

the encoding length of the inequality description of P and thus not in n.

Proof. Let a ∈ Zn
+ and b ∈ Z+, and consider the binary knapsack set S := {x ∈

{0, 1}n| ax ≤ b}. Let P := {x ∈ [0, 1]n| 2ax ≤ 2b + 1} and note that S = P ∩Zn.

It is straightforward to verify that x ∈ vert(P) is fractional if and only if 2ax =

2b + 1. Then, if F is the facet of P defined by the previous constraint, we have

S = vert(P) \ vert(F). The second part of the statement is a direct consequence of

[51] using multipliers 4i as discussed after Remark 3.4 of that reference.

It follows from Theorem 31 and Proposition 32 that only when P and X are

explicitly given there is hope for efficient optimization over forb(P, X).

64



In a similar vein, when the linear description of P is provided, we can consider

the vertex-enumeration problem, which consists of listing all the vertices of P. We

say that such a problem is solvable in polynomial time if there exists an algorithm

that returns the list in time bounded by a polynomial of n, f (P), and the output

size |vert(P)|. In [31] it is shown that given a partial list of vertices, the decision

problem “is there another vertex?” is NP-hard for (unbounded) polyhedra, and

in [9] this result is strengthened to polyhedra having 0-1 vertices only. Building

on these results, we show hardness of the forbidden-vertices problem (Def. 23) for

general polytopes.

Theorem 33. The forbidden-vertices problem is NP-hard, even if both P and X are ex-

plicitly given.

Proof. Let Q = {x ∈ Rn : Ax = b, x ≥ 0} be an unbounded polyhedron such that

vert(Q) ⊆ {0, 1}n. In [9], it is shown that given the linear description of Q and

a list X ⊆ vert(Q), it is NP-hard to decide whether X 6= vert(Q). Let P be the

polytope obtained by intersecting Q with the half-space defined by ∑n
i=1 xi ≤ n+ 1,

and let F be the facet of P associated with this constraint. Then we have vert(P) =

vert(Q)∪vert(F), ∑n
i=1 xi ≤ n for x ∈ vert(Q), and ∑n

i=1 xi = n+ 1 for x ∈ vert(F).

Now, given the description of P and a list X ⊆ vert(Q) ⊆ vert(P), consider the

instance of the forbidden-vertices problem min {∑n
i=1 xi : x ∈ vert(P) \ X}. The

optimal value is equal to n + 1 if and only if X = vert(Q). Since the reduction is

clearly polynomial, the result follows.

In fact, it also follows from [9] that the forbidden-vertices problem for general

polytopes becomes hard already for |X| = n. Fortunately, the case of 0-1 polytopes

is amenable to good characterizations.

65



3.3 0-1 polytopes

We consider polytopes having binary vertices only. We show that forb(P, X) is

tractable as long as P is and X is explicitly given. Our results for P = [0, 1]n allow

us to obtain tractability in the case of general 0-1 polytopes.

3.3.1 The 0-1 cube

In this subsection we have P = [0, 1]n, and therefore vert(P) = {0, 1}n. We show

the following result.

Theorem 34. Let X be a list of n-dimensional binary vectors. Then xc(forb([0, 1]n, X)) ≤
O(n|X|).

For this, we present two extended formulations involving O(n|X|) variables

and constraints. The first one is based on an identification between nonnegative

integers and binary vectors. The second one is built by recursion and lays ground

for a simple combinatorial algorithm to optimize over forb([0, 1]n, X) and for an

extension to remove vertices from general 0-1 polytopes.

3.3.1.1 First extended formulation

Let N := {1, . . . , n} and N := {0, . . . , 2n − 1}. There exists a bijection between

{0, 1}n and N given by the mapping σ(v) := ∑i∈N 2i−1vi for all v ∈ {0, 1}n.

Therefore, we can write {0, 1}n = {v0, . . . , v2n−1}, where vk gives the binary ex-

pansion of k for each k ∈ N , that is, vk = σ−1(k). Let X = {vk1 , . . . , vkm}, where

without loss of generality we assume kl < kl+1 for all l = 1, . . . , m− 1. Also, let

NX := {k ∈ N | vk ∈ X}. Then we have

{0, 1}n \ X =

{
x ∈ {0, 1}n| ∑

i∈N
2i−1xi /∈ NX

}
.

Now, for integers a and b, let

K(a, b) =

{
x ∈ {0, 1}n| a ≤ ∑

i∈N
2i−1xi ≤ b

}
.

66



If b < a, then K(a, b) is empty. Set k0 = −1 and km+1 = 2n. Then we can write

{0, 1}n \ X =
m⋃

l=0

K(kl + 1, kl+1 − 1).

Thus

forb([0, 1]n, X) = conv

(
m⋃

l=0

conv(K(kl + 1, kl+1 − 1))

)
. (35)

For k ∈ N , let Nk := {i ∈ N| vk
i = 1}. From [46] we have

conv(K(a, b)) =

x ∈ [0, 1]n :
∑

j/∈Na| j>i
xj ≥ 1− xi ∀i ∈ Na

∑
j∈Nb| j>i

(1− xj) ≥ xi ∀i /∈ Nb

 ,

thus conv(K(a, b)) hasO(n) facets. Finally, combining this and (35), by Lemma 26,

we have that forb([0, 1]n, X) can be described by an extended formulation having

O(n|X|) variables and constraints.

3.3.1.2 Second extended formulation

Given X ⊆ {0, 1}n, let X′ denote the projection of X onto the first n− 1 coordinates.

Also, let X̂ := X̃ \X, where X̃ is constructed from X by flipping the last coordinate

of each of its elements. The result below is key in giving a recursive construction

of forb([0, 1]n, X).

Proposition 35. {0, 1}n \ X =
[(
{0, 1}n−1 \ X′

)
× {0, 1}

]
∪ X̂.

Proof. Given v ∈ {0, 1}n, let v′ ∈ {0, 1}n−1 and ṽ ∈ {0, 1}n be the vectors obtained

from v by removing and by flipping its last coordinate, respectively.

Let v ∈ {0, 1}n \ X. If ṽ ∈ X, since v /∈ X, we have v ∈ X̂. Otherwise v′ /∈ X′,

and thus v ∈ ({0, 1}n−1 \ X′)× {0, 1}.
For the converse, note that X̂ ⊆ {0, 1}n \ X. Finally, if v ∈ ({0, 1}n−1 \ X′)×

{0, 1}, then v′ /∈ X′ and thus v /∈ X.

67



The second proof of Theorem 34 follows from Proposition 35 by induction.

Suppose that forb([0, 1]n−1, X′) has an extended formulation with at most (n −
1)(|X′|+ 4) inequalities, which holds for n = 2. Then we can describe forb([0, 1]n−1, X′)×
{0, 1} using at most (n− 1)(|X′|+ 4) + 2 inequalities. Since the polytope conv(X̂)

requires at most |X̂| inequalities in an extended formulation, we obtain an ex-

tended formulation for forb([0, 1]n, X) of size no more than [(n − 1)(|X′| + 4) +

2 + 1] + [|X̂|+ 1] ≤ n(|X|+ 4).

3.3.2 General 0-1 polytopes

In this subsection we analyze the general 0-1 case. We show that the encoding of

X plays an important role in the complexity of the problem.

3.3.2.1 Explicit X

In order to prove tractability of the forbidden vertices problem corresponding to

general 0-1 tractable polytopes, we introduce the notion of X-separating faces for

the 0-1 cube.

Definition 36. Given X ⊆ {0, 1}n, we say that F ⊆ faces([0, 1]n) is X-separating

if {0, 1}n \ X = ∪F∈FF ∩ {0, 1}n. We denote by µ(X) the minimal cardinality of an

X-separating set.

Clearly, if F is X-separating, then

min {cx| x ∈ {0, 1}n \ X} = min
F∈F

min {cx| x ∈ F ∩ {0, 1}n} .

Thus, if we can find an X-separating family of cardinality bounded by a poly-

nomial on n and |X|, then we can optimize in polynomial time over {0, 1}n \ X

by solving the inner minimization problem for each F ∈ F and then picking the

smallest value.

Proposition 37. For every nonempty set X ⊆ {0, 1}n, we have µ(X) ≤ n|X|.

68



Proof. For each y ∈ {0, 1}n \X, let 0 ≤ k ≤ n− 1 be the size of the longest common

prefix between y and any element of X, and consider the face F = F(y) := {x ∈
[0, 1]n| xi = yi ∀1 ≤ i ≤ k+ 1} = (y1, . . . , yk, yk+1)× [0, 1]n−k−1. Then the collection

F := {F(y)| y ∈ {0, 1}n \ X} is X-separating since any y ∈ {0, 1}n \ X belongs to

F(y) and no element of X lies in any F(y) by maximality of k. Clearly, |F | ≤ n|X|
since each face in F is of the form (v1, . . . , vk, 1− vk+1)× [0, 1]n−k−1 for some v ∈
X.

In other words, letting Xi be the projection of X onto the first i components and

X̂i := (Xi−1 × {0, 1}) \ Xi, where X̂1 := {0, 1} \ X1, we have

{0, 1}n \ X =
n⋃

i=1

[
X̂i × {0, 1}n−i

]
.

Moreover, it also follows from the proof of Proposition 37 that µ(X) is at most

the number of neighbors of X since if (v1, . . . , vk, 1− vk+1, vk+2, . . . , vn) is a neigh-

bor of v ∈ X that also lies in X, then the face {(v1, . . . , vk, 1− vk+1)} × [0, 1]n−k−1

in not included in F in the construction above.

Now, let P ⊆ Rn be an arbitrary 0-1 polytope. Note that vert(P) \X = vert(P)∩
({0, 1}n \X). On the other hand, ifF ⊆ faces([0, 1]n) is X-separating, then {0, 1}n \
X = ∪F∈FF ∩ {0, 1}n. Combining these two expressions, we get

vert(P) \ X =
⋃

F∈F
vert(P) ∩ F ∩ {0, 1}n =

⋃
F∈F

P ∩ F ∩ {0, 1}n.

Note that since P has 0-1 vertices and F is a face of the unit cube, then P ∩ F is

a 0-1 polytope. Moreover, if P is tractable, so is P ∩ F. Recalling that µ(X) ≤ n|X|
from Proposition 37, we obtain

Theorem 38. If P ⊆ Rn is a tractable 0-1 polytope, then the forbidden-vertices problem

is polynomially solvable.

In fact, a compact extended formulation for vert(P) \X is available when P has

one.

69



Proposition 39. For every 0-1 polytope P and for every nonempty set X ⊆ vert(P), we

have

xc(forb(P, X)) ≤ µ(X)(xc(P) + 1).

Proof. The result follows from

forb(P, X) = conv

( ⋃
F∈F

P ∩ F ∩ {0, 1}n

)
= conv

( ⋃
F∈F

F

)
,

Lemma 26, and xc(F) ≤ xc(P) for any face F of P.

Observe that when P is tractable but its facet description is not provided, Theo-

rem 38 is in contrast to Theorem 31. Having all vertices with at most two possible

values for each component is crucial to retain tractability when X is given as a

list. However, when X is given by a face of P, the forbidden-vertices problem can

become intractable even in the 0-1 case.

3.3.2.2 Implicit X

Let TSP(n) denote the convex hull of the characteristic vectors of Hamiltonian cy-

cles in the complete graph Kn. Also, let SUB(n) denote the subtour-elimination

polytope for Kn with edge set En.

Theorem 40. For each n, there exists a 0-1 polytope Pn ⊆ Rn(n−1)/2 and a facet Fn ∈
facets(Pn) such that linear optimization over Pn can be done in polynomial time and

xc(Pn) is polynomially bounded, but linear optimization over vert(Pn) \ vert(Fn) isNP-

hard and xc(forb(Pn, vert(Fn))) grows exponentially.

Proof. Given a positive integer n, consider T+
n := {x ∈ {0, 1}En | ∑e∈En xe = n+ 1},

T−n := {x ∈ {0, 1}En | ∑e∈En xe = n− 1}, and Hn := TSP(n) ∩ {0, 1}En . The idea is

to “sandwich” Hn between T−n and T+
n to obtain tractability, and then remove T−n

to obtain hardness.

70



We first show that linear optimization over T−n ∪ Hn ∪ T+
n is polynomially solv-

able. Given c ∈ Rn(n−1)/2, consider max{cx| x ∈ T−n ∪ Hn ∪ T+
n }. Let x− and x+

be the best solution in T−n and T+
n , respectively, and note that x− and x+ are trivial

to find. Let m be the number of nonnegative components of c. If m ≥ n + 1, then

x+ is optimal. If m ≤ n− 1, then x− is optimal. If m = n, let xn ∈ {0, 1}En have a 1

at position e if and only if ce ≥ 0. If xn belongs to Hn, which is easy to verify, then

it is optimal. Otherwise either x− or x+ is an optimal solution.

Now we show that linear optimization over Hn ∪ T+
n is NP-hard. Given c ∈

Rn(n−1)/2 with c > 0, consider min{cx| x ∈ Hn}. Let c̄ := max{ce| e ∈ En} and

define de := ce + nc̄. Consider min{dx| x ∈ Hn ∪ T+
n }. For any x ∈ T+

n , we have

dx = (n + 1)nc̄ + cx > (n + 1)nc̄. For any x ∈ Hn, we have dx = n2c̄ + cx ≤
n2c̄ + nc̄ = (n + 1)nc̄. Hence, the optimal solution to the latter problem belongs to

Hn and defines a tour of minimal length with respect to c.

Letting Pn := conv(T−n ∪ Hn ∪ T+
n ), we have that Pn is a tractable 0-1 polytope,

∑e∈En xe ≥ n − 1 defines a facet Fn of Pn, and vert(Pn) \ vert(Fn) = Hn ∪ T+
n ,

which is an intractable set. Now, since forb(Pn, vert(Fn)) = conv(Hn ∪ T+
n ), we

have that ∑e∈En xe ≥ n defines a facet of forb(Pn, vert(Fn)) and forb(Pn, vert(Fn))∩
{x ∈ Rn(n−1)/2| ∑e∈En xe = n} = TSP(n). Therefore, xc(forb(Pn, vert(Fn))) is

exponential in n [54]. It remains to show that xc(Pn) is polynomial in n.

Let Tn := {x ∈ {0, 1}En | ∑e∈En xe = n} and let Hn := Tn \ Hn be the set of

incidence vectors of n-subsets of En that do not define a Hamiltonian cycle. Given

x ∈ {0, 1}En , let N(x) be the set of neighbors of x in [0, 1]En , let L(x) be the half-

space spanned by N(x) that does not contain x, and let C(x) := [0, 1]En \ L(x).

Finally, let ∆n := conv(T−n ∪ Tn ∪ T+
n )= {x ∈ [0, 1]En | n− 1 ≤ ∑e∈En xe ≤ n + 1}.

We claim that Pn = conv(T−n ∪ SUB(n) ∪ T+
n ) holds. By definition, we have

Pn ⊆ conv(T−n ∪ SUB(n) ∪ T−n ). To show the reverse inclusion, it suffices to show

SUB(n) ⊆ Pn. Note that any two distinct elements in Tn can have at most |En| − 2

71



tight inequalities in common from those defining ∆n. Thus, Tn defines an indepen-

dent set in the graph of ∆n. Moreover, for each x ∈ Tn the set of neighbors in ∆n is

N(x) and thus all vertices in Tn are simple. As Hn ⊆ Tn, we have that Hn is simple

and independent, and by Corollary 30 we have

Pn = ∆n ∩
⋂

x∈Hn

L(x) = ∆n \
⋃

x∈Hn

C(x).

Since SUB(n) ⊆ ∆n, from the second equation above, it suffices to show C(x)∩
SUB(n) = ∅ for all x ∈ Hn. For this, note that for any x ∈ Hn, there exists a set

∅ 6= S ( Vn such that x(δ(S)) ≤ 1, which implies y(δ(S)) ≤ 2 for all y ∈ N(x).

Thus C(x) ∩ SUB(n) = ∅ as x(δ(S)) ≥ 2 is valid for SUB(n).

Finally, applying disjunctive programming and since xc(SUB(n)) is polynomial

in n [60], we conclude that Pn has an extended formulation of polynomial size.

To conclude this section, consider the case where P is explicitly given and X is

given as a facet of P. Although we are unable to establish the complexity of the

forbidden-vertices problem in this setting, we present a tractable case and discuss

an extension.

Proposition 41. Let P = {x ∈ Rn| Ax ≤ b} be a 0-1 polytope, where A is TU and b is

integral. Let F be the face of P defined by aix = bi. Then

forb(P, vert(F)) = P ∩ {x ∈ Rn| aix ≤ bi − 1}.

Proof. We have

vert(P) \ vert(F) = P ∩ {x ∈ {0, 1}n| aix ≤ bi − 1}.

Since A is TU and b in integral, the set P ∩ {x ∈ Rn| aix ≤ bi − 1} is an integral

polyhedron contained in P, which is a 0-1 polytope.

Since any face is the intersection of a subset of facets, the above result implies

that removing a single face can be efficiently done by disjunctive programming

72



in the context of Proposition 41. Also, if we want to remove a list of facets, that

is, X = ∪F∈Fvert(F) and F is a subset of the facets of P, then we can solve the

problem by removing one facet at a time. However, if F is a list of faces, then the

problem becomes hard in general.

Proposition 42. If F is a list of faces of [0, 1]n, then optimizing a linear function over

{0, 1}n \ ∪F∈Fvert(F) is NP-hard.

Proof. Let G = (V, E) be a graph. Consider the problem of finding a minimum

cardinality vertex cover of G, which can be formulated as

min ∑i∈V xi

s.t. xi + xj ≥ 1 ∀{i, j} ∈ E

xi ∈ {0, 1} ∀i ∈ V.

Construct F by adding a face of the form F = {x ∈ [0, 1]n| xi = 0, xj = 0}
for each {i, j} ∈ E. Then the vertex cover problem, which is NP-hard, reduces to

optimization of a linear function over {0, 1}n \ ∪F∈Fvert(F).

3.4 Applications

3.4.1 k-best solutions

The k-best problem defined below is closely related to removing vertices.

Definition 43. Given a nonempty 0-1 polytope P ⊆ Rn, a vector c ∈ Rn, and a positive

integer k, the k-best problem is to either assert |vert(P)| ≤ k and return vert(P), or to re-

turn v1, . . . , vk ∈ vert(P), all distinct, such that max{cvi| i = 1, . . . , k} ≤ min{cv| v ∈
vert(P) \ {v1, . . . , vk}}.

Since we can sequentially remove vertices from 0-1 polytopes, we can prove

the following.

73



Proposition 44. Let P ⊆ [0, 1]n be a tractable 0-1 polytope. Then, for any c ∈ Rn, the

k-best problem can be solved in polynomial time on k and n.

Proof. For each i = 1, . . . , k, solve the problem

(Pi) min cx

s.t. x ∈ Pi,

where P1 := P, Pi := forb(Pi−1, {vi−1}) = forb(P, {v1, . . . , vi−1}) for i = 2, . . . , k,

and vi ∈ vert(Pi) is an optimal solution to (Pi), if one exists, for i = 1, . . . , k. From

Theorem 38, we can solve each of these problems in polynomial time. In particular,

if (Pi) is infeasible, we return v1, . . . , vi−1. Otherwise, by construction, v1, . . . , vk

satisfy the required properties. Clearly, the construction is done in polynomial

time.

The above complexity result was originally obtained in [38] building on ideas

from [47] by applying a branch-and-fix scheme.

3.4.2 Binary all-different polytopes

With edge-coloring of graphs in mind, the binary all-different polytope has been

introduced in [39]. It was furthermore studied in [42] and [41]. We consider a more

general setting.

Definition 45. Given a positive integer k, nonempty 0-1 polytopes P1, . . . , Pk in Rn, and

vectors c1, . . . , ck ∈ Rn, the binary all-different problem is to solve

(P) min ∑k
i=1 cixi

s.t. xi ∈ vert(Pi) i = 1, . . . , k

xi 6= xj 1 ≤ i < j ≤ k.

74



In [39], it was asked whether the above problem is polynomially solvable in the

case Pi = [0, 1]n for all i = 1, . . . , k. Using the tractability of the k-best problem, we

give a positive answer even for the general case of distinct polytopes.

Given a graph G = (V, E) and U ⊆ V, a U-matching in G is a matching M ⊆ E

such that each vertex in U is contained in some element of M.

Theorem 46. If Pi ⊆ Rn is a tractable nonempty 0-1 polytope for i = 1, . . . , k, then the

binary all-different problem is polynomially solvable.

Proof. For each i = 1, . . . , k, let Si be the solution set of the k-best problem (Def. 43)

for Pi and ci. Observe that |Si| ≤ k. Now, consider the bipartite graph G = (S ∪
R, E), where S := ∪k

i=1Si and R := {1, . . . , k}. For each v ∈ S and i ∈ R, we include

the arc {v, i} in E if and only if v ∈ Si. Finally, for each {v, i} ∈ E, we set wvi := civ.

We claim that (P) reduces to finding an R-matching in G of minimum weight

with respect to w. It is straightforward to verify that an R-matching in G defines

a feasible solution to (P) of equal value. Thus, it is enough to show that if (P)
is feasible, then there exists an R-matching with the same optimal value. Indeed,

let (x1, . . . , xk) be an optimal solution to (P) that does not define an R-matching,

that is, such that xi /∈ Si for some i = 1, . . . , k. Then, we must have |vert(Pi)| > k

and |Si| = k. This latter condition and xi /∈ Si imply the existence of v ∈ Si such

that v 6= xj for all j = 1, . . . , k. Furthermore, by the definition of Si, we also have

civ ≤ cixi. Therefore, the vector (x1, . . . , xi−1, v, xi+1, . . . , xk) is an optimal solution

to (P) having its i-th subvector in Si. Iteratively applying the above reasoning to

all components, we obtain an optimal solution to (P) given by an R-matching as

desired.

3.5 Extension to integral polytopes

In this section, we generalize the forbidden-vertices problem to integral polytopes,

that is, to polytopes having integral extreme points, even allowing the removal

75



of points that are not vertices. We show that for an important class of integral

polytopes the resulting problem is tractable.

For an integral polytope P ⊆ Rn and X ⊆ P ∩Zn, we define forbI(P, X) :=

conv((P ∩Zn) \ X).

Definition 47. Given an integral polytope P ⊆ Rn, a set X ⊆ P∩Zn of integral vectors,

and a vector c ∈ Rn, the forbidden-vectors problem asks to either assert (P∩Zn) \X = ∅,

or to return a minimizer of cx over (P ∩Zn) \ X otherwise.

Given vectors l, u ∈ Rn with l ≤ u, we denote [l, u] := {x ∈ Rn| li ≤ xi ≤
ui, i = 1, . . . , n}. We term these sets as boxes.

Definition 48. An integral polytope P ⊆ Rn is box-integral if for any pair of vectors

l, u ∈ Zn with l ≤ u, the polytope P ∩ [l, u] is integral.

Polytopes defined by a TU matrix and an integral right-hand-side, or by a

box-TDI system, are examples of box-integral polytopes. Further note that if P

is tractable and box-integral, so is P ∩ [l, u]. When both conditions are met, we say

that P is box-tractable.

With arguments analogous to that of the 0-1 case, we can verify the following

result.

Theorem 49. If P ⊆ Rn is a box-tractable polytope, then, given a list X ⊆ P ∩Zn, the

forbidden-vectors problem is polynomially solvable. Moreover,

xc(forbI(P, X)) ≤ 2n|X|(xc(P) + 1).

Proof. Since P is bounded, it is contained in a box. Without lost of generality and to

simplify the exposition, we may assume that P ⊆ [0, r− 1]n for some r ≥ 2. As in

the 0-1 case, we first address the case P = [0, r− 1]n, for which we provide two ex-

tended formulations for forbI(P, X) involving O(n|X|) variables and constraints.

76



The first extended formulation relies on the mapping φ(x) := ∑n
i=1 ri−1xi for

x ∈ [0, r − 1]n, which defines a bijection with {0, . . . , rn − 1}. Letting Kr(a, b) :=

{x ∈ {0, . . . , r − 1}n| a ≤ φ(x) ≤ b}, we have that forbI(P, X) is the convex hull

of the union of at most |X|+ 1 sets of the form Kr(a, b). Since conv(Kr(a, b)) has

O(n) facets [26], by disjunctive programming we obtain an extended formulation

for forbI(P, X) having O(n|X|) inequalities.

For the second extended formulation, let X′ denote the projection of X onto the

first n − 1 coordinates and set X̂ := (X′ × {0, . . . , r − 1}) \ X. Along the lines of

Proposition 35, we have

{0, . . . , r− 1}n \ X =
[(
{0, . . . , r− 1}n−1 \ X′

)
× {0, . . . , r− 1}

]
∪ X̂.

Although X̂ can have up to r|X| elements, we also see that X̂ is the union of at

most 2|X| sets of the form v×{α, . . . , β} for v ∈ X′ and integers 0 ≤ α ≤ β ≤ r− 1.

More precisely, for each v ∈ X′, there exist integers 0 ≤ αv
1 ≤ βv

1 < αv
2 ≤ βv

2 < · · · <
αv

qv ≤ βv
qv ≤ r− 1 such that

X̂ =
⋃

v∈X′

qv⋃
l=1

v× {αv
l , . . . , βv

l }

and ∑v∈X′ qv ≤ 2|X|. Therefore, conv(X̂) can be described with O(|X|) inequal-

ities. Then a recursive construction of an extended formulation for forbI(P, X) is

analogous to the binary case and involves O(n|X|) variables and constraints.

In order to address the general case, we first show how to cover {0, . . . , r −
1}n \ X with boxes. For each i = 1, . . . , n, let Xi be the projection of X onto the first

i components and let X̂i := (Xi−1 × {0, . . . , r − 1}) \ Xi, where X̂1 := {0, . . . , r −
1} \ X1. Working the recursion backwards yields

{0, . . . , r− 1}n \ X =
n⋃

i=1

[
X̂i × {0, . . . , r− 1}n−i

]
.

Combining the last two expressions, we arrive at

{0, . . . , r− 1}n \ X =
n⋃

i=1

⋃
v∈Xi−1

qv⋃
l=1

v× {αv
l , . . . , βv

l } × {0, . . . , r− 1}n−i.

77



The right-hand-side defines a family B of at most 2n|X| boxes in Rn, yielding

{0, . . . , r− 1}n \ X =
⋃

[l,u]∈B
[l, u] ∩Zn.

Finally, if P ⊆ [0, r− 1]n, then

(P ∩Zn) \ X = (P ∩Zn) ∩ ({0, . . . , r− 1}n \ X) =
⋃

[l,u]∈B
P ∩ [l, u] ∩Zn.

Moreover, if P is box-tractable, then

forbI(P, X) = conv

 ⋃
[l,u]∈B

conv (P ∩ [l, u] ∩Zn)

 = conv

 ⋃
[l,u]∈B

P ∩ [l, u]

 ,

where each term within the union is a tractable set.

The k-best problem and the binary all-different problem can be extended to the

case of integral vectors as follows.

Definition 50. Given a nonempty integral polytope P ⊆ Rn, a vector c ∈ Rn, and a

positive integer k, the integral k-best problem is to either assert |P ∩Zn| ≤ k and return

P∩Zn, or to return v1, . . . , vk ∈ P∩Zn, all distinct, such that max{cvi| i = 1, . . . , k} ≤
min{cv| v ∈ (P ∩Zn) \ {v1, . . . , vk}}.

Definition 51. Given a positive integer k, nonempty integral polytopes P1, . . . , Pk in Rn,

and vectors c1, . . . , ck ∈ Rn, the integral all-different problem is to solve

(P) min ∑k
i=1 cixi

s.t. xi ∈ P ∩Zn i = 1, . . . , k

xi 6= xj 1 ≤ i < j ≤ k.

The above problems can be shown to be polynomially solvable if the underly-

ing polytopes are box-tractable.

78



3.6 Concluding remarks

Having shown the tractability of the binary all-different problem, it is natural to

ask whether we can find a complete linear description for the case Pi = [0, 1]n for

all i. In a mixed-integer program, all-different constraints can be formulated by

including additional variables and linear constraints to enforce xi 6= xj. However,

with the exception of k = 2, this formulation is not ideal in the sense that its linear

relaxation does not yield the convex hull of the feasible set. In practice, it is crucial

to have tight formulations to improve the performance of branch-and-cut solvers,

and usually cutting-planes are generated and added on-the-fly. Although some

families of facet-defining inequalities are presented in [39], [41] and [42], finding a

complete linear description remains an open question.

79



CHAPTER IV

IMPROVING THE INTEGER L-SHAPED METHOD

4.1 Introduction

In this chapter we consider mixed-integer programs of the form

(IP) min
x,z,θ

cx + dz + θ

s.t. Ax + Cz ≤ b (36)

Q(x)− θ ≤ 0 (37)

x ∈ {0, 1}n (38)

z ≥ 0, z ∈ Z, (39)

where Z is a mixed-integer set and Q(x) is a real-valued function taking a binary

vector x as argument. We say that (x∗, z∗, θ∗) is a candidate solution if (x∗, z∗)

satisfies (36), (38), and (39). If in addition (37) holds, then we say (x∗, z∗, θ∗) is a

feasible (candidate) solution. Constraint (37) together with the presence of θ in the

objective function ensures θ = Q(x) is satisfied by any optimal solution to (IP). A

fundamental assumption is that given x, Q(x) can be computed with a reasonable

amount of effort.

In the context of two-stage stochastic integer programming, we usually have

Q(x) := Eξ

[
min

y
{qy : Wy = h− Tx, y ∈ Y}

]
,

which denotes the expected second-stage cost of x with respect to the random data

ξ = (q, W, T, h). We assume that Y imposes some integrality requirements on y.

When ξ has a finite set of possible outcomes, we have Q(x) = ∑ξ pξ Qξ(x), where

Qξ(x) denotes the optimal second-stage value of the scenario associated to ξ, and

80



pξ is the probability of occurrence of ξ. Thus, (IP) can be cast as a large-scale mixed

integer program. When the burden of solving (IP) is mainly due to the presence of

a large number of scenarios, schemes similar to Benders’ decomposition [7] and the

L-shaped method [59] can be effective. The idea is to relax (37) and consider θ as

an underestimator of Q(x), and successively add cuts in the (x, θ)-space to better

approximate the shape of Q(x). This is done until an optimal solution (x∗, z∗, θ∗)

satisfying θ∗ = Q(x∗) is found. When the second-stage problem is a linear pro-

gram, Q(x) is convex in x and thus can be approximated by subgradients using

optimal dual solutions. In contrast, when the second-stage problem is a mixed-

integer program, such a nice property does not hold, and moreover, Q(x) can even

be discontinuous. Thus, the decomposition approaches of the linear case have to

be modified to accommodate integer variables in the second stage. In [34], such a

modification, the integer L-shaped method, is introduced. It is designed for two-

stage stochastic integer problems having binary first-stage variables as it exploits

the facial property of 0-1 sets. More generally, the integer L-shaped method can be

applied to any mixed-integer problem having the form of (IP) as long as Q(x) is

computable from binary x. In particular, it also fits situations where Q(x) can be

evaluated with a closed-form analytical formula, but it does not have an amenable

mixed-integer formulation. Applications of this method include vehicle routing

[37], [23], probabilistic traveling salesman problems [35], location problems[36],

and generalized assignment [1], among others.

Next we describe the integer L-shaped method. Let X be the projection of the

feasible region of (IP) onto the x-space, and let L ∈ R be a lower bound on Q(x)

over X. Then (IP) can be equivalently formulated as

81



(MP) min cx + dz + θ

s.t. Ax + Cz ≤ b

Πx− 1θ ≤ π0 (40)

x ∈ {0, 1}n

z ≥ 0, z ∈ Z

θ ≥ L,

where 1 denotes a vector of ones of appropriate size, as long as for each x∗ ∈ X

constraints (40) include a cut of the form πkx− θ ≤ πk
0 such that πkx− πk

0 ≤ Q(x)

for all x ∈ X and πkx∗ − πk
0 = Q(x∗). In other words, the affine function πkx− πk

0

underestimates Q(x) on X, and the estimate is tight at x∗. The optimality cuts

of Laporte and Louveaux [34] define such a cut family and form the basis of the

integer L-shaped method.

Given x∗ ∈ {0, 1}n, let S(x∗) := {i : x∗i = 1}. In [34], the (standard) integer

optimality cut at x∗ is defined as

θ ≥ (Q(x∗)− L)

 ∑
i∈S(x∗)

xi − ∑
i/∈S(x∗)

xi − |S(x∗)|
+ Q(x∗). (41)

Let ∆x∗(x) := |S(x∗)| − ∑i∈S(x∗) xi + ∑i/∈S(x∗) xi be the Hamming distance be-

tween x and x∗, and note that 0 ≤ ∆x∗(x) ≤ n with ∆x∗(x) = 0 if and only if x = x∗.

Thus, if x = x∗, then the right-hand side of (41) attains its maximum value Q(x∗).

If x ∈ {0, 1}n \ {x∗}, then it takes a value less than or equal to L. Since θ ≥ L, com-

bining both cases, we have that (41) models the implication x = x∗ ⇒ θ ≥ Q(x).

Observe also that as we have one cut per element in X, (40) might have exponen-

tially many constraints. Thus, (40) is omitted from the initial formulation (MP) and

cuts (41) are added on-the-fly as new solutions are discovered.

82



It is important to keep in mind that given the enumerative nature of (41), in

practice these cuts are complemented with other inequalities that, albeit not tight,

help to improve the global lower bound on Q(x). When Q(x) is the expected

second-stage value of x given by the value function of a mixed-integer program,

the most obvious inequalities to add are the subgradient cuts given by the contin-

uous relaxation QLP(x) of Q(x). They have the form

θ ≥ s(x− x∗) + QLP(x∗), (42)

where s is a subgradient of QLP(x) at x∗.

An implementation of the integer L-shaped method with a current state-of-

the-art solver works as follows. Having computed a lower bound L on Q(x) and

solved the continuous relaxation of (IP) with Benders’ decomposition, we end up

with a linear master problem that includes subgradient cuts of the form (42). Then

we reinforce the binary requirements on x and any integrality restrictions on z,

leading to a mixed-integer master problem of the form (MP), but where the system

(40) is a relaxation of (IP), so that an optimal solution to the current problem may

not be feasible to (IP). The idea now is to solve the mixed-integer master problem

in a way such that all integer solutions are checked against feasibility with respect

to (IP) before being accepted as an incumbent. For this, the solver proceeds in a

similar fashion to branch-and-cut, that is, it generates a search tree by solving lin-

ear subproblems, branching, and adding cutting planes. The main difference is

that when a candidate integer solution (x∗, z∗, θ∗) satisfying (36), (38) and (39) is

found at a node of the search tree, an additional routine, the so-called optimality

cut function, is called in order to assert feasibility and add optimality cuts. If the

solution is infeasible to the true problem (IP), i.e., θ∗ < Q(x∗), this function gener-

ates an optimality cut that is applied to all pending nodes in the master problem

tree, ensuring that this solution is discarded. Then the solver continues exploring

the tree with the guarantee that any discarded, and thus infeasible, solution will

83



not appear again. If the solution is actually feasible to (IP), then it is accepted by

the optimality cut function and the current incumbent is updated accordingly. A

modern implementation of the (standard) integer L-shaped method is presented

in Algorithm 1 below.

Algorithm 1 Integer L-shaped method
Input: A, C, b, c, d, Q : X → R, QLP : X → R

Output: Optimal solution x∗ to (IP) and optimal value
1: Compute a lower bound L of Q(x)
2: Solve the LP relaxation of (IP) with Benders’ decomposition
3: Declare x variables as binary in master problem
4: Initialize the optimality cut function
5: Solve the integer master problem using the optimality cut function to assert

feasibility of solutions and add optimality cuts
6: return x∗ and optimal value

In line 4 of Algorithm 1 we initialize any additional structures that may be

needed by the optimality cut function before invoking the solver in line 5. In par-

ticular, as there may be several solutions sharing the same x subvector, we keep a

list V of first-stage x for which Q(x) has been computed to avoid duplicate eval-

uations. In a standard implementation, the optimality cut function has the form

shown in Algorithm 2

The optimality cut function returns TRUE if the candidate integer solution is

indeed feasible to (IP). Otherwise it returns FALSE to reject the solution and apply

the optimality cut. Note that the steps in lines 4 and 5 in Algorithm 2 are not

needed for convergence of the method, but help to improve the global lower bound

on Q(x).

The optimality cut (41) relies on exact evaluations of Q(x), which can be very

time-consuming in the case where Q(x) is given by a complicated mixed-integer

program. Also, observe that (41) depends on x∗ and Q(x∗) only, i.e., it only de-

pends on the point to be cut-off. In particular, it does not take into account the

information provided by other solutions that we may have found while exploring

84



Algorithm 2 Standard optimality cut function
Input: (x∗, z∗, θ∗) candidate integer solution, Q : X → R, QLP : X → R, V
Output: true if solution is feasible, false otherwise

1: if x∗ ∈ V then // We know θ∗ ≥ Q(x∗)
2: return true
3: end if
4: Compute QLP(x∗)
5: Add the subgradient cut (42)
6: Compute Q(x∗)
7: V ← V ∪ {x∗}
8: if θ∗ < Q(x∗) then
9: Add the integer optimality cut (41)

10: return false
11: else
12: return true
13: end if

the first-stage set. To improve the performance of the integer L-shaped method,

we propose two approaches to deal with the above issues. First, in Section 4.2,

we present a simple modification that alternates between exact and approximate

evaluations of Q(x). Then, in Section 4.3, we introduce of a new type of opti-

mality cut that includes information obtained from different solutions; in par-

ticular, evaluations and estimates of Q(x) at different points. These new cuts

are obtained through a cut-generating linear program which is constructed based

on ideas from disjunctive programming and the forbidden-vertices problem from

Chapter 3. Then, in Section 4.4, we outline an implementation that combines both

modifications in a single method. Finally, in Section 4.5, we present computational

results of the proposed variants on two classes of stochastic integer programs.

4.2 Alternating cuts

In this section we present a simple cut strategy to decrease the overall effort in-

curred in computing the function Q(x).

Suppose that while solving (IP) with the integer L-shaped method, a candidate

solution (x∗, z∗, θ∗) has been found along the search tree of (MP). Recall that we

85



reject the solution if θ∗ < Q(x∗). Since QLP(x) ≤ Q(x), a sufficient condition to

reject (x∗, z∗, θ∗) is θ∗ < QLP(x∗). Given that QLP(x) is convex, we have that the

subgradient cut (42) is a valid inequality that cuts off the pair (x∗, θ∗) in the (x, θ)-

space. Therefore, instead of evaluating Q(x∗) exactly, we first evaluate QLP(x∗)

and check whether θ∗ < QLP(x∗). If so, we add the subgradient cut (42) to remove

(x∗, θ∗). Otherwise, we compute Q(x∗) and check whether θ∗ < Q(x∗). If so,

we add the integer optimality cut (41). Otherwise, we accept the solution. The

key idea is to use QLP(x) as a proxy for Q(x) to check feasibility of a candidate

solution, preventing unnecessary, and more costly, computations of Q(x).

The modification just described is similar in spirit to sequential approximation

schemes such as [56], [22], [33], and [52], where the second-stage cost function

Q(x) is approximated by linear programs which, starting with QLP(x), are itera-

tively strengthened with additional cuts. Although these methods are shown to

converge after a finite number of steps, the convergence can be very slow and in

practice exact evaluations of Q(x) may be required. In contrast, in the context of

the integer L-shaped method, we propose to use QLP(x) as the unique interme-

diate approximation for Q(x), which is a simple yet useful modification whose

implementation is rather straightforward and, to the best of our knowledge, has

not been reported in the literature.

To implement the approach presented above, in addition to V, we also keep a

list VLP of visited first-stage solutions x for which the continuous relaxation QLP(x)

has been computed. The modified strategy, which we call alternating cuts, pro-

ceeds as shown in Algorithm 3.

Note that if x∗ /∈ VLP satisfies (42), then x∗ is included into VLP and thus the

steps in lines 12–19 of Algorithm 3 are applied to check whether (x∗, z∗, θ∗) is a

feasible solution or not. As we shall see in Section 4.5, this simple modification

yields speedups of one order of magnitude on instances from the literature.

86



Algorithm 3 Optimality cut function with alternating cut strategy
Input: (x∗, z∗, θ∗) candidate integer solution, Q : X → R, QLP : X → R, V, VLP
Output: true if solution is feasible, false otherwise

1: if x∗ ∈ V then // We know θ∗ ≥ Q(x∗)
2: return true
3: end if
4: if x∗ /∈ VLP then
5: Compute QLP(x∗)
6: VLP ← VLP ∪ {x∗}
7: if θ∗ < QLP(x∗) then
8: Add the subgradient cut (42).
9: return false

10: end if
11: end if

// Now we have x∗ ∈ VLP and θ∗ ≥ QLP(x∗)
12: Compute Q(x∗).
13: V ← V ∪ {x∗}
14: if θ∗ < Q(x∗) then
15: Add the integer optimality cut (41)
16: return false
17: else
18: return true
19: end if

4.3 New optimality cuts

In this section, we present a new class of integer optimality cuts that can be used

as an alternative to the standard cut (41). After providing an overview of the ap-

proach, we show how to construct a cut-generating linear program to separate

these new inequalities and then we discuss some implementation details.

Let S be the projection of the feasible set of (MP) onto the (x, θ)-space, which

corresponds to the epigraph of Q(x) over X, i.e.,

S = {(x, θ) ∈ X×R : θ ≥ Q(x)} .

Let V ⊆ X be such that Q(x) is known for all x ∈ V. We have

S ⊆ S(X, V) :=
⋃

x∈V
{(x, θ) : θ ≥ Q(x)} ∪ (X \V)× {θ : θ ≥ L}.

87



In some sense, S(X, V) is the best approximation of S when only the values of

Q(x) for x ∈ V are known and only the trivial lower bound L is available over

X \V. We consider the relaxation S(V) of S(X, V) given by

S(X, V) ⊆ S(V) :=
⋃

x∈V
{(x, θ) : θ ≥ Q(x)} ∪ ({0, 1}n \V)× {θ : θ ≥ L}.

Observe that S(V) ⊆ S(U) for any U ⊆ V, and in particular, S(V) ⊆ S({x})
for x ∈ V. Moreover, S(V) =

⋂
x∈V S({x}). Since (41) is a valid inequality for

conv (S({x})), it is also valid for conv (S(V)). Actually, (41) is the only nontriv-

ial cut needed to describe conv (S({x})). However, in general, conv (S(V)) ⊆⋂
x∈V conv (S({x})) holds with strict containment, i.e., adding (41) for all x ∈ V

does not yield conv (S(V)). Our goal is to derive a compact extended formulation

for conv (S(V)) and use it to generate optimality cuts for a point (x∗, θ∗) in the

(x, θ)-space that take into account the values of Q(x) for x ∈ V.

Several steps of the construction of our cut-generating linear program rely on

Lemma 52 below, which follows from disjunctive programming [5] applied in the

context of linear extended formulations of polyhedra.

Lemma 52. Let P1, . . . , Pk be nonempty polyhedra in Rn having the same recession cone.

If Pi = {x ∈ Rn| ∃yi ∈ Rmi : Eix + Fiyi ≥ hi}, then conv
(
∪k

i=1Pi
)
= {x ∈ Rn| ∃xi ∈

Rn, yi ∈ Rmi , λ ∈ Rk : x = ∑k
i=1 xi, Eixi + Fiyi ≥ λihi, ∑k

i=1 λi = 1, λ ≥ 0}.

4.3.1 Construction of CGLP

Clearly, we have conv (S(V)) = conv
(

PQ(V) ∪ PL(V)
)
, where

PQ(V) := conv

(⋃
x∈V
{(x, θ) : θ ≥ Q(x)}

)
and

PL(V) := conv ({0, 1}n \V)× {θ : θ ≥ L}.

Thus to describe conv (S(V)) it suffices to provide compact extended formulations

for PQ(V) and PL(V) and then apply disjunctive programming to their union.

88



Describing PQ(V) is trivial: letting V = {x1, . . . , xt}, then PQ(V) is the set of

vectors (xQ, θQ) ∈ Rn ×R for which there exists φ ∈ Rt satisfying

−xQ +
t

∑
s=1

φsxs = 0

−θQ +
t

∑
s=1

φsQ(xs) ≤ 0

t

∑
s=1

φs = 1

φ ≥ 0.

To describe PL(V), it is enough to describe conv ({0, 1}n \V) and then take the

Cartesian product with {θ : θ ≥ L}. We build on results from the forbidden-

vertices problem in Chapter 3 to do this.

Let Vi be the projection of V onto the first i coordinates. Define V̂1 := {0, 1} \
V1, V̂i := [Vi−1 × {0, 1}] \ Vi ⊆ {0, 1}i for i ≥ 2, and write V̂i = {vi

1, . . . , vi
ki
}.

Finally, for all i, let W ij := V̂i × {0}j−i = {wij
1 , . . . , wij

ki
} ⊆ {0, 1}j for all j ≥ i and

define W i := W in = {wi
1, . . . , wi

ki
} ⊆ {0, 1}n.

From Proposition 35 in Chapter 3, for all 1 ≤ j ≤ n− 1 we have

{0, 1}j+1 \ X j+1 =
[(
{0, 1}j \ X j

)
× {0, 1}

]
∪ X̂ j+1. (43)

The idea behind (43) is that any vector in {0, 1}j+1 \ X j+1 is such that either its

projection onto {0, 1}j does not lie in V j or it is obtained by flipping the value of

the last component of a vector in V j+1 otherwise.

We use the recursion (43) to derive an explicit linear extended formulation for

conv ({0, 1}n \V) having O(n|V|) variables and constraints.

Proposition 53. For all 2 ≤ j ≤ n, conv
(
{0, 1}j \V j) is given by all x ∈ Rj for which

89



there exist vectors y, λ, and µ satisfying

−x + y +
j

∑
i=1

ki

∑
l=1

µi
lw

ij
l = 0

k1

∑
l=1

µ1
l − λ1 = 0

ki

∑
l=1

µi
l + λi−1 − λi = 0 ∀2 ≤ i ≤ j− 1

kj

∑
l=1

µ
j
l + λj−1 = 1

y1 = 0

yi − λi−1 ≤ 0 ∀2 ≤ i ≤ j

y ≥ 0, λ ≥ 0, µ ≥ 0.

Proof. We apply induction on 2 ≤ j ≤ n. The base case reduces to proving that

conv
(
{0, 1}2 \V2) is given by

−x + y +
2

∑
i=1

ki

∑
l=1

µi
lw

i2
l = 0

k1

∑
l=1

µ1
l − λ1 = 0

k2

∑
l=1

µ2
l + λ1 = 1 (44)

y1 = 0

y2 − λ1 ≤ 0

y ≥ 0, λ ≥ 0, µ ≥ 0.

Indeed, from (43), we have

{0, 1}2 \ X2 =
[(
{0, 1}1 \ X1

)
× {0, 1}

]
∪ X̂2. (45)

By definition, we have W12 = V̂1 × {0} = ({0, 1} \V1)× {0}. Then observe that

(
{0, 1}1 \ X1

)
× {0, 1} = W12 +


 0

0

 ,

 0

1


 ,

90



and thus

conv
((
{0, 1}1 \ X1

)
× {0, 1}

)
= conv

(
W12

)
+
{

y ∈ R2 : y1 = 0, 0 ≤ y2 ≤ 1
}

.

Writing W12 = {w12
1 , . . . , w12

k1
}, then it follows that conv

((
{0, 1}1 \ X1)× {0, 1}

)
is

given by p ∈ R2 such that

−p + y +
k1

∑
l=1

µ1
l w12

l = 0

k1

∑
l=1

µ1
l = 1

y1 = 0

y2 ≤ 1

y ≥ 0, µ1 ≥ 0.

By definition, we also have V̂2 = W22 = {w22
1 , . . . , w22

k2
}, and thus conv

(
V̂2) is

given by q ∈ R2 such that

−q +
k2

∑
l=1

µ2
l w22

l = 0

k2

∑
l=1

µ2
l = 1

µ2 ≥ 0.

From (45), we apply Lemma 52 to the above polytopes: we introduce a mul-

tiplier 0 ≤ λ1 ≤ 1, we include the equation x = p + q, and we multiply the

right-hand-side vectors of the first and second systems by λ1 and 1− λ1, respec-

tively. After eliminating p and q, we immediately obtain the desired system (44)

for conv
(
{0, 1}2 \ V2).

Now, assuming that the claim holds for some 2 ≤ j ≤ n− 1, we will prove that

it also holds for j+ 1. Since conv
(
({0, 1}j \ V j)× {0, 1}

)
= conv

(
({0, 1}j \ V j)

)
×

[0, 1], by the inductive hypothesis, we have that conv
(
({0, 1}j \ V j)× {0, 1}

)
is

91



given by p ∈ Rj+1 satisfying

−p + y +
j

∑
i=1

ki

∑
l=1

µi
lw

ij+1
l = 0

k1

∑
l=1

µ1
l − λ1 = 0

ki

∑
l=1

µi
l + λi−1 − λi = 0 ∀2 ≤ i ≤ j− 1

kj

∑
l=1

µ
j
l + λj−1 = 1

y1 = 0

yi − λi−1 ≤ 0 ∀2 ≤ i ≤ j

yj+1 ≤ 1

y ≥ 0, λ ≥ 0, µ ≥ 0,

where we have appended a new variable 0 ≤ yj+1 ≤ 1 and vectors wij
l have been

extended to wij+1
l by appending another component with value 0.

We also have that conv
(
V̂ j+1) is given by q ∈ Rj+1 satisfying

−q +
kj+1

∑
l=1

µ
j+1
l wj+1j+1

l = 0

kj+1

∑
l=1

µ
j+1
l = 1

µj+1 ≥ 0.

From (43), it is enough to apply Lemma 52 to the above polytopes to find an

extended formulation for conv
(
{0, 1}j+1 \ X j+1). Analogously to the base case,

we introduce a multiplier 0 ≤ λj ≤ 1, we include the equation x = p + q, and

we multiply the right-hand-side vectors of the first and second systems by λj and

1− λj, respectively. After eliminating p and q, we immediately obtain the desired

system for conv
(
{0, 1}j+1 \ V j+1).

92



From Proposition 53, we obtain that conv ({0, 1}n \V) is given by the vectors

xL ∈ Rn such that

−xL + y +
n

∑
i=1

ki

∑
l=1

µi
lw

i
l = 0

k1

∑
l=1

µ1
l − λ1 = 0

ki

∑
l=1

µi
l + λi−1 − λi = 0 ∀2 ≤ i ≤ n− 1

kn

∑
l=1

µn
l + λn−1 = 1

y1 = 0

yi − λi−1 ≤ 0 ∀2 ≤ i ≤ n

y ≥ 0, λ ≥ 0, µ ≥ 0.

Appending the variable θL and the constraint θL ≥ L to the above system gives

an extended formulation for PL(V). Note that excluding the nonnegativity restric-

tions, the constraint matrix has 3n rows and 3n + O(n|V|) columns, i.e, only its

width changes with V. In particular, updating the formulation can be done colum-

nwise, which is a desirable property from the computational point of view.

Once again, we apply disjunctive programming, but this time to PL(V) and

PQ(V) to derive an extended formulation for conv (S(V)). Note that both PL(V)

and PQ(V) have {(0, θ) ∈ Rn × R : θ ≥ 0} as their recession cone and thus

Lemma 52 applies. We introduce a multiplier 0 ≤ δ ≤ 1, we include the equa-

tions x = xL + xQ and θ = θL + θQ, and we multiply the right-hand-side vectors

of the systems defining PL(V) and PQ(V) by δ and 1− δ, respectively.

Recall that in the definition of S(V) we have dropped the dependence on X. To

recover part of that information, we can describe a polyhedron that lies between

conv (S) and conv (S(V)). For that, PL(V) can be coupled with any valid inequal-

ity for (MP). In particular, including variables z ≥ 0 and the system AxL + Cz ≤ b

93



tightens the formulation. Lower bounds of the form ΠxL − 1θL ≤ π0 can be use-

ful too to better approximate the shape of the epigraph S of Q(x). Thus we may

assume that both types of constraints are added to the formulation of PL(V), and

that θL ≥ L is absorbed in ΠxL − 1θL ≤ π0.

Finally, we obtain that if (x∗, θ∗) does not belong to conv (S(V)), and thus not

to conv (S), then the following system is infeasible:

94



(α) xL + xQ = x∗

(β) θL + θQ = θ∗

(σ) −xL + y +
n

∑
i=1

ki

∑
l=1

µi
lw

i
l = 0

(ρ1)
k1

∑
l=1

µ1
l − λ1 = 0

(ρi)
ki

∑
l=1

µi
l + λi−1 − λi = 0 ∀2 ≤ i ≤ n− 1

(ρn)
kn

∑
l=1

µn
l + λn−1 − δ = 0

(ϕ1) y1 = 0

(ϕi) yi − λi−1 ≤ 0 ∀2 ≤ i ≤ n

(ψ) ΠxL − 1θL − π0δ ≤ 0

(ν) AxL + Cz− bδ ≤ 0

(γ) −xQ +
t

∑
s=1

φsxs = 0

(τ) −θQ +
t

∑
s=1

φsQ(xs) ≤ 0

(η)
t

∑
s=1

φs + δ = 1

y ≥ 0, λ ≥ 0, µ ≥ 0

φ ≥ 0

δ ≥ 0.

95



By Farkas’ Lemma, and after removing redundancies, we arrive at the alterna-

tive system

x∗α + θ∗β + η < 0

α− σ + A>ν + Π>ψ = 0

β− 1ψ = 0

−ρn + η − bν− π0ψ ≥ 0

C>ν ≥ 0

σi + ϕi ≥ 0 2 ≤ i ≤ n

−ρi + ρi+1 + ϕi+1 ≥ 0 1 ≤ i ≤ n− 1

wi
lσ + ρi ≥ 0 1 ≤ n, 1 ≤ l ≤ ki

xsα + Q(xs)β + η ≥ 0 1 ≤ s ≤ t

β ≥ 0, ϕ ≥ 0, ν ≥ 0, ψ ≥ 0.

Thus, any feasible solution to the above system yields an inequality αx + βθ ≥
−η that is valid for conv (S), but is violated by (x∗, θ∗).

For finite termination of the integer L-shaped method, we need a tightness con-

dition at the current solution, namely αx∗ + βQ(x∗) = −η. Including this condi-

tion yields 0 > x∗α + θ∗β + η = x∗α + βQ(x∗) + η − βQ(x∗) + θ∗β = β(θ∗ −
Q(x∗)). Since θ∗ < Q(x∗), we conclude that β > 0 in any feasible tight solution.

Therefore, we replace the condition x∗α + θ∗β + η < 0 with x∗α + Q(x∗)β + η = 0

and the normalization β = 1. Note that the objective function of the resulting lin-

ear program is fixed to zero, and we only need to find a feasible solution, which

always exists by definition of the system; in particular, (41) is feasible. The final

system, denoted CGLP, reads

96



α− σ + A>ν + Π>ψ = 0

1ψ = 1

−ρn + η − bν− π0ψ ≥ 0

C>ν ≥ 0

σi + ϕi ≥ 0 2 ≤ i ≤ n

−ρi + ρi+1 + ϕi+1 ≥ 0 1 ≤ i ≤ n− 1

wi
lσ + ρi ≥ 0 1 ≤ i ≤ n, 1 ≤ l ≤ ki (46)

xsα + Q(xs) + η ≥ 0 1 ≤ s < t (47)

xtα + Q(xt) + η = 0 (48)

ϕ ≥ 0, ν ≥ 0, ψ ≥ 0.

Having set xt := x∗, we solve CGLP to find a feasible solution to the system. In

particular, we obtain α and η defining a CGLP-based optimality cut of the form

αx + θ ≥ −η (49)

which by construction cuts off (x∗, θ∗) with θ∗ < Q(x∗).

4.3.2 Implementation

The main difference that we are proposing with the standard implementation is

the use of the CGLP-based cut (49) in place of (41). This requires keeping a list

V of first-stage solutions for which Q(x) has been computed and updating CGLP

accordingly. Algorithm 4 shows the procedure.

A key step is found in line 7 of Algorithm 4 as conv (S(V)) has to be recom-

puted whenever a new vector x∗ is added to V. Of course, we could derive CGLP

from scratch every time. Doing so requires computing the sets W i and thus creat-

ing O(n|V|) constraints in (46). Instead, we propose to perform marginal updates

97



Algorithm 4 Optimality cut function with CGLP-based optimality cuts
Input: (x∗, z∗, θ∗) candidate integer solution, Q : X → R, QLP : X → R, V
Output: true if solution is feasible, false otherwise

1: if x∗ ∈ V then // We know θ∗ ≥ Q(x∗)
2: return true
3: end if
4: Compute QLP(x∗)
5: Add the subgradient cut (42)
6: Compute Q(x∗)
7: Update CGLP.
8: V ← V ∪ {x∗}
9: if θ∗ < Q(x∗) then

10: Solve CGLP to obtain α and η
11: Add the integer optimality cut (49)
12: return false
13: else
14: return true
15: end if

from an iteration to the next one using the fact that W i = V̂i × {0}n−i.

Let Vt = {x1, . . . , xt} be the set of the first t solutions found along the master

tree. Similarly, let Vi
t be the projection of Vt onto the first i components and set

V̂i
t := [Vi−1

t × {0, 1}] \ Vi
t with V̂1

t := {0, 1} \ V1
t . Suppose a new vector xt+1 =

(x1, . . . , xn) is to be included and let Vt+1, Vi
t+1, V̂i

t+1 be the updated sets. Let

x̄i := (x1, . . . , xi−1, xi) and x̂i := (x1, . . . , xi−1, 1 − xi). Clearly, we have Vt+1 =

Vt ∪ {xt+1} and Vi
t+1 = Vi

t ∪ {x̄i}. Now, to obtain V̂i
t+1, observe that

V̂i
t+1 =

[
Vi−1

t+1 × {0, 1}
]
\Vi

t+1

=
[
Vi−1

t × {0, 1} ∪ {x̂i, x̄i}
]
\
[
Vi

t ∪ {x̄i}
]

=
[
Vi−1

t × {0, 1} ∪ {x̂i}
]
\
[
Vi

t ∪ {x̄i}
]

=
([

Vi−1
t × {0, 1}

]
\
[
Vi

t ∪ {x̄i}
])
∪
(
{x̂i} \

[
Vi

t ∪ {x̄i}
])

=
(

V̂i
t \ {x̄i}

)
∪
(
{x̂i} \ Vi

t

)
.

Therefore, if x̂i /∈ V̂i
t and x̂i /∈ Vi

t , then x̂i is included in V̂i
t+1. Also, if x̄i ∈ V̂i

t , then

x̄i is removed to obtain V̂i
t+1. Further observe that both operations cannot occur at

98



the same iteration since the equivalence

x̄i ∈ V̂i
t ⇐⇒ x̂i ∈ Vi

t ∧ x̄i /∈ Vi
t

implies that x̂i /∈ Vi
t and x̄i ∈ V̂i

t cannot hold true at the same time.

It follows that updating V involves adding or removing at most one vector

for each W i, totaling at most n such operations. The system CGLP is updated

accordingly by appending or dropping at most n rows in (46). Also, xt+1 takes

the place of xt in (48) and the cut corresponding to xt now takes the form (47)

by changing the equality sign into inequality. The procedure to update CGLP is

shown in Algorithm 5.

Algorithm 5 Updating CGLP

Input: CGLP, Vi, V̂i, t, xt+1 = (x1, . . . , xn)
Output: Updated CGLP, Vi, V̂i

1: for 1 ≤ i ≤ n do
2: x̄i ← (x1, . . . , xi−1, xi)
3: x̂i ← (x1, . . . , xi−1, 1− xi)
4: if x̂i /∈ V̂i and x̂i /∈ Vi then
5: w← x̂i × {0}n−i

6: Add wσ + ρi ≥ 0 to (46)
7: V̂i ← V̂i ∪ {x̂i}
8: end if
9: if x̄i ∈ V̂i then

10: w← x̄i × {0}n−i

11: Remove wσ + ρi ≥ 0 from (46)
12: V̂i ← V̂i \ {x̄i}
13: end if
14: Vi ← Vi ∪ {x̄i}
15: end for
16: Add xtα + Q(xt) + η ≥ 0 to (47)
17: Replace (48) with xt+1α + Q(xt+1) + η = 0

4.4 Combined method

Now we outline an implementation of the integer L-shaped method that combines

the alternating strategy discussed in Section 4.2 with the new optimality cuts pre-

sented in Section 4.3.

99



We keep two disjoint lists of first-stage solutions: in VLP we include solutions

for which only QLP(x) has been computed, while in V we keep solutions for which

Q(x) has been evaluated. At any given stage, we assume that for each x ∈ V we

have added an optimality cut that is tight at x. Now, when a candidate integer

solution (x∗, z∗, θ∗) is found in the master tree, we check whether x∗ ∈ V or not.

If so, we accept the solution as we already know Q(x∗) ≤ θ∗. Now, if x∗ /∈ VLP,

then we compute QLP(x∗), we add x∗ into VLP, and in case θ < QLP(x∗), we add

the subgradient cut (42). At this point, if (x∗, θ∗) has been neither accepted nor

rejected, we have x∗ ∈ VLP and θ∗ ≥ QLP(x∗). Thus we compute Q(x∗), we move

x∗ from VLP to V, and in case θ < Q(x∗), we add the CGLP-based cut (49) and

accept the solution otherwise. Algorithm 6 below presents the method.

4.5 Results

In this section we address the performance of the variants of the integer L-shaped

method discussed so far. Given that the implementations differ in the cut strategy

used and in the type of optimality cut added, we consider the following combina-

tions:

1. Std-Std: standard cut strategy and standard optimality cut (41); see Section

4.1.

2. Alt-Std: alternating cut strategy and standard optimality cut (41); see Section

4.2.

3. Std-CGLP: standard cut strategy and new optimality cut (49); see Section 4.3.

4. Alt-CGLP: alternating cut strategy and new optimality cut (49); see Section

4.4.

In other words, Std-Std corresponds to the usual implementation of the integer

L-shaped method, on top of which the variants are built.

100



Algorithm 6 Optimality cut function with alternating cut strategy and CGLP-
based optimality cuts
Input: (x∗, z∗, θ∗) candidate integer solution, Q : X → R, QLP : X → R, V, VLP
Output: true if solution is feasible, false otherwise

1: if x∗ ∈ V then // We know θ∗ ≥ Q(x∗)
2: return true
3: end if
4: if x∗ /∈ VLP then
5: Compute QLP(x∗).
6: VLP ← VLP ∪ {x∗}.
7: if θ∗ < QLP(x∗) then
8: Add the subgradient cut (42).
9: return false

10: end if
11: end if

// Now we have x∗ ∈ VLP and θ∗ ≥ QLP(x∗)
12: Compute Q(x∗).
13: Update CGLP.
14: V ← V ∪ {x∗}.
15: VLP ← VLP \ {x∗}
16: if θ∗ < Q(x∗) then
17: Solve CGLP to obtain α and η
18: Add the integer optimality cut (49)
19: return false
20: else
21: return true
22: end if

Our computational implementation uses CPLEX 12.5.0.1 as a solver and its

Callable Library for advanced control routines. Since either optimality cuts (41)

or (49) are part of the complete formulation (MP) but not included from the be-

ginning, we have to add them on-the-fly through the optimality cut function. This

routine is called every time the solver finds a candidate integer solution to the mas-

ter problem and is in charge of generating an optimality cut if needed. In the case of

CGLP, it calls additional subroutines to make the required updates to generate (49).

We include the formulation of the first-stage set in CGLP, along the subgradients

cuts derived from the linear relaxation of Q(x) used in Benders’ decomposition.

101



The experiments were carried out on a personal computer with 3.33 Ghz CPU,

4 Gb of RAM, and running Linux. A relative optimality gap of 0.01% was set as

stopping criterion and a time limit of 7200 seconds was imposed. We do not report

on the extensive form of the instances as solving them using an off-the-shelf solver

is much slower than the decomposition approaches.

4.5.1 Stochastic server location problem

The stochastic server location problem is described in [48]. Given n locations, in

the first stage we are asked to decide where to place servers so that the demand

given by m potential customers is satisfied in the second stage. The uncertain

data is the set of customers to be served in the second stage and the objective is

to maximize the expected second-stage revenue minus the first-stage installation

costs. In minimization form, the problem can be written as

min cx + Q(x)

s.t. x ∈ {0, 1}n,

where Q(x) := Eξ [Qξ(x)] and

Qξ(x) := min q1y + q2s

s.t. W1y + W2s ≥ h(ξ)− Tx

y ∈ {0, 1}nm

s ∈ Rn
+.

The random right-hand-side vector h(ξ) represents the set of active customers

in a given scenario.

We tested our methods on the instances presented in [49]. Instances named

SSLP.n.m.k have n locations, m customers, and k scenarios, leading to n binary

variables in the first stage and nm binary variables and n nonnegative variables per

102



scenario in the second stage. For each n and m, five replications with k scenarios

each are considered. We did not include instances having n = 5 as all of them took

less than 1 second to solve with any method.

Tables 11 and 12 summarize our results. In both tables, column Instance in-

dicates the combination of n, m and k as above. Headers Std-Std, Alt-Std, Std-

CGLP, Alt-CGLP denote the type of implementation under consideration. Here we

present the averages over the five replications of each instance. Detailed results

are given in Tables 16 and 17 in Section 4.7.

In Table 11 we present the overall results for all four methods. Columns Nodes

show the average number of nodes explored in the master problem. Columns Time

show the average total time spent to reach optimality, which includes computing

an initial lower bound L, solving the LP relaxation with Benders’ decomposition,

and exploring and evaluating candidate solutions in the master problem. Best

running times are in bold.

From Table 11, we see that there is no significant variation in the number of ex-

plored nodes among the different methods. Now, the implementations that use the

alternating cut strategy clearly outperform the other two methods, with speedups

of one order of magnitude. On the other hand, with a few exceptions, the use of

CGLP-based cuts does not cause major changes in the total running time, espe-

cially when combined with the alternating cut strategy. This can be explained by

the fact that in these problems, the first-stage is very simple as X = {0, 1}n with

n ≤ 15, which does not present a challenge for CPLEX.

To understand the effect of alternating cuts, in Table 12 we present details re-

garding subproblems. Recall that every time a candidate integer solution is found,

we have to check whether it is feasible, by either solving a series of MIPs or LPs,

one per scenario, and then add a cut to discard the solution if necessary. Head-

ers #LP and #MIP denote the average number of times a candidate solution was

103



Table 11: Stochastic server location: overall results.

Instance
Std-Std Std-CGLP Alt-Std Alt-CGLP

Nodes Time Nodes Time Nodes Time Nodes Time
SSLP.10.50.50 402.4 70.9 394.8 71.5 406.8 6.8 404.2 6.8
SSLP.10.50.100 370.2 91.1 373.0 90.5 371.8 13.2 371.0 13.6
SSLP.10.50.500 381.0 548.5 385.0 561.7 386.8 64.0 385.0 65.5
SSLP.10.50.1000 360.0 1294.1 357.8 1307.1 367.4 128.2 368.2 129.3
SSLP.10.50.2000 392.2 3298.0 371.4 3160.7 404.4 339.3 404.6 336.7
SSLP.15.45.5 772.6 81.5 750.2 89.0 763.4 2.7 764.6 2.8
SSLP.15.45.10 1408.0 400.9 1370.8 353.6 1450.8 6.1 1414.0 6.5
SSLP.15.45.15 1500.0 534.3 1498.4 539.1 1526.0 11.7 1523.6 11.9
SSLP.15.45.20 495.6 358.4 481.4 347.8 500.4 8.0 502.4 8.1
SSLP.15.45.25 733.0 708.4 698.8 704.9 737.8 16.7 732.2 17.4

checked using linear or mixed-integer subproblems, while headers Time LP and

Time MIP indicate the average time spent in each case. We focus only on the imple-

mentations Std-Std and Alt-Std as the comparison for the remaining pair is similar.

From Table 12, we see that with the alternating cut strategy the number of MIP

evaluations reduces considerably. This means that in the problems we tested, most

of the time it is not necessary to compute the exact second-stage value of a given

first-stage solution to reject it. Furthermore, only a small fraction of these solutions

are visited twice, and only in those cases we have to solve MIP subproblems. The

benefits are evident.

Table 12: Stochastic server location: subproblems details.

Instance
Std-Std Alt-Std

#LP #MIP Time LP Time MIP #LP #MIP Time LP Time MIP
SSLP.10.50.50 147.6 147.6 1.8 65.8 148.6 3.4 1.7 1.8
SSLP.10.50.100 131.6 131.6 3.3 81.0 130.8 3.8 3.0 3.5
SSLP.10.50.500 131.6 131.6 16.4 497.2 130.6 3.0 14.8 15.2
SSLP.10.50.1000 132.0 132.0 33.6 1193.3 127.2 3.0 30.2 32.8
SSLP.10.50.2000 142.6 142.6 72.4 3082.5 143.4 4.2 67.3 133.2
SSLP.15.45.5 143.0 143.0 0.3 80.6 143.2 5.8 0.3 1.9
SSLP.15.45.10 262.0 262.0 1.1 398.2 268.5 5.3 1.1 3.6
SSLP.15.45.15 310.6 310.6 1.9 530.1 317.4 6.0 1.9 7.9
SSLP.15.45.20 99.4 99.4 0.7 356.1 98.4 3.2 0.7 5.9
SSLP.15.45.25 162.4 162.4 1.5 704.3 163.0 5.4 1.4 12.8

104



4.5.2 Stochastic multiple binary knapsack problem

The second benchmark set corresponds to a class of stochastic multiple binary

knapsack problems. They have the form

min cx + dz + Q(x)

s.t. Ax + Cz ≥ b

x ∈ {0, 1}n

z ∈ {0, 1}n,

where Q(x) := Eξ [Qξ(x)],

Qξ(x) := min q(ξ)y

s.t. Wy ≥ h− Tx

y ∈ {0, 1}n,

and all data are nonnegative integers. In the second-stage problem, only the ob-

jective vector q(ξ) is random, following a discrete distribution with finitely many

scenarios.

We generated 30 instances of the above problem with n = 120 and 20 equiprob-

able scenarios. The systems Ax + Cz ≥ b and Wy ≥ h− Tx have 50 and 5 rows,

respectively. The entries of A, C, T, W, c, d, and q are i.i.d. sampled from the uni-

form distribution over {1, . . . , 100}. We set b = 3
4(A1 + C1) and h = 3

4(T1 + W1),

with 1 denoting the n-dimensional vector of ones.

We divided the instances intro three groups depending on how much time the

standard implementation took to solve each of them: Easy (less than 200 seconds,

instances 1–6), Medium (between 200 and 1000 seconds, instances 7–18), and Hard

(more than 1000 seconds, instances 19–29). We omitted instance 30 since none of

the methods was able to solve it to optimality within the time limit.

105



Tables 13, 14, and 15 below summarize the results. Column Difficulty denotes

the instance class. The remaining headers and columns are as in Tables 11 and 12.

Detailed results are given in Tables 18, 19, and 20 in Section 4.7.

Table 13: Stochastic multiple knapsack: overall results.

Difficulty Std-Std Std-CGLP Alt-Std Alt-CGLP
Nodes Time Nodes Time Nodes Time Nodes Time

Easy 151531.5 87.1 127696.0 82.5 154611.7 86.0 133724.2 82.8
Medium 945487.8 520.8 714822.5 453.8 940249.3 516.1 748502.7 446.7

Hard 3356158.1 2125.7 2654448.1 1833.6 3371088.5 2065.2 2656526.5 1756.3

From Table 13, we see that the application of the alternating cut strategy does

not yield the time savings we saw with the stochastic server location problems. On

the other hand, in most instances, adding CGLP-based cuts instead of standard

cuts yields reductions in both the number of nodes and the total time, regardless

of the cut strategy being used. We would like to conclude that these improvements

are due to the fact that CGLP-based cuts help to explore the master tree. However,

at this point, that is not completely clear, as for example, time reductions could be

consequence of less evaluations of Q(x) and not because of the strength of the new

cuts.

To aid our analysis, in Table 14 we report the average number of candidate

solutions for which QLP(x) and Q(x) were evaluated and the average time spent

doing so. This time we compare Std-Std and Std-CGLP, and the notation is similar

to that of Table 12.

Table 14: Stochastic multiple knapsack: subproblems details.

Difficulty Std-Std Std-CGLP
#LP #MIP Time LP Time MIP #LP #MIP Time LP Time MIP

Easy 13.7 13.7 0.0 25.7 14.7 14.7 0.0 28.1
Medium 49.2 49.2 0.1 99.1 54.1 54.1 0.1 107.2

Hard 112.3 112.3 0.2 231.6 114.9 114.9 0.2 235.8

We observe that both implementations require roughly the same number of

evaluations of both QLP(x) and Q(x), which explains why alternating cuts does

106



not outperform the standard cut strategy. Moreover, the difference in the time

solving subproblems is very small compared to the total running times presented

in Table 13. Thus, the reductions observed in Table 13 can be attributed to the bet-

ter approximation of the first-stage set given by the CGLP-based cuts and not to

the variability of the evaluations. In this regard, it is important to stress that, in

principle, having a better description of the first-stage set does not have a direct

relationship with the number of candidates solutions found in the master tree, and

actually, having more candidates could hurt the total running time if their evalu-

ation is too costly. However, in situations where after decomposing the problem

the burden of the computation lies on the master problem, our improved cuts may

prove beneficial as exemplified by our results.

Finally, in Table 15 we present the overhead incurred by using CGLP to gen-

erate cuts, that is, the time spent in additional operations to maintain and solve

CGLP through the method. For each class, column |V| shows the average final size

of V, which is the number of candidate solutions for which Q(x) was evaluated ex-

actly. Headers Update and Generate denote the average total time spent updating

the formulation of CGLP and actually solving the system to find an optimality cut,

respectively. This additional time is already included in the total running time

presented in Table 13.

Table 15: Stochastic multiple knapsack: CGLP overhead.

Difficulty |V| Update Generate
Easy 14.7 0.0 0.5

Medium 54.1 0.2 7.2
Hard 114.9 0.4 24.7

As expected, the overhead increases as more solutions are included in the ex-

tended formulation. Updating CGLP takes practically no time, whereas generating

the cut takes a nonnegligible amount of time. However, compared to the total run-

ning time, the overhead is very small and the effort of computing improved cuts

107



pays off as shown in Table 13. For more complicated problems where the number

of binary first-stage variables is too large or where too many candidate solutions

are evaluated, the cost of maintaining CGLP is likely to be higher. In those cases,

we can enforce rules to limit the number of calls to CGLP, such as using the stan-

dard optimality cuts as a baseline and applying the improved cuts only once in a

while.

4.6 Concluding remarks

We have presented two modifications to the integer L-shaped method with the

objective of reducing the running time of the algorithm. The first one, termed

alternating cuts strategy, seeks to avoid expensive evaluations of the second-stage

cost function, while the second, the use of CGLP-based optimality cuts, helps to

better approximate the shape of the epigraph of the cost function when evaluations

at different points are available. Our computational results suggest the following:

1. The alternating cuts strategy works better in problems where the computa-

tional bottleneck of (IP) is in evaluating Q(x). Even when that is not the case,

this modification does not seem to hurt the total running times and thus it

could be considered as the base method on top of which more evolved algo-

rithms can be built.

2. CGLP-based cuts are a viable alternative when the first-stage set is difficult to

explore and computing Q(x) is a relatively cheap operation. As the sole pur-

pose of these new cuts is to have a better representation of the epigraph of the

second-stage cost function within the master problem, there is no guarantee

about the number or the sequence of solutions for which Q(x) is evaluated,

and thus, in general, this method performs well when the impact of this vari-

ability is small compared with the effort of solving the master problem.

108



3. We also point out that our overall computational experience indicates that

CGLP-based cuts are particularly suitable for problems having additional in-

teger variables in the set Z, since a deep cut discarding a point (x∗, θ∗) in the

(x, θ)-space may also prove effective in discarding a large number of points

of the form (x∗, z, θ∗) for z ∈ Z.

4. As favorable conditions for both modifications are unlikely to be attained

at the same time, we observe that time reductions in a combined method

are mainly consequence of one strategy or the other, but not because of the

combination of both. That being said, it would be interesting to experi-

ment with implementations where CGLP also incorporates approximations

of Q(x) such as subgradient cuts or ad-hoc lower bounds rather than exact

evaluations only. That would require also keeping track of first-stage vectors

x for which estimates of Q(x) have been computed.

5. Finally, in more general settings where Q(x) is an easy-to-evaluate noncon-

vex function for which a tractable convex underestimator is not available,

CGLP-based cuts may prove helpful in solving problems having the form

(IP). Situations where Q(x) is given by black-box computations remain a

case study to be explored.

4.7 Detailed computational results

4.7.1 Stochastic server location problem

109



Table 16: Stochastic server location: overall results per instance.

Instance Rep. Std-Std Std-CGLP Alt-Std Alt-CGLP
Nodes Time Nodes Time Nodes Time Nodes Time

SSLP.10.50.50

a 478 61.1 485 67.8 468 7.0 466 7.1
b 452 91.3 434 85.5 472 6.7 466 6.7
c 300 79.3 297 80.0 303 7.0 298 7.1
d 237 25.3 224 26.9 230 5.0 230 5.0
e 545 97.5 534 97.2 561 8.2 561 8.3

SSLP.10.50.100

a 452 109.7 434 106.2 462 17.1 470 18.3
b 497 80.3 494 83.7 493 11.0 493 11.1
c 313 95.3 291 98.0 302 12.8 289 13.6
d 216 49.5 224 43.6 229 10.7 229 10.5
e 373 120.5 422 121.0 373 14.2 374 14.4

SSLP.10.50.500

a 466 605.5 470 643.9 472 63.3 476 63.5
b 441 482.6 447 492.9 449 57.7 449 57.8
c 277 571.7 292 557.6 275 64.0 271 64.8
d 235 348.8 239 353.5 247 57.5 247 57.6
e 486 733.8 477 760.8 491 77.5 482 84.0

SSLP.10.50.1000

a 481 1542.1 473 1549.6 486 134.5 487 135.4
b 473 1128.7 477 1142.2 460 114.5 466 116.8
c 276 1509.3 261 1509.7 282 124.2 279 125.5
d 225 752.8 227 782.2 229 113.2 229 113.7
e 345 1537.6 351 1551.8 380 154.4 380 155.3

SSLP.10.50.2000

a 466 3777.1 467 3769.2 472 382.7 478 373.2
b 472 2565.3 471 2751.8 483 246.7 478 251.0
c 286 3189.4 286 3158.8 302 368.9 300 360.5
d 219 1937.1 219 1994.5 223 249.0 225 249.4
e 518 5021.2 414 4129.2 542 449.4 542 449.6

SSLP.15.45.5

a 230 11.3 233 11.6 244 0.7 244 0.7
b 261 2.9 262 3.0 270 0.5 262 0.5
c 2364 320.9 2288 354.9 2298 9.9 2294 10.2
d 870 56.2 826 58.7 872 1.4 888 1.7
e 138 16.4 142 16.8 133 1.0 135 1.0

SSLP.15.45.10

a 430 79.0 442 80.1 429 2.7 428 2.8
b 284 189.0 251 190.9 256 6.2 278 7.6
c 2384 245.0 2240 236.6 2512 7.4 2449 7.7
d 2534 1090.7 2550 906.8 2606 7.9 2501 8.0

SSLP.15.45.15

a 1408 1646.1 1329 1594.5 1368 13.1 1358 13.3
b 223 55.7 216 55.5 212 2.3 219 2.3
c 2676 580.6 2718 611.0 2791 19.0 2785 18.9
d 2986 359.1 2994 404.1 3038 22.3 3024 23.0
e 207 30.1 235 30.2 221 1.9 232 1.9

SSLP.15.45.20

a 498 186.4 469 181.4 506 4.0 523 4.1
b 351 87.2 335 87.5 341 7.6 331 7.6
c 380 196.8 358 193.4 380 5.1 387 5.2
d 552 873.0 548 898.1 560 20.7 562 20.9
e 697 448.4 697 378.5 715 2.8 709 2.8

SSLP.15.45.25

a 658 554.1 629 532.0 662 18.4 633 18.5
b 671 324.7 620 435.1 670 9.0 680 6.7
c 433 165.2 399 160.7 447 11.8 422 11.9
d 965 435.2 946 465.7 967 26.9 1001 32.3
e 938 2062.7 900 1931.0 943 17.6 925 17.8

110



Table 17: Stochastic server location: subproblems details per instance.

Instance Rep. Std-Std Alt-Std
#LP #MIP Time LP Time MIP #LP #MIP Time LP Time MIP

SSLP.10.50.50

a 189 189 2.2 55.5 185 3 2.1 1.7
b 154 154 1.6 86.2 166 3 1.6 1.6
c 113 113 1.6 74.5 109 4 1.6 2.3
d 44 44 0.6 21.3 45 2 0.6 0.9
e 238 238 2.8 91.6 238 5 2.7 2.6

SSLP.10.50.100

a 181 181 4.3 98.4 183 6 3.9 6.4
b 176 176 4.0 69.7 175 2 3.7 0.9
c 112 112 3.1 86.2 109 5 2.9 4.1
d 51 51 1.3 40.9 50 2 1.2 2.2
e 138 138 3.7 109.8 137 4 3.3 4.0

SSLP.10.50.500

a 178 178 21.1 549.8 179 2 19.1 11.0
b 152 152 17.8 428.5 150 2 15.2 7.4
c 89 89 13.7 523.9 89 4 12.0 18.6
d 56 56 8.1 303.3 56 2 8.1 12.4
e 183 183 21.1 680.4 179 5 19.8 26.7

SSLP.10.50.1000

a 188 188 46.4 1429.6 185 3 41.9 29.4
b 163 163 36.6 1028.5 156 2 32.4 21.2
c 106 106 29.6 1410.1 95 3 25.8 30.2
d 56 56 16.0 665.2 55 2 15.3 27.3
e 147 147 39.4 1433.1 145 5 35.5 56.1

SSLP.10.50.2000

a 184 184 92.6 3548.0 181 5 82.4 169.9
b 158 158 70.3 2352.7 156 2 65.4 44.2
c 98 98 60.7 2980.4 103 5 56.6 167.0
d 59 59 34.2 1746.0 58 2 31.2 62.1
e 214 214 104.3 4785.4 219 7 101.0 222.7

SSLP.15.45.5

a 28 28 0.1 10.9 28 2 0.1 0.2
b 42 42 0.1 2.5 41 4 0.1 0.2
c 481 481 1.0 318.3 496 17 0.9 7.7
d 154 154 0.3 55.2 141 4 0.3 0.6
e 10 10 0.0 16.1 10 2 0.0 0.7

SSLP.15.45.10

a 93 93 0.3 77.8 90 2 0.3 1.6
b 68 68 0.2 188.2 67 5 0.2 5.4
c 501 501 2.2 240.1 538 9 2.3 2.9
d 386 386 1.7 1086.8 379 5 1.7 4.4

SSLP.15.45.15

a 263 263 1.6 1642.3 262 4 1.5 9.7
b 41 41 0.2 54.4 39 2 0.2 1.0
c 623 623 4.3 572.8 645 16 4.4 11.8
d 597 597 3.3 352.0 613 6 3.1 16.2
e 29 29 0.2 29.0 28 2 0.2 0.8

SSLP.15.45.20

a 134 134 0.9 183.7 132 2 0.9 1.4
b 63 63 0.4 85.1 61 2 0.4 5.6
c 61 61 0.4 195.2 60 4 0.4 3.6
d 148 148 1.1 870.2 145 6 1.0 18.0
e 91 91 0.7 446.2 94 2 0.7 0.7

SSLP.15.45.25

a 156 156 1.3 550.0 147 4 1.2 14.4
b 135 135 1.3 321.0 148 4 1.4 5.3
c 73 73 0.6 162.1 74 4 0.6 8.8
d 213 213 2.2 430.0 215 7 2.1 21.9
e 235 235 2.0 2058.5 231 8 1.9 13.7

111



4.7.2 Stochastic multiple binary knapsack problem

Table 18: Stochastic multiple knapsack: overall results per instance.

Instance Std-Std Std-CGLP Alt-Std Alt-CGLP
Nodes Time Nodes Time Nodes Time Nodes Time

1 27705 26.4 27615 27.0 27837 25.5 26295 24.9
2 63528 41.1 55448 38.6 65213 41.1 57170 38.2
3 93185 59.9 87560 60.2 101121 57.8 81480 50.9
4 137303 101.1 121687 97.3 132782 89.1 127963 89.1
5 224063 107.2 183462 94.1 244755 112.1 251017 128.3
6 363405 186.6 290404 177.5 355962 190.1 258420 165.5
7 503998 245.8 401809 204.4 517313 250.4 397677 200.2
8 436738 267.5 310136 218.0 431356 249.3 334569 214.8
9 470356 273.3 451931 269.7 502174 280.5 450104 254.8

10 507120 315.6 320672 251.1 518329 333.1 342582 257.5
11 623424 379.4 675292 404.9 637749 422.5 615580 342.6
12 887595 468.7 672117 422.7 954211 502.8 741931 436.2
13 1099397 541.0 1024147 692.2 1172464 579.1 984003 527.4
14 1416129 686.6 880154 516.9 1484427 711.5 1057895 600.3
15 1650580 714.4 1120524 509.8 1692521 726.8 1148229 516.0
16 1322774 749.9 832266 533.7 1013473 572.2 956447 579.2
17 1197577 771.1 900476 652.4 1192205 753.2 974525 686.0
18 1230166 836.7 988346 769.7 1166769 811.6 978490 745.9
19 2189204 1158.0 1618305 950.0 2225393 1160.4 1713778 962.0
20 2395096 1460.9 1663945 1142.5 2383548 1404.2 1756720 1109.5
21 3277812 1488.2 2789613 1328.8 3563188 1603.1 3144784 1499.3
22 2702878 1664.7 2244862 1422.6 2816341 1714.0 2087732 1430.1
23 2309196 1825.3 1919811 1711.6 2306792 1715.5 1833302 1520.5
24 3301135 1998.1 2690441 1771.6 3101311 1816.8 2580654 1620.4
25 3346788 2310.7 2987190 2149.9 3541754 2346.8 2998747 2068.1
26 3024670 2319.8 2966064 2373.0 3087399 2258.1 2806757 2172.3
27 3890594 2344.4 3225433 2099.7 3787260 2210.1 3128508 1980.4
28 4762714 3223.2 3253202 2425.3 4449516 2890.2 3285741 2311.3
29 5717652 3589.2 3840063 2795.1 5819471 3597.8 3885068 2645.9

112



Table 19: Stochastic multiple knapsack: subproblems details per instance.

Instance Std-Std Std-CGLP
#LP #MIP Time LP Time MIP #LP #MIP Time LP Time MIP

1 9 9 0.0 14.4 9 9 0.0 14.7
2 9 9 0.0 15.7 9 9 0.0 15.8
3 14 14 0.0 24.7 14 14 0.0 26.0
4 24 24 0.0 46.2 24 24 0.0 45.9
5 12 12 0.0 21.0 12 12 0.0 19.8
6 14 14 0.0 32.1 20 20 0.0 46.2
7 10 10 0.0 17.3 10 10 0.0 17.2
8 40 40 0.1 80.3 40 40 0.1 80.7
9 34 34 0.1 74.5 36 36 0.1 74.6
10 46 46 0.1 97.9 49 49 0.1 102.1
11 46 46 0.1 77.6 47 47 0.1 78.9
12 45 45 0.1 108.5 51 51 0.1 123.0
13 45 45 0.1 87.2 87 87 0.2 160.9
14 51 51 0.1 124.4 51 51 0.1 123.9
15 22 22 0.0 29.9 26 26 0.1 36.2
16 79 79 0.2 128.8 74 74 0.2 119.3
17 80 80 0.2 168.0 81 81 0.2 167.5
18 92 92 0.2 194.7 97 97 0.2 202.1
19 66 66 0.1 134.3 65 65 0.1 131.9
20 97 97 0.2 193.0 98 98 0.2 193.9
21 49 49 0.1 99.8 48 48 0.1 97.7
22 93 93 0.2 245.2 91 91 0.2 237.2
23 175 175 0.4 341.7 176 176 0.4 339.1
24 89 89 0.2 211.2 92 92 0.2 221.1
25 127 127 0.3 222.2 127 127 0.3 221.8
26 155 155 0.3 331.5 157 157 0.3 331.4
27 103 103 0.2 246.0 111 111 0.2 264.1
28 150 150 0.3 263.7 152 152 0.3 268.0
29 131 131 0.3 259.4 147 147 0.3 287.6

113



Table 20: Stochastic multiple knapsack: CGLP overhead per instance.

Instance |V| Update Generate
1 9 0.0 0.2
2 9 0.0 0.2
3 14 0.0 0.4
4 24 0.0 1.0
5 12 0.0 0.3
6 20 0.0 0.8
7 10 0.0 0.2
8 40 0.1 2.7
9 36 0.1 2.5

10 49 0.1 3.4
11 47 0.1 4.7
12 51 0.1 4.5
13 87 0.2 13.2
14 51 0.1 5.3
15 26 0.1 1.3
16 74 0.2 11.9
17 81 0.3 15.7
18 97 0.4 21.2
19 65 0.2 6.9
20 98 0.3 21.7
21 48 0.1 4.0
22 91 0.3 18.8
23 176 0.9 41.2
24 92 0.3 13.8
25 127 0.4 29.8
26 157 0.6 37.0
27 111 0.4 25.1
28 152 0.6 39.6
29 147 0.6 33.3

114



REFERENCES

[1] ALBAREDA-SAMBOLA, M., VAN DER VLERK, M., and FERNÁNDEZ, E., “Exact
solutions to a class of stochastic generalized assignment problems,” European
Journal of Operational Research, vol. 173, pp. 465–487, 2006.

[2] ANBIL, R., GELMAN, E., PATTY, B., and TANGA, R., “Recent advances in
crew-pairing optimization at American Airlines,” Interfaces, vol. 21, pp. 62–
74, 1991.

[3] AUDET, C., BRIMBERG, J., HANSEN, P., DIGABEL, S. L., and MLADENOVIĆ,
N., “Pooling problem: Alternate formulations and solution methods,” Man-
agement Science, vol. 50, pp. 761–776, 2004.

[4] AVIS, D., BREMNER, D., and SEIDEL, R., “How good are convex hull algo-
rithms?,” Computational Geometry, vol. 7, pp. 265–301, 1997.

[5] BALAS, E., “Disjunctive Programming,” in Discrete Optimization II (JOHNSON,
E., HAMMER, P., and KORTE, B., eds.), vol. 5 of Annals of Discrete Mathematics,
pp. 3–51, Elsevier, 1979.

[6] BEN-TAL, A., EIGER, G., and GERSHOVITZ, V., “Global minimization by re-
ducing the duality gap,” Mathematical Programming, vol. 63, pp. 193–212, 1994.

[7] BENDERS, J., “Partitioning procedures for solving mixed-variables program-
ming problems,” Numerische Mathematik, vol. 4, pp. 238–252, 1962.

[8] BIENSTOCK, D., “Computational study of a family of mixed-integer quadratic
programming problems,” Mathematical Programming, vol. 74, pp. 121–140,
1996.

[9] BOROS, E., ELBASSIONI, K., GURVICH, V., and TIWARY, H., “The negative cy-
cles polyhedron and hardness of checking some polyhedral properties,” An-
nals of Operations Research, vol. 188, pp. 63–76, 2011.

[10] CONFORTI, M., CORNUÉJOLS, G., and ZAMBELLI, G., “Extended formula-
tions in combinatorial optimization,” 4OR, vol. 8, pp. 1–48, 2010.

[11] DADUSH, D., DEY, S., and VIELMA, J., “The split closure of a strictly convex
body,” Operations Research Letters, vol. 39, pp. 121–126, 2011.

[12] DANTZIG, G., “Discrete-variable extremum problems,” Operations Research,
vol. 5, pp. 266–288, 1957.

[13] DANTZIG, G., Linear programming and extensions. Princeton university press,
1965.

115



[14] DE FARIAS, I., “Semi-continuous Cuts for Mixed-Integer Programming,”
in Integer Programming and Combinatorial Optimization (BIENSTOCK, D. and
NEMHAUSER, G., eds.), vol. 3064 of Lecture Notes in Computer Science, pp. 163–
177, Springer Berlin Heidelberg, 2004.

[15] DE FARIAS, I., JOHNSON, E., and NEMHAUSER, G., “Branch-and-cut for com-
binatorial optimization problems without auxiliary binary variables,” The
Knowledge Engineering Review, vol. 16, pp. 25–39, 2 2001.

[16] DE FARIAS, I. and NEMHAUSER, G., “A polyhedral study of the cardinality
constrained knapsack problem,” Mathematical Programming, vol. 96, pp. 439–
467, 2003.

[17] DE FARIAS, I. and ZHAO, M., “A polyhedral study of the semi-continuous
knapsack problem,” Mathematical Programming, 2012.

[18] DEY, S. S. and GUPTE, A., “Analysis of MILP techniques for the Pooling Prob-
lem,”

[19] EPSTEIN, R., NEELY, A., WEINTRAUB, A., VALENZUELA, F., HURTADO, S.,
GONZALEZ, G., BEIZA, A., NAVEAS, M., INFANTE, F., ALARCON, F., and
OTHERS, “A Strategic Empty Container Logistics Optimization in a Major
Shipping Company,” Interfaces, vol. 42, pp. 5–16, 2012.

[20] FIORINI, S., MASSAR, S., POKUTTA, S., TIWARY, H., and DE WOLF, R.,
“Linear vs. semidefinite extended formulations: exponential separation and
strong lower bounds,” in Proceedings of the 44th symposium on Theory of Com-
puting, STOC ’12, (New York, NY, USA), pp. 95–106, ACM, 2012.

[21] FIORINI, S., MASSAR, S., POKUTTA, S., TIWARY, H., and DE WOLF, R.,
“Exponential Lower Bounds for Polytopes in Combinatorial Optimization,”
arXiv:1111.0837v4, 2013.

[22] GADE, D., KÜÇÜKYAVUZ, S., and SEN, S., “Decomposition algorithms with
parametric Gomory cuts for two-stage stochastic integer programs,” Mathe-
matical Programming, pp. 1–26, 2012.

[23] GENDREAU, M., LAPORTE, G., and SÉGUIN, R., “An exact algorithm for the
vehicle routing problem with stochastic demands and customers,” Transporta-
tion Science, vol. 29, pp. 143–155, 1995.

[24] GOMORY, R., “Outline of an algorithm for integer solutions to linear pro-
grams,” Bulletin of the American Mathematical Society, vol. 64, pp. 275–278, 1958.

[25] GOMORY, R., “An algorithm for the mixed integer problem,” tech. rep., DTIC
Document, 1960.

[26] GUPTE, A., “n-dimensional superincreasing knapsack polytopes have O(n)
facets,” Optimization Online, 2013.

116



[27] HAVERLY, C. A., “Studies of the behavior of recursion for the pooling prob-
lem,” ACM SIGMAP Bulletin, pp. 19–28, 1978.

[28] JEROSLOW, R., “On defining sets of vertices of the hypercube by linear in-
equalities,” Discrete Mathematics, vol. 11, pp. 119–124, 1975.

[29] KALLRATH, J., “Mixed Integer Optimization in the Chemical Process Indus-
try: Experience, Potential and Future Perspectives,” Chemical Engineering Re-
search and Design, vol. 78, pp. 809–822, 2000.

[30] KALLRATH, J., “Combined strategic and operational planning – an MILP suc-
cess story in chemical industry,” OR Spectrum, vol. 24, pp. 315–341, 2002.

[31] KHACHIYAN, L., BOROS, E., BORYS, K., ELBASSIONI, K., and GURVICH, V.,
“Generating all vertices of a polyhedron is hard,” Discrete & Computational
Geometry, vol. 39, pp. 174–190, 2008.

[32] KROON, L., HUISMAN, D., ABBINK, E., FIOOLE, P.-J., FISCHETTI, M.,
MARÓTI, G., SCHRIJVER, A., STEENBEEK, A., and YBEMA, R., “The new
Dutch timetable: The OR revolution,” Interfaces, vol. 39, pp. 6–17, 2009.

[33] KÜÇÜKYAVUZ, S. and ZHANG, M., “Finitely Convergent Decomposition Al-
gorithms for Two-Stage Stochastic Pure Integer Programs,” Optimization On-
line, 2013.

[34] LAPORTE, G. and LOUVEAUX, F., “The integer L-shaped method for stochas-
tic integer programs with complete recourse,” Operations Research Letters,
vol. 13, pp. 133–142, 1993.

[35] LAPORTE, G., LOUVEAUX, F., and MERCURE, H., “A priori optimization
of the probabilistic traveling salesman problem,” Operations research, vol. 42,
pp. 543–549, 1994.

[36] LAPORTE, G., LOUVEAUX, F., and VAN HAMME, L., “Exact solution to a loca-
tion problem with stochastic demands,” Transportation Science, vol. 28, pp. 95–
103, 1994.

[37] LAPORTE, G., LOUVEAUX, F., and VAN HAMME, L., “An integer L-shaped
algorithm for the capacitated vehicle routing problem with stochastic de-
mands,” Operations Research, vol. 50, pp. 415–423, 2002.

[38] LAWLER, E., “A procedure for computing the k best solutions to discrete op-
timization problems and its application to the shortest path problem,” Man-
agement Science, vol. 18, pp. 401–405, 1972.

[39] LEE, J., “All-Different Polytopes,” Journal of Combinatorial Optimization, vol. 6,
pp. 335–352, 2002.

117



[40] LEE, J., “Cropped cubes,” Journal of Combinatorial Optimization, vol. 7, pp. 169–
178, 2003.

[41] LEE, J., LEUNG, J., and DE VRIES, S., “Separating type-I odd-cycle inequali-
ties for a binary-encoded edge-coloring formulation,” Journal of Combinatorial
Optimization, vol. 9, pp. 59–67, 2005.

[42] LEE, J. and MARGOT, F., “On a binary-encoded ILP coloring formulation,”
INFORMS Journal on Computing, vol. 19, pp. 406–415, 2007.

[43] LI, Y. and RICHARD, J.-P., “Cook, Kannan and Schrijver’s example revisited,”
Discrete Optimization, vol. 5, pp. 724–734, 2008.

[44] LOVÁSZ, L., “Graph Theory and Integer Programming,” in Discrete Optimiza-
tion I (JOHNSON, E., HAMMER, P., and KORTE, B., eds.), vol. 4 of Annals of
Discrete Mathematics, pp. 141–158, Elsevier, 1979.

[45] MISENER, R. and FLOUDAS, C. A., “Advances for the pooling problem: Mod-
eling, global optimization, and computational studies,” Applied and Computa-
tional Mathematics, vol. 8, pp. 3–22, 2009.

[46] MULDOON, F., ADAMS, W., and SHERALI, H., “Ideal representations of lex-
icographic orderings and base-2 expansions of integer variables,” Operations
Research Letters, vol. 41, pp. 32–39, 2013.

[47] MURTY, K., “Letter to the Editor—An Algorithm for Ranking all the Assign-
ments in Order of Increasing Cost,” Operations Research, vol. 16, pp. 682–687,
1968.

[48] NTAIMO, L. and SEN, S., “The million-variable march for stochastic combina-
torial optimization,” Journal of Global Optimization, vol. 32, pp. 385–400, 2005.

[49] NTAIMO, L. and TANNER, M., “Computations with disjunctive cuts for two-
stage stochastic mixed 0-1 integer programs,” Journal of Global Optimization,
vol. 41, pp. 365–384, 2008.

[50] PEROLD, A., “Large-scale portfolio optimization,” Management Science,
vol. 30, pp. 1143–1160, 1984.

[51] POKUTTA, S. and VYVE, M. V., “A note on the extension complexity of the
knapsack polytope,” Operations Research Letters, vol. 41, pp. 347–350, 2013.

[52] QI, Y. and SEN, S., “Ancestral Benders’ Cuts and Multi-term Disjunctions for
Mixed-Integer Recourse Decisions in Stochastic Programming,” Optimization
Online, 2013.

[53] ROCKAFELLAR, R., Convex Analysis, vol. 28. Princeton University Press, 1996.

[54] ROTHVOSS, T., “The matching polytope has exponential extension complex-
ity,” arXiv:1311.2369, 2013.

118



[55] SCHRIJVER, A., Theory of linear and integer programming. Wiley, 1998.

[56] SEN, S. and HIGLE, J., “The C3 theorem and a D2 algorithm for large scale
stochastic mixed-integer programming: set convexification,” Mathematical
Programming, vol. 104, pp. 1–20, 2005.

[57] TAWARMALANI, M. and SAHINIDIS, N. V., Convexification and global optimiza-
tion in continuous and mixed-integer nonlinear programming: theory, algorithms,
software, and applications, vol. 65. Springer, 2002.

[58] TIMPE, C. and KALLRATH, J., “Optimal planning in large multi-site produc-
tion networks,” European Journal of Operational Research, vol. 126, pp. 422–435,
2000.

[59] VAN SLYKE, R. and WETS, R., “L-shaped linear programs with applications to
optimal control and stochastic programming,” SIAM Journal on Applied Math-
ematics, vol. 17, pp. 638–663, 1969.

[60] YANNAKAKIS, M., “Expressing combinatorial optimization problems by lin-
ear programs,” Journal of Computer and System Sciences, vol. 43, pp. 441–466,
1991.

119



VITA

Gustavo I. Angulo Olivares was born in Santiago, Chile, on August 28 1982. After

graduating from high school, he enrolled at the School of Physical and Mathemat-

ical Sciences at Universidad de Chile. In 2007-2008, Gustavo moved to Valparaı́so

to work full-time in a collaborative research project between Compañı́a Sudamer-

icana de Vapores and Universidad de Chile. In 2009, he received a Mathematical

Engineering degree from the Department of Mathematical Engineering and a Mas-

ter’s degree in Operations Management from the Department of Industrial Engi-

neering under the supervision of Andrés Weintraub.

In August 2009, Gustavo moved to Atlanta to pursue doctoral studies at the

Georgia Institute of Technology. Under the supervision of Shabbir Ahmed and

Santanu Dey, he collaborated with ExxonMobil in conducting research on mixed-

integer programming and stochastic programming. He worked as a summer in-

tern at ExxonMobil Research and Engineering in 2011 and at Kimberly-Clark Cor-

poration in 2012.

In 2011, Gustavo was awarded the Ramón Salas Edwards Award by the Chilean

Institute of Engineers and was nominated finalist for the Franz Edelman Award

by INFORMS. In 2013 he obtained an honorable mention in the George Nicholson

Student Paper Competition from INFORMS.

120


