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SUMMARY 

Land surface model (LSM) plays an important role in numerical simulation of 

weather and climate. The existing LSMs have been found to produce inconsistent surface 

energy and water budgets due to the deficiencies in the parameterization of surface 

temperature, surface soil moisture, and surface heat fluxes. Specifically, surface heat flux 

parameterizations based on the conventional gradient-flux methods (e.g., the bulk transfer 

model, BTM) are subject to large modeling errors and uncertainties. Performance of LSMs 

may be enhanced by improving surface heat flux parameterizations. A new approach, the 

maximum entropy production (MEP) model of surface heat fluxes, was recently developed 

to overcome the drawbacks of existing flux models. Compared to the BTM-based heat 

fluxes, the MEP modeled heat fluxes close the surface energy budget using fewer model 

inputs and parameters with reduced uncertainties. 

In this study, a coupled model of surface temperature, surface soil moisture, near-

surface air temperature, and surface heat fluxes, for use in a LSM as well as GCM, was 

formulated built on the classical force-restore method (FRM) incorporating the MEP model 

of surface heat fluxes, referred to as the FRMEP model. The FRMEP model is driven by 

surface net radiation and precipitation without explicitly using other meteorological 

variables and location specific empirical tuning parameters benefited by the unique features 

of the MEP model. The proposed FRMEP model was evaluated using observations from 

field experiments with contrasting climate and soil wetness conditions. The modeling 

errors of the FRMEP are smaller than those of the classical FRMs, which are forced by 

observed or BTM-parameterized surface heat fluxes. Diurnal and seasonal variations of 
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surface temperature, surface soil moisture, near-surface air temperature, and surface heat 

fluxes are well captured by the FRMEP model. Analysis of the FRMEP suggests that the 

gravitational drainage, which was excluded in the classical FRM of surface soil moisture, 

cannot be neglected under wet soil condition.  

With the theoretical and technical advantages, the MEP model is a promising new 

method to tackle one major challenge in the study of global climate change, that is, 

modeling and monitoring of surface energy budgets. In this study, the climatology of global 

surface energy budgets together with the corresponding trend and uncertainty estimates are 

re-estimated using the MEP model utilizing the input data from remote sensing 

observations and reanalysis data products during 2001-2010. The MEP estimates of land 

and ocean surface heat fluxes at continental and ocean basin scales are examined separately 

to quantify the corresponding global contributions. The MEP model produces the first 

dataset of global ocean surface conductive heat flux, which is not available from the 

existing data products. The MEP model provides a new estimate of global land snow-ice 

and sea ice surface heat fluxes. An analysis of the influence of snow and sea ice presence 

on the estimates global surface energy budgets is also conducted by excluding snow and 

sea ice extent in the MEP simulations. 

The MEP produced new estimates of global annual mean terrestrial 

evapotranspiration and sensible heat fluxes are in close agreement with previous estimates, 

while the corresponding ground heat flux is higher than the existing estimates. The MEP 

modeled global land surface heat fluxes have increasing trends during 2001-2010 

consistent with that of observed net radiation. The new estimates of ocean evaporation and 

surface conductive heat flux based on the MEP model are smaller than the existing 
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estimates, while MEP estimated ocean surface sensible heat fluxes are higher than those 

reported previously. The MEP modeled ocean surface heat fluxes have negative trends 

globally. The regional and seasonal trends of MEP heat fluxes are consistent with the global 

and annual trends, respectively. Analysis of the MEP modeled snow-ice surface heat fluxes 

suggests that global land sublimations and snow-ice surface sensible heat fluxes are mostly 

contributed by the non-polar regions, while the global contributions of land snow-ice 

surface conductive heat flux over polar and non-polar regions are comparable. The global 

annual means of MEP modeled snow-ice surface heat fluxes have positive trends during 

2001-2010. Over oceans, the global contributions of sea ice surface heat fluxes are small 

compared to ocean (open-water) surface heat fluxes. The MEP estimates of global annual 

mean sea ice sublimation and surface conductive heat flux have opposite trends, while 

those of global annual mean sea ice surface sensible heat flux remain stationary. The MEP 

modeled global surface heat flux budgets are not sensitive to snow and sea ice presence.  

The results presented in this study suggest the potential applications of the MEP 

model in climatic and hydrological studies. The encouraging tests of the FRMEP model 

justify the possibilities of enhancing the performance of LSMs and hydrological models by 

improving heat flux parameterizations using the MEP model. Upon further tests, the 

FRMEP model has potential to serve as an attractive data retrieval algorithm for 

downscaling and gap-filling satellite remote sensing observations. The MEP model also 

offers an alternative approach to meet the challenge of monitoring and modeling global 

surface energy budgets. The new estimates of global/regional surface energy budgets based 

on the MEP model presented in this study lead to a broader view of global energy and water 

cycles from a surface perspective. 
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CHAPTER 1. INTRODUCTION 

Global Circulation Models (GCMs), or simply, climate models, are vital tools for 

quantitatively understanding the global climate system and its variability (e.g., Sen Gupta 

et al., 2012). In recent decades, climate models have been extensively used for analyzing 

the impacts of climate change on hydrology, agriculture, and socioeconomics and 

investigating the corresponding mitigation strategies (Markoff and Cullen, 2008; 

Golombek et al., 2012; Seneviratne et al., 2012; Hirabayashi et al., 2013; McDonald and 

Girvetz, 2013; Wada et al., 2013; Dankers et al., 2014). For example, GCMs have been 

used to investigate regional and global water availability (Gregory et al., 1997; Burke et 

al., 2006; Wetherald and Manabe, 2003; Manabe et al., 2004). GCM outputs coupled with 

hydrological and crop models are now used routinely for assessing the impacts of climate 

change on water resources, food security and ecosystems (Hay et al., 2002; Salathé, 2005; 

Hanson and Dettinger 2005; Ines et al., 2011; Yang et al., 2015).  

Climate model simulations are usually sensitive to the diurnal and seasonal 

variations of surface forcing parameterized by a land surface model (LSM) (Mintz, 1984; 

Rowntree, 1983; Rowntree and Bolton, 1983; Chen and Dudhia, 2001; Zeng et al., 2015). 

LSMs describe the fundamental surface processes regulating the exchange of energy and 

water as well as chemical compounds such as 𝐶𝑂2  between the land surface and the 

atmosphere (Zhang et al., 1996; Collatz et al., 2000; Bounoua et al., 2002; Chen et al., 

2003; Gao et al., 2004; Yang, 2004). More specifically, LSMs provide estimates of surface 

latent 𝐸, sensible 𝐻, and ground 𝑄 heat fluxes partitioned from surface radiative fluxes 

representing the transport of energy and water at the surface into the soil or atmosphere 
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(Rowntree, 1991; Dickinson et al., 1991). The importance of LSM for both weather 

forecasting and climate models has been increasingly recognized in recent decades 

(Dickinson et al., 1993; Ek et al., 2003; Friend and Kiang, 2005). Numerous studies have 

demonstrated the significant efficacy of LSM estimated surface energy and water 

conditions on the GCM as well as regional atmospheric simulations in predicting 

atmospheric motion, temperature, and rainfall fields (Ookouchi et al., 1984; Mahfouf et al., 

1987; Avissar and Pielke, 1989; Chen and Avissar 1994a, b).  

LSMs have developed rapidly over the past two decades in terms of improving 

mechanistic structures and numerical techniques (Sellers, et al., 1997; Pitman, 2003; Zhao 

and Li, 2015). Intercomparisons of LSMs have been reported in previous publications with 

the main objectives of (1) assessing the model sensitivity to different parameterizations, 

forcing inputs, and spatial scales, (2) determining the model adequacy for simulating key 

land surface processes over various regions, and (3) developing an ensemble climatology 

of surface energy and water budgets (e.g., Garratt, 1993; Rowntree, 1991; Dickinson et al., 

1991; Dirmeyer et al., 1999, 2006; Henderson-Sellers et al., 1993, 1995; Viterbo, 2002; 

Boone et al., 2009; Zeng et al., 2015). In particular, the earlier Project for the 

Intercomparison of Land-Surface Parameterization Schemes (PILPS) (Henderson-Sellers 

et al., 1993, 1995), the Global Soil Wetness Project (GSWP) (Dirmeyer et al., 1999, 2006), 

and the more recent AMMA (African Monsoon Multidisciplinary Analysis) Land surface 

Model Intercomparison Project (ALMIP) have led to better understanding and significant 

improvements of LSMs (Boone et al., 2009).  

Despite the potential usefulness of LSMs for the climatic studies aforementioned, 

challenges related to the reliability of LSMs remain resulting from the variety of model 
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parameterizations in terms of structure and complexity, especially in the parameterizations 

of (1) primary surface state variables such as surface temperature 𝑇𝑠, surface soil moisture 

𝜃𝑠, and near-surface air temperature 𝑇𝑎, and (2) surface heat fluxes. 𝑇𝑠, 𝜃𝑠, and 𝑇𝑎 are good 

indicators of climatic states at seasonal to centennial and local to global scales (Jones et 

al., 1999, 2012; Seneviratne and Stöckli, 2008; Wang and Zeng, 2013; Frey and Kuenzer, 

2014; Ji et al., 2014). 𝑇𝑠  and 𝜃𝑠  dominate the partition of surface radiative energy into 

turbulent/conductive heat fluxes (𝐸, 𝐻, and 𝑄) on a diurnal time scale (Jacobs et al., 2000; 

Hirota et al., 2002; Gao et al., 2008). Henderson-Sellers et al. (1995) obtained a global 

annual mean 𝑇𝑠 ranging from ~6 to 12 oC produced by various LSMs involved in PILPS 

even though most of the models predicted a positive trend of 𝑇𝑠  over the study period 

(1979-1988). The researchers also indicate that the discrepancies of surface water budgets 

among LSMs are presumably caused by the parameterization of soil moisture dynamics.  

𝑇𝑎 is one of the widely used variables for characterizing recent climate change. 𝑇𝑎 

estimated by LSMs is often compared to ground observations to evaluate the performance 

of LSMs (e.g., Dickinson et al., 1986; Zhang and Zheng, 2004; Oleson et al., 2010). 𝑇𝑎 

referred to in this study is the air temperature at screen height (i.e., about 2 to 10 m) rather 

than at the lowest level of the climate models 𝑇1 (about 30 to 50 m, e.g., Zhang and Anthes, 

1982; Hong and Pan, 1996). In current LSMs, 𝑇𝑎 is usually diagnosed from other state 

variables such as 𝑇𝑠  and 𝑇1  using empirical approaches (e.g., Dickinson et al., 1986; 

Bonon, 1996; Zhang and Zheng, 2004; Oleson et al., 2010). Moreover, multiple model 

layer with fine resolution within the planetary boundary layer is often required to resolve 

a 𝑇1 close to the surface (e.g., Zhang and Zheng, 2004). Thus, the parameterization of 𝑇𝑎 

in the existing LSMs appears to be either oversimplified or computationally costly.  
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The existing LSMs have been found to produce inconsistent estimates of global 

surface energy and water budgets resulting from the parameterizations of surface heat 

fluxes as well as 𝑇𝑠  and 𝜃𝑠 . The inconsistencies increase considerably in fully coupled 

LSM-GCM simulations (compared to offline LSM simulations) further amplifying the 

discrepancies among the GCM simulations (Henderson-Sellers et al., 1995; Boone et al., 

2009). Henderson-Sellers et al. (1995) found an imbalance of global surface energy 

budgets ranging from -0.4 to 13.2 W m-2 estimated by various combinations of LSM-GCM 

simulations. Furthermore, the LSMs under comparison obtained an overall scatter of 40 W 

m-2 in monthly mean 𝐸 over tropical forests and mid-latitude grasslands. Sato et al. (1989) 

obtained a greater 𝐻 and less 𝐸 over vegetated land using the LSM developed by Seller et 

el. (1986) compared to those using a conventional hydrological model (Sela, 1980). Boone 

et al. (2009) indicates that the spatial and temporal variabilities of simulated surface 

longwave radiation between LSMs are attributed to discrepancies in the simulated 𝑇𝑠. 

Most of the existing LSMs and ocean surface models (OSM) parameterize surface 

heat fluxes using “gradient-based” methods. A commonly used method is known as the 

bulk transfer model (BTM), which parameterizes surface heat fluxes as functions of 

temperature/humidity gradient between the surface and air, wind speed, and site-dependent 

parameter such as surface roughness lengths (SRLs) (e.g., Noilhan and Planton, 1989; 

Dickinson et al., 1991; Lee and Pielke, 1992). A major advantage of BTM is that the model 

inputs are obtained from routine meteorological variables including near-surface air 

temperature, humidity, wind speed as well as surface temperature and humidity. However, 

the formulations of BTM differ largely among LSMs (also OSMs) (e.g., Lee and Pielke, 

1992; Brunke et al., 2003). More importantly, previous research indicates that the BTM 
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estimated heat fluxes are subject to large errors and uncertainties resulting from several 

drawbacks of the models including (1) not closing the surface energy budget (2) the 

uncertainty caused by the model inputs and parameters such as gradient variables, wind 

speed, and SRLs, and (3) the inherent bias and uncertainty from the model formalism with 

no obvious solution (e.g., Stull, 1988; Brunke et al., 2003, 2011).  

The flux parameterizations in the existing LSMs/OSMs with the aforementioned 

weaknesses are closely related to one of the unsolved issues in present climatic and 

hydrological research, i.e., estimating global climatology, trend, and variability of surface 

heat fluxes. Surface heat fluxes vary greatly at different spatial and temporal scales in 

response to local and non-local physical and dynamical processes (Roberts et al., 2012). 

The geographical distributions of surface heat fluxes are important as they are the primary 

driving force of planetary hydrological cycle and ocean circulations (Stephens et al., 2012a; 

Katul et al., 2012; Herman, 2015). Recent studies have summarized the current knowledge 

about global and regional surface energy budgets (radiative and turbulent fluxes) 

(Trenberth et al., 2009; Stephens et al., 2012a; L'Ecuyer, et al., 2015). These previous 

studies have shown that the existing estimates of global surface energy budgets, especially 

surface heat fluxes, are still subject to large uncertainties. 

Further improvements of large-scale surface heat flux estimates face difficulties 

from both modeling and observational perspectives given existing technology and theory. 

Previous studies showed that different flux algorithms produce wide range of surface heat 

flux estimates and no single algorithm is universally recommended (Henderson-Sellers et 

al., 1995; Jiménez et al., 2011; Mueller et al., 2011, 2013). Heat flux estimates over oceans 

remain highly uncertain due to the lack of direct measurements and great diversity of 
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parameterization schemes. As a result, reliable estimates of surface heat fluxes at large 

spatial and temporal scales are imperatively needed for characterizing the long-term climate 

change in response to surface forcing conditions and quantifying the role of lands and 

oceans in global climate change and variability (Beltrami, 2001; Roberts et al., 2012).  

An innovative approach, the maximum entropy production (MEP) model of surface 

heat fluxes (Wang and Bras, 2009, 2011; Wang et al. 2014), was recently developed to 

overcome the drawbacks of the existing flux models. The foundation of the MEP model is 

the contemporary non-equilibrium thermodynamics built on the Bayesian probability 

theory, information theory and well-established atmospheric boundary layer turbulence 

theory (i.e. the Monin-Obukhov similarity theory, MOST, Monin and Obukhov, 1954). In 

the MEP model, surface turbulent and/or conductive heat fluxes are derived from the 

partition of surface radiative fluxes, thus automatically balance the surface energy budget. 

Compared to the BTM heat fluxes, the MEP parameterized surface heat fluxes (1) close 

the surface energy budgets by definition at all space-time scales, (2) avoid explicit use of 

temperature and moisture gradients, wind speed and SRLs as model inputs and parameters, 

(3) are free of location specific tuning (empirical) parameters, (4) are applicable to the full 

range of soil moisture conditions from residual water content to saturation., and (5) have 

reduced sensitivity to the uncertainties of model inputs and parameters. 

With its theoretical and technical advantages, the MEP model provides a unique 

and so far unexplored opportunity for enhancing the performance of LSMs by providing 

improved parameterization of surface heat fluxes. The MEP model also provides a 

promising new method to meet the challenges of monitoring and modeling global surface 

heat fluxes as remote sensing observation missions now provide high resolution 
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observations of surface radiative fluxes (e.g., National Aeronautics and Space 

Administration – Clouds and the Earth’s Radiant Energy System or NASA CERES, 

Wielicki et al., 1996).  

 

1.1 Objectives and Scope 

This study is motivated by the following scientific question:  

How does the MEP model, as an innovative surface heat flux parameterization with 

enhanced physical constraints and reduced uncertainty, benefit the modeling of land 

surface processes and estimates of surface energy budgets? 

To answer the scientific question, this study, by applying the MEP model, aims to (1) 

improve predictions of surface temperature, surface soil moisture, and near-surface air 

temperature for use in LSMs as well as hydrological and atmospheric models and (2) 

provide new estimates of global surface heat fluxes with reduced uncertainties, by 

overcoming the aforementioned weaknesses in the existing estimates. Specifically, the 

research objectives and scope are listed as follows: 

 To develop a coupled model for predicting surface state variables including 

surface temperature, surface soil moisture, and near-surface air temperature 

by incorporating the MEP model of surface heat fluxes;  

 To demonstrate the value of the proposed model for reproducing key land 

surface processes under various climatic and soil wetness conditions that 

meet the demand of climate models; 
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 To reconstruct the climatology of global/regional and inter-annual 

variabilities of surface heat flux budgets using the MEP model along with 

the corresponding trend and uncertainty estimates;  

 To compare the MEP-based estimates with the existing flux products and 

justify the new estimates from both physical and numerical aspects. 

 

1.2 Thesis Organization 

The dissertation is organized as follows: Chapter 2 reviews essential concepts and 

research relevant to this study starting with the surface energy balance equations over land 

and ocean surfaces followed by the parameterizations of surface temperature, surface soil 

moisture, near-surface air temperature, and surface heat fluxes in the existing LSMs, and 

previous estimates of global surface energy budgets. Chapter 3 presents the development 

and validation of the new model. Predictions of the proposed model are compared with 

those of conventional models to demonstrate the improvements achieved by the new 

model. Chapter 4 provides the detailed operational framework of applying the MEP model 

at global scale. Comparison of the MEP and earlier estimates will be given along with 

explanations of the discrepancies. Chapter 5 summarizes the major findings and 

recommendations for future research.  
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CHAPTER 2. LITERATURE REVIEW 

This chapter reviews earlier and contemporary literatures done in areas relevant to 

this study. Section 2.1 introduces the surface energy balance equations over land (non-

transparent) and ocean (transparent) surfaces, which are core concepts in climate research 

and important constraints in LSMs/OSMs and climate models. Sections 2.2 and 2.3 review 

the commonly used models of surface temperature 𝑇𝑠, soil moisture 𝜃𝑠, near-surface air 

temperature 𝑇𝑎, and surface heat fluxes, which are the main outputs of LSMs. Section 2.4 

summarizes the previously reported estimates of global surface energy budgets (radiative 

and heat fluxes) obtained through various methods and data products.  

 

2.1 Surface Energy Balance Equations 

The energy budget at the Earth’s surface, where most solar heating takes place, 

accounts the exchanges of energy between the Earth’s surface and atmosphere which are 

important determinants of micro, regional, and global climates. The surface radiative 

energy must be balanced by (dissipated through) the turbulent/conductive heat flux, the 

primary drivers of the Earth’s energy and water cycle (Kleidon et al., 2014). 

Over lands where surface media are non-transparent to sunlight (Figure 2.1(a)), the 

conservation of energy at the land-atmosphere interface is expressed as, 

 𝑅𝑛 ≡ 𝑆𝑊𝑑 − 𝑆𝑊𝑢 + 𝐿𝑊𝑑 − 𝐿𝑊𝑢 = 𝐸 + 𝐻 + 𝑄 (2.1) 
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where 𝑅𝑛, 𝑆𝑊𝑑, 𝑆𝑊𝑢, 𝐿𝑊𝑑, 𝐿𝑊𝑢 (W m-2) are the net radiation, incoming solar, reflected 

solar, downward atmospheric longwave, and surface emitted longwave radiation, 

respectively. Radiative fluxes toward the surface are defined as positive. Latent 𝐸  and 

sensible 𝐻 heat fluxes entering the atmosphere and ground heat flux 𝑄 (W m-2) entering 

the soil layer are defined as positive.  

 

Figure 2.1:  Surface energy balance equations over (a) land and (b) water-snow-ice 

surfaces. 𝑺𝑾𝒅 , 𝑺𝑾𝒖 , 𝑳𝑾𝒅 , and 𝑳𝑾𝒖  are downward shortwave, 

upward shortwave, downward longwave, upward longwave radiation; 

𝑹𝒏  the net radiation; 𝑹𝒏
𝑺  and 𝑹𝒏

𝑳  the net shortwave and longwave 

radiation; 𝑬 , 𝑯 , 𝑸  the latent, sensible, and ground/water-snow-ice 

surface conductive (within the cool skin layer) heat flux; 𝑹𝟎 the (net) 

solar radiation entering the (water-snow-ice) media. Radiation fluxes 

are positive when entering the surface media. Thermal energy fluxes are 

positive when entering the atmosphere or leaving the surface media. 
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Over water, snow, and ice surfaces, where the media are transparent to sunlight 

(Figure 2.1(b)), the conservation of energy is expressed as (e.g., Badgley, 1966; Saunders, 

1967; Weller, 1968; Fairall et al., 1996a; Wang et al., 2014), 

 
𝑅𝑛
𝐿 ≡ 𝐿𝑊𝑑 − 𝐿𝑊𝑢 = 𝐸 + 𝐻 + 𝑄 

𝑅𝑛
𝑆 ≡ 𝑆𝑊𝑑 − 𝑆𝑊𝑢 = 𝑅0 

(2.2) 

where 𝑅𝑛
𝑆 and 𝑅𝑛

𝐿  are the net surface shortwave and longwave radiations (W m-2), 𝑅0 the 

(net) solar radiation entering the (water-snow-ice) media (W m-2), and 𝑄 the water-snow-

ice surface conductive heat flux analogous to ground heat flux (W m-2). Eqs. (2.2) and (2.1) 

are identical when solar radiation vanishes (i.e., nighttime). Specifically, the net water heat 

flux or water heat uptake is defined as 𝑅𝑛 − 𝐸 − 𝐻 equal to 𝑅0 + 𝑄 according to Eq. (2.2). 

Solar radiation enters the surface energy balance equation through 𝑄 . An analytical 

expression of 𝑄 in terms of 𝑅0 and 𝑇𝑠 is given in (Wang et al., 2014).  

Note that the usually assumed long-term surface energy balance expressed as 

 𝑅𝑛 = 𝑅𝑛
𝑆 + 𝑅𝑛

𝐿 = 𝐸 + 𝐻 (2.3) 

does not hold over either land or ocean surface. Over sunlight transparent surfaces (ocean, 

snow, and ice), 𝑅𝑛 = 𝐸 + 𝐻 or 𝑅0 + 𝑄 = 0 implies that all solar radiation entering, e.g., 

the ocean, is transferred back into the atmosphere to balance net long-wave radiation and 

turbulent heat fluxes as shown in Eq. (2.2). This is physically unrealistic since part of solar 

radiation absorbed by the water must be dissipated through a number of physical, chemical 

and biological processes in the ocean including the thermal energy transport down to 

deeper ocean indicated by the decreasing ocean water temperature with depth (Liu et al., 
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2010; Kuhlbrodt and Gregory, 2012), the conversion of thermal energy to kinetic energy 

for sustaining the global ocean general circulations (Laurent and Simmons, 2006; 

Toggweiler and Samuels, 1998), the energy consumed by chemical reactions such as 

photosynthesis (Behrenfeld and Falkowski, 1997; Falkowski and Raven, 2007; Pisciotta et 

al., 2010) among others. These previous studies suggest that the thermal energy responsible 

for the observed increase in ocean water temperature (increasing ocean heat content, e.g., 

Levitus et al., 2012), used to evaluate the imbalance between 𝑅𝑛 and 𝐸 + 𝐻 (e.g., Stephens 

et al., 2012a), is only a portion of the solar radiation absorbed by the oceans. 

Over land surfaces, 𝑅𝑛 = 𝐸 + 𝐻 implies that 𝑄 = 0 representing a (quasi) steady-

state of soil temperature for a long-term (annual) average. In fact, (quasi) steady-state of 

soil temperature does not necessarily lead to vanishing 𝑄 even at annual (or longer) time 

scale. The annual mean 𝑄 over lands would be zero if (1) soil temperature has no trend at 

inter-annual timescales (no change of thermal energy storage), (2) annual mean soil heat 

flux at the bottom of the top soil layer vanishes, and (3) annual mean soil temperature 

profile is uniform. These conditions rarely occur (e.g., Gilichinsky et al., 1998; Qian et al., 

2011; Bai et al., 2014) indicating that 𝑄 over lands is likely non-zero at annual scale. 

Thermal energy entering the land surface (𝑄) is transferred through several mechanisms 

not limited to heat conduction. For example, Heitman et al. (2008, 2010) showed that part 

of thermal energy entering the soil is used for subsurface evaporation (subsurface latent 

heat sink). Thermal energy in the soil may also be transferred downward by infiltrating 

rainwater reaching groundwater aquifers much deeper than the top soil layer.  
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2.2 Modeling of Surface State Variables 

Specification of 𝑇𝑠 and 𝜃𝑠 in LSMs plays an essential role in numerical climatic and 

hydrological models as 𝑇𝑠 and 𝜃𝑠 dominate the energy and moisture exchange between the 

land surface and the atmosphere (Jacobs et al., 2000; Gao et al., 2008; Seneviratne and 

Stöckli, 2008). 𝑇𝑎 is one of commonly used variables for evaluating changing climates and 

LSM performance. An overview of commonly used parameterizations of 𝑇𝑠, 𝜃𝑠, and 𝑇𝑎 in 

the existing LSMs together with the corresponding strengths and weaknesses is given in 

this section.  

 

 Modeling of Surface Temperature 𝑇𝑠 

Deardorff (1978) and Henderson-Sellers et al. (1995) summarized the 

parametrizations of 𝑇𝑠 in the existing LSMs, which can be classified into the following 

three categories:  

(1) Discretized Heat Diffusion Equation (HDE) 

In the HDE model, soil temperature profile is solved by one-dimensional heat 

diffusion equation using finite difference schemes (e.g., Carlslaw and Jaeger, 1959; Benoit, 

1976; Verseghy, 1991; Oleson et al., 2010). 𝑇𝑠 is described by the conservation of energy 

within a top soil layer in the form of the continuity equation (Pan and Mahrt, 1987; Avissar 

and Pielke, 1989; Verseghy, 1991; Liang et al., 1994; Smirnova et al, 1997; Oleson et al., 

2010). A general form of the energy conservation equation can be expressed as  
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𝜌𝑠𝑐𝑠

𝑇𝑠
𝑛+1 − 𝑇𝑠

𝑛

Δ𝑡
=
𝑄𝑛 − 𝑄1

𝑛

𝑧1
 (2.4) 

where 𝑇𝑠
𝑛+1 and 𝑇𝑠

𝑛 are the surface temperature (K) between two time steps, 𝑛 and 𝑛 + 1 

the two consecutive time steps, respectively, 𝜌𝑠  the soil bulk density (kg m-3), 𝑐𝑠  the 

specific heat of soil (J kg-1 K-1), Δ𝑡 the model time step (s), 𝑄 the ground surface flux (W 

m-2), 𝑄1 the soil heat flux leaving the top soil layer (W m-2), 𝑧1 the thickness of top soil 

layer (m). 𝑄 and 𝑄1 are estimated based on the surface energy equation (Eq.(2.1)) and the 

Fick’s first law of diffusion, respectively (e.g., Smirnova et al, 1997; Oleson et al., 2010). 

The HDE model has been widely applied in the existing LSMs as it directly deals 

with the governing equation of heat transfer in the soil with no theoretical simplifications 

(e.g., Benoit et al., 1976; Chen and Dudhia, 2001; Dai et al., 2003). Yet, several issues 

associated with the HDE model may affect its accuracy and reliability. First, the model 

time step is required to be sufficiently small for the sake of accuracy (Benoit, 1976; 

Deardorff, 1978). Second, the HDE model often requires a small 𝑧1 close to surface for 

resolving the sharp gradient of soil temperature near the surface, which is computationally 

costly. Third, the HDE model predicted 𝑇𝑠 is always subject to the errors and uncertainties 

from the poorly calibrated multi-layer soil thermal parameters. Moran et al. (2004) state 

that although the HDE model have been extensively tested, the operational applications of 

these models are generally limited as the detailed soil thermal properties are difficult to 

obtain. On the other hand, increasing the number of soil layers is needed for more accurate 

numerical solution, while the modeling error may increase by introducing additional 

uncalibrated soil thermal parameters. 
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 (2) Insulated Surface Model 

As its name suggests, the insulated surface model predicts 𝑇𝑠 solely at the surface 

without using soil temperature information from below by neglecting or simplifying 𝑄. In 

some earlier LSMs, 𝑇𝑠 is solved iteratively through the surface energy balance equation 

(Eq. (2.1)), while 𝑇𝑠  appears in 𝐿𝑊𝑢  (through the Stefan–Boltzmann law) and 𝐻 

(parameterized as a function of near-surface temperature gradient). 𝑄 is either assumed to 

be zero (i.e., ground surface stores no heat) (Gate et al., 1971; Manabe et al., 1974; Robock 

et al., 1995) or a fixed portion of 𝐻 or 𝑅𝑛. For example, Kasahara and Washington (1971) 

set 𝑄 as one-third of 𝐻. Nickerson and Smiley (1975) assumed 𝑄 being 0.19 or 0.32 of 𝑅𝑛 

depending on atmospheric stability.  

By assuming zero heat conduction from below, 𝑇𝑠  can be solved by the 

conservation of energy at the surface expressed as (e.g., Arakawa, 1972; Corby et al., 1972; 

Rowntree, 1975; Sellers et al., 1986; Oleson et al., 2010),  

 
𝜌𝑠𝑐𝑠

𝜕𝑇𝑠
𝜕𝑡

= 𝑅𝑛 − 𝐸 − 𝐻 = 𝑄 (2.5) 

where the variables are defined the same as those in Eq. (2.4). Eq. (2.5) is sometimes called 

the “ground heat flux forcing model” as the time variation of 𝑇𝑠 is function of 𝑄 alone 

(Deardorff, 1978). However, Corby et al. (1972) pointed out that Eq. (2.5) has difficulty 

properly reproducing diurnal variation of 𝑇𝑠 . The oversimplification of 𝑄  limited the 

applications of this model. Additionally, Deardorff (1978) argued that Eq. (2.5) does not 

consider the effect of deep soil temperature on 𝑇𝑠. 
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 (3) Force-Restore Method 

Improving parameterizations of 𝑇𝑠 to overcome the weaknesses of the HDE and 

insulated surface model have been the goal of many previous studies. The force-restore 

method (FRM), first proposed by Bhumralkar (1975) and Blackadar (1976), was one 

approach. The FRM was originally developed to predict the “ground surface temperature 

𝑇𝑔” (i.e., the averaged soil temperature within a thin soil layer with a depth of 𝛿) through 

an ordinary differential equation, which is derived from the one-dimensional heat diffusion 

equation driven by surface forcing, as an approximate solution of heat transfer equation 

(Bhumralkar, 1975; Blackadar, 1976; Deardorff, 1978; Lin, 1980; Dickinson, 1988; Hu 

and Islam, 1995; Gao et al., 2008).  

Various versions of FRMs were formulated for different definitions of 𝑇𝑔  (e.g., 

Bhumralkar, 1975; Deardorff, 1978; Lin, 1980). Bhumralkar (1975) set 𝑇(𝛿, 𝑡) = 𝑇𝑔 , 

while Lin (1980) defined 𝑇𝑔  = 0.5[𝑇(𝛿, 𝑡) + 𝑇𝑠] by assuming a linear variation of soil 

temperature within a thin layer from surface to depth 𝛿. To predict 𝑇𝑠, Deardorff (1978) 

applied the FRM to a limiting case by letting 𝛿 approach zero (i.e., 𝑇𝑔 ⟶ 𝑇𝑠), referred to 

as 𝐹𝑅𝑀𝑇𝑠. In the 𝐹𝑅𝑀𝑇𝑠, time variation of 𝑇𝑠 is determined by the sum of a forcing term 

due to ground heat flux 𝑄 and a restoring term expressed as the difference between 𝑇𝑠 and 

a reference temperature �̅�. 

The 𝐹𝑅𝑀𝑇𝑠  modifies the insulated surface method by adding a restoring term, 

which represents the effect of �̅� on 𝑇𝑠. Deardorff (1978) compared several methods for 

predicting 𝑇𝑠 to show that the 𝐹𝑅𝑀𝑇𝑠 improves the simulations of 𝑇𝑠 compared to other 

methods including the HDE and insulated surface (surface energy balance)-based methods 
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(e.g., Gates et al., 1971; Manabe et al., 1974; Nickerson and Smiley, 1975; Benoit, 1976). 

The 𝐹𝑅𝑀𝑇𝑠 has been widely used in climate and hydrological models (Dickinson et al., 

1986, 1993; Wetzel and Chang, 1987; Noilhan and Planton, 1989; Cogley et al., 1990; Xue 

et al., 1991; Pitman et al., 1991; Sellers et al., 1996; Jacobs et al., 2000; Margulis and 

Entekhabi, 2001; Gao et al., 2004; Luce and Tarboton, 2010). 

The extended applications of FRM have also been investigated by previous studies 

owing to its parameter-parsimonious and explicit physical interpretation. Hirota et al. 

(1995) applied the FRM at daily scale to estimate daily mean 𝑇𝑔. Hu and Islam (1995) 

proposed a generalized version of FRM for predicting 𝑇𝑠 and 𝑇𝑔 derived from minimizing 

the errors between the solutions of FRM and HDE. Hirota et al. (2002) applied the FRM 

to estimate daily mean soil temperature, soil temperature at depth in frozen soils, and 𝑇𝑔 

under a snow cover. Gao et al. (2008) revised the 𝐹𝑅𝑀𝑇𝑠 to take heterogeneous soil layer 

and conductive and advective heat transfer into account. 

 

 Modeling of Surface Soil Moisture 𝜃𝑠 

𝜃𝑠 in LSMs is usually solved numerically based on the (1) mass conservation (2) 

discretized Richards equation, and (3) FRM. The following gives a brief review of the three 

approaches along with the corresponding features and limitations. Note that the first two 

methods usually estimate an averaged soil moisture of top soil layer (𝜃1) rather than 𝜃𝑠 as 

being defined at the surface in this study. 
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(1) Mass Conservation 

Mass conservation-based models predict 𝜃1 as a residual of surface water balance 

equation using a general expression given as (e.g., Laio et al., 2001; Guswa et al., 2002), 

 
𝑧1
𝑑𝜃1
𝑑𝑡

= 𝐼 − 𝐸 − 𝑄𝑤𝑔1 (2.6) 

where 𝜃1 and 𝑧1 are the soil moisture and the thickness of top soil layer, 𝐼 the infiltration, 

𝐸 the evapotranspiration rate, 𝑄𝑤𝑔1 the net gravitational drainage rate from the bottom of 

top soil layer.  

Several types of mass conservation-based models were developed over the years. 

The bucket model, first proposed by Manabe et al. (1969), is the simplest one. The bucket 

model is a lumped model for a single soil layer. The soil layer is conceptualized as a bucket 

receiving and retaining all flow-in water until its storage capacity is filled. The excess water 

above the soil layer’s capacity becomes runoff. Note that the bucket model ignores the 

gravitational drainage (𝑄𝑤𝑔1 in Eq. (2.6)). Over the years, Manabe’s original bucket model 

was expanded to address multiple soil layers (e.g., Hansen et al., 1983; Xue et al., 1991), 

runoff generation from dry soils (e.g., Gates and Schlesinger, 1977), and gravitational 

drainage (Laio et al., 2001; Guswa et al., 2002).  

The bucket model is still used in some LSMs owing to its simple description of 

hydrological cycle (e.g., Milly, 1992; Famiglietti and Wood, 1994; Robock et al., 1995; 

Liao et al., 2001; Guswa et al., 2002; Romano et al., 2011). However, the bucket model 

often overestimates 𝐸 and potential evapotranspiration compared to other schemes because 

it does not have adequate vegetation parameters that describe effects of plant physiology 
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on the 𝐸  estimates (e.g., Henderson-Sellers et al., 1996; Seneviratne et al., 2002; 

Seneviratne et al., 2010). Furthermore, Romano et al. (2011) state that the bucket model 

have a short memory for soil water storage as water transferring at different rates along 

vertical soil profile is virtually ignored. They also indicate that the bucket model cannot 

describe the system response to rapid change in atmospheric forcing accurately due to the 

direct feedback between soil water storage and evapotranspiration. Also, runoff being 

simply parameterized by the further incident water after reaching soil capacity was found 

to be incapable of reproducing observed surface energy and water budgets (e.g., Bowen 

ratio and run-off ratio) (Liang et al., 1998; Wood et al., 1998; Schlosser et al., 2000). 

A number of studies attempted to improve the modeling of soil moisture by 

improving the parameterization of evapotranspiration and gravitational drainage in Eq. 

(2.6). These improved soil moisture models were incorporated into a group of later 

generations of LSMs known as the Soil-Vegetation-Atmosphere Transfer (SVAT) models 

(e.g., Sellers et al., 1986; Dickinson et al., 1986; Άcs et al., 1991; Xue et al., 1991). In 

SVAT models, soil column is divided into two to three layers with a top soil layer ranging 

from 5-10 cm. SVAT models have better physical parameterizations compared to the 

bucket model. For example, 𝐸 in SVAT models is commonly parameterized using the bulk 

transfer or the Penman-Monteith method (e.g., Sellers et al., 1986; Koster and Suarez, 

1996), while 𝐸 in the bucket model is usually formulated as potential evapotranspiration 

multiplied by a limiting factor expressed as a linear function of soil moisture between two 

thresholds (i.e., field capacity and wilting point) (e.g., Guswa et al., 2002; Seneviratne et 

al., 2010).  
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 Previous studies have shown that the simulated soil moisture as well as surface 

energy and water fluxes from different SVAT models disagree with each other (Shao and 

Henderson-Sellers., 1996; Wetzel et al., 1996; Koster and Milly, 1997; Liang et al., 1998; 

Wood et al., 1998; Pitman et al., 1999). The discrepancies are caused by the various 

complexities of evapotranspiration and runoff parameterizations among models. 

Intercomparisons of SVAT models are well summarized in international comparison 

projects such as PILPS (Henderson-Sellers et al., 1993; 1995) and GSWP (Dirmeyer et al., 

1999, 2006). Excellent overviews of the SVAT model performance with respect to soil 

moisture predictions are given by Shao and Henderson-Sellers (1996) and Koster and Milly 

(1997). 

Some other mass conservation-based models were developed independently. The 

conceptual model first proposed by Georgakakos and Baumer (1996) and later used in 

Venkatesh et al. (2011) estimates soil moisture of a 150 cm soil column with a 50 cm top 

soil layer. Sheikh et al. (2009) developed a two-layer soil water balance model for a 

distributed hydrological model. The top soil layer was set to be 20 cm to analyze daily soil 

moisture variation. A major limitation of these models is the requirments of other 

components of water cycle, such as infiltration, surface runoff, and drainage, which need 

to be parameterized with empirical and site-dependent parameters. Additionally, these 

models are applied at larger temporal scales (i.e., daily). 

 (2) Discretized Richards Equation 

The discretized Richards equation (Richards, 1931) describes the vertical soil water 

movement in unsaturated soil, and is used in previous studies to predict 𝜃𝑠  and soil 
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moisture profile (e.g., Mahrt and Pan, 1984; Abramopoulos et al., 1988; Avissar and Pielke, 

1989; Entekhabi and Eaglesom, 1989; Verseghy, 1991). Mahrt and Pan (1984) showed that 

the model often underestimates the soil water flux within the soil due to truncation errors. 

They suggest that a sufficiently thin upper soil layer and a small grid size are required to 

reduce the truncation errors. Celia et al. (1990) applied the discretized Richards equation 

in the form of pressure head (ℎ-form) to solve water flow within unsaturated soil layer. The 

results showed that the ℎ-form of Richards equation, in general, produces large error on 

mass conservation and infiltration depth. 

Kumar et al. (2013) developed a non-linear root water uptake model by applying 

the Richards equation with an additional sink term representing the water uptake by roots. 

The results showed that the model tends to underestimate the depletion of the top layer soil 

moisture. They also found that the model is highly sensitive to crop parameters, which have 

large uncertainties. Furthermore, similar to the HDE model of 𝑇𝑠, multi-layer models need 

many soil parameters (e.g., soil hydraulic conductivity and shape parameters in soil water 

retention curve), which are difficult to accurately obtain from field observations (e.g., 

Gallage et al., 2013; Wassar et al., 2016). Specification of large numbers of model 

parameters introduces additional modeling errors and uncertainties. 

(3)   Force-Restore Method 

The success of the 𝐹𝑅𝑀𝑇𝑠 (Section 2.2.1) motivated the development of FRM to 

predict 𝜃𝑠 based on a simplified Richards equation. Deardorff (1977) proposed a FRM of 

𝜃𝑠  (𝐹𝑅𝑀𝜃𝑠 ) as an analogy of 𝐹𝑅𝑀𝑇𝑠  but without providing a derivation. Noilhan and 

Planton (1989) and Hu and Islam (1995) formulated a 𝐹𝑅𝑀𝜃𝑠  by neglecting the 
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gravitational drainage term in the Richards equation. The 𝐹𝑅𝑀𝜃𝑠 has been applied in some 

LSMs (Wetzel and Chang, 1987; Noilhan and Planton, 1989; Kowalczyk et al., 1991). 

However, Hu and Islam (1995) point out that the assumptions and approximations limit the 

applicability of these 𝐹𝑅𝑀𝜃𝑠s. These classical 𝐹𝑅𝑀𝜃𝑠s are only applicable to relatively dry 

soil conditions where soil water movement is dominated by the gradient of soil water 

potential (Jacobs et al., 2000). Neglecting the drainage term introduces large modeling 

error under wet soil conditions where gravitational drainage dominates soil water flow. 

 

 Modeling of Near-surface Air Temperature 𝑇𝑎 

In current LSMs, 𝑇𝑎  (screen level, about 2-10 m) is commonly diagnosed from 

other state variables and is not involved in either the LSM or climate model predictions. 

Dickinson et al. (1986) estimated 𝑇𝑎 at two meters high by a weighted average of 𝑇𝑠 and 

air temperature at the lowest (climate) model level 𝑇1 with the weights determined by the 

drag coefficient. Zhang and Zheng (2004) estimated 𝑇𝑎 using a simple empirical equation 

(0.45 𝑇𝑠 + 0.55 𝑇1) without justification. Pleim and Xiu (1995) estimated 𝑇𝑎 using 𝐻 and 

𝑇1 based on the Blackadar boundary layer scheme (Blackadar, 1976, 1979), which requires 

a high resolution model layer within the atmospheric boundary layer for obtaining 𝑇1 close 

to the surface. 

Alternatively, the Community Land Model (CLM) (Bonan, 1996; Oleson et al., 

2010) incorporated into the Community Atmosphere Model (CAM) (Neale et al., 2012) 

estimates 𝑇𝑎  through 𝑇𝑠 with a log-profile relationship established from the well-known 

surface layer similarity theory (i.e., Monin-Obukhov similarity theory, MOST, Monin and 
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Obukhov, 1954) and with the parameters obtained from the Kansas experiment (Businger 

et al., 1971). However, the log-profile approaches rely heavily on site dependent 

parameters, i.e., surface roughness lengths (SRLs), which are difficult to estimate 

accurately and subject to large uncertainty (Wieringa, 1993). Moreover, the appearance of 

SRLs in the log-profile-based formulations of 𝑇𝑎 is a mathematical artifact. SRLs are not 

included in the original Monin-Obukhov similarity equations (MOSE) derived using the 

Buckingham 𝜋  theorem in the dimensional analysis (e.g., Arya 1988). They are only 

introduced by integrating the MOSE down to close-to-surface levels beyond the domain 

within which the premises underlying the MOSE hold. 

 

2.3 Modeling of Surface Heat Fluxes 

 Conventional Models of Surface Heat Fluxes 

Surface heat fluxes in existing LSMs (also OSM) are usually parameterized by 

gradient-based method known as the bulk transfer method (BTM). The BTM parameterizes 

latent 𝐸  and sensible 𝐻  heat fluxes as functions of near-surface temperature/humidity 

gradient, wind speed, and bulk transfer coefficients (e.g., Arya, 1988; Deardorff, 1978; 

Maykut, 1982; Andreas and Murphy, 1986; Noilhan and Planton, 1989; Schröder et al., 

2003). The bulk transfer coefficients are often derived from the integrated forms of the 

dimensionless wind and temperature profile from the MOST (e.g., Paulson, 1970; Andreas 

and Murphy, 1986; Beljaars and Holtslag, 1991; Zeng et al., 1998) with the atmospheric 

stability parameter 𝜁 written as a (empirical) function of temperature gradient, wind speed, 

and SRLs (e.g., Deardorff, 1968; Businger et al., 1971; Andreas and Murphy, 1986; 
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Businger, 1988; Rutgersson et al., 2001; Zhang et al., 2011). Bulk transfer coefficients may 

also be directly estimated using meteorological measurements with the BTM (e.g., Leovy, 

1969; Pond et al., 1974; Sadhuram, 1991).  

The BTM estimated 𝐸  and 𝐻  are subject to substantial errors and uncertainties 

mainly resulting from the drawbacks of model formalism and uncertainties in model inputs 

and parameters. Specifically, the bulk transfer coefficients depending on SRLs introduce 

substantial uncertainties and errors into the BTM heat fluxes (e.g., Zeng et al., 1998; 

Brunke et al., 2002, 2003, 2011). Lüers and Bareiss (2010) found that modeling errors of 

BTM are mostly caused by the empirical transfer coefficients. Brunke et al. (2002) 

evaluated eight different BTMs in terms of SRL parameterizations. They obtained notably 

different 𝐸 and 𝐻 under weak and strong wind as well as strongly unstable conditions. 

Renfrew et al. (2002) showed that the SRL formula used to compute bulk transfer 

coefficients in the National Centers for Environmental Prediction (NCEP) bulk algorithm 

leads to overestimations of 𝐸 and 𝐻 under moderate to high wind speed conditions.  

Strub and Powell (1987) indicate that even though the performance of BTM can be 

improved by stability corrections over shorter time scale (daily to weekly) simulations, the 

BTM still consistently underestimate both 𝐸 and 𝐻 under stable atmospheric conditions. 

Sadhuram (1991) estimated a bulk transfer coefficient of 𝐸 over Arabian Sea different from 

the values reported by Kondo (1975) and Bunker (1976). The differences, as stated by 

Sadhuram (1991), are caused by the temporal and spatial variations of the transfer 

coefficients. Also, the use of different dimensionless wind/temperature profiles, suggested 

by several research groups (reviewed by e.g., Högström, 1988), may introduce additional 
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uncertainties into the BTM heat fluxes as the dimensionless profiles directly change the 

formulation of bulk transfer coefficients. 

The effects of wind speed biases on the BTM estimated heat fluxes have been 

shown to be most pronounced in winter months (Moore and Renfrew, 2002). Wind speed 

also affects the BTM estimated heat fluxes through SRLs. Earlier studies (Zeng et al., 1998; 

Renfrew et al., 2002) suggest that commonly used formulae of SRLs have difficulties 

producing consistent estimates of surface momentum and heat fluxes, especially heat 

fluxes, under weak wind and moderate to high wind conditions. Additionally, 

measurements of wind speed and SRLs over large regions are difficult to make. Previous 

studies have shown that remote sensing retrieved surface wind speed contains high 

uncertainties and biases (Katzberg et al., 2001; Komjathy et al., 2004; Katzberg and 

Dunion, 2009; Clarizia et al., 2012).  

Large measurement errors in bulk gradient of temperature/humidity directly 

introduce uncertainties into the BTM heat fluxes (via bulk transfer coefficients). 

Rutgersson et al. (2001) compared 𝐸 and 𝐻 estimated by two BTMs in terms of different 

forms of bulk transfer coefficients with observations at two marine sites. The results 

showed that both models overestimate 𝐸 and 𝐻, which are largely attributed to the errors 

in the measured temperature and humidity gradient. Friedl (2002) showed that the BTM 

overestimates both 𝐸 and 𝐻 under large temperature gradients and low wind speeds.  

Further improvements of the BTM heat fluxes face theoretical and technical 

obstacles. The measurement error of a bulk gradient computed from the difference of two 

close numbers is difficult to reduce given existing technology. Additionally, even if all 
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bulk gradient variables are free of measurement errors, the BTM heat fluxes have inherent 

modeling errors since the BTM are based on the first-order closure of the Reynolds 

decomposition of turbulent flows subjected to substantial and unknown modeling errors. 

Furthermore, it is well understood that the use of SRLs in the parameterization of bulk 

transfer coefficients based on the MOST is a mathematical artifact as discussed in Section 

2.2.3. More importantly, the BTM estimated 𝐸  and 𝐻  are not constrained by the 

conservation of energy, and hence do not automatically close the surface energy budget. 

Lack of energy conservation is a fundamental drawback of BTM with no obvious solution. 

The closure problem in turbulence models remains “one of the unsolved problems in 

classical physics” (Stull, 1988). Thus, estimation errors of the BTM heat fluxes are 

theoretically unbounded. 

In addition to the BTM, the Penman-Monteith (PMM) (Monteith, 1965) and 

Priestley-Taylor method (PTM) (Priestley and Taylor, 1972) are also frequently used to 

estimate 𝐸 (e.g., Sheffield et al., 2010; Zhang et al., 2010a; Miralles et al., 2011; Fisher et 

al., 2008). The PMM was developed to use surface net radiation, temperature, humidity, 

and wind speed data to estimated 𝐸. The PMM can be viewed as the BTM constrained by 

the surface energy balance. The PMM overcomes some weaknesses of the BTM such as 

the failure of closing surface energy budget and the dependence of temperature and 

humidity gradient. However, the PMM estimated 𝐸 is still affected by the uncertainties 

from the aerodynamic resistance parameters expressed as a function of wind speed and 

SRLs (e.g., Alves and Pereira, 2000; Monteith and Unsworth, 2013).  

The PTM was developed as a simplification of the PMM by assuming that the 

“atmospheric demand” term is proportional to the “available energy” term represented by 
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an empirical constant 𝛼, the so-called Priestley-Taylor parameter. Therefore, the PTM does 

not include vapor pressure deficit and aerodynamic resistance explicitly. The range of 𝛼, 

reported by previous studies, differs largely for both water unstressed and stressed 

conditions. Under water unstressed conditions, 𝛼 lies between 1.0 and 1.5 obtained from 

several field experiments (Singh and Taillefer, 1986; Brutsaert and Chen, 1995; Chen and 

Brutsaert, 1995). Under water stressed conditions, 𝛼  is usually assumed to be a linear 

function of root zone soil moisture (e.g., Fisher et al., 2005). The function is formulated 

using the soil moisture below the surface (e.g., 20 cm) rather than surface soil moisture, 

which is more relevant to evapotranspiration. 

Ground heat flux 𝑄 is commonly estimated using near-surface soil temperature 

gradient according to the Fick’s first law of diffusion (e.g., Chen et al., 1996; Pan and 

Mahrt, 1987; Bosilovich and Sun, 1995; Koster et al., 2000). The estimated 𝑄 in current 

LSMs is potentially underestimated resulting from the underestimated soil temperature 

gradient. For example, the catchment-based LSM in the Modern Era Retrospective-

analysis for Research and Applications (MERRA) reanalysis (Koster et al., 2000) and the 

Noah LSM in the NCEP reanalysis system (Chen et al., 1996; Chen and Dudhia, 2001; Ek 

et al., 2003) estimate 𝑄  using temperature gradient between 𝑇𝑠  and the averaged soil 

temperature of top soil layer (0-5 cm for the catchment-based LSM and 0-10 cm for the 

Noah LSM, respectively). The use of an averaged soil temperature below the surface may 

not capture the sharp gradient of soil temperature near the surface thus leading to an 

underestimation of 𝑄. Furthermore, temperature gradient in the Fick’s first law of diffusion 

is in fact local rather than bulk gradient. Alternatively, 𝑄 may be estimated by the residual 

of surface energy balance equation (Eq. (2.1)), while 𝐸 and 𝐻 are obtained by the BTM 
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(e.g., Deardorff, 1978; Noilhan and Planton, 1989; Gentine et al., 2012). 𝑄 estimated using 

this method is subject to large modeling errors and uncertainties from the errors and 

uncertainties of 𝑅𝑛 , 𝐸 , and 𝐻 . For example, positive biases of wind speed and 

temperature/humidity gradient during daytime may lead to an overestimation of 𝐸 + 𝐻 that 

is greater than 𝑅𝑛 with unrealistic negative daytime 𝑄. On the other hand, the error and 

uncertainty of 𝑄 cause those of 𝐸 when 𝐸 is estimated using the PMM (Gavilán et al., 

2007). 

 

 Maximum Entropy Production (MEP) Model of Heat Fluxes 

The MEP model of surface heat fluxes recently proposed by Wang and Bras (2009, 

2011) and Wang et al. (2014) is an unconventional dynamic-statistical model built on the 

Bayesian probability theory, information theory and atmospheric boundary layer 

turbulence theory. The MEP model allows 𝐸 , 𝐻 , and 𝑄  over the Earth-atmosphere 

interface to be simultaneously solved in terms of analytical functions of surface radiation 

fluxes, temperature and/or humidity as the most probable partition of radiation fluxes while 

closing the surface energy budget (satisfying the conservation of energy). Instead of 

focusing on fundamental physical laws, the MEP model seeks an answer to the question: 

What is the best prediction of energy partitioning of surface radiation fluxes into surface 

heat fluxes based on the available surface energy and moisture states? 

The formulation of the MEP model is described in (Wang and Bras, 2011) for the 

case of land surfaces, and in (Wang et al., 2014) for the case of water-snow-ice surfaces. 

As the first humidity (and temperature)-gradient independent, physically-based model of 
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surface heat fluxes, the MEP model does not make explicit uses of near-surface 

temperature, humidity gradient (and water vapor deficit) data thus avoiding the substantial 

measurement errors of bulk gradient variables. The MEP model also uses fewer model 

parameters (than existing models) that are independent of wind speed and SRLs. The 

modeling errors of the MEP heat fluxes are bounded by the measurement errors of surface 

radiative fluxes.  

Tests of the MEP model using field observations reported previously by the model 

developers (Wang and Bras, 2009, 2011; Wang et al., 2014) provide evidence that the MEP 

model accurately predicts surface heat fluxes over both land and water-snow-ice surface at 

field scales. Also, the MEP model applies to the full range of soil moisture conditions from 

residual water content to saturation. Independent tests of the MEP model have been 

reported (e.g., Nearing et al., 2012; Yang and Wang, 2014; Shanafield et al., 2015) and 

show that the MEP model matches, or outperforms, other existing models. These early 

applications of the MEP model justified its potential as an alternative approach for 

modeling the surface heat fluxes at regional and global scales. 

 

2.4 Estimation of Global Surface Energy Budgets 

The first study of global surface energy budget can be traced back to early 1900s 

(Dines, 1917). Over the years, the estimates of global annual mean surface energy budgets 

have been substantially improved due to the advancement of satellite observations. The 

reduced uncertainty of planetary albedo estimate, over the past century, greatly improves 

our understanding of surface energy budget (e.g., Hunt et al., 1986). The satellite-derived 
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global precipitation also helps the estimation of global annual mean 𝐸 (e.g., Trenberth et 

al., 2007). Numerous studies have attempted to reconstruct global long-term (annual) 

surface energy budgets using different methods by combining progressively improved 

observations made over the past several decades (e.g., National Academy of Sciences, 

1975; Budyko, 1982; Liou, 1992; Kiehl and Trenberth 1997; Trenberth et al., 2009; 

Stephens et al., 2012a; L'Ecuyer, et al., 2015).  

The estimates of global surface energy budgets are now available from many data 

products, and are classified into three categories: the observation-based products (satellite 

and in situ observations), model simulations based products, and reanalysis products (e.g., 

Mueller et al., 2013). Although more advanced observations and models have been 

introduced, global surface energy budgets estimated by various datasets differ largely, even 

when they are of the same category (e.g., Jiménez et al., 2011; Mueller et al., 2011, 2013; 

Wild et al., 2015). Considerable uncertainties result from, e.g., the lack of reliable 

measurements with global coverage (observation-based) and the different 

parameterizations among LSMs (model based and reanalysis outputs) (Kiehl and Trenberth 

1997; Jiménez et al., 2011; Stephens et al., 2012a; Mueller et al, 2013; Wild et al., 2013, 

2015). Wild et al. (2013) showed that the uncertainties of surface radiation budgets are 

generally larger than those at the top of atmosphere (TOA). Uncertainties of surface 

turbulent fluxes are in general twice as large as those of surface radiative fluxes, which 

indicate that there are still challenges for monitoring and modeling global surface energy 

budgets, especially surface turbulent heat fluxes. More importantly, all the existing global 

data products report an exactly/nearly zero 𝑄 at annual scale over both global land and 

ocean according to Eq. (2.3), which is questionable as discussed in Section 2.1.  
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The following sections provide a brief summary of previous works regarding the 

estimations of global surface energy budgets by discussing the features of each category. 

 

 Observation-based Estimates 

In observation-based estimates, surface radiations (shortwave and longwave) are 

usually derived from the radiation observations at TOA using a radiation transfer model 

that accounts for atmospheric attenuation and emission through the atmosphere (e.g., Li et 

al., 2013; Wild et al., 2013). Global annual mean 𝐸 is generally derived from (1) global 

annual precipitation amount assuming 𝐸 is equal to precipitation for a long-term average 

at global scale (e.g., Legates and Willmott, 1990; Kiehl and Trenberth, 1997; Trenberth et 

al., 2009; Stephens et al., 2012a), (2) upscaling of global network of continuous in-situ 𝐸 

measurements (e.g., Jung et al., 2010), or (3) physical or empirical models such as the 

PMM, PTM, and BTM (e.g., Fisher et al., 2008; Wang and Liang, 2008, Sheffield et al., 

2010). The first two approaches estimate global annual mean 𝐸 directly from in-situ and/or 

satellite observations, while the third method derives global annual mean 𝐸  from 

meteorological observations with global coverage. Global annual mean 𝐻 is commonly 

estimated as a residual of global annual mean of  𝑅𝑛 and 𝐸 according to Eq. (2.3) (Kiehl 

and Trenberth, 1997) or by the BTM using global data products of meteorological variables 

(e.g., Fisher et al., 2008; Sheffield et al., 2010). 

Several recent studies (Kiehl and Trenberth, 1997; Trenberth et al., 2009; Stephens 

et al., 2012a; L'Ecuyer, et al., 2015) provide comprehensive summaries of the current 

knowledge about global annual mean surface energy budgets using satellite observations. 
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Kiehl and Trenberth (1997) constructed the global surface radiation budgets based on the 

Earth Radiation Budget Experiment (ERBE) data and compared it to earlier studies (during 

the 1990s) using earlier generation of satellite observations, such as the International 

Satellite Cloud Climatology Project (ISCCP, Rossow and Zhang, 1995). The global annual 

mean 𝐸 is estimated by the earlier Global Precipitation Climatology Project (GPCP) data 

(Adler et al., 2003), while that of 𝐻 is deduced as 𝑅𝑛 − 𝐸.  

Trenberth et al. (2009) updated the values based on the improved satellite radiation 

measurements from the National Aeronautics and Space Administration – Clouds and the 

Earth’s Radiant Energy System (NASA CERES) and more recent GPCP precipitations 

observations. CERES estimates the surface radiation fluxes using improved cloud 

properties observations from Moderate-Resolution Imaging Spectroradiometer (MODIS) 

compared to ISCCP, which is used in ERBE (Wielicki et al., 1996, 2006). They further 

examined the surface energy budgets over lands and oceans separately to understand the 

sources of discrepancies between different estimates. Contrary to Kiehl and Trenberth 

(1997), which leaves 𝐻 as the final quantity to be computed as a residual, Trenberth et al. 

(2009) estimated global annual mean of 𝑅𝑛
𝐿  as a residual of surface energy balance 

equation, while that of 𝐻 is estimated from reanalysis products.  

Stephens et al. (2012a) further revised the estimates of global mean surface energy 

budgets using more data products. The global surface radiation budgets are obtained from 

the ensemble average of multiple data products including CERES, ISCCP-FD version 

(Zhang et al., 2004), NASA Global Energy and Water Exchanges Project – Surface 

Radiation Budget (GEWEX-SRB), and Afternoon Constellation (A-Train) with the 

uncertainties estimated from direct comparison with surface observations. The global 
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annual mean of 𝐸 is derived from the more recent GPCP data, while that of 𝐻 is estimated 

from multiple land flux products (Jiménez et al., 2011) and SeaFlux datasets (Curry et al., 

2004; Clayson et al., 2012, 2013).  

L'Ecuyer et al. (2015) reconstructed the global and regional (continental and ocean 

basin) annual mean surface energy budgets using the satellite observations during 2000-

2009. The surface radiation data are from GEWEX-SRB, ISCCP-FD, and CERES 

supplemented by the latest cloud and aerosol properties from the A-Train Constellation 

including the Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite observation 

(CALIPSO) satellite, the CloudSat Cloud Profiling Radar, and MODIS known as the 

CALIPSO-CloudSat-CERES-MODIS (CCCM) merged dataset (Kato et al., 2010, 2011). 

Surface turbulent heat fluxes are estimated using the Princeton ET (Sheffield et al. 2010; 

Vinukollu et al., 2011b) and MERRA reanalysis data products (Rienecker et al., 2011; 

Bosilovich et al., 2011) and the Global Land Data Assimilation System (GLDAS) (Rodell 

et al., 2004). The uncertainties are evaluated using either the range or the standard deviation 

of estimates from various products. The atmospheric and surface water and energy balance 

equations are incorporated as constraints through a variational method (Rodgers, 2000; 

Kalney, 2003) that reduces the energy imbalance and uncertainties of each component. The 

estimates of global annual mean surface energy budgets reported by these articles as well 

as other independent studies are summarized in Table 2.1. 

The aforementioned works indicate that current observation-based estimates of 

global surface energy budgets have large uncertainties. For example, the uncertainties in 

aerosol and cloud properties significantly affect both surface downward and upward 

radiation retrievals and 𝐸 (through precipitation) (Kato et al., 2013), while those in 𝑇𝑠, air 
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temperature, and water vapor dominate the biases in 𝑅𝑛
𝐿  (L'Ecuyer and Stephens 2003; 

Zhang et al., 2004, 2006, 2007, 2010b). Kiehl and Trenberth (1997) suggest an uncertainty 

of 20-25 W m-2 in global annual mean 𝑅𝑛
𝑆 primarily caused by an exclusion of aerosol 

effects and potentially underestimated cloud absorption in the radiation transfer model. 

Stephens et al. (2012a) estimated an overall uncertainty of 9 W m-2 in global annual mean 

𝑅𝑛
𝑆  by direct comparison with surface observations. However, the seemingly smaller 

uncertainty of 𝑅𝑛
𝑆, reported by Stephens et al. (2012a), as compared to Kiehl and Trenberth 

(1997)), results from a large error cancellation of random sampling error.  

Kiehl and Trenberth (1997) and Trenberth et al. (2009) showed that the estimates 

of global annual mean 𝑅𝑛
𝐿  between various estimates could differ by ~20 W m-2. They 

conclude that the discrepancies are presumably caused by the strong dependence of 𝑅𝑛
𝐿  

retrieval on cloud-base height and low cloud amount, which are difficult to retrieve 

accurately from satellite observations. Kiehl and Trenberth (1997) state that 𝑅𝑛
𝐿  retrieved 

from satellite observations is more likely to be underestimated as a result of the missing 

view of low clouds from satellites. However, Wild and Roeckner (2006) argue that 𝑅𝑛
𝐿  

derived from satellite observations is typically higher than that estimated by climate 

models. Alternatively, Stephens et al. (2012a) reported an uncertainty of 14 W m-2 in global 

annual mean 𝑅𝑛
𝐿  with the main source of errors from the uncertainties in temperature and 

water vapor information required for flux retrieval. 

Among the observation-based estimates of surface radiation fluxes, the CERES 

data are known to have better accuracy. The increase in efficacy is a result of improved 

instruments and spatial resolution as compared to the previous generation of observations 
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such as ERBE products (Wielicki et al., 1996, 2006). CERES data have been used to 

construct the global surface radiation budgets mentioned previously (Trenberth et al., 2009; 

Stephens et al., 2012a, b; Kato et al., 2011, 2012). Kato et al. (2012) did a comprehensive 

analysis of the uncertainty estimates of CERES surface radiations. The uncertainties in 

global annual mean CERES 𝑅𝑛, 𝑅𝑛
𝑆, and 𝑅𝑛

𝐿  were estimated to be 12, 10, and 7 W m-2, 

respectively. Their study also showed that the uncertainty of 𝑅𝑛
𝑆  over land surfaces is 

greater than that over oceans, while that of 𝑅𝑛
𝐿  over land and ocean are comparable. The 

uncertainties of global surface radiation budgets reported by previous studies, if available, 

are summarized in Table 2.1. 

Before the era of satellite remote sensing, global annual mean 𝐸 was commonly 

estimated by upscaling the gauge-measured precipitation to global scale. This approach has 

been shown to have considerable uncertainties resulting from sparse data points over 

oceans and the upscaling errors (Legates, 1995). For example, Legates (1995) showed a 

spread of ~350 (780 to 1130) mm per year (~27 W m-2) in the global precipitation estimated 

by earlier studies (e.g., Schutz and Gates, 1972a, b, 1973, 1974; Jaeger, 1976, 1983). In 

recent times, the consensus on estimating the global annual mean 𝐸 is using information 

from satellite-based global precipitation measurements (e.g., Kiehl and Trenberth, 1997, 

Trenberth et al., 2009; Stephens et al., 2012a), which are still subject to the uncertainty of 

precipitation retrieval, especially over oceans. Stephens et al. (2012a) suggest an overall 

uncertainty of 10 W m-2 in global annual mean 𝐸 derived from the uncertainty in GPCP 

global precipitation. The largest uncertainties are over oceans lying between 10% and 20% 

(L'Ecuyer and Stephens, 2002; Haynes et al., 2009), or approximately 8 to 16 W m-2, with 

the global ocean precipitation estimated to be ~82 W m-2 (Adler et al., 2003). Adler et al. 
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(2012) and Behrangi et al. (2014) suggest that the latest global precipitation datasets have 

biases as large as 9% (~7 W m-2). Arbitrary adjustments may also make the 𝐸 estimates 

less reliable. For example, Trenberth et al. (2009) imposed a 5% global increase of 

precipitation over oceans to reduce the surface energy imbalance.  

Jung et al. (2010) estimate a global annual mean 𝐸  by integrating the 𝐸 

observations from eddy covariance (EC) measurements, geospatial information from 

satellite remote sensing, and surface meteorological data using a machine-learning 

algorithm (i.e., Model Tree Ensemble). The reported low uncertainty of ~2 W m-2 is, 

however, evaluated using the standard deviation over 25 ensemble trees rather than the 

uncertainty of 𝐸. Additionally, this method may not be applied to oceans due to the lack of 

high quality EC data over oceans.  

The estimates of global annual mean 𝐸  using physical (e.g., PMM, PTM, and 

BTM) or empirical (statistical) models have been conducted by a number of studies. 

Mueller et al. (2011) estimated an ensemble mean of global land 𝐸 from six data products 

derived based on the PTM/PMM, GPCP precipitation, and Jung et al. (2010). The standard 

deviation of the six products is approximately 6 W m-2. Mueller et al. (2013) included seven 

additional estimates to determine a short-term (1989-1995) and long-term (1989-2005) 

global land 𝐸 with an interquartile range of ~6 W m-2. Jiménez et al. (2011) showed a 

spread of ~20 W m-2 in the global land 𝐸 that was obtained by five estimates using the 

PMM, PTM and empirical approaches. Vinukollu et al. (2011a) obtained a range of ~10 W 

m-2 of the global land 𝐸 estimated by the PMM, PTM, and a surface-energy-balance-based 

method (Su, 2002) even though all the estimates used the same meteorological inputs.  
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The BTM is used to estimate 𝐸 over oceans. Global ocean 𝐸 estimates are now 

available from several datasets including the SeaFlux (Curry et al., 2004; Clayson et al., 

2012, 2013), Objectively Analyzed Air-sea Fluxes (OAFlux) project (Yu and Weller, 2007, 

2012) from Woods Hole Oceanographic Institution (WHOI), Goddard Satellite-based 

Surface Turbulent Fluxes (GSSTF) products from the Goddard Earth Sciences Data and 

Information Services Center (Chou et al., 2003), and Hamburg Ocean Atmosphere 

Parameters and Fluxes from Satellite Data (HOAPS) (Grassl et al., 2000, Bentamy et al., 

2003; Andersson et al., 2010). SeaFlux, OAFlux, and HOAPS use the BTM algorithm 

developed by the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere 

Response Experiment (TOGA COARE) (Fairall et al., 1996b, 2003). Chou et al. (2003) 

showed that the global ocean 𝐸 estimated by GSSTF version 1 (GSSTF1) is 12.7 W m-2 

larger than that estimated by GSSTF version 2 (GSSTF2). The discrepancy is caused by 

the effect of salinity on surface saturated humidity and the use of different von Kármán 

constants (included in bulk transfer coefficient). Schlosser and Houser (2007) showed that 

the global ocean 𝐸 estimated by GSSTF accounts for ~91% of global precipitation, while 

that estimated by HOAPS is only ~76%.  

The quality of BTM-based 𝐸 estimates is strongly affected by that of model inputs 

as discussed in Section 2.3.1. For example, Clayson and Bogdanoff (2013) showed that 

neglecting the diurnal sea surface temperature (SST) warming leads to a global-averaged 

error of roughly 4.5 W m-2. Brunke et al. (2011) indicate that the uncertainties of bulk 

gradient variables dominate the discrepancies among products. Clayson et al. (2013) 

showed that the global ocean 𝐸 and 𝐻 estimated by SeaFlux have biases of 14 and 6 W m-

2, respectively, when compared with ship observations. The main source of uncertainty is 
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an attribute of the uncertainties in satellite retrievals of near-surface air temperature and 

humidity. Andersson et al. (2011) showed that the discrepancies of global ocean 𝐸 

estimates between HOAPS and other satellite-derived products primarily results from those 

of near-surface humidity among data products. The low uncertainties of OAFlux estimated 

global ocean 𝐸 and 𝐻 reported by Yu et al. (2008) are, however, computed by comparing 

with only 107 buoy measurements. On the other hand, Gleckler and Weare (1997) 

estimated a zonal mean error of 25 W m-2 in the BTM estimated 𝐸 over oceans obtained 

by direct comparison with ship observations.  

Kiehl and Trenberth (1997), as well as earlier studies, estimated global annual mean 

𝐻 as a residual of surface energy balance equation (Eq.(2.3)). These 𝐻 estimates remain 

highly uncertain resulting from the uncertainties of 𝑅𝑛
𝑆, 𝑅𝑛

𝐿 , and 𝐸. The global annual mean 

𝐻 estimated by Kiehl and Trenberth (1997) is 24 W m-2, while other earlier estimates 

ranges from 16 to 27 W m-2. Trenberth et al. (2009) reported a lower global mean 𝐻 of 17 

W m-2, which mainly results from the lower estimates of 𝑅𝑛
𝑆, as compared to Kiehl and 

Trenberth (1997). Jiménez et al. (2011) showed a spread of ~20 W m-2 in the global land 

𝐻 obtained from different datasets.  

Most recent observation-based estimates of global annual mean 𝐻 are obtained by 

the BTM using observed temperature gradient and wind speed. The errors and uncertainties 

of BTM estimated 𝐻 are considerable due to those of model inputs and parameters as 

discussed in Section 2.3.1. For example, Gleckler and Weare (1997) estimated a systematic 

error greater than 10 W m-2 in global ocean 𝐻 against ship measurements largely resulting 

from the utilized parameterizations. Stephens et al. (2012a) reported an uncertainty of 7 W 
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m-2 in global annual mean 𝐻 evaluated by the range of multiple estimates. They further 

concluded that “No definitive measure of the uncertainty of this flux exists and the 

uncertainty range given merely reflects a judgement on where the value most likely lies.”. 

Table 2.1 lists the reviewed estimates of global annual mean 𝐸  and 𝐻  with the 

corresponding uncertainties (if available).
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Table 2.1:  Observation-based estimates of global annual mean surface energy budgets reviewed in this study (mean ± 

uncertainty / [min max] in W m-2). *: See list of abbreviations for the source datasets. 
Reference or Products Name 𝑅𝑛

𝑆 𝑅𝑛
𝐿  𝐸 𝐻 Source Datasets or Model Information 

Global  

Kiehl and Trenberth (1997) 168±20 -66±21 78±25 24±10 ERBE, GPCP 

Trenberth et al. (2009), 1985-1989 165 -51 - - ISCCP-FD 

Trenberth et al. (2009), 2000-2004 161 -63 80 17 CERES, GPCP 

Stephens et al. (2012a) 165±9 -52±14 88±10 24±7 
CERES, ISCCP-FD, GEWEX-SRB,  

A-train, Cloudsat, GPCP, SeaFlux 

L’Ecuyer et el. (2015) 164±7 -58±9 81±4 25±4 
CCCM, ISCCP-FD, GEWEX-SRB, GPCP, 

SeaFlux, Princeton ET, MERRA, GLDAS 

Legates (1995) - - 78 / [62 89] - Gauge Measurements 

Ohmura and Gilgen (1993) 142 40 - - GEBA 

Rossow and Zhang (1995) 165 46 - - ISCCP 

Zhang et al. (2004) 166 49 - - ISCCP-FD 

Kato et al. (2012) 169±10 53±7 - - CERES 

Land  

Trenberth et al. (2009), 1985-1989 147 -58 - - ISCCP-FD, GPCP 

Trenberth et al. (2009), 2000-2004 145 -80 39 27 CERES, GPCP 

L’Ecuyer et el. (2015) 140±12 -69±17 39±4 39±7 
CCCM, ISCCP-FD, GEWEX-SRB,  

Princeton ET, MERRA, GLDAS 

Jung et al. (2010) - - 38±2 - *FLUXNET, GIMMS NDVI 

Jiménez et al. (2011) - - 42 / [37 58] 45 / [31 58]  PMM, PTM, MTE, Empirical 

Mueller et al. (2011) - - 48±5 - PMM, PTM, MTE, Empirical 

Vinukollu et al. (2011a) - - 42 / [37 47] - PMM, PTM, SEB 

Mueller et al. (2013) - - 41±6 - PMM, PTM, MTE, Empirical 

Ocean  

Trenberth et al. (2009), 1985-1989 172 -48 - - ISCCP-FD, GPCP 

Trenberth et al. (2009), 2000-2004 168 -57 97 12 CERES, GPCP 

L’Ecuyer et el. (2015) 178±6 -47±8 89±8 16±4 
CCCM, ISCCP-FD, GEWEX-SRB,  

GPCP, SeaFlux 

SeaFlux (Clayson et al., 2013) - - 90±14 18±6 *AVHRR, SSMI, CCMP 

OAFlux (Trenberth et al., 2009) - - 94±7 11±1 *QuickSCAT, AVHRR, SSMI AMSR-E 

HOAPs (Trenberth et al., 2009) - - 104 15 *AVHRR, SSMI 

GSSTF-2 (Chou et al., 2003) - - 108 - *SSMI, NCEP-NCAR 
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 Model-simulation-based Estimates 

In this category, global surface energy budgets are estimated via offline LSM (or 

OSM) or coupled GCM simulations driven by meteorological forcing from atmospheric 

reanalysis/climate model outputs. Surface radiative fluxes are computed from the given 

solar constant with a radiation transfer model applied down to the surface. 𝐸 is commonly 

parametrized using the PMM (e.g. Liang et al., 1994; Meigh et al., 1999; Balsamo et al., 

2009), PTM (e.g., Bondeau et al., 2007; Rost et al., 2008), and BTM (e.g., Takata et al., 

2003; Hanasaki et al., 2008; Koirala, 2010). 𝐻  is estimated by the BTM using the 

temperature gradient between surface and the lowest level of climate model (e.g., Chen 

and Dudhia, 2001; Takata et al., 2003). A number of independent model-based estimates 

of global mean 𝐸 and 𝐻 have been provided by several groups, and well reviewed by e.g., 

Haddeland et al. (2011), Jiménez et al. (2011), Mueller et al. (2013), and Wild et al. (2015). 

These previous works showed that the model-based estimates are still afflicted with 

considerable uncertainties for all energy budget components indicated by the wide spread 

of estimates among products. The main reason responsible for the inter-model discrepancy 

is the use of different parameterizations and inputs among models (e.g., Kato et al., 2007; 

Wild, 2008; Muller et al., 2013; Wild et al., 2015). These estimates also have substantial 

biases relative to ground observations (e.g., Wild, 2008; Wild et al., 2015). 

Several studies and international projects sought to determine representative values 

for each of the surface energy budget component and quantify the corresponding 

uncertainties. In particular, the Program for Climate Model Diagnosis and Intercomparison 

(PCMDI) collected outputs from multiple GCMs during 2005-2006. These archived data 
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constitute phase 3 of the Coupled Model Intercomparison Project (CMIP3) and was 

released in 2010 (Meehl et al., 2007). The CMIP3 products have been used for preparing 

the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-

AR4) (IPCC, 2007). 

Wild (2008) verified the current estimates of global annual mean surface radiation 

fluxes produced by 14 GCMs in CMIP3. The results showed a large variability of global 

annual mean 𝑅𝑛
𝑆 and 𝑅𝑛

𝐿  among the 14 GCMs. The ensemble means of global 𝑅𝑛
𝑆 and 𝑅𝑛

𝐿  

as well as the range of the estimates are listed in Table 2.2. The obtained biases of 6 and -

5.6 W m-2 for 𝑅𝑛
𝑆  and 𝑅𝑛

𝐿 , respectively, are estimated by the comparison with field 

observations from 760 sites of the Global Energy Balance Archive (GEBA) and 44 sites of 

the GEBA/Baseline Surface Radiation Network (BSRN). In the same paper, he also 

includes the estimates from 20 earlier GCMs provided by the second phase of the 

Atmospheric Model Intercomparsion Project (AMIP II) (Wild et al., 1998; Wild, 2005). 

The global mean 𝑅𝑛
𝑆 and 𝑅𝑛

𝐿  estimated by AMIP II are both lower (in magnitude) than those 

estimated by CMIP3 (see Table 2.2). Trenberth and Fasullo (2010) point out several key 

deficiencies in the climate model simulations of CMIP3. For example, CMIP3 

overestimates the absorption of solar radiation at mid and high latitudes, but underestimate 

it in tropics of the Southern Hemisphere caused by the errors of cloud fields.  

A new version of CMIP products was released in 2013 known as the phase 5 of the 

CMIP (CMIP5) (Taylor et al., 2012). CMIP5 uses different climate scenarios from those 

of CMIP3 for describing the amount of future greenhouse gas. CMIP5 is used in the fifth 

assessment report of IPCC (IPCC-AR5) (IPCC, 2013). Compared to CMIP3, CMIP5 

contains more advanced GCMs. Evaluation of the CMIP5 historical experiments shows 
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that the simulations of modern climate were improved compared with CMIP3 simulations 

(Harrison et al., 2015). However, the biases of solar radiation absorption in CMIP3 also 

present in CMIP5 (Ceppi et al., 2012; Chang et al., 2012; Grise and Polvani, 2014).  

Wild et al. (2013) evaluated the global mean surface energy budgets produced by 

22 GCMs compiled in the CMIP5 and found that the estimates from different GCMs vary. 

The mean and range of the reported estimates are listed in Table 2.2. By comparing with 

ground observations from BSRN, it was demonstrated that most of the models overestimate 

the downward solar radiation and underestimate the downward longwave radiation. The 

best estimates from their results are the one that fits best to previous studies (e.g., Stephens 

et al., 2012a, see Table 2.1). Wild et al. (2015) further expanded the study of Wild et al. 

(2013) by including more GCMs (total 43) outputs in CMIP5 and examining the global 

land and ocean surface energy budgets separately. Comparison of results from the two 

studies are close as shown in Table 2.2. The estimates vary greatly among CMIP5 

simulations, for example, with substantial spread in surface radiative fluxes over lands and 

𝐸 and 𝐻 over oceans (see Table 2.2).  

The Global Soil Wetness Project (GSWP) is an ongoing modeling research of the 

Global Land-Atmosphere System Study (GLASS), a contributing project of the GEWEX 

(Dirmeyer et al., 1999). A major goal of GSWP includes producing global land surface 

fluxes, state variables, and other hydrological quantities. Dirmeyer et al. (2006) reported a 

global surface energy budget produced by 13 LSMs involved in the Second Global Soil 

Wetness Project (GSWP-2). Table 2.2 clearly shows that the estimates of all surface energy 

budget components differ largely among models resulting from the utilized model 

parameterizations.  
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Many studies provide independent estimates of individual surface energy budget 

components at global scales, especially 𝐸. Mueller et al. (2011) reported an ensemble mean 

of global land 𝐸 averaged from 19 LSMs outputs including those from GSWP and the 

Organising Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE) and 11 GCMs 

from IPCC-AR4. The ensemble means estimated from GSWP/ORCHIDEE and IPCC-AR4 

LSMs differ by ~5 W m-2. The standard deviations of the two groups of estimates are both 

~5 W m-2 (see Table 2.2). Haddeland et al. (2011) compared the global land 𝐸 simulated 

by six LSMs and five global hydrological models (GHMs) involved in the Water Model 

Intercomparison Project (WaterMIP) for a 15-year period (1985-1999). The results showed 

a range of 33 to 46 W m-2 even all models were run at the same spatial resolution and driven 

by the same meteorological data. Jiménez et al. (2011) showed a spread of ~9 and ~15 W 

m-2 for global land 𝐸 and 𝐻 produced by four offline LSM simulations. Previous estimates 

reviewed in this study are listed in Table 2.2. 
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Table 2.2:  Global annual mean surface energy budgets estimated by offline land surface model simulations reviewed in this 

study (mean ± uncertainty / [min max] in W m-2) 

Name 𝑅𝑛
𝑆 𝑅𝑛

𝐿  𝐸 𝐻 Reference 

Global  

AMIP II 154 -51 - - Wild (2008) 

CMIP3 162 / [149 172] -56 / [-64 -40] - - Wild (2008) 

CMIP5 (22 GCMs) 161 / [159 169] -55 / [-65 -49] 85 / [78 92] 20 / [14 27] Wild et al. (2013) 

CMIP5 (43 GCMs) 160 / [153 171] -57 / [-64 -49] 82 / [79 93] 21 / [14 27] Wild et al. (2015) 

Land  

CMIP5 136 / 33 [121 153] -66 / [-83 -57] 38 / [32 46] 32 / [16 43] Wild et al. (2015) 

GSWP, ORCHIDEE - - 43±5 - Mueller et al. (2011) 

IPCC-AR4 - - 48±5 - Mueller et al. (2011) 

GSWP-2 140 / [103 177] -66 / [-71 -60] 39 / [27 55] 33 / [20 47] Dirmeyer et al. (2006) 

WaterMIP, GHMs - - - / [33 46] - Haddeland et al. (2011) 

GLASS, NCAR - - - / [36 45] - / [31 46] Jiménez et al. (2011) 

Ocean  

CMIP5 170 / 21 -53 / [-59 -45] 100 / [94 113] 16 / [6 21] Wild et al. (2015) 
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 Atmospheric Reanalysis Products 

In recent years, global gridded reanalysis datasets produced by incorporating 

available observations into climate models using data assimilation system (DAS) technique 

provide an alternative way of comprehensive estimates of global surface energy budgets. 

Since the first generation of reanalysis systems developed in the mid-1990s, global 

atmospheric reanalysis data have become indispensable for climate studies (Wang et al., 

2011). Four major reanalysis products are currently available, National Oceanic and 

Atmospheric Administration (NOAA) NCEP, NASA Global Modeling and Assimilation 

Office (GMAO), European Centre for Medium-Range Weather Forecasts (ECMWF), and 

Japanese reanalysis (JRA). These reanalysis products are independently and periodically 

updated using more advanced satellite observations, climate models, and DAS. Below is a 

brief overview of these reanalysis datasets and the corresponding estimates of global 

surface energy budgets.  

NCEP released its first generation of reanalysis product in the mid-1990s known as 

the NCEP – National Center for Atmospheric Research (NCEP-NCAR) (Kalnay et al., 

1996). The NCEP-NCAR dataset is continuously updated using near real-time 

observations. The major limitation of the NCEP-NCAR product is its coarse spatial 

resolution (T62, ~210 km) compared to other reanalysis products. Trenberth et al. (2009) 

also found an overestimation of global land 𝐸 in NCEP-NCAR reanalysis as compared to 

other estimates. The second NCEP reanalysis product, known as the NCEP – Department 

of Energy (NCEP-DOE), was completed around 2002 using an updated forecast model and 

DAS (Kanamitsu et al., 2002). The improvements include better physical 

parameterizations in the forecast model, corrections of assorted errors in the DAS, and 
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inclusion of additional observations. The NCEP-DOE reanalysis still belongs to the first 

generation products as it uses a similar DAS and the same GCM (upgraded version) as 

those used in NCEP-NCAR reanalysis (Kanamitsu et al., 2002; Higgins et al., 2010).  

Recently, NCEP released its latest generation of reanalysis product, the climate 

forecast system reanalysis (CFSR) (Saha et al., 2006, 2010). CFSR is an improved version 

of NCEP-NCAR and NCEP-DOE as it couples ocean-atmosphere-land system at higher 

spatial resolution (T382, ~38 km) (Higgins et al., 2010). Other new features and 

improvements in CFSR have been summarized in (Higgins et al., 2010; Saha et al., 2010; 

Wang et al., 2011). The NCEP reanalysis products apply three-dimensional variational 

assimilation (3D-VAR) for the gridpoint statistical interpolation. Wang et al. (2011) 

provided a comparison of the global surface energy budgets produced by the NCEP 

reanalysis data products during 1979 to 2008 (see Table 2.3). 

The Modern Era Retrospective-Analysis for Research and Applications (MERRA) 

reanalysis is provided by NASA GMAO with two primary objectives: to incorporate the 

satellite observations from NASA Earth Observing System and to improve the hydrological 

simulations in earlier reanalysis products (Lucchesi, 2008, 2012; Rienecker et al., 2011). 

The MERRA reanalysis data were produced using the GMAO Goddard Earth Observing 

System (GEOS) version 5 (GEOS-5) (Rienecker et al., 2008; Molod et al., 2012). The 

GEOS-5 GCM is executed at 0.5o×0.67o resolution. An incremental analysis updates 

procedure is applied in the DAS to slowly adjust the model states toward the observed state 

(Bloom et al., 1996; Rienecker et al., 2011). Previous studies indicate that MERRA has 

improved skills of reproducing spatial distribution of precipitation, especially related to the 

tropical oceanic regions as compared to earlier reanalysis products (Bosilovich et al., 2008, 
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2011). On the other hand, the MERRA-Land, the post processing of MERRA land fields, 

was produced using corrected precipitation forcing from GPCP data and modified rainfall 

interception model (Reichle et al., 2011; Reichle, 2012). The results showed that MERRA-

Land corrects some known errors in the MERRA surface meteorological fields (e.g., 

downward shortwave radiation).  

The MERRA-2, an updated NASA reanalysis, was recently released with numerous 

updates and improvements on the DAS, model parameterizations, and observing systems 

(Bosilovich et al., 2015). For instance, MERRA-2 assimilates observations that are not 

available to MERRA during the 2010s. Another notable change in MERRA-2 is the 

assimilation of aerosol observations. An extensive review of the MERRA-2 can be found 

in (Bosilovich et al., 2015). They also provided a comparison of global surface energy 

budgets between MERRA and MERRA-2 estimates for the period of 2000 to 2010 (see 

Table 2.3). 

The ERA-15, which is the first generation of ECMWF and was completed in 1996, 

provides 15 years of reanalysis data from 1979 to 1993 (Gibson et al., 1999). ERA-15 was 

produced using earlier version of the ECMWF Integrated Forecast Model. As the first 

generation of reanalysis product, there are several key deficiencies in ERA-15 include the 

coarse spatial resolution (T106, ~190 km), dry bias over land, excessive precipitation over 

tropical oceans, and failure of closing global hydrological budget (Rudolf et al., 1996). The 

ERA-40 completed in 2003 provides a global atmospheric reanalysis of the 45-year period 

from 1957 to 2002 with higher spatial resolution compared to ERA-15 (T159, ~125 km) 

(Uppala et al., 2005). Several major improvements were achieved in ERA-40 as it uses 

updated climate model and directly assimilates satellite radiation data. For example, ERA-
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40 estimated precipitation is closer to the Global Precipitation Climatology Centre (GPCC) 

observations than ERA-15 over South America and Central Africa. The imbalance of 

global hydrological budgets is significantly reduced in ERA-40. Yet the wet bias of 

precipitation over tropical oceans remains (Andersson et al., 2005).  

The third generation of ECMWF reanalysis, known as the ERA-Interim, uses an 

improved atmospheric model and DAS than those used in ERA-40 (Simmons et al., 2007; 

Uppala et al., 2008; Dee et al., 2011). Unlike ERA-40, which is limited to a 45-year period 

(1957-2002) without further update, ERA-Interim is extended back to 1979 and 

continuously updated in near-real-time. ERA-Interim has higher spatial resolution (T255, 

~80 km) compared to ERA-40. The DAS in ERA-Interim is based on a 12-hourly four-

dimensional variational analysis (4D-VAR), while 3D-VAR was used in ERA-40. The too-

strong precipitation over oceans from the early 1990's in ERA-40 was reduced but still 

greater than GPCP observations, especially over tropical regions (Dee et al., 2011). The 

estimates of global surface energy budgets from ERA-40 and ERA-Interim are listed in 

Table 2.3. The estimates from ERA-15 were excluded as it only covers a short period (15 

years) with several well-documented issues mentioned previously (Kallberg, 1997; Uppala 

et al., 2005). 

The first generation of JRA reanalysis is the JRA-25 providing 25-year products 

from 1979 to 2004 with T106 spatial resolution (~110 km) (Onogi et al., 2007). JRA-25 

was completed using the numerical assimilation and forecast system from Japan 

Meteorological Agency (JMA). The observational and satellite data used in JRA-25 were 

collected from multiple sources including ECMWF, the NOAA National Climatic Data 

Center (NCDC, now National Centers for Environmental Information, NCEI), and the 



50 

 

Meteorological Research Institute of JMA (JMA-MRI). JMA continued the production on 

a real-time basis until January 2014 using the same DAS as used for JRA-25. Trenberth et 

al. (2009) showed that the global ocean 𝐸 estimated by JRA is 14 W m-2 greater than that 

estimated by NCEP-NCAR reanalysis product. They also found that JRA produces higher 

𝐸, 𝐻, and 𝐿𝑊𝑢 when compared with other reanalysis products, which results in a negative 

net surface flux over oceans (i.e., ocean gains energy at annual scale). Onogi et al. (2007) 

indicate that one of the unsolved problems of JRA-25, as with all reanalysis products, are 

the jumps in the analyzed meteorological fields caused by absence/sudden change of 

available observations and large inconsistency between forecast and observed fields. For 

example, JRA-25 precipitation has a stepwise shift when the Special Sensor Microwave 

Imager (SSMI) retrieved total column water vapor becomes available for assimilation 

(Onogi et al., 2005). 

The second generation of Japan reanalysis, JRA-55, provides a 55-year data from 

1958 to 2012 using a more sophisticated atmospheric model and newly available and 

reprocessed past observations (Kobayashi et al., 2015; Harada et al., 2016). JRA-55 has 

been continuing in near-real-time since 2013. Compared to JRA-25, JRA-55 uses more 

advanced DAS (4D-VAR vs. 3D-VAR) and an increased model resolution (T319, ~55 km). 

Major improvements in JRA-55 (e.g., reduced bias in Amazonian rainfall) and several 

notable persist biases (e.g., dry bias in the upper and middle troposphere) are summarized 

in Kobayashi et al. (2015) and Harada et al. (2016). The estimates of global surface energy 

budgets from JRA-25 and JRA-55 have been reported in previous publications (Trenberth 

et al., 2009; Kobayashi et al., 2015) and summarized in Table 2.3. Note that the estimates 
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of global surface energy budgets from JRA-25 are adapted from Kobayashi et al. (2015) 

using the more recent data (2002-2008).  

In addition to the four reanalysis products listed above, GLDAS is another 

important reanalysis product that provides estimates of land surface fluxes and water and 

energy storage (Rodell et al., 2004). The GLDAS products contain the assimilated outputs 

from four offline simulations of LSMs (Chen et al., 1996; Ek et al., 2003; Dai et al., 2003; 

Liang et al., 1994; Koster and Suarez, 1996) using satellite and ground-based observations 

with the NCEP Global Data Assimilation System (GDAS) (Derber et al., 1991). GLDAS 

currently has 39 (17) years data from 1979 (2000) to present with 1o×1o (0.25o×0.25o) 

resolution. The estimates of global surface energy budgets from GLDAS were reported by 

Mueller et al. (2011) and listed in Table 2.3. 

Intercomparisons and validation of the existing reanalysis products have been well-

summarized (e.g., Hagemann et al., 2005; Trenberth et al., 2009; Vinukollu et al., 2011a; 

Zaitchik et al., 2010; Berrisford et al., 2011; Bosilovich et al., 2011; Jiménez et al., 2011; 

Kennedy et al., 2011; Mueller et al., 2011, 2013; Rienecker et al., 2011; Reichle et al., 

2011; Yi et al., 2011; Wang et al., 2011; Reichle, 2012; Roberts et al., 2012; Wang and 

Dickinson, 2012; Bosilovich et al., 2015; Kobayashi et al., 2015). These studies showed 

that different reanalysis products yield very different estimates of surface energy 

components arguably resulting from the great diversity of GCMs, meteorological forcing 

data, and DAS. No one reanalysis is representative of all products for all surface energy 

budget components. The reanalysis estimates are consistently associated with considerable 

biases and errors when compared with observations at various spatial and temporal scales, 

especially for surface heat fluxes.  
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Table 2.3:  Global annual mean surface energy budgets estimated by reanalysis data products reviewed in this study (mean ± 

uncertainty in W m-2) 

Data Products 𝑅𝑛
𝑆 𝑅𝑛

𝐿  𝐸 𝐻 Resolution Period References 
Global  

NCEP-NCAR 161 -61 81 16 

NCEP-DOE 160 -57 91 8 

CFSR 167 -57 84 16 0.5o×0.5o 

MERRA 169 -63 76 18 2000-2010 

MERRA-2 163 -63 86 19 2000-2010 

ERA-40 155 -54 82 16 1.125o×1.125o 1989-2001 

ERA-Interim 164 -57 84 17 0.75o×0.75o 1989-2008 

JRA-25 172 -72 91 20 1.125o×1.125o 2002-2008 

JRA-55 164 -62 93 20 0.5o×0.5o 2002-2008 

Land  

NCEP-NCAR 153 -73 51 26 

NCEP-DOE 143 -71 52 13 

CFSR 140 -66 38 35 0.5o×0.5o 

MERRA 150 -70 45 33 0.5o×0.67o 2000-2004 Bosilovich et al. (2011) 

ERA-40 134 -65 41 26 1.125o×1.125o 1985-1989 Trenberth et al. (2009) 

JRA-25 156 -87 39 27 1.125o×1.125o 2000-2004 Trenberth et al. (2009) 

GLDAS - - 37 - 0.25o×0.25o 1989-1995 Mueller et al. (2011) 

NCEP-NCAR, JRA-25, MERRA, MERRA-

Land, ERA-Interim 
- - 50±5 - - 1989-1995 Mueller et al. (2011) 

JRA, MERRACFSR, ERA-Interim - - 45±4 - - 1989-2005 Mueller et al. (2013) 

Ocean  

NCEP-NCAR 165 -56 94 11 

NCEP-DOE 167 -51 106 6 

CFSR 178 -54 103 9 0.5o×0.5o 

MERRA 177 -62 90 12 0.5o×0.67o 2000-2004 Bosilovich et al. (2011) 

ERA-40 164 -51 102 16 1.125o×1.125o 1985-1989 Trenberth et al. (2009) 

JRA-25 175 -68 109 17 1.125o×1.125o 2000-2004 Trenberth et al. (2009) 
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CHAPTER 3. A COUPLED MODEL OF SURFACE 

TEMPERATURE, SURFACE SOIL MOISTURE, AND NEAR-

SRUFACE AIR TEMPERATURE BASED ON THE FORCE-

RESTORE AND MEP MODEL 

3.1 Motivation 

The performance of LSMs can be enhanced by improving the predictions of surface 

temperature 𝑇𝑠, soil moisture 𝜃𝑠, and surface heat fluxes, which provide the information of 

surface energy and water budgets. An improved parameterization of near-surface air 

temperature 𝑇𝑎  is useful for more quantitative understanding of recent climate change. 

However, the existing parameterizations with well-documented drawbacks (Sections 2.2 

and 2.3) leave more room for further improvement. 

The force-restore method (FRM) for predicting 𝑇𝑠  and 𝜃𝑠  has been incorporated 

into LSMs owing to its computational efficiency and realistic physical interpretation 

compared to other methods as discussed in Section 2.2.1. Mihailović et al., (1999) showed 

that the FRM of 𝑇𝑠  (𝐹𝑅𝑀𝑇𝑠 ) are highly sensitive to the model inputs and parameters, 

especially (ground) heat flux 𝑄 which is difficult to measure/estimate accurately given 

existing technologies/methods. Gao et al. (2004) and Kahan et al. (2006) found that the 

current 𝐹𝑅𝑀𝑇𝑠s tend to overestimate the diurnal variation of 𝑇𝑠 resulting from the biased 

𝑄 estimates. Gao et al. (2008) pointed out that using a 𝑄 estimated by the residual of 

surface energy balance equation as in Eq. (2.1) in the 𝐹𝑅𝑀𝑇𝑠 may lead to more modeling 

errors caused by the uncertainties in surface net radiation 𝑅𝑛, latent heat 𝐸, and sensible 
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heat 𝐻  fluxes. On the other hand, neglecting the gravitational drainage in the current 

𝐹𝑅𝑀𝜃𝑠s could produce significant modeling error under high soil moisture conditions as 

discussed in Section 2.2.2. These previous works suggest that the performance of FRMs 

may be enhanced by improving the parameterization of surface heat fluxes. 

In this study, a coupled FRM of 𝑇𝑠, 𝜃𝑠, and 𝑇𝑎 will be formulated where the surface 

heat fluxes are parameterized using the MEP model (Wang and Bras, 2009, 2011), referred 

to as the FRMEP model. The classical FRM of 𝜃𝑠 (𝐹𝑅𝑀𝜃𝑠) was reformulated based on the 

Richards equation taking the gravitational drainage into account to improve the prediction 

of 𝜃𝑠 under wet soil conditions. A FRM of 𝑇𝑎 (𝐹𝑅𝑀𝑇𝑎) will be derived based on a one-

dimensional heat diffusion equation analogous to the FRM of 𝑇𝑠  ( 𝐹𝑅𝑀𝑇𝑠 ). By 

incorporating the MEP model of surface heat fluxes, the FRMEP model simulates the 

dynamics of 𝑇𝑠, 𝜃𝑠, and 𝑇𝑎 driven by surface net radiation and precipitation or infiltration 

without relying on other atmospheric variables. The expected improvement of the FRMEP 

model, as compared to the classical FRMs forced by observed or BTM parameterized heat 

fluxes, results from the advantages of the MEP parameterized surface heat fluxes as 

discussed in Section 2.3.2. Specifically, the MEP modeled heat fluxes are expressed as 

functions of the state variables of the FRMs. The measurement error of surface net 

radiations is on the order of 10% (Michel et al., 2008) or 10-25 W m-2 (Kohsiek et al., 

2007) less than those of measured and BTM estimated surface heat fluxes that drive 

classical FRMs. 

The model formalisms of 𝐹𝑅𝑀𝑇𝑠, revised 𝐹𝑅𝑀𝜃𝑠, and 𝐹𝑅𝑀𝑇𝑎 are given in Section 

3.2. The MEP model of surface heat fluxes over land surfaces is given in Section 3.3. The 
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BTM of surface heat fluxes used in the classical FRM simulations is given in Section 3.4. 

Section 3.5 provides the site information of the two field experiments used to evaluate the 

FRMEP model with contrasting climate and soil wetness conditions. Section 3.6 presents 

validation of the FRMEP model. The predictions of the FRMEP model are compared with 

those of the classical 𝐹𝑅𝑀𝑇𝑠 and 𝐹𝑅𝑀𝜃𝑠 forced by observed and BTM heat fluxes. The 

effect of neglecting the gravitational drainage term in 𝐹𝑅𝑀𝜃𝑠 is analyzed by replacing the 

revised 𝐹𝑅𝑀𝜃𝑠  by the classical 𝐹𝑅𝑀𝜃𝑠  (neglecting the gravitational drainage) in the 

coupled model simulations. A one-year simulation of the FRMEP model is also presented 

to test the FRMEP model for capturing the seasonal variations of 𝑇𝑠, 𝜃𝑠, and 𝑇𝑎. Section 

3.7 gives a brief summary of the FRMEP model. 

 

3.2 Force-Restore Model (FRM) of Primary Surface State Variables 

 The FRM of Surface Temperature (𝐹𝑅𝑀𝑇𝑠) 

The heat transfer in a vertically homogeneous soil is usually described by a one-

dimensional heat diffusion equation: 

 
𝜌𝑠𝑐𝑠

𝜕𝑇

𝜕𝑡
= 𝜆𝑠

𝜕2𝑇

𝜕𝑧2 
 (3.1) 

where 𝑇 = 𝑇(𝑧, 𝑡) is the soil temperature (K) at depth 𝑧 and time 𝑡, 𝜌𝑠 the soil bulk density 

(kg m-3), 𝑐𝑠 the specific heat of soil (J kg-1 K-1), 𝜆𝑠 the thermal conductivity of the soil (J 

m-1 K-1 s-1), and 𝑧 the vertical coordinate positive downward (m) with the ground at 𝑧 = 0. 

Assuming a sinusoidal function of surface soil temperature,  
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 𝑇(0, 𝑡) = �̅� + 𝐴𝑇𝑠𝑖𝑛(𝜔0𝑡 + 𝜖) (3.2) 

where �̅� is the reference temperature set to be the deep soil temperature or daily mean 

surface temperature (K) according to the assumption of homogeneous soil temperature 

profile (Bhumralkar, 1975; Hu and Islam, 1995), 𝐴𝑇 the amplitude of diurnal variation at 

the surface (K), 𝜔0 the fundamental diurnal frequency (= 2𝜋/𝜏 (s-1), 𝜏 the length of day), 

and 𝜖 the initial phase. Based on Eq.(3.2), the solution of Eq. (3.1) may be written as  

 
𝑇(𝑧, 𝑡) = �̅� + 𝐴𝑇𝑒

−
𝑧
𝑑𝑇 𝑠𝑖𝑛 (𝜔0𝑡 + 𝜖 −

𝑧

𝑑𝑇
) (3.3) 

where 𝑑𝑇 = (2𝜆𝑠/𝜌𝑠𝑐𝑠𝜔0)
1/2 is the damping depth of diurnal temperature wave (m) 

(Sellers, 1965; Hu and Islam, 1995). 

The heat flux into the soil is given by Fourier’s law: 

 
𝑄(𝑧, 𝑡) = −𝜆𝑠

𝜕𝑇(𝑧, 𝑡)

𝜕𝑧
 (3.4) 

Substituting Eq. (3.3) into Eq. (3.4) leads to 

 
𝑄(𝑧, 𝑡) =

𝜆𝑠𝐴𝑇
𝑑𝑇

𝑒
−
𝑧
𝑑𝑇 [𝑠𝑖𝑛 (𝜔0𝑡 + 𝜖 −

𝑧

𝑑𝑇
) + 𝑐𝑜𝑠 (𝜔0𝑡 + 𝜖 −

𝑧

𝑑𝑇
)] (3.5) 

or 

 
𝑄(𝑧, 𝑡) =

𝜆𝑠
𝑑𝑇
[
1

𝜔0

𝜕𝑇(𝑧, 𝑡)

𝜕𝑡
+ 𝑇(𝑧, 𝑡) − �̅�] (3.6) 

An averaged “ground surface temperature” 𝑇𝑔 for a thin soil layer 𝛿  is defined as 
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𝑇𝑔 =

1

𝛿
∫ 𝑇(𝑧, 𝑡)𝑑𝑧
𝛿

0

 (3.7) 

Integrating Eq. (3.1) over depth 𝛿 and using Eq. (3.4) and (3.7) leads to 

 
𝜌𝑠𝑐𝑠𝛿

𝑑𝑇𝑔
𝑑𝑡

= 𝑄(0, 𝑡) − 𝑄(𝛿, 𝑡) (3.8) 

Combining Eq. (3.6) with Eq. (3.8), the time evolution of 𝑇𝑔 is obtained as 

 
𝜌𝑠𝑐𝑠𝛿

𝑑𝑇𝑔
𝑑𝑡

= 𝑄(0, 𝑡) −
𝜆𝑠
𝑑𝑇
[
1

𝜔0

𝜕𝑇(𝛿, 𝑡)

𝜕𝑡
+ 𝑇(𝛿, 𝑡) − �̅�] (3.9) 

Assuming 𝑇(𝛿, 𝑡) ≅ 𝑇𝑔 for a thin soil layer, Eq. (3.9) is re-written as 

 
𝛼𝑇
𝑑𝑇𝑔
𝑑𝑡

=
2𝑄(0, 𝑡)

𝜌𝑠𝑐𝑠𝑑𝑇
− 𝜔0(𝑇𝑔 − �̅�) (3.10) 

where 𝛼𝑇 = 1 + 2𝛿/𝑑𝑇 ≅ 1 when 𝛿 ≪ 𝑑𝑇. Let 𝛿 approach zero (Deardorff, 1978) so that 

𝑇𝑔⟶𝑇𝑠  and expand 𝑑𝑇  by its definition, the force-restore equation of 𝑇𝑠  governing the 

variation of 𝑇𝑠 at sub-diurnal time scale is obtained as 

 𝑑𝑇𝑠
𝑑𝑡

=
√2𝜔0𝑄(0, 𝑡)

𝐼𝑠
− 𝜔0(𝑇𝑠 − �̅�) (3.11) 

where 𝐼𝑠 = √𝜌𝑠𝑐𝑠𝜆𝑠  is the thermal inertia of the soil (J m-2 K-1 s-1/2 also known as the 

thermal inertia unit or tiu). 𝐼𝑠 may be parameterized as a function of soil moisture:  

 
𝐼𝑠 = √𝐼𝑑𝑠

2 + 𝜃𝐼𝑤
2  (3.12) 
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where 𝜃 is the volumetric soil moisture (m3 m-3), 𝐼𝑑𝑠 the thermal inertia of dry soil (tiu), 

𝐼𝑤 = √𝜌𝑤𝑐𝑤𝜆𝑤 the thermal inertia of liquid water (tiu) with 𝜌𝑤 the density (103 kg m-3), 

𝑐𝑤 the specific heat (4.18×103 J kg-1 K-1), and 𝜆𝑤 the heat conductivity of liquid water 

(0.58 W m-1 K-1). Eq. (3.11) is referred as the force-restore method as the forcing of change 

𝑇𝑠 by the 𝑄 term is modified by the restoring term (𝑇𝑠 − �̅�). Eq. (3.11) is a linear ordinary 

differential equation of 𝑇𝑠 for given 𝑄. In Eq. (3.11), the forcing term due to 𝑄 dominates 

the amplitude of the diurnal variation of 𝑇𝑠, while the restoring term due to �̅� determines 

the magnitude of 𝑇𝑠.  

Specification of �̅�  has an appreciable effect on the performance of 𝐹𝑅𝑀𝑇𝑠 

(Mihailović et al., 1999). Both deep soil temperature and daily mean surface temperature 

were used in previous studies (e.g., Bouttier et al., 1993; Boone et al., 2000; Noilhan and 

Planton, 1989; Mahfouf and Noilhan, 1991; Noilhan and Mahfouf, 1996). Various 

selections of �̅�  in previous studies are related to the assumption of homogeneous soil 

temperature profile, which are rarities in nature (Ren and Xue, 2004). �̅� was usually given 

as a constant for short-term simulation (e.g., Bouttier et al., 1993; Calvet et al., 1998). For 

long-term simulations, a time varying �̅�  is desired to provide the information on 

temperature seasonality. Mihailović et al. (1999) suggest that it is always possible to select 

a minimum value of �̅�  among all possibilities in the restoring force to minimize the 

deviation of estimated surface energy partitioning from the observations. In this study, �̅� 

is set to be the minimum of deep soil and daily mean surface temperature, which is readily 

available from either directly measurements or climatological archives. 
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 The FRM of Surface Soil Moisture (𝐹𝑅𝑀𝜃𝑠) 

One-dimensional unsaturated flow in a soil column is described by the Richards 

equation:  

 𝜕𝜃

𝜕𝑡
=
𝜕

𝜕𝑧
[𝐾(𝜃)

𝜕𝜓(𝜃)

𝜕𝑧
] −

𝜕𝐾(𝜃)

𝜕𝑧
 (3.13) 

where 𝜃  is the volumetric soil moisture (m3 m-3), 𝐾(𝜃)  the unsaturated hydraulic 

conductivity (m s-1), 𝜓(𝜃) the soil water potential (m), and 𝑧 the vertical coordinate with 

the same directionality as that defined in Section 3.2.1. The first term represents the 

unsaturated flow induced by the diffusion process, while the second term is the 

gravitational drainage. A common parameterization of 𝐾(𝜃) and 𝜓(𝜃) is (Campbell, 1974; 

Clapp and Hornberger, 1978; van Genuchten, 1980): 

 
𝐾(𝜃) = 𝐾𝑠𝑎𝑡 (

𝜃

𝜙
)
2𝑏+3

 (3.14) 

 

|
𝜓(𝜃)

𝜓𝑎𝑒
| = [(

𝜃 − 𝜃𝑟
𝜙 − 𝜃𝑟

)
−
1
𝑚
− 1]

1
𝑛

,   𝑛 = 1 +
1

𝑏
,   𝑚 = 1 −

1

𝑛
 (3.15) 

where 𝐾𝑠𝑎𝑡 is the saturation hydraulic conductivity (m s-1), 𝜙 the soil porosity (m3 m-3) 

with 𝜃/𝜙 the degree of saturation, 𝑏 the pore size distribution parameter, 𝜓𝑎𝑒 the air entry 

water potential (m), with 𝜃𝑟 being the residual soil water content (m3 m-3). The (empirical) 

estimates of soil hydraulic parameters are adopted from the representative values reported 

by Clapp and Hornberger (1978). Alternative forms of 𝐾(𝜃)  and 𝜓(𝜃)  have been 

suggested by other studies based on various experiements (e.g., Brooks and Corey, 1964; 
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Davidson et al., 1969; Tzimopoulos and Sakellariou-Makrantonaki, 1996; Assouline, 1998, 

2001; Brutsaert, 2000; Valiantzas, 2011), but they are all empirical. 

Deardorff (1977) proposed an FRM of 𝜃𝑠 = 𝜃(0, 𝑡) as an analogy of 𝐹𝑅𝑀𝑇𝑠 (Eq. 

(3.11)) but without giving the derivation. By neglecting the gravitational drainage term and 

assuming constant soil parameters, Hu and Islam (1995) provided a derivation of 𝐹𝑅𝑀𝜃𝑠 

using simplified Eq. (3.13): 

 𝜕𝜃

𝜕𝑡
= 𝐷

𝜕2𝜃

𝜕𝑧2
 (3.16) 

where 𝐷 = 𝐾(𝜃)[𝜕𝜓(𝜃)/𝜕𝜃] is the hydraulic diffusivity (m2 s-1). By assuming periodic 

boundary condition similar to Eq. (3.3), a solution of 𝜃 is obtained as 

 
𝜃(𝑧, 𝑡) = �̅� + 𝐴𝜃𝑒

−
𝑧 
𝑑𝜃 𝑠𝑖𝑛 (𝜔0𝑡 + 𝜖 −

𝑧

𝑑𝜃
) (3.17) 

where �̅� is a reference soil moisture, 𝐴𝜃 the amplitude of diurnal variation of 𝜃(0, 𝑡), and 

𝑑𝜃 = (2𝐷/𝜔0)
1/2 the damping depth of diurnal soil moisture fluctuation (m). According 

to Darcy’s law, the water flux 𝐹𝑤 associate with the simplified Richards equation (ignoring 

the drainage term) written as 

 
𝐹𝑤(𝑧, 𝑡) = −𝐷

𝜕𝜃(𝑧, 𝑡)

𝜕𝑧
 (3.18) 

Following the same derivation of Eqs. (3.5)-(3.11) and introducing the surface water flux 

as precipitation less evapotranspiration 𝐹𝑤(0, 𝑡) = 𝑃 − 𝐸 lead to a force-restore equation 

of 𝜃𝑠: 
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𝑑𝜃𝑠
𝑑𝑡

= √
2𝜔0
𝐷(𝜃𝑠)

[𝑃(𝑡) − 𝐸(𝑡)] − 𝜔0(𝜃𝑠 − �̅�) (3.19) 

In this study, a revised 𝐹𝑅𝑀𝜃𝑠 is proposed by keeping the drainage term in Eq. 

(3.13). Eq. (3.13) can be re-written as  

 𝜕𝜃

𝜕𝑡
+ 𝑢

𝜕𝜃

𝜕𝑧
= 𝐷

𝜕2𝜃

𝜕𝑧2
 (3.20) 

where 𝑢 = 𝜕𝐾(𝜃)/𝜕𝜃 is the slope of the unsaturated hydraulic conductivity (m s-1). Then 

the solution of Eq. (3.20) becomes 

 
𝜃(𝑧, 𝑡) = �̅� + 𝐴𝜃𝑒

−
𝑧−𝑢𝑡
𝑑𝜃 𝑠𝑖𝑛 (𝜔0𝑡 + 𝜖 −

𝑧 − 𝑢𝑡

𝑑𝜃
) (3.21) 

According to Eq. (3.13), the water flux 𝐹𝑤(𝑧, 𝑡) keeping the gravitational drainage term 

becomes  

 
𝐹𝑤(𝑧, 𝑡) = −𝐷

𝜕𝜃(𝑧, 𝑡)

𝜕𝑧
+ 𝐾(𝜃(𝑧, 𝑡)) (3.22) 

Note that a modification of surface water flux 𝐹𝑤(0, 𝑡) is made in this study by 

using infiltration 𝐼 − 𝐸 instead of 𝑃 − 𝐸 in previous studies since infiltration is not equal 

to rain rate under ponding condition when the rainfall rate exceeds infiltration. 𝐼 − 𝐸 is 

defined as positive entering the soil. Substituting Eq. (3.21) into Eq. (3.22) and following 

the same derivations of Eqs. (3.5)-(3.11) with 𝐹𝑤(0, 𝑡) = 𝐼 − 𝐸 leads to the new 𝐹𝑅𝑀𝜃𝑠: 

 
𝑑𝜃𝑠
𝑑𝑡

= (
𝑢(𝜃𝑠)

𝐷(𝜃𝑠)
+ √

2𝜔0
𝐷(𝜃𝑠)

) [𝐼 − 𝐸 − 𝐾(𝜃𝑠)] − 𝜔0(𝜃𝑠 − �̅�) (3.23) 
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Similar to the 𝐹𝑅𝑀𝑇𝑠, the forcing term due to surface water flux dominates the 

amplitude of the diurnal variation of 𝜃𝑠, while �̅� determines the magnitude of 𝜃𝑠. In Eq. 

(3.23), �̅� is set to be the daily mean of 𝜃𝑠. Note that unlike the 𝐹𝑅𝑀𝑇𝑠 where �̅� can also be 

set as deep soil temperature according to the assumption of homogeneous soil temperature 

profile, �̅� may not be taken as deep soil moisture as the mean soil moisture often increases 

with depth and reaches saturation when close to groundwater table. �̅� set equal to saturation 

tends to “restore” the modeled 𝜃𝑠 toward saturation, which is unrealistic as surface soil 

moisture does not have that tendency. 

The newly derived 𝐹𝑅𝑀𝜃𝑠  includes two additional terms 𝑢/𝐷  and 𝐾(𝜃𝑠) 

compared to the classical formulation shown in Eq. (3.19) proposed by Deardorff (1977) 

and Hu and Islam (1995). In fact, Eq. (3.19) is a special case of Eq. (3.23) under the 

condition of low soil moisture whenever the effect of gravitational drainage is negligible. 

Contrary to the 𝐹𝑅𝑀𝑇𝑠  (Eq. (3.11)), the 𝐹𝑅𝑀𝜃𝑠  (Eq. (3.23)) is a nonlinear differential 

equation of 𝜃𝑠 for given 𝐼 and 𝐸. Note that the formulations of 𝑢 and 𝐷 are based on Eqs. 

(3.14) and (3.15). Using different formulae of 𝐾(𝜃) and 𝜓(𝜃) may affect the predictions 

of 𝐹𝑅𝑀𝜃𝑠. Introducing effective degree of saturation, (𝜃 − 𝜃𝑟)/(𝜙 − 𝜃𝑟) (e.g., Mualem, 

1976; Brutsaert, 2000) as a substitute of 𝜃/𝜙, for Eq. (3.14), is one example. Furtehr tests 

of the sensitivity of the 𝐹𝑅𝑀𝜃𝑠  predictions to various parameterizations of 𝑢  and 𝐷 

(through 𝐾(𝜃) and 𝜓(𝜃)) are required but not included in this study.  
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 The FRM of Near-Surface Air Temperature (𝐹𝑅𝑀𝑇𝑎) 

Previous studies have demonstrated that the diurnal variation of 𝑇𝑎 results from the 

divergence of turbulent transport of sensible heat within the atmospheric surface layer (e.g., 

Taylor, 1915; Beers, 1944). Over a homogeneous surface, turbulent heat transport is 

predominantly vertical and described by the Fick’s law. As a result, the heat transfer within 

the atmospheric surface layer may be described by a one-dimensional diffusion equation 

(e.g., Priestley, 1959; Wang and Bras, 1998): 

 𝜕𝑇𝑎
𝜕𝑡

=
𝜕

𝜕𝑧
(𝐾𝐻

𝜕𝑇𝑎
𝜕𝑧
) (3.24) 

associated with the sensible heat flux 𝐻 expressed as 

 
𝐻(𝑧, 𝑡) = −𝜌𝑎𝐶𝑝𝐾𝐻

𝜕𝑇𝑎(𝑧, 𝑡)

𝜕𝑧
 (3.25) 

where 𝐾𝐻  is the turbulent transfer coefficient or eddy diffusivity for heat. A model 

proposed by Wang and Bras (1998) derived from Eqs. (3.24) and (3.25) and later used in 

Moghim et al. (2015) estimates 𝑇𝑎 diagnostically in terms of a weighted time average (i.e., 

half-order integral) of 𝐻. 

The analogy between the heat transfer within the atmospheric surface layer and in 

the soil can be easily seen by comparing Eqs. (3.24) and (3.25) with Eqs. (3.1) and (3.4). 

This opens a possibility of utilizing Eqs. (3.24) and (3.25) to develop a FRM of 𝑇𝑎 

(𝐹𝑅𝑀𝑇𝑎), which has enhanced physical foundation compared to previous formulae. By 

following the same derivations of the 𝐹𝑅𝑀𝑇𝑠 (Section 3.2.1), a 𝐹𝑅𝑀𝑇𝑎 can be formulated 

as 
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 𝑑𝑇𝑎(0, 𝑡)

𝑑𝑡
=
√2𝜔0𝐻(0, 𝑡)

𝐼𝑎
− 𝜔1(𝑇𝑎(0, 𝑡) − 𝑇𝑎̅̅ ̅) (3.26) 

where 𝑇𝑎̅̅ ̅  is the air temperature far from the surface or daily mean near-surface air 

temperature, and 𝐼𝑎 the thermal inertia for turbulent heat transfer in the air (tiu) defined as 

(Wang and Bras, 2009) 

 𝐼𝑎 ≡ 𝜌𝑎𝐶𝑝√𝐾𝐻 (3.27) 

where 𝐾𝐻 is the turbulent diffusivity of the air (m2 s-1). Similar to 𝐹𝑅𝑀𝑇𝑠 (Eqs. (3.27)), the 

diurnal fluctuation of 𝑇𝑎 is dominated by 𝐻, while 𝑇𝑎̅̅ ̅ specifies the magnitude of 𝑇𝑎. The 

analogies between 𝐹𝑅𝑀𝑇𝑠 and 𝐹𝑅𝑀𝑇𝑎 suggest that  

 𝛥𝑇𝑠
𝛥𝑇𝑎

=
𝛥𝑄/𝐼𝑠
𝛥𝐻/𝐼𝑎

 (3.28) 

where 𝛥𝑇𝑠, 𝛥𝑇𝑎, 𝛥𝑄, and 𝛥𝐻 are the diurnal amplitude of 𝑇𝑠, 𝑇𝑎, 𝑄, and 𝐻, respectively.  

In practical applications, 𝐼𝑎 may be estimated by rearranging Eq. (3.28), which yields 

 
𝐼𝑎 =

𝛥𝑇𝑠
𝛥𝑇𝑎

 
𝛥𝐻

𝛥𝑄
𝐼𝑠 (3.29) 

Similar to 𝐼𝑠  having seasonality dominated by that of soil moisture, 𝐼𝑎  in Eq. (3.29) is 

expected to have seasonal cycle because 𝑇𝑠 , 𝑇𝑎 , 𝐻 , and 𝑄  all have seasonality. 

Alternatively, 𝐼𝑎 may also be parameterized using the extremum solution of the Monin-

Obukhov similarity equations (MOSE) (Wang and Bras, 2010, see also Eq. (3.31)).  

Similar to the �̅� in 𝐹𝑅𝑀𝑇𝑠, the specification of 𝑇𝑎̅̅ ̅ is expected to affect the 𝐹𝑅𝑀𝑇𝑎 

predicted  𝑇𝑎 significantly. A given constant of 𝑇𝑎̅̅ ̅ may be good for short-term simulation, 
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while a time varying 𝑇𝑎̅̅ ̅  may be required to provide the information of temperature 

seasonality. Yet there are no theoretical methods available for specifying 𝑇𝑎̅̅ ̅ from previous 

studies. Therefore, in this study, 𝑇𝑎̅̅ ̅ is determined by applying similar strategies as those 

used for specifying �̅� in the 𝐹𝑅𝑀𝑇𝑠  based on the analogy between 𝐹𝑅𝑀𝑇𝑠  and 𝐹𝑅𝑀𝑇𝑎 . 

Consequently, 𝑇𝑎̅̅ ̅ is set to be either daily mean 𝑇𝑎 (analogous to daily mean 𝑇𝑠 used as �̅� 

in the 𝐹𝑅𝑀𝑇𝑠) or the air temperature far from the surface (e.g., above the top of surface 

layer analogous to the deep soil temperature used as �̅� in the 𝐹𝑅𝑀𝑇𝑠). 𝑇𝑎̅̅ ̅ can be estimated 

offline using the 𝐹𝑅𝑀𝑇𝑎 with observed meteorological inputs.  

 

 Heat Flux Forcing of the FRMs 

The classical 𝐹𝑅𝑀𝑇𝑠 and 𝐹𝑅𝑀𝜃𝑠 are forced by ground heat flux 𝑄 and net surface 

water flux, 𝐼 − 𝐸 (𝑃 − 𝐸 in previous studies) that are usually obtained from either field 

measurements (e.g., Lin, 1980; Jacobs et al., 2000; Ren and Xue, 2004; Gao et al., 2008) 

or model parameterizations (e.g., Deardorff, 1977, 1978; Noilhan and Planton, 1989; Xue 

et al., 1991; Gao et al., 2004). 

The measured 𝑄  is usually obtained by combining the soil heat flux directly 

measured at a certain depth using a heat flux plate with the soil heat storage above the plate 

obtained by measuring soil temperature (e.g., heat flux plate instruction manual, available 

at https://s.campbellsci.com/documents/ca/manuals/hfp01_man.pdf). The measurements 

of soil heat flux are subject to errors caused by the contrasting thermal conductivities of 

the plate and the surrounding soil, the poor contact between heat flux plate and the soil, the 

presence of subsurface latent heat sink, and the heat flux bias resulting from liquid and 
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vapor water movement in the soil (Philip, 1961; Fuchs and Hadas, 1973; Kimball et al., 

1976; Mayocchi and Bristow, 1995; Sauer et al., 2003; Sauer et al., 2008; Heitman et al., 

2008, 2010). Ochsner et al. (2006) showed that in situ measurements of 𝑄 by heat flux 

plate were in general underestimated caused by the systematic negative sensor bias ranging 

from 18 to 66% even the heat flux plate is carefully installed. Additionally, the 

measurement error of soil heat flux increases rapidly with the installation depth of heat flux 

plate with the maximum error comparable to the magnitude of soil heat flux (Gentine et 

al., 2012). Measured 𝑄 may also be biased by neglecting the time derivative of soil heat 

capacity as well as the sampling error of the temperature profile for estimating heat storage 

(Ochsner et al., 2007; Gentine et al., 2012). The overall measurement errors of 𝑄 can reach 

up to 100 W m-2 (Foken, 2008). 

Measurement error of 𝑄  (and 𝐻 ) causes measurement error of 𝐸  when 𝐸  is 

computed from the surface available energy (net radiation 𝑅𝑛 − 𝑄) using e.g., Bowen-ratio 

method (Ohmura, 1982; Lewis, 1995) or Penman equation (Penman, 1948). Using in-situ 

measurements of 𝑅𝑛 − 𝐸 − 𝐻  as the model forcing in 𝐹𝑅𝑀𝑇𝑠  also introduces large 

uncertainty resulting from the uncertainties of 𝑅𝑛 , 𝐸, and 𝐻 measurements (Gao et al., 

2008). Although the EC system provides more accurate measurements of 𝐸 (and 𝐻), it is 

well known that EC measurements in general underestimate the surface available energy 

by 10-30% (Wilson et al., 2002; Culf et al., 2004; Barr et al., 2006; Mauder and Foken, 

2006; Foken et al., 2006; Mauder et al., 2006; Oncley et al., 2007; Foken, 2008).  

The modeled 𝑄  is often obtained as a residual of the surface energy balance 

equation, 𝑅𝑛 − 𝐸 − 𝐻 (Eq. (2.1)), where 𝐸 and 𝐻 are parameterized using the BTM (e.g., 
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Noilhan and Planton, 1989; Dickinson et al., 1991; Lee and Pielke, 1992). The modeling 

errors of BTM estimated 𝐸  and 𝐻  caused by those of model inputs and parameters 

(humidity/temperature, wind speed, and transfer coefficients) as well as the failure of 

closing surface energy budget lead to unrealistic 𝑄 as discussed in Section 2.3.1. Thus, the 

performance of 𝐹𝑅𝑀𝑇𝑠 and 𝐹𝑅𝑀𝜃𝑠 may be enhanced by improving the parameterization 

of surface heat fluxes. 

 

3.3 The MEP Model of Surface Heat Fluxes over Land Surfaces 

The MEP theory (Wang and Bras, 2009, 2011) solves latent 𝐸, sensible 𝐻, and 

ground 𝑄 heat fluxes as the most probable partitioning of 𝑅𝑛 while satisfying conservation 

of energy. According to the MEP theory, the most likely partitioning of surface heat fluxes 

over land surfaces can be obtained through extremizing the dissipation function 𝐷𝑠 

expressed as  

 
𝐷𝑠 =

2𝑄2

𝐼𝑠
+
2𝐻2

𝐼𝑎
+
2𝐸2

𝐼𝑒
 (3.30) 

where 𝐼𝑠  is the thermal inertia of soil or leaf matrix of canopy (tiu), 𝐼𝑎 , and 𝐼𝑒  are the 

thermal inertia parameters related to 𝐻 and 𝐸 (tiu). 𝐼𝑎 can be parameterized as a function 

of 𝐻 through the extremum solution of MOSE (Wang and Bras, 2010) as  

 

𝐼𝑎 = 𝜌𝑎𝑐𝑝√𝐶1𝜅𝑧 (𝐶2
𝜅𝑧𝑔

𝜌𝑎𝑐𝑝𝑇0
)

1
6

|𝐻|
1
6 = 𝐼0|𝐻|

1
6 (3.31) 
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where 𝜌𝑎  is the air density (kg m-3), 𝜅  the von Kármán constant ~0.4, 𝑔  gravitational 

acceleration (m s-2), 𝑇0 a reference temperature (K) set to be 300 K in this study, and 𝑧 the 

vertical distance (m) from the material surface above which the MOSE hold. Based on the 

tests over land surfaces, 𝑧 may be chosen as 2-3 m for the case of flat bare soil, 4-5 m for 

the case of short vegetation, and 9-10 m for the case of tall trees. 𝑐𝑝 is the specific heat of 

air under constant pressure (103 J kg-1 K-1), 𝐶1  and 𝐶2  the parameters related to the 

universal constant in the empirical functions characterizing the atmospheric stability of the 

surface layer (Businger et al., 1971), 𝐼0 the “apparent” thermal inertia of the air as an eddy-

diffusivity dependent parameter characterizing the boundary layer turbulence. Note that 

Eqs. (3.31) and (3.27) become identical when 𝐾𝐻 in Eq. (3.27) is parameterized using the 

extremum solution of MOSE. 

Assuming the same turbulent mixing process is responsible for both heat and 

moisture transport in the atmospheric surface layer, 𝐼𝑒 can be parameterized as (Wang and 

Bras, 2011) 

 
𝐼𝑒 = 𝜎𝐼𝑎 =

𝐿𝑣
2𝑞𝑠

𝑐𝑝𝑅𝑣𝑇𝑠
2
𝐼𝑎 (3.32) 

where 𝑞𝑠  is the surface specific humidity (kg kg-1), 𝜎  a dimensionless parameter 

characterizing the surface thermal and moisture condition on the partition of surface net 

radiation into the heat fluxes, 𝐿𝑣 the latent heat of vaporization of liquid water (2.5×106 J 

kg-1), and 𝑅𝑣 the gas constant of water vapor (461 J kg-1 K-1).  
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By extremizing Eq. (3.30) with the parameterization of 𝐼𝑎 and 𝐼𝑒 in Eqs. (3.31) and 

(3.32) under the constraint of surface energy balance as in Eq. (2.1) leads to a unique 

solution of 𝑄, 𝐸, and 𝐻 as (implicit) analytical functions of 𝑅𝑛, 𝑇𝑠, and 𝑞𝑠 expressed as  

 

{
 

 [1 + 𝐵(𝜎) +
𝐵(𝜎)

𝜎

𝐼𝑠
𝐼0
|𝐻|

−1
6 ]𝐻 = 𝑅𝑛

𝐸 = 𝐵(𝜎)𝐻                                             
𝑄 = 𝑅𝑛 − 𝐸 − 𝐻                                   

 (3.33) 

with 

 

𝐵(𝜎) = 6(√1 +
11

36
𝜎 − 1) (3.34) 

where 𝐵(𝜎) is recognized as the reciprocal Bowen ratio. For the limiting case of dry soil, 

for example, vanishing 𝜎 (𝑞𝑠 = 0) from zero soil moisture leads to 𝐸 = 0 (as 𝐵(𝜎) = 0), 

i.e., the obvious solution of zero evaporation over dry soil. For the limiting case of saturated 

soil, 𝑞𝑠 becomes the saturated specific humidity at 𝑇𝑠 and 𝜎 becomes Δ/𝛾 with Δ the slope 

of the saturation water vapor pressure curve at 𝑇𝑠, and 𝛾 the psychometric constant (e.g., 

Allen et al., 1998). The corresponding 𝐸 is the potential evapotranspiration by definition. 

For soil surface, 𝐼𝑠 is estimated using Eq. (3.12). For canopy or dense forest land cover, 𝐼𝑠 

is negligible since the thermal inertia of leaf matrix is two orders of magnitudes smaller 

than that of soil. Note that the MEP model only uses 𝑅𝑛 and 𝑇𝑠 data for the case of saturated 

land surfaces (e.g., saturated soils, irrigated farm lands and canopy under no water stress) 

where 𝑞𝑠 is a function of 𝑇𝑠 alone according to the Clausius-Clapeyron equation. It can be 

shown that the solutions of 𝐸, 𝐻, and 𝑄, from the nonlinear algebraic equations in Eq. 

(3.33), are unique. 
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The MEP modeled heat fluxes, as the partition of given radiative fluxes 

automatically, close the surface energy budget by definition. In addition, the effect of 

horizontal advection of thermal energy, momentum and moisture on the surface energy 

budgets is represented by the given surface variables 𝑅𝑛, 𝑇𝑠, and 𝑞𝑠 in the MEP model. 

Therefore, the MEP model, as an inference algorithm as well as a physical principle, allows 

the heat fluxes to be retrieved from surface net radiation, temperature, and/or humidity 

without using temperature and humidity gradients, wind speed, and surface roughness data. 

However, its independence of these variables should not be interpreted as 

temperature/humidity gradients, wind speed and surface roughness playing no role in the 

corresponding transport processes. The absence of these variables in the MEP formalism 

reflects strong and effective surface-atmosphere interactions so that the surface radiation 

fluxes together with surface temperature and/or humidity contain essential and sufficient 

information for the retrieval of surface heat fluxes. Using the extremum solution of MOSE 

(Wang and Bras, 2010), the temperature gradient and wind speed (or wind shear) are 

expressed as analytical functions of sensible heat and momentum fluxes, hence can be 

eliminated in the parameterization of eddy-diffusivity (through 𝐼0 in Eq.(3.31)) in the MEP 

formalism.  

The MEP modeled 𝑄 and 𝐸 may be expressed as functions of 𝑅𝑛, 𝑇𝑠, and 𝜃𝑠 when 

𝑞𝑠 is parameterized in terms of 𝜃𝑠 and/or 𝑇𝑠. A general expression of 𝑞𝑠 is 

 𝑞𝑠 = 𝛼(𝜃𝑠, 𝑇𝑠)𝑞𝑠𝑎𝑡(𝑇𝑠) (3.35) 

where 𝑞𝑠𝑎𝑡(𝑇𝑠) is the saturation surface specific humidity at 𝑇𝑠 (kg kg-1), and 𝛼 the wetness 

function characterizing water transport from inner soil pores to the soil surface. Lee and 
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Pielke (1992) summarized various formulations of 𝛼 . The most commonly used 

parameterization of 𝑞𝑠  is the Philip’s formula derived from the thermal equilibrium of 

vapor-liquid water in the soil (Philip, 1957). The Philip’s formula had been shown unable 

to represent the effect of the resistance of water transport from the soil pores to the soil-

atmosphere interface (Wetzel and Chang, 1987; Avissar and Mahrer, 1988; Kondo et al., 

1990). Theoretically, the assumption of thermal equilibrium does not hold because of the 

latent heat processes over land surfaces. Other formulae of 𝑞𝑠  are mostly obtained 

empirically for specific soil types or by assuming a simple linear relationship between 𝛼 

and the ratio of soil moisture to field capacity (e.g., Deardorff, 1978; Noilhan and Planton, 

1989; Lee and Pielke, 1992). 

In this study, an alternative parameterization of 𝛼 is proposed based on an analogy 

of soil moisture dependence on the ratio of actual evapotranspiration to potential 

evapotranspiration (e.g., Mintz and Walker, 1993; Seibert, 1997),  

 
𝛼 = (

𝜃

𝜙
)
𝛽

 (3.36) 

where 𝛽  is a soil texture dependent parameter. Eq. (3.36) represents the relative soil 

wetness that determines the corresponding deduction of 𝑞𝑠  from saturation condition 

𝑞𝑠𝑎𝑡(𝑇𝑠). Parameterization of 𝛼 as in Eq. (3.36) satisfies the physical constraints of 𝑞𝑠, that 

is, 𝑞𝑠 reaches its upper limit 𝑞𝑠𝑎𝑡(𝑇𝑠) when soil is saturated (𝜃 = 𝜙) and becomes zero 

when soil is completely dry (e.g., Lee and Pielke, 1992). Since direct observations of 𝑞𝑠 

(i.e., specific humidity right above the surface) are currently unavailable, 𝛽  may be 
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estimated offline by fitting the MEP modeled fluxes to the observed fluxes with 𝑞𝑠 and 𝛼 

parameterized using Eqs. (3.35) and (3.36), respectively. 

Incorporating the MEP model of surface heat fluxes (Eq. (3.33)) into the FRM 

equations (Eqs. (3.11), (3.23), and (3.26)) leads to a fully coupled model for predicting 𝑇𝑠, 

𝜃𝑠 , 𝑇𝑎  as well as surface heat fluxes, i.e., the FRMEP model. Figure 3.1 shows the 

framework of the FRMEP model.  

 

Figure 3.1:  The framework of the FRMEP Model 

 

3.4 The Bulk Transfer Model of Surface Heat Fluxes 

The BTM of 𝐸 and 𝐻 are formulated as (e.g., Leovy, 1969; Lee and Pielke, 1992) 

 𝐸𝐵𝑇𝑀 = 𝐿𝑣𝜌𝑎𝐶𝐸𝑈(𝑞𝑠 − 𝑞𝑎) (3.37) 

 𝐻𝐵𝑇𝑀 = 𝜌𝑎𝑐𝑝𝐶𝐻𝑈(𝑇𝑠 − 𝑇𝑎) (3.38) 
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where 𝐶𝐸 and 𝐶𝐻 are the bulk transfer coefficients of water vapor and heat (-) assumed to 

be identical, and 𝑈 the wind speed (m s-1). 𝐶𝐸 and 𝐶𝐻 are parameterized following (e.g., 

Andreas and Murphy, 1986; Beljaars and Holtslag, 1991) with the stability functions and 

the empirical constants given by (Paulson, 1970; Businger et al., 1971), 𝑞𝑎 and 𝑇𝑎 the air 

specific humidity (kg kg-1) and temperature (K), respectively. 𝑄𝐵𝑇𝑀 is computed as the 

residual term of the surface energy balance equation 

 𝑄𝐵𝑇𝑀 = 𝑅𝑛 − 𝐸𝐵𝑇𝑀 − 𝐻𝐵𝑇𝑀 (3.39) 

The 𝑇𝑠, 𝜃𝑠, and 𝑇𝑎 predicted by the classical FRMs using BTM heat fluxes can be obtained 

by substituting Eqs. (3.37), (3.38), and (3.39) into Eqs. (3.11), (3.26), and (3.23), 

respectively.  

 

3.5 Datasets 

Tests of the FRMEP model were conducted using field experimental data from two 

sites with contrasting climatic and soil wetness conditions. The Lucky Hills Site (LH) is 

located in the Walnut Gulch Experimental Watershed in southern Arizona (Keefer et al., 

2008). The climate is semiarid with a three-month monsoon season from July to September. 

The dominant soil type is sandy loam covered with open shrubs of about one-meter height. 

The soil moisture remains low (< 0.2 m3 m-3) except for rainy seasons. 𝛽 ≅ 2 in Eq. (3.36) 

was obtained for this site through minimizing the root mean square error (RMSE) between 

the MEP modeled heat fluxes and observed surface heat fluxes. The soil thermal inertia 𝐼𝑠 

was estimated as ~1000 tiu according to Eq. (3.12) with the dry soil thermal inertia 𝐼𝑑𝑠 ≅ 
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830 tiu estimated from observed 𝑇𝑠 and 𝑄 (Wang et al., 2010). 𝐼𝑎 was estimated as ~2500 

tiu according to Eq. (3.29).  

An automatic weather station collected meteorological data with a net radiometer 

installed at 2.96-meter height since 1990. An EC system was mounted at 6.5-meter height 

that has collected surface fluxes and hydro-meteorological data since 2008. 𝑇𝑠  was 

measured by an infrared thermometer. Soil temperature and moisture were measured at 

multiple depths ranging from 5 to 200 cm. Soil heat flux measured at 8 cm depth was used 

to estimate 𝑄 . Long-term (since 1990) datasets are publicly available at 

www.tucson.ars.ag.gov/dap/ and http://cdiac.esd.ornl.gov/programs/ameriflux/-

data_system/aamer.html#Lucky_Hills_Shrubland. Data products with 30-minute 

resolution over the periods of August 10 to August 28, 2009 with multiple wetting-drying 

cycles are used. The data spanning year 2009 was selected for the one-year simulation due 

to its higher data quality. 

The Brooks Field site 10 (BF10) is located in central Iowa with temperate 

continental climate and surrounded by corn/soybean fields. The dominant soil type is silty 

clay loam with 𝛽 ≅ 0.6 in Eq. (3.36). An EC system was mounted at 5 m height. 𝑇𝑠 was 

measured by an infrared thermometer. Soil moisture measured at 5 cm depth at this site is 

relatively high during the growing season (> 0.2 m3 m-3). More details about the data 

products can be found online (https://fluxnet.ornl.gov/site/806 and http://cdiac.esd.ornl.-

gov/programs/ameriflux/data_system/-aamer.html#BrooksField10). Thirty-minute data 

products over the periods of June 9 to June 29, 2011 with several major rainy events are 

used in this study. The thermal inertia of the soil was estimated as 𝐼𝑠 ≅ 1250 tiu using the 

same method as that for estimating 𝐼𝑠  at the LH site. 𝐼𝑎  was estimated as ~2000 tiu 
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according to Eq. (3.29). On the other hand, 𝐼𝑎 was estimated as ~1000 tiu for both sites 

according Eq. (3.31). Thus, to analyze the sensitivity of 𝐹𝑅𝑀𝑇𝑎  with respect to the 𝐼𝑎 

parametrization, the two 𝐼𝑎 estimates will be both applied to the FRMEP model. 

 

3.6 Model Validation 

 Diurnal Variability 

3.6.1.1 Dry Condition – Lucky Hills Site, Arizona 

 Figures 3.2 to 3.4 show the predictions of the FRMEP model and those of the 

classical FRMs, which are forced by observed and BTM surface heat fluxes, against field 

observations. The corresponding scatter plots are shown in Figures 3.5 and 3.6. Soil 

moisture measured at 5 cm depth, 𝜃𝑂𝐵𝑆, was used as the surrogate of 𝜃𝑠 when computing 

𝐼𝑠 in the 𝐹𝑅𝑀𝑇𝑠
𝑂  using Eq. (3.12). Soil temperature measured at 200 cm was adapted for �̅� 

in Eq. (3.11) as described in Section 3.2.1. The infiltration rate 𝐼 in Eq. (3.23) was set to 

be equal to precipitation rate 𝑃 obtained from measurements; however, the upper limit for 

𝜃𝑠  is set at saturation when modeled 𝜃𝑠  is greater than saturation due to large 𝑃  (i.e., 

ponding/runoff presents). 𝑇𝑎̅̅ ̅ was set to be ~21 oC estimated by an offline test of 𝐹𝑅𝑀𝑇𝑎 as 

discussed in Section 3.2.3. 

Figure 3.2(a) compares 𝑇𝑠 predicted by the FRMEP model and the classical 𝐹𝑅𝑀𝑇𝑠 

as in Eq. (3.11) forced by observed 𝑄 (𝑄𝑂𝐵𝑆) and 𝑄𝐵𝑇𝑀, denoted as 𝐹𝑅𝑀𝑇𝑠
𝑂  and 𝐹𝑅𝑀𝑇𝑠

𝐵 , 

respectively. 𝑄𝑂𝐵𝑆, 𝑄𝐵𝑇𝑀 and the 𝑄 predicted by the FRMEP model (𝑄𝑀𝐸𝑃) are shown in 

Figure 3.2(b). Figure 3.2(a) shows that the FRMEP modeled 𝑇𝑠 agrees more closely with 
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the observed 𝑇𝑠 compared to that by the 𝐹𝑅𝑀𝑇𝑠
𝑂 . The error statistics of the FRMEP and 

𝐹𝑅𝑀𝑇𝑠
𝑂  are summarized in Table 3.1. The bias of the FRMEP modeled 𝑇𝑠 is about 2.0 oC 

compared to the bias of -4.3 oC of the 𝐹𝑅𝑀𝑇𝑠
𝑂  modeled 𝑇𝑠. The negative bias of 𝐹𝑅𝑀𝑇𝑠

𝑂  is  

presumably caused by the large negative nighttime 𝑄𝑂𝐵𝑆 . The RMSE of the FRMEP 

modeled 𝑇𝑠  of 5.6 oC is also lower than that of the 𝐹𝑅𝑀𝑇𝑠
𝑂  6.0 oC. The correlation 

coefficients, designated as 𝑟, between the two modeled 𝑇𝑠s and observations are both high 

(0.87 for the FRMEP model and 0.92 for the 𝐹𝑅𝑀𝑇𝑠
𝑂 ) indicating that the diurnal variation 

of 𝑇𝑠 is well captured by the 𝐹𝑅𝑀𝑇𝑠.  

 

Figure 3.2:  (a) 𝑻𝒔 predicted by the 𝑭𝑹𝑴𝑻𝒔
𝑶  (dashed blue), 𝑭𝑹𝑴𝑻𝒔

𝑩  (dashed green), and 

the FRMEP model (dashed red) versus observations (solid black), and 

(b) the modeled 𝑸𝑩𝑻𝑴  (dashed green) and 𝑸𝑴𝑬𝑷  (dashed red) versus 

𝑸𝑶𝑩𝑺 (solid black) of the LH site, August 10 to August 28, 2009. 
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Table 3.1: Error statistics of the FRMEP, FRMEP-ND, and classical FRMs 

predictions, Lucky Hills Site, Arizona (Unit: 𝑻𝒔(K), 𝜽𝒔(m
3 m-3), 𝑻𝒂(K), 𝑸, 

𝑬, and 𝑯 (W m-2)) 

 Bias RMSE Correlation coef. (𝒓) 

𝑻𝒔 2.0a / 2.0b / -4.3c / 0.4d 5.6a / 5.6b / 6.0c / 7.1d 0.87a / 0.87b / 0.92c / 0.71d 

𝜽𝒔 0.02a / 0.02b / -0.01c / 0.11d 0.03a / 0.03b / 0.03c / 0.12c 0.86a / 0.86b / 0.78c / 0.69d 

𝑻𝒂 -0.40a / -0.41b / -0.34c / 3.1d 2.76a / 2.76b / 2.76c / 6.15d 0.81a / 0.81b / 0.81c / 0.30d 

𝑸 38.1a / 38.0b /     -     / 35.1d 49.5a / 49.4b /    -    / 85.1d 0.95a / 0.95b /     -    / 0.64d 

𝑬 -19.8a / -19.6b /     -     / -123.3d 40.3a / 40.3b /     -   / 243.9d 0.85a / 0.85b /     -    / 0.59d 

𝑯 -1.0a / -1.0b /     -     / 50.5d 36.0a / 36.0b /     -   / 193.2d 0.93a / 0.93b /     -    / 0.66d 

a: FRMEP vs. OBS                               c: FRMO vs. OBS 

b: FRMEP-ND vs. OBS                        d: FRMB vs. OBS 

𝑄𝑀𝐸𝑃  is in close agreement with 𝑄𝑂𝐵𝑆  as shown in Figure 3.2(b). 𝑄𝑀𝐸𝑃  is, in 

general, slightly greater than 𝑄𝑂𝐵𝑆 as shown in Figure 3.6(a) resulting in an overall bias and 

RMSE of 38.1 and 49.5 W m-2, even though the diurnal variations are well captured (𝑟 = 

0.95). It is noted that nighttime 𝑄𝑀𝐸𝑃 is constrained by 𝑅𝑛, while nighttime 𝑄𝑂𝐵𝑆 is greater 

than the corresponding 𝑅𝑛, violating the surface energy balance. Several possibilities may 

be responsible for the discrepancy between 𝑄𝑀𝐸𝑃  and 𝑄𝑂𝐵𝑆 . First, 𝑄𝑂𝐵𝑆  is likely 

underestimated owing to the negative bias of soil heat flux measured by the heat flux plate 

as discussed in Section 3.2.4. The bias of measured soil heat flux could reach 20% for 

specific type of heat flux plate, e.g., the HFT3 used at the LH site (Sauer et al., 2003; Scott 

et al., 2006). Second, the sampling error of temperature profile could lead to an estimation 

error of heat storage on the order of 10 W m-2 (Gentine et al., 2012). Third, the 

measurement error of 𝑄𝑂𝐵𝑆  due to neglecting the time derivative of soil heat storage 

(calorimetric correction) is about 10 W m-2 (Ochsner et al., 2007). Fourth, the heat storage 

tends to be overestimated (in magnitude) resulting from the overestimation 
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(underestimation) of the change rate of soil temperature during daytime (nighttime). The 

use of measured soil temperature at certain depth to estimate heat storage implies a linearly 

interpolated soil temperature profile extending from surface to the depth of the heat flux 

plate. It has been shown that the linearly interpolated temperature profile overestimates (in 

magnitude) the actual rate of soil temperature change, which leads to an approximate 10% 

overestimation on 𝑄𝑂𝐵𝑆 (Yang and Wang, 2008). The effect of heat storage estimation on 

𝑄𝑂𝐵𝑆 is expected to be stronger during nighttime due to the relatively small magnitude of 

soil heat flux. More importantly, part of the thermal energy entering the soil for subsurface 

soil evaporation (subsurface latent heat sink) leads to a consistently underestimated soil 

heat flux measurements using heat flux plate (Heitman et al., 2008, 2010).  

Figure 3.2(a) also shows that the FRMEP modeled 𝑇𝑠 agrees more closely with the 

observed 𝑇𝑠 than the 𝐹𝑅𝑀𝑇𝑠
𝐵  modeled 𝑇𝑠 (see also Figures 3.5(a) and 3.5(b)). The 𝐹𝑅𝑀𝑇𝑠

𝐵  

modeled 𝑇𝑠 has a comparable magnitude but reduced diurnal amplitude as compared to the 

observed 𝑇𝑠. The bias of 𝐹𝑅𝑀𝑇𝑠
𝐵  modeled 𝑇𝑠 (0.4 oC) appears to be smaller compared to 

that of the FRMEP predicted 𝑇𝑠  (2.0 oC), which is due to the error cancellation as the 

corresponding RMSE of the 𝐹𝑅𝑀𝑇𝑠
𝐵  modeled 𝑇𝑠 (7.1 oC) is higher than that of the FRMEP 

modeled 𝑇𝑠 (5.6 oC). Table 3.1 shows the error statistics of the FRMEP model and the 

𝐹𝑅𝑀𝑇𝑠
𝐵 . The FRMEP modeled 𝑇𝑠  has higher correlation with the observed 𝑇𝑠  than the 

𝐹𝑅𝑀𝑇𝑠
𝐵  modeled 𝑇𝑠  (0.87 vs. 0.71). The 𝐹𝑅𝑀𝑇𝑠

𝐵  predicted 𝑇𝑠  driven by 𝑄𝐵𝑇𝑀  has 

unrealistic fluctuations on day 222 to 225 and day 234 to 237 (Figures 3.2(b) and 3.6(b)). 

The modeling errors of 𝑄𝐵𝑇𝑀, calculated using Eq. (3.39), are caused by those of 𝐸𝐵𝑇𝑀 and 

𝐻𝐵𝑇𝑀 according to Eqs. (3.37) and (3.38). The modeling errors of 𝐸𝐵𝑇𝑀 and 𝐻𝐵𝑇𝑀 in Eqs. 

(3.37) and (3.38) is attributed to the uncertainties of bulk gradients of 
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temperature/humidity, wind speed and transfer coefficients 𝐶𝐸 and 𝐶𝐻. Compared to 𝑄𝐵𝑇𝑀, 

𝑄𝑀𝐸𝑃 has bounded modeling errors, which are less than the measurement errors of 𝑅𝑛. 

Figure 3.3(a) shows the 𝜃𝑠 predicted by the FRMEP model and that by Eq. (3.23) 

driven by observed 𝐸 (𝐸𝑂𝐵𝑆) and 𝐸𝐵𝑇𝑀 against 𝜃𝑂𝐵𝑆 with the 30-min rainfall 𝑃 displayed 

on the top of the figure. The terms 𝐹𝑅𝑀𝜃𝑠
𝑂  and 𝐹𝑅𝑀𝜃𝑠

𝐵  denote the FRMs as in Eq. (3.23) 

driven by 𝐸𝑂𝐵𝑆 and 𝐸𝐵𝑇𝑀, respectively. The corresponding scatter plots of the FRMEP and 

the 𝐹𝑅𝑀𝜃𝑠
𝐵  predicted 𝜃𝑠  versus observations are shown in Figures 3.5(c) and 3.5(d), 

respectively. �̅� was taken as the daily mean of 𝜃𝑠 prior to the current simulation time. The 

comparison of the FRMEP modeled 𝐸 (𝐸𝑀𝐸𝑃) and 𝐸𝑂𝐵𝑆 is shown in Figure 3.3(b). The 

FRMEP modeled 𝜃𝑠 agrees closely with 𝜃𝑂𝐵𝑆 and accurately captures the wetting-drying 

cycles with 𝑟 = 0.86 (see also Figure 3.5(c)). Table 3.1 shows that the bias and RMSE of 

the FRMEP modeled 𝜃𝑠 are 0.02 and 0.03 m3 m-3, respectively, within the measurement 

error ~0.02-0.05 m3 m-3 (Keefer et al., 2008).  

The good agreement between 𝐸𝑀𝐸𝑃  and 𝐸𝑂𝐵𝑆  is evident in Figures 3.3(b) and 

3.6(c). The bias of -19.8 W m-2 of 𝐸𝑀𝐸𝑃 is likely caused by the potentially overestimated 

𝐸𝑂𝐵𝑆  during nighttime, dry soil condition, and rainy period. The nighttime 𝐸𝑂𝐵𝑆  was 

positive most of the time, which is inconsistent with the corresponding negative nighttime 

𝑅𝑛. A negative nighttime 𝑅𝑛 corresponds to a strong radiative cooling of land surfaces that 

favors dew formation or negative 𝐸 . It is well known that EC measurements during 

nighttime may not fully capture the turbulent fluxes under low winds and stable surface 

layer condition (Burda, 2013). EC measured 𝐸 under dry soil condition (𝜃𝑂𝐵𝑆 < 0.1 m3 m-

3 below the wilting point) is likely to be overestimated as eddy fluxes of water vapor in 
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such a condition do not come from evapotranspiration. EC measured 𝐸 usually produces 

significant errors during rain events (e.g., Berbigier et al., 2001; Nordbo et al., 2012). In 

addition, EC measured 𝐸 during rain events is likely a result of high atmospheric humidity 

(and its fluctuations) instead of high evaporation rates.  

 

Figure 3.3:  (a) 𝜽𝒔 predicted by the 𝑭𝑹𝑴𝜽𝒔
𝑶  (dashed blue), 𝑭𝑹𝑴𝜽𝒔

𝑩  (dashed green), and 

the FRMEP model (dashed red) versus observations (solid black) with 

precipitation 𝑷 on the top, and (b) the modeled 𝑬𝑩𝑻𝑴  (dashed green) 

and 𝑬𝑴𝑬𝑷 (dashed red) versus 𝑬𝑶𝑩𝑺 (solid black) of the LH site, August 

10 to August 28, 2009. 

Compared to the FRMEP model, the 𝐹𝑅𝑀𝜃𝑠
𝑂  predicted 𝜃𝑠  begins deviating from 

𝜃𝑂𝐵𝑆 on day 235 as shown in Figure 3.3(a). The growing discrepancy between the 𝐹𝑅𝑀𝜃𝑠
𝑂  

predicted 𝜃𝑠 and 𝜃𝑂𝐵𝑆 appears to be caused by the potentially overestimated 𝐸𝑂𝐵𝑆, leading 
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to the negative bias of the 𝜃𝑠 predicted by the  𝐹𝑅𝑀𝜃𝑠
𝑂 . The effect of using overestimated 

𝐸𝑂𝐵𝑆 in the 𝐹𝑅𝑀𝜃𝑠
𝑂  accumulates with time and eventually dominates the dynamics of 𝜃𝑠 

after day 236, leading to a significant underestimation of modeled 𝜃𝑠  against 𝜃𝑂𝐵𝑆  as 

shown in Figure 3.3(a). The smaller bias of the 𝜃𝑠 predicted by the 𝐹𝑅𝑀𝜃𝑠
𝑂  compared to 

that predicted by the FRMEP model is mainly attributed to its closer agreement with 𝜃𝑂𝐵𝑆 

before day 235. However, the goodness of the FRMEP and 𝐹𝑅𝑀𝜃𝑠
𝑂  modeled 𝜃𝑠  against 

𝜃𝑂𝐵𝑆 before day 235 is difficult to quantify because the discrepancies between the two 

modeled 𝜃𝑠s and 𝜃𝑂𝐵𝑆 are both within the measurement errors (0.02-0.05 m3 m-3). It is 

noted that the classical 𝐹𝑅𝑀𝜃𝑠 predicted 𝜃𝑠 starts to deviate from 𝜃𝑂𝐵𝑆 after a longer no-

rain period (after day 235 in Figure 3.3(a)), while the FRMEP modeled 𝜃𝑠 follows 𝜃𝑂𝐵𝑆 

more closely. 

Figure 3.3(a) shows that both the 𝐹𝑅𝑀𝜃𝑠
𝑂  and the FRMEP model capture the rain 

events as indicated by the rapid increase of modeled 𝜃𝑠. The increase of modeled 𝜃𝑠 during 

rainy periods is generally greater than that of 𝜃𝑂𝐵𝑆. For example, one millimeter of rainfall 

on day 234 leads to a 0.05 m3 m-3 increase in modeled 𝜃𝑠, while 𝜃𝑂𝐵𝑆 remains unchanged. 

Two possible reasons may be responsible for the different sensitivities of modeled 𝜃𝑠 and 

𝜃𝑂𝐵𝑆  to precipitation. First, the 𝐹𝑅𝑀𝜃𝑠  theoretically simulates the “skin” soil moisture, 

while 𝜃𝑂𝐵𝑆 is always an averaged soil moisture over a certain depth/region due to the finite 

size of soil moisture sensors. For example, 𝜃𝑂𝐵𝑆 at the LH site is measured by the TDR100 

and Steven’s Hydra Probe centered at 5 cm below the surface with a 3 cm of sensing 

volume (cylindrical measurement region). As a result, the variation of 𝜃𝑠 is expected to be 

greater than that of 𝜃𝑂𝐵𝑆 for the same rainfall as the depth of 𝜃𝑠 is closer to surface. Second, 
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the soil moisture change due to low rain rates may not be detected by a soil moisture sensor 

buried beneath the surface. For example, one millimeter rainfall increases the averaged soil 

moisture by 0.02 m3 m-3 for a 5 cm soil column, which is smaller than the accuracy of soil 

moisture sensor.  

𝜃𝑠 predicted by the 𝐹𝑅𝑀𝜃𝑠
𝐵  is overestimated compared to 𝜃𝑂𝐵𝑆 as shown in Figures 

3.3(a) and 3.5(d) caused by the bias of 𝐸𝐵𝑇𝑀 (see Figures 3.3(b) and 3.6(d)). At the start of 

simulation period, the large negative 𝐸𝐵𝑇𝑀  (condensation), as a result of large negative 

humidity gradient (𝑞𝑠 ≈ 0 at low soil moisture), becomes an unrealistic source of 𝜃𝑠 in the 

𝐹𝑅𝑀𝜃𝑠
𝐵  and leads to a large positive bias of 𝜃𝑠. The error statistics shown in Table 3.1 

indicate that the FRMEP model gives a more accurate prediction of 𝜃𝑠 compared to the 

𝐹𝑅𝑀𝜃𝑠
𝐵  as 𝐸𝑀𝐸𝑃 agrees more closely with 𝐸𝑂𝐵𝑆 compared to 𝐸𝐵𝑇𝑀.  

Figure 3.3(a) shows that the modeled 𝜃𝑠s have an opposite phase to that of 𝜃𝑂𝐵𝑆. 

𝜃𝑠 is expected to decrease during daytime due to soil evaporation. The opposite phase of 

daytime 𝜃𝑂𝐵𝑆 to that of 𝜃𝑠 is likely caused by the measurement error of the time domain 

reflectometry method known to be strongly affected by soil temperature (Schanz et al., 

2011). High soil temperature leads to an overestimation of bulk soil dielectric constant, 

thus resulting in a bias of the retrieved soil moisture. The bias can be as large as 0.08 m3 

m-3 when soil temperature reaches 40 oC. The daytime peaks of soil temperature measured 

at the same level of 𝜃𝑂𝐵𝑆 are 40-45 oC at the LH site. The diurnal amplitude of 𝜃𝑂𝐵𝑆 is 

about 0.03 m3 m-3 less than the temperature effect. Therefore, the temperature effect is the 

most likely cause of the opposite phase between modeled and observed surface soil 

moisture. 
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Figure 3.4(a) shows the 𝑇𝑎 predicted by the FRMEP model and that by Eq. (3.26) 

driven by observed 𝐻 (𝐻𝑂𝐵𝑆) and 𝐻𝐵𝑇𝑀 against 𝜃𝑂𝐵𝑆. The 𝐹𝑅𝑀𝑇𝑎
𝑂  and 𝐹𝑅𝑀𝑇𝑎

𝐵  denote the 

FRMs of 𝑇𝑎, as in Eq. (3.26), driven by 𝐻𝑂𝐵𝑆 and 𝐻𝐵𝑇𝑀, respectively. The corresponding 

scatter plots of the FRMEP and 𝐹𝑅𝑀𝑇𝑎
𝐵  simulations are shown in Figures 3.5 and 3.6. The 

FRMEP modeled 𝑇𝑎 agrees closely with observations as show in Figure 3.4(a) (see also 

Figure 3.5(e) for the scatter plot). The bias and RMSE of the FRMEP modeled 𝑇𝑎 are about 

-0.4 and 2.76 oC during the model period (see Table 3.1). A high correlation of 0.81 

between FRMEP predicted and observed 𝑇𝑎 indicates that the FRMEP model well captures 

the diurnal variation of 𝑇𝑎 . Larger discrepancies of the FRMEP modeled 𝑇𝑎  against 

observations occurred in, e.g., day 225 and 235-238. These discrepancies are found to be 

caused by the prescribed reference temperature 𝑇𝑎̅̅ ̅ in the 𝐹𝑅𝑀𝑇𝑎 , which is difficult to 

capture the abrupt drop of observed 𝑇𝑎 due to episodic events. The close agreement of the 

FRMEP estimated 𝐻 (𝐻𝑀𝐸𝑃) and 𝐻𝑂𝐵𝑆 are evident as shown in Figure 3.4(b) also indicated 

by the low modeling error (e.g. bias ~ -1 W m-2) and high correlation (𝑟 = 0.93). The 𝑇𝑎 

predicted by the 𝐹𝑅𝑀𝑇𝑎
𝑂  are comparable with that predicted by the FRMEP model resulting 

from the close agreement between the two model forcings (i.e., 𝐻𝑂𝐵𝑆 and 𝐻𝑀𝐸𝑃). The error 

statistics of the FRMEP and 𝐹𝑅𝑀𝑇𝑎
𝑂  are summarized in Table 3.1.  

The 𝑇𝑎 predicted by the FRMEP model agrees more closely with the observed 𝑇𝑎 

when compared to that by the 𝐹𝑅𝑀𝑇𝑎
𝐵  as shown in Figure 3.4(a) (see also Figures 3.5(e) 

and 3.5(f) for the scatter plots). The smaller modeling error and higher correlation of the 

FRMEP predicted 𝑇𝑎 (bias -0.4 oC, RMSE 2.76 oC, correlation 0.81) compared to those of 

𝐹𝑅𝑀𝑇𝑎
𝐵  predicted 𝑇𝑎 (bias 3.1 oC, RMSE 6.15 oC, correlation 0.3) are obvious as 𝐻𝑀𝐸𝑃 

agrees more closely with 𝐻𝑂𝐵𝑆  than 𝐻𝐵𝑇𝑀  (see Table 3.1). The 𝐻𝐵𝑇𝑀  has unrealistic 



84 

 

fluctuations throughout the model period as shown in Figure 3.4(b). The unrealistic 

fluctuations of 𝐻𝐵𝑇𝑀 are attributed to the uncertainties of estimated transfer coefficients 

𝐶𝐻  similar to those of 𝐸𝐵𝑇𝑀 . The modeling errors of 𝐻𝑀𝐸𝑃  are always bounded by the 

measurement errors of 𝑅𝑛, while those of 𝐻𝐵𝑇𝑀 are theoretically unbounded.  

 

Figure 3.4:  (a) 𝑻𝒂 predicted by the 𝑭𝑹𝑴𝑻𝒂
𝑶  (dashed blue), 𝑭𝑹𝑴𝑻𝒂

𝑩  (dashed green), 

and the FRMEP model (dashed red) versus observations (solid black), 

and (b) the modeled 𝑯𝑩𝑻𝑴  (dashed green) and 𝑯𝑴𝑬𝑷  (dashed red) 

versus 𝑯𝑶𝑩𝑺 (solid black) of the LH site, August, 10 to August 28, 2009. 
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Figure 3.5:  The scatter plots of Figures 3.2 to 3.4 showing the comparison of the 

FRMEP and classical FRMs predicted 𝑻𝒔 , 𝜽𝒔 , and 𝑻𝒂  versus 

observations. 
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Figure 3.6:  The scatter plots of Figures 3.2 to 3.4 showing the comparison of the MEP 

and BTM estimated 𝑸, 𝑬 and 𝑯 versus observations. 



87 

 

The effect of gravitational drainage term in the 𝐹𝑅𝑀𝜃𝑠 was evaluated by replacing 

the equation of 𝜃𝑠 (Eq. (3.23)) in the FRMEP model with Eq. (3.19), referred to as the 

FRMEP-ND model (neglecting gravitational drainage term in the 𝐹𝑅𝑀𝜃𝑠). The simulated 

𝑇𝑠, 𝜃𝑠, 𝑇𝑎 as well as surface heat fluxes from the FRMEP and FRMEP-ND models are 

nearly identical at the LH site (figures not shown). The consistency between the FRMEP 

and the FRMEP-ND predictions is expected as the soil moisture at the LH site is low (< 

0.2 m3 m-3) so that the drainage term is not important. This supports the argument (Section 

3.2.2) that the applicability of the classical 𝐹𝑅𝑀𝜃𝑠  is limited to low soil moisture 

conditions. The error statistics of the FRMEP and FRMEP-ND model simulations against 

the observations are shown in Table 3.1. 

Tests of the sensitivity of 𝐼𝑎 to the FRMEP predicted 𝑇𝑎 are conducted by applying 

the 𝐼𝑎 parameterized using Eq. (3.31) (derived from the MOSE, ~1000 tiu), while 𝐼𝑎 in Eq. 

(3.29) (~2500 tiu) was used in the performed analysis shown in Figures 3.4 to 3.6. A 

comparison of 𝑇𝑎s predicted by the FRMEP model using different 𝐼𝑎𝑠 is shown in Figure 

3.7(a). The diurnal amplitude of FRMEP modeled 𝑇𝑎  with 𝐼𝑎  ~1000 tiu are apparently 

greater than that with 𝐼𝑎 ~2500 tiu as shown in Figure 3.7(a). The FRMEP modeled 𝑇𝑎 with 

𝐼𝑎 ~1000 tiu is nearly identical to the FRMEP modeled 𝑇𝑠 (see Figure 3.7(b)) and agree 

closely with the observed 𝑇𝑠. One reasonable explanation is that Eq. (3.31) evaluates the 

𝐼𝑎 right above the evaporating surface theoretically even though the MOST is known to be 

only applied to certain level above the surface. 𝐼𝑎 at the surface is expected to be smaller 

than 𝐼𝑎 above the surface as turbulent diffusivity increases with height. In other words, the 

FRMEP with 𝐼𝑎  parameterized using Eq. (3.31) predicts a 𝑇𝑎  at the surface, which is 

expected to be close to 𝑇𝑠 according to the continuity of temperature across the land surface 
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and atmosphere (i.e., 𝑇𝑎 = 𝑇𝑠 at 𝑧 = 0). The encouraging results suggest that the 𝐹𝑅𝑀𝑇𝑎 

with 𝐼𝑎 derived based on the MOST (Eq. (3.31)) may be applied as an alternative way for 

verifying the FRMEP predicted 𝑇𝑠.  

 

Figure 3.7:  (a) The comparison of the FRMEP modeled 𝑻𝒔 (dashed blue), 𝑻𝒂 with 𝑰𝒂 

estimated using Eq. (3.29) (dashed green), 𝑻𝒂 with 𝑰𝒂 estimated using 

Eq. (3.31) (dashed red) versus observed 𝑻𝒔 (solid black) and 𝑻𝒂 (solid 

purple) of the LH site, August 10 to August 28, 2009, and (b) the scatter 

plot of the FRMEP modeled 𝑻𝒔  and 𝑻𝒂  with 𝑰𝒂  estimated using Eq. 

(3.31).  
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3.6.1.2 Wet Condition – Brooks Field Site, Iowa 

The predictions of the FRMEP and the classical FRMs, forced by observed and 

BTM surface heat fluxes, against observations at the BF10 site are shown in Figures 3.8 to 

3.10. The corresponding scatter plots for the state variables and heat fluxes are presented 

in Figures 3.12 and 3.13, respectively. �̅� in Eq. (3.11) was estimated to be about 16 oC 

obtained from the average of observed 𝑇𝑠 over unfrozen periods due to lack of deep soil 

temperature measurements. �̅� and 𝑇𝑎̅̅ ̅ were computed using the same method as those at the 

LH site.  

The performances of the FRMEP model and the 𝐹𝑅𝑀𝑇𝑠
𝑂  are comparable to that at 

the LH site. The FRMEP modeled 𝑇𝑠 has a close agreement with observed 𝑇𝑠 as shown in 

Figure 3.8(a) (see also Figure 3.12(a)). In contrast, the 𝐹𝑅𝑀𝑇𝑠
𝑂  tends to underestimate 𝑇𝑠 

during nighttime caused by the underestimated 𝑄𝑂𝐵𝑆 inconsistent with the observed 𝑅𝑛. 

The bias and RMSE of the FRMEP modeled 𝑇𝑠 are -1.2 oC and 2.7 oC, respectively, lower 

than those of the 𝐹𝑅𝑀𝑇𝑠
𝑂  predicted 𝑇𝑠  (-4.2 oC and 5.0 oC) as shown in Table 3.2. The 

correlation coefficients between the two modeled 𝑇𝑠s with observations are comparable 

(0.87 and 0.92 for the FRMEP and 𝐹𝑅𝑀𝑇𝑠
𝑂 , respectively). Figures 3.8(b) and 3.13(a) show 

that 𝑄𝑀𝐸𝑃 agrees closely with 𝑄𝑂𝐵𝑆 except for nighttime. The bias of 22.9 W m-2 is mainly 

due to the potentially underestimated nighttime 𝑄𝑂𝐵𝑆 as discussed previously. 

The FRMEP modeled 𝑇𝑠 agrees more closely with observed 𝑇𝑠 when compared to 

the 𝐹𝑅𝑀𝑇𝑠
𝐵  modeled 𝑇𝑠 as shown in Figure 3.8(a) (see also Figures 3.12(a) and 3.12(b)). 

Table 3.2 shows that the FRMEP predicted 𝑇𝑠 has lower model bias, RMSE, and higher 

correlation with observations than the 𝐹𝑅𝑀𝑇𝑠
𝐵  predicted 𝑇𝑠. The 𝐹𝑅𝑀𝑇𝑠

𝐵  predicted 𝑇𝑠 has 



90 

 

spurious spikes (e.g., day 164, 172, 178, and 180) resulting from the unrealistic 𝑄𝐵𝑇𝑀 (see 

Figures 3.8(b) and 3.13(b)), which is caused by the large fluctuations of 𝐸𝐵𝑇𝑀 (also 𝐻𝐵𝑇𝑀) 

discussed previously (see Figures 3.9(b) and 3.10(b) for 𝐸𝐵𝑇𝑀  and 𝐻𝐵𝑇𝑀). The sum of 

𝐸𝐵𝑇𝑀 and 𝐻𝐵𝑇𝑀 being greater (smaller) than 𝑅𝑛 on those days leads to a large negative 

(positive) 𝑄𝐵𝑇𝑀 according to Eq.(3.39). 𝑄𝑀𝐸𝑃 has closer agreement with 𝑄𝑂𝐵𝑆 than 𝑄𝐵𝑇𝑀 

throughout the period as shown in Figure 3.8(b) (see also Figures 3.13(a) and 3.13(b)). The 

corresponding error statistics are listed in Table 3.2. 

 

Figure 3.8:  (a) 𝑻𝒔 predicted by the 𝑭𝑹𝑴𝑻𝒔
𝑶  (dashed blue), the 𝑭𝑹𝑴𝑻𝒔

𝑩  (dashed green), 

and the FRMEP model (dashed red) versus observed 𝑻𝒔 (solid black), 

and (b) the modeled 𝑸𝑩𝑻𝑴  (dashed green) and 𝑸𝑴𝑬𝑷  by the FRMEP 

model (dashed red) versus 𝑸𝑶𝑩𝑺 (solid black) of the BF10 site, June 9 to 

June 29, 2011. 
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Table 3.2: Error statistics of the FRMEP, FRMEP-ND, and classical FRMs 

predictions, Brooks Field Site 10, Iowa (Unit: 𝑻𝒔(K), 𝜽𝒔(m
3 m-3), 𝑻𝒂(K), 𝑸, 

𝑬, and 𝑯 (W m-2)) 

 Bias RMSE Correlation coef. (𝒓) 

𝑻𝒔 -1.2a / -1.4b / -4.2c / -1.6d 2.7a / 2.8b / 5.0c / 3.7d 0.87a / 0.87b / 0.92c / 0.78d 

𝜽𝒔 -3.610-4 a / 0.05b / -0.01c / -0.02d 0.02a / 0.06b / 0.03c / 0.04d 0.71a / 0.33b / 0.72c / 0.66d 

𝑻𝒂 -0.29a / -0.41b / -2.01c / -0.44d 2.34a / 2.40b / 3.66c / 2.09d 0.81a / 0.81b / 0.65c / 0.88d 

𝑸 22.9a / 22.9b /      -     / 90.7d 41.7a / 41.7b /    -    / 245.8d 0.90a / 0.90b /     -     / 0.43d 

𝑬 -16.7a / -15.1b /     -      / -59.9d 71.7a / 72.2b /    -     / 172.6d 0.84a / 0.84b /     -     / 0.36d 

𝑯 24.3a / 22.6b /     -     / -7.4d 50.3a / 48.2b /     -   / 92.3d 0.70a / 0.70b /     -    / 0.04d 

a: FRMEP vs. OBS                               c: FRMO vs. OBS 

b: FRMEP-ND vs. OBS                        d: FRMB vs. OBS 

The FRMEP modeled 𝜃𝑠 agrees closely with 𝜃𝑂𝐵𝑆 as shown in Figures 3.9(a) and 

3.12(c) with a bias -3.6×10-4 m3 m-3 and a RMSE 0.02 m3 m-3 as shown in Table 3.2. Rain 

events are well captured indicated by the rapid increase of 𝜃𝑠. Figure 3.9(a) further shows 

a greater increase of 𝜃𝑠 than 𝜃𝑂𝐵𝑆 during rain events owing to the higher sensitivity of 𝜃𝑠 

than 𝜃𝑂𝐵𝑆 to precipitation. The largest discrepancy between the FRMEP modeled 𝜃𝑠 and 

𝜃𝑂𝐵𝑆 is only about 0.03 m3 m-3, less than the measurement error of soil moisture caused by 

the temperature effect discussed previously. The correlation coefficient of 0.71 between 

the FRMEP modeled 𝜃𝑠  with 𝜃𝑂𝐵𝑆  shown in Table 3.2 may also be related to the 

uncorrected 𝜃𝑂𝐵𝑆  due to the temperature effect on measurements. The close agreement 

between 𝐸𝑀𝐸𝑃  and 𝐸𝑂𝐵𝑆  is evident as shown in Figures 3.9(b) and 3.13(c) with the 

exception of those unrealistic fluctuations of 𝐸𝑂𝐵𝑆 during rain events (e.g., day 160, 172, 

and 173). 
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Figure 3.9:  (a) 𝜽𝒔 predicted by the 𝑭𝑹𝑴𝜽𝒔
𝑶  (dashed blue), the 𝑭𝑹𝑴𝜽𝒔

𝑩  (dashed green), 

and the FRMEP model (dashed red) versus 𝜽𝑶𝑩𝑺  (solid black) with 

precipitation on the top, and (b) the modeled 𝑬𝑩𝑻𝑴 (dashed green) and 

𝑬𝑴𝑬𝑷 by the FRMEP model (dashed red) versus 𝑬𝑶𝑩𝑺 (solid black) of 

the BF10 site, June 9 to June 29, 2011. 

The FRMEP and 𝐹𝑅𝑀𝜃𝑠
𝑂  predicted 𝜃𝑠s are in close agreement with each other as 

shown in Figure 3.9(a), even though the two models are driven by unequal 𝐸𝑂𝐵𝑆 and 𝐸𝑀𝐸𝑃. 

The similar error statistics of the two models are shown in Table 3.2. The effect of using 

potentially overestimated nighttime 𝐸𝑂𝐵𝑆 seems to be weaker at the BF10 site than that at 

the LH site caused by the frequent rain that keeps the 𝜃𝑠 high. Precipitation causes a more 

rapid change in soil moisture than evaporation does. A light rain event, for example, with 

a rate of 1 mm hr-1 is equivalent to ~700 W m-2 of negative 𝐸. Figure 3.9(a) clearly shows 
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that the FRMEP model performs better than the 𝐹𝑅𝑀𝜃𝑠
𝐵  for predicting 𝜃𝑠 (see also Figures 

3.12(c) and 3.12(d)). The 𝐹𝑅𝑀𝜃𝑠
𝐵  predicted 𝜃𝑠 has greater negative bias compared to the 

FRMEP predicted 𝜃𝑠  resulting from the unrealistic fluctuations of 𝐸𝐵𝑇𝑀  discussed 

previously (see Figures 3.9(b) and 3.13(d)). 

The FRMEP predicted 𝑇𝑎  agree closely with the observed values as shown in 

Figure 3.10(a). The corresponding overall bias is -0.29 oC. The diurnal fluctuation of 𝑇𝑎 is 

well captured by the FRMEP model indicated by the high correlation between FRMEP 

modeled and observed 𝑇𝑎 (𝑟 = 0.81) as shown in Figure 3.12(e). The diurnal amplitudes of 

the simulated 𝑇𝑎 agree closely with those of observed 𝑇𝑎. The larger discrepancies between 

the FRMEP modeled and observed 𝑇𝑎 are presumably caused by the prescribed 𝑇𝑎̅̅ ̅ in the 

𝐹𝑅𝑀𝑇𝑎 as discussed in Section 3.6.1.1.  

The 𝐻𝑀𝐸𝑃 is, in general, greater than 𝐻𝑂𝐵𝑆 as shown in Figure 3.10(b). The 𝐻𝑂𝐵𝑆 

may be potentially underestimated as it is consistently lower than the residual of other 

surface energy budget components, i.e., 𝑅𝑛 − 𝑄𝑂𝐵𝑆 − 𝐸𝑂𝐵𝑆 as shown in Figure 3.11. The 

potentially underestimated 𝐻𝑂𝐵𝑆  leads to reduced diurnal amplitude of the 𝐹𝑅𝑀𝑇𝑎
𝑂  

predicted 𝑇𝑎 as shown in Figure 3.10(a). The FRMEP modeled 𝑇𝑎 has lower error statistics 

(bias -0.29 oC, RMSE 2.34 oC) and higher correlations (𝑟 = 0.81) with observations as 

compared to the 𝐹𝑅𝑀𝑇𝑎
𝑂  modeled 𝑇𝑎 (bias -2.01 oC, RMSE 3.66 oC, 𝑟 = 0.65) as shown in 

Table 3.2. The close agreement between the FRMEP modeled 𝑇𝑎 and observations also 

suggests that the FRMEP model has potential to be applied as a tool for verifying the 

consistency between measured surface state variables (e.g., 𝑇𝑎) and forcing (e.g., 𝐻). 
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Figure 3.10:  (a) 𝑻𝒂  predicted by the 𝑭𝑹𝑴𝑻𝒂
𝑶  (dashed blue), the 𝑭𝑹𝑴𝑻𝒂

𝑩  (dashed 

green), and the FRMEP model (dashed red) versus observed 𝑻𝒂 (solid 

black), and (b) the modeled 𝑯𝑩𝑻𝑴  (dashed green) and 𝑯𝑴𝑬𝑷  by the 

FRMEP model (dashed red) versus 𝑯𝑶𝑩𝑺 (solid black) of the BF10 site, 

June 9 to June 29, 2011. 

The 𝑇𝑎 predicted by the FRMEP model has smaller bias compared to that predicted 

by the 𝐹𝑅𝑀𝑇𝑎
𝐵  (-0.29 oC vs. -0.44 oC). The 𝐹𝑅𝑀𝑇𝑎

𝐵  predicted 𝑇𝑎  has seemingly smaller 

RMSE and comparable correlation with observations (RMSE 2.09 oC, 𝑟 = 0.88) compared 

to the FRMEP model (RMSE 2.34 oC, 𝑟 = 0.81) as shown in Table 3.2 (see aslo Figures 

3.12(e) and 3.12(f)). However, the 𝐹𝑅𝑀𝑇𝑎
𝐵  predicted 𝑇𝑎 has unrealistic peaks (e.g., day 164) 

and fluctuations (e.g., day 178 and 179) resulting from the corresponding erroneous 

estimates of 𝐻𝐵𝑇𝑀 , which contains unrealistic fluctuations as shown in Figure 3.10(b). 
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𝐻𝑀𝐸𝑃  outperforms the 𝐻𝐵𝑇𝑀  as indicated by the much improved error statistics and 

correlations with observations as shown in Table 3.2 (see also Figures 3.13(e) and 3.13(f)). 

The lower bias of 𝐻𝐵𝑇𝑀 (-7.4 W m-2) compared to 𝐻𝑀𝐸𝑃 (24.3 W m-2) is, again, mainly due 

to (1) the potentially biased 𝐻𝑂𝐵𝑆, as discussed previously, and (2) the error cancellation 

as the RMSE of 𝐻𝐵𝑇𝑀 is much higher than that of 𝐻𝑀𝐸𝑃. 

 

Figure 3.11:  𝑹𝒏 − 𝑸𝑶𝑩𝑫 − 𝑬𝑶𝑩𝑺  versus 𝑯𝑶𝑩𝑺  of the BF10 site, June 9 to June 29, 

2011. 
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Figure 3.12:  The scatter plots of Figures 3.8 to 3.10 showing the comparison of the 

FRMEP and classical FRMs predicted 𝑻𝒔 , 𝜽𝒔 , and 𝑻𝒂  versus 

observations. 
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Figure 3.13:  The scatter plots of Figures 3.8 to 3.10 showing the comparison of the 

MEP and BTM estimated 𝑸, 𝑬 and 𝑯 versus observations 
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The comparison of the FRMEP and FRMEP-ND predictions is shown in Figure 

3.14. Figure 3.14(c) shows that the FRMEP-ND model apparently overestimates 𝜃𝑠, while 

the FRMEP with the drainage term predicts 𝜃𝑂𝐵𝑆 relatively well. The corresponding error 

statistics of the FRMEP-ND model are given in Table 3.2. The 𝑇𝑠, 𝑇𝑎, and three surface 

heat fluxes simulated by the FRMEP with and without the gravitational drainage term are 

nearly identical as shown in Figure 3.14. It turns out that the gravitational drainage term in 

the FRMEP affects 𝜃𝑠  more strongly than other variables under high soil moisture 

condition (e.g., > 0.3 m3 m-3). This is due to the reduced sensitivity of 𝜎 and 𝑞𝑠 to soil 

moisture for wet soils in the MEP modeled heat fluxes according to Eqs. (3.32) and (3.36). 

The gravitational drainage term would be equally important in the FRMEP model when 

soil moisture is between the extremes. 

The results of FRMEP predicted 𝑇𝑎s using different parameterizations of 𝐼𝑎 (Eq. 

(3.29) vs. (3.31)) are shown in Figure 3.15. The FRMEP modeled 𝑇𝑎 with 𝐼𝑎 parameterized 

using Eq. (3.31) (~1000 tiu) is higher than that with 𝐼𝑎  parameterized using Eq. (3.29) 

(~2000 tiu). The FRMEP modeled 𝑇𝑎 with 𝐼𝑎 ~1000 tiu agrees closely with observed 𝑇𝑠, 

which is physically realistic according to the continuity of temperature across the land 

surface and atmostphere as discussed in Section 3.6.1.1.  

The two case studies demonstrate the following advantages of the FRMEP model: 

(1) improved parameterization of surface heat fluxes with the closure of surface energy 

balance, (2) independent of bulk gradient and other atmospheric variables, and (3) reduced 

sensitivity to model input and parameters compared to the BTM of heat fluxes in classical 
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FRMs as the dynamics of 𝑇𝑠 are inversely related to 𝑇𝑠
2 through the parameter 𝜎 shown in 

Eq. (3.32).  

 

Figure 3.14:  The FRMEP (dashed red) and the FRMEP-ND (dashed cyan) predicted 

(a) 𝑻𝒔 , (b) 𝑸𝑴𝑬𝑷 , (c) 𝜽𝒔  (d) 𝑬𝑴𝑬𝑷 , (e) 𝑻𝒂 , and (f) 𝑯𝑴𝑬𝑷  versus 

observations (solid black) of the BF10 site, June 9 to June 29, 2011. 
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Figure 3.15:  (a) The comparison of the FRMEP modeled 𝑻𝒔 (dashed blue), 𝑻𝒂 with 

𝑰𝒂 estimated using Eq. (3.29) (dashed green), 𝑻𝒂 with 𝑰𝒂 estimated using 

Eq. (3.31) (dashed red) versus observed 𝑻𝒔 (solid black) and 𝑻𝒂 (solid 

purple) of the BF10 site, June 9 to June 29, 2011, and (b) the scatter plot 

of the FRMEP modeled 𝑻𝒔 and 𝑻𝒂 with 𝑰𝒂 estimated using Eq. (3.31).  

 

 Seasonal Variability 

The FRMEP model was tested to simulate the seasonal/annual cycle of 𝑇𝑠 and 𝜃𝑠. 

The data products from the LH site during 2009 were selected for the one-year simulation. 

Unlike the short-term simulations presented in Section 3.6.1 that use a constant or deep 

soil temperature as �̅�, �̅� in the one-year simulation is set as the daily mean climatology of 
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𝑇𝑠  obtained from the meteorological records since 2001 or deep soil temperature, 

whichever is lower (see discussions in Section 3.2.1). Consequently, for this specific site, 

deep soil temperature was used through day 60 to 280 (March to September), while daily 

mean 𝑇𝑠 was used for the rest of year. Similarly, 𝑇𝑎̅̅ ̅ is set as the daily mean climatology of 

𝑇𝑎 obtained from observations since 1990 during cold season (October to February), while 

the daily mean climatology 𝑇𝑎 less 3.5 oC, representing an air temperature far from the 

surface, is adopted to the warm season (March to September) determined by the offline test 

of 𝐹𝑅𝑀𝑇𝑎 as discussed in Section 3.2.3. 𝐼𝑎 was estimated as ~2500 and ~2000 tiu for the 

warm and cold seasons according to Eq. (3.29).  

The daily-averaged FRMEP predicted 𝑇𝑠, 𝜃𝑠, and 𝑇𝑎 over 2009 versus observations 

are shown in Figure 3.16, while those of modeled surface heat fluxes against observations 

are shown in Figure 3.17. The simulations between day 250 to 280 are removed due to the 

unrealistic 𝑅𝑛 data (positive or downward during nighttime). Figures 3.16(a) and 3.16(e) 

showed that the FRMEP modeled 𝑇𝑠 and 𝑇𝑎 well capture the seasonal cycles with daily 

mean biases of 1.7 oC and 0.49 oC and correlations of 0.93 and 0.87, respectively (see also 

Figures 3.16(b) and 3.16(f)). The FRMEP modeled 𝑇𝑠  and 𝑇𝑎  agree more closely with 

observations during the warm season than the cold season. Larger discrepancies between 

the simulated and observed daily mean 𝑇𝑠 and 𝑇𝑎 are mostly during the cold season when 

observed values abruptly drops (e.g., day 40-45 in Figures 3.16(a) and 3.16(e) for 𝑇𝑠 and 

𝑇𝑎, respectively, see also Figures 3.18(a) and 3.18(e) for the diurnal plots of selected period 

from January 30 to March 1). This is caused by the large deviation of the prescribed 

reference temperature �̅� and 𝑇𝑎̅̅ ̅ from the observed daily mean of 𝑇𝑠 and 𝑇𝑎 in the FRMEP 

model.  
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Figure 3.16:  Daily-averaged (a) 𝑻𝒔, (c) 𝜽𝒔, (e) 𝑻𝒂 (solid red) predicted by the FRMEP 

model versus observations (solid black) over 2009 at the LH site. The 

corresponding scatter plots are shown on the right panel. Precipitation 

𝑷 is shown on the top of (c). 

In the force-restore models at diurnal time scale, �̅� and 𝑇𝑎̅̅ ̅ are theoretically equal to 

the daily mean 𝑇𝑠  and 𝑇𝑎 , respectively. Accurate simulation of daily mean 𝑇𝑠  and 𝑇𝑎 

requires �̅� and 𝑇𝑎̅̅ ̅ to be equal or close to actual daily mean 𝑇𝑠 and 𝑇𝑎. Setting �̅� and 𝑇𝑎̅̅ ̅ as 

the climatologies of daily mean 𝑇𝑠  and 𝑇𝑎  in the FRMEP model will not capture the 

episodic events, thus leading to a relativly large difference between the simulated and 



103 

 

observed values. Note that the amplitudes of simulated 𝑇𝑠 and 𝑇𝑎 both agree closely with 

the observations (Figures 3.18(a) and 3.18(e)) as long as the modeled 𝑄 and 𝐻 agree with 

the observations (Figures 3.18(b) and 3.18(f)). This demonstrates the feature of the 𝐹𝑅𝑀𝑇𝑠 

and 𝐹𝑅𝑀𝑇𝑎 that the heat flux forcings dominates the amplitude of the diurnal variation of 

𝑇𝑠 and 𝑇𝑎, respectively. 

The results suggest that the specification of �̅� and 𝑇𝑎̅̅ ̅ has stronger impacts on long-

term simulations than short-term simulations. This is a major limitation of the force-restore 

model for long-term simulations. A possible solution to this problem is to restart the 

simulations periodically using observed 𝑇𝑠  and 𝑇𝑎  as initial condition, which implicitly 

specifies the reference temperature in the 𝐹𝑅𝑀𝑇𝑠 and 𝐹𝑅𝑀𝑇𝑎, respectively. Figure 3.16(c) 

shows the FRMEP modeled 𝜃𝑠 with the corresponding scatter plot shown in Figure 3.16(d). 

The close agreement between the FRMEP predicted 𝜃𝑠 and 𝜃𝑂𝐵𝑆 is evident (bias 7×10-3 m3 

m-3, 𝑟  = 0.93). The FRMEP modeled 𝜃𝑠  reproduces the wetting-drying cycles at sub-

diurnal to seasonal/annual time scales and captures the rapid variations of soil moisture in 

response to rain events as shown in Figures 3.18(c) and 3.16(c), respectively. 

The magnitude of 𝑄𝑀𝐸𝑃  is higher than 𝑄𝑂𝐵𝑆 , as shown in Figures 3.17(a) and 

3.17(b), mainly resulting from multiple sources of measurement errors as discussed in 

Section 3.2.4. Figure 3.17(c) shows that 𝐸𝑀𝐸𝑃  agrees closely with 𝐸𝑂𝐵𝑆  most of time 

except for when 𝐸𝑂𝐵𝑆 has large aberrations that are presumably caused by the measurement 

errors during rain events (e.g., see also the peaks on days 39 to 42 due to rainfall in Figure 

3.18(d)). 𝐻𝑀𝐸𝑃  agrees more closely with 𝐻𝑂𝐵𝑆  during the monsoon season (July to 

September) than outside the monsoon season as shown in Figure 3.17(e). This implies that 
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the energy partitioning in the MEP model may be biased presumably resulting from the 

calibration of the wetness function (Eq. (3.36)) for estimating 𝑞𝑠  (Eq. (3.35)). The soil 

texture dependent parameter 𝛽 in Eq. (3.36), obtained as ≈ 2 and used for the one-year 

simulation, was calibrated by fitting the MEP modeled surface heat flux to the observations 

using the data over the entire year. However, the calibrated 𝛽 with the best overall fitting 

does not guarantee its universal applicability. The 𝛽 may also be seasonal dependent due 

to the change of surface type (e.g., bare soil to vegetated surface and vice versa). For this 

specific site, using 𝛽  = 2 yields good agreement between 𝐻𝑀𝐸𝑃  and 𝐻𝑂𝐵𝑆  during the 

monsoon season, while 𝐻𝑀𝐸𝑃  is underestimated outside the monsoon season. In sum, 

parameter estimations of the FRMEP model, especially under long-term simulation, 

requires further tests before applying the FRMEP model to long-term simulation.  

Despite the biases in the daily mean values, diurnal variations of 𝑄, 𝐸, and 𝐻 are 

well captured by the FRMEP model throughout the year (see Figures 3.18 (b), 3.18(d) and 

3.18(f)). The correlations between the MEP modeled and observed heat fluxes at sub-daily 

scale are 0.92, 0.74, and 0.86 for 𝑄, 𝐸, and 𝐻, respectively. The MEP model also captures 

the seasonal variations of 𝐸 and 𝐻 validated by the high correlations with observations 

(0.86 and 0.89 for 𝐸 and 𝐻) as shown in Figures 3.17(d) and 3.17(f), respectively. The 

seemingly lower correlation between daily mean 𝑄𝑀𝐸𝑃  and 𝑄𝑂𝐵𝑆  (𝑟  = 0.58) is mainly 

caused by the potentially underestimated daily mean 𝑄𝑂𝐵𝑆 (Figure 3.17(b)). 
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Figure 3.17:  Daily-averaged (a) 𝑸𝑴𝑬𝑷, (c) 𝑬𝑴𝑬𝑷, (e) 𝑯𝑴𝑬𝑷 (solid red) predicted by the 

FRMEP model versus observations (solid black) over 2009 at the LH 

site. The corresponding scatter plots are shown on the right panel. 

Precipitation 𝑷 is shown on the top of (c). 
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Figure 3.18:  30-minutes (a) 𝑻𝒔 , (b) 𝑸𝑴𝑬𝑷 , (c) 𝜽𝒔 , (d) 𝑬𝑴𝑬𝑷 , (e) 𝑻𝒂 , and (f) 𝑯𝑴𝑬𝑷 

predicted by the FRMEP model (dashed red) versus observations (solid 

black) of the LH site, January 30 to March 1, 2009. Precipitation 𝑷 is 

shown on the top of (c). 

 

3.7 Summary 

In this study, a coupled force-restore model of surface temperature, soil moisture, 

and near-surface air temperature (FRMEP) is formulated by incorporating the MEP model 

of surface heat fluxes and including the gravitational drainage term. The FRMEP model is 
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driven by surface radiation and precipitation data without using other meteorological 

variables, such as air temperature, humidity, wind speed and surface roughness lengths 

among others. The FRMEP model has reduced sensitivity to the uncertainties of model 

inputs and parameters compared to the classical FRMs.  

The newly formulated FRMEP model was evaluated using observations from two 

field experiments with contrasting climate and soil moisture conditions. The case studies 

suggest that the FRMEP model predicted surface temperature, soil moisture, near-surface 

air temperature, and heat fluxes are in close agreements with observations at the two sites 

with significant contrasts in climatic and soil wetness conditions. This study shows that the 

FRMEP model provides more reliable predictions compared to classical FRMs, which are 

driven by observed or bulk parameterized heat fluxes. For short-term simulations, the 

modeling errors of the FRMEP predictions are in general lower than those of the classical 

FRMs, which are forced by observed or bulk formula based surface heat fluxes (bias 1~2 

oC vs. ~4 oC for surface temperature, 0.02 m3 m-3 vs. 0.05 m3 m-3 for surface soil moisture, 

less than 1 oC vs. 2~3 oC for near-surface air temperature). The diurnal variations of surface 

temperature, soil moisture, near-surface air temperature and surface heat fluxes are well 

captured by the FRMEP model evidenced by the high correlations between the model 

predictions and observations (above 0.7). The one-year simulation showed that the FRMEP 

model well captures the seasonal variations of surface temperature, soil moisture, and near-

surface air temperature (correlations 0.93, 0.93, and 0.87, respectively) with mean biases 

of 1.7 oC, 6×10-3 m3 m-3, and 0.49 oC, respectively.  

This study also shows that the MEP modeled surface heat fluxes improve the 

FRMEP model performance during nighttime and rainy period whenever the observed heat 
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fluxes have large measurement errors. The revised FRM of soil moisture, taking the 

gravitational drainage term into account, significantly improves the soil moisture 

predictions under high soil moisture conditions. This suggests that the drainage term cannot 

be neglected under wet soil condition. The results of the one-year simulation indicate that 

the specification of model parameters, such as the reference temperatures of the FRMs and 

the wetness function for determining surface humidity, is the major limitation and source 

of uncertainty of applying the FRMEP model to long-term simulations.  
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CHAPTER 4. NEW ESTIMATES OF GLOBAL SURFACE 

ENERGY BUDGETS BASED ON THE MEP MODEL 

4.1 Motivation 

One major challenge in the study of global climate change is monitoring and 

modeling of surface energy and water budgets. Numerous studies (e.g. Trenberth et al., 

2009; Jiménez et al., 2011; Mueller et al., 2011, 2013) showed that the existing global data 

products have difficulties producing consistent estimates of surface energy budgets, 

especially surface heat fluxes. These difficulties are arguably as a result of the drawbacks 

of the commonly used BTMs as discussed in Section 2.3.1. The estimates of global surface 

energy fluxes at regional and sub-annual time scales are expected to have even higher 

uncertainties. More importantly, there are no estimates of global water-snow-ice surface 

conductive heat fluxes to balance the surface upward longwave radiation, latent heat, and 

sensible heat over transparent surface media (Eq. (2.2)). 

Another potential source of error and uncertainty in the existing global surface 

energy budget estimates is the exclusion of contributions from the polar regions and sea 

ice covered area (e.g., Stephens et al., 2012). Snow-ice surface heat fluxes are fundamental 

components of surface energy budget in permafrost regions (Strasser et al., 2008; 

Westermann et al., 2009). Over snow-ice surfaces, the surface energy balance determines 

the amount of energy that is available for sublimation and melting/freezing, which directly 

couples the surface energy balance to the surface mass balance (van den Broeke et al., 

2011). However, few existing models simulate the full seasonal sublimation (e.g., Grachev 
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et al., 2007) due to logistical difficulties and extreme environmental conditions. Lynch et 

al. (1999) showed that the quantification of latent and sensible heat fluxes under arctic 

conditions still faces challenges from both measurement and modeling aspects.  

The MEP model, which has enhanced physical constraints and reduced uncertainty 

compared to conventional flux models, provides a new promising method to fill the gaps 

in our current understanding of global surface energy budgets. In this study, global 

climatology of surface heat fluxes together with the corresponding uncertainty is re-

evaluated using the MEP model utilizing the input data from contemporary remote sensing 

and reanalysis products with global coverage. The corresponding regional and seasonal 

analyses evaluated at continental and ocean basin scales are examined to quantify their 

contributions to global surface energy budgets. Global sublimation/deposition, sensible, 

and surface conductive heat fluxes over land snow-ice and sea ice covered areas are 

produced separately owing to the unique formulation of the MEP model. The global 

contributions of polar region heat fluxes to the global surface heat flux budgets is quantified 

for the first time. Land snow and sea ice cover effects on the estimates of global surface 

heat flux budgets are also analyzed. 

The formulation of the MEP model of heat fluxes over water-snow-ice surface as 

well as the uncertainty estimates are given in Sections 4.2 and 4.3. A description of remote 

sensing observations and reanalysis data products used in this study is given in Section 4.4. 

Section 4.5 compares the MEP-based estimates of global surface energy budgets and 

previous estimates. The results of regional analysis are given in Section 4.6. Section 4.7 

presents an analysis of the MEP estimated global land snow-ice and sea ice surface heat 

fluxes. Section 4.8 gives a brief summary of the new estimates. 
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4.2 The MEP Model of Heat Fluxes over Water-snow-ice Surfaces 

The MEP model of heat fluxes over land surfaces is described in Section 3.3. For 

the case of water-snow-ice surfaces (transparent media), the dissipation function 𝐷𝑠  is 

expressed as a function of surface latent 𝐸, sensible 𝐻, and water-snow-ice conductive 𝑄 

(within the cool skin) heat flux (Wang et al., 2014): 

 
𝐷𝑠 =

2(𝑄 + 𝑅𝑛
𝑆)2

𝐼𝑤𝑠𝑖
+
2𝐻2

𝐼𝑎
+
2𝐸2

𝐼𝑒
 (4.1)  

where 𝑅𝑛
𝑆 is the surface net solar radiation (W m-2), 𝐼𝑤𝑠𝑖 the thermal inertia parameter of 

water-snow-ice media (J m-2 K-1 s-1/2 ≡ tiu). 𝐼𝑎 and 𝐼𝑒 are identical to those in Eqs. (3.31) 

and (3.32).  

Under the surface energy constraint as in Eq. (2.2), the MEP model predicted 𝐸, 𝐻, 

and 𝑄 through the following algebraic equations (Wang et al., 2014): 

 

{
 
 

 
 [1 + 𝐵(𝜎) +

𝐵(𝜎)

𝜎

𝐼𝑤𝑠𝑖
𝐼0
|𝐻|

−1
6 ]𝐻 = 𝑅𝑛

𝐸 = 𝐵(𝜎)𝐻                                             

𝑄 = 𝑅𝑛
𝐿 − 𝐸 − 𝐻                                   

 (4.2) 

where 𝑅𝑛
𝐿  is the surface net longwave radiation (W m-2). The definitions of the other 

variables have been given in Section 3.3. The formulations of 𝜎 and 𝐵(𝜎) are given in Eqs. 

(3.32) and (3.34), respectively. The vertical distance 𝑧 in 𝐼0 (Eq.(3.31)) is set at 2.5 m 

above the surface where the sensitivity of the MEP model predicted heat fluxes on 𝑧 is 

weak. Over water-snow-ice surfaces, 𝑞𝑠 is often assumed to be the saturation humidity at 

𝑇𝑠 . Therefore, 𝜎  as well as  𝐵(𝜎) is a function of 𝑇𝑠  alone according to the Clausius-
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Clapeyron equation. Note that over water-snow-ice surfaces, MEP 𝐸  and 𝐻  are solved 

from 𝑇𝑠 and 𝑅𝑛 only, while MEP 𝑄 requires 𝑅𝑛
𝑆 or 𝑅𝑛

𝐿  (𝑄 = 𝑅𝑛
𝐿 − 𝐸 − 𝐻) according to Eq. 

(4.2). In contrast, the MEP 𝑄 over land surfaces only need input of 𝑅𝑛 (Eq.(3.33)) since 

soil is non-transparent to sunlight.  

The thermal inertia parameter 𝐼𝑤𝑠𝑖 is defined as  

 𝐼𝑤𝑠𝑖 ≡ √𝜌𝑤𝑠𝑖𝑐𝑤𝑠𝑖𝜆𝑤𝑠𝑖 (4.3)  

where 𝜌𝑤𝑠𝑖 is the bulk density, 𝑐𝑤𝑠𝑖 the specific heat, and 𝜆𝑤𝑠𝑖 the thermal conductivity of 

water-snow-ice media. Over water and ice surfaces, 𝐼𝑤𝑠𝑖 are estimated as 1560 and 1920 

tiu (with 𝜌𝑤 = 103 kg m-3 the density, 𝑐𝑤 =  4.18×103 J kg-1 K-1 the specific heat, 𝜆𝑤 = 0.58 

W m-1 K-1 the heat conductivity of liquid water; 𝜌𝑖 = 0.92×103 kg m-3 the density, 𝑐𝑖 = 

1.82×103 J kg-1 K-1 the specific heat, and 𝜆𝑖 = 2.2 W m-1 K-1 the heat conductivity of ice). 

Over snow surfaces, 𝐼𝑤𝑠𝑖 is expressed as a function of snow density 𝜌𝑠𝑛𝑜𝑤 with the thermal 

conductivity 𝜆𝑠𝑛𝑜𝑤 parameterized as (e.g., Mellor, 1977; Fujita and Ageta, 2000) 

 𝜆𝑠𝑛𝑜𝑤 =  0.029(1 + 10
−4𝜌𝑠𝑛𝑜𝑤

2 ) (4.4)  

and the specific heat of snow 𝑐𝑠𝑛𝑜𝑤  set to be identical to that of ice. In this study, 

sublimation/deposition, sensible heat, and conductive heat fluxes over land snow-ice/sea 

ice surfaces are denoted by 𝐸𝑆𝐼, 𝐻𝑆𝐼, and 𝑄𝑆𝐼, respectively, to make a distinction between 

heat fluxes over snow-ice and water surfaces.  

It is important to re-emphasize that the MEP model allows the heat fluxes to be 

retrieved from radiation, temperature and/or humidity without using temperature and 

humidity gradients, wind speed, and surface roughness length(s) data. The MEP model 
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parameterizes the same physical processes underlying the fluxes as those in the existing 

flux models including the bulk transfer model (BTM). The difference is that the MEP 

method makes a more effective use of the information that is most relevant to heat fluxes 

provided by the surface variables (radiation, temperature, and/or humidity) than the 

conventional methods. 

 

4.3 Uncertainty of the MEP Surface Heat Fluxes  

The MEP model predicted surface heat fluxes, as in Eqs. (3.33) (land) and (4.2) 

(water-snow-ice), are mathematically expressed as functions of 𝑅𝑛 , the dimensionless 

variable 𝜎 ∝ 𝑞𝑠/ 𝑇𝑠
2 and model parameter 𝛽𝑠 ≡ 𝐼𝑠/𝐼0. The uncertainty of a flux 𝑋 (𝑋 = 𝐸, 

𝐻, 𝑄), Δ𝑋, may be expressed as 

 
Δ𝑋 =

𝜕𝑋

𝜕𝑅𝑛
Δ𝑅𝑛 +

𝜕𝑋

𝜕𝜎
Δ𝜎 +

𝜕𝑋

𝜕𝛽𝑠
Δ𝛽𝑠 (4.5) 

where Δ𝑅𝑛, Δ𝜎, and Δ𝛽𝑠, are the uncertainties of 𝑅𝑛, 𝜎, and 𝛽𝑠, respectively. Δ𝜎 and Δ𝛽𝑠 

are related to the uncertainties of Δ𝑇𝑠, Δ𝑞𝑠,  Δ𝐼𝑠, and Δ𝐼0 through 

 
Δ𝜎 =

𝜕𝜎

𝜕𝑇𝑠
Δ𝑇𝑠 +

𝜕𝜎

𝜕𝑞𝑠
Δ𝑞𝑠 = 𝜎 (

Δ𝑞𝑠
𝑞𝑠

− 2
Δ𝑇𝑠
𝑇𝑠
) (4.6) 

 
Δ𝛽𝑠 =

𝜕𝛽𝑠
𝜕𝐼𝑠

Δ𝐼𝑠 +
𝜕𝛽𝑠
𝜕𝐼0

Δ𝐼0 = 𝛽 (
Δ𝐼𝑠
𝐼𝑠
−
Δ𝐼0
𝐼0
) (4.7) 

The partial derivatives in Eq. (4.5) are derived from Eqs. (3.33) and (4.2): 

 𝜕𝐻

𝜕𝑅𝑛
= [1 + 𝐵 +

5𝐵

6𝜎
𝛽 |𝐻|

−1
6 ]

−1

 (4.8) 
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 𝜕𝐸

𝜕𝑅𝑛
= 𝐵

𝜕𝐻

𝜕𝑅𝑛
 (4.9) 

 𝜕𝑄

𝜕𝑅𝑛
= 1 −

𝜕𝐸

𝜕𝑅𝑛
−
𝜕𝐻

𝜕𝑅𝑛
 (4.10) 

 𝜕𝐻

𝜕𝜎
= 𝐻 [

−11

2(𝐵 − 6)
+
2𝐵(𝐵 + 6) − 11𝜎

2𝜎(𝐵 + 6)

𝛽

𝜎
|𝐻|

−1
6 ] [1 + 𝐵 +

5𝐵

6𝜎
 𝛽|𝐻|

−1
6 ]

−1

 (4.11) 

 𝜕𝐸

𝜕𝜎
=

11

2(𝐵 + 6)
𝐻 + 𝐵

𝜕𝐻

𝜕𝜎
 (4.12) 

 𝜕𝑄

𝜕𝜎
= −

𝜕𝐸

𝜕𝜎
−
𝜕𝐻

𝜕𝜎
 (4.13) 

 𝜕𝐻

𝜕𝛽𝑠
=

−11

2(𝐵 + 6)
𝐻|𝐻|

−1
6 [1 + 𝐵 +

5𝐵

6𝜎
𝛽|𝐻|

−1
6 ]

−1

 (4.14) 

 𝜕𝐸

𝜕𝛽𝑠
= 𝐵

𝜕𝐻

𝜕𝛽𝑠
 (4.15) 

 𝜕𝑄

𝜕𝛽𝑠
= −

𝜕𝐸

𝜕𝛽𝑠
−
𝜕𝐻

𝜕𝛽𝑠
 (4.16) 

For the cases of water-snow-ice surfaces, Δ𝑞𝑠  in Eq. (4.6) drops out as 𝑞𝑠  over 

saturation surface is a function of 𝑇𝑠, while Δ𝐼𝑠 = 0 since the thermal inertia of liquid water, 

snow, and ice are known constants. Δ𝜎  is dominated by Δ𝑞𝑠  due to relatively large 

uncertainty of humidity measurements (e.g., Δ𝑞𝑠/𝑞𝑠~10% vs. Δ𝑇𝑠/𝑇𝑠~0.3%). In this study, 

uncertainty of 𝐼0 is ignored when the empirical coefficients in the MOSE are assumed to 

be known as fixed constants. Then, the uncertainty of 𝐼𝑠, hence 𝛽𝑠, is caused by that of the 

thermal inertia of dry soil 𝐼𝑑 and soil moisture 𝜃 according to Eq. (3.12). The uncertainty 

of 𝐼𝑠 due to the measurement error of soil moisture ~0.04 m3 m-3 is about 50 tiu according 

to Eq. (3.12) (Yi et al., 2011; Lakshmi, 2013). The dominant soil types of the Earth include 

sandy loam, loam, silt loam, sandy clay loam, and clay loam (Nachtergaele et al., 2012) 
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with thermal inertia in the range of 600-1000 tiu (Farouki, 1982; Wang et al., 2010). In this 

analysis, a constant 𝐼𝑑 = 800 tiu is used as a representative value of 𝐼𝑑. Combing the two 

sources of uncertainties of 𝐼𝑠  leads to a maximum Δ𝐼𝑠/𝐼𝑠 ≅ 20%. Note that 𝐼𝑠  and the 

associated uncertainty only affect the MEP fluxes over two thirds of the land masses which 

are not covered with dense vegetation. 

 

4.4 Data Products 

Surface radiation and temperature data from NASA CERES (Wielicki et al., 1996) 

during 2001-2010 are used as the input of the MEP model. The CERES is a set of 

radiometers designed based on the ERBE (Barkstrom et al., 1989). The CERES data is 

derived from observations made by the Terra and Aqua satellites, which have improved 

spatial resolution and instrument calibration than previous generation of the ERBE 

products. The surface radiation from the CERES SYN 1deg-3Hour data product (Edition 

3A, Level 3) with 3-hourly 1o×1o resolution is used (http://ceres.larc.nasa.gov/-

products.php?product-=SYN1deg). The CERES SYN1deg-3Hour surface radiative fluxes 

are computed based on the Langley Fu-Liou radiative transfer model (Fu and Liou, 1993) 

using the cloud properties from Moderate Resolution Imaging Spectroradiometer 

(MODIS) and geostationary satellite, atmospheric profiles from NASA GMAO, and 

aerosol properties from MODIS. The modeled radiative fluxes are constrained (tuned) to 

the observed CERES TOA fluxes. The CERES surface temperature data are obtained using 

the GMAO GEOS-4 and 5 reanalysis (Rienecker et al., 2008). The uncertainty of CERES 

global, land, and ocean annual surface net radiation (12, 16, and 14 W m-2, respectively) 
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estimated based on the observations of cloud and aerosols properties from the CALIPSO, 

CloudSat, and MODIS (Kato et al., 2012) will be used in the uncertainty analysis of the 

MEP fluxes in this study. 

Surface specific humidity and top layer soil moisture data over the same period are 

available from the NASA MERRA reanalysis dataset (product tavg1_2d_flx_Nx and 

tavg1_2d_mld_Nx, available at http://disc.sci.gsfc.nasa.gov/daac-bin/DataHoldings.pl) 

with hourly 0.5o×0.67o resolution (Bosilovich et al., 2011; Rienecker et al., 2011). The 

MERRA surface humidity and soil moisture data were converted to 3-hourly 1o×1o 

resolution consistent with the CERES data products. Snow mass, snow depth, and 

fractional snow and sea ice coverage data, originally at hourly 0.5o×0.67o resolution from 

MERRA, are applied at daily 1o×1o resolution in the MEP simulations.  

Land-cover data are adopted from the International Geosphere-Biosphere 

Programme (IGBP) land cover climatology with 1/60 degree resolution (Townshend, 

1992) (http://modis-atmos.gsfc.nasa.gov/ECOSYSTEM/-format.html). The IGBP data 

were converted to 1o×1o resolution providing the fractional coverage of each surface type 

(e.g., bare soil, vegetated, water, ice). The fractional coverage of each surface type based 

on the IGBP data (climatology) was updated daily by incorporating fractional snow and 

sea ice coverage data from MERRA. Snow and sea ice cover changes the surface energy 

budgets through the change of (1) surface type (from soil to snow) and (2) thermal 

properties (e.g., from water to ice). Figure 4.1 shows an example of the changes of 

fractional land and ocean coverages due to snow and sea ice on January 10, 2005. The 

surface type over Antarctica and Greenland was set to be permanent ice according to the 

IGBP land cover climatology data since the MERRA snow data are not available over the 
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polar regions (PoRs). The PoRs are defined as the regions beyond 61.5o latitude (north and 

south) in this study. 

 

Figure 4.1:  Fractional coverage of land (a) without (b) with snow presence and ocean 

(c) without (d) with sea ice presence on January 10, 2005.  

The MEP-based estimates of global and regional surface energy budgets will be 

compared with other estimates from reanalysis data products and previous studies (see 

Section 2.4). The delineations of continents and oceans are based on those provided by the 

NASA Energy and Water Cycle Study (NASA NEWS) - Climatology of the First Decade 

of the Twenty-first Century Dataset (Rodell et al., 2015). Note that the ocean surface 

(conductive) heat flux 𝑄 from the existing products is computed as a residual of the energy 

balance equation as in Eq. (2.2) since it is not available from existing products. The data 

products used for model inputs and validation are list in Tables 4.1 and 4.2. As surface heat 

flux data over the PoRs are essentially non-existence, the analyses of the MEP surface heat 
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fluxes exclude the contributions from the PoRs when compared with previous estimates 

for the purpose of consistency. An analysis of the MEP estimates of surface heat fluxes 

over the PoRs as well as snow and sea ice covered areas will be given in Section 4.7. 

Table 4.1:  List of data products used for model inputs of the MEP simulations 

Variable Source of Data 
Time 

Period 

Resolution 

Spatial Temporal 

𝑹𝒏, 𝑹𝒏
𝑳  NASA CERES 2001-2010 1o×1o 3-hourly 

𝑻𝒔 GMAO GEOS 2001-2010 1o×1o 3-hourly 

𝒒𝒔, 𝜽𝒔 NASA MERRA 2001-2010 0.5o×0.67o hourly 

𝝆𝒔𝒏𝒐𝒘 (Mass/Depth), 

Snow/Sea ice Coverage 
NASA MERRA 2001-2010 0.5o×0.67o hourly 

Land Cover IGBP - 1/60 o×1/60 o - 

 

Table 4.2:  List of data products used for validating the MEP estimates of surface heat 

fluxes 

Data Set Time Period 
Resolution 

Spatial Temporal 

NASA MERRA 2001-2010 0.5o×0.67o Monthly 

NASA GLDAS-NOAH 2001-2010 1o×1o Monthly 

WHOI OAFlux 2001-2010 1o×1o Monthly 

National Climatic Data Center (NCDC) 

(now National Centers for 

Environmental Information, NCEI) 

2001-2010 - Yearly 
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4.5 MEP-based Estimates of Global Surface Heat Fluxes 

 Global Land Area 

Figure 4.2(a) shows the MEP model predicted 2001-2010 climatology (annual 

mean) of evapotranspiration (or latent heat flux) 𝐸 over lands using the 3-hourly CERES 

surface net radiation and temperature data supplemented by the MERRA surface specific 

humidity and soil moisture data. The MEP estimated annual mean 𝐸 , 492 mm yr-1 (1.35 

mm d-1 or 39 W m-2), is consistent with earlier estimates including, for example, the 1982-

2008 climatology ~478 mm yr-1 (Jung et al., 2010, Figure 4.2(b)) based on the analysis 

combining global ground fluxes network, satellite remote sensing with surface 

meteorological data. The MEP estimated global annual mean 𝐸  is consistent with the 

NASA GLDAS reanalysis data, 467 mm yr-1 (37 W m-2) (Rodell et al., 2004; Wang and 

Dickinson., 2012, see Figure 4.2(d)), but lower than 642 mm yr-1 from the MERRA 

reanalysis data (Figure 4.2(c)) although with similar spatial patterns. The global annual 

mean of MEP 𝐸 is also comparable to other existing reports and data products shown in 

Table 4.3. Other reported estimates, e.g., Figure 1(a) in (Mueller et al., 2011), Table 8 in 

(Wang and Dickinson, 2012), range from 303 mm yr-1 (0.83 mm d-1 or 24.1 W m-2) to 730 

mm yr-1 (2 mm d-1 or 58 W m-2). The spatial pattern of the MEP 𝐸 is consistent with that 

of 𝑅𝑛 and 𝑞𝑠 shown in Figures 4.3(a) and 4.3(c) suggesting that the MEP modeled 𝐸 is 

dominated by surface radiation energy and humidity conditions.  

The uncertainty of the global annual mean MEP 𝐸 over lands is 126 mm yr-1 (0.35 

mm d-1 or 10 W m-2) according to Eqs. (4.5)-(4.16) (see also Table 4.3). Table 4.4 provides 

the corresponding representative values of the partial derivatives and model 
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input/parameter uncertainties of the MEP surface heat fluxes as in Eqs. (4.5)-(4.16) and the 

relative contributions of 𝑅𝑛, 𝜎, and 𝛽𝑠 to the MEP surface heat fluxes. The results show 

that 57% of the uncertainty of MEP 𝐸 over lands is attributed to that of the net radiation 

data, 27% to the parameter 𝜎 representing the uncertainties from temperature and humidity 

data, and 16% to the thermal inertia parameter 𝛽𝑠 at annual scale (see Table 4.4(b)). 

 

Figure 4.2:  Annual mean 𝑬 over land surfaces estimated by (a) MEP model (2001-

2010) according to Eq. (3.33) using the 3-hourly CERES SYN1deg-

3Hour surface net radiation, GMAO GEOS surface temperature, and 

the MERRA reanalysis surface specific humidity data; (b) FLUXNET, 

satellite remote sensing and surface meteorological data over 1982-2008 

(Jung et al., 2010); (c) MERRA (2001-2010); and (d) GLDAS (2001-

2010) data products 
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Figure 4.3:  Global annual mean of CERES (a) 𝑹𝒏, (b) 𝑻𝒔, and MERRA (c) 𝒒𝒔 over 

2001-2010. 

Figure 4.4 shows the 2001-2010 climatology (annual mean) of MEP modeled 𝐻 

and 𝑄 over lands compared with the MERRA and GLDAS reanalysis data. Note that 𝑄 is 

assumed to be zero when land surface is covered with snow/ice due to the insulating effect 

of snow/ice pack that prevents the soil from both warming and cooling (Zhang, 2005; Iwata 

et al., 2008). Solar radiation penetrating snow surfaces (𝑅0) is mostly absorbed by the 
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snowpack caused by the large extinction coefficient (e-folding length), i.e., rapid irradiance 

attenuation within snowpacks (e.g., O’Neill and Gray, 1973; Grenfell and Maykut, 1977). 

The penetration depth of short wave radiation to snow is less than 10 cm with only 3-4% 

of incoming solar radiation can reach the soil surface below 10 cm of snow (Baker et al., 

1991; Järvinen and Leppäranta, 2013). Previous studies have shown that the 𝑇𝑠  below 

snowpacks remains quasi-stationary resulting in a zero 𝑄 during snow-covered periods 

(e.g., Hoelzle et al., 2001; Boike et al., 2003; Iwata et al., 2008; LaMontagne, 2009; Gądek 

and Leszkiewicz, 2010; Lund et al; 2017). Over permeant ice surfaces (e.g., polar and 

alpine regions), 𝑅0 is difficult to reach the soil surface as the thickness of ice packs above 

are easily exceed tens of meters (typical extinction coefficient ~1.5 m-1). In earler snow 

energy balance models, 𝑄 is often neglected (Male and Gray, 1981; Berris and Harr, 1987). 

The global annual mean MEP 𝐻, 33 W m-2, agrees with several earlier estimates 

(Table 4.3), but lower than the GLDAS (51 W m-2) and MERRA (41 W m-2) estimates. 

The spatial pattern of MEP 𝐻  is consistent with that of CERES 𝑅𝑛  but substantially 

different from the MERRA and GLDAS data. Note that the GLDAS and MERRA 𝐻 have 

noticeably different spatial patterns even though they are calculated using the BTM. The 

uncertainty of the MEP modeled global annual mean 𝐻, 7 W m-2 (Table 4.3), is attributed 

to that of 𝑅𝑛 (67%), 𝜎 (14%), and 𝛽𝑠 (19%) as shown in Table 4.4(b). 



123 

 

 

Figure 4.4:  The MEP estimated global (a) sensible heat 𝑯 and (b) ground heat 𝑸 

versus the MERRA (c) 𝑯  (d) 𝑸  and GLDAS (e) 𝑯  (f) 𝑸 . The MEP 

modeled 𝑯  and 𝑸  are obtained according to Eq. (3.33) using the 3-

hourly CERES SYN1deg-3Hour surface net radiation and surface 

temperature, and the MERRA surface specific humidity data. All fluxes 

are annual means over 2001-2010. 

The MEP model estimates a global annual mean 𝑄 of 14 W m-2 over lands shown 

in Table 4.3. The spatial distribution of the MEP 𝑄 depends on land cover with vanishing 

𝑄 over dense-canopy-covered (Amazonia, high latitude North America, and the Eurasian 

continent) as shown in Figure 4.4(b). The 14 W m-2 of global annual mean MEP 𝑄 over 

lands using the 3-hourly CERES 𝑅𝑛 and 𝑇𝑠 is likely overestimated caused by the effects of 

the temporal resolution of the input data on the MEP simulation. A sensitivity analysis 
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(Huang et al., 2014) on the effects of the temporal resolution of input data on the MEP 

fluxes using field observations showed that using daily data in the MEP model tends to 

overestimate daily 𝑄 by one third, as compared to that using half-hourly data. 54%, 16%, 

and 30% of the 10 W m-2 uncertainty of global annual mean MEP 𝑄 are caused by the 

uncertainty of 𝑅𝑛, 𝜎, and 𝛽𝑠, respectively (see Table 4.4(b)). 

Table 4.3:  Global annual means of land surface heat fluxes estimated by the MEP 

model according to Eq. (3.33), CERES surface net and net longwave 

radiation, and products from MERRA reanalysis, Global Land Data 

Assimilation System (GLDAS), NCEP reanalysis, Japanese reanalysis 

(JRA), and other published studies. (Unit: W m-2).  

Variable 𝑬 𝑯 𝑸 𝑹𝒏 𝑹𝒏
𝑳  

𝑹𝒏 − 𝑬 −𝑯 

(= 𝑹𝟎 + 𝑸) 

MEP (2001-2010) 39±10 33±7 14±10 88±16 -70±11 -* 

MEP (2001-2010,  

with polar regions) 
35 30 13 78 -66 -* 

Trenberth et al. (2009) 39 27 0a 66 -80 -* 

MERRA (2001-2010) 51 41 0a 92 -74 -* 

GLDAS (2001-2010) 37 51 0.5 88 -65 -* 

NCEP/NCAR1 51 26 3a 80 -73 -* 

NCEP/DOE II1 52 13 7a 72 -71 -* 

CFSR1 38 35 0a 74 -66 -* 

JRA2 39 27 2a 69 -87 -* 

Jiménez et al. (2011) 45±15 45±15 0a 90±15 - -* 

Mueller et al. (2011) 48±6 - - - - - 

Mueller et al. (2013) 39±12 - - - - - 

Wang & Dickinson (2012) 35±9 - - - - - 

Vinukollu et al. (2011a) 42±5 - - - - - 

Yuan et al. (2010) 33±3 - - - - - 

Zhang et al. (2010a) 43 - - - - - 
a: 𝑸 calculated as the residual of the energy balance equation as in Eq. (2.1) 

*: 𝑹𝒏 − 𝑬 −𝑯 = 𝑸 over land surfaces 

1: Wang et al. (2011)  

2: Trenberth et al. (2009)  
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Table 4.4:  (a) Representative values of the partial derivatives and uncertainties of 

variables in Eq. (3.33) calculated at the global annual mean radiation 

fluxes, temperature and humidity data over lands, and (b) relative 

contributions of uncertainties (%) of the independent variables 𝑹𝒏, 𝝈, and 

𝜷𝒔 to the uncertainties of the MEP land surface heat fluxes according to 

Eqs. (4.5)-(4.16). 

 𝑬 𝑯 𝑸 

(a) 
|𝝏𝑿/𝝏𝑹𝒏| 0.35 0.31 0.34 

𝚫𝑹𝒏 16 
|𝝏𝑿/𝝏𝝈| 17.40 7.10 10.31 

𝚫𝝈 0.15 
|𝝏𝑿/𝝏𝜷𝒔| 4.99 4.40 9.39 

𝚫𝜷𝒔 0.48 

(b) 

𝑹𝒏 57 67 54 

𝝈 27 14 16 

𝜷𝒔 16 19 30 

 

The land mass gaining thermal energy at annual scale predicted by the MEP model 

is consistent with the estimates from NCEP reanalysis products (Table 4.3), while the 

MERRA and GLDAS reanalysis products have a nearly zero annual mean 𝑄 (< 1 W m-2 as 

shown in Table 4.3). In the MERRA and GLDAS LSMs, 𝑄 is linearly proportional to the 

near-surface temperature gradient (Pan and Mahrt, 1987; Chen et al., 1996; Koster et al., 

2000; Ek. et al., 2003). However, the temperature gradient calculated using surface 

temperature and an averaged soil temperature of top soil layer (5-10 cm) tends to be 

underestimated due to the sharp gradient of soil temperature near the surface leading to 

underestimated 𝑄.  

Table 4.3 further shows that the MEP global annual mean 𝐸, 𝐻, and 𝑄 over lands 

decrease by about 4, 3, and 1 W m-2, respectively, when including the PoRs. The MEP 𝐻 

over Greenland is small positive (< 10 W m-2), while the GLDAS data give a relatively 
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large negative 𝐻 (< -20 W m-2). Several reasons may be responsible for the discrepancies. 

For example, the MEP and GLDAS (BTM-based) estimates use different surface energy 

balance equations over snow-ice surfaces (Eq. (2.2) vs. (2.3)). The uncertainties from 

model inputs (e.g., wind speed) and parameters (e.g., SRLs) are difficult to quantify as they 

are not explicitly used in the MEP model. Also, the CERES 𝑅𝑛  used in the MEP 

simulations are consistently greater than the GLDAS 𝑅𝑛. The uncertainty of MEP heat 

fluxes caused by the use of different radiation inputs requires further assessment. The zero 

MEP 𝑄 over Greenland is consistent with the GLDAS estimates, however, due to different 

reasons. The zero MEP 𝑄 are from the snow insulating effect (i.e., snow/ice pack absorbs 

surface solar radiation and prevents the soil from warming and cooling) resulting in zero 

amount of thermal energy entering the soil as discussed previously. By contrast, the zero 

GLDAS 𝑄 is a consequence of the assumption of zero surface net thermal energy at annual 

scale (i.e. Eq. (2.3)).  

The global annual mean land surface heat fluxes (2001-2010) estimated by the MEP 

model and those from MERRA and GLDAS data are shown in Figure 4.5. The 

corresponding model inputs are shown in the right panel. The global annual mean MEP 𝐸 

over lands has an increasing trend of 5.18 mm yr-1 yr-1 (0.41 W m-2 yr-1) during 2001-2010 

with the 95% confidence interval (CI) of 2.90 mm yr-1 yr-1 (0.23 W m-2 yr-1). The increasing 

trend of MEP 𝐸 results from the increasing trend of CERES 𝑅𝑛 and MERRA 𝑞𝑠 as shown 

in Figures 4.5(b) and 4.5(f), while Jung et al. (2010) reported a decreasing trend of global 

annual mean 𝐸  due to the decreasing trend of global soil moisture during 1998-2008 

derived from the Tropical Rainfall Measuring Mission’s (TRMM) (Owe et al., 2008). 

Higher 𝑅𝑛 and 𝑞𝑠 lead to higher 𝐸 according to the MEP model. Higher 𝑅𝑛 implies more 
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radiation energy for heat fluxes, while higher 𝑞𝑠 favors radiation energy dissipated through 

latent heat of phase change. The increasing trend of global annual mean MEP 𝐸  is 

consistent with the MERRA, but opposite to the GLDAS estimates as shown in Figure 

4.5(a).  

 

Figure 4.5:  Global annual mean land surface (a) 𝑬, (c) 𝑯, and (e) 𝑸 estimated by the 

MEP (red), MERRA (blue), and GLDAS (black) (MERRA and GLDAS 

𝑸 are essentially zero, not shown); (b) 𝑹𝒏 (d) 𝑻𝒔 (with CERES surface 

upward longwave radiation 𝑳𝑾𝒖  (green)) data from CERES (red), 

MERRA (blue), and GLDAS (black); (f) MERRA 𝒒𝒔 over 2001-2010.  
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The global annual mean MEP 𝐻 over lands has an increasing trend of 0.18 W m-2 

yr-1 (see Figure 4.5(c)) associated with the increasing trend of the CERES 𝑅𝑛 as shown in 

Figure 4.5(b). The uncertainty of the trend is estimated as 0.18 W m-2 yr-1. The increasing 

global mean 𝐻 predicted by the MEP model is consistent with the GLDAS but opposite to 

the MERRA estimates (see Figure 4.5(c)). The trend of MEP 𝐻 is opposite to that of 

CERES 𝑇𝑠 as shown in Figure 4.5(d). Yet it has been shown that the decreasing trend of 

CERES 𝑇𝑠  (also surface upward longwave radiation 𝐿𝑊𝑢 (in magnitude)) is an artifact 

caused by the switch of the assimilated atmospheric temperature and humidity profile data 

between 2007 and 2008 (from GEOS-4.1 to GEOS-5.2.0, see CERES_SYN1deg_Ed3A 

data quality summary available at https://ceres.larc.nasa.gov/documents/DQ_summaries/-

CERES_SYN1deg_Ed3A_DQS.pdf, see also Figure 4.5(d)). The MEP estimated global 

annual mean 𝑄 has a positive trend of 0.16 W m-2 yr-1 consistent with the increasing trend 

of CERES 𝑅𝑛. The 95% CI of the trend is 0.13 W m-2 yr-1. The results of trend analyses 

are also listed in Table 4.10. An analysis of the impacts of the artifact in CERES 𝑇𝑠 and 

radiation data on the trends of MEP estimated global surface heat fluxes is given in Secion 

4.6. 

The spatial distribution of the trends of MEP surface heat fluxes compared to those 

of the MERRA and GLDAS data are shown in Figure 4.6. The trends of MEP 𝐸 and 𝐻 

agree more closely with those of MERRA as opposed to GLDAS estimates. The trend of 

MEP 𝑄 is positive over most of the land areas, while those of MERRA and GLDAS 𝑄 are 

essential zero as the corresponding annual means are nearly zero. The spatial pattern of the 

trend of MEP 𝐸 (Figure 4.6(a)) is consistent with that of CERES 𝑅𝑛 (Figure 4.6(j)) and 

MERRA 𝑞𝑠  (Figure 4.6(l)), which again illustrates that 𝐸  is dominated by the surface 
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radiation energy and humidity conditions in the MEP model. Figure 4.6(k) clearly shows 

that CERES 𝑇𝑠 has an overall decreasing trend over lands, which is, however, due to the 

artifact of switching the source of atmospheric temperature and humidity profile datasets 

used in the meteorological assimilation system as mentioned previously. 

 

Figure 4.6:  Annual trends (2001-2010) of MEP estimated (a) 𝑬 (b) 𝑯 (c) 𝑸 versus 

those of MERRA (d) 𝑬 (e) 𝑯 (f) 𝑸 and GLDAS (g) 𝑬 (h) 𝑯 (i) 𝑸 with 

those of CERES (j) 𝑹𝒏 (k) 𝑻𝒔 and MERRA (l) 𝒒𝒔 over lands. 

A comparison of the trend of MEP 𝐸 with previous estimates is shown in Figure 

4.7. The spatial pattern of the trend of MEP 𝐸 is qualitatively consistent with those reported 

by (Jung et al., 2010; Yan et al., 2013; Zhang et al., 2016), while its magnitude is greater 

than previous estimates. It is speculated that the relatively large trend in MEP 𝐸 might be 
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partially affected by the artifact in CERES radiation data (i.e., the abrupt increased in 𝑅𝑛 

(decreased 𝐿𝑊𝑢) due to the decreased 𝑇𝑠 between 2007 and 2008, see Figure 4.5(d)). 

 

Figure 4.7:  Annual trend (2001-2010) of MEP 𝑬 over lands compared with previous 

studies. (a) is the same with Figure 4.6(a) with different units (mm yr-1 

yr-1 vs. W m-2 yr-1). Note that (a) uses revered color bar with Figure 

4.6(a) to be consistent with previous studies.  

 

 Global Oceans 

Figure 4.8 shows the 2001-2010 climatology of MEP estimated 𝐸  and 𝐻  over 

oceans using the 3-hourly CERES radiation fluxes and sea surface temperature (SST) data 

for the period 2001-2010 compared with those of the MERRA and OAFlux data. The 

spatial pattern of MEP 𝐸 is consistent with both MERRA and OAFlux data, while the 

spatial distribution of MEP 𝐻 is substantially different from the MERRA and OAFlux data. 

The spatial patterns of the MEP 𝐸 and 𝐻 are consistent with that of CERES 𝑅𝑛. The MEP 
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𝐸  and 𝐻  are constrained by 𝑅𝑛 , while the MERRA and OAFlux 𝐸  and 𝐻  over several 

regions, such as western and northern Pacific and Atlantic oceans, are unrealistically large 

(greater than 𝑅𝑛  violating the conservation of energy). The MEP 𝐸  is lower than the 

MERRA 𝐸 for most areas, while the MEP 𝐻 is in general greater than the MERRA 𝐻 as 

shown in Figure 4.8. The global annual means of MEP ocean surface heat fluxes versus 

other previous estimates are summarized in Table 4.5. The MEP modeled annual mean 𝐸 

over oceans is 747±88 mm yr-1 (61±7 W m-2), which is lower than the previous estimates 

ranging from 1130-1370 mm yr-1 (90-109 W m-2). The global annual mean MEP 𝐻 over 

oceans is 30±3 W m-2, which is higher than the previous estimates of ~10-20 W m-2. 

Previous studies have shown that the MERRA 𝐸  and 𝐻  are subject to large 

uncertainty caused by the biases of model inputs, especially wind and vertical 

temperature/humidity gradient (Brunke et al., 2011; Roberts et al., 2012). The large 

uncertainty in the MERRA data makes it difficult to validate the discrepancy between the 

MEP and MERRA estimates. Roberts et al. (2012) compared the MERRA 𝐸 and 𝐻 over 

oceans with direct measurements and observational-based datasets. They found that the 

MERRA 𝐸 is generally overestimated, while the MERRA 𝐻 is often underestimated. The 

overestimates of MERRA 𝐸  mainly result from the positive biases of wind speed and 

vertical humidity gradient. The underestimation of MERRA 𝐻 is primarily caused by the 

negative bias of estimated vertical temperature gradient, while the areas with high 𝐻 are 

presumably due to large positive bias of wind speed data.  

Roberts et al. (2012) also pointed out that the biases of MERRA 𝐸 and 𝐻 vary with 

the magnitudes of 𝐸 and 𝐻. The MERRA overestimates 𝐸 about 25 W m-2 when observed 
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𝐸 below 50 W m-2, while MERRA underestimates 𝐸 up to 100 W m-2 when the observed 

greater than 250 W m-2. For most densely observed regions where observed 𝐸 ranges from 

50-100 W m-2, the MERRA 𝐸  is overestimated by approximately 10 W m-2. MERRA 

overestimates 𝐻 by 50% to 75% when observations are less than -15 W m-2, while MERRA 

underestimates 𝐻 by 20-50 W m-2 when observed 𝐻 is greater than 40 W m-2. The large 

variable biases of MERRA 𝐸  and 𝐻  lead to seemingly small overall biases relative to 

observations due to error cancellation. 

 

Figure 4.8:  The 2001-2010 climatology of the MEP modeled annual mean (a) latent 

𝑬 and (b) sensible 𝑯 heat fluxes over oceans (top panel) derived using 

the 3-hourly surface net radiation and net long-wave radiation from 

CERES SYN1deg-3Hour data and sea surface temperature (SST) from 

GMAO GEOS versus the MERRA (c) 𝑬 , (d) 𝑯  (central panel) and 

OAFlux (c) 𝑬, (d) 𝑯 (bottom panel) estimates.  
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Table 4.5:  Global annual means of ocean surface heat fluxes estimated by the MEP 

model according to Eq.(4.2). CERES surface net and net longwave 

radiation, and products from Objectively Analyzed Air-Sea Fluxes 

(OAFlux), NCEP reanalysis, JRA, Hamburg Ocean Atmosphere 

Parameters and Fluxes from Satellite Data (HOAPS), SeaFlux data, and 

other published studies. 𝑹𝟎 = 𝑺𝑾𝒅 − 𝑺𝑾𝒖 is defined in Eq. (2.2). (Unit: 

W m-2) 

Source of Products 𝑬 𝑯 𝑸 𝑹𝒏 𝑹𝒏
𝑳  

𝑹𝒏 − 𝑬 −𝑯 

(= 𝑹𝟎 + 𝑸) 

MEP (2001-2010) 61±6 30±3 -143±9 131±14 -53±12 40±6 

MEP (2001-2010,  

with polar regions) 
56 28 -136 122 -52 38 

Trenberth et al. (2009) 97 12 -166b 110 -57 1 

MERRA (2001-2010) 92 16 -171b 118 -63 15 

OAFlux (2001-2010) 98±7 10±1 -161b 134 -52 25 

NCEP-NCAR1 94 11 -161b 109 -56 4 

NCEP-DOE II1 106 6 -163b 116 -51 4 

CFSR1 103 9 -166b 124 -54 12 

JRA2 109 17 -194b 107 -68 -19 

HOAPS2 104 15 - - - - 

SeaFlux3 90±14 18±6 - - - - 
b: 𝑸 calculated as the residual of the energy balance equation as in Eq. (2.2) 

1: Wang et al. (2011)  

2: Trenberth et al. (2009)  

3: Clayson et al. (2013) 

 

The OAFlux 𝐸 and 𝐻 are computed using the COARE bulk algorithm version 3.0. 

The OAFlux estimates are subject to errors and uncertainties from model inputs and 

parameters, which are difficult to validate and quantify given existing technology (Fairall 

et al., 2003). For example, the near-surface profile functions under stable conditions used 

in the COARE 3.0 bulk algorithm are based on, however, the observations over the Arctic 

ice cap (Beljaars and Holtslag, 1991; Persson et al, 2002). The bulk transfer coefficients 

under high wind speed (> 10 m s-1) were calibrated using only a few quality observations. 

More importantly, the bulk algorithm used in MERRA and OAFlux as well as other 
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existing global flux products attempts to balance 𝐸 + 𝐻 with 𝑅𝑛 at annual scale according 

to Eq. (2.3), which is problematic (as discussed in Section 2.1).  

Table 4.6:  (a) Representative values of the partial derivatives and uncertainties of 

variables in Eq. (4.2) calculated at the global annual mean radiation fluxes 

and temperature over oceans, and (b) relative contributions of 

uncertainties (%) of the independent variables 𝑹𝒏 , 𝝈 , and 𝜷𝒔  to the 

uncertainties of MEP ocean surface heat fluxes according to Eqs. (4.5)-

(4.16). 

 𝑬 𝑯 𝑸 

(a) 
|𝝏𝑿/𝝏𝑹𝒏| 0.40 0.20 0.39 

𝚫𝑹𝒏 14 
|𝝏𝑿/𝝏𝝈| 13.67 3.50 10.17 

𝚫𝝈 0.02 
|𝝏𝑿/𝝏𝜷𝒔| 4.74 2.38 7.12 

𝚫𝜷𝒔 0 

(b) 

𝑹𝒏 96 98 97 

𝝈 4 2 3 

𝜷𝒔 0 0 0 

 

The MEP model gives the first directly modeled global ocean surface (conductive) 

heat flux 𝑄  as shown in Figure 4.9(a) (positive -𝑄  indicates that thermal energy is 

transferred from the ocean to the atmosphere). The annual mean 𝑄 obtained from MERRA 

and OAFlux, as shown in Figures 4.9(b) and 4.9(c), are calculated as the residual of the 

ocean surface energy balance equation as in Eq. (2.2). The corresponding 𝐸, 𝐻, and 𝑅𝑛
𝐿  

data are from the MERRA reanalysis, OAFlux, and ISCCP (radiation data used for 

OAFlux) data. Note that the climatology of OAFlux 𝑄 was calculated using data from 

2001-2009 due to the availability of ISCCP radiation data. Spatial patterns of MEP 𝑄 are 

largely consistent with those of MERRA and OAFlux 𝑄 . The global annual mean 𝑄 
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estimated by the MEP model is -143±10 W m-2, which is 10-15% smaller (in magnitude) 

than the estimates from NCEP, ECMWF, JRA, as well as previously reported (also derived 

as the residual of energy balance equation) as shown in Table 4.5.  

 

Figure 4.9:  The 2001-2010 climatology of the (a) MEP modeled annual mean ocean 

surface heat flux 𝑸 (-𝑸 is shown), (c) CERES net solar radiation 𝑹𝟎, and 

(e) net ocean heat flux (ocean heat uptake) 𝑹𝟎 + 𝑸  (= 𝑹𝒏 − 𝑬 −𝑯 ) 

derived using the same input data as in Figure 4.8 vs. the corresponding 

MERRA reanalysis (central panel) and OAFlux data (right panel).  

Figures 4.9(d)-4.9(f) show that the spatial patterns of the CERES, MERRA, and 

ISCCP ocean surface net solar radiation 𝑅0 are consistent with each other. Figures 4.9(g)-

4.9(i) show the comparison of the MEP-based estimates of net ocean heat flux 𝑅0 + 𝑄 =

𝑅𝑛 − 𝐸 − 𝐻 with the MERRA and OAFlux data. The spatial patterns of the MEP-based 

estimates of 𝑅0 + 𝑄 are consistent with that of CERES 𝑅𝑛 as shown in Figure 4.10. The 
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MEP-based estimates of 𝑅0 + 𝑄 have similar, yet a smoother spatial distribution compared 

to MERRA and OAFlux data resulting mainly from the lower estimates of MEP 𝑄 

compared to MERRA and OAFlux data.  

 

Figure 4.10:  The 2001-2010 climatology of CERES 𝑹𝒏 over oceans 

The positive global annual mean 𝑅0 + 𝑄 (40±6 W m-2) by the MEP model indicates 

that oceans gain thermal energy at an annual scale. This result is qualitatively in agreement 

with previous estimates ranging from 3 to 33 W m-2 (Yu and Weller, 2012) and most of 

other data products listed in Table 4.5 except for the Japan reanalysis (JRA). The non-zero 

𝑅0 + 𝑄 is arguably realistic rather than a numerical artifact due to modeling errors and 

uncertainties of model parameters as discussed in Section 2.1. Further quantitative analysis 

of energy dissipation in oceans is needed but beyond the scope of this study. The 

uncertainties of the global annual mean of MEP heat fluxes over oceans are dominated by 

the uncertainty of 𝑅𝑛 measurements (≥ 96%) as shown in Table 4.6(b). The corresponding 

representative values of the partial derivatives and uncertainties of model input/parameter 

are given in Table 4.6(a).  
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Table 4.5 shows that the global annual mean MEP 𝐸, 𝐻, and 𝑄 over oceans, when 

including the PoRs, decrease (in magnitude) by about 5, 2, 7 W m-2, respectively. The 

MEP-based estimates of global annual mean net ocean heat flux decrease slightly from 40 

to 38 W m-2 as a result of a relatively large decrease of 𝑅𝑛 compared to 𝐸 and 𝐻. Figure 

4.11 shows the global annual means of MEP, MERRA, and OAFlux estimated ocean 

surface heat fluxes with the corresponding surface radiations and net ocean heat flux (ocean 

heat uptake) shown on the right panel. The MEP modeled global annual mean ocean 𝐸 and 

𝐻 have negative trends of -0.06 and -0.04 W m-2 yr-1 with the corresponding uncertainties 

estimated as 0.06 and 0.04 W m-2 yr-1, respectively. The negative trends of are consistent 

with the MERRA and OAFlux data as shown in Figure 4.11. Note that the annual mean of 

MEP 𝐸 + 𝐻, 91 W m-2, is not equal to the CERES annual mean 𝑅𝑛, 131 W m-2, resulting 

in a positive net ocean heat flux 𝑅𝑛 − 𝐸 − 𝐻, for the reason discussed in Section 2.1.  

The global annual mean MEP 𝑄 has a trend of -0.08 W m-2 yr-1 associated with a 

trend of 𝑅𝑛
𝐿  -0.17 W m-2 yr-1 as shown in Figures 4.11(e) and 4.11(d). Note that the 

positive/negative trends of 𝑄 and 𝑅𝑛
𝐿  indicate the decrease/increase in magnitudes as 𝑄 and 

𝑅𝑛
𝐿  are always negative over oceans. The uncertainty of global annual mean MEP 𝑄 is 

estimated as 0.16 W m-2 yr-1. The trends and uncertainties of MEP estimated global annula 

mean ocean heat fluxes are also listed in Table 4.13. The increases (in magnitude) of MEP 

𝑄 and net ocean heat flux (𝑅0 + 𝑄) during 2001-2010 are consistent with the OAFlux but 

opposite to MERRA estimates as shown in Figures 4.11(e) and 4.11(f). The abrupt increase 

(in magnitude) of OAFlux 𝑄  from 2001 to 2002 is mainly caused by the large 

corresponding increase (in magnitude) of ISCCP 𝑅𝑛
𝐿 , which may be unreliable. The abrupt 

increase of ISCCP 𝑅𝑛
𝐿  between 2001 and 2002 may be related to the global decrease in 
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cloud amounts recorded by the ISCCP cloudiness data. Evan et al. (2007) found a nearly 

20% reduction in the ISCCP recorded cloud amount from 1983 to mid 2001. However, this 

decrease was demonstrated to be satellite viewing geometry artifacts rather than physical 

changes in the atmosphere. Evan et al. (2007) further state that “The ISCCP data may not 

be appropriate for certain long-term global studies, especially those focused on trends.” 

 

Figure 4.11:  Global annual mean ocean (a) 𝑬, (c) 𝑯, and (e) 𝑸 estimated by the MEP 

(red), MERRA (blue), and OAFlux (black); (b) 𝑹𝒏  (d) 𝑹𝒏
𝑳  (f) 𝑹𝟎 + 𝑸 

data from CERES (red), MERRA (blue), and OAFlux (ISCCP radiation 

data) (black) over 2001-2010 (except for ISCCP radiation data from 

2001-2009).  
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Since direct measurements of surface heat fluxes over oceans are limited, the MEP 

heat fluxes may be validated indirectly by comparing the net ocean heat flux with the 

change of ocean heat content (Δ𝑂𝐻𝐶) of the top ocean layer of certain depth since Δ𝑂𝐻𝐶 

is expected to be positively correlated with 𝑅𝑛 − 𝐸 − 𝐻. Figure 4.12 shows that the MEP 

modeled global annual mean 𝑅𝑛 − 𝐸 − 𝐻  has a decreasing trend during 2001-2010 

qualitatively consistent, as expected, associated with the decreasing trend of the Δ𝑂𝐻𝐶 of 

the top 700-m layer from the NCDC data (Levitus et al., 2012). One explanation for the 

large values MEP 𝑅𝑛 − 𝐸 − 𝐻 relative to Δ𝑂𝐻𝐶 is that part of the absorbed solar radiation 

by the oceans is transferred into deeper ocean layers and dissipated through other physical, 

chemical and biological processes within the oceans. 

 

Figure 4.12:  The annual mean MEP modeled net ocean heat flux (ocean heat uptake) 

𝑹𝒏 − 𝑬 −𝑯 vs. the change in the top 700 m ocean heat content (𝚫𝑶𝑯𝑪) 

from the National Climatic Data Center (NCDC). The correlation 

between 𝑹𝒏 − 𝑬 −𝑯 and 𝚫𝑶𝑯𝑪 is 0.4. 

Figure 4.13 shows the spatial patterns of the trends of ocean surface heat fluxes 

obtained from the MEP, MERRA, and OAFlux associated with those of model inputs 

shown on the bottom panel. The trends of MEP modeled ocean surface heat fluxes are 
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qualitatively consistent with those of MERRA and OAFlux but with different magnitudes. 

Spatial patterns of the MEP 𝐸 trend are consistent with those of CERES 𝑅𝑛 trend. Over 

oceans, the artifacts in CERES radiation and 𝑇𝑠 data (i.e., negative trends of 𝑇𝑠 resulting in 

decreasing 𝐿𝑊𝑢 and increasing 𝑅𝑛) are smaller than those over lands (see Figures 4.13(j)-

4.13(l)).  

 

Figure 4.13:  Annual trends (2001-2010) of MEP estimated (a) 𝑬 (b) 𝑯 (c) 𝑸 versus 

those of MERRA (d) 𝑬 (e) 𝑯 (f) 𝑸 and GLDAS (g) 𝑬 (h) 𝑯 (i) 𝑸 with 

those of CERES (j) 𝑹𝒏 (k) 𝑹𝒏
𝑳 , and (l) 𝑻𝒔 over oceans. 
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 Global (Land and Ocean) 

In this study, the MEP estimates of global annual mean surface heat fluxes are 

calculated as an area-weighted average of MEP land and ocean heat fluxes. The results are 

summarized in Table 4.7. The corresponding uncertainties estimates using Eqs. (4.5)-

(4.16) are shown in Table 4.8. The newly estimated global annual mean 𝐸, 54±6 W m-2 

(682±76 mm yr-1), is lower than previous estimates of 80-90 W m-2 largely due to the lower 

MEP 𝐸 over oceans. The new estimate of global annual mean 𝐻 is 31±3 W m-2, while 

previously reported annual mean 𝐻 has a range of 8-24 W m-2. The MEP estimate of global 

annual net surface heat flux is ~33±6 W m-2 consistent with most of existing products as 

shown in Table 4.7 except for JRA. Note that the existing reanalysis products (1) produce 

nearly zero annual mean 𝑄 over lands and (2) do not have direct estimates of 𝑄 over oceans 

(see Tables 4.3 and 4.5). Decreases of MEP-based estimates of global surface heat fluxes 

and CERES surface radiations by including the PoRs are also shown in Table 4.7.  

Table 4.7:  Global (land and ocean) annual means of surface heat fluxes estimated by 

the MEP model, CERES surface net and net longwave radiation, and 

products from MERRA reanalysis, NCEP reanalysis, JRA, and other 

published studies. (Unit: W m-2) 

Variable 𝑬 𝑯 𝑹𝒏 𝑹𝒏
𝑳  

𝑹𝒏 − 𝑬 −𝑯 

(= 𝑹𝟎 + 𝑸) 

MEP (2001-2010) 54±6 31±3 118±12 -58±10 33±6 

MEP (2001-2010,  

with polar regions) 
50 29 110 -56 31 

Stephens et al. (2012a) 88±10 24±7 113±15 -57±14 1 

Trenberth et al. (2009) 80 17 98 -63 0 

MERRA (2001-2010) 79 19 110 -64 12 

NCEP/NCAR1 81 16 100 -61 3 

NCEP/DOE II1 91 8 103 -57 4 

CFSR1 84 16 110 -57 10 

JRA2 90 19 97 -73 -12 
1: Wang et al. (2011)  

2: Trenberth et al. (2009)  
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The uncertainties of the global annual mean MEP heat fluxes are dominated by 

those of 𝑅𝑛  measurements as shown in Table 4.8(b). The corresponding representative 

values of the partial derivatives and uncertainties of model input/parameter given in Table 

4.8(a). The MEP modeled surface heat fluxes have reduced uncertainties compared to the 

existing data products as the bulk gradients of temperature/humidity gradients, wind speed, 

and surface roughness subject to large uncertainties are not used in the MEP model. The 

uncertainties of the MEP heat fluxes caused by model parameters are limited compared to 

previous estimates which use conventional methods (Bourras, 2006; Yu et al., 2008; Yuan 

et al., 2010; Mueller et al., 2011, 2013; Vinukollu et al., 2011a; Stephens et al., 2012a; 

Clayson et al., 2013). Uncertainties of the MEP heat fluxes can be further reduced with the 

improved accuracy of radiation measurements. 

Table 4.8:  (a) The representative values of the partial derivatives and uncertainties 

of variables calculated at the global annual mean radiation fluxes, 

temperature, and (b) relative contributions of uncertainties (%) of the 

independent variables 𝑹𝒏, 𝝈, and 𝜷𝒔 to the uncertainties of the MEP land 

surface heat fluxes according to Eqs. (4.5)-(4.16). 

 𝑬 𝑯 𝑹𝒏 − 𝑬 −𝑯 

(a) 
|𝝏𝑿/𝝏𝑹𝒏| 0.40 0.23 0.38 

𝚫𝑹𝒏 12 
|𝝏𝑿/𝝏𝝈| 14.56 4.22 10.34 

𝚫𝝈 0.03 
|𝝏𝑿/𝝏𝜷𝒔| 4.91 2.79 7.70 

𝚫𝜷𝒔 0.15 

(b) 

𝑹𝒏 80 83 76 

𝝈 7 4 5 

𝜷𝒔 12 13 19 
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4.6 Regional Analysis 

 Continents 

The climatology of the MEP surface heat fluxes and CERES surface radiative 

fluxes evaluated at continental scale, derived from the results presented in Section 4.5.1, is 

shown in Table 4.9. Also shown in Table 4.9 are the estimates of continental scale surface 

energy budgets reported by L’Ecuyer et al. (2015) (shown in parentheses). The radiative 

fluxes between the CERES (used in this study) and those reported in L’Ecuyer et al. (2015) 

obtained from multiple products are comparable over most of the continents with the 

exception of Antarctica.  

The MEP 𝐸 and 𝐻 are slightly lower than the estimates reported by L’Ecuyer et al. 

(2015) (except for Australia and Antarctica) obtained from Princeton ET, MERRA, and 

GLDAS reanalysis products. The annual means of MEP 𝑄 over continents is positive (i.e., 

land mass is gaining thermal energy), while those reported by L’Ecuyer et al. (2015) are 

exactly zero globally. The discrepancies result mainly from the use of different underlying 

surface energy balance equations between the MEP and other existing products (Eq. (2.1) 

vs. Eq. (2.3)). The annual mean 𝐸 and 𝐻 over Antarctica reported by L’Ecuyer et al. (2015) 

have opposite signs indicating a violation of the surface energy balance assuming that the 

same turbulent mixing is responsible for the transport of heat and water vapor within the 

atmospheric boundary layer. Furthermore, the corresponding surface energy budgets do 

not close. The discrepancies of 𝐸 and 𝐻 between the MEP and previous estimates may 

partially result from the use of different radiative flux data in the MEP model (i.e., CERES) 
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and other data products. The effects of using various radiative flux inputs on the MEP 

estimates of global mean surface heat fluxes requires further tests. 

Table 4.9:  The 2001-2010 climatology of continental scale MEP modeled surface heat 

fluxes, CERES radiative fluxes, and the 2000-2009 climatology reported 

by L’Ecuyer et al. (2015) shown in the parenthesis.  

Continent 𝑬 𝑯 𝑸 𝑹𝒏 𝑹𝒏
𝑳  

Global Land 

(with polar regions) 
35 (38) 30 (38) 12 (-) 78 (76) -66 (-67) 

North America 30 (33) 29 (32) 12 (-) 72 (65) -58 (-60) 

South America 66 (77) 42 (52) 14 (-) 124 (129) -60 (-57) 

Africa 45 (44) 38 (58) 17 (-) 102 (102) -87 (-90) 

Australia 41 (26) 42 (77) 21 (-) 105 (103) -100 (-94) 

Antarctica 0.18 (1) 0.34 (-16) 0 (-) -3.1 (-20) -35 (-44) 

Eurasia 30 (33) 28 (34) 12 (-) 70 (67) -64 (-64) 

Asia 31 28 13 73 -67 

Europe 26 25 11 63 -55 

 

Figure 4.14 shows the annual and seasonal trends associated with the corresponding 

uncertainty estimates (95% CI) of the MEP land surface heat fluxes as well as model inputs 

for each continent (see also Table 4.10). The results showed that the trends of MEP 𝐸 on 

each continent are consistent with those of CERES 𝑅𝑛  and MERRA 𝑞𝑠  indicating that 

MEP 𝐸 is dominated by surface radiation energy and humidity conditions. Trends of MEP 

𝐸 over continents are also consistent with those of surface layer soil moisture 𝜃𝑠  from 

MERRA, which is reasonable as evapotranspiration and soil moisture are expected to be 

positively correlated. Figures 4.14(a) and 4.14(d) show that over half of the increased 𝑅𝑛 

were used to enhance 𝐸 (except for Antarctica).  
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Figure 4.14:  The trends and uncertainties (2001-2010) of the MEP estimated (a) 𝑬 (b) 𝑯 (c) 𝑸 and CERES (d) 𝑹𝒏 (e) 𝑻𝒔 and 

MERRA (f) 𝒒𝒔 (g) 𝜽𝒔 for the continents (MAM: March–April–May; JJA: June–July–August; SON: September–

October–November; DJF: December–January–February). 
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Table 4.10:  The annual and seasonal trends of the MEP modeled surface heat fluxes and model inputs for the continents 

associated with the corresponding uncertainties (95% CI). The numbers in each grid from top to bottom are the 

annual trend followed by seasonal trends (in the order of MAM, JJA, SON, DJF). The calculations are based on the 

data over 2001-2010. (Unit: heat and radiative fluxes (W m-2 yr -1), 𝑻𝒔 (
oC yr -1), 𝒒𝒔 (g kg-1 yr-1), 𝜽𝒔 (10-3 m3 m-3 yr-1)).  

Continent 𝑬 𝑯 𝑸 𝑹𝒏 𝑻𝒔 𝒒𝒔 𝜽𝒔 

Global Land 

(with polar regions) 

0.37±0.20 

0.32±0.23 

0.40±0.25 

0.42±0.26 

0.34±0.16 

0.19±0.18 

0.19±0.23 

0.17±0.21 

0.18±0.14 

0.23±0.17 

0.14±0.12 

0.15±0.13 

0.16±0.14 

0.15±0.11 

0.12±0.09 

0.80±0.57 

0.74±0.64 

0.80±0.66 

0.84±0.56 

0.90±0.51 

-0.07±0.08 

-0.05±0.08 

-0.04±0.07 

-0.06±0.07 

-0.18±0.12 

0.05±0.02 

0.04±0.04 

0.05±0.04 

0.06±0.03 

0.05±0.02 

0.99±0.46 

0.70±0.56 

0.96±0.53 

1.32±0.67 

1.11±0.43 

Global Land 

(without polar regions) 

0.41±0.23 

0.35±0.25 

0.45±0.28 

0.47±0.29 

0.38±0.17 

0.18±0.18 

0.20±0.24 

0.17±0.21 

0.18±0.14 

0.21±0.17 

0.16±0.13 

0.17±0.15 

0.18±0.16 

0.17±0.12 

0.13±0.11 

0.79±0.54 

0.75±0.60 

0.82±0.63 

0.85±0.55 

0.81±0.46 

-0.05±0.06 

-0.01±0.07 

-0.03±0.05 

-0.05±0.06 

-0.14±0.10 

0.06±0.03 

0.05±0.04 

0.06±0.04 

0.07±0.04 

0.05±0.03 

1.00±0.46 

0.70±0.56 

0.97±0.53 

1.33±0.67 

1.12±0.43 

Asia 

0.17±0.11 

0.10±0.15 

0.21±0.21 

0.24±0.21 

0.11±0.16 

0.28±0.24 

0.30±0.32 

0.21±0.28 

0.22±0.16 

0.44±0.25 

0.15±0.13 

0.18±0.17 

0.18±0.18 

0.16±0.12 

0.09±0.10 

0.65±0.49 

0.62±0.58 

0.61±0.60 

0.66±0.48 

0.80±0.52 

-0.04±0.08 

0.00±0.11 

0.03±0.06 

-0.02±0.09 

-0.22±0.26 

0.01±0.03 

-0.01±0.04 

0.01±0.05 

0.03±0.04 

-0.02±0.04 

1.22±0.38 

0.97±0.93 

1.09±0.61 

1.86±0.82 

1.01±0.84 

Europe 

0.40±0.17 

0.49±0.28 

0.75±0.43 

0.24±0.14 

0.12±0.12 

0.36±0.21 

0.39±0.44 

0.46±0.28 

0.26±0.08 

0.37±0.23 

0.21±0.13 

0.26±0.21 

0.31±0.17 

0.18±0.08 

0.06±0.14 

1.02±0.47 

1.18±0.91 

1.56±0.76 

0.71±0.22 

0.72±0.48 

-0.09±0.11 

-0.12±0.20 

-0.09±0.16 

-0.02±0.14 

-0.03±0.46 

0.02±0.03 

0.02±0.04 

0.03±0.07 

0.03±0.06 

0.03±0.08 

0.71±0.88 

0.75±1.21 

0.77±1.80 

0.49±0.71 

0.79±1.07 

Eurasia 

0.20±0.12 

0.16±0.16 

0.28±0.22 

0.23±0.18 

0.12±0.14 

0.29±0.22 

0.32±0.31 

0.26±0.26 

0.23±0.14 

0.44±0.23 

0.16±0.13 

0.20±0.16 

0.21±0.17 

0.16±0.11 

0.08±0.10 

0.71±0.48 

0.71±0.59 

0.76±0.60 

0.65±0.42 

0.79±0.49 

-0.05±0.08 

-0.02±0.12 

0.01±0.07 

-0.02±0.08 

-0.20±0.29 

0.01±0.02 

0.00±0.03 

0.01±0.05 

0.03±0.04 

-0.01±0.04 

1.15±0.39 

0.97±0.81 

1.04±0.65 

1.63±0.75 

1.03±0.79 
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Table 4.10:  continued 

Continent 𝑬 𝑯 𝑸 𝑹𝒏 𝑻𝒔 𝒒𝒔 𝜽𝒔 

North America 

0.22±0.17 

0.27±0.24 

0.39±0.45 

0.15±0.09 

0.09±0.10 

0.18±0.18 

0.29±0.20 

0.05±0.25 

0.18±0.18 

0.18±0.22 

0.11±0.09 

0.18±0.12 

0.11±0.16 

0.10±0.08 

0.06±0.08 

0.56±0.44 

0.77±0.46 

0.56±0.83 

0.47±0.33 

0.45±0.37 

-0.01±0.12 

0.09±0.21 

-0.02±0.12 

0.00±0.07 

-0.13±0.21 

0.01±0.03 

0.01±0.05 

0.05±0.06 

0.00±0.03 

-0.01±0.03 

0.65±0.89 

0.58±1.28 

1.08±1.31 

0.50±1.16 

0.53±1.86 

South America 

0.70±0.58 

0.64±0.60 

0.79±0.60 

0.82±1.00 

0.59±0.58 

-0.13±0.11 

-0.11±0.13 

-0.07±0.15 

-0.04±0.26 

-0.39±0.22 

0.03±0.06 

0.02±0.07 

0.08±0.07 

0.07±0.10 

-0.07±0.08 

0.61±0.67 

0.56±0.78 

0.81±0.66 

0.86±1.20 

0.14±0.59 

-0.10±0.08 

-0.06±0.09 

-0.12±0.09 

-0.12±0.09 

-0.10±0.10 

0.16±0.07 

0.14±0.06 

0.17±0.10 

0.16±0.14 

0.17±0.11 

0.44±1.74 

0.65±1.69 

0.70±2.40 

-0.37±1.96 

1.01±1.89 

Africa 

0.61±0.30 

0.45±0.33 

0.57±0.39 

0.81±0.36 

0.59±0.25 

0.19±0.22 

0.12±0.26 

0.26±0.29 

0.24±0.20 

0.17±0.21 

0.25±0.20 

0.20±0.22 

0.23±0.21 

0.28±0.20 

0.31±0.18 

1.06±0.68 

0.77±0.73 

1.07±0.80 

1.35±0.69 

1.08±0.55 

-0.03±0.07 

0.00±0.08 

-0.02±0.06 

-0.06±0.10 

-0.05±0.17 

0.11±0.05 

0.09±0.06 

0.09±0.08 

0.14±0.07 

0.11±0.04 

0.86±0.72 

0.05±0.97 

0.50±1.02 

1.79±1.22 

1.77±0.88 

Australia 

0.78±0.63 

0.79±0.86 

0.45±0.34 

0.75±0.81 

1.46±0.26 

0.18±0.32 

0.25±0.42 

0.09±0.33 

0.08±0.56 

0.36±0.39 

0.31±0.22 

0.32±0.33 

0.26±0.24 

0.28±0.22 

0.42±0.14 

1.28±0.80 

1.37±1.23 

0.81±0.64 

1.12±0.71 

2.25±1.06 

-0.19±0.14 

-0.22±0.25 

-0.09±0.13 

-0.22±0.23 

-0.24±0.18 

0.10±0.13 

0.10±0.22 

0.09±0.11 

0.10±0.18 

0.14±0.24 

2.61±3.52 

1.75±5.50 

2.61±3.44 

3.40±5.38 

2.98±3.92 

Antarctica 

0.02±0.01 

0.01±0.00 

0.00±0.00 

0.01±0.01 

0.05±0.03 

0.17±0.17 

0.12±0.18 

0.11±0.18 

0.14±0.14 

0.37±0.23 

0.00±0.00 

0.00±0.00 

0.00±0.00 

0.00±0.00 

0.00±0.00 

0.76±0.87 

0.57±1.01 

0.46±0.95 

0.57±0.66 

1.63±1.03 

-0.21±0.21 

-0.32±0.25 

-0.03±0.32 

-0.03±0.17 

-0.56±0.39 

0.00±0.00 

0.00±0.00 

0.00±0.00 

0.00±0.00 

-0.01±0.01 

 

 

N/A 
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The trends of MEP 𝐻  over continents are weakly positive (except for South 

America) owing to the relatively large uncertainties that are comparable to the magnitude 

of trends as shown in Figure 4.14(b). The trends of MEP 𝑄 is positive globally except for 

Antarctica. 𝑄 over Antarctica (permanent ice surface) is essentially zero throughout the 

study period, leading to a zero trend, due to the insulating effect of ice cover as discussed 

in Section 4.5.1. The results also show that the seasonal trends of MEP heat fluxes are 

mostly consistent with the annual trends. The CERES 𝑇𝑠 has a decreasing trend globally 

due to the data artifact as discussed previously (see Figure 4.14(e)). The artifact in CERES 

radiation data is more significant over Antarctica compared to the other areas (see also 

Figure 4.6(k)). The questionable increasing trend of CERES 𝑅𝑛 (Figure 4.14(d)) leads to 

the increasing trend of MEP 𝐻 as shown in Figure 4.14(b), which is less reliable.  

To assess the effects of CERES data artifacts on the trends of MEP estimated 

surface energy budgets, a trend analysis was re-done using the data only from 2001 to 2007 

(i.e., before switching the assimilated meteorological data in CERES products). The results, 

as shown in Figure 4.15 (also Table 4.11), show that the trends of all three MEP heat fluxes 

as well as model inputs from CERES (i.e.,𝑅𝑛 and 𝑇𝑠) become insignificant as CERES 𝑅𝑛 

remains approximately stationary (Figure 4.15(d)). The large uncertainties of the heat flux 

trends may partially be associated with large (temporal) scale extreme climate events that 

cause large variations of heat fluxes at interannual scale. For example, the large uncertainty 

of the trend of MEP 𝐸 over Australia is partially caused by the abrupt drop of 𝐸 estimates 

during 2002-2004, which are related to the reported severe drought over Australia 

(Horridge et al., 2005; van Dijk et al., 2013). Connections between the changes in surface 

heat fluxes and regional/global climate variability deserve further investigations.  
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Figure 4.15:  The trends and uncertainties (2001-2007) of the MEP estimated (a) 𝑬 (b) 𝑯 (c) 𝑸 and CERES (d) 𝑹𝒏 (e) 𝑻𝒔 and 

MERRA (f) 𝒒𝒔 (g) 𝜽𝒔 for the continents (MAM: March–April–May; JJA: June–July–August; SON: September–

October–November; DJF: December–January–February). 
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Table 4.11:  The annual and seasonal trends of the MEP modeled surface heat fluxes and model inputs for the continents 

associated with the corresponding uncertainties (95% CI). The numbers in each grid from top to bottom are the 

annual trend followed by seasonal trends (in the order of MAM, JJA, SON, DJF). The calculations are based on the 

data over 2001-2007. (Unit: heat and radiative fluxes (W m-2 yr -1), 𝑻𝒔 (
oC yr -1), 𝒒𝒔 (g kg-1 yr-1), 𝜽𝒔 (10-3 m3 m-3 yr-1)).   

Continent 𝑬 𝑯 𝑸 𝑹𝒏 𝑻𝒔 𝒒𝒔 𝜽𝒔 

Global Land 

(with polar regions) 

0.12±0.35 

0.06±0.35 

0.14±0.48 

0.12±0.42 

0.14±0.31 

-0.08±0.15 

-0.12±0.22 

-0.08±0.27 

-0.04±0.11 

-0.01±0.24 

-0.03±0.08 

-0.05±0.10 

-0.04±0.14 

-0.02±0.07 

-0.02±0.10 

-0.05±0.62 

-0.20±0.74 

-0.07±0.87 

0.02±0.61 

0.11±0.62 

0.03±0.09 

0.03±0.13 

0.04±0.11 

0.03±0.10 

-0.03±0.16 

0.05±0.05 

0.05±0.05 

0.05±0.08 

0.05±0.07 

0.04±0.05 

0.63±0.92 

0.59±1.10 

0.62±1.13 

0.66±1.07 

0.76±1.08 

Global Land 

(without polar regions) 

0.13±0.40 

0.07±0.39 

0.16±0.54 

0.13±0.47 

0.16±0.34 

-0.07±0.17 

-0.12±0.23 

-0.07±0.30 

-0.04±0.13 

0.00±0.26 

-0.04±0.09 

-0.05±0.11 

-0.0.5±0.16 

-0.02±0.08 

-0.03±0.11 

0.02±0.65 

-0.12±0.71 

0.04±0.93 

0.07±0.66 

0.14±0.67 

0.03±0.07 

0.05±0.12 

0.02±0.07 

0.03±0.09 

-0.03±0.21 

0.05±0.05 

0.05±0.05 

0.05±0.09 

0.05±0.08 

0.04±0.06 

0.64±0.92 

0.59±1.10 

0.62±1.13 

0.66±1.07 

0.77±1.08 

Asia 

0.06±0.21 

0.02±0.31 

0.21±0.44 

0.01±0.31 

-0.04±0.17 

-0.04±0.27 

-0.10±0.36 

-0.06±0.42 

0.00±0.19 

0.06±0.28 

-0.05±0.12 

-0.04±0.18 

-0.04±0.23 

-0.02±0.07 

-0.07±0.05 

-0.03±0.59 

-0.15±0.75 

0.11±1.01 

-0.01±0.51 

-0.04±0.39 

0.06±0.13 

0.02±0.20 

0.04±0.13 

0.08±0.13 

-0.08±0.66 

0.03±0.04 

0.03±0.06 

0.06±0.08 

0.02±0.09 

-0.01±0.08 

1.64±0.68 

1.83±1.53 

1.86±0.92 

1.66±1.34 

1.51±2.12 

Europe 

0.22±0.31 

0.22±0.55 

0.44±0.83 

0.28±0.30 

-0.03±0.22 

0.10±0.21 

0.00±0.71 

0.15±0.40 

0.17±0.06 

0.18±0.35 

0.00±0.08 

-0.03±0.24 

0.07±0.15 

0.06±0.08 

-0.11±0.28 

0.34±0.51 

0.17±1.41 

0.67±1.31 

0.52±0.38 

0.19±0.71 

0.06±0.15 

0.01±0.44 

0.01±0.22 

0.10±0.25 

0.25±1.07 

0.04±0.05 

0.03±0.08 

0.05±0.07 

0.06±0.14 

0.07±0.20 

0.54±1.95 

0.40±2.47 

0.73±4.33 

0.41±1.36 

0.43±2.62 

Eurasia 

0.08±0.23 

0.06±0.35 

0.23±0.51 

0.04±0.28 

-0.05±0.14 

-0.01±0.24 

-0.07±0.32 

-0.01±0.37 

0.04±0.17 

0.08±0.28 

-0.03±0.11 

-0.02±0.15 

-0.01±0.20 

-0.01±0.07 

-0.08±0.08 

0.04±0.56 

-0.06±0.75 

0.22±1.05 

0.07±0.47 

-0.01±0.41 

0.06±0.13 

0.01±0.23 

0.03±0.13 

0.09±0.11 

-0.02±0.72 

0.03±0.03 

0.02±0.06 

0.05±0.07 

0.03±0.09 

0.00±0.10 

1.44±0.79 

1.62±1.40 

1.65±1.21 

1.39±1.13 

1.38±2.03 
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Table 4.11:  continued 

Continent 𝑬 𝑯 𝑸 𝑹𝒏 𝑻𝒔 𝒒𝒔 𝜽𝒔 

North America 

0.09±0.22 

0.25±0.26 

-0.01±0.60 

0.15±0.18 

0.03±0.25 

-0.07±0.23 

0.01±0.19 

-0.28±0.37 

0.01±0.30 

-0.03±0.48 

-0.02±0.09 

0.04±0.11 

-0.14±0.16 

0.00±0.10 

-0.02±0.16 

-0.03±0.53 

0.26±0.36 

-0.54±1.12 

0.17±0.57 

-0.02±0.64 

0.08±0.18 

0.24±0.37 

0.14±0.14 

-0.03±0.14 

0.06±0.40 

0.03±0.03 

0.05±0.07 

0.05±0.06 

0.02±0.05 

0.01±0.07 

0.02±1.89 

0.14±2.60 

-0.47±2.25 

0.05±2.56 

0.50±4.26 

South America 

-0.04±0.87 

-0.13±0.86 

0.16±0.79 

-0.29±1.38 

-0.02±1.14 

-0.23±0.22 

-0.21±0.23 

0.02±0.31 

-0.35±0.44 

-0.51±0.50 

-0.06±0.07 

-0.06±0.10 

0.02±0.11 

-0.07±0.14 

-0.17±0.10 

-0.33±0.90 

-0.41±1.16 

0.20±0.94 

-0.71±1.31 

-0.71±0.92 

0.02±0.05 

0.02±0.08 

0.01±0.11 

0.00±0.13 

0.04±0.11 

0.08±0.13 

0.07±0.08 

0.05±0.12 

0.06±0.25 

0.13±0.23 

-1.60±2.76 

-0.78±3.08 

-2.38±3.17 

-2.43±3.58 

-1.01±4.13 

Africa 

0.26±0.51 

0.00±0.45 

0.17±0.72 

0.49±0.71 

0.36±0.50 

-0.10±0.18 

-0.20±0.25 

-0.07±0.42 

-0.02±0.29 

0.04±0.54 

-0.06±0.13 

-0.14±0.13 

-0.08±0.20 

-0.02±0.19 

0.06±0.26 

0.10±0.75 

-0.34±0.68 

0.01±0.97 

0.45±0.93 

0.46±1.00 

-0.02±0.10 

0.02±0.13 

-0.02±0.12 

-0.03±0.20 

-0.14±0.21 

0.08±0.09 

0.05±0.09 

0.06±0.19 

0.12±0.17 

0.07±0.09 

0.82±1.73 

-0.13±2.27 

0.56±2.30 

1.71±2.90 

1.00±0.96 

Australia 

0.50±1.30 

0.49±1.89 

0.32±0.64 

0.29±1.22 

1.42±3.55 

-0.05±0.51 

-0.28±0.42 

-0.23±0.57 

-0.04±1.06 

0.46±1.05 

-0.02±0.25 

-0.14±0.41 

-0.09±0.28 

-0.06±0.25 

0.28±0.33 

0.43±1.49 

0.07±2.35 

-0.01±1.04 

0.20±0.96 

2.18±3.01 

-0.07±0.27 

-0.03±0.53 

-0.12±0.22 

0.07±0.25 

-0.14±0.44 

0.08±0.23 

0.19±0.39 

0.08±0.21 

0.03±0.30 

0.09±0.67 

1.10±6.43 

0.81±12.06 

3.67±6.43 

0.15±8.26 

0.17±9.59 

Antarctica 

0.00±0.00 

0.00±0.01 

0.00±0.00 

0.00±0.01 

-0.01±0.02 

-0.10±0.09 

-0.13±0.23 

-0.18±0.11 

-0.08±0.10 

-0.01±0.11 

0.00±0.00 

0.00±0.00 

0.00±0.00 

0.00±0.00 

0.00±0.00 

-0.63±0.58 

-0.83±1.34 

-1.02±0.67 

-0.46±0.54 

-0.10±0.52 

0.05±0.29 

-0.17±0.56 

0.16±0.59 

0.17±0.30 

0.03±0.38 

0.00±0.00 

0.00±0.01 

0.00±0.00 

0.00±0.00 

-0.01±0.01 

 

 

N/A 
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 Oceans 

Table 4.12 shows the climatology (2001-2010) of the MEP estimated surface heat 

fluxes and model inputs from CERES for the major ocean basins associated with those 

reported by L’Ecuyer et al. (2015) (shown in parentheses). The surface water (conductive) 

heat flux 𝑄 from L’Ecuyer et al. (2015) is computed as the residual of surface energy 

equation as in Eq. (2.2). The annual mean CERES 𝑅𝑛 and 𝑅𝑛
𝐿  over the major ocean basins 

are comparable to the estimates reported by L’Ecuyer et al. (2015). Compared to the results 

of L’Ecuyer et al. (2015), the MEP 𝐸 and 𝑄 over ocean basins are about one-third and 15-

20% lower, respectively, while the MEP 𝐻 is higher than the estimates made by L’Ecuyer 

et al. (2015). The reason responsible for the discrepancies is caused by the use of a different 

underlying surface energy equation at annual scale in L’Ecuyer et al. (2015). 

Figure 4.16 shows the annual and seasonal trends associated with the corresponding 

uncertainty estimates (95% CI) of the MEP ocean surface heat fluxes and model inputs at 

ocean basin scale (see also Table 4.13). The weakly negative trends of MEP 𝐸 and 𝐻 over 

the major ocean basins (i.e., Pacific, Atlantic, and Indian Ocean) are consistent with the 

trends of 𝑅𝑛, 𝑅𝑛
𝐿 , and 𝑄. Note that the positive/negative trends of 𝑅𝑛

𝐿  and 𝑄, as shown in 

Figures 4.16(e) and 4.16(c), represent the decrease/increase in magnitudes due to 𝑅𝑛
𝐿  and 

𝑄 being consistently negative over oceans, i.e., 𝑄 enters the surface from water body and 

𝑅𝑛
𝐿  points upward leaving the surface. The artifacts in CERE 𝑇𝑠 data over oceans are small 

as shown in Figure 4.16(f). Figures 4.16(c) and 4.16(e) show that the added ocean surface 

thermal energy 𝑄 (toward the surface) over the major ocean basins during 2001-2010 are 

mostly utilized to enhance 𝑅𝑛
𝐿  rather than 𝐸 and 𝐻.  
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Table 4.12:  The climatology (2001-2010) of the MEP modeled surface heat fluxes, 

CERES radiative fluxes for the ocean basins, and the 2000-2009 

climatology reported by L’Ecuyer et al. (2015) shown in the parenthesis.  

Continent 𝑬 𝑯 𝑸 𝑹𝒏 𝑹𝒏
𝑳  

Global Ocean 

(with polar regions) 
56 (98) 28 (19) -136 (-172*) 122 (117) -52 (-55) 

North Pacific 66 (105) 30 (18) -147 (-182*) 138 (126) -51 (-59) 

South Pacific 57 (99) 28 (20) -138 (-178*) 124 (116) -53 (-59) 

Pacific 61 (102) 29 (19) -142 (-180*) 129 (121) -52 (-59) 

North Atlantic 58 (98) 27 (20) -137 (-174*) 121 (115) -53 (-55) 

South Atlantic 49 (83) 27 (19) -126 (-149*) 113 (112) -50 (-47) 

Atlantic 51 (90) 27 (20) -130 (-161*) 115 (114) -52 (-51) 

Indian Ocean 57 (106) 28 (21) -138 (-181*) 124 (119) -53 (-54) 

Mediterranean Sea 53 (111) 28 (23) -154 (-208*) 121 (131) -74 (-73) 

Caribbean Sea 83 (124) 33 (12) -172 (-191*) 162 (177) -58 (-55) 

Black Sea 39 (85) 23 (21) -126 (-170) 94 (106) -65 (-64) 

Arctic Ocean 4.9 (10) 4.6 (7) -46 (-46) 13 (17) -37 (-30) 

 

To evaluate the effects of CERES data artifacts on the trends of MEP heat fluxes, 

Figure 4.17 shows the same trend analyses as those in Figure 4.16 but excluding the data 

from 2008-2010 (see also Table 4.14). The results show that the MEP modeled heat fluxes 

are virtually stationary during 2001-2007 as a result of the corresponding nearly stationary 

𝑅𝑛. Removing the contaminated CERES data does not affect the trends of MEP ocean heat 

fluxes significantly as evidenced by the close estimates of trends shown in Figures 4.16 

and 4.17.  
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Figure 4.16:  The trends and uncertainties (2001-2010) of the MEP estimated (a) 𝑬 (b) 𝑯 (c) 𝑸 and CERES (d) 𝑹𝒏 (e) 𝑹𝒏
𝑳  (f) 𝑻𝒔 

for the ocean basins (MAM: March–April–May; JJA: June–July–August; SON: September–October–November; 

DJF: December–January–February). 
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Table 4.13:  The annual and seasonal trends of the MEP modeled surface heat fluxes and model inputs for the ocean basins 

associated with the corresponding uncertainties (95% CI). The numbers in each grid from top to bottom are the 

annual trend followed by seasonal trends (in the order of MAM, JJA, SON, DJF). The calculations are based on the 

data over 2001-2010. (Unit: heat and radiative fluxes (W m-2 yr -1), 𝑻𝒔 (
oC yr -1)).  

Ocean Basin 𝑬 𝑯 𝑸 𝑹𝒏 𝑹𝒏
𝑳  𝑻𝒔 

Global Ocean 

(with polar regions) 

-0.05±0.06 

-0.04±0.11 

-0.03±0.07 

-0.08±0.05 

-0.04±0.12 

-0.03±0.04 

-0.03±0.05 

-0.03±0.04 

-0.04±0.04 

-0.01±0.08 

-0.10±0.16 

-0.14±0.18 

-0.10±0.24 

-0.00±0.18 

-0.21±0.24 

-0.16±0.17 

-0.17±0.26 

-0.13±0.19 

-0.20±0.16 

-0.11±0.29 

-0.18±0.21 

-0.22±0.23 

-0.15±0.26 

-0.12±0.22 

-0.26±0.15 

0.02±0.02 

0.03±0.02 

0.01±0.02 

0.01±0.03 

0.02±0.03 

Global Ocean 

(without polar regions) 

-0.06±0.06 

-0.05±0.12 

-0.04±0.08 

-0.08±0.05 

-0.04±0.12 

-0.04±0.04 

-0.03±0.05 

-0.04±0.04 

-0.04±0.04 

-0.02±0.07 

-0.08±0.16 

-0.13±0.18 

-0.06±0.26 

0.02±0.19 

-0.20±0.24 

-0.18±0.17 

-0.17±0.26 

-0.17±0.20 

-0.20±0.16 

-0.13±0.26 

-0.17±0.21 

-0.20±0.22 

-0.14±0.27 

-0.10±0.23 

-0.26±0.14 

0.01±0.02 

0.01±0.02 

0.01±0.02 

0.00±0.02 

0.01±0.03 

Pacific 

-0.07±0.06 

-0.05±0.12 

0.01±0.09 

-0.11±0.08 

-0.10±0.17 

-0.02±0.04 

-0.02±0.05 

0.00±0.07 

-0.03±0.06 

-0.03±0.08 

-0.04±0.15 

-0.14±0.16 

-0.12±0.22 

0.09±0.30 

-0.08±0.37 

-0.15±0.18 

-0.14±0.28 

-0.03±0.26 

-0.19±0.20 

-0.20±0.32 

-0.13±0.20 

-0.21±0.19 

-0.11±0.25 

-0.04±0.27 

-0.21±0.17 

0.00±0.02 

0.00±0.02 

0.00±0.03 

-0.01±0.04 

0.00±0.04 

Atlantic 

-0.03±0.08 

-0.02±0.13 

-0.09±0.07 

-0.05±0.11 

0.07±0.12 

-0.04±0.04 

-0.04±0.07 

-0.07±0.03 

-0.04±0.05 

0.01±0.08 

-0.06±0.19 

-0.03±0.22 

0.10±0.37 

-0.01±0.22 

-0.36±0.11 

-0.15±0.19 

-0.16±0.31 

-0.29±0.12 

-0.16±0.25 

0.04±0.30 

-0.13±0.22 

-0.09±0.21 

-0.06±0.31 

-0.10±0.23 

-0.28±0.17 

0.04±0.03 

0.06±0.03 

0.04±0.04 

0.03±0.05 

0.04±0.03 

Indian 

-0.05±0.07 

-0.05±0.13 

-0.09±0.13 

-0.05±0.12 

-0.02±0.22 

-0.06±0.05 

-0.06±0.06 

-0.08±0.06 

-0.08±0.07 

0.01±0.13 

-0.28±0.23 

-0.32±0.29 

-0.23±0.33 

-0.21±0.32 

-0.37±0.41 

-0.27±0.20 

-0.30±0.29 

-0.40±0.30 

-0.31±0.28 

-0.04±0.49 

-0.39±0.26 

-0.43±0.33 

-0.41±0.31 

-0.35±0.25 

-0.38±0.23 

0.01±0.03 

0.00±0.04 

0.02±0.04 

0.02±0.04 

-0.01±0.04 

Mediterranean Sea 

0.12±0.19 

0.16±0.41 

0.42±0.39 

-0.01±0.21 

0.00±0.33 

0.05±0.11 

0.07±0.24 

0.18±0.20 

0.00±0.10 

-0.02±0.24 

-0.04±0.35 

-0.02±0.67 

-0.20±0.96 

0.02±0.48 

-0.09±1.00 

0.22±0.44 

0.35±1.04 

0.90±0.63 

-0.03±0.44 

-0.11±0.96 

0.13±0.23 

0.23±0.45 

0.44±0.69 

0.01±0.24 

-0.13±0.68 

-0.04±0.04 

-0.06±0.08 

-0.14±0.15 

-0.02±0.04 

0.09±0.08 



156 

 

Table 4.13:  continued 

Ocean Basin 𝑬 𝑯 𝑸 𝑹𝒏 𝑹𝒏
𝑳  𝑻𝒔 

Caribbean Sea 

-0.11±0.36 

-0.06±0.48 

-0.08±0.53 

-0.17±0.55 

-0.03±0.45 

-0.08±0.18 

-0.03±0.23 

-0.12±0.26 

-0.09±0.18 

-0.02±0.24 

0.60±0.57 

0.62±0.91 

1.07±0.89 

0.52±0.87 

0.13±0.91 

-0.28±0.79 

-0.09±1.00 

-0.29±1.14 

-0.39±0.99 

-0.11±1.04 

0.42±0.23 

0.53±0.39 

0.88±0.27 

0.26±0.48 

0.08±0.59 

0.03±0.02 

0.00±0.05 

0.05±0.06 

0.04±0.04 

0.04±0.06 

Black Sea 

0.43±0.24 

0.62±0.46 

1.09±0.61 

0.10±0.26 

-0.08±0.26 

0.11±0.11 

0.30±0.26 

0.20±0.28 

0.04±0.14 

-0.11±0.29 

-0.43±0.66 

-0.57±1.55 

-0.58±1.73 

-0.25±0.88 

-0.32±1.28 

0.66±0.37 

1.36±0.97 

1.64±1.01 

0.16±0.54 

-0.50±1.00 

0.12±0.54 

0.38±1.21 

0.74±1.44 

-0.10±0.64 

-0.53±0.87 

0.01±0.11 

-0.13±0.14 

-0.04±0.23 

0.02±0.11 

0.28±0.20 

Arctic Ocean 

0.08±0.07 

0.01±0.06 

0.36±0.24 

-0.01±0.05 

-0.03±0.03 

0.10±0.12 

-0.01±0.13 

0.47±0.31 

0.00±0.09 

-0.05±0.17 

-0.34±0.28 

-0.08±0.76 

-0.83±0.54 

-0.16±0.25 

-0.18±0.60 

0.34±0.44 

0.02±0.63 

1.79±1.07 

-0.02±0.42 

-0.27±0.76 

-0.16±0.34 

-0.07±0.92 

-0.00±0.20 

-0.17±0.36 

-0.27±0.77 

0.29±0.12 

0.44±0.14 

0.01±0.07 

0.26±0.27 

0.56±0.37 

North Pacific 

-0.03±0.08 

-0.01±0.07 

0.07±0.16 

-0.10±0.08 

-0.07±0.11 

0.00±0.04 

0.01±0.08 

0.04±0.09 

-0.02±0.04 

-0.05±0.03 

-0.08±0.16 

-0.16±0.28 

-0.14±0.30 

0.10±0.31 

-0.08±0.29 

-0.05±0.19 

-0.01±0.36 

0.15±0.38 

-0.16±0.11 

-0.23±0.13 

-0.11±0.18 

-0.16±0.14 

-0.04±0.26 

-0.02±0.28 

-0.20±0.19 

0.01±0.03 

0.01±0.03 

0.00±0.03 

0.00±0.04 

0.04±0.05 

South Pacific 

-0.10±0.07 

-0.08±0.13 

-0.05±0.08 

-0.11±0.14 

-0.13±0.26 

-0.04±0.05 

-0.04±0.06 

-0.04±0.05 

-0.03±0.08 

-0.02±0.12 

0.01±0.19 

-0.11±0.29 

0.07±0.18 

0.11±0.34 

-0.04±0.57 

-0.23±0.20 

-0.23±0.31 

-0.19±0.22 

-0.21±0.32 

-0.19±0.50 

-0.13±0.24 

-0.23±0.29 

-0.15±0.26 

-0.03±0.29 

-0.19±0.25 

-0.02±0.02 

-0.01±0.03 

-0.01±0.03 

-0.02±0.04 

-0.03±0.05 

North Atlantic 

-0.05±0.09 

0.04±0.08 

-0.09±0.14 

-0.04±0.16 

-0.11±0.10 

-0.05±0.06 

-0.01±0.12 

-0.08±0.08 

-0.04±0.07 

-0.07±0.06 

0.13±0.24 

-0.03±0.48 

0.42±0.49 

0.07±0.27 

0.06±0.35 

-0.18±0.22 

0.03±0.44 

-0.26±0.27 

-0.16±0.35 

-0.32±0.24 

0.03±0.19 

0.01±0.24 

0.25±0.33 

-0.01±0.27 

-0.11±0.35 

0.05±0.02 

0.06±0.04 

0.04±0.04 

0.02±0.03 

0.06±0.03 

South Atlantic 

-0.03±0.10 

-0.11±0.19 

-0.11±0.06 

-0.09±0.12 

0.24±0.16 

-0.04±0.07 

-0.09±0.11 

-0.08±0.04 

-0.04±0.06 

0.07±0.16 

-0.19±0.22 

0.03±0.23 

-0.14±0.34 

-0.04±0.28 

-0.74±0.33 

-0.16±0.29 

-0.36±0.49 

-0.39±0.22 

-0.21±0.27 

0.38±0.48 

-0.25±0.27 

-0.17±0.31 

-0.33±0.38 

-0.18±0.29 

-0.42±0.13 

0.04±0.04 

0.05±0.05 

0.05±0.06 

0.03±0.07 

0.02±0.04 
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Figure 4.17:  The trends and uncertainties (2001-2007) of the MEP estimated (a) 𝑬 (b) 𝑯 (c) 𝑸 and CERES (d) 𝑹𝒏 (e) 𝑹𝒏
𝑳  (f) 𝑻𝒔 

for the ocean basins (MAM: March–April–May; JJA: June–July–August; SON: September–October–November; 

DJF: December–January–February). 
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Table 4.14:  The annual and seasonal trends of the MEP modeled surface heat fluxes and model inputs for the ocean basins 

associated with the corresponding uncertainties (95% CI). The numbers in each grid from top to bottom are the 

annual trend followed by seasonal trends (in the order of MAM, JJA, SON, DJF). The calculations are based on the 

data over 2001-2007. (Unit: heat and radiative fluxes (W m-2 yr -1), 𝑻𝒔 (
oC yr -1)). 

Ocean Basin 𝑬 𝑯 𝑸 𝑹𝒏 𝑹𝒏
𝑳  𝑻𝒔 

Global Ocean 

(with polar regions) 

-0.03±0.10 

-0.01±0.19 

0.00±0.15 

-0.07±0.09 

0.01±0.26 

0.01±0.06 

0.02±0.08 

0.01±0.08 

0.00±0.06 

0.06±0.18 

0.08±0.24 

0.08±0.27 

0.06±0.38 

0.19±0.33 

-0.23±0.54 

-0.16±0.17 

0.04±0.39 

0.05±0.37 

-0.04±0.26 

0.15±0.71 

0.07±0.28 

0.08±0.12 

0.08±0.38 

0.12±0.40 

-0.16±0.29 

0.00±0.03 

0.01±0.03 

-0.01±0.03 

-0.02±0.03 

0.02±0.04 

Global Ocean 

(without polar regions) 

-0.04±0.11 

-0.02±0.21 

-0.01±0.17 

-0.07±0.10 

0.00±0.26 

0.01±0.06 

0.01±0.09 

-0.01±0.09 

0.00±0.07 

0.04±0.16 

0.11±0.25 

0.09±0.29 

0.10±0.42 

0.23±0.34 

-0.22±0.53 

-0.01±0.29 

0.02±0.43 

-0.01±0.40 

-0.04±0.29 

0.08±0.66 

0.08±0.29 

0.08±0.14 

0.08±0.40 

0.15±0.42 

-0.18±0.28 

-0.01±0.02 

-0.01±0.02 

-0.01±0.02 

-0.02±0.04 

0.00±0.02 

Pacific 

-0.04±0.11 

-0.03±0.19 

0.06±0.21 

-0.09±0.20 

-0.01±0.41 

0.01±0.06 

0.02±0.08 

0.03±0.13 

0.01±0.08 

0.02±0.19 

0.10±0.30 

0.04±0.29 

-0.00±0.46 

0.25±0.65 

-0.17±0.97 

0.01±0.28 

0.02±0.38 

0.15±0.54 

-0.03±0.36 

0.00±0.82 

0.07±0.34 

0.03±0.18 

0.09±0.42 

0.17±0.57 

-0.16±0.41 

-0.02±0.04 

-0.01±0.04 

-0.02±0.03 

-0.03±0.07 

0.00±0.05 

Atlantic 

-0.01±0.15 

0.04±0.26 

-0.09±0.15 

-0.03±0.15 

0.02±0.30 

0.00±0.08 

0.02±0.12 

-0.05±0.06 

-0.01±0.09 

0.06±0.19 

0.16±0.33 

0.08±0.47 

0.37±0.55 

0.24±0.31 

-0.22±0.18 

0.02±0.33 

0.12±0.54 

-0.16±0.20 

-0.01±0.36 

0.16±0.83 

0.15±0.26 

0.14±0.14 

0.24±0.41 

0.21±0.34 

-0.14±0.41 

0.01±0.05 

0.06±0.07 

-0.01±0.06 

-0.02±0.09 

0.03±0.04 

Indian 

-0.04±0.11 

-0.05±0.25 

-0.09±0.25 

-0.07±0.22 

0.06±0.18 

0.01±0.06 

-0.01±0.12 

-0.04±0.11 

-0.01±0.11 

0.17±0.25 

-0.04±0.26 

0.07±0.44 

-0.01±0.41 

0.04±0.49 

-0.49±0.44 

-0.01±0.26 

-0.06±0.58 

-0.20±0.55 

-0.07±0.49 

0.45±0.82 

-0.07±0.30 

0.02±0.40 

-0.14±0.36 

-0.04±0.32 

-0.27±0.32 

-0.03±0.04 

-0.03±0.04 

-0.02±0.08 

-0.04±0.04 

-0.03±0.06 

Mediterranean Sea 

-0.01±0.40 

-0.01±0.92 

0.03±0.69 

0.03±0.41 

0.07±0.82 

0.00±0.225 

-0.01±0.49 

-0.01±0.37 

0.07±0.18 

0.05±0.57 

0.16±0.63 

0.19±1.35 

0.21±2.03 

-0.12±0.99 

0.20±2.22 

0.00±0.97 

-0.04±2.22 

0.02±0.72 

0.17±0.84 

0.26±2.30 

0.16±0.47 

0.17±1.04 

0.24±1.53 

-0.02±0.54 

0.32±1.31 

-0.03±0.10 

-0.01±0.17 

0.00±0.29 

-0.07±0.08 

0.02±0.19 
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Table 4.14:  continued 

Continent 𝑬 𝑯 𝑸 𝑹𝒏 𝑹𝒏
𝑳  𝑻𝒔 

Caribbean Sea 

-0.12±0.53 

-0.26±1.05 

-0.38±0.85 

-0.10±0.80 

0.09±0.39 

-0.14±0.25 

-0.20±0.43 

-0.29±0.39 

-0.12±0.27 

0.02±0.19 

0.70±0.96 

0.81±1.88 

1.33±1.59 

0.54±1.83 

0.29±1.31 

-0.43±1.14 

-0.72±2.01 

-1.03±1.75 

-0.38±1.37 

0.17±0.86 

0.44±0.55 

0.35±0.79 

0.67±0.56 

0.32±1.00 

0.40±1.50 

0.06±0.04 

0.05±0.08 

0.08±0.07 

0.07±0.09 

0.02±0.12 

Black Sea 

0.23±0.50 

0.05±0.76 

0.85±1.43 

-0.05±0.58 

0.11±0.58 

0.10±0.15 

0.13±0.51 

0.24±0.46 

-0.04±0.29 

0.10±0.61 

-0.57±1.34 

-0.01±3.16 

-1.79±3.54 

-0.19±2.07 

-0.96±2.39 

0.44±0.69 

0.34±1.67 

1.35±2.10 

-0.21±1.14 

0.31±2.10 

-0.24±1.01 

0.17±2.22 

-0.71±2.56 

-0.28±1.42 

-0.76±1.40 

0.02±0.23 

-0.07±0.30 

0.13±0.39 

0.02±0.25 

0.16±0.41 

Arctic Ocean 

0.14±0.12 

0.08±0.06 

0.55±0.48 

-0.04±0.10 

-0.04±0.04 

0.23±0.17 

0.16±0.07 

0.72±0.64 

0.00±0.19 

0.13±0.33 

-0.15±0.42 

0.83±0.74 

-1.32±1.02 

-0.15±0.55 

0.43±1.20 

0.83±0.59 

0.78±0.35 

2.53±2.25 

-0.05±0.92 

0.50±1.50 

0.22±0.27 

1.07±0.77 

-0.05±0.46 

-0.20±0.80 

0.51±1.51 

0.31±0.28 

0.40±0.30 

0.11±0.09 

0.27±0.61 

0.70±0.95 

North Pacific 

0.00±0.08 

0.02±0.29 

0.11±0.32 

-0.12±0.16 

-0.08±0.17 

0.02±0.07 

0.04±0.13 

0.06±0.22 

-0.01±0.06 

-0.06±0.09 

-0.03±0.36 

-0.18±0.53 

-0.11±0.63 

0.25±0.70 

-0.03±0.55 

0.05±0.29 

0.11±0.60 

0.29±0.88 

-0.13±0.19 

-0.26±0.32 

-0.01±0.40 

-0.12±0.28 

0.07±0.53 

0.12±0.61 

-0.17±0.39 

0.00±0.05 

-0.01±0.06 

-0.01±0.05 

0.00±0.07 

0.02±0.09 

South Pacific 

-0.07±0.16 

-0.08±0.24 

0.00±0.16 

-0.07±0.31 

0.05±0.61 

0.01±0.06 

-0.01±0.12 

0.00±0.06 

0.04±0.12 

0.08±0.28 

0.20±0.30 

0.25±0.41 

0.11±0.30 

0.23±0.73 

-0.30±1.30 

-0.04±0.30 

-0.09±0.53 

0.01±0.33 

0.05±0.58 

0.22±1.22 

0.13±0.31 

0.16±0.16 

0.11±0.39 

0.20±0.59 

-0.17±0.45 

-0.03±0.04 

-0.02±0.05 

-0.03±0.04 

-0.05±0.07 

-0.01±0.05 

North Atlantic 

-0.08±0.14 

0.00±0.41 

-0.17±0.26 

-0.05±0.21 

-0.20±0.19 

-0.05±0.08 

-0.22±0.22 

-0.10±0.13 

-0.02±0.13 

-0.09±0.15 

0.33±0.43 

0.10±1.00 

0.70±0.90 

0.23±0.49 

0.33±0.82 

-0.19±0.33 

-0.02±0.90 

-0.36±0.43 

-0.08±0.55 

-0.43±0.65 

0.20±0.38 

0.08±0.43 

0.43±0.66 

0.17±0.55 

0.04±0.92 

0.04±0.05 

0.07±0.05 

0.03±0.08 

0.01±0.07 

0.06±0.06 

South Atlantic 

0.04±0.19 

0.03±0.29 

-0.03±0.09 

-0.01±0.19 

0.27±0.45 

0.04±0.10 

0.05±0.09 

-0.01±0.03 

0.00±0.12 

0.23±0.28 

0.04±0.39 

0.13±0.53 

0.12±0.42 

0.27±0.43 

-0.80±0.82 

0.19±0.38 

0.21±0.50 

-0.04±0.08 

0.05±0.39 

0.80±1.04 

0.12±0.20 

0.22±0.30 

0.08±0.35 

0.26±0.22 

-0.31±0.14 

-0.01±0.05 

0.04±0.11 

-0.05±0.04 

-0.04±0.12 

0.00±0.07 
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4.7 Global Heat Fluxes over Snow-ice and Sea Ice Surfaces 

This section provides an analysis of MEP-based estimates of global land snow-ice and sea 

ice surface heat fluxes and the corresponding contributions to global surface heat flux 

budgets. The effects of land snow and sea ice on the global surface heat flux budgets were 

evaluated by comparing two separate MEP simulations in terms of including and excluding 

time-varying snow and sea ice extent (i.e. fractional snow and sea ice cover data from 

MERRA). The simulation including snow and sea ice extent is referred to as the Control 

run and used in the performed analysis in Sections 4.5 and 4.6, while that excluding snow 

and sea ice extent is referred to as the NoSI run. In the Control run, the surface type, 

assigned based on the IGBP surface classification climatology, was updated daily 

according to the MERRA fractional snow/sea ice cover data. By contrast, surface types in 

the NoSI run were determined based on the IGBP surface classification climatology alone. 

The sublimation 𝐸𝑆𝐼, sensible heat 𝐻𝑆𝐼, and surface snow-ice heat 𝑄𝑆𝐼 fluxes obtained 

from the NoSI run represent the heat fluxes over permanent ice surfaces such as polar 

regions (PoRs) and alpine regions (e.g., Himalayas). The contributions from non-PoRs and 

PoRs will be evaluated by computing the global 𝐸𝑆𝐼, 𝐻𝑆𝐼, and 𝑄𝑆𝐼 taking/not taking the 

PoRs into account. 

 

 Global Heat Fluxes over Land Snow-ice Surfaces 

Figure 4.18 shows the climatology (2001-2010, the left panel) and global annual 

means of MEP modeled 𝐸𝑆𝐼, 𝐻𝑆𝐼, and 𝑄𝑆𝐼 over global land obtained from the Control run 

(red curves shown on the right panel). The shaded area over the non-PoRs in Figures 4.18 
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(a), 4.18(c), and 4.18(e) represents the grid points in which the MERRA snow data are 

available, referred to as the Non-PoR-Snow-Covered (NPSC) area (MERRA snow data are 

not available over the PoRs). The global mean land snow-ice surface heat fluxes obtained 

from the NoSI run and those by excluding the PoRs are shown on the right panel of Figure 

4.18. The global annual means of MEP modeled 𝐸𝑆𝐼 , 𝐻𝑆𝐼 , and 𝑄𝑆𝐼  evaluated under 

different scenarios in terms of including/excluding snow cover and the PoRs are listed in 

Table 4.15. The global annual mean MEP 𝐸𝑆𝐼, 𝐻𝑆𝐼, and 𝑄𝑆𝐼 obtained from the Control 

run taking the PoRs into account are 0.6, 0.2, and -8.8 W m-2, respectively (see Table 4.15). 

Negative 𝑄 indicates thermal energy from the snow-ice surface into the atmosphere.  

Figure 4.18(b) shows that the global mean 𝐸𝑆𝐼  becomes slightly higher by 

excluding the PoRs (blue curve) as the 𝐸𝑆𝐼 over the PoRs is nearly zero resulting from the 

corresponding low 𝑅𝑛 and 𝑇𝑠 (i.e., low 𝑞𝑠). 𝐸𝑆𝐼 over permanent ice-covered areas is small 

(NoSI run, black curve) suggesting that global 𝐸𝑆𝐼 is mainly contributed by the non-PoRs 

(blue curve) (see also Table 4.15). The global annual means of MEP 𝐻𝑆𝐼  over lands 

obtained from the Control and NoSI runs are both small (< 0.2 W m-2) during 2001 to 2007 

as shown in Figure 4.18(d). The abrupt increases of global mean 𝐻𝑆𝐼 (also 𝐸𝑆𝐼) between 

2007 and 2008 in both runs are caused presumably by the corresponding increase of 

CERES 𝑅𝑛 due to the artifact (see discussions in Section 4.5.1). Excluding the PoRs leads 

to a slightly higher global mean 𝐻𝑆𝐼 (blue curve) due to the exclusion of the small but 

negative 𝐻𝑆𝐼 over permanent ice-covered areas (black curve, NoSI run) before 2007. In 

contrast, excluding the positive 𝐻𝑆𝐼 over the PoRs (black curve) during 2008 to 2010 leads 

to the corresponding lower global mean 𝐻𝑆𝐼 (blue vs. red curve). Yet the positive 𝐻𝑆𝐼 over 

the PoRs may be less reliable as the corresponding CERES 𝑅𝑛 is potentially biased as a 
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result of the artifact in CERES 𝑇𝑠  (also 𝐿𝑊𝑢 ). Figure 4.18(e) shows that the MEP 

estimated 𝑄𝑆𝐼 (-𝑄𝑆𝐼 is shown) over the PoRs is greater than that over the non-PoRs. The 

reason is that the non-PoRs are free of or only partially covered by snow in non-winter 

season, while the PoRs are permanently ice-covered. The contributions of 𝑄𝑆𝐼 over the 

PoRs and non-PoRs at annual scale are comparable as shown in Figure 4.18(f) (see also 

Table 4.15).  

 

Figure 4.18: The 2001-2010 climatology of the MEP estimated (a) 𝑬𝑺𝑰 (c) 𝑯𝑺𝑰 (e) 𝑸𝑺𝑰 
(-𝑸𝑺𝑰  is shown) over lands according to Eq. (4.2) with the snow 

properties derived from Eqs. (4.3) and (4.4) and MERRA snow data, 

and global annual means of land (b) 𝑬𝑺𝑰  (d) 𝑯𝑺𝑰  (f) 𝑸𝑺𝑰  calculated 

with/without snow presence (SnP) and polar regions (PoR) taken into 

account. 
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The trends of global annual mean MEP 𝐸𝑆𝐼, 𝐻𝑆𝐼, and 𝑄𝑆𝐼 over lands are estimated 

as 0.01, 0.06, and 0.1 W m-2 yr-1 and have corresponding uncertainties of 0.01, 0.05, and 

0.09 W m-2 yr-1, respectively. Note that all three heat fluxes vanish when excluding both 

snow cover (i.e., NoSI run) and PoRs as shown in the green curves in Figures 4.18(b), 

4.18(d), and 4.18(f). This is expected as the alpine areas, which account for only a small 

part of global land area, are the only source of snow-ice surface heat fluxes under this 

scenario. 

Table 4.15:  The 2001-2010 climatology of the MEP estimated global annual mean 

snow-ice surface heat fluxes (W m-2) over lands according to Eq. (4.2) 

calculated with/without snow presence (SnP) and polar regions (PoR) 

taken into account. 

Scenario 𝑬𝑺𝑰 𝑯𝑺𝑰 𝑸𝑺𝑰 
With SnP, with PoR 0.6 0.2 -8.8 

With SnP, no PoR 0.6 0.2 -5.5 

No SnP, with PoR ~0 0.1 -4.0 

No SnP, no PoR ~0 ~0 -0.1 

 

Figure 4.19 shows the effects of snow cover on the MEP estimated global land 

surface heat flux budgets by comparing the estimates of the Control and NoSI runs. The 

discrepancies between the two simulations only exist over the NPSC areas, indicated by 

the shaded area in Figures 4.19(a), 4.19(c), and 4.19(e). This is because the model inputs 

and parameters of the two simulations over the snow-free areas and PoRs are identical. 

Figures 4.19(a) and 4.19(c) show that the differences of 𝐸  and 𝐻  between the two 

simulations over most of the NPSC areas are insignificant except for alpine areas 

(permanence ice-covered). Several reasons might be responsible for the small 

discrepancies. First, the surface  𝑅𝑛 tends to be low over the NPSC areas. Second, the low 
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𝑇𝑠  over the NPSC areas leads to almost the same 𝑞𝑠  inputs in the two simulations 

(saturation for the Control run vs. MERRA 𝑞𝑠 for the NoSI run). Third, 𝐸 and 𝐻 estimated 

by the two simulations are identical or close to each other when the NPSC areas are free of 

or partially covered by snow (i.e., outside the cold season). The differences between 

green/blue and red/black curves in Figures 4.19(b), 4.19(d), and 4.19(f) represent the 

contributions of heat fluxes over the PoRs to the global surface heat flux budgets. The 

decreases of global mean MEP surface heat fluxes caused by excluding the PoRs are shown 

in Table 4.3.  

Figures 4.19(a) and 4.19(c) show that the Control run produces higher 𝐸 and 𝐻 

over alpine areas (e.g. Himalayas) as compared to the NoSI run. The discrepancies are 

presumably resulting from the switch of surface type of alpine areas between the Control 

and NoSI runs. Over alpine areas, the surface type was set as snow in the Control run 

whenever MERRA snow data are available, while permanent ice surface was prescribed in 

the NoSI run according to the IGBP data. The smaller thermal inertia of snow (< 900 tiu) 

compared to ice (1920 tiu) leads to larger 𝐸 and 𝐻 given the same model input and other 

parameters according to Eq. (4.2). Figure 4.19(e) shows that the annual mean 𝑄 obtained 

from the Control run is slightly higher than that obtained from the NoSI run over the NPSC 

areas (see also Figure 4.19(f) for the global annual mean). In the Control run, 𝑄 over the 

NPSC areas is zero during winter due to snow cover, while winter 𝑄 over the NPSC areas 

was found to be negative in the NoSI run for bare soil surfaces (i.e., no snow). 
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Figure 4.19:  The differences in the MEP estimated climatology of (a) 𝑬, (c) 𝑯, and (e) 

𝑸 over global land caused by the snow presence and annual means of 

MEP (b) 𝑬, (d) 𝑯, and (f) 𝑸 calculated with/without snow presence (SnP) 

and polar regions (PoR) taken into account. 

 

 Global Heat Fluxes over Sea Ice Surfaces 

Figure 4.20 shows the 2001-2010 climatology (left panel) and annual means (right 

panel) of MEP estimated 𝐸𝑆𝐼, 𝐻𝑆𝐼, and 𝑄𝑆𝐼 over global oceans obtained from the Control 

run. The sea ice surface heat fluxes become zero by either excluding sea ice cover (NoSI 

run) or the PoRs as the MERRA sea ice data are available only over the PoRs. The global 
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annual means of 𝐸𝑆𝐼, 𝐻𝑆𝐼, and 𝑄𝑆𝐼 over sea ice surfaces are estimated as 0.17, 0.13, and 

-2.4 W m-2, respectively. The decrease of 𝐻𝑆𝐼 between 2007 and 2008 results from the 

corresponding decrease of CERES 𝑅𝑛 (due to the increase of 𝑅𝑛
𝐿  (in magnitude)) over the 

PoRs (see Figure 4.13(k)). Figure 4.20(b) shows that the effects of CERES data artifact on 

𝐸𝑆𝐼 are insignificant. Over the PoRs, 𝐸𝑆𝐼 is dominated and constrained by 𝑞𝑠, which is 

persistently low (about 2 g kg-1). The low 𝑞𝑠 keeps the 𝐸𝑆𝐼 stationary between 2007 and 

2008 even though the corresponding  𝑅𝑛 decreases.  

The MEP estimates of global ocean 𝐸𝑆𝐼 and 𝑄𝑆𝐼 have trends of 0.01 and -0.05 W 

m-2 yr-1, while those of global ocean 𝐻𝑆𝐼  stay stationary during 2001-2010. The 

uncertainties of the trends of global ocean MEP 𝐸𝑆𝐼 and 𝐻𝑆𝐼 are small (<0.01 W m-2 yr-1). 

The trend uncertainty of global ocean MEP 𝑄𝑆𝐼 is estimated as 0.03 W m-2 yr-1. Figure 

4.21 shows the comparisons of global annual mean MEP ocean surface heat fluxes obtained 

from the Control (with sea ice cover) and NoSI run (without sea ice cover). The results 

show that the MEP modeled ocean surface heat fluxes are insensitive to sea ice cover. The 

reason is that the MEP models over water and ice surfaces are identical when using slightly 

different thermal inertia parameters (1560 and 1920 tiu for water and ice, respectively), 

which is not sensitive to the MEP simulations given the same model inputs and other 

parameters.  
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Figure 4.20:  The 2001-2010 climatology of the MEP estimated (a) 𝑬𝑺𝑰 (c) 𝑯𝑺𝑰 (e) 

𝑸𝑺𝑰  (-𝑸𝑺𝑰  is shown) over oceans (Eq. (4.2)) with the corresponding 

global annual means shown on the right panel.  
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Figure 4.21:  The global annual means (2001-2010) of the MEP estimated (a) 𝑬, (b) 

𝑯, and (c) 𝑸 (-𝑸 is shown) over oceans calculated with/without sea ice 

presence taken into account.   
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4.8 Summary 

In this study, global climatology of surface heat fluxes is re-evaluated using the 

MEP model and input data of surface radiation, temperature data from NASA CERES 

supplemented by the (land) surface specific humidity and soil moisture data from the 

MERRA without explicit use of near-surface temperature and moisture gradient, wind 

speed and surface roughness lengths data. The MEP modeled surface heat fluxes have 

reduced uncertainty (limited by the uncertainty of surface net radiation) compared to the 

existing estimates. The MEP model produces the first direct estimate of global ocean 

surface water-snow-ice heat flux that is not available from existing data products. 

The MEP model produces new estimates of global annual mean evaporation of 

682±76 mm yr-1 and sensible heat flux of 31±3 W m-2. The surface heat fluxes over land 

and ocean domains are examined separately. The MEP estimated terrestrial 

evapotranspiration (39±10 W m-2) is in close agreement with previous estimates, while the 

estimate of ocean evaporation is about one-third lower than bulk-based estimates (61±6 vs. 

90-100 W m-2). The MEP estimated global annual mean of sensible heat flux (33±7 W m-

2) over lands is consistent with previous estimates, while that of ground heat flux (14±10 

W m-2) is higher than previous estimates. The MEP estimate of global annual mean ocean 

sensible heat flux, 30±3 W m-2, is higher than previous estimates that ranged from 6-18 W 

m-2. The global annual mean of MEP ocean surface (conductive) heat flux is -143±9 W m-

2 (through conductive cool-skin), which is 15-20% smaller than the existing estimates. The 

relative proportions of the MEP and the existing estimates of heat flux budgets at regional 

(continental and ocean basin) scales are consistent with those at global scale. The MEP 

estimate of the global annual mean net ocean heat flux (or ocean heat uptake) is positive 
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(40±6 W m-2), which is consistent with most of the existing estimates. The discrepancies 

between the MEP and existing estimates mainly result from the use of different surface 

energy balance equations at annual scale.  

The annual and seasonal trends associated with the corresponding uncertainties of 

the MEP surface heat fluxes were analyzed at global and continental- and ocean-basin 

scales. The global annual means of MEP estimates over lands have increasing trends of 

0.41±0.23, 0.18±0.18, and 0.16±0.13 W m-2 for latent, sensible, and ground heat fluxes, 

respectively. The increasing land surface radiative energy during 2001-2010 was mainly 

used to enhance evapotranspiration. The trends of global annual mean ocean surface 

evaporation, sensible and conductive heat fluxes are estimated as -0.06±0.06, -0.04±0.04, 

and -0.08±0.16 W m-2, respectively, consistent with those of 𝑅𝑛 and 𝑅𝑛
𝐿 . The increasing 

ocean surface conductive heat flux over the major ocean basins are mainly dissipated 

through 𝑅𝑛
𝐿 . The regional and seasonal trends are largely consistent with the global and 

annual trends, respectively. The effects of the artifact in CERES data on the trends of MEP 

estimated global/regional surface heat fluxes were evaluated by excluding the 

contaminated data (after 2008). The results suggest that the trends of global/regional mean 

MEP surface heat fluxes become either small or negligible over both lands and oceans.  

The global land snow-ice and sea ice surface heat fluxes are produced using the 

MEP model with the snow and sea ice data from MERRA. The MEP modeled global 

terrestrial sublimation is 0.6 W m-2 with the major contributions from the non-polar 

regions. The global annual mean of land snow-ice surface sensible heat flux estimated by 

the MEP model is 0.2 W m-2. The MEP-based estimates of global mean of (land) snow-ice 

surface conductive heat flux is -8.8 W m-2 with comparable contributions of the polar and 
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non-polar regions. The MEP modeled global snow-ice surface heat fluxes have positive 

trends (2001-2010) estimated as 0.01±0.01, 0.06±0.05, and 0.10±0.09 W m-2 yr-1 for 

sublimation, sensible, and conductive heat flux, respectively. 

The effects of snow cover on the MEP estimates of global land surface heat fluxes 

were evaluated in this study. The results showed that the global means of MEP modeled 

latent heat and sensible heat fluxes remain approximately the same, while that of MEP 

modeled ground heat flux decreases slightly when excluding the snow covered areas. The 

MEP estimates of global sea ice surface sublimation, sensible, and conductive heat fluxes 

are 0.17, 0.13, and -2.4 W m-2, respectively. The annual trends of MEP global sea ice 

surface sublimation and conductive heat fluxes are estimated as 0.01 and -0.05 W m-2 yr-1, 

while the corresponding sensible heat flux stayed stationary. The trend uncertainties of the 

global sea ice surface sublimation and sensible heat flux are small (< 0.01 W m-2 yr-1). The 

uncertainty of the annual trend of MEP modeled global sea-ice surface conductive heat 

flux is estimated as 0.03 W m-2 yr-1. The results suggest that the MEP modeled ocean 

surface heat fluxes are insensitive to sea ice cover.  

The discrepancies between the MEP-based heat flux estimates and those based on 

traditional approaches arise from multiple sources including uncertainties of input 

variables and model parameters. However, these uncertainties are difficult to quantify as 

part of inputs (e.g., wind speed) and parameters (e.g., SRLs), which are required in the 

conventional flux models, are not explicitly used in the MEP model. These issues are 

further exacerbated by the difficulties in obtaining “ground-truth” of heat fluxes over 

oceans and uncertainties in deriving surface radiative fluxes through radiative transfer 

calculations (e.g., in the presence of clouds). 
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CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH 

5.1 Research Contributions and Findings 

This dissertation aims to investigate the improvements of land surface model and 

global surface energy budget estimates by introducing an innovative parameterization of 

surface heat flux, the maximum entropy production (MEP) model. The expected 

improvements result from theoretical and technical advantages of the MEP model 

compared to the traditional bulk transfer model (BTM). An operational modeling 

framework, together with the quantitative analyses of applying the MEP model to the 

development of (1) an improved parameterizations of surface temperature, surface soil 

moisture, and near-surface air temperature, and (2) estimates of global surface energy 

budgets, are summarized in this chapter.  

In this study, a coupled land surface model for predicting surface temperature, soil 

moisture, and near-surface air temperature was formulated based on the force-restore 

method (FRM) incorporating the MEP model of surface heat fluxes (FRMEP). The 

FRMEP model is driven by surface radiation and precipitation data without using other 

meteorological variables such as air temperature, humidity, wind speed and surface 

roughness lengths among others. In the FRMEP model, the surface soil moisture equation 

was revised by taking the gravitational drainage term into account. The newly derived FRM 

of near-surface air temperature is driven by sensible heat flux, while the existing LSMs 

estimates near-surface air temperature mostly through empirical equations.  
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The proposed FRMEP model was evaluated using field observations with 

contrasting climate and soil wetness conditions. The simulations of the FRMEP model 

were compared with those from the classical FRMs forced by observed or modeled heat 

flux using conventional approaches (e.g., bulk transfer model, BTM). A one-year 

simulation of the FRMEP model was conducted to understand the performance of the 

FRMEP model for capturing the seasonal variations of surface temperature, soil moisture, 

near-surface air temperature and heat fluxes. 

Recent studies have shown that the existing LSMs produce inconsistent estimates 

of global surface energy budgets and the corresponding long-term variability. The existing 

global data products of surface heat fluxes are subject to large errors and uncertainties 

resulting from the drawbacks in the conventional flux models. In this study, the MEP model 

was applied to reconstructing a new data set of global surface energy budgets together with 

the corresponding trend and uncertainty for the first decade of the twenty-first century. The 

model inputs are obtained from contemporary remote sensing observations, such as NASA 

CERES surface radiation and temperature, as well as reanalysis data from MERRA surface 

humidity and snow/sea ice products. The MEP modeled surface heat fluxes over land and 

ocean domains are examined at continental and ocean-basin scales, respectively, to 

quantify the corresponding global contributions. 

Several achievements made in this study, which bridge the gaps in the current 

understanding of global surface energy budgets based on the existing data products, are 

benefited by the unique formalism of the MEP model. First, the MEP model produces the 

first directly modeled global water-snow-ice surface heat fluxes not available from the 

existing data products. Second, the MEP model provides an analytical expression for 
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estimating the uncertainties of surface heat fluxes. In contrast, the heat flux uncertainties 

reported by previous studies are simply a spread of various estimates or random sampling 

errors using limited ground observations. Finally, the MEP model gives a new estimate of 

global sublimation, sensible and snow-ice surface conductive heat fluxes over (land) 

snow/ice- and sea-ice-covered areas, together with the analyses of the effects of land 

snow/ice and sea ice cover on the MEP estimates of global surface energy budgets.  

The accomplished work is described in Chapter 3 and 4. The major findings are 

summarized below. 

(1) The FRMEP model 

 The FRMEP model predicted surface temperature, soil moisture, and near-surface 

air temperature agree closely with observations under various climate and soil 

wetness conditions. The modeling errors of the FRMEP model predictions are 

lower than those of the classical FRMs driven by observed or BTM heat fluxes 

(bias 1~2 oC vs. ~4 oC for surface temperature, 0.02 m3 m-3 vs. 0.05 m3 m-3 for 

surface soil moisture, less than 1 oC vs. 2~3 oC for near-surface air temperature). 

 The FRMEP model accurately predicts the diurnal variations of surface 

temperature, soil moisture, and near-surface air temperature measured by high 

correlations (≥ 0.7) between the model predictions and observations. 

 The MEP modeled surface heat fluxes agree closely with observations, while the 

BTM estimated heat fluxes have unrealistic fluctuations as a result of the large 

uncertainties and errors (theoretically unbounded) of model inputs (wind 
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temperature/humidity gradient) and parameters (bulk transfer coefficients). The 

MEP modeled surface heat fluxes have lower modeling errors and higher 

correlations with observations compared to the BTM modeled heat fluxes.  

 The MEP modeled surface heat fluxes improve the model performance during 

nighttime and rainy period whenever the observed heat fluxes have large 

measurement errors. 

 The revised FRM of soil moisture taking the gravitational drainage into account 

significantly improves the simulated soil moisture under high soil moisture 

conditions, which suggests that the drainage term cannot be neglected under wet 

soil condition.  

 The FRMEP model is able to simulate the seasonal variations of surface 

temperature, soil moisture, and near-surface air temperature (correlations 0.93, 

0.93, and 0.87, respectively) with mean biases of 1.7 oC, 6×10-3 m3 m-3, and 0.49 

oC, respectively. 

 Specification of FRM model parameters, such as the reference soil temperature, 

moisture and air temperature, has a stronger impact on long-term simulations as 

opposed to short-term simulations, which is a major limitation of the FRM for long-

term simulations.  

These encouraging results justify the use of the FRMEP as a promising data 

retrieval algorithm using satellite remote sensing observations. The FRMEP model may 

also be an attractive physical parameterization of surface soil temperature, soil moisture, 
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and heat fluxes in regional and global atmospheric models. The direct use of radiation and 

precipitation data as model forcing facilitates the application of the FRMEP model in the 

study of regional and global water and energy cycles as remote sensing observation 

missions are now capable of providing more abundant global high-resolution radiation 

(e.g., NASA CERES) and precipitation (e.g., NASA-The Global Precipitation 

Measurement Mission) data sets (Wielicki et al., 1996; Hou et al., 2014). Additionally, the 

FRMEP model expands applications of the MEP model of surface heat fluxes in situations 

where remote sensing observations of surface temperature and moisture have substantial 

gaps in space and time coverage and uncertainties. 

 

(2) MEP-based Estimates of Global Surface Energy Budgets 

 The MEP estimate of global land evapotranspiration 492 mm yr-1 (39±10 W m-2) 

agrees closely with previous estimates, while that of ocean evaporation (61±7 W 

m-2) is lower than the existing estimates produced by the bulk-formula-based 

algorithms (90-100 W m-2).  

 The MEP estimated global annual mean sensible heat flux over lands is 33±7 W m-

2 consistent with previous estimates, while that over oceans, 30±3 W m-2, is higher 

than the previous estimates ranging from 6-18 W m-2. 

 The global annual mean ground heat flux estimated by the MEP model is 14±10 W 

m-2, while most of the existing estimates are nearly zero assuming there is no net 

energy absorbed/released by the Earth’s surface at annual scale. The MEP modeled 
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global ocean surface conductive heat flux is -143±9 W m-2, which is 15-20% lower 

than the existing estimates derived from a residual of surface energy balance. The 

MEP-based estimates of net ocean heat flux (or ocean heat uptake) is positive (40±6 

W m-2) consistent with most of the previous estimates.  

 The MEP model produced new estimates of global annual mean evaporation, 

682±76 mm yr-1, is lower than the existing estimates, while that of global annual 

mean sensible heat flux is higher than previously reported. This is mainly caused 

by the lower (higher) estimates of evaporation (sensible heat flux) over oceans. The 

overall positive net surface heat fluxes (33±6 W m-2) suggests that the Earth’s is 

gaining thermal energy at annual scale.  

 The uncertainties of the MEP modeled climatology of global land and ocean surface 

heat fluxes are smaller than the existing estimates. The uncertainties of MEP 

surface heat fluxes are evaluated analytically and constrained by that of surface (net) 

radiation. 

 Land surface heat fluxes have increasing trends globally as estimated by the MEP 

model, while MEP modeled ocean surface heat fluxes show decreasing trends 

during 2001-2010. The trends of the MEP heat fluxes are consistent with those of 

CERES surface net radiation data. The regional (continental and ocean basin scale) 

and seasonal trends are largely consistent with the global and annual trends, 

respectively. The positive trends of MEP land surface heat fluxes may be 

overestimated and is thought to be caused by the artifact in the CERES surface 

temperature (and upward longwave radiation) data resulting in abrupt increase of 
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CERES surface net radiation between 2007 and 2008. The trends of MEP heat 

fluxes become stationary if excluding the contaminated data.  

 The added surface radiation energy over lands is largely used to enhance 

evapotranspiration, while the increase of ocean surface thermal energy over oceans 

is mostly dissipated through longwave radiation.  

 The MEP estimated global land sublimation is 0.6 W m-2 mostly contributed by the 

non-polar-snow-covered areas. The global annual mean of land snow-ice surface 

sensible heat flux estimated by the MEP model is 0.2 W m-2. The snow-ice surface 

conductive heat flux over global land is estimated as -8.8 W m-2 with comparable 

contributions of polar and non-polar regions. The global annual means of MEP 

modeled terrestrial latent and sensible heat flux are insensitive to snow cover, while 

those of MEP ground heat flux slightly increase if excluding snow cover.  

 The MEP-based estimates of global sea ice sublimation, sensible, and surface 

conductive heat flux are 0.17, 0.13, and -2.4 W m-2, respectively. The MEP 

modeled ocean surface heat fluxes are insensitive to sea ice cover.   

The MEP modeled surface heat fluxes not only close surface energy budgets at all 

space-time scales by definition, but also avoid explicit use of temperature/moisture 

gradients, wind speed and surface roughness lengths as model inputs and parameters. These 

unique properties make the MEP model a powerful tool that can be used in facilitating the 

monitoring and evaluating regional and global surface water and energy budgets, especially 

over sparsely instrumented polar regions, sea ice surfaces, and remote continental areas.  
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The MEP model may serve as an effective physical parameterization of land-ocean-

atmosphere interaction in regional and global weather prediction and climate models, 

contributing to the study of changes of water-energy-carbon cycles in response to radiative 

forcing perturbations of both natural and anthropogenic origins. Constructing a new global 

surface energy budget based on the MEP model facilitates the understanding of the climate 

system’s energy cycle from a surface perspective. 

 

5.2 Recommendations for Future Work 

Based on the findings described above, several topics deserve further investigation: 

(1) The FRMEP model 

 Further tests of the FRMEP model over various surface types and conditions are 

required for characterizing model parameters (e.g., reference temperature in the 

FRM of surface temperature/near-surface air temperature and wetness function for 

determining surface specific humidity).  

 Tests of the FRMEP model at larger spatial (mesoscale, regional) scales are needed 

for regional scale model simulations. The effects of temporal resolution of input 

data on the MEP modeled surface heat fluxes over different surface types and 

conditions also require further tests and validation due to the nonlinearity of the 

MEP model.  
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 The FRMEP model is a promising new physically-based algorithm for downscaling 

and gap-filling (temporal and spatial) satellite remote sensing observations of 

surface hydro-meteorological variables and heat fluxes. By combining with the 

latest high resolution satellite observations (e.g., CERES radiation, MODIS surface 

temperature, SMAP surface soil moisture, NASA Global Precipitation 

Measurement (GPM) precipitation), the FRMEP model can produce surface state 

variables and heat fluxes with the highest resolution of the input data down to sub-

daily and km resolution. 

 The FRMEP model can be further expanded by incorporating root zone soil 

moisture and temperature models for simulating root zone soil temperature and 

moisture, as well as subsurface heat and hydrologic fluxes in the study of regional 

and global energy and water cycles.  

 (2) MEP-based Estimates of Global Surface Energy Budgets 

 Further improvements of the MEP simulations could be achieved by using more 

accurate model parameters. For example, the thermal inertia of dry soil of ~ 800 (J 

m-2 K-1 s-1/2) was used in this study as a representative value of the dominant soil 

types of the Earth. The thermal inertia parameters can be estimated more accurately 

by introducing high resolution soil property data from e.g., the International Soil 

Reference and Information Centre (ISRIC) (1 km resolution).  

 The estimated trends of the MEP modeled global/regional land surface heat flux 

budgets presented in this study are subject to biases due to the artifact in CERES 

radiation data. The performance of the MEP simulations can be further improved 
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by using model inputs either with bias corrections or from alternative data products 

(e.g., reanalysis data products).  

 The MEP model may be used as an alternative parameterization of surface heat 

fluxes in the atmospheric models for studying heat-flux-driven processes such as 

the atmospheric moisture transport between lands and oceans as well as the sea 

level rise and climate change in response to the changes in net ocean heat flux or 

ocean heat uptake. 
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