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Abstract: This paper concerns the problem of optimal switching control in voltage converter
circuits, where the objective is to minimize a cost-performance function comprised of the
sum of a tracking-related measure and the switching energy. Most of the existing approaches
to optimal switching are based on continuous-parameter optimization and optimal control
techniques, which are mostly suitable to continuous-parameter functions such as tracking-related
performance metrics. On the other hand, the switching-energy cost performance is inherently a
discontinuous function dependent on the number of switchings, and hence its inclusion in the
problem often is done in ad-hoc ways. This paper explores a systematic approach to optimizing
performance - energy tradeoffs by extending an algorithm for optimizing tracking, developed
by the authors, to include the energy performance via an averaging technique. The problem is
posed in the setting of Pulse Width Modulation, and the controlled variables are the cycle time
and duty ratios at each cycle. Extensive simulation results suggest the potential generality of
the proposed approach.

Keywords: Switched-mode hybrid systems, gradient-descent algorithms, voltage-converter
circuits.

1. INTRODUCTION AND PROBLEM STATEMENT

The problem of optimal mode-switching in hybrid dynam-
ical systems has been the focus of extensive research in
the past ten years. One of the main application areas
is in switching circuits, where one seeks to optimize the
schedule of the states of various switches in order to have
a particular circuit variable, such as voltage or current,
track a given reference. The circuit can be viewed as a
switched-mode hybrid dynamical system, where each com-
bination of states of the switches corresponds to a mode,
and within the time-span between consecutive switchings
the system evolves according to continuous-time dynamics.
The optimal mode-switching problem has the structure of
an optimal control problem whose control variable consists
of the schedule of modes. This endows the problem with
a particular structure that has been investigated from
the standpoint of theory and computation, and several
effective algorithms for its solutions have been developed.

A general algorithmic approach has been proposed by
Morari et al. in Almér at al. (2007); Geyer et al. (2008);
Almér et al. (2010) and references therein. It is based
on model-predictive control over a finite time horizon,
and on piecewise-affine interpolations of measurement-
data obtained at certain sampling times. These data
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are used in mixed-integer linear or quadratic programs
to compute the optimal switching times. An alternative
algorithmic approach has been proposed by DeCarlo et
al.; see Bengea and DeCarlo (2005); Neely et al. (2010a,b)
and references therein. It is based on relaxing the optimal
mode-switching problem, solving the relaxed problem by
nonlinear-programming algorithms in conjunction with
model predictive control, and projecting the results onto
the space of mode-schedules. A third approach has been
explored by the authors of this paper, and it is based on
applications of gradient-descent techniques in the space of
switching schedules (Ding et al. (2008); Kawashima et al.
(2011)).

These approaches focus on performance criteria Jp having
the form

Jp =

∫ T

0

Lp(x)dt, (1)

where x(t) ∈ Rn, t ∈ [0, T ], is the continuous state
variable of the circuit, and Lp : Rn → R is a suitable
differentiable cost function. They are largely based on non-
linear programming and optimal control techniques, which
generally require continuity of the performance criteria.
However, power- and energy-related cost functions, which
are becoming increasingly important in circuit-switching
control, may not fit within this framework and have to be
handled by ad-hoc methods, as in Ding et al. (2008).
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Fig. 1. Step-down DC-DC converter.

This paper provides an initial exploration of a new idea for
including switching-energy costs in the above framework.
Generally, power leakage at a switching circuit element
can be neglected during long periods of its constant state
(open or closed), since either voltage or current are close
to zero. However, during the process of a state transition
both voltage and current vary rapidly, and this results
in the dissipation of power and energy that might not
be neglected. Thus, the average power or energy associ-
ated with the switching schedule is closely related to the
number of state transitions at the switches, a discrete
variable; and hence does not have the form of Jp (1).
This paper proposes a way to adequately approximate the
power/energy performance function via a term similar to
(1), uses this formulation to define an aggregate cost func-
tion comprised of energy-tracking balance, and optimizes
it by the aforementioned algorithmic approach.

To explain our idea we use the example of the DC-DC
converter circuit shown in Figure 1. This circuit was
defined in Almér et al. (2010) to illustrate an algorithm
for computing optimal duty ratios in a Pulse Width
Modulation (PWM) switching control scheme designed to
regulate the output voltage v0. The same problem was
considered in Kawashima et al. (2011) as well, and this
paper extends it by adding the switching energy to the
cost function that is to be minimized.

The rest of the paper is organized as follows. Section
2 defines the problem and presents relevant background
material, Section 3 describes our solution technique and
presents simulation experiments, and Section 4 concludes
the paper.

2. PROBLEM DEFINITION AND SURVEY OF
ESTABLISHED RESULTS

The circuit shown in Figure 1, defined in Almér et al.
(2010), depicts a two-port DC-DC power converter, con-
sisting of a switch, an LC filter, a voltage source to supply
the power that flows into the input port, and a current
source that absorbs the power that flows from the output
port. The resistors rℓ and rc represent parasitic resistances
in series with the inductor and capacitor, respectively. As
in Almér et al. (2010), the current source acts as a load of
the circuit.

The switch can be in either state High (H) or Low (L)
as shown in the figure, and we note that in the H state
the voltage source supplies vs volts to the input port,
while in the L state the voltage source supplies 0 volts.
Correspondingly, let v(t) ∈ {0, 1} denote the state of the
switch at time t, where v(t) = 1 when the switch is in the
High state, and v(t) = 0 when the switch is in the Low
state. We consider the function {v(t)}t≥0 as the control
input to the system comprised of the circuit.

An application of physical laws yields the dynamic model

d

dt

[
vc
iℓ

]
=

[
0 C−1

−L−1 −L−1(rc + rℓ)

] [
vc
iℓ

]
+

[
−C−1

L−1rc

]
io +

[
0

L−1

]
vsv, v ∈ {0, 1} (2)

where vc is the voltage across the capacitor and iℓ is
the current through the inductor; we assume given initial
conditions vc(0) and iℓ(0). The quantity of interest is the
voltage across the current source, vo, which is given by the
equation

vo = vc + rc(iℓ − io). (3)

Consider the problem of controlling the circuit so as to
have the voltage vo track a given constant reference value
vr. Since the control consists of the switching schedule,
hence discrete, it is typically impossible to obtain exact
tracking. Instead, we consider the tracking-performance
function Jp defined by

Jp =
1

2

∫ T

0

(vo(t)− vr)
2dt, (4)

where T > 0 is a given horizon interval. Observe that Jp
is a special case of the cost measure defined in (1).

References (Almér et al. (2010); Kawashima et al. (2011))
considered controlling the circuit by a PWM with a fixed
switching rate and variable duty ratios. More specifically,
given a constant cycle time Tc and a fixed number of
cycles, N , the duty ratios determine the fraction of time
the switch is in the respective states H and L (in this order)
during each cycle. Thus, denoting by ρk ∈ [0, 1] the kth
duty ratio, and noting that the kth cycle is the interval
[(k − 1)Tc, kTc), k = 1, . . . , N , we have that

v(t) =

{
1, t ∈ [(k − 1)Tc, (k − 1 + ρk)Tc)
0, t ∈ [(k − 1 + ρk)Tc, kTc).

(5)

Fix Tc and N . The performance measure Jp, defined by
Equations (2)-(4), can be viewed as a function of the duty
ratios ρk, k = 1, . . . , N . Minimizing this function was the
problem that was solved in Almér et al. (2010); Kawashima
et al. (2011).

We change this problem by appending an energy term to
the cost function. Denoting by Je the switching-energy
spent during the horizon interval [0, T ], and given a weight-
ing term w ∈ [0, 1], the cost function that we minimize is

J = (1− w)Jp + wJe. (6)

The energy term Je consists of the sum of the energy
spent during each switching of the state (High to Low
and vice versa) during the horizon interval [0, T ]. Let
Tc and Nc denote the cycle time and the number of
cycles, respectively; note that NcTc is approximately T .
Finally, suppose that there are Nr switchings in the
horizon interval [0, T ], and let τi, i = 1, . . . , Nr denote
the switching times in increasing order. Observe that Nr

is roughly 2Nc since there are two switchings at each
cycle possibly except for the last cycle, which may be
incomplete. The last cycle spans the time-interval [(Nc −
1)Tc, T ]. Let ρNc denote its duty ratio. We treat this cycle
in the following way: If T < (Nc − 1 + ρNc

)Tc then the
switch is in the High state throughout the cycle, and
otherwise, the switch’s state is changed from High to Low



at the time (Nc − 1 + ρNc)Tc, where it stays to the end of
the cycle at time T .

Suppose that the time to open or close the switch is ts/2
seconds for a given ts > 0 (we assume the same time
for both opening and closing the switch). Assuming that
the switch is implemented as a transistor-diode pair, the
energy spent during the ith switching can be adequately
approximated by 4−1tsvsiℓ(τi) joules; see, e.g., Mohan et
al. (1995). 1 In this case, the switching-energy term Je has
the following form,

Je =
tsvs
4

Nr∑
i=1

iℓ(τi) (7)

joules. This clearly does not have the form of Jp as defined
by Equation (1).

Our starting point is the algorithm described in Kawashima
et al. (2011) for minimizing the tracking term Jp defined in
Equation (4). It is based on an abstract algorithmic frame-
work for optimizing mode-schedules in switching hybrid
dynamical systems, developed in Axelsson et al. (2008).
In its general setting the system’s dynamic equation has
the following form,

ẋ(t) = f(x(t), v(t)), (8)

where x ∈ Rn is the state variable, the initial state x(0) :=
x0 is given, the control v(t) is confined to a finite set V ,
and the vector field f(·, v) : Rn → Rn is continuously
differentiable for every v ∈ V . The cost functional to be
minimized is

J :=

∫ T

0

L(x)dt (9)

for a given T > 0, where L : Rn → R is a continuously-
differentiable function.

Various algorithmic approaches to this problem have been
proposed in Xu and Antsaklis (2002); Bengea and DeCarlo
(2005); Shaikh and Caines (2007); Caldwell and Murphy
(2010) and references therein, but we follow the one
developed in Axelsson et al. (2008). This approach is
based on descent directions chosen by needle variations
and sensitivity (gradient) of the cost functional J with
respect to the mode-switching times, in conjunction with
the Armijo step size (Polak (1997)). The gradients have a
special form related to the dynamic equation (8) and the
cost function (9): defining the costate variable p(t) ∈ Rn

via

ṗ(t) = −
(
∂f

∂x
(x, v)

)T

p(t)−
(
∂L

∂x
(x)

)T

(10)

with the boundary condition p(T ) = 0, and denoting by τi
the ith switching time of v(·), the derivative ∂J

∂τi
has the

form
∂J

∂τi
= p(τi)

T
(
f(x(τi), v(τ

−
i ))− f(x(τi), v(τ

+
i ))

)
. (11)

A convergence analysis of the algorithm was presented
in Axelsson et al. (2008), and an implementation of it
to the tracking problem of minimizing Jp, defined in (4),
exhibited rapid convergence. We point out that the form of
the cost functional, given in (9) (of which (4) is a special
case) is essential for the algorithm. However, the energy

1 This formula implies that vs has a constant value, otherwise it
would be replaced by vs(τi).

cost function Je, defined in (7), does not have this form,
and therefore, we start the next section by defining an
adequate approximation to it that is in the form as (9).

3. TRACKING-ENERGY OPTIMIZATION IN A
DC-DC CONVERTER

Consider the problem of minimizing the function J defined
by Equation (6), where Jp and Je are defined via (4) and
(7), respectively. We first define an approximation to Je
that has the form of (9), and then describe an extension of
the algorithm in Kawashima et al. (2011) for minimizing
J .

Suppose that each duty cycle starts at the High state and
ends at the Low state of the switch. Thus, each cycle has
two state switchings: one from H to L during the cycle, and
one from L to H at the end of the cycle except, possibly,
at the last one. Denote the number of switchings and the
number of cycles by Nr and Nc, respectively. If Nr is even
then Nc =

Nr

2 +1, where the last cycle does not incur any
switchings, and Equation (7) can be written as

Je =
tsvs
2

Nc−1∑
k=1

iℓ(τ2k−1) + iℓ(τ2k)

2
. (12)

On the other hand, if Nr is odd then Nc = Nr

2 + 1
2 , and

by defining τNr+1 = τNr , Equation (12) is also satisfied.
Dividing and multiplying (12) by the cycle time Tc we
obtain the following equation,

Je =
tsvs
2

1

Tc

Nc−1∑
k=1

iℓ(τ2k−1) + iℓ(τ2k)

2
Tc. (13)

Now if Nc is large then the sum-term in the last equation
can be approximated by an integral, which yields the
following approximation to Je, denoted by J̃e:

J̃e =
tsvs
2

1

Tc

∫ T

0

iℓ(τ)dτ. (14)

Observe that J̃e has the structure of (9), and hence we

define our approximation to J , denoted by J̃ , as

J̃ = (1− w)Jp + wJ̃e. (15)

The effect of the approximation error on the optimization
process will be examined later on a number of test prob-
lems and shown to be barely discernable.

Let us denote the variable for our optimization problem
by ξ := (Tc, ρ1, . . . , ρNc)

T , where Tc is the cycle time and
ρk are the duty ratios, k = 1, . . . , Nc. The feasible set for
the problem consists of the points ξ such that Tc ≥ ϵ
for a given (small) ϵ > 0, and 0 ≤ ρk ≤ 1 for every
k = 1, . . . , Nc. The following algorithm is an extension of
the one in Kawashima et al. (2011) in that it includes the

term J̃e in J̃ , and it considers Tc as a part of the variable.

Algorithm 1.
Given: Constant parameters α ∈ (0, 1) and β ∈ (0, 1).
Step 0: Choose an initial feasible point ξ0. Set n = 0.
Step 1: Compute h̃n, defined as the projection of −∇J̃(ξn)

onto the feasible set at ξn. If h̃n = 0, then exit; otherwise,
continue.
Step 2: If ξn + h̃n is feasible, set hn := h̃n. Otherwise,
compute λn := max{λ ≥ 0 : ξn + λh̃n is feasible}, and set



hn := λnh̃n.
Step 3: Compute j(ξn) defined as follows:

j(ξn) = min
{
j = 0, 1, ... : J̃(ξn + βjhn)− J(ξn)

≤ αβj⟨∇J̃(ξn), hn⟩
}
, and set γ(ξn) := βj(ξn).

Step 4: Set ξn+1 := ξn − γ(ξn)hn, set n = n+1, and go to
Step 1. 2

We point out that the various partial derivatives of ∇J̃(ξ)
are computable by the chain rule and Equation (11) for
∂J̃
∂τi

. To see this, note that for every k = 1, 2, . . . , τ2k−1 =

(k−1+ρk)Tc, while τ2k = kTc, and this yields ξ explicitly
in terms of the switching times.

We ran Algorithm 1 to optimize J̃ for several sets of values
of w and initial points. Following Almér et al. (2010) we
use normalized, dimensionless circuit elements (except for
resistors) and timing variables. The following parameters
are common to all the runs.

• Circuit parameters: C = 70/2π, L = 3.0/2π, rc =
0.005 ohm, rℓ = 0.050 ohm, and the sum of the
switch’s opening and closing delays at each cycle is
ts = 0.001.

• Problem parameters: T = 20, vs = 1.8 (a constant),
io = 4.0 (a constant), vr = 1.0, and the initial
conditions for Equation (2) are vc(0) = 1.0 and
iℓ(0) = 3.5.

• Algorithm parameters: α = β = 0.5, ϵ = 0.005,
the initial cycle time is Tc = 0.1 (meaning that the
number of cycles is Nc = 200), Equations (8) and (10)
are solved numerically via the forward Euler method
with a step size of 0.001.

All the runs were made for 100 iterations but convergence
is discerned after about 10 iterations, and the figures below
show the first 25 iterations. Three values of the weighting
factor w were used (see (15)): w = 0.5 reflecting on
an equal weight between the tracking and energy costs,
w = 0.9 corresponding to a larger weight on the energy
cost, and w = 0.1, corresponding to a larger weight on
the tracking performance. The results are presented below
for various values of w and the initial vector of duty ratios.

(1) w = 0.5. The duty ratios in the first iteration point,
ξ0, are ρk = 0.5 for every k = 1, . . . , 200. The graph
of the cost J̃(ξn) as a function of the algorithm’s
iteration count n is shown in Figure 2, where the
dashed line indicates the tracking-performance cost
(1 − w)Jp(ξn), the dashed-dotted line shows the en-

ergy cost wJ̃e(ξn), and the solid line shows the sum of

the two, namely J̃(ξn). The initial cost is J̃(ξ0) = 0.86

and the final cost is J̃(ξ100) = 0.024. At the end of the
run, namely according to ξ100, the number of cycles
is Nc = 14, and the vector of duty ratios has a mean
of 0.66 and a standard deviation of 0.0078, indicating
an almost-uniform duty ratio of 0.66. The maximum
error, ε := max{|J̃e(ξn) − Je(ξn)| : n = 1, . . . , 100},
was computed to be ε = 0.0030, indicating that the
approximation yields a good accuracy.
Analogous results were obtained for the case where

the initial duty ratios are ρk = 0.8 for every k =

1, . . . , 200, and the graphs of the cost functions are
shown in Figure 3. The initial cost is J̃(ξ0) = 0.68,

and the final cost is J̃(ξ100) = 0.024. At the end of the
run the number of cycles is Nc = 14, and the vector
of duty ratios has a mean of 0.66 and a standard
deviation of 0.0074. The energy-approximation error
is ε = 0.0032.
A third run was made with the initial duty ratios of

ρk = 0.2 at all cycles, resulting in a high tracking cost
at the early stage of the algorithm’s run. The results
are shown in Figure 4. The initial and final costs are
J̃(ξ0) = 4.2 and J̃(ξ100) = 0.025, respectively, the
final number of cycles is 14, and the vector of duty
ratios has a mean of 0.66 and a standard deviation of
0.0066. The energy-approximation error is ε = 0.0031.
The results of the three runs with different initial

duty ratios are consistent in terms of both the final
result ξ100 and its cost-value J̃(ξ100).

(2) w = 0.9. This case corresponds to a large weight on
the energy component of the cost. Figures 5-7 show
the graphs of the cost measures for three values of the
initial duty ratios: ρk = 0.5 ∀ k = 1, . . . , 200, ρk =
0.8 ∀ k = 1, . . . , 200, and ρk = 0.2 ∀ k = 1, . . . , 200.
Not surprisingly, in the first two cases the energy cost
dominates the total cost as can be seen in Figures 5
and 6. However, when the initial duty ratios are 0.2,
the tracking-performance cost is larger in the first 8
iterations of the algorithm (see Figure 7), and this is
due to the fact the capacitor is being discharged, and
hence vo is far off vr, for most of the time.
For the case where the initial duty ratios are 0.5,

the initial and final costs are J̃(ξ0) = 0.72 and

J̃(ξ100) = 0.027, respectively; at the end of the run
the number of cycles is Nc = 9, and the vector of duty
ratios has a mean of 0.65 and a standard deviation
of 0.035; and the energy-approximation error is ε =
0.0028.
For the case where the initial duty ratios are 0.8,

the initial and final costs are J̃(ξ0) = 0.73 and

J̃(ξ100) = 0.027, respectively; at the end of the run
the number of cycles is Nc = 9, and the vector of duty
ratios has a mean of 0.65 and a standard deviation
of 0.035; and the energy-approximation error is ε =
0.0030.
For the case where the initial duty ratios are

0.2, the initial and final costs are J̃(ξ0) = 1.3 and

J̃(ξ100) = 0.027, respectively; at the end of the run
the number of cycles is Nc = 9, and the vector of duty
ratios has a mean of 0.65 and a standard deviation
of 0.035; and the energy-approximation error is ε =
0.0034. Again, we discern a consistency in the final
results of the three runs.

(3) w = 0.1. This corresponds to the case where the
tracking-performance dominates the total cost. Fig-
ures 8-10 show the respective graphs of the cost
measures for three values of the initial duty ratios:
ρk = 0.5 ∀ k = 1, . . . , 200, ρk = 0.8 ∀ k = 1, . . . , 200,
and ρk = 0.2 ∀ k = 1, . . . , 200. In all cases the tracking
performance dominates, and this is due to the low
value of w.
For the case where the initial duty ratios are

0.5, the initial and final costs are J̃(ξ0) = 1.0 and
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Fig. 2. J (w = 0.5, ρinit = 0.5).

J̃(ξ100) = 0.0081, respectively; at the end of the run
the number of cycles isNc = 22 and the vector of duty
ratios has a mean of 0.66 and a standard deviation
of 0.014; and the energy-approximation error is ε =
0.0030.
When the initial duty ratios are 0.8, the initial and

final costs are J̃(ξ0) = 0.62 and J̃(ξ100) = 0.0088,
respectively; at the end of the run the number of
cycles is Nc = 25 and the vector of duty ratios has a
mean of 0.67 and a standard deviation of 0.012; and
the energy-approximation error is ε = 0.0033.
For the case where the initial duty ratios are

0.2, the initial and final costs are J̃(ξ0) = 7.1 and

J̃(ξ100) = 0.0080, respectively; at the end of the run
the number of cycles is Nc = 22 and the vector
of duty ratios has a mean of 0.66 and a standard
deviation of 0.017; and the energy-approximation
error is ε = 0.0029. Once again, the three runs yield
similar results.

For each one of the above values of w, the three runs with
the respective initial duty ratios yielded similar graphs of
vo(t), t ∈ [0, T ]. These are shown in Figures 11-13 for
w = 0.5, w = 0.9, and w = 0.1, respectively, and all with
initial duty ratios of 0.5. All three cases show tracking of
the reference value of vr = 1.0 albeit at different qualities.
The case where w = 0.9 yields the worst tracking but
it has the lowest switching rate, while the case where
w = 0.1 yields the best tracking with the highest switching
frequency. This is due to the fact that larger values of w
are associated with a larger weight of the energy cost, and
lower weight of the tracking-performance cost, on the total
cost.

4. CONCLUSIONS

This paper considers a problem of optimal switching-
control in power-electronics converter circuits, whose ob-
jective is to compute a switching regimen that balances
a tracking performance with a measure of switching en-
ergy. It extends an existing algorithm, suitable for optimal
tracking, to include energy metrics as well. Simulation re-
sults exhibit fast convergence of the algorithm, and suggest
its potential utility in a broader class of switching-control
applications in power electronics.

REFERENCES

Almér, S., Fujioka, H., Jonsson, U., Kao, C., Patino,
D., Riedinger, P., Geyer, T., Beccuti, A., Papafotiou,
G., Morari, M., Wernrud, A., and Rantzer, A. (2007).
Hybrid Control Techniques for Switched-Mode DC-DC

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

iteration count

C
o
s
t

 

 

Total

Performance

Energy

Fig. 3. J (w = 0.5, ρinit = 0.8).

0 5 10 15 20 25
0

1

2

3

4

5

iteration count

C
o
s
t

 

 

Total

Performance

Energy

Fig. 4. J (w = 0.5, ρinit = 0.2).

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

iteration count

C
o
s
t

 

 

Total

Performance

Energy

Fig. 5. J (w = 0.9, ρinit = 0.5).

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

iteration count

C
o
s
t

 

 

Total

Performance

Energy

Fig. 6. J (w = 0.9, ρinit = 0.8).

0 5 10 15 20 25
0

0.5

1

1.5

iteration count

C
o
s
t

 

 

Total

Performance

Energy

Fig. 7. J (w = 0.9, ρinit = 0.2).



0 5 10 15 20 25
0

0.5

1

1.5

iteration count

C
o
s
t

 

 

Total

Performance

Energy

Fig. 8. J (w = 0.1, ρinit = 0.5).

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

iteration count

C
o
s
t

 

 

Total

Performance

Energy

Fig. 9. J (w = 0.1, ρinit = 0.8).

0 5 10 15 20 25
0

2

4

6

8

iteration count

C
o
s
t

 

 

Total

Performance

Energy

Fig. 10. J (w = 0.1, ρinit = 0.2).

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

t

v
o

Fig. 11. Final vo(t) (w = 0.5, ρinit = 0.5).

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

t

v
o

Fig. 12. Final vo(t) (w = 0.9, ρinit = 0.5).

converters, Part I: The Step-Down Topology. Proc.
ACC, New York, New York, June 11-13.
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