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Figure 7-3 The effect of footing size on the stress-displacement behavior of a 

circular footing resting on homogeneous clay (cases Ci-1-1-1-5 

through Ci-3-1-1-200) 
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Figure 7-4 The effect of soil strength on the stress-displacement behavior of 

a circular footing resting on homogeneous clay (cases Ci-2-1-1-5 

through Ci-2-2-1-200) 
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Figure 7-5 The effect of small-strain stiffness on the stress-displacement 

behavior of a circular footing resting on homogeneous clay (cases 

Ci-2-2-1-5 through Ci-2-2-2-200) 
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Figure 7-6 Illustration of parameters used in the normalization of foundation 

load-displacement response 

 

182 

Figure 7-7 FLAC simulations of circular footing for undrained cases on 

linear elastic-plastic clay as given in Table 7-1: a) “Raw” q versus 

s plot, b) q/qult versus pseudo-strain s/d plot, c) Normalized q/qult 

versus s/sr plot 
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Figure 7-8 Stress-displacement curves underneath the centerline of a circular 

footing on homogeneous clay (cases Ci-1-1-1-5 through Ci-3-1-1-

200) plotted in normalized form (cases varying the footing size) 
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Figure 7-9 Stress-displacement curves underneath the centerline of a circular 

footing on homogeneous clay (cases Ci-2-1-1-5 through Ci-2-2-1-

200) plotted in normalized form (cases varying the undrained 

shear strength) 
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Figure 7-10 Stress-displacement curves underneath the centerline of a circular 

footing on homogeneous clay (cases Ci-2-2-1-5 through Ci-2-2-2-

200) plotted in normalized form (cases varying the small-strain 

stiffness) 
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Figure 7-11 Normalized stress-displacement curves for a circular, rigid, 

footing resting on a homogenous non-linear elastic plastic clay 

layer for undrained loading conditions 
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Figure 7-12 Finite difference grid for modeling a rigid strip footing resting on 

a homogeneous clay layer 

 

192 

Figure 7-13 FLAC simulations of strip footing for undrained cases on non-

linear elastic plastic LOGNEP clay: a) simulated “raw” stress-

displacement curves for xL = 10; b) simulated “raw” stress-

displacement curves for xL = 50; c) normalized stress-

displacement curves for xL = 10; and d) normalized stress-

displacement curves xL = 50 
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Figure 7-14 Normalized stress-displacement curves for a rigid, smooth, strip 

footing resting on a homogenous clay layer under undrained 

loading conditions 
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Figure 8-1 Uniform 50x50 square element mesh for modeling shallow 

footings under drained loading conditions 

 

198 

Figure 8-2 Simulated stress-displacement curves representing vertical 

displacements beneath circular rigid footings under drained 

loading conditions: a) φ’ = 30
o
, xL =30; c) φ’ = 35

o
, xL =50; d) φ’ = 

40
o
, xL =100. 
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Figure 8-3 Normalized simulated stress-displacement curves representing 

vertical displacements beneath circular rigid footings under 

drained loading conditions: a) φ’ = 30
o
, xL =30; b) φ’ = 35

o
, xL 

=50; c) φ’ = 40
o
, xL =100 
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Figure 8-4 Normalized stress-displacement curves for a smooth, rigid, 

circular footing resting on nonlinear elastic plastic LOGNLEP 

soil (φ’ = 30
o
, ψ = 0

o
) 
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Figure 8-5 Normalized stress-displacement curves for a smooth, rigid, 

circular footing resting on nonlinear elastic plastic LOGNLEP 

soil (φ’ = 35
o
, ψ = 0

o
) 
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Figure 8-6 Normalized stress-displacement curves for a smooth, rigid, 

circular footing resting on nonlinear elastic plastic LOGNLEP 

soil (φ’ = 40
o
, ψ = 0

o
) 
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Figure 8-7 Simulated stress-displacement underneath a 1-m diameter 

smooth, rigid footing φ’=40
o
, xL=50 

 

207 

Figure 8-8 Simulated stress-displacement curves representing vertical 

displacements beneath rigid strip footings under drained loading 

conditions: a) φ’ = 30
o
, xL =30; b) φ’ = 35

o
, xL =50; c) φ’ = 40

o
, xL 

=100. 
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Figure 8-9 Normalized simulated stress-displacement curves representing 

vertical displacements beneath rigid strip footings under drained 

loading conditions: a) φ’ = 30
o
, xL =30; b) φ’ = 35

o
, xL =50; c) φ’ = 

40
o
, xL =100. 
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Figure 8-10 Comparison of the bearing capacity factor Nγ computed from the 

current study and other studies from literature for smooth strip 

footings 
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Figure 8-11 Normalized stress-displacement curves for a smooth, rigid, strip 

footing resting on nonlinear elastic plastic LOGNLEP soil (φ’ = 

30
o
, ψ = 0

o
) 
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Figure 8-12 Normalized stress-displacement curves for a smooth, rigid, strip 

footing resting on nonlinear elastic plastic LOGNLEP soil (φ’ = 

35
o
, ψ = 0

o
) 
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Figure 8-13 Normalized stress-displacement curves for a smooth, rigid, strip 

footing resting on nonlinear elastic plastic LOGNLEP soil (φ’ = 

40
o
, ψ = 0

o
) 
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Figure 9-1 The effect of varying the fitting parameters f and g on the 

modulus reduction factor Rf: (a) f
*
 = 1 and g

*
 variable; (b) f

*
 

variable and g
*
 = 1 

 

 

220 



 xxv

  Page 

Figure 9-2 Fitted non-linear hyperbolic functions to normalized simulated 

stress-displacement curves under rigid circular footings under 

undrained loading 
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Figure 9-3 Fitted non-linear hyperbolic functions to normalized simulated 

stress-displacement curves under rigid strip footings under 

undrained loading 
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Figure 9-4 Variation of the hyperbolic fitting parameter g* (defining the 

overall non-linear stress-displacement behavior of shallow 

foundations) with the normalized limiting strain xL (defining the 

representative non-linear stress-strain behavior of a single soil 

element) under undrained loading conditions 
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Figure 9-5 Fitted non-linear hyperbolic function to normalized simulated 

stress-displacement curves under rigid, circular footings under 

drained loading (φ’ = 30
o
) 
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Figure 9-6 Fitted non-linear hyperbolic function to normalized simulated 

stress-displacement curves under rigid, circular footings under 

drained loading (φ’ = 35
o
) 
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Figure 9-7 Fitted non-linear hyperbolic function to normalized simulated 

stress-displacement curves under rigid, circular footings under 

drained loading (φ’ = 40
o
) 
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Figure 9-8 Fitted non-linear hyperbolic function to normalized simulated 

stress-displacement curves under rigid, strip footings under 

drained loading (φ’ = 30
o
) 
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Figure 9-9 Fitted non-linear hyperbolic function to normalized simulated 

stress-displacement curves under rigid, strip footings under 

drained loading (φ’ = 35
o
) 
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Figure 9-10 Fitted non-linear hyperbolic function to normalized simulated 

stress-displacement curves under rigid, strip footings under 

drained loading (φ’ = 40
o
) 
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Figure 9-11 Variation of the hyperbolic fitting parameter g* (defining the 

overall non-linear stress-displacement behavior of shallow 

foundations) with the normalized limiting strain xL (defining the 

representative non-linear stress-strain behavior of a single soil 

element) for circular footings under drained loading conditions 
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Figure 9-12 Variation of the hyperbolic fitting parameter g* (defining the 

overall nonlinear stress-displacement behavior of shallow 

foundations) with the normalized limiting strain xL (defining the 

representative nonlinear stress-strain behavior of a single soil 

element) for strip footings under drained loading conditions 
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Figure 9-13 Variation of the hyperbolic fitting parameter f* with the 

normalized limiting strain xL for strip footings under drained 

loading conditions 
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Figure 10-1 Relationship between the maximum Young’s modulus Emax and 

compressive strength qmax for a wide range of materials compared 

to values used in current study (modified after Tatsuoka and 

Shibuya, 1992) 
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Figure 10-2 Fitted hyperbolic functions and normalized stress-displacement 

curves under shallow footings for undrained loading conditions 
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Figure 10-3 Comparison of backcalculated failure strains from footing load 

tests versus failure strains in direct simple shear under undrained 

loading conditions 
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Figure 10-4 Fitted hyperbolic functions fitted to normalized stress-

displacement curves under shallow footings under drained 

loading conditions 
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Figure 11-1 Schematic diagram of a “typical” stress-displacement curve of a 

vertically loaded shallow footing 
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Figure 11-2 Variation of the normalized footing displacement (s/sr) with 

factor of safety for different normalized limiting strains for 

undrained loading of circular footings 
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Figure 11-3 Variation of the normalized footing displacement (s/sr) with 

factor of safety for different normalized limiting strains for 

drained loading of circular footings for f’ = 30
o
, 35

o
, 40

o
 

 

 

 

264 

Figure A-1 Footing stress-displacement response plotted on (a) standard axes, 

(b) per Chin’s transformed axes, and (c) per De Beer’s 

transformed axes (raw data from Brand et al., 1972) 
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Figure A-2 Footing stress-displacement response plotted on (a) standard axes, 

(b) per Chin’s transformed axes, and (c) per De Beer’s 

transformed axes (raw data from Brand et al., 1972) 
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Figure A-3 Footing stress-displacement response plotted on (a) standard axes, 

(b) per Chin’s transformed axes, and (c) per De Beer’s 

transformed axes (raw data from Brand et al., 1972) 
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Figure A-4 Footing stress-displacement response plotted on (a) standard axes, 

(b) per Chin’s transformed axes, and (c) per De Beer’s 

transformed axes (raw data from Brand et al., 1972) 
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Figure A-5 Footing stress-displacement response plotted on (a) standard axes, 

(b) per Chin’s transformed axes, and (c) per De Beer’s 

transformed axes (raw data from Brand et al., 1972) 
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Figure A-6 Footing stress-displacement response plotted on (a) standard axes, 

(b) per Chin’s transformed axes, and (c) per De Beer’s 

transformed axes (raw data from Lehane, 2003) 
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Figure A-7 Footing stress-displacement response plotted on (a) standard axes, 

(b) per Chin’s transformed axes, and (c) per De Beer’s 

transformed axes (raw data from Hight et al., 1997; Jardine et al. 

1995) 
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Figure A-8 Footing stress-displacement response plotted on (a) standard axes, 

(b) per Chin’s transformed axes, and (c) per De Beer’s 

transformed axes (raw data from Marsland and Powell, 1980) 
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Figure A-9 Footing stress-displacement response plotted on (a) standard axes, 

(b) per Chin’s transformed axes, and (c) per De Beer’s 

transformed axes (raw data from Marsland and Powell, 1980) 
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Figure A-10 Footing stress-displacement response plotted on (a) standard axes, 

(b) per Chin’s transformed axes, and (c) per De Beer’s 

transformed axes (raw data from Nordlund and Deere, 1972) 
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Figure A-11 Footing stress-displacement response plotted on (a) standard axes, 

(b) per Chin’s transformed axes, and (c) per De Beer’s 

transformed axes (raw data from Consoli et al., 1998) 
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Figure A-12 Footing stress-displacement response plotted on (a) standard axes, 

(b) per Chin’s transformed axes, and (c) per De Beer’s 

transformed axes (raw data from Consoli et al., 1998) 
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Figure A-13 Footing stress-displacement response plotted on (a) standard axes, 

(b) per Chin’s transformed axes, and (c) per De Beer’s 

transformed axes (raw data from Viana da Fonseca, 2001) 
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Figure A-14 Footing stress-displacement response plotted on (a) standard axes, 

(b) per Chin’s transformed axes, and (c) per De Beer’s 

transformed axes (raw data from Andersen and Stenhamar, 1982) 
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Figure A-15 Footing stress-displacement response plotted on (a) standard axes, 

(b) per Chin’s transformed axes, and (c) per De Beer’s 

transformed axes (raw data from Andersen and Stenhamar, 1982) 
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Figure A-16 Footing stress-displacement response plotted on (a) standard axes, 

(b) per Chin’s transformed axes, and (c) per De Beer’s 

transformed axes (raw data from Amar, et al., 1994) 
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Figure A-17 Footing stress-displacement response plotted on (a) standard axes, 

(b) per Chin’s transformed axes, and (c) per De Beer’s 

transformed axes (raw data from Schnaid et al., 1993) 
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Figure A-18 Footing stress-displacement response plotted on (a) standard axes, 

(b) per Chin’s transformed axes, and (c) per De Beer’s 

transformed axes (raw data from Briaud and Gibbens, 1999) 
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Figure A-19 Footing stress-displacement response plotted on (a) standard axes, 

(b) per Chin’s transformed axes, and (c) per De Beer’s 

transformed axes (raw data from Briaud and Gibbens, 1999) 
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Figure A-20 Footing stress-displacement response plotted on (a) standard axes, 

(b) per Chin’s transformed axes, and (c) per De Beer’s 

transformed axes (raw data from Briaud and Gibbens, 1999) 
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Figure A-21 Footing stress-displacement response plotted on (a) standard axes, 

(b) per Chin’s transformed axes, and (c) per De Beer’s 

transformed axes (raw data from Briaud and Gibbens, 1999) 
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Figure A-22 Footing stress-displacement response plotted on (a) standard axes, 

(b) per Chin’s transformed axes, and (c) per De Beer’s 

transformed axes (raw data from Briaud and Gibbens, 1999) 
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Figure A-23 Footing stress-displacement response plotted on (a) standard axes, 

(b) per Chin’s transformed axes, and (c) per De Beer’s 

transformed axes (raw data from Larrson, 1997) 
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Figure A-24 Footing stress-displacement response plotted on (a) standard axes, 

(b) per Chin’s transformed axes, and (c) per De Beer’s 

transformed axes (raw data from Larsson, 1997) 
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Figure A-25 Footing stress-displacement response plotted on (a) standard axes, 

(b) per Chin’s transformed axes, and (c) per De Beer’s 

transformed axes (raw data from Larsson, 1997) 
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Figure A-26 Footing stress-displacement response plotted on (a) standard axes, 

(b) per Chin’s transformed axes, and (c) per De Beer’s 

transformed axes (raw data from Larsson, 1997) 
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Figure A-27 Footing stress-displacement response plotted on (a) standard axes, 

(b) per Chin’s transformed axes, and (c) per De Beer’s 

transformed axes (raw data from Larsson, 1997) 
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Figure A-28 Footing stress-displacement response plotted on (a) standard axes, 

(b) per Chin’s transformed axes, and (c) per De Beer’s 

transformed axes (raw data from Larsson, 1997) 
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Figure A-29 Footing stress-displacement response plotted on (a) standard axes, 

(b) per Chin’s transformed axes, and (c) per De Beer’s 

transformed axes (raw data from Larsson, 1997) 
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Figure B-1 Logarithmic function fitted to stress-strain data from CKoUC test 

on a Laval clay sample from Ariake-Japan, depth = 8-m (Tanaka 

and Tanaka, 1999) 
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Figure B-2 Logarithmic function fitted to stress-strain data from CKoUC test 

on an ELE100 clay sample from Ariake-Japan, depth = 10-m 

(Tanaka and Tanaka, 1999; Tatsuoka, 2002) 

 

 

301 



 xxx

  Page 

Figure B-3 Logarithmic function fitted to stress-strain data from CKoUC test 

on a Sherbrooke clay sample from Ariake-Japan, depth = 10-m 

(Tanaka and Tanaka, 1999; Tatsuoka, 2002) 
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Figure B-4 Logarithmic function fitted to stress-strain data from CKoUE test 

on a Laval clay sample from Ariake-Japan, depth = 8-m (Tanaka 

and Tanaka, 1999) 
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Figure B-5 Logarithmic function fitted to stress-strain data from CKoUC test 

on a JPN clay sample from Bangkok-Thailand, depth =5.6-m 

(Shibuya and Tamrakar, 1999) 
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Figure B-6 Logarithmic function fitted to stress-strain data from CKoUC test 

on a JPN clay sample from Bangkok-Thailand, depth = 9.6-m 

(Shibuya and Tamrakar, 1999) 
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Figure B-7 Logarithmic function fitted to stress-strain data from CKoUC test 

on a JPN clay sample from Bangkok-Thailand, depth = 13.6-m 

(Shibuya and Tamrakar, 1999) 
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Figure B-8 Logarithmic function fitted to stress-strain data from CKoUC test 

on a JPN clay from Bangkok-Thailand, depth = 17.2-m (Shibuya 

and Tamrakar, 1999) 
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Figure B-9 Logarithmic function fitted to stress-strain data from CKoUC test 

on a Laval clay sample from Bangkok (NNH)-Thailand, depth = 

5.3-m (Shibuya et al., 2000) 
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Figure B-10 Logarithmic function fitted to stress-strain data from CKoUC test 

on a Laval clay sample from Bangkok (NNH)-Thailand, depth = 

7.3-m (Shibuya et al., 2000) 
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Figure B-11 Logarithmic function fitted to stress-strain data from CKoUC test 

on a Laval clay sample from Bangkok (NNH)-Thailand, depth = 

9.3-m (Shibuya et al., 2000) 
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Figure B-12 Logarithmic function fitted to stress-strain data from CKoUC test 

on a Laval clay sample from Bangkok (NNH)-Thailand, depth = 

11.3-m (Shibuya et al., 2000) 
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Figure B-13 Logarithmic function fitted to stress-strain data from CKoUC test 

on a Laval clay sample from Bangkok (NNH)-Thailand, depth = 

13.3-m (Shibuya et al., 2000) 
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Figure B-14 Logarithmic function fitted to stress-strain data from CKoUC test 

on a Laval sample from Bothkennar-UK, depth = 2.62-m (Hight 

et al., 1992; 1997) 
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Figure B-15 Logarithmic function fitted to stress-strain data from CKoUC test 

on a Sherbrooke clay sample from Bothkennar-UK, depth = 2.67-

m (Hight et al., 1992; 1997) 
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Figure B-16 Logarithmic function fitted to stress-strain data from CKoUC test 

on a piston clay sample from Bothkennar-UK, depth = 2.73-m 

(Hight et al., 1992; 1997) 
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Figure B-17 Logarithmic function fitted to stress-strain data from CKoUC test 

on a Sherbrooke clay sample from Bothkennar-UK, depth = 5.4-

m (Hight et al., 1992; 1997) 
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Figure B-18 Logarithmic function fitted to stress-strain data from CKoUC test 

on a Laval clay sample from Bothkennar-UK, depth = 7.9-m 

(Hight et al., 1992; 1997) 
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Figure B-19 Logarithmic function fitted to stress-strain data from CKoUC test 

on a Laval clay sample from Bothkennar-UK, depth = 7.9-m 

(Hight et al., 1992; 1997) 
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Figure B-20 Logarithmic function fitted to stress-strain data from CKoUC test 

on a Laval clay sample from Bothkennar-UK, depth = 12.61-m 

(Hight et al., 1992; 1997) 
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Figure B-21 Logarithmic function fitted to stress-strain data from CKoUC test 

on a Laval clay sample from Bothkennar-UK, depth = 12.57-m 

(Hight et al., 1992; 1997) 
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Figure B-22 Logarithmic function fitted to stress-strain data from CKoUC test 

on a piston clay sample from Bothkennar-UK, depth = 15.26-m 

(Hight et al., 1992; 1997) 
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Figure B-23 Logarithmic function fitted to stress-strain data from CKoUC test 

on a Laval clay sample from Bothkennar-UK, depth = 15.35-m 

(Hight et al., 1992; 1997) 
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Figure B-24 Logarithmic function fitted to stress-strain data from UC test on a 

Sherbrooke clay sample from Bothkennar-UK, depth = 11-m 

(Hight et al., 1997; Tanaka, 2000) 
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Figure B-25 Logarithmic function fitted to stress-strain data from UC test on 

an ELE100 clay sample from Bothkennar-UK, depth = 11-m 

(Hight et al., 1997; Tanaka, 2000) 
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Figure B-26 Logarithmic function fitted to stress-strain data from CKoUC test 

on a Sherbrooke clay sample from Liestranda-Norway, depth = 

16-m (Lunne and Lacasse, 1999; Tanaka, 2000) 
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Figure B-27 Logarithmic function fitted to stress-strain data from CKoUC test 

on a Sherbrooke clay sample from Louisville-Canada, depth = 12-

m (Tanaka et al., 2001) 
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Figure B-28 Logarithmic function fitted to stress-strain data from CKoUC test 

on a Sherbrooke clay sample from Onsoy, depth = 3.2-m (Lacasse 

et al., 1985; Gillespie et al., 1985) 
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Figure B-29 Logarithmic function fitted to stress-strain data from CKoUC test 

on a piston clay sample from Onsoy-Norway, depth = 3.5-m 

(Lacasse et al., 1985; Gillespie et al., 1985) 
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Figure B-30 Logarithmic function fitted to stress-strain data from CKoUC test 

on a Sherbrooke clay sample from Onsoy-Norway, depth= 6.1-m 

(Lacasse et al., 1985; Gillespie et al., 1985) 
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Figure B-31 Logarithmic function fitted to stress-strain data from CKoUC test 

on a Sherbrooke clay sample from Onsoy-Norway, depth= 10.6-

m (Lacasse et al., 1985; Gillespie et al., 1985) 
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Figure B-32 Logarithmic function fitted to stress-strain data from DSS test on 

a piston clay sample from San Francisco-USA, depth= 7.3-m 

(Hunt et al., 2002; Pestana et al., 2002) 
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Figure B-33 Logarithmic function fitted to stress-strain data from CKoUC test 

on a piston clay sample from San Francisco-USA, depth= 7.75-m 

(Hunt et al., 2002; Pestana et al., 2002) 
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Figure B-34 Logarithmic function fitted to stress-strain data from CKoUC test 

on a piston clay sample from San Francisco-USA, depth= 12.4-m 

(Hunt et al., 2002; Pestana et al., 2002) 
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Figure B-35 Logarithmic function fitted to stress-strain data from CKoUC test 

on a piston clay sample from San Francisco-USA, depth= 23.25-

m (Hunt et al., 2002; Pestana et al., 2002) 
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Figure B-36 Logarithmic function fitted to stress-strain data from CKoUC test 

on a JPN clay sample from Singapore, depth= 20-m (Tanaka et 

al., 2001, Watabe 1999) 
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Figure B-37 Logarithmic function fitted to stress-strain data from CKoUC test 

on a JPN clay sample from Singapore, depth= 22-m (Tanaka et 

al., 2001, Watabe 1999) 
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Figure B-38 Logarithmic function fitted to stress-strain data from CKoUE test 

on a JPN clay sample from Singapore, depth= 22-m (Tanaka et 

al., 2001, Watabe 1999) 
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Figure B-39 Logarithmic function fitted to stress-strain data from CKoUE test 

on a clay sample from Yamashita-Japan, depth= 29.5-m (Tanaka 

et al., 2001, Watabe 1999) 
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Figure B-40 Logarithmic function fitted to stress-strain data from CIDC test 

on a frozen sand sample from Edo-Japan, depth= 3.7 to 3.85-m 

(Mimura, 2003; Yamashita et al., 2003) 
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Figure C-1 Seismic piezocone test results at Bangkok-AIT (Shibuya and 

Tamrakar, 1999) 
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Figure C-2 (a) Estimated bulk unit weight γtotal (using Equation D-3); (b) 

interpreted small strain stiffness Gmax; (c) Water content and 

plasticity indices at Bangkok-AIT (raw data from Shibuya and 

Tamrakar, 1999) 
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Figure C-3 Original test data supplied by Trinity College for the Belfast test 

site (Lehane, 2003) 

 

325 



 xxxiv

  Page 

Figure C-4 Seismic piezocone test results at Bothkennar (Nash et al., 1992) 326 

Figure C-5 Soil total unit weight, small-strain shear modulus Gmax, and index 

soil properties at Bothkennar (Hight et al., 1997). 
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Figure C-6 Piezocone test results at Cowden (Powell and Butcher, 2003). 328 

Figure C-7 Small-strain shear modulus Gmax and index soil properties at 

Cowden (Powell and Butcher, 2003) 
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Figure C-8 Site specific soil properties at Fargo: a) computed small-strain 

shear modulus with depth; b) Natural water content and plasticity 

index profiles (Nordlund and Deere, 1970); c) void ratio profile 

(Nordlund and Deere, 1970) 
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Figure C-9 Cone penetration data at Shellhaven site (Schnaid, et al. 1993) 331 

Figure C-10 Site specific soil properties at Shellhaven: a) small-strain shear 

modulus with depth; b) Natural water content, plastic and liquid 

limits profiles (Schnaid, et al. 1993); c) void ratio profile 

(Schnaid, et al. 1993) 
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Figure C-11 (a) Cone tip resistance (Jardine and Lehane 1993); (b) sleeve 

friction (Jardine and Lehane 1993); (c) small-strain stiffness 

estimated using Hegazy and Mayne (1996) 
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Figure C-12 (a) Cone tip resistance; (b) sleeve friction; (c) small-strain 

stiffness measured from crosshole testing (Briaud and Gibbens, 

1994) 
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Figure C-13 Seismic piezocone data at Tornhill, Sweden site (Larsson, 2001) 335 

Figure C-14 Seismic piezocone data at Vagverket, Sweden site (Larsson, 

1997) 
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Figure D-1 Schematic diagram showing soil properties evaluated from the 

seismic piezocone in clays (after Mayne et al., 2003) 
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Figure D-2 Results of five seismic piezocone tests in varved clay at Amherst 

national test site (after Mayne et al., 2003) 
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Figure D-3 Variation of undrained strength ratio with test type (after 

Kulhawy and Mayne, 1990) 
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Figure D-4 Comparison of measured angle of friction φ’ from frozen sand 

samples (Mimura, 2003) with CPT normalized tip stress (after 

Mayne, 2005) 
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Figure D-5 Seismic piezocone profile at OnsØy (after Gillespie et al., 1985) 350 

Figure D-6 Predicted versus laboratory OCR and DSS strength profiles at 

OnsØy (laboratory data after Lacasse et al., 1985) 
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Figure D-7 Seismic piezocone profile at Skå Edeby (after Larsson and 

Mulabdić, 1991a and 1991b) 
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Figure D-8 Predicted versus laboratory OCR and DSS strength profiles at Skå 

Edeby (laboratory OCR from Massarsch et al., 1975; lab DSS 

from Soydemir, 1976) 
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Figure D-9 Seismic piezocone profile at San Francisco (after Pestana et al., 

2002) 
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Figure D-10 Predicted versus laboratory OCR and DSS strength profiles at San 

Francisco  (laboratory data from Hunt et al., 2002) 
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SUMMARY 

Foundation performance is controlled significantly by the stress-strain-strength behavior 

of the underlying soils which is complex and affected by stress level, direction of loading, 

anisotropy, strain rate, age, and drainage.  For geomaterials, the small-strain shear 

modulus Gmax is a fundamental stiffness applicable to both monotonic static and dynamic 

loading conditions, as well to both drained and undrained loading.  Yet, Gmax is too stiff 

for direct use in computing foundation displacements using either simple elastic 

analytical methods or linear elastic-plastic constitutive models contained within 

geotechnical finite element codes.  The main objectives of this research are to: (1) 

explore the scaled parallelism between the stress-strain-strength behavior of the single 

soil element response and the load-displacement-capacity of a shallow foundation system 

supported on soil; (2) develop a methodology for evaluating the performance of 

vertically-loaded footings using a rational framework based on the small-strain modulus 

Gmax, large-strain strength (τmax or su) and strain at failure; and (3) calibrate the proposed 

method using a foundation database of full-scale load tests under both undrained and 

drained conditions. 

 

In geotechnical practice, foundation bearing capacity is handled as a limit plasticity 

calculation, while footing displacements are evaluated separately via elastic continuum 

solutions.  Herein, a hybrid approach is derived that combines these two facets into a 

closed-form analytical solution for vertical load-deflection-capacity based on numerical 

studies.  Here, a non-linear elastic-plastic soil model was developed to simulate the 

stress-strain-strength curves for simple shearing mode (LOGNEP) for each soil element.  



 xxxvii

The model was encoded into a subroutine within the finite difference program FLAC. A 

large mesh was used to generate load-displacement curves under circular and strip 

footings for undrained and drained loading conditions.  With proper normalization, 

parametric foundation response curves were generated for a variety of initial stiffnesses, 

shear strengths, and degrees of non-linearity in the soil stress-strain-strength response.  In 

all cases, the fundamental small-strain stiffness Gmax has been used as the initial reference. 

Soil stress-strain non-linearity is described by a logarithmic function (Puzrin & Burland, 

1996, 1998) that utilizes a normalized strain xL that relates strain at failure γf, shear 

strength (τmax or su), and small-strain stiffness Gmax, all having physical meaning.  A 

closed-form algorithm is proposed for generating non-linear load-displacement curves for 

footings and mats within an equivalent elastic framework.  The proposed method was 

calibrated using a database of well-documented footing load tests where soil input 

parameters were available from laboratory and/or in-situ field test results. 
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CHAPTER I 

 

INTRODUCTION 

 

 

 

“Foundations represent about 30 percent of the cost of highway bridges in typical 

applications; however, this cost can be even higher where bridges are built near or on 

difficult soil conditions. The total annual expenditure of (U.S.) public funds for bridge 

construction is conservatively estimated to be more than $2 billion, which means that 

foundations are costing more than [600 million] dollars per year” (DiMillio, 2004). 

 

1.1 Background 

 

With the rapid growth of urban areas and world population now exceeding 6 billion, there 

is an ever greater need to build more civil structures including buildings, bridges, walls, 

dams, ports, towers, and other facilities.  For example, each year about 6,000 new bridges 

are built in the United States alone (Briaud and Gibbens, 1999).  In Asia, construction of 

new infrastructure is at a rapid pace that is unparalleled in the history of mankind.  There 

is an excessive dependence on driven pile foundations, mainly because of lack of 

confidence in other foundation types such as spread footings (DiMillio, 2004).  Any 

successful design must guarantee the structure is safe under maximum loads.  In addition, 

the designer must ensure the superstructure does not suffer from excessive displacements.  

Massarsch (2004) notes that geotechnical engineers are traditionally better trained to deal 

with stability and bearing capacity problems, while the design of a structure under 

operating working conditions usually requires more sophisticated analyses.  Fahey (1998) 
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points to the limited accuracy in predicting soil displacements due to foundation loading, 

caused primarily by neglecting the effects of non-linear soil stress-strain response.  

Therefore, improvements in methods to evaluate shallow foundation displacements are 

important and should be pursued. 

 

The stress-strain-strength behavior of soils is complex and depends on many factors 

including: stress level, direction of loading, anisotropy, strain rate of loading, ageing, and 

drainage.  Small-strain stiffness represents a reference value for a specific confining 

stress.  The small-strain shear modulus Gmax is a fundamental stiffness applicable to both 

static and dynamic loading (e.g. Burland, 1989; Tatsuoka et al., 2001).  Moreover, the 

stiffness Gmax applies to both drained and undrained loading, because excess porewater 

pressures do not yet develop at such small strains.  The value of Gmax can be measured 

using a variety of laboratory and/or in-situ tests (e.g. Stokoe and Santamarina, 2000), or 

alternatively assessed using empirical correlations (e.g. Hardin and Drnevich, 1972). 

 

However, Gmax is too stiff for direct use in computing foundation displacements using 

either simple elastic analytical methods or linear elastic-plastic constitutive models that 

are built-in to many commercial finite element programs.  Therefore, a variety of non-

linear elastic-plastic models have been proposed to better represent the true soil stress-

strain behavior (e.g. Jardine et al., 1986; Fahey and Carter, 1993), yet the parameters of a 

good number of these models generally lack physical meaning (e.g. Lee and Salgado, 

1999).  Available constitutive models that can capture the full suite of sophisticated 

nuances of complex soil response often require many parameters, e.g. 15 separate input 

values for each soil layer in the case of MIT-E3 framework (Whittle, 1993).  Barbour and 
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Krahn (2004) highlight that geotechnical engineers always have to deal with under-

constrained systems with more unknowns than equations, which means that we must 

never increase the complexity of theories beyond the amount of available data.  Until 

geotechnical site characterization is more fully developed to efficiently and economically 

provide these input parameters, engineering practice needs an intermediate step based in 

simpler algorithms that apply to both analytical and numerical solutions. 

 

1.2 Main objectives 

 

The main objectives of this research are: (1) to explore the scaled parallelism between 

loading of a single soil element and a foundation system supported on soil; (2) to develop 

a methodology that enables geotechnical engineers to predict the non-linear load-

displacement behavior of shallow foundations under vertical loading based on a rational 

framework using the small-strain modulus (Gmax) to large-strain strength (τmax or su); and 

(3) to calibrate the proposed method using a database of the load-displacement response 

of shallow footings under both undrained and drained conditions.  Non-linearity is 

described by a normalized strain (xL) which relates strain at failure (γf), shear strength 

(τmax or su), and small-strain stiffness, all having physical meaning.  In routine practice, 

bearing capacity is handled as one calculation, while foundation displacements are 

evaluated separately via elastic continuum solutions.  Herein, a hybrid approach that 

integrates these two facets to facilitate a closed-form analytical solution for vertical load-

deflection-capacity that is supported by numerical studies. 

 



 4

In order to achieve this goal, a non-linear elastic-plastic model was developed to simulate 

the load-displacement curves under circular and strip footings for undrained and drained 

loading conditions.  The model is encoded into a subroutine within the commercial finite 

difference program FLAC (Itasca Consulting Group Inc., 2001c).  With proper 

normalization, generalized load-displacement curves are generated for a variety of initial 

stiffnesses, shear strengths, and degrees of non-linearity in the soil stress-strain-strength 

response.  In all cases, the fundamental small-strain stiffness Gmax has been used as the 

initial reference. 

 

A new approximate closed-form analytical solution is proposed for generating non-linear 

load-displacement curves for footings and mats within an equivalent elastic framework.  

The proposed method was calibrated using a database of well-documented footing load 

tests where soil input parameters could be evaluated from laboratory and/or in-situ field 

test results.  Figure 1-1 provides a schematic diagram illustrating the proposed method for 

simulating load-displacement foundation response. 

 

1.3 Thesis outline 

 

The dissertation is composed of eleven chapters and seven appendices. 

 

In Chapter 2, the definition of foundation bearing capacity is established.  Different 

criteria for interpreting bearing capacity from load-displacement data are reviewed.  

Analytical solutions for computing bearing capacity are reviewed and compared. 
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Figure 1-1.  Schematic diagram illustrating the purpose of the current study of relating 

soil behavior on the element level to the overall behavior of a soil mass under loading 
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The use of elastic theory solutions for computing footing displacements is discussed in 

Chapter 3.  A new approximate closed-form solution for calculating the displacement 

influence factors for circular shallow footings is presented.  Results compare favorably 

with published rigorous solutions and numerical methods. 

 

In Chapter 4, different measures of soil stiffness are reviewed.  The concept of the 

variation of soil stiffness with the strain level is discussed in context with the initial shear 

modulus (Gmax) as this represents the fundamental beginning of all stress-strain-strength 

curves of geomaterials (e.g. Burland, 1989).  Available analytical modulus reduction 

schemes for representing the non-linear stress-strain-strength regime are reviewed. 

 

In Chapter 5, the logarithmic modulus reduction scheme (Puzrin and Burland, 1998) is 

presented in details.  Factors influencing the degree of stress-strain non-linearity are 

investigated.  Relationships between index soil properties and non-linear stress-strain 

behavior are explored. 

 

The logarithmic non-linear elastic-plastic soil model LOGNEP used in this study is 

presented in Chapter 6.  Model results are verified by comparison with the linear elastic-

plastic model. 

 

In Chapter 7, the load-displacement responses beneath circular and strip footings are 

simulated under undrained loading conditions are modeled using LOGNEP model.  A 

new normalization scheme for load-displacement results is proposed.  The new 
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normalization scheme allows the representation of the stress-displacement curves are 

developed that are solely dependent on the non-linear stress-strain-strength response of a 

single soil element. 

 

Chapter 8 covers the modeling of circular and strip footings under drained loading 

conditions.  The normalization scheme proposed in Chapter 7 is applied to simulated 

stress-displacement response under drained conditions.  Generalized stress-displacement 

curves are created that are functions of angle of internal friction φ’ and the non-linear 

stress-strain response of a soil element. 

 

In Chapter 9, an approximate closed-form solution for generating non-linear stress-

displacement curves starting at initial stiffness Gmax.  Parallelism between the stress-strain 

behavior of a single soil element and footing stress-displacement response is highlighted. 

 

In Chapter 10, the proposed model is applied to a database of actual and model footing 

load tests under both undrained and drained conditions for calibration. 

 

Conclusions learned from this study are summarized in Chapter 11.  Recommendations 

for future research are provided. 

 

Appendix A provides the load-displacement data of the footing used in the bearing 

capacity database presented in Chapter 2. 
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The normalized limiting strain xL is calibrated using a database of laboratory stress-strain 

response as presented in Appendix B.  The appendix also contains a database of failure 

strains from direct simple shear tests. 

 

Appendix C contains the load-displacement data and relevant soil parameters at used in 

analyzing the footing load tests of Chapter 10. 

 

The use of the seismic piezocone in evaluating soil properties needed for foundation 

design is presented in Appendix D. 

 

A review the bearing capacity factors for shallow foundations is included in Appendix E. 

 

A database of modulus reduction data from triaxial and plane strain compression test 

results is compiled and presented in Appendix F. 

 

The user-defined non-linear elastic plastic model LOGNEP, written in FISH language, is 

presented in Appendix G. 
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CHAPTER II 

 

BEARING CAPACITY OF SHALLOW FOUNDATIONS 

 

 

 

2.1 Introduction 

 

The bearing capacity of a shallow foundation can be defined conceptually as the ultimate 

stress (qult) as the footing approaches infinite settlement.  The onset of failure is 

associated with the full mobilization of shear strength along a prescribed failure surface 

and excessive displacement as the soil target stiffness approaches zero.  A schematic 

diagram of the stress-displacement-capacity relationship of an axially-loaded footing is 

shown in Figure 2-1. 

 

 

 

 

 

 

 

 

 

 

Figure 2-1. Idealized axial load-displacement-capacity response of shallow foundations 
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In full-scale loading of foundations, a reality check must be brought under consideration 

as “bearing capacity” may be construed at loads less than ultimate due to constraints of 

performance and/or equipment limitations.  In this chapter, traditional methods for 

determining the bearing capacity using analytical, numerical, empirical, and experimental 

methods are reviewed.  Usually, in geotechnical practice, either analytical or empirical 

solutions are used to provide an evaluation of the ultimate bearing capacity.  The bearing 

capacity is subsequently reduced using a factor of safety (FS 3≥ ) to obtain the allowable 

foundation bearing stress (qallow = qult/FS) for which all footings of the structure are sized. 

 

2.2 Evaluation of bearing capacity from experimental data 

 

The most definitive means for determining the bearing capacity is to conduct full-scale 

load tests (e.g. Briaud and Gibbens, 1999).  Because load tests are very expensive and 

time consuming, they are essentially restricted to research programs or large special 

projects involving very poor ground conditions and/or critical structures.  Conducting 

plate load tests (e.g. Andersen and Stenhamar, 1982), which are smaller scaled-down 

versions at full-scale tests, are easier and more economical.  Nevertheless, plate load test 

data need to be manipulated to account for the difference in size between the prototype 

and plate.  This could especially be problematic in layered soil profiles or ground 

conditions with varying stiffness with depth because of the variation in soil properties 

with depth, as shown in Figure 2-2, and small plate load tests would not scale up 

conservatively.  Employment of a field compressometer (screw plate) could be used at 

different depths (Strout, 1998) to alleviate this concern. 
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Figure 2-2. Effect of footing size on the zone of influence beneath shallow footings in 

layered soil profiles 
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Figure 2-3.  Methods for determining the bearing capacities of shallow foundations 
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With the growing surge in computing power, the inevitable simulation by numerical 

finite element or finite difference modeling for routine bearing capacity calculations is 

near.  Moreover, as rather generous factors of safety are used in practice (generally 

FS 3≥ ), the consequences of an accurate bearing capacity evaluation are somewhat 

unimportant.  Only a “good” estimate is needed, as working stresses are much lower.  

Consequently, an increased accuracy in foundation displacements becomes a prime 

concern.  In this dissertation, a continuous linkage from small-strain displacements to 

intermediate values to bearing capacity is developed. 

 

2.2.1 Defining bearing capacity 

 

Conceptually, bearing capacity “failure” is defined when a constant stress is reached (see 

Figure 2-1).  However, foundation load tests do not always reach a well-defined peak 

stress because of practical limitations on field equipment and test setups, or because a 

progressive failure allows repositioning of soil particles beneath the foundation, thereby 

the highest stress is not fully achieved.  This creates ambiguity in defining the “true” 

bearing capacity, as illustrated by the stress-displacement load data from Texas A and M 

(Briaud and Jeanjean, 1994) presented in Figure 2-4.  Towards the elucidation of defining 

“bearing capacity” from a more practical standpoint, a database of the measured load-

displacement responses from 29 load tests conducted on full-scale footings and large 

plates was compiled.  The full set of data is from 14 test sites, as presented in Figure 2-5.   
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Figure 2-4. Stress-displacement load test data from five footings resting on sand at Texas 

A and M (Briaud and Jeanjean, 1994) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-5. Measured stress versus displacement for 29 footings on different soil types 

(clays, silts and sands) 
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Table 2-1. Database of shallow footing load tests 

Site Soil Type 
GWT  

(m) 

Foundation 

dimensions 

B x L 

(m x m) 

Test 

No. 

Drainage 

Conditions 

during 

loading 

Reference 

1.05 x 1.05 BK-1 

0.9 x 0.9 BK-2 

0.75 x 0.75 BK-3 

0.675 x 0.675 BK-4 

Bangkok, Thailand Soft clay 0 

0.6 x 0.6 BK-5 

Undrained 
Brand et al. 

(1972) 

Belfast, Ireland Soft clayey silt 0 2 x 2 BL-1 Undrained Lehane (2003) 

Bothkennar, UK 
Soft marine to 

estuarine clay 
0.2 2.2 x 2.2 BO-1 Undrained 

Hight et al. 

(1997) 

Jardine et al. 

(1995) 

0.865 x 0.865 CO-1 
Cowden, UK Glacial till 1a 

0.865 x 0.865 CO-2 
Undrained Marsland & 

Powell (1980) 

Fargo, USA 

(Grain Elevator) 

Silty clay (sand 

layer 4.5 to 6m) 
2.2 66.5 x 15.9 FO-1 Undrained 

Nordlund and 

Deere (1972) 

0.4 x 0.4 BR-1 Federal University 

of Rio Grande do 

Sul, Brazil 

Silty sand 

residuum 
4 

0.7 x 0.7 BR-2 

Partially 

Saturated 

Consoli et al. 

(1998) 

Greenfield, Portugal 
Silty sand to silty 

clayey Sand 
variable 

1.2 x 1.2  

(Circular) 
GR-1 

Partially 

Saturated 

Viana da 

Fonseca (2001) 

1 x 1 HA-1 
Haga, Norway 

Medium stiff OC 

clay 
> 8 

1 x 1 HA-2 
Undrained 

Andersen and 

Stenhamar 

(1982) 
Labenne, France Dune sand 3 0.7 x 0.7 LA-1 Drained Amar, et al 

(1994) 
Shellhaven, UK Soft clay 0.75 5 x 14 SN-1 Undrained Schnaid et al. 

(1993) 
1 x 1 TX-1 

1.5 x 1.5 TX-2 

2.5 x 2.5 TX-3 

3 x 3 TX-4 

Texas A & M, USA 
Eocene deltaic 

sand 
4.9 

3 x 3 TX-5 

Drained 
Briaud and 

Gibbens (1999) 

0.5 x 0.5 TL-1 

1 x 1 TL-2 Tornhill, Sweden Clay till 0.2 

2 x 2 TL-3 

Drained Larsson (1997) 

0.5 x 0.5 VT-1 
Vagverket, Sweden Silt 0.2 

1 x 1 VT-2 
Drained Larsson (1997) 

0.5 x 0.5 VR-1 Vattahammar, 

Sweden 
Silt to clayey silt 12.65 

1 x 1 VR-2 
Drained Larsson (1997) 

Notes: 

a
 Underdrainage to lower chalk layer. Ground water table is not fully hydrostatic. 

GWT = groundwater table below foundation level 

B = footing width 

L = footing length 
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The tests were conducted under different drainage conditions varying from fully drained 

(e.g. Texas A & M, USA; and Tornhill, Sweden) to undrained conditions (e.g. Belfast), 

as well as partially unsaturated states (e.g. Greenfield, Portugal; and Rio Grande do Sul, 

Brazil).  The maximum applied stresses at “failure” were as low as 79 kPa to as high as 

1800 kPa. 

 

Several definitions of bearing capacity have been proposed in an attempt to have 

consistent evaluations (e.g., Brinch Hansen, 1963; De Beer, 1970; Vesić, 1973; Fellenius, 

1980; Amar et al., 1998; Decourt, 1999).  These methods are reviewed and applied to the 

case histories compiled in the database, with comparisons made between the interpreted 

bearing capacities from the different criteria. 

 

2.2.1.1 Brinch Hansen’s method 

 

Brinch Hansen (1963) defined bearing capacity as the achieved stress qcap that produces a 

displacement twice that produced at 90% of qcap, as shown in Figure 2-6.  This is an 

iterative procedure where assumptions of qcap are made until this condition is satisfied.   

 

2.2.1.2 De Beer’s method 

 

De Beer (1970) suggested plotting the load-displacement data on a log-log plot as shown 

in Figure 2-7.  The bearing capacity is defined as the intersection of the two linear 

portions of the curve as demonstrated in Figure 2-7.  Vesić (1973) noted that this method  
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Figure 2-6. Brinch Hansen (1963) failure criterion  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-7. Determination of bearing capacity criterion according to De Beer (1970) 
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required loading the footing to a displacement of at least 50 % of the foundation width 

( 5.0/ ≥Bs ).  Although such high displacements are achievable for very small model 

tests (e.g. Vesić, 1973; Nakase et al., 1988), it is impossible to realize these very large 

deformations for full-scale footings that have widths between 0.3 m≤B≤6 m, nor for mat 

foundations with B≥6 m. 

 

2.2.1.3 s/B = 10% criterion 

 

The Laboratoires des Ponts et Chaussees (LPC) conducted a series of full-scale loading 

tests to update the French standards for shallow foundation design (Amar et al., 1994).  

Different types of loading (static and dynamic; short term and long term; eccentric and 

inclined loading) were applied to the foundations.  Based on the LPC load tests, the 

bearing capacity of vertically-loaded footings was consistently defined as the load 

corresponding to a vertical displacement equal to 10 % of the foundation width (s/B = 

0.1).  The s/B ratio represents a pseudo-strain for surface loaded foundations.  A similar 

criterion is also used for defining mobilized bearing capacity of deep foundations (e.g. 

Ghionna et al., 1994; Reese and O’Neill, 1988). 

 

2.2.1.4 Decourt’s zero stiffness method 

 

Decourt (1999) proposed a graph of secant stiffness (Ks = Q/s) versus load Q to obtain 

the ultimate load for bearing capacity Qu when Ks = 0, as shown in Figure 2-8.  

According to this definition, no foundation has ever reached physical failure.  Hence, by 

this criterion, bearing capacity can only be evaluated by extrapolation.  Decourt (1999) 
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suggests that physical failure is only approached for displacement piles and shallow 

foundations resting on clays. 

 

 

 

 

 

 

 

 

 

Figure 2-8.  Schematic diagram demonstrating the use of footing-soil secant stiffness Ks 

in determining the ultimate capacity according to Decourt’s method (1999) 
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where ki = initial stiffness at zero displacement and qult = ultimate load (asymptote of the 

hyperbola), as shown in Figure 2-9-a.  The parameters ki and qult are determined 

objectively by plotting the transformed axes: εs/q versus εs, which is represented by a 

straight line given by: 
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where 1/ki = y-intercept for zero displacement, and 1/qult is the slope of the straight line 

(see Figure 2-9-b).  Thus, the hyperbola requires two constants (ki and qult) that are 

determined and have physical significance: the initial stiffness ki = q/s at s = 0, and the 

asymptote qult at infinite displacements )( ∞→s .  A complete non-linear representation 

for all q and s can be generated, as depicted in Figure 2-9-a. 

 

For comparison to Decourt’s criterion, the hyperbola is presented graphically in Figure 2-

9-c using Decourt’s transformed axes stiffness q/εs versus q.  The equation describing the 

relationship is given by: 

 









−=

ult

i

s q

q
k

q
1

ε
…………………………………………………………………….(2-3) 

 

The initial stiffness ki represents stiffness at zero load.  The ultimate stress qult (which is 

achieved at infinite displacement) corresponds to zero stiffness ks. 
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Figure 2-9. Load-displacement response (a) plotted on standard axes, (b) per Chin’s 

transformed axes, and (c) per Decourt’s zero stiffness procedure 

 

Pseudo-strain, εεεεs = s/deq

A
p
p
li
e
d
 s
tr
e
s
s
, 
q

Asymptote: qult

Simple Hyperbola

s

i

q
k

ε
=

ult

s

i

s

qk

q
ε

ε

+
=

1

Pseudo-strain, εεεε s

εε εεs
/q

1=s

Equation of a straight line:

Chin's Transformed Axes

ultq

1

Simple Hyperbola

i

s

ult

s

kqq

11
+⋅= ε

ε

1/k i

Applied stress, q

q
/ εε εε

s

Decourt Transformed Axes

zero
q

s

→
ε

ultqq →

Simple Hyperbola









−=

ult

i

s q

q
k

q
1

ε

k i

(a) 

(b) 

(c) 



 22

2.2.2 Assessment of criteria for evaluating bearing capacity from load tests 

 

The question now is which of these criteria yields the most reasonable and consistent 

results in defining bearing capacities of shallow foundations.  Five criteria (pseudo-strain 

= 10%, hyperbolic asymptote, zero-stiffness, Brinch Hansen, and De Beer) are applied to 

evaluate capacities for each of the load tests included in the database and compared with 

each other. 

 

The Federal University of Rio Grande do Sul of Brazil conducted a comprehensive 

experimental footing and plate load test program.  Load-displacement results from the 

loading of a 0.4-m square footing are presented in Figure 2-10-a.  The load was applied 

on the footing using a jack and kentledge system in accordance with ASTM D 1194-72 

(Consoli et al., 1998).  The maximum applied stress was 489-kPa.  Figure 2-10-b shows 

the applied stress q plotted versus the pseudo-strain εs for the footing.  According to s/d = 

10% criterion, the bearing capacity is 400-kPa.  The hyperbolic asymptote (equivalent to 

infinite footing displacement) was interpreted to be 568-kPa based on Figure 2-11-a.  

While the zero-stiffness bearing capacities were the least conservative capacity evaluated 

at 656 kPa as shown in Figure 2-11-b.  Neither De Beer’s method (Figure 2-11-c) nor 

Brinch Hansen method could be applied to the stress-displacement data.  Appendix A 

contains stress-displacement graphs plotted on normal and transformed axes for all 29 

footings included in the database.  Interpreted capacities using the various criteria are 

presented in Table 2-2. 
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Figure 2-10. (a) Load versus displacement curves, (b) Stress versus pseudo-strain curves 

from the load tests on a 0.4-m square footing resting on a silty sand residuum at Rio 

Grande do Sul, Brazil (Consoli et al., 1998) 
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Figure 2-11. Load-displacement response plotted per: (a) Chin’s transformed axes, (b) 

Decourt’s transformed axes, and (c) De Beer’s transformed axes 
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Table 2-2.  Interpreted capacities of footings in database using different criteria 

Bearing Capacity (kPa) 
Site Test 

Maximum  

Measured 
s/d = 10 % 

Hyperbolic 

Asymptote 

Zero 

Stiffness 
De Beer  

Brinch 

Hansen 

BK-1 130 141* 149 160 ------- ------- 

BK-2 154 173* 187 190 ------- ------- 

BK-3 158 185* 207 207 ------- ------- 

BK-4 156 194* 194 194 ------- ------- 

Bangkok, Thailand 

BK-5 197 224* 245 250 ------- ------- 

Belfast, Ireland BL-1 96 99* 100 115 77 96 

Bothkennar, UK BO-1 133 135* 160 207 100 126 

CO-1 835 709 913 1000 ------- ------- Cowden, UK 

CO-2 886 760 949 1100 ------- ------- 

Fargo, USA FA-1 228 242* 251 250 180 220 

BR-1 489 400 464 656 220 420 

BR-2 432 400 294 570 ------- 400 

Federal University 

of Rio Grande do 

Sul, Brazil 
BR-3 268 279* 251 390 ------- 245 

Greenfield, Portugal GR-1 1004 1016* 2106 1950 ------- ------ 

HA-1 378 ------ 380 378 280 378 Haga, Norway 

HA-2 350 ------ 350 350 290 344 

Labenne, France LA-1 918 750 1090 1054 ------ ------ 

Shellhaven, UK SN-1 79 81-85* 82-86 87-95 60 79 

TX-1 1781 1600 2000 2300 1400 ------ 

TX-2 1464 1404* 1481 1870 1000 ------ 

TX-3 1128 1197* 1600 1536 ------ ------ 

TX-4 1139 1212* 1235 1445 ------ ------ 

Texas A & M, USA 

TX-5 989 1005* 1073 1450 ------ ------ 

TL-1 914 1095* 1353 1520 900 900 

TL-2 1348 1358* 1667 1700 980 1150 

Tornhill, Sweden 

TL-3 700 777* 817 850 ------ 675 

VT-1 722 460 1120 1700 ------ ------ Vagverket, Sweden 

VT-2 400 375 571 560 ------ ------ 

VR-1 1702 1170 2100 2300 ------ ------ Vattahammar, 

Sweden VR-2 770 870* 909 1000 ------ ------ 

*Data extrapolated using the hyperbolic function 
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It should be noted that the LPC criterion could be used in only 40% of the cases included 

in the database because the maximum recorded s/deq ratios were smaller than 0.1.  For 

load tests where the maximum s/deq< 0.1, data were extrapolated using Equation 2-1 of a 

regular hyperbola to find the stress equivalent to s/deq= 0.1 as indicated in Table 2-2.  

Although the maximum-recorded stress is included in the comparison, it should be noted 

that in many cases, the loading test was terminated due to limitations in the loading frame 

reaction, tilting, safety, or other complications.  Therefore, the maximum-recorded stress 

is somewhat an arbitrary value.  Bearing capacities extrapolated using Decourt’s zero-

stiffness approach were the most ambiguous.  The use of Chin’s hyperbolic extrapolation 

created fewer ambiguities and therefore appeared to be the most useful and objective.  De 

Beer’s log-log method could only be applied to 8 cases because of limited displacements.  

Similarly, the Brinch Hansen criterion could only be used in 11 case histories. 

 

Figure 2-12 shows comparisons between the various interpreted bearing capacities.  

Figure 2-12-a compares the LPC and hyperbolic interpreted bearing capacities.  As 

expected, the hyperbolic interpreted bearing capacity, or asymptote, is consistently higher 

than the LPC, with qLPC/qhyp = 0.73.  Similarly, the zero-stiffness interpreted capacities 

are consistently higher than the than the LPC, with qLPC/qzs = 0.66, according to Figure 2-

12-b.  Figure 2-12-c shows relatively good agreement between the hyperbolic and zero-

stiffness extrapolated bearing capacities with the zero-stiffness method yielding 

somewhat higher results.  Figure 2-12-d shows the hyperbolically extrapolated bearing 

capacities are in average 24% higher than the measured applied stress.  This emphasizes 

that physical failure is never reached, as suggested by Decourt (1999).  Compared to the  
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Figure 2-12. Comparative summary of interpreted bearing capacities of 30 footings: (a) 

LPC versus hyperbolic; (b) zero-stiffness versus hyperbolic; (c) LPC versus zero-

stiffness; (d) hyperbolic versus maximum measured; (e) LPC versus maximum measured. 
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maximum applied stress, the LPC interpreted capacities are more conservative, excluding 

data where the stresses equivalent to s/deq of 10% are extrapolated (refer to Table 2-2). 

 

2.3 Analytical solution for bearing capacity of strip surface footings 

 

The problem of bearing capacity of shallow footings has been studied for over a century 

and has led to the development of varied solutions.  As discussed earlier, full-scale load 

test are the most definitive means for determining bearing capacity.  Numerical analysis 

comes second to experimental procedures in versatility and reliability.  It enables the user 

to properly model the site conditions (e.g., anisotropy, heterogeneity, variation of 

properties with depth, boundaries).  In addition, the effects of changing the various 

parameters (e.g., groundwater table, footing dimensions, loading direction, boundary 

conditions) can be investigated.  However, numerical methods require specialized 

software and modeling expertise, thereby making their use generally restricted to research 

and/or complex projects.  On the other hand, empirical methods are characterized by 

simplicity but are usually limited in their applicability to specific test types (e.g. CPT: 

Schmertmann, 1978; pressuremeter: Briaud, 1995).  Conversely, analytical methods (e.g. 

limit equilibrium: Craig and Pariti, 1978; limit plasticity: Meyerhof, 1951; cavity 

expansion: Vesić, 1975) are more versatile, thus making them more widely used in 

combination with a number of laboratory and in-situ tests.  In this section, the classical 

analytical solutions for the bearing capacity of shallow footings are discussed.   
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The bearing capacity of a shallow, vertically loaded, strip footing resting on a 

homogeneous medium is classically determined using the Terzaghi (1943) superposition 

method: 

 

qvocult NNBcNq σγ γ ′++= *
2

1
………..……………………………………………(2-4) 

 

where qult = ultimate stress underneath the footing, c = effective cohesion intercept for 

drained behavior (c’) or the undrained shear strength (cu = su) for undrained loading, B = 

foundation width, γ*= effective or total unit weight depending on the ground water level, 

σvo’ is the effective overburden stress at the foundation level, and Nc, Nγ, Nq are 

dimensionless bearing capacity factors.  Plastic failure zones for surface strip footings are 

presented in Figure 2-13. 

 

A proper assessment of the bearing factors Nc, Nq, and Nγ is essential for the correct 

evaluation of bearing capacity.  Hence, available bearing capacity factors Nc, Nq, and Nγ 

determined using analytical, numerical, and statistical methods were reviewed from 

published sources.  The various solutions for the bearing factors Nc, Nq, Nγ (rough footing 

soil interface) and Nγ (smooth footing soil interface) are plotted in Figures 2-14, 2-15, 2-

16, and 2-17, listed respectively.  References for the bearing factors Nc, Nq, and Nγ are 

summarized in Tables E-1, E-3, and E-4.  The bearing capacity factor Nc is particularly 

used when computing the bearing capacity of footings resting on clays and silts under 

undrained loading conditions “φ’ = 0”.  Figure 2-18 shows the bearing capacity factor Nc 
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under undrained loading conditions for various modes of loading.  A selection of 

solutions for Nc of strip footings under undrained loading conditions is also provided in 

Table E-4. 

 

 

 

Figure 2-13. Plastic zones for surface strip foundations (Meyerhof, 1982a) 
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Figure 2-14. Variation of the bearing factor Nc with friction angle φ’ for strip footings 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-15. Variation of the bearing factor Nq with friction angle φ’ for strip footings 
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Figure 2-16. Variation of the bearing factor Nγ with friction angle φ’ for rough strip 

footings 
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Figure 2-17. Variation of the bearing factor Nγ with friction angle φ’ for smooth strip 

footings 
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Figure 2-18. Variation of the bearing factor Nc with the angle of plastification (β) for 

strip and circular footings (Meyerhof, 1982b) 

 

 

In general, there is relatively good agreement between the different methods for 

calculating Nc and Nq.  On the other hand, there is considerable variation in Nγ as shown 

in Figures 2-16 and 2-17 depending on the surface roughness of the footing base and the 

angle of dilatancy (associative or non-associative flow).  Several researchers (e.g. Vesić, 

1973; Chen, 1975; Chen and McCarron, 1991) have acknowledged the high differences 

among solutions in the values of Nγ compared to Nc and Nq. 

 

2.4 Generalized bearing capacity equation for shallow footings 

 

The preceding section deals with plane strain problems that are appropriate for long 

continuous strip footings.  Yet the vast majority of footings are square or rectangular, or 

occasionally circular.  Although the effect of footing embedment is accounted for by the 



 35

third term of Equation 2-4, poor agreement was found between observed and predicted 

bearing capacities for footings of different embedment depths (e.g. Fellenius, 2002).  This 

was attributed to the increase of soil strength with depth, which is common in soils 

(French, 1999). 

 

Accordingly, a generalized formula for calculating the bearing capacity of vertically-

loaded shallow footings of any given shape, at any embedment depth is represented by 

(Vesić, 1973): 

 

qdqsqvodscdcscult NNBNcq ζζσζζγζζ γγγ ⋅⋅⋅′+⋅⋅⋅⋅⋅+⋅⋅⋅= *
2

1
……...…………(2-5) 

 

Appropriate shape and embedment correction factors are given in Tables E-4 and E-5, 

respectively.  Figure 2-19 shows relevant footing dimensions. 

 

 

 

 

 

 

 

 

Figure 2-19.  Footing geometry definitions for bearing capacity factor computations 
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For shallow foundations, the overburden stress σvo’ is small making the third term of 

Equation E-5 generally negligible.  Therefore, Equation 2-5 reduces to: 

 

dscdcscult NBNcq γγγ ζζγζζ ⋅⋅⋅⋅⋅+⋅⋅⋅= *
2

1
…………………………..…...………(2-6) 

 

Although it is hard to determine drainage conditions accurately in the field, loading is 

often assumed to take place under either fully undrained or drained conditions, depending 

on the permeability of the foundation soil and rate of applied loading.   

 

For undrained loading of shallow foundations generally applicable to short-term loadings 

of clays and silts, Equation 2-6 reduces to: 

 

cdcscult Ncq ζζ ⋅⋅⋅= ……………………………………………………………..…(2-7) 

 

where Nc, ζcs, ζcd can be calculated using the appropriate charts or equations.  The 

bearing factor (Nc, ζcs, ζcd) is taken as 5.14 and 6.14 for strip and circular footings, 

respectively. 

 

For c = 0, the bearing capacity of shallow foundations in drained loading is generally 

applied to footings on sands, and long-term loading of footings resting on clays and silts 

calculated as: 

 

dsult NBq γγγ ζζγ ⋅⋅⋅⋅⋅= *
2

1
………………………………………….………………(2-8) 
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where Nγ, ζγs, ζγd can be determined from the aforementioned equations.  For strip 

footings, bearing factors can be obtained from Figures 2-16 and 2-17.  The effect of 

footing shape can be accounted for using modifying factors listed in Table E-4. 

 

2.5 Summary 

 

This chapter provides a review of methods for interpreting bearing capacity from load-

displacement measurements obtained from full-scale records or plate load tests.  Five 

criteria for defining bearing capacities are reviewed (Brinch Hansen, De Beer, LPC/10%, 

Decourt zero-stiffness, hyperbolic).  A database of case histories of full-scale load tests 

was compiled to assess the different criteria.  The database consists of 29 footing/plate 

load tests from 14 different sites.  Bearing capacities were evaluated using the five 

criteria and compared in Table 2-2.  It was shown that the hyperbolic criterion is the most 

objective means for determining bearing capacity from full-scale load tests. 

 

In the latter part of this chapter, analytical bearing capacity solutions for surface strip 

footings are reviewed.  A proper evaluation of the bearing capacity factors Nc, Nq, Nγ is 

essential for predicting the load-displacement behavior of footings.  Bearing capacity 

factors are summarized in Figures 2-14 through 2-17.  The uncertainty associated with 

the values of Nγ is highest compared to Nc and Nq.  Correction factors accounting for 

footing shape and embedment depth are reviewed in Appendix E. 
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CHAPTER III 

 

SHALLOW FOUNDATION DISPLACEMENTS 

 

 

 

3.1 Introduction 

 

The successful design of foundations must ensure that the superstructure does not suffer 

from excessive displacements. Hence, the reasonable assessment of foundation 

displacements at working stress levels is of great importance for geotechnical analysis 

and design.  Analytical methods based on the theory of elasticity offer versatile solutions 

that can be used with results obtained either from laboratory and/or in-situ tests, or both.  

In this chapter, types of footing deflections and how they are calculated are discussed.  A 

new unified expression is derived that encompasses prior solutions for circular 

foundations on finite to infinite layers, homogeneous to non-homogeneous soil stiffness 

with approximate modifications for foundation rigidity and embedment. 

 

3.2 Components of displacement 

 

The primary objective of the geotechnical engineer is to ensure the safety, performance, 

and economy of the foundation or earth structure.  Safety is checked by bearing capacity 

calculations, discussed in Chapter 2.  Displacement analysis is then conducted to ensure 

satisfactory serviceability at working stress levels that are typically one-third or less of 

the ultimate bearing capacity.  In many cases, displacement rather than bearing capacity 
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is the controlling design criterion.  The amount of allowable displacement is dependent 

on the type of structure and serviceability requirements.  Typically, allowable 

displacement for office buildings resting on shallow footings is 25-mm.  While 

permissible displacement for bridges, mat foundations and parking garages can be as high 

as 50-mm.  Angular distortion (= ratio of differential displacement to foundation spacing) 

is typically less than 0.002, to prevent cracking caused by such distortion.  Foundation 

displacement (s) can be calculated as the sum of three components according to (refer to 

Figure 3-1): 

 

sci ssss ++= ………………………………………………………………….……..(3-1) 

 

where (si) is the undrained distortion, (sc) is the drained consolidation settlement, and (ss) 

is secondary compression or creep.  Undrained distortion or immediate settlement is the 

portion of displacement that takes place when the load is first applied.  Undrained is a 

short-term condition at constant volume and generally only associated with soft saturated 

clays, silts and soils with appreciable fines when the loads are applied relatively quickly 

and soil permeability is low.  In many construction projects, rates of loading are actually 

rather slow and no immediate distortion is realized.  Also, most soils have a natural 

overconsolidation due to erosion, groundwater changes, aging, desiccation, glaciations, 

cementation, and/or a combination of these factors.  Thus the coefficient of consolidation 

is relatively high in overconsolidated soils and this permits reasonable drainage, such that 

no excess porewater pressures result (∆u=0).  However, in the case of soft clays and silts 

with low permeability, undrained displacements (si) can occur during the loading of 
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foundations and these magnitudes are often assessed using elastic solutions with constant 

volume represented by Poisson’s ratio ν = 0.5 (e.g. Foott and Ladd, 1981). 

 

 

 

 

 

 

 

 

 

 

Figure 3-1. Schematic of time-displacement beneath a shallow footing 

 

Consolidation settlement (sc) is due to volumetric strains associated with the dissipation 

of porewater pressure under the applied load (e.g. Leonards, 1976).  This is the classical 

drained settlement corresponding to primary consolidation and conventionally evaluated 

by e-log σv’ results from consolidation tests (e.g. Davis and Poulos, 1968; Mesri and 

Rokhsar, 1974).  Displacements occurring due to drained primary consolidation are 

termed “settlement” and these occur for all foundations on all types of soils.  In lieu of e-

log σv’ analyses, a constrained modulus (D’) approach or elastic modulus (E’) can be used 

since elasticity theory is used to calculate stresses for all approaches (e.g. Fellenius, 2002; 

Mayne and Poulos, 1999). 
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Secondary compression or creep settlement (ss) is caused by long-term shear and 

volumetric strains due to the compression of the soil skeleton after the dissipation of the 

excess porewater pressures (Mesri and Godlewski, 1977; Eide and Andersen, 1984).  

These secondary displacements are usually of special concern in soft organic soils, 

especially large fill loadings that stress the soils beyond the natural preconsolidation. 

 

The relative importance of the settlement components depends on soil type and the nature 

of structure supported by the foundation.  Undrained distortion is of great importance 

when a load is suddenly applied on saturated fine-grained soils such as clay or silt.  

Consolidation drained settlement should be checked for foundations resting on all soil 

types.  Secondary settlement or creep should be calculated for all foundations resting on 

soft, organic fine-grained soils (Holtz, 1991).  Some methods also include creep 

calculations for sands (e.g. Schmertmann, 1970). 

 

3.3 Displacement computations using elastic theory 

 

The magnitudes of drained and undrained displacements can be evaluated expeditiously 

and practically using displacement influence factors and the theory of elasticity (e.g. 

Harr, 1966; Milovic, 1992).  The vertical displacement at the center of a flexible circular 

foundation resting on an elastic medium (Figure 3-2) is expressed by: 

 

so

o

E

qdI
s

)1( 2ν−
= ………………………………………………………………………(3-2) 
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where s  =  foundation displacement, q = stress applied by the footing, d = foundation 

diameter = 2a, a = foundation radius, Eso = equivalent elastic soil Young’s modulus 

beneath foundation base, ν = soil Poisson’s ratio, and Io = surface displacement influence 

factor that depends on layer thickness, compressible/rigid base interface roughness, and 

stiffness variation with depth.  For example, for a flexible circular footing resting on a 

homogeneous elastic half-space, Io=1, while for a rigid footing under the same 

conditions, Io=π/4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-2. Schematic diagram of a uniformly loaded circular foundation resting on a 

compressible Gibson soil layer underlain by a rigid incompressible base 
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For a given footing, the applied stress (q) and footing diameter (d) are known.  The 

geotechnical engineer needs to identify proper values for the displacement influence 

factor (Io), equivalent soil modulus (Es), and Poisson’s ratio (ν).  A discussion of these 

parameters follows. 

 

3.3.1 Displacement influence factors 

 

A great number of numerical and analytical solutions are available for the displacement 

influence factors needed for evaluating the magnitude of displacements beneath shallow 

foundations.  Poulos & Davis (1974) and Milovic (1992) offer compilations of solutions 

for evaluating displacement influence factors for footings of various shapes (strip, 

circular, square, rectangular), load distribution (uniform, parabolic, triangular), 

foundation roughness, Poisson’s ratio, soil homogeneity (constant soil modulus or 

varying with depth), depth to incompressible layer beneath the footing, multilayers, 

drainage conditions, and foundation stiffness, as well as other variables. 

 

Rigorous solutions for a shallow foundation resting on a compressible, homogenous soil 

layer underlain by a rigid base are given in graphical form (e.g. Poulos, 1967; Ueshita 

and Meyerhof, 1968; Brown, 1969a).  A closed-form expression for a footing resting on a 

soil with stiffness linearly increasing with depth (Gibson, 1967) is given only for 

undrained loading (ν=0.5).  To resolve drained loading cases with ν’< 0.5, finite element 

solutions were developed for estimating the displacement influence factors for non-

homogeneous cases (e.g. Carrier and Christian, 1973; Boswell and Scott, 1975).  Finite 

element solutions for layered soil profiles are also given (e.g. Stark and Booker, 1997).  
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Table 3-1 summarizes a number of available displacement influence factor solutions.  

The solutions are listed chronologically. 

 

Table 3-1. Summary of displacement influence factors under shallow footings 

Footing  

flexibility 

Soil layer  

thickness 

Soil homogeneity Reference 

Flexible Semi-infinite Homogeneous Boussinesq (1885) 

Flexible Finite Homogeneous Harr (1966) 

Rigid Semi-infinite “Gibson” Gibson (1967)* 

Rigid Finite Homogeneous Poulos (1968) 

Flexible Finite/Smooth Homogeneous Ueshita and Meyerhof (1968) 

Flexible Finite/Rough Homogeneous Ueshita and Meyerhof (1968) 

Flexible Finite to semi-infinite Homogeneous Giroud (1972) 

Rigid Semi-infinite “Gibson” Carrier and Christian (1973) 

Flexible and rigid Finite to semi-infinite Variable Poulos & Davis (1974) 

Variable Semi-infinite “Gibson” Boswell and Scott (1975) 

Flexible Finite “Gibson” Brown and Gibson (1979) 

Flexible Finite Homogeneous Milovic (1992) 

Flexible Semi-infinite Non-homogeneous Stark and Booker (1997) 

Flexible/rigid Finite to semi-infinite Homogeneous/“Gibson” Mayne and Poulos (1999) 

* undrained loading νu = 0.5 

 

The various displacement influence factors are generally given in either chart or tabular 

forms or singular equations, or alternatively provided within compiled computer 

programs.  It is often times confusing which solution is more suitable for a specific 

problem.  A comparable number of graphs, tables, and equations also exist for square, 

rectangular, and strip footings.  As so many separate solutions exist to address the footing 

displacement problem, it is of interest to have a single generalized approach that can 

address the important variables.  Mayne and Poulos (1999) provided a simple means to 

obtain approximate displacement influence factors for homogeneous and Gibson soil 

profiles using a spreadsheet program to numerically integrate the strains beneath the 
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center of a uniformly loaded flexible footing.  They showed that available solutions are 

quite similar, though these solutions typically seem very different. 

 

The author has improved this approach to obtain closed-form displacement influence 

factors for circular footings resting on finite to infinite layers of soil having homogenous 

to “Gibson” soil stiffness profiles, with approximate modifier terms to account for 

foundation rigidity and embedment. 

 

Figure 3-2 depicts the geometry and nomenclature for an axially loaded circular footing 

resting on an elastic soil medium.  Equation 3-2 can be re-written to define the 

displacement influence factor Io as a dimensionless parameter: 

 

( )21 ν−⋅⋅
⋅

=
dq

Es
I s

o ………………………….....……………….…..……..…..………..(3-3) 

 

For Es/q = 1 and ν = 0, the displacement influence factor becomes the pseudo-strain s/d 

beneath a footing of diameter d and can be calculated as the integration of strains from z* 

= 0 to z* = h/d, according to: 

 

∫==
dh

zo dz
d

s
I

/

0

*ε ……………….……………………………..……………...………(3-4) 

 

where z* = z/d = z/(2a) = normalized depth, and εz = vertical strain.  For circular 

footings, the vertical strain is obtained based on Hooke’s law in cylindrical coordinates: 
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[ ]rz

s

z
E

σνσε ∆−∆= 2
1

…………………………………...…….……………………(3-5) 

 

where ∆σz = change in vertical stress at depth z beneath the foundation base, ∆σr = 

change in radial stress at depth z, and ν = soil Poisson’s ratio.  The change in vertical 

stress ∆σz and radial stress ∆σr at the centerline of a footing resting on an infinite half-

space is determined based on the integration of surface point loads adopting a simplified 

Boussinesq solution over a circular area (e.g., Poulos and Davis, 1974): 
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In geotechnical engineering practice, it is usual to consider only the change in vertical 

stress (∆σz) when computing displacements, particularly for drained primary 

consolidation.  Note that the use of e-log σv’ curves from one-dimensional consolidation 

is commonplace and this procedure relies solely on vertical stress increases (e.g. Holtz 

and Kovacs, 1981; Terzaghi et al., 1996).  Thus, in our simplified evaluation discussed 

herein the change in radial stresses due to the applied load is neglected in all subsequent 

analyses.  Equation 3-6 gives the change in vertical stress beneath the centerline of a 

flexible plate resting on an infinite half-space. 
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Is it logical to use the same formula to calculate the change in vertical stress ∆σz for a 

plate resting on an elastic medium of finite thickness?  Based on the theory of elasticity, 

the stresses developed in a finite layer resting on a rigid base are higher than the stresses 

developed in a soil layer of infinite thickness (e.g. Giroud, 1970; Milovic, 1992).  

Accordingly, the change in vertical stress (∆σz) is underestimated using Equation 3-6 

under a uniformly loaded plate resting on an elastic medium of finite thickness.  The 

increase in stresses caused by the finite layer thickness decreases as h/d ratio increases 

(Milovic, 1992).  Results are shown in Figure 3-3, where the vertical stress influence 

factor qi zz σ∆=  is plotted for a number of h/d ratios.  From a practical standpoint, 

Boussinesq’s solution gives a reasonably accurate approximation for h/d > 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-3. Effect of finite layer thickness (h) to footing diameter (d) ratio on stress 

distribution within the compressible soil layer beneath the footing center (modified after 

Milovic, 1992) 
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Combining equations 3-4 through 3-7 (for the uniaxial case), a generalized formulation 

for calculating the displacement influence factor is obtained: 

 

∫
∆

=
dh

s

z
o dz

E
I

/

0

*
σ

………………………………………………..……………….…....(3-8) 

 

3.3.1.1 Homogenous soil profile 

 

The case of a shallow foundation resting on a homogenous soil stratum (Es constant with 

depth) is considered first.  Integrating Equation 3-8 between z
*
=0 and z

*
=h/d, the 

displacement influence factor is evaluated as: 
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where h
*
 = layer thickness factor = h/d.  Figure 3-4 shows the variation of the 

displacement influence factor for a homogeneous soil profile Ih with the normalized layer 

thickness factor h
*
.  Equation 3-9 is compared to the displacement influence factors 

reported by Harr (1966) with very good agreement.  The difference between the two 

solutions is less than 10 %. 
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Figure 3-4. Displacement influence factors for a flexible circular footing over a 

homogenous soil of finite thickness (approximate method versus Harr (1966) solution) 

 

Figure 3-5 compares the displacement influence factors from Equation 3-9 to the rigorous 

mathematical solutions given by Ueshita and Meyerhof (1968) that fully consider the 

equations of equilibrium and compatibility, kinematics, and complex integrals for a 

circular footing resting on a finite soil layer underlain by a rigid base with smooth 

interface.  The effect of Poisson’s ratio is accounted for by multiplying the factors from 

Equation 3-9 by (1-ν2
).  The errors between the approximate and exact methods are less 

than 10 % for h/d > 0.5.  Errors are slightly higher for h/d < 0.5 and decrease as h/d 

approaches infinity.  This can be attributed to neglecting the change in radial stresses in 

addition to the approximation implied by using the simple Boussinesq stress equations 

applicable for an infinite half space. 
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Figure 3-5. Displacement influence factors for a flexible circular footing over a 

homogenous soil of finite thickness (approximate method versus rigorous solution of 

Ueshita and Meyerhof, 1968) 

 

 

Milovic (1992) analyzed the problem of a vertically loaded flexible footing resting on an 

elastic layer of finite thickness underlain by a rigid base.  Figure 3-6 shows the 

approximate displacement influence factors (modified for the Poisson’s ratio effect) 

compared to Milovic’s (1992) numerical solution, with fairly good agreement.  The error 

typically decreases as the (h/d) ratio increases with an average error of 10%. 

 

 

 

 

 

νννν  = 0
νννν  = 0.5

0

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Displacement Influence Factor - I h

T
h
ic
k
n
e
s
s
 F
a
c
to
r 
- 
h
* 
=
 h
/d

Ueshita & Meyerhof (1968) - dots

Approximate Closed-Form Solution - lines

ν = ν = ν = ν = 0.5

ν = ν = ν = ν = 0.4

ν = ν = ν = ν = 0.3

ν = ν = ν = ν = 0

ν = ν = ν = ν = 0.1

ν =ν =ν =ν =     0.2



 51

 

 

 

 

 

 

 

 

 

 

Figure 3-6.  Displacement influence factors for a flexible circular footing over a 

homogenous soil of finite thickness (approximate method versus numerical solution of 

Milovic, 1992) 

 

3.3.1.2 Non-homogeneous “Gibson” type soil profile 

 

In natural soil deposits, the variation of soil moduli with depth may assume any of a 

number of possible scenarios.  Since many soils exhibit stiffness increasing with depth 

because of the increase in overburden stress, the displacement influence factor (Io) will be 

evaluated for a Gibson type soil.  The variation of elastic modulus for a generalized 

Gibson soil is expressed by: 
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adopts the simplifying hypothesis for a Boussinesq stress distribution beneath a 

uniformly loaded footing resting on an elastic half space. 

 

Burland et al. (1977) investigated the factors influencing the distribution of the change in 

vertical stresses and concluded that Boussinesq stress equations yield reasonable results 

for vertical changes in most cases.  However, such a simplification would lead to high 

inaccuracies for the cases of a stiff layer underlain by a more compressible one and for 

cross-anisotropic soils.  The accuracy of this assumption is confirmed by comparing the 

approximate solution with other more rigorous solutions (e.g. Scott and Boswell, 1975; 

Carrier and Christian, 1973). 

 

Using Mathcad, the displacement influence factor was determined using Equations 3-6 

and 3-8 with soil modulus increasing with depth according to Equation 3-10.  The 

solution was simplified to this form: 
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where β = )( dkE Eso = normalized Gibson modulus ratio and h* = thickness factor = h/d.  

Figure 3-7 shows the variation of the displacement influence factor (IG) versus (β) for a 

Gibson type soil (ν = 0).  The results are compared to the approximate solution derived 

by Mayne and Poulos (1999) using numerical integration and excellent agreement is 

….……(3-11)
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found between the two methods.  As (kE) tends to zero and β tends to infinity, Equation 

3-11 reduces to: 
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Which is identical to for the influence factor for homogeneous case represented by 

Equation 3-9.  Equation 3-11 is then solved for the case of an infinite half-space (h* tends 

to infinity) yielding: 
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Figure 3-7.  Displacement influence factors for a flexible circular footing over a Gibson 

type soil profile (ν = 0) 
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For a homogenous infinite half-space and ν = 0, the displacement influence factor (IG) 

approaches 1 according to the theory of elasticity.  The equations deduced so far are valid 

for calculating the displacement influence factor for a perfectly flexible foundation.  

Influence factors computed using Equation 3-13 are compared to Boswell and Scott 

(1975) finite element solution for a flexible footing resting on a semi-infinite half space.  

Figure 3-8 shows Boswell and Scott (1975) parameter (n) for describing the variation of 

soil modulus with depth and how it is interrelated to the Gibson parameter (β).  The 

homogeneous soil profile is represented by n = 1 (as β tends to infinity).  Boswell and 

Scott (1975) present influence factors for computing mean displacement and differential 

displacement between footing center and edge.  Assuming the mean displacement as the 

average of center and edge displacements, the displacement influence factors under the 

footing centerline is computed.  The approximate influence factor given by Equation 3-13 

(ν = 0) multiplied by (1-ν2
) to account for Poisson’s ratio effect are compared to Boswell 

and Scott (1975) displacement influence factors beneath the footing centerline for a 

perfectly flexible footing as shown in Figure 3-9. Good agreement is found between the 

two solutions.  Better matches are achieved for the higher values of Poisson’s ratio. 

 

3.3.2 Effect of foundation flexibility 

 

The stress distribution, and associated relevant pattern and magnitudes of displacements 

underneath a footing, are affected by its flexibility.  Solutions for the perfectly flexible 

and perfectly rigid footing are well known (e.g. Harr, 1966; Poulos and Davis, 1974; 

Milovic, 1992).  The effect of intermediate foundation flexibility has been evaluated 

using finite element analysis on footings and mats by Brown (1969b).   
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Figure 3-8. Variation of elastic modulus with depth according to Scott and Boswell 

(1975) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-9. Displacement influence factors for a flexible circular footing over a Gibson 

type soil profile for different values of Poisson’s ratio (proposed solution versus Boswell 

and Scott, 1975) 
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Neglecting the small influence of Poisson’s ratios for the foundation and soil materials,  a 

foundation flexibility factor can be expressed as: 
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F …………………………………..………..…………………(3-14) 

 

where KF = foundation flexibility factor; Efoundation = modulus of elasticity of the 

foundation material (e.g. reinforced concrete); Esoil = Eso + kEd = average soil modulus 

beneath the foundation (over a depth equal to twice the foundation diameter d beneath the 

foundation base); t = foundation thickness, and a = footing radius.  Based on the 

numerical results of Brown (1969b), the foundation flexibility influence factor IF for an 

elastic semi-infinite half space can be approximated (Mayne and Poulos, 1999): 
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Figure 3-10 shows the variation of the rigidity correction factor with the foundation 

flexibility factor.  For KF > 10, a footing is considered rigid and the flexibility influence 

factor approaches π/4.  A footing is considered flexible for KF < 0.01 yielding a 

flexibility influence factor equal to 1.  As a matter of fact as the Carrier and Christian 

solution approaches the homogeneous case with ∞→β , they recommend correction 

factors of about 10% increase to correct for the coarseness of their finite element mesh. 
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Figure 3-10.  Rigidity correction factor for shallow foundations (based on Brown, 1969b) 

 

 

A rigidity influence factor of π/4 is used in combination with Equation 3-9 to obtain the 

displacement influence factors for rigid footings resting on homogeneous half space.  

Results are compared to solutions by Poulos (1968) in Figure 3-11.  The approximate 

solution agrees fairly well with Poulos (1968) solution for rigid footings. 

 

The variation of the displacement influence factor IG resting on a semi-infinite Gibson 

soil profile is shown in Figure 3-12 for both perfectly flexible and perfectly rigid 

foundations.  Footing rigidity is accounted for by multiplying the displacement influence 

factors from Equation 3-14 by a rigidity influence factor of π/4.  Results are compared to 

the finite element solutions for a rigid plate published by Carrier and Christian (1973), 

with good agreement. 

 

  

0.7

0.8

0.9

1

0.001 0.01 0.1 1 10 100

 Foundation Flexibility Factor- KF

 R
ig
id
it
y
 C
o
rr
e
c
ti
o
n
 F
a
c
to
r-
 I
 F

Flexible

Rigid
Circular Footing Resting 

on an Infinite Elastic

Half Space

3








⋅≈
a

t

E

E
K

soil

foundation

F

F

F
K

I
106.4

1

4 +
+≈
π

Intermediate



 58

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-11.  Displacement influence factors for a rigid circular footing on finite elastic 

layer (approximate solution versus rigorous solution by Poulos, 1968) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-12.  Displacement influence factors for a circular footing over a semi-infinite 

Gibson soil profile (proposed method versus numerical solution by Carrier and Christian, 

1973) 
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3.3.3 Simplified displacement influence factors 

 

As Equation 3-11 may appear tedious to some, a simplified formula for estimating the 

displacement influence factor for a Gibson soil profile (IG) was deduced using curve-

fitting techniques: 
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Influence factors computed from Equations 3-11 and 3-16 are compared in Figure 3-13-a, 

which shows good agreement between the results computed using both equations.  For an 

infinite half space (h
*
 tends to infinity ), Equation 3-16 yields: 
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Good agreement between equations 3-13 and 3-17, as shown in Figure 3-13-b.  As (β) 

tends to infinity (homogenous soil profile), Equation 3-16 reduces to: 
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Good agreement between the solutions given by Equations 3-9 and 3-18, as demonstrated 

by Figure 3-13-c.  Equation 3-17 is in agreement with the numerical solution proposed by 

Mayne and Poulos (1999). 
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Figure 3-13.  Evaluation of the accuracy of the simplified equations for the influence 

factors for: (a) Gibson type soil profile (variable h*); (b) Gibson type soil profile in 

infinite half space; (c) Homogenous semi-infinite soil layer 
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3.4 Generalized equations for computing displacements beneath circular footings 

 

A general equation for evaluating the displacements beneath the center of circular 

shallow footings and raft foundations is given by:  

 

so

EFG
center

E

IIIdq
s

)1( 2ν−⋅⋅⋅⋅⋅
= ……….……...……………….…………………(3-19) 

 

where IG is the displacement influence factor per Equation 3-11 or 3-16; IF is the 

foundation rigidity correction factor calculated from Equation 3-15; and IE is a factor 

accounting for the foundation embedment as determined by Burland (1970) that can be 

approximated by: 
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zd

I
ν

……….…………………………….……(3-20) 

 

where zE = depth to foundation beneath ground surface.  Figure 3-14 shows the effect of 

embedment on foundation settlement.  Generally, embedment influence is seen to be 

small unless the foundation is embedded at least 5 diameters below grade. 

 

The proposed approximate displacement influence factor solution was shown to compare 

well with available published solutions where a soil layer is underlain by a stiffer layer.  

However, the solution is unconservative for the case of a stiff layer underlain by a weaker 

layer.  For this case, it is recommended to use published solutions (e.g. Poulos and Davis, 

1974; Milovic, 1992). 
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Figure 3-14.  Effect of embedment on foundation displacement based on numerical 

results by Burland (1970) 

 

3.5 Displacement influence factors for rectangular footing  

on a homogeneous soil layer 

 

The aforementioned solution was derived for circular footings resting on an elastic 

compressible layer.  The same process can be used to compute displacement influence 

factors for rectangular footings by numerically integrating strains beneath footing 

centerline according to: 
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Bh

zo dzI

/

0

*ε ……………….……………………………..…………….…...………(3-21) 

 

where h is the depth to incompressible layer, B is the foundation width (smaller footing 

dimension), z* =z/B is normalized depth, εz is the vertical strain at depth z.  Figure 3-15 

shows the geometry of the footing considered in the analysis. 
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Figure 3-15.  Geometry of a rectangular footing resting on a compressible soil layer of 

finite thickness 

 

According to Harr (1966), the vertical stress under the center of a uniformly loaded 

rectangular area, resting on a semi-infinite half-space at depth z is given by: 
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where m* = L/B and n* = 2z/B.  Using a spreadsheet, the integral sign of Equation 3-21 

is substituted by the summation over small layers: 
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Displacement influence factors for uniformly loaded rectangular footings are computed 

for various L/B ratios.  Results are compared with Harr (1966) solution as shown in 

Figure 3-16.  As m* = L/B approaches infinity, the rectangular footing becomes a strip 

footing.  The approximate solution is also compared to Milovic (1992) numerically 

computed displacement influence factors for ν = 0.15, 0.30, and 0.45 in Figures 3-17-a, 

3-17-b, and 3-17-c, respectively.  The effect of Poisson’s ratio is accounted for by 

multiplying the factors from Equation 3-9 by (1-ν2
).  Good agreement between the two 

solutions is demonstrated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-16. Displacement influence factors for a flexible rectangular footing over a 

homogenous soil of finite thickness (approximate method versus Harr (1966) solution) 
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Figure 3-17. Displacement influence factors for a flexible rectangular footing over a 

homogenous soil of finite thickness for: a) ν = 0.15; b) ν = 0.30; and c) ν = 0.45 

(approximate method versus Milovic (1992) solution) 
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3.6 Summary 

 

In this chapter, foundation displacement computations using elastic influence factors are 

reviewed and discussed.  A new approximate closed-form solution was derived for use in 

evaluating the magnitude of displacements at the center of flexible and rigid circular 

foundations resting on either homogeneous or Gibson soil profiles of finite to infinite 

depth.  Displacements can be calculated with knowledge of soil stiffness beneath the 

foundation (Eso), rate of increase of soil stiffness with depth (kE), soil Poisson’s ratio (ν), 

depth to an incompressible layer (h), and foundation diameter (d).  The new solution 

facilitates deflection calculations for shallow footings and raft foundations in a unified 

approach that compare reasonably with rigorous approaches (e.g. Harr, 1966; Poulos, 

1968; Ueshita and Meyerhof 1968), finite element methods (e.g. Carrier and Christian, 

1973; Milovic, 1992), and approximate solutions (e.g. Mayne and Poulos, 1999), thereby 

making it easy to implement by spreadsheet or by commercial mathematical software.  

The applicability of the method for computing displacement influence factors for 

rectangular footings is also demonstrated.  Approximate displacement influence factors 

for rectangular footings are compared with Harr (1966) rigorous solution and Milovic 

(1992) numerical solution with very good agreement.  A summary of equations for 

computing displacements for circular footings using the approximate approach is 

provided herein: 
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Table 3-2. Summary of equations for computing displacements under circular footings 
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Notes: 

s= foundation displacement. 

q= average applied stress. 

d= foundation diameter. 

IG= elastic displacement influence factor. 

IF= foundation flexibility influence factor. 

IE= influence factor for embedment. 

ν= soil Poisson’s ratio. 

Eso= equivalent elastic soil Young’s modulus beneath foundation base. 

β = )( dkE Eso = normalized Gibson modulus ratio. 

kE = linear rate of increase of elastic modulus with depth = ∆Es/∆z. 

h* = thickness factor = h/d. 

KF = foundation flexibility factor. 

Efoundation = modulus of elasticity of the foundation material (e.g. reinforced concrete). 

Esoil = average soil modulus beneath the foundation over a depth z = 2d. 

t = foundation thickness. 

zE = depth to foundation base beneath ground surface. 
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CHAPTER IV 

 

SOIL STIFFNESS AT SMALL- TO INTERMEDIATE-TO LARGE- STRAINS 

 

 

 

4.1 Overview 

 

The stiffness of soils can be quantified using laboratory tests on undisturbed soil 

specimens, including: oedometer (e.g. Janbu, 1969), triaxial tests (e.g. Lambe, 1968), 

resonant column testing (e.g. Hardin and Drnevich, 1972), or in the field from in-situ 

tests including: pressuremeter (Baguelin et al., 1978), flat plate dilatometer (Marchetti, 

1980), or by full-scale loading tests of foundations or plates (e.g. Schnaid et al., 1993).  

Less attractive as an approach, soil stiffness has been indirectly assessed from empirical 

correlations with in-situ tests such as: cone penetration tests (e.g. Schmertmann, 1970; 

Mitchell and Gardner, 1975), and standard penetration test (e.g. Schultz and Melzer, 

1965; Stroud, 1974). 

 

Of particular interest is the small strain shear modulus (Gmax = Go) obtained from the 

shear wave velocity ( 2

max sTVG ρ= ), where ρT is the total mass density and Vs is the shear 

wave velocity, as it represents a maximum stiffness from which all the moduli can be 

benchmarked (Burland, 1989).  The value of Gmax is fundamental and applicable to static 

and dynamic loading, as well as undrained and drained conditions (e.g. Tatsuoka et al., 

1997; Lo Presti et al., 1999a, 1999b).  Laboratory and field studies show soil stress-strain 

behavior is non-linear at all strain ranges, even for very small strains (e.g. Jardine et al., 

1985).  However, linear elasticity still remains the most common means for deformation 
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analysis.  Therefore, the reference stiffness value Gmax must be reduced to an equivalent 

modulus, which corresponds to the ambient working load level and appropriate strains.  

This chapter covers the assessment of soil stiffness at working stress levels for routine 

design, small strains (nondestructive range), and modulus reduction schemes. 

 

4.2 Types of soil stiffness 

 

Soil stiffness can be expressed by a number of interrelated elastic moduli including: shear 

modulus (G), equivalent Young’s modulus (E), bulk modulus (K), or constrained soil 

modulus (D).  Figure 4-1 shows how the different elastic moduli are measured in the 

laboratory, specifically (E’) from triaxial, (D’) from one-dimensional consolidation (also 

termed constrained compression), (K’) from hydrostatic compression, and (G’) from 

shear testing.  Common shearing modes include direct shear (box), simple shear, and 

torsional shear.  The measured stiffness depends on many factors including: boundary 

conditions, type and direction of loading, and rate of loading.   

 

As a three-phase geomaterial, soil exists at various states of moisture including: 

completely dry, partially saturated, or fully saturated.  Partially saturated soils are not 

considered in the current research.  For saturated soils, it is standard practice to assume 

the stress-strain behavior at extreme conditions and to be predominantly either fully-

drained or undrained depending on soil type, boundary conditions, and rate of loading.  

Accordingly, two equivalent elastic soil moduli can be evaluated for these cases: drained 

(e.g. E’) and undrained (e.g. Eu) cases.   
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Figure 4-1. Laboratory tests for measuring elastic moduli in the laboratory (modified 

after Lambe and Whitman, 1979) 
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Each modulus can be expressed either in terms of a secant modulus Esec 






 −
=

aε
σσ 31 or 

tangent modulus Etan 






 −
=

ad

d

ε
σσ )( 31 .  Figure 4-2 illustrates the different equivalent 

elastic moduli that can be measured from a triaxial test.  At very small strains, both secant 

and tangent modulus converge to the small-strain elastic modulus (Emax) that can also be 

determined from non-destructive testing.  The other elastic moduli can be similarly 

represented (e.g. Gsec, Gtan).  Tangential soil modulus is more suitable for numerical 

modeling as the calculations are performed incrementally.  The secant modulus is more 

suited for analytical solutions.  It is also possible to represent an unload-reload modulus, 

( )
a

ur
d

d
E

ε
σσ 31 −=  (as depicted in Figure 4-2) which defines a pseudo-elastic response.  

This is common in one-dimensional oedometer tests in the laboratory and pressuremeter 

testing in the field. 

 

 

 

 

 

 

 

 

 

Figure 4-2. Definitions of maximum, secant, tangent, and unload-reload shear moduli 
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4.3 Soil stiffness at working stress level 

 

As mentioned in the introduction, soil stiffness can be assessed by laboratory tests on 

high quality soil samples, directly from select in-situ tests, by back-calculation from full-

scale load tests on foundations or plates, or indirectly from in-situ penetration tests.  The 

non-linearity of stiffness with strain and stress level, coupled with different directions of 

loading and drainage conditions, makes it very difficult for a meaningful cross 

comparison of the various moduli derived from the different tests, unless a consistent 

framework and reference stiffness are established.  Full-scale instrumented load tests 

represent the best means for assessing the equivalent soil stiffness, however at great 

commitment, cost, and time. 

 

Laboratory devices allow for controlled testing the soil at different boundary conditions, 

strain rates, stress regimes, and controlled drainage.  High-quality tube samples are vital 

for the test results to be meaningful, yet are expensive for soft to firm clays.  In many 

instances, sample disturbance is unavoidable.  Special frozen sampling techniques are 

now available for silts and sands, yet at an extremely high expense. 

 

Hence, it is progressively becoming standard practice to assess stiffness from in-situ tests 

(e.g. standard penetration test, cone penetration test, flat plate dilatometer, 

pressuremeter), since data are obtained immediately on site and the variation of stiffness 

can be ascertained vertically and laterally across the formation.  Figure 4-3 illustrates the 

ranges of shearing strains associated with select in-situ tests.  The equivalent soil moduli 

based on these tests represent the stress-strain response specific to certain stress levels 
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and drainage conditions.  Kohata et al. (1997) noted that soil moduli obtained from 

conventional laboratory and field tests (except field seismic tests) were too small 

compared to back-calculated moduli based on full-scale tests.  This in turn leads to over-

predicting soil deformations. 

 

At very small strains (less than 10
-4
%), soils exhibit a very high stiffness represented by 

the small-strain stiffness (Gmax or Go), formerly known as the dynamic soil modulus Gdyn.  

In fact, the small-strain shear modulus is the key benchmark and establishes the highest 

soil stiffness achievable to which other moduli can be compared on relative basis.  Small-

strain stiffness is discussed in greater details in subsequent sections. 

 

 

 

 

 

 

 

 

 

Figure 4-3. Variation of modulus with strain level (Mayne and Schneider, 2001) 

 

4.4 Soil stiffness at small strain levels 

 

The small-strain shear modulus Gmax is a fundamental stiffness applicable to all types of 

geomaterials including clays, silts, sands, gravels, and rocks (Tatsuoka et al., 2001) for 

Shear Strain, γγγγs 

S
h
e
a
r 
M
o
d
u
lu
s
, 
G
 

G
m
a
x
 



 74

static and dynamic loading (Burland, 1989), and applicable under both drained and 

undrained loading conditions (Georgiannou et al., 1991; Lo Presti et al., 1996) because 

excess porewater pressures do not develop at such small strains.  The value of Gmax can 

be measured using both laboratory and/or in-situ field tests.  Laboratory tests include 

resonant column (e.g. Hardin and Drnevich, 1972); bender elements (e.g. Dyvik and 

Madshus, 1985); torsional shear apparatus (Teachavorasinskun, et al., 1991); and 

specially-instrumented triaxial tests with internal local strain measurements (e.g. Jardine 

et al., 1984).  In-situ geophysical tests include the crosshole test (e.g. Hoar & Stokoe, 

1978), downhole test (e.g. Woods, 1978; Campanella et al., 1994), spectral analysis of 

surface waves (e.g. Rix and Leipski, 1991; Stokoe et al, 1994), suspension logger (e.g. 

Nigbor & Imai, 1994), seismic cone (e.g. Robertson et al, 1986b), and seismic flat 

dilatometer (e.g. Hepton, 1988).  The maximum soil shear modulus can also be estimated 

empirically from other in-situ and/or laboratory test results (e.g., Hryciw, 1990; Mayne 

and Rix, 1995; Hegazy and Mayne, 1995), when no direct measurement is available.   

 

Some of the important factors affecting the small-strain stiffness Gmax are listed in Table 

4-1.  Figure 4-4 illustrates the various geophysical in-situ and laboratory methods for 

measuring small strain stiffness.  Of particular optimization in geotechnical site 

characterization, the seismic cone and seismic dilatometer represent efficient means for 

collecting information about soil stratigraphy, strength, stress history, and shear wave 

velocity. 
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Figure 4-1. Factors affecting small-strain stiffness Gmax 

Factor Reference 

Mean effective stress Hardin and Drnevich (1972) 

Void ratio eo  Hardin and Drnevich (1972) 

Stress history, OCR Hardin (1978) 

Alarcon-Guzman et al. (1989) 

Rate of loading Dobry and Vucetic (1987) 

Lo Presti et al. (1996) 

Soil plasticity for silts and clays Vucetic (1994) 

Lo Presti et al. (1996) 

Stress anisotropy for sands Alarcon-Guzman et al. (1989) 

Yamashita et al. (2003) 

Creep Lo Presti et al. (1996) 

Effective confining stress Santamarina and Aloufi (1999) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-4. Schematic diagram of the different methods for measuring the shear wave 

velocity (Schneider, 2000) 
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The shear wave velocity Vs is directly related to the maximum shear modulus Gmax: 

 

2
max stVG ρ= ……………….…………………………………………………………(4-1) 

 

where ρt is the total soil mass density.  An illustrative example of the downhole shear 

wave velocity measured using the seismic piezocone and corresponding small-strain 

shear modulus profiles at the Amherst geotechnical test site are shown in Figure 4-5.  The 

Amherst test site consists of a 24-m thick deposit of soft lightly-overconsolidated 

lacustrine varved clay overlain by a 3-m desiccated crustal layer and 1-m thick clay fill 

(Lutenegger, et al. 2000; DeGroot and Lutenegger, 2002).  The groundwater table lies 

one meter deep.  The mass density, which is also needed for the calculation of 

overburden stresses, was evaluated making use of an empirical expression obtained by 

Mayne (2001) from compiled data for many different geomaterials that correlates the 

shear wave velocity (Vs in m/s), depth (z in meter), and the saturated mass density (ρsat in 

gm/cm
3
): 

 

( )zVssat log16.0)log(85.0 −=ρ ………………………………………………………(4-2) 

 

In case no direct measurement of the shear wave velocity is available, empirical 

correlations were developed for estimating either the shear wave velocity or small-strain 

stiffness Gmax.  Hardin (1978) presents a generalized empirical relationship for computing 

Gmax determined from wave propagation velocities and cyclic simple shear tests for any 

soil type as given by: 
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Where OCR = overconsolidation ratio, k = empirical parameter varying between 0 for 

sand and 0.5 for clays with high plasticity, e = void ratio, ( ) 3/321 σσσσ ++=o , or the 

mean principal stress. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-5. Downhole shear wave velocity and small-strain shear modulus profiles in 

varved clay at Amherst from seismic piezocone tests (after Elhakim & Mayne, 2003) 
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Nevertheless, the small strain shear modulus Gmax provides a clear reference value for 

soil at a specific confining stress and corresponds to strains less than 10
-6
 (decimal). 

 

4.4.1 Effect of sample disturbance on the small-strain shear modulus 

 

The effect of sample disturbance on the stress-strain behavior of soil samples has been 

investigated extensively (e.g. Lacasse et al., 1985; Hight et al., 1992; Tanaka and Tanaka, 

1999).  In this section, the influence of sample disturbance on the small-strain stiffness 

measured from laboratory tests is discussed in comparison with in-situ measurement (i.e. 

crosshole, downhole tests). 

 

Many researchers have compared Gmax measured using both in-situ and laboratory 

methods (e.g. Richart, 1977; Kohata et al., 1997; Hight et al., 1997; Landon et al., 2004).  

The (Gmax)lab/(Gmax)field ratio is indicative of the degree of sample disturbance.  This ratio 

approaches unity for the “undisturbed” soil specimens.  Toki et al. (1995) created a 

database of (Gmax)lab/(Gmax)field ratios from well-documented case studies in Japan, shown 

in Figure 4-6.  The results show the value of (Gmax)lab/(Gmax)field falling within a narrow 

band between 0.8 and 1.2 for Holocene and Pleistocene clays extracted using thin-walled 

samplers; and for sands and gravel specimens obtained using in-situ freezing methods.  

The (Gmax)lab/(Gmax)field ratio exceeds 1 for loose sand recovered using thin-wall samplers 

and likely densified during sampling , while the ratio is significantly smaller than unity 

for dense sands extracted using tube samples (Shibuya et al., 2004).  Tatsuoka et al. 

(1997) show the laboratory measured small-strain stiffness Gmax to be influenced by 

sampler type, with less disturbance associated large diameter block samplers.  The 
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influence of sample disturbance on the entire stress-strain behavior of soil specimens 

tested in the laboratory is discussed in detail later in Chapter 5. 

 

Although the above discussion shows that the high quality “undisturbed” soil specimens 

can yield Gmax values comparable to in-situ measurements, the field measured shear wave 

velocity still remains the most definitive and reliable way to determine Gmax.  Moreover, 

in-situ methods allow for measuring the variation of Gmax both vertically and laterally, 

which is not achievable using laboratory testing due to cost and time limitations. 

 

 

 

 

 

 

 

 

 

Figure 4-6. Ratio of (Gmax)lab measured from laboratory tests to (Gmax)field from 

geophysical surveys (after Toki et al., 1994) 

 

 

4.5 Reduction of maximum shear modulus with increasing stress/strain levels 

 

For stiffnesses that correspond to intermediate strains, modulus reduction factors G/Gmax 

versus the logarithm of the shear strain γs have been developed, (e.g. Vucetic and Dobry 
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1991), as shown in Figure 4-7.  In particular, these well-known curves apply to dynamic 

tests at fast loading and thus are influenced by strain rate effects.  Their use is restricted 

to seismic site amplification studies and cyclic behavioral concerns.  For static monotonic 

shear loading, the experimental trends of modulus reduction G/Gmax with increasing level 

of shear strain are presented in Figures 4-8-a.  The trends are similar to those observed by 

Hardin & Drnevich (1972), and Vucetic & Dobry (1991) for dynamic tests.  These 

laboratory data are referenced in Table 4-2 and come from static monotonic torsional 

shear tests on a variety of clays and sands.  Solid symbols denote undrained tests (four 

clays, one sand) while open symbols represent drained test data (three sands, one clay).  

A similar database of modulus reduction data from triaxial compression tests and plane 

strain conditions are compiled and presented in Appendix F. 

 

Alternatively, G/Gmax reductions can be presented in terms of the mobilized shear stress 

τ/τmax, as suggested by Fahey and Carter (1993).  The G/Gmax versus τ/τmax plots tend to 

emphasize the intermediate- to large-strain regions, while G/Gmax versus log(γs) curves 

tend to accentuate the small- to intermediate-strain range.  In Figure 4-8-b, the same 

monotonic torsional shear data are used to show the modulus reduction values G/Gmax 

plotted versus the mobilized shear strength τ/τmax, both on arithmetic scales, where τmax = 

shear strength.  For undrained loading, τmax = su.  Surprisingly, all data fall within a 

relatively narrow band, more so than the more conventional G/Gmax versus shear strain as 

those are plotted on semi-log scales.  Of additional note, the mobilized strength term may 

also be considered as the reciprocal of the factor of safety for the problem, or τ/τmax = 

1/FS. 
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Figure 4-7. Modulus reduction with logarithm cyclic shear strain for different values of 

plasticity index (after Vucetic and Dobry, 1991) 

 

4.6 Formulae/methods for non-linear stress-strain representation 

 

A sizeable number of mathematical formulae have been proposed to represent non-linear 

stress-strain soil response.  Since the slope of the stress-strain curve represents a modulus 

at a certain strain level (or corresponding mobilized stress level), modulus reduction 

schemes can be implemented into numerical modeling of boundary value problems (e.g. 

Lee and Salgado, 1999; Zhu and Chang, 2002).  Most of the available modulus reduction 

schemes were created by fitting stress-strain data from a variety of shear tests (triaxial, 

simple shear, resonant column) over a particular region of interest: small-strains 

( )%001.0≤sγ , intermediate strains ( )%001.0%0001.0 << sγ , or large strains 

( )%1.0>sγ .  Thus, many contrived expressions have difficulty in spanning from the 

very small non-destructive region through working load levels at intermediate strains to 

failure conditions at high strains that correspond to peak strength and bearing capacity.   
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Figure 4-8. Modulus reduction data from compiled monotonic torsional shear tests 

plotted versus: a) logarithmic strain; b) mobilized stress (note: references in Table 4-2) 
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Table 4-2. Reference sources for shear modulus reduction data from static (monotonic) 

torsional shear tests 
Drainage Soil Type Reference Notes 

London Clay Hight et al. (1997) depth = 57.5 m, γb = 19.4 kN/m
3
, wn = 29.1%, 

LL = 62.3%, PL = 26.2%,  

Pietrafitta Clay Georgiannou et al. (1991) wn = 41.8%, LL = 62 %, PI = 29.6%,  

Vallericca Clay Georgiannou et al. (1991) wn = 22-26%, LL = 54%, PI = 26% 

Thanet Clay Hight et al. (1997) depth = 81 m, γb = 19.3 kN/m
3
, wn = 31.7 %, 

LL = 102.3%, PL = 37.5%,  

Undrained 

Kentucky 

Clayey Sand 

Drnevich & Massarsch  

(1979) 

wn = 32%, Composition: 11% clay, 31% silt, 

49% sand, 8% gravel 

Ticino Sand LoPresti et al. (1993) eo = 0.71, D50 = 0.54 mm, OCR = 1 and 4 

Toyoura Sand Teachavorasinskun et al. 

(1991) 

eo = 0.69, D50 = 0.14 mm 

Hamaoka Sand Teachavorasinskun et al. 

(1991) 

eo = 0.628, D50 = 0.237 mm 

Drained 

 

Pisa Clay Lo Presti et al. (2003) LL = 84 %, PL = 33.5 %, wn = 63%,  

OCR = 1.75 

Notes: 

γb = bulk unit weight 

wn = natural water content 

LL = liquid limit 

PL = plastic limit 

PI = plasticity index 

eo = initial void ratio 

D50 = Sieve diameter equivalent to 50% soil passing 

OCR = overconsolidation ratio 
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Moreover, the representation of post-peak to softened strength values as well as 

extremely high strains corresponding to residual conditions, may in fact be relevant, but 

not discussed herein due to full complexities and understanding beyond the current state-

of-the-art (Leroueil and Hight, 2003).  Efforts here have been restricted to addressing the 

initial stiffness (i.e. Gmax) and subsequent reductions to intermediate-strains (i.e. Gsec and 

Gtan), and large-strains at peak strength (i.e. τmax).  As such, a suitable modulus reduction 

model should satisfy several requirements: (1) minimum number of material constants 

defining stress-strain non-linearity without compromising accuracy; (2) material 

constants should have a physical meaning; and (3) should be derived easily (Puzrin and 

Burland, 1996).  Furthermore, as the significance of the small-strain stiffness has now 

become fully recognized, all stress-strain-strength curves should begin at Gmax (Burland, 

1989; Atkinson, 2000; Tatsuoka et al., 2001).  A brief overview on the chronological and 

historical development of the various algorithms follows. 

 

A selected summary of available non-linear stress-strain representation schemes is 

provided in Table 4-3.  The number of non-linear parameters required for the simulation 

of modulus reduction depends on the particular model formulation.  Specific details on 

each model are given in their corresponding references.  Individual appraisals of certain 

of the existing reduction schemes have been carried out for selected soils by a number of 

researchers (e.g. Puzrin and Burland, 1996; Lo Presti et al., 1997; Shibuya et al., 2001). 

 

Ramberg-Osgood (1948) is one of the earliest means to represent the non-linear stiffness 

of soil, requiring three parameters in a power law format.  A difficulty with the Ramberg-
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Osgood formulation is that the derived shear stresses continue unbounded and the model 

predicts infinite strength at infinite strain (Burghignoli et al., 1991).  Kondner (1963) 

showed that the stress-strain behavior of clay soils at intermediate- to large- strains could 

be represented with reasonable accuracy using a simple hyperbola.  The initial modulus 

and strength are the only parameters needed for defining the shape of the stress-strain 

curve.  As such, the strength is bounded by an asymptote, or upper limit.  The initial 

modulus is merely a pseudo-value from the fitting at high-strains however.  For sands, the 

simple hyperbola was insufficient thus modified by Duncan and Chang (1970) to 

accommodate increased confining stress levels and force a definitive (σ1-σ3)f measured in 

laboratory tests with the asymptote, (σ1-σ3)ult, given by the hyperbola.  Duncan and 

Chang (1970) were also recognized as the first to incorporate a non-linear stress-strain 

expression into geotechnical finite element analyses.  However, Duncan and Chang 

(1970) used an initial elastic modulus Ei that is considerably underestimated compared to 

the small-strain stiffness Emax (Lee et al., 2004) thus Ei is a pseudo-initial value.  In order 

to represent resonant column test data at small-strains, Hardin and Drnevich (1972) 

implemented different modifiers to the hyperbola that permitted G/Gmax versus log (γs) 

curves to match small- to intermediate- strains.  They also introduced the concept of a 

reference strain for normalizing the curves, whereby γref=τmax/Gmax.  The matching and 

calibration by Hardin and Drnevich applies only to dynamic tests (primarily resonant 

column) and thus not directly useable in static loading.   
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Table 4-3.  List of selected modulus reduction schemes 

Equation Reference Notes 

Power law fitting model 

1
max 1

1
−⋅⋅+

=
R

t

yRE

E

α
 

where 

r

ry
εε

εε
+

=
1

, ε is the axial strain at current stress level, 

εr is a reference strain (= qmax/Emax), α and R are soil 

parameters obtained from the soil stress strain behavior 

Ramberg-

Osgood (1948) 

� strain hardening algorithm 

� As strains increase, 

corresponding stresses 

increase without bound 

Hyperbolic fitting model 
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( )

max31

31
1 σσε

ε
σσ

−+
=−

iE
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311
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a = f(OCR, confining stress, strain rate) 

Kondner (1963) E = equivalent elastic soil 

modulus 

Ei = initial modulus 

a, b = fitting constants 

Parabolic fitting model 

ε
ε

σ
ba −

=  

Brinch Hansen 

(1963) 

a and b are model fitting 

parameters 

Power law fitting model 

ε
ε

σ
ba −

=  

Brinch Hansen 

(1963) 

a and b are model fitting 

parameters 

Modified hyperbolic fitting model 

( )21 SLREE fit ⋅−=  

where ( ) ( )
f

SL 3131 σσσσ −−=  

( ) ( )
ultffR 3131 σσσσ −−=  

Duncan and 

Chang (1970) 

Modified hyperbolic fitting 

that uses peak strength 

matching 

Hyperbolic fitting model 

hG

G
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1

1
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[ ])/(
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r

h ea
γγ

γ
γ

γ −⋅+⋅=  

where γ  is the current strain, γh is the hyperbolic strain, γr is 

the reference strain (= τmax/Gmax), a and b are soil properties 

Hardin and 

Drnevich (1972) 

Based on resonant column 

tests 

Periodic logarithmic fitting model 
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α logcos  

A, B, C, α and γx determined from triaxial test data 

Jardine, et al. 

(1986) 

Implemented for numerical 

modeling.  Requires 5 

parameters listed herein plus 

2 additional limiting strains 
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Equation Reference Notes 

Modified hyperbolic fitting model 
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where τ1 and m are positive and real numbers of the modified 

hyperbolic equations; Gsec and γ are current secant shear 

modulus and shear strain, respectively; γmax is the maximum 

shear strain.  Hyperbolic model parameters are obtained from: 

14 max −≥ ym  and 
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Prevost and 

Keane (1990) 

Both monotonic & cyclic 

loading at both low- and 

high-strains 

Modified hyperbolic fitting model 
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where  

normalized deviator stress = 
maxqqY ∆∆=  

normalized axial strain = ( )
raaX εε=  

reference strain = ( ) maxmax Eq
ra ∆=ε  

C1(X) and C2(X) = fitting parameters varying with strain level 

Tatsuoka and 

Shibuya (1992) 

Provides good approximation 

to stress-strain data. 

However, the required six 

parameters is too large a 

number (Shibuya et al., 

2001) 

Hyperbolic fitting model 
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where Gsec = secant shear modulus at current stress level, Gt = 

tangent shear modulus at current stress level, Gt = maximum 

shear modulus, τ = current shear stress, τmax = shear strength, f 

and g = soil parameters describing the non-linear soil behavior 

Fahey and 

Carter (1993) 

Modified hyperbolic 

formulation. 

 

Note: 

A simple hyperbola obtained 

for f = 1 and g = 1. 

Table 4-3. (continued) 
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Equation Reference Notes 

Modified hyperbola 
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G
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−=
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With m = 1 for simple hyperbola and m = 2 to 4 for static 

loading of soils. 

Mayne (1994) Modified hyperbolic 

formulation. 

 

Logarithmic fitting model 
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= = normalized threshold strain 

Puzrin and 

Burland (1996; 

1998) 

Static loading. Several 

versions (1-, 3-, and 4- 

parameter) expressions, in 

addition to a threshold strain. 

The 1- parameter expression 

is discussed in more detail in 

chapter 5. 

Double exponential fitting model 

n
m

t

q

q

E

E
























∆
∆
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where Et is the tangent Young’s modulus at any stress level, 

Emax is the initial Young’s modulus, ∆q is the increase in 

deviatoric stress (=∆σ1-∆σ3), ∆qmax is the maximum value of 

∆q in compression, m and n are material constants. 

Shibuya et al. 

(1997) 

Hybrid of Fahey and Carter 

(1993) and Mayne (1994) 

modified hyperbolic 

expressions. 

Exponential fitting model 

1−⋅= βγαG  

where α and β are material constants 

Bolton and 

Whittle (1999) 

Power function where stress 

increases indefinitely beyond 

the strength of the material 

Table 4-3. (continued) 
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Equation Reference Notes 

Hyperbolic fitting model 

( )
( )

gn

o

o

g

i

is

p

p

qq

qq
f

G

G

































−

−
−=

'
maxmax

1  

( )

( ) ( )
( )

gn

o

o

g

i

i

ost

p

p

qq

qq
gf

GG

G

G



































−

−
−−

=
'

max

2

max

11

 

where q is the deviatoric stress invariant, qi is the initial 

deviatoric stress invariant at failure, qi is the deviatoric stress 

invariant at failure, f , g, ng are material constants, po and po` 

are the octahedral stress invariants at current and initial stress 

invariant 

Lee and Salgado 

(1999) 

Generalized modified 

hyperbola for 3-D stresses 

(extension of Fahey and 

Carter, 1993) 
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where εth  is the linear elastic threshold strain, εr is a reference 

strain equivalent to 
maxE

E′ of 0.5, n is an empirical constant 

used to change the rate of modulus degradation. 

Lehane and 

Cosgrove 

(2000) 

For Young’s modulus of 

sands 

Modified hyperbolic fitting model 
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where ε, εf and εth are current strain, strain at failure, and 

threshold strain, respectively; r is non-linear fitting parameter 

Atkinson (2000) Fitting parameter r is 

typically in the range of 0.5 

to 1.0 

Note: for isotropic elastic geomaterials, E = 2 G (1+ν) 

 

 

 

 

 

Table 4-3. (continued) 
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A five-parameter periodic logarithmic function was proposed by Jardine et al. (1986) for 

use in numerical modeling of foundations, and this was one of the first to span small-, to 

intermediate-, to large-strains.  However, only undrained loading was considered and 

because of the form chosen, two additional limiting strain parameters were needed to 

restrict the periodic function, thus a total of seven parameters were needed, many without 

physical significance. 

 

Later, in order to connect the small-strain stiffness Gmax to large-strain shear strength, 6 

separate fitting parameters (e.g. Tatsuoka and Shibuya, 1992) were introduced to adjust 

the shape of the hyperbola to fit a wide variety of stress-strain data.  However, the 

parameters have no engineering significance other than curve fitting.  A modified 

hyperbola form with only two parameters has been successfully used for representing 

laboratory stress-strain data (e.g. Fahey and Carter, 1993; Elhakim and Mayne, 2003; Lee 

et al., 2004).  The modified hyperbola does not meet all the general conditions that should 

be satisfied by a normalized stress-strain curve outlined by Griffiths & Prevost (1990) 

and Puzrin & Burland (1996).  In addition, the curve fitting parameters do not have a 

clear physical meaning and are not uniquely defined for a specific set of stress-strain data 

(Shibuya et al., 2001). 

 

Puzrin and Burland (1996) evaluated seven of the more commonly-used stress-strain 

functions in light of the mathematical conditions suggested by the authors and additional 

criteria set by Griffiths & Prevost (1990).  The functions included in the study include the 

original hyperbolic model (Kondner, 1963), and the modified hyperbolic functions 
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proposed by Hardin and Drnevich (1972), Griffiths and Prevost (1990), and Tatsuoka & 

Shibuya (1992), as well as the periodic logarithmic function proposed by Jardine et al. 

(1986).  None of these formulations satisfied all the conditions set by Griffiths & Prevost 

(1990) as well as Puzrin & Burland (1996).  A new logarithmic formula was 

subsequently developed that fulfills all the necessary conditions.  The logarithmic 

function can be fitted to non-linear stress-strain data using one, three, or four parameters, 

in addition to a threshold strain, depending on the availability of measurements at various 

strain levels.  Even the one-parameter logarithmic function gives good matching with 

stress-strain data over the entire stress-strain curve.  The degree of soil non-linearity is 

described by the normalized limiting strain (xL), which physically represents the ratio of 

small-strain modulus Gmax to the value of shear modulus at peak failure (Gmin=τmax/γf), 

where τmax is the shear strength and γf is the shear strain at failure.  Thus, the degree of 

non-linearity is specified by the parameter xL, which has a real and fundamental 

significance.  The derived stress-strain behavior is more non-linear for higher values of 

xL.  The logarithmic function and the normalized limiting stain xL are discussed in more 

detail in Chapter 5. 

 

An alternate means to express the physical concept of normalized limiting strain xL is as 

the ratio of (γf/γref) where γf = strain at failure and γref=τmax/Gmax is the reference strain 

corresponding to the intersection of the initial small-strain stiffness with the strength of 

the geomaterial. 
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4.7 Synopsis 

 

In this chapter, different types of soil stiffness associated with mode of loading and strain 

level are reviewed.  The concept of modulus reduction is introduced with the small-strain 

stiffness Gmax as the fundamental stiffness, applicable to all geomaterials under both 

drained and undrained loading conditions for static and dynamic conditions.  The various 

methods for assessing Gmax from laboratory and in-situ tests are introduced.  It is shown 

that the maximum shear stiffness assessed using in-situ seismic tests provide the most 

definitive and reliable means for assessing Gmax. 

 

A database of modulus reduction data from static monotonic torsional shear tests is 

compiled.  The trends observed from the database are similar to those observed in 

dynamic tests.  A review of modulus reduction schemes for representing non-linear 

stress-strain response is presented including hyperbolic, logarithmic, parabolic, and 

power function.  The logarithmic function by Puzrin and Burland (1996, 1998) is found 

to be the most suitable method for modeling modulus reduction because the parameters 

have physical meaning and can be easily measured.  Of added benefit, only two 

parameters are needed: the threshold strain γth and the normalized limiting strain xL.  The 

parameter xL is simply 
min

max

G
G

 where 2

max sT VG ⋅= ρ  and 
f

G γ
τ max

min = , where τmax = 

shear strength and γf = strain at failure. 
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CHAPTER V 

 

STRESS-STRAIN RESPONSE OF SOIL REPRESENTED  

BY LOGARITHMIC FUNCTION 

 

 

 

A logarithmic modulus reduction scheme (Puzrin and Burland, 1996, 1998) is 

adopted to represent the non-linear stress-strain-strength response of soil.  Three levels of 

the model were suggested, using one, three, or four parameters, depending on the 

availability of test data, in addition to the threshold strain (γth).  The model has shown 

high accuracy in reproducing stress-strain behavior of different soils and rocks over the 

full range of small-to-intermediate-to-high strains.  For simplicity in relating the results to 

simple index properties and in-situ test data, the single-parameter model is applied herein 

to investigate the factors affecting soil non-linearity.  This is achieved by fitting the 

logarithmic function to laboratory stress-strain data tested in triaxial compression, simple 

shear, and triaxial extension modes.  In all cases, the initial stiffness of the soil is 

referenced to the in-situ measured small strain shear modulus Gmax. 

 

5.1 Logarithmic modulus reduction model 

 

During the modulus reduction phase, the one-parameter logarithmic modulus reduction 

algorithm (Puzrin and Burland, 1996, 1998) can be formulated in terms of secant 

modulus Es and/or tangent modulus Et.  These modulus reduction factors are represented, 

respectively, by equations 5-1-a and 5-1-b: 
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where: 

Es, Et, Emax = secant, tangent, and small-strain Young’s moduli, respectively. 
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εL = limiting strain (defined from Figure 5-1-a) 

c = parameter of the logarithmic function (defined in Figure 5-1-b) 
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Figure 5-1-a and 5-1-b illustrate the definitions of the parameters needed for Equations 5-

1-a and 5-1-b.  The normalized limiting strain xL was originally defined (Puzrin and 

Burland, 1996) as the ratio of the limiting strain εL to the reference strain εr=qmax/Emax 

(defined in Figure 5-1-a), xL= εL/εr.  For c=1 at peak strength, the limiting strain εL 

coincides with the failure strain, εf (refer to Figure 5-1-b).  In this case, the normalized 

limiting strain xL can alternatively be defined as the ratio of the small-strain stiffness 

(Emax or Gmax) to the equivalent corresponding secant modulus at failure (Emin or Gmin), 

thus xL= Emax/Emin or Gmax/Gmin.  By definition, the value of the normalized limiting strain 

xL can never be less than unity.  For xL = 1, the model behaves as a purely linear elastic 

material. 

 

Figures 5-2-a and 5-2-b show the variation of the intermediate parameters R and α with 

the normalized limiting strain.  Both fitting parameters R and α are always positive 

(typical ranges for soils: 0.04<R<0.5; 0.6<α<0.9).  The limiting normalized strain (xL) is 

the parameter determining the rate of modulus degradation.  The value of R is typically 

less than unity for soils and greater than unity for rocks (Puzrin and Burland, 1996).  

Figures 5-3-a and 5-3-b show the variation of the secant Young’s modulus with the strain 

level and mobilized strength (τ/τmax or q/qmax) respectively.  The normalized limiting 

strain (xL) was varied between 5 and 80.  The stress-strain behavior becomes more non-

linear as the normalized limiting strain xL increases. 
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Figure 5-1 Schematic diagram showing the physical parameters for the logarithmic 

function: a) generalized form (as defined by Puzrin and Burland, 1996); b) for c=1 at 

peak strength 
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Figure 5-2 Variation of intermediate parameters R and α with the normalized limiting 

strain xL 
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Figure 5-3. Variation of soil secant modulus according to the logarithmic function with: 

(a) mobilized strength (b) strain level. 
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Generally, non-linear soil behavior is identified and defined by laboratory test data.  Soil 

stress-strain behavior depends on the quality of specimens, types of test, boundary 

conditions, and rate of loading.  How these factors affect the value of the normalized 

limiting strain xL is discussed later in this chapter. 

 

5.2 Threshold strain 

 

A threshold strain γth can be established below which the stress-strain behavior of soil can 

be essentially considered linearly elastic (Vucetic and Dobry, 1991; Vucetic, 1994).  

According to Santamarina et al. (2001), the linear threshold strain separates elastic 

constant fabric behavior from the degradation regime where soil fabric changes.  In other 

words, soil stiffness is constant at Gmax for deformations smaller than the threshold strain 

as illustrated by Figure 5-4.  This level of strain depends on several factors including soil 

type, plasticity, rate of loading, and stress history.  Vucetic (1994) created a database for 

threshold strains measured in a variety of drained and undrained cyclic tests, including 

simple shear, resonant column, and triaxial tests.  A similar database of threshold strains 

measured in resonant column tests conducted on different soil types was established by 

Lo Presti et al. (1996).  The average γth trends from both databases are plotted in Figure 

5-5. 

 

The dynamic threshold strain has received considerably more attention compared to its 

monotonic equivalent that applies to static loading.  A database of monotonic torsional 

shear test data was compiled and presented in Figure 4-9 in Chapter 4. 
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Figure 5-4. Reduction of shear modulus with the increase in strain level (modified after 

Vucetic 1994) 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-5. Effect of plasticity index on the cyclic threshold strain (Vucetic, 1994;  

Lo Presti, 1996) 
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Based on the monotonic torsional shear database, the threshold strain varies between 

0.0005 % to 0.005 %.  Likely, the values of γth are affected by the rate of loading.  For 

data on NSF clay (e.g. Shibuya et al., 1996; Shibuya et al., 1997), Figure 5-6 shows that 

the threshold strain (γth) increases with rate of loading. 

 

 

 

Figure 5-6.  The effect of the rate of loading on the threshold strain (Shibuya et al., 1996) 

 

 

5.3 Factors affecting soil non-linearity under undrained loading conditions 

 

Several factors affect the degree of non-linearity measured using laboratory tests.  These 

include: sample disturbance, mode of loading, and rate of loading as discussed in the 

following sections. 

 

 

εa=0.01 %/min εa=0.13 %/min εa=1.4 %/min 
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5.3.1 Sample disturbance 

 

Generally, it is well-known that sampling disturbance reduces the measured value of 

preconsolidation in oedometer tests, reduces peak strength values in laboratory shear 

tests, and lowers the small-strain shear modulus in resonant column tests.  Attempts to 

minimize soil disturbance during extraction have resulted in the development of larger 

piston-type samplers to produce high quality soil specimens (e.g. Berre et al., 1969; 

Lefebvre and Poulin, 1979). 

 

The mechanical behavior of soils tested in the laboratory is affected by sample 

disturbance during tube pushing extraction, sealing, transportation, extrusion, trimming, 

and mounting the specimen (Tanaka et al., 2001; Hight et al., 1992; Lacasse et al., 1985).  

This is illustrated by Figure 5-7, which shows the potential sources of error using 

hypothetical stress paths (Ladd and Lambe, 1963; Baligh et al., 1987, Ladd and DeGroot, 

2003).  Table 5-1 lists 8 different types of samplers with their main dimensions and 

features.  It should be noted that all the listed samplers (except for Sherbrooke, also 

known as block samplers) employ tubes for soil extraction.  Tanaka (2000) investigated 

the influence of using the various samplers listed in Table 5-1 on soil disturbance.  The 

effect of sampler type on the measured stress-strain-strength behavior of Ariake clay is 

presented in Figure 5-8, which shows a hierarchy of curves depending on the level of 

sample disturbance.  As sample disturbance increases, lower soil strengths and higher 

failure strains are recorded.  Tanaka (2000) concluded that the Japanese Standard Fixed  
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Figure 5-7.  Hypothetical stress path during tube sampling and specimen preparation of 

centerline element of low OCR clay (Ladd and DeGroot, 2003) 

 

Table 5-1. Main dimensions and features of soil samplers (modified after Tanaka, 2000) 

Sampler 

Inside 

diameter 

(mm) 

Inside 

diameter 

(mm) 

Sampler 

length 

(mm) 

Thickne

ss  

(mm) 

Area 

Ratio 

(%)** 

Piston 

JPN 78 75 1000 1.5 7.5 Yes 

Laval 216 208 660 4.0 7.3 No 

Shelby 75.3 72 610 1.65 8.6 No 

NGI54 80 54 768 13 54.4 Yes 

ELE100 104.4 101 500 1.7 6.4 Yes  

Sherbrooke 

(Block sampler) 
N/A*** 350* 250* N/A*** N/A*** No 

NGI95 105.6 95 1000 5.3 14 Yes 

Split-barrel 51.1 34.9 450-600 8.1 112 No 
* Specimen dimensions 

** Area ratio = ( )
2
int

2
int

2

ernal

ernalexternal

d

dd −  (US Army Corps of Engineers, 1996) 

*** Sherbrooke sampler employs a special sampling technique that does not require a sampling 

tube. Refer to Lefebvre and Poulin (1979) for more details 
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Figure 5-8.  Effect of sampler type on the unconfined compression stress-strain behavior 

of Ariake clay from 10-m depth (Tanaka et al., 2000) 

 

piston sampler JPN yielded quality similar to Laval and Sherbrooke samplers except for 

low plasticity clays.  Shelby, NGI, and ELE100 samplers yielded lower quality samples, 

having lower strengths and larger strains to failure.  Note that the influence of sample 

quality on the small-strain shear modulus Gmax was covered previously in Chapter 4. 

 

The effect of sample disturbance on the non-linear stress-strain behavior of soils is now 

quantified by backfitting parameters to selected laboratory test data.  Values of the 

normalized limiting strain (xL) are computed from measured stress-strain data of 

specimens extracted with different samplers then tested under the same conditions.  The 

selected soils, strength properties, sampler type, test mode and sources of data are listed 

in Table 5-2.  The data contains soils from 5 sites.  Tests included in the study were tested 

under different loading conditions: unconfined compression, Ko-consolidated triaxial 
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Table 5-2 List of properties of soils used in investigating factors affecting xL 

Site and 

Depth 

(m) 

Test 

Type 

Sampler 

Type 

Gmax 

MPa 

σσσσvo' 
kPa 

Ko su////σσσσvo'    
∆∆∆∆qu 
kPa 

εεεεf 
(%) 

εεεεr 
(%) 

xL Reference 

Ariake 

8 m 

CKoUC 

CKoUE 

Laval 

Laval 

4.4 

4.4 

35 

35 

0.45 

0.45 

0.48 

0.29 

214 

40 

1.2 

7.0 

0.10 

0.30 

11 

23 

Tanaka and 

Tanaka (1999) 

Ariake 

10 m 
CKoUC 

CKoUC 

Sherbrooke 

ELE100 

5.4 

5.4 

40 

40 

0.45 

0.45 

0.51 

0.51 

20 

20 

1.25 

2.3 

0.12 

0.12 

10 

19 

Tanaka & 

Tanaka (1999); 

Tatsuoka (2002) 

Bothkennar 

2.7 m 

CKoUC 

CKoUC 

CKoUC 

Laval 

Sherbrooke 

Piston 

12 

12 

12 

28.5 

28.5 

28.5 

0.79 

0.79 

0.79 

0.71 

0.64 

0.62 

35 

31 

30 

1.1 

1.5 

2.2 

0.10 

0.09 

0.08 

11 

17 

27 

Bothkennar 

5.3 to 5.4 m 

CKoUC 

CKoUE 

Laval 

Laval 

17 

17 

48 

48 

0.60 

0.60 

0.52 

0.26 

31 

44 

0.85 

1.6 

0.06 

0.09 

14 

19 

Bothkennar 

12.6 m 

CKoUC 

CKoUC 

Laval 

Piston 

28.4 

28.4 

100 

100 

0.70 

0.70 

0.38 

0.36 

46 

43 

1.4 

2.8 

0.05 

0.05 

26 

55 

Bothkennar 

15.3 m 

CKoUC 

CKoUC 

Laval 

Piston 

43.4 

43.4 

120 

120 

0.67 

0.67 

0.40 

0.33 

56 

40 

1.5 

2.6 

0.04 

0.03 

34 

85 

Hight et al. 

(1992); 

Hight et al. 

(1997) 

Bothkennar 

11 m 

UC 

UC 

Sherbrooke 

ELE100 

16.7 

16.7 

89 

89 

N/A 

N/A 

0.39 

0.28 

69 

50 

2.5 

11.5 

0.14 

0.10 

18 

116 

Hight et al. 

(1997) 

Tanaka (2000) 

Onsoy 

3.2-3.5 m 

CKoUC 

CKoUC 

Sherbrooke 

NGI95 

10.5 

10.5 

24 

24 

0.50 

0.50 

0.63 

0.52 

14 

13 

1.0 

1.4 

0.05 

0.04 

22 

32 

Onsoy 

6.2 m 

DSS 

DSS 

Sherbrooke 

NGI95 

14.1 

14.1 

39 

39 

0.50 

0.50 

0.33 

0.35 

13 

14 

1.5 

1.3 

0.09 

0.10 

17 

13 

Lacasse et al. 

(1985) 

Gillespie et al. 

(1985) 

San 

Francisco 

7.3-7.75 m 

CKoUC 

DSS 

Piston 

Piston 

10.7 

10.7 

67 

67 

0.60 

0.60 

0.40 

0.27 

35 

18 

1.4 

9.0 

0.09 

0.17 

16 

53 

Hunt et al. 

(2002) 

Pestana et al. 

(2002) 

Singapore 

22 m 

CKoUC 

CKoUE 

JPN 

JPN 

39 

39 

210 

210 

0.66 

0.66 

0.38 

0.33 

89 

220 

0.85 

6.4 

0.08 

0.19 

11 

34 

Tanaka et al. 

(2001) 

Watabe (1999) 

Notes: 

CKoUC = Ko-consolidated undrained triaxial compression 

CKoUE = Ko-consolidated undrained triaxial extension 

UC = unconfined compression 

DSS = direct simple shear 

Gmax = small-strain shear modulus 

σvo’ = effective overburden stress 

Ko = at rest earth pressure coefficient 

su = undrained shear strength 

∆qu = (σ1-σ3)f-(σ1-σ3)o 

εf = strain at failure 

εr = reference strain 

xL = normalized limiting strain 
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compression, Ko-consolidated triaxial extension, and direct simple shear.  The stress-

strain data are normalized by the deviatoric stress ∆qu = qmax-qo and reference strain 

εr=∆qu/Emax, respectively.  Fitted stress-strain data are presented in Appendix B.  The 

normalized limiting strain xL was calculated for each test, as shown in Table 5-2.  A 

higher value of xL indicates a more non-linear stress-strain behavior. 

 

As an example, stress-strain results from CKoUC tests from Bothkennar (depth = 2.7 m) 

are presented in Figure 5-9-a.  As expected, the stress-strain behavior depends on sample 

quality.  The Laval and Sherbrooke samplers yield better quality samples (higher 

strengths and smaller failure strains) compared to the Piston sampler.  Fitted normalized 

stress-strain data are plotted in Figure 5-9-b.  The normalized limiting strains xL are 11, 

17, and 27 for Laval, Sherbrooke, and Piston samplers, respectively. 

 

Another example is illustrated by the direct simple shear test results from Onsoy (depth = 

6.2 m).  Specimens extracted using Sherbrooke and NGI95 samplers are compared in 

Figures 5-10-a and 5-10-b.  Raw and fitted normalized stress-strain data are presented in 

Figures 5-10-a and 5-10-b, respectively.  The difference in xL between the two samples is 

quite small (within 20 %), which could be within the natural variability of the soil.  On 

the other hand, two specimens from the same site, extracted using the Sherbrooke and 

NGI95 samplers and tested in CKoUC, demonstrated a larger increase in xL (about 50 %), 

as shown in Figures 5-11-a and 5-11-b indicating that different modes of loading are 

influenced to differing degrees by sample disturbance.  Specifically, triaxial compression 

tests appear much more affected by sample disturbance than simple shear mode. 
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Figure 5-9.  Effect of sample quality on non-linear stress-strain behavior of Bothkennar 

clay (2.62-2.73m) under anisotropically consolidated undrained triaxial compression: a) 

raw stress-strain data (Hight et al., 1992; 1997) b) normalized stress-strain results 
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Figure 5-10.  Effect of sample quality on non-linear stress-strain behavior of Onsoy clay 

(6.2 m) in direct simple shear: a) raw stress-strain data (Lacasse et al., 1985; Gillespie et 

al., 1985) b) normalized stress-strain results 
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Figure 5-11.  Effect of sample quality on non-linear stress-strain behavior of Onsoy clay 

(3.2-3.5 m) under anisotropically consolidated undrained triaxial compression: a) raw 

stress-strain data (Lacasse et al., 1985; Gillespie et al., 1985) b) normalized stress-strain 

results 
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5.3.2 Mode of loading 

 

The undrained strength of soils is not a fundamental property, but depends on several 

factors including the failure mode, strain rate, stress history, and soil anisotropy, making 

the undrained strength dependent on test type (Koutsoftas, 1981; Wroth, 1984; 

Koutsoftas and Ladd, 1985; Kulhawy and Mayne, 1990).  The mode of loading affects 

stress-strain non-linearity and its influence is investigated in this section. 

 

A selection of stress-strain tests on soils tested under different loading conditions was 

created.  Soil properties and test types are listed in Table 5-2.  Soils included in the study 

come from 4 sites (Ariake, Japan; Bothkennar, UK; Onsoy, Norway; and San Francisco, 

USA).  Fitted stress-strain data from the different sites are presented in Appendix B.  

When comparing the stress-strain behavior of soil specimens under different modes of 

loading, specimens extracted using samplers of comparable quality were used to provide 

a common basis. 

 

As an example, raw and normalized stress-strain data from CKoUC and CKoUE tests 

from Singapore (depth 22 m) are compared in Figures 5-12-a and 5-12-b, respectively.  

Both specimens were extracted using the Japanese sampler JPN, so they were subjected 

to similar amounts of disturbance.  The raw data shows the failure strain in extension (εf 

= 7.0 %) is approximately 6 times that in compression (εf = 1.2 %).  Consequently, xL in 

extension is higher than in compression, indicating a more non-linear stress-strain 

behavior. 
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Figure 5-12.  Effect of shear test mode on non-linear stress-strain behavior of Singapore 

clay (22 m): a) raw CKoUC stress-strain data; b) raw CKoUE stress-strain data (Watabe, 

1999; Tanaka et al., 2001); c) normalized stress-strain results 
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Koutsoftas and Ladd (1985) investigated the effect of the mode of loading on undrained 

stress-strain behavior of AGS marine clay.  The clay was tested at OCR = 1 under Ko-

consolidated plane strain compression and extension, and direct simple shear conditions, 

as well as at higher overconsolidation ratios.  The normalized shear stress versus strain 

plots for the different modes are shown in Figure 5-13.  The plot also shows the average 

stress strain response as a dotted line.  The average stress-strain behavior is closest to the 

direct simple shear response.  Ladd (1991) suggests using the direct simple shear stress-

strain response as a “rational” selection representative of soil behavior.  Although it is 

more accurate to consider the relative contributions of each mode, such sophistication is 

impractical and unjustifiable given the uncertainties associated with stress-strain and 

stress history data (Koutsoftas and Ladd, 1985). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-13.  Normalized stress-strain data for AGS marine clay illustrating the strain 

compatibility technique (Koutsoftas and Ladd, 1985) 
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5.3.3 Rate of loading 

 

The normalized limiting strain xL depends on the values of small-strain stiffness, soil 

strength, and failure strain.  From a practical viewpoint, the small-strain stiffness is 

hardly influenced by the rate of loading (Leroueil and Marques, 1996; Lo Presti et al., 

1996).  Figure 5-14 shows small-strain stiffness Gmax values measured by torsional shear 

tests performed at different rates of loading on two soils (clay and silty sand).  Although 

the small strain stiffness slightly increases with increasing strain rates, it is acceptable to 

assume that the small strain stiffness is essentially independent of rate of loading from a 

practical standpoint (Lo Presti et al., 1996). 

 

The influence of the rate of loading on the undrained strength of soils is well 

acknowledged (e.g. Hight et al., 1992; Shibuya et al., 1996; Leroueil and Marques, 1996).  

On the average, the undrained shear strength increases about 10% per logarithmic cycle 

of strain rate (Kulhawy and Mayne, 1990), as shown in Figure 5-15.  The reference value 

of axial strain rate for measuring the undrained shear strength in laboratory tests is 

generally taken at 1%/hour. 

 

Sheahan et al. (1996) investigated the influence of varying the rate of loading on the 

stress-strain behavior of resedimented Boston blue clay by performing a series of 25 Ko-

consolidated undrained triaxial compression tests at different rates of loading.  Samples 

were consolidated to different overconsolidation ratios (OCR = 1, 2, 4 and 8).  For each 

OCR, the triaxial compression test was performed at 4 different axial strain rates (0.05 %,  
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Figure 5-14. Effect of strain rate on the small-strain shear modulus Gmax (Leroueil and 

Marques, 1996) 

 

 

 

 

 

 

 

 

 

 

Figure 5-15.  Effect of strain rate on undrained strength (Kulhawy and Mayne, 1990) 



 115

0.5 %, 5 %, and 50 %/h).  Results from the study show that the failure strain εf is 

essentially independent of the strain rate for the different overconsolidation ratios, as 

shown in Figure 5-16. 

 

The normalized limiting strain xL, describing stress-strain non-linearity, is defined as the 

ratio of failure to reference strains, where the reference strain [εr = (qmax-qo)/Emax].  Based 

on the above discussion, the reference strain increases with rate of loading (due to the 

increase in strength, qmax), while the failure strain εf and initial stiffness Emax are 

essentially independent of the strain rate.  Accordingly, xL decreases with strain rate i.e. 

soil stress-strain behavior becomes less non-linear for higher rates of loading.  The 

dependency of xL on the rate of loading is demonstrated, graphically, in Figure 5-17. 

 

Results of anisotropically consolidated triaxial compression tests performed on 

Bothkennar clay at different rates of loading (after Hight et al., 1992) are shown in Figure 

5-18-a.  The two samples were extracted using Laval samplers from a depth of 

approximately 5.4-m.  Tests were performed using two rates of loading: 0.04%/hour and 

0.2 %/hour for tests A and B, respectively.  Normalized stress-strain data fitted with a 

logarithmic function are shown in Figure 5-18-b.  Relevant soil properties are presented 

on the plots.  The fitted normalized limiting strain xL is higher for the lower rate of 

loading, in agreement with the aforementioned hypothesis. 



 116

 

 

 

 

 

 

 

 

 

 

Figure 5-16.  Applied shear stress level versus strain for CKoUC tests on resedimented 

Boston blue clay (Sheahan et al., 1996) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-17.  Schematic diagram illustrating the influence of the rate of loading on the 

normalized limiting strain xL 
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Figure 5-18.  Influence of the rate of loading on the non-linear stress behavior of 

anisotropically consolidated undrained compression tests on Bothkennar clay (depth = 

5.4-6 m): a) raw stress-strain data (Hight et al., 1992; 1997) b) normalized stress-strain 

results 
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5.4 Drained loading of cohesionless soils 

 

Due to the cohesionless nature of sands and gravels, it is very difficult to extract 

“undisturbed” specimens from such soil deposits using conventional thin-walled tube 

sampling techniques.  One method to obtain undisturbed sand or gravel samples is using 

in-situ ground freezing methods (Adachi, 1989; Mimura, 2003).  The procedure is 

relatively expensive and therefore only employed in special critical projects. 

 

Mimura (2003) performed series of in-situ and laboratory tests on undisturbed sand 

specimens extracted using the freezing technique.  Tests were performed at three sites in 

Japan: Edo, Natori, and Yodo.  The tests included isotropically consolidated drained 

triaxial compression tests on three “undisturbed” specimens from the three sites.  Small-

strain shear moduli for three sites are reported by Yamashita et al. (2003).  Relevant 

properties of the three specimens are listed in Table 5-3.  Measured angles of friction 

ranged between 41.9
o
 and 44.5

o
.  Laboratory stress-strain data are fitted using the 

logarithmic function.  The normalized limiting strains xL are computed for each sand 

specimen.  Raw and fitted stress-strain responses from Edo site are presented in Figure 5-

19-a and 5-19-b, respectively.  The normalized limiting strain xL for the Edo sand frozen 

specimen was found to be 15.  Similar plots for the stress-strain response of the frozen 

sand specimens from Natori and Yodo sites are presented in Figures 5-20 and 5-21, 

respectively.  A normalized limiting strain of 20 was computed for both Natori and Yodo 

specimens. 
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Table 5-3. Properties of 3 frozen sand specimens tested in isotropically consolidated 

triaxial drained compression test 
Site 

Depth (m) 

emax emin σvo' 
kPa 

Gmax 

MPa 
φ’ 
(
o
) 

qu 
c
 

kPa 
εr 

% 

εf 

% 

xL Reference 

Edo Sand 

3.7 to 3.85 m 

1.227 0.812 49 34 41.9 186 0.23 3.4 15 

Natori Sand 

8.1 to 8.25 m 

1.167 0.765 83.3 78 44.5 395 0.21 4.2 20 

Yodo 

8 to 8.15 m 

1.054 0.665 98 62 42.4 415 0.28 5.5 20 

Mimura (2003); 

Yamashita et al. 

(2003) 

Notes: 

emax = maximum void ratio 

emin = minimum void ratio 

σvo’ = effective overburden stress 

Gmax = small-strain shear modulus 

φ' = effective angle of friction 

qu = (σ1-σ3)f 

εf = strain at failure 

εr = reference strain 

xL = normalized limiting strain 
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Figure 5-19.  Normalized stress-strain data from CIDC tests on “undisturbed” frozen Edo 

sand specimens: a) raw stress-strain data (Mimura, 2003; Yamashita et al., 2003); b) 

normalized stress-strain results 
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Figure 5-20.  Normalized stress-strain data from CIDC tests on “undisturbed” frozen 

Natori sand specimens: a) raw stress-strain data (Mimura, 2003; Yamashita et al., 2003); 

b) normalized stress-strain results 

 

0

100

200

300

400

0 1 2 3 4 5

Axial strain, ε ε ε ε a (%)

D
e
v
ia
to
ri
c
 s
tr
e
s
s
 σσ σσ

a
- σσ σσ

r ,
 k
P
a

Natori SAND

Depth 3.1- 8.25 m

CIDC

emax= 1.167

emin= 0.765

σvo' = 83.3 kPa

Gmax = 78 MPa

φ ' = 44.5o

(a) 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

Normalized strain, ε /ε ε /ε ε /ε ε /ε r 

( σσ σσ
a
- σσ σσ

r )
/(
σσ σσ
a
- σσ σσ

r )
m
a
x

Natori SAND

Depth 8.1-8.25 m

CIDC

(σa-σr)max = 390 kPa

ε r = 0.21 %

ε f = 4.0 %

xL = 19

(b) 



 122

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-21.  Normalized stress-strain data from CIDC tests on “undisturbed” frozen 

Yodo sand specimens: a) raw stress-strain data (Mimura, 2003; Yamashita et al., 2003); 

b) normalized stress-strain results 
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5.5 Non-linear stress-strain behavior and index soil properties 

 

Due to the difficulty and high cost of obtaining “undisturbed” soils specimens, it would 

be highly beneficial to correlate soil non-linear stress-strain properties to index soil 

properties that can be easily determined from in-situ and/or laboratory tests.  This section 

is dedicated to explore such relationships. 

 

5.5.1 Clays and silts 

 

A logical way to obtain the normalized limiting strain xL ( rfLx εε= ) is by estimating 

the strain at failure εf and normalizing it by the reference strain εr.  The reference strain is 

defined as the ratio of the maximum deviatoric stress qmax to the maximum Young’s 

modulus Emax for triaxial tests.  For shear testing, the reference strain is defined as the 

ratio of shear strength τmax to the maximum shear modulus Gmax.  Small strain soil 

stiffness can be easily measured from in-situ/laboratory tests as discussed in Chapter 4.  

Similarly, soil strength can either be measured in the laboratory (e.g. triaxial 

compression, direct simple shear, triaxial extension) or evaluated from in-situ tests (e.g. 

cone penetration test CPT, dilatometer DMT, standard penetration test SPT).  

Accordingly, the reference strain εr can be computed in a straightforward manner. 

 

The strain at failure is typically determined from peak values measured in laboratory 

tests.  Attempts have been made to correlate failure strain to index soil properties (e.g. 

Koutsoftas, 1981; Koutsoftas and Ladd, 1985; DeGroot et al., 1992; Atkinson, 2000).  

For example, Koutsoftas (1981) performed a series of undrained shear tests, including 

triaxial compression, triaxial extension, and direct simple shear under Ko-consolidated 
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specimens of a marine clay.  He investigated the influence of shear test type on the soil 

strength and failure strain.  Based on Massachusetts Institute of Technology experience 

for over three decades, complimented with data from the Norwegian Geotechnical 

Institute files, DeGroot et al. (1992) created a database of failure strain from direct simple 

shear tests on 27 normally consolidated soil specimens and found the failure strains to 

increase with plasticity index as shown in Figure 5-22.  To enhance the trend, the 

database was expanded to 66 data points from more recent studies, presented in Figure 5-

23, with references given in Appendix B. 

 

The DSS data on silty Holocene clay showed that strains to failure γf are essentially 

independent of the overconsolidation ratio (Koutsoftas and Ladd, 1985).  This is shown 

in Figure 5-24 which shows the failure strain in compression to increase with OCR, 

whereas the overconsolidation ratio has minimal effect on the strain at failure under 

direct simple shear conditions.  Similarly, direct simple shear data at different 

overconsolidation ratios show essentially constant shear strains at failure γf for Amherst 

varved clay (Bonus, 1995), AGS clay (Koutsoftas, 1981), and James Bay clay 

(Jamiolkowski et al., 1985).  It should be noted that shear strains for triaxial tests were 

computed as 1.5 times axial strains for comparison with direct simple shear data.  

Accordingly, the normalized limiting strain can be computed from the small strain 

stiffness Gmax (refer to Chapter 4); undrained shear strength su (appendix E); and strain to 

failure (Figure 5-23), by the expression: 
( )u

f

r

f

L
sG

x
/max

γ

γ

γ
== . 
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Figure 5-22. Relationship between the failure shear strain (γf) and plasticity index (PI) 

for normally consolidated clays and silts tested in DSS (after DeGroot et al., 1992).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-23. Expanded relationship between the failure shear strain (γf) and plasticity 

index (PI) for normally consolidated clays and silts tested in direct simple shear. 

 

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90

Plasticity Index, PI

F
a
il
u
re
 s
h
e
a
r 
s
tr
a
in
, 
γγ γγ f
 (
%
)

Direct simple shear data

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100

Plasticity Index, PI

F
a
il
u
re
 s
h
e
a
r 
s
tr
a
in
, 
γγ γγ f
 
(%

)

Alaska
Asia
Midwest US
New England

Norway
Southern US
Venezuela

Western US
UK

Canada
Sweden

γf (%) = 0.23 PI (%) 
r
2
 = 0.54 



 126

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-24. Effect of overconsolidation ratio on the failure shear strain for Holocene 

clay under different modes of loading (after Koutsoftas and Ladd, 1985) 
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In this section, parameters influencing failure strains are reviewed.  Marachi et al. (1981) 

investigated the influence of confining stresses and sand initial void ratio on failure 

strains of Monterey sand No. 20 (uniformly graded predominantly rounded to subrounded 

quartz) tested under triaxial and plain strain compression.  It was shown that failure 

strains decrease with sand initial void ratio i.e. denser sands exhibit smaller failure 

strains.  On the other hand, higher failure strains were measured for tests performed under 

higher confining stresses.  This is shown in Figure 5-25.  Similar results were found for 

the influence of relative density on failure strains in studies by Al-Hussaini (1973) and 

Holubec & D’Appolonia (1973).  Figure 5-26 shows the variation of failure strains with 

relative density for different sands and beads. 

 

In addition, relative density was found to influence the degree of non-linearity in the 

stress-strain behavior of sand (e.g. Lee, 1999; Lee and Salgado, 2000; Lee et al., 2004).  

For clean Ottawa sand, Lee (1999) found the soil modulus to reduce at a faster rate for 

loose sands compared to dense sands in drained triaxial compression, as shown in Figure 

5-27.  The data are fitted using the logarithmic function with the normalized limiting 

strain xL = 12 and 35 for relative densities DR of 63% and 27%, respectively.  Lee et al. 

(2004) quantify the influence of relative density and silt content on the degree of stress-

strain non-linearity of sands. 
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Figure 5-25. Axial failure strains for plane strain and triaxial compression tests on 

Monterey sand No. 20 (Marachi et al., 1981). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-26. Variation of axial failure strains with relative density for different sands and 

beads (data from Al-Hussaini, 1973 and Holubec & D’Appolonia, 1973). 
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Figure 5-27. Effect of the relative density of sand on the rate of modulus reduction of 

clean sands in triaxial compression (laboratory data after Lee et al., 2004) 
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clays extracted using different samplers and loaded under different modes of loading was 

created.  Analysis of the stress-strain data shows that the degree of non-linearity increases 

with sample disturbance.  The degree of non-linearity is also dependent on the mode of 

loading (compression, direct simple shear, extension), with triaxial compression as the 

stiffest.  It was also shown that stress-strain non-linearity increases with slower rates of 

loading. 

 

Based on Massachusetts Institute of Technology experience for over three decades 

DeGroot et al. (1992), the failure shear strain γf in undrained direct simple shear is 

correlated to plasticity index for fine-grained soils.  Failure strains in the drained loading 

of sands were shown to vary with initial void ratio, relative density, and confining stress.  

Knowledge of the maximum shear modulus Gmax and shear strength τmax enables the 

computation of the normalized limiting strain xL according to 
( )u

f

r

f

L
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x
/max

γ

γ

γ
== . 
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CHAPTER VI 

 

LOGARITHMIC NON-LINEAR ELASTIC PLASTIC MODEL 

 

 

 

6.1 Introduction 

 

Constitutive models vary in the degree of complexity and their ability to accurately 

represent material behavior.  Models that require a larger number of parameters usually 

better represent the behavior, however, obtaining input parameters can be quite expensive 

and difficult – if not impossible– for application on real projects.  Linear elasticity is the 

simplest available constitutive model with the minimum number of parameters, making it 

the most widely used method for computing foundation displacements (see Figure 6-1).  

Despite its broad applicability, soil behavior under loading is neither linear nor elastic.  

Therefore, linear elastic-plastic models were developed and formulated (e.g. Drucker-

Prager, Mohr-Coulomb).  Such models are good for representing soil failure by plasticity; 

however, soil deformations remain linear up to failure, which is unrealistic. 

 

Non-linear elastic-plastic and pseudo-plastic models have been developed to better 

represent actual stress-strain behavior (e.g. Jardine et al., 1986; Fahey and Carter, 1993; 

Viana da Fonseca and Sousa, 2002; Lee and Salgado, 2002).  However, available non-

linear models either involve a large number of parameters, e.g. MIT E-3 with 15 

parameters (Whittle, 1993) or lack in physical meaning, e.g. the 33 parameters associated 

with the endochronic theory (Bazant, 1978). 
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Figure 6-1.  (a) Linear elastic model; (b) linear elastic perfectly plastic model; (c) linear 

elastic strain hardening model; (d) linear elastic strain softening model 
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In this chapter, the logarithmic expression is incorporated into a non-linear elastic model 

in three-dimensional stress space.  The shear modulus is maintained constant at G = Gmax 

below a specified threshold strain γth.  As the elements deform beyond the threshold 

strain yet below the yield surface, the shear modulus decreases with an increase in stress 

level.  The logarithmic non-linear elastic model is verified by comparing the stress-strain 

behavior of boundary value problems to the behavior of a linear elastic-plastic Drucker-

Prager model.  An excellent agreement was found between the stress-strain behavior for 

simulations of the triaxial compression test.  However, disagreement was found when 

modeling the load-displacement behavior of shallow circular footings, as will be 

discussed subsequently in the chapter.  Therefore, a more complex logarithmic non-linear 

elastic-plastic model LOGNEP was implemented.  When stresses reach the yield surface, 

the stress-strain behavior is no longer defined by elasticity.  A flow rule defines the 

plastic stress-strain relationship by means of a plastic potential function.  The flow is 

known as associated if the plastic potential function is equal to the failure criterion.  If the 

plastic potential function is different from the failure, flow is known as non-associated.  

Both the associated and non-associated potentials are incorporated in the LOGNEP 

model.  After failure, soil can soften or harden or act as perfectly plastic.  The suggested 

model is developed to be perfectly plastic and calibrated versus the Drucker-Prager 

model for the case of xL of 1, which is equivalent to linear elasticity. 

 

6.2 Logarithmic non-linear elastic stress-strain model for numerical analysis 

 

A constitutive law describes the stress-strain relationship a body undergoes when loaded.  

For elastic materials, the state of stress is only a function of the state of strains.  When an 
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elastic body is loaded then unloaded to its initial state of stress, it does not maintain any 

permanent deformations (Desai and Siriwardane, 1984).  Elastic behavior can be either 

linear or nonlinear as shown in Figure 6-2.  Hooke’s law is the simplest representation of 

linear elastic behavior between stress σij and strain εij. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-2.  Linear and non-linear elastic stress-strain relationship 
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moduli.  For numerical modeling, it is more convenient to use the tangent modulus 

because the analysis is performed incrementally, whereas in closed-form analytical 

elastic solutions, a secant modulus is more appropriate. 

 

The secant and tangent shear moduli both reduce with an increase in the octahedral strain 

invariant γoct using the logarithmic function according to Equations 6-1-a and 6-1-b, 

respectively: 
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Figure 6-3.  Stress and strain components in a soil element 
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modulus or Poisson’s ratio will vary with the strain/stress level.  Therefore, when 

implementing a non-linear elastic model, either the bulk modulus or Poisson’s ratio needs 

to adjust with the variation in shear modulus (Fahey and Carter, 1993).  If Poisson’s ratio 

ν = constant, then the bulk modulus Kt varies according to equation 6-2-a: 
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Alternatively, if Kt = constant, then Poisson’s ratio ν varies according to equation 6-2-b: 
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Later, both approaches will be investigated to show that either approach can be used 

effectively, as they give similar results. 

 

6.2.2 Poisson’s ratio and drainage type 

 

For undrained loading of an isotropic elastic material, it is well established that Poisson’s 

ratio νu = 0.5, corresponding to no volume change (∆V = 0).  This is fine in closed-form 

analytics that do not account for bulk modulus, yet equivalent to an infinite bulk modulus 

in numerical simulations, causing instabilities.  Therefore, an initial value of Poisson’s 

ratio of 0.495 is applied and ν is allowed to vary according to Equation 6-2-b, keeping 
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the bulk modulus constant.  Near failure states, as the shear modulus approaches zero, 

Poisson’s ratio approaches 0.5 as the bulk modulus approaches infinity. 

 

Conventionally, strain measurements during laboratory triaxial tests have been obtained 

externally to the specimen.  External measurements reflect problems associated with 

stress non-uniformity, seating errors, end effects, and capping problems.  Poisson’s ratios 

(ν = -εv/εh) computed from these flawed measurements indicated that ν varies between 

0.25 to 0.45.  With the introduction of internal measurement devices, more accurate strain 

measurements became available (Tatsuoka and Shibuya, 1992; Lo Presti, 1994; 

Jamiolkowski et al., 1994).  Lehane and Cosgrove (2000) created a database of Poisson’s 

ratio with the axial strain level computed from triaxial compression tests with internal 

strain measurements, shown in Figure 6-4.  The database shows Poisson’s ratio for the 

small strain elastic range to vary between 0.12 and 0.30 with an average value of 0.20.  

The increase in Poisson’s ratio with strain indicates the onset of plastic deformations 

according to Lehane and Cosgrove (2000).  Therefore, it was decided to adopt an initial 

Poisson’s ratio of 0.20 for all the drained analyses.  The influence of varying either 

Poisson’s ratio ν or bulk modulus K with the increase in stress/strain levels is 

investigated later in the chapter. 
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Figure 6-4.  Poisson’s ratio ν’ in drained compression tests plotted versus axial strain εv 

(Lehane and Cosgrove, 2000) 
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encode their own models using FISH, a programming language embedded in FLAC.  The 

logarithmic non-linear elastic model was incorporated into FLAC as a user-defined 

constitutive model using a special subroutine written by the author in FISH language.  

The model is initially validated by comparison with the built-in Drucker-Prager model for 

a normalized limiting strain xL = 1 which is equivalent to the linear elastic-plastic model.  

The influence of varying the normalized limiting strain xL on the stress-displacement 

behavior under shallow footings is investigated.  FLAC version 4.0 is used in all 

subsequent analyses. 

 

6.3.1 Simulated triaxial compression test 

 

As an initial check, the behavior of a cylindrical soil specimen tested in triaxial 

compression was simulated.  The specimen was consolidated under both isotropic and 

anisotropic stress state conditions. 

 

Due to symmetry, only half the problem is modeled.  Horizontal displacements were 

restricted at the axis of symmetry.  No restrictions were imposed on the other vertical 

boundary.  Vertical displacements were constrained on the top and bottom boundaries to 

model the rigid plates compressing the specimen.  Vertical stresses were applied to the 

top and bottom of the specimen, while horizontal stresses were imposed on the vertical 

boundary other than the symmetry line.  Applying a constant displacement incrementally 

on the top and bottom boundaries replicated vertical loading.  Specimen size was chosen 

so that the height to diameter h/d ratio was 2.  Figure 6-5 shows a schematic diagram of 
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the mesh used for the analysis with the appropriate boundary conditions.  The simulation 

running time depends on the grid size and displacement increment.  It is desirable to 

minimize the running time without compromising the accuracy of the solution.  

Therefore, a number of simulations were performed using different mesh sizes to 

eliminate the effects of mesh-size dependence.  A 20 x 80 grid was the smallest grid size 

to overcome mesh dependency.  Similarly, several analyses were performed using 

different loading increments to determine the maximum loading rate that can be used 

without compromising accuracy.  By trial and error, the maximum applied displacement 

increment was found to be 2 x 10
-8

 m/step.  Figure 6-6 shows the FLAC grid used in the 

simulations of the triaxial compression test. 

 

Numerical instabilities in the simulations of the triaxial compression tests took place as 

the shear modulus approached zero.  It was therefore decided to set a minimum value for 

the tangent shear modulus of 1 kPa, which was found to provide numerical stability and 

therefore used henceforth. 

 

The logarithmic non-linear elastic model was used to reproduce undrained loading in 

triaxial compression (νu = 0.495).  For a preliminary check, the simulated stress-strain 

behavior is compared to results obtained using FLAC with its built in Drucker-Prager 

linear elastic-plastic model.  Listed in Table 6-1 are the soil properties used for the 

simulation as case 1, where the normalized limiting strain xL equals 1 for equivalent 

linear elastic behavior.  For xL = 1, the value of the fitting parameter R approaches 
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infinity because of singularity.  As this value causes instability to the solution, a close 

value, xL = 1.01, was used for the linear elastic case.   

 

 

 

 

 

 

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

 

 

Figure 6-5. Example finite difference mesh with boundary conditions used for the 

analysis of an anisotropically consolidated triaxial compression sand specimen 
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Figure 6-6. Finite difference grid used for the simulation of triaxial compression test 

 

Table 6-1.  List of soil properties used in simulations 

Case number  1 2 3 4 5 

Initial shear modulus, Gmax (MPa) 100 100 100 100 100 

Initial Poisson’s ratio, νo 0.495 0.495 0.495 0.2 0.2 

Angle of friction, φ’ (o
) 0 0 0 20 30 

Dilation angle, ψ’ (o
) 0 0 0 0 0 

Cohesion intercept, c’ (kPa) 0 0 0 10 0 

Initial confining stress, σ3 (kPa) 50 50 50 100 100 

Initial confining stress, σ3 (kPa) 100 100 100 100 100 

Undrained shear strength, su (kPa) 100 100 100 N/A N/A 

Threshold strain, γth (%) 

For non-linear model only 

0.001 0.001 0.001 0.001 0.001 

Normalized limiting strain, xL 

For non-linear model only  

1.01 20 50 10 30 

 

Triaxial compression grid 

Number of elements = 20 x 80 

h 

Symmetry Axis 

d/2 
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Generated stress-strain curves are presented in Figure 6-7.  An excellent match was found 

between the stress-strain curves obtained using the two models.  The effect of varying the 

normalized limiting strain xL on the stress-strain behavior is illustrated by conducting 

simulations where all soil parameters are kept the same except for the normalized 

limiting strain xL (case numbers 1, 2 and 3 listed in Table 6-1), as shown in Figure 6-8. 

 

The next step is investigating the effect of varying either the bulk modulus or Poisson’s 

ratio on the stress-strain behavior in triaxial compression tests in drained loading.  Stress-

strain results from simulated drained triaxial compression tests are given in Figures 6-9-a 

and 6-9-b.  Both tests depict the behavior of cylindrical soil specimens under drained 

conditions (assuming Poisson’s ratio ν = 0.2).  Soil properties used in the analyses are 

listed as case numbers 4 and 5.  Cases 4 and 5 simulate the stress- strain behavior under 

isotropically consolidated conditions (Ko = 1). 

 

As shown in Figure 6-9-a, a slightly softer stress-strain behavior is observed when the 

bulk modulus softens with the increase in strain level.  Similarly, the stress-strain 

behavior of test 5 is slightly softer for the case when the bulk modulus is allowed to 

soften compared to maintaining it constant.  Comparable results are reported by Fahey 

and Carter (1993) on modeling pressuremeter response in sands.  Allowing the bulk and 

shear moduli to decrease with strain level simultaneously leads to numerical instabilities 

at high strains because both moduli approach zero close to failure. As the difference in 

the stress-strain behavior is quite small between varying Poisson’s ratio or bulk modulus, 

for all practical purposes, it was decided to perform the analysis keeping the bulk 

modulus constant to ensure numerical stability. 
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Figure 6-7. Verification of the logarithmic non-linear elastic model by comparison of 

stress-strain data simulated by Drucker-Prager and logarithmic nonlinear elastic models 

(case 1 in Table 6-1) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-8. Effect of the normalized limiting strain xL on the non-linear stress-strain 

behavior of soil in triaxial compression (cases 1, 2, and 3 in Table 6-1) 
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Figure 6-9. Effect of varying Poisson’s ratio versus varying bulk modulus on the stress-

strain behavior of isotropically consolidated triaxial compression drained tests for soils 

with normalized limiting strains of: (a) xL= 10, (b) xL= 30. 
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6.3.1.1 Effect of threshold strain on simulated stress-strain response 

 

The value of the threshold strain γth measured from both static and dynamic tests are 

discussed in Chapter 5.  Based on a database of monotonic torsional shear tests presented 

in Figure 4-9-a, the threshold strain is found to vary between 0.0005 % to 0.005 %.  The 

effect of using a threshold strain on the numerical simulations of triaxial compression 

stress-strain data was examined using soil properties from case 4 are given in Table 6-1.  

The stress-strain behavior of an anisotropically consolidated triaxial test is simulated in 

two cases using a threshold strain of zero and 0.001 %.  Figure 6-10-a compares the 

simulated stress-strain behavior for the two values of the threshold strain in the 

intermediate- to high-strain range.  Virtually, there is no difference between the two plots.  

In Figure 6-10-b, the small- to intermediate- strain range is accentuated.  There is no 

appreciable difference between the stress-strain plots except for very small strains (less 

than 0.02 %), where the soil behavior appears slightly softer when no threshold strain is 

used.  For the purposes of this study, the difference in the stress-strain behavior can be 

considered small.  It was therefore decided to keep the threshold strain constant at 10
-3

 % 

for all further analyses.  It should be noted that Lehane (2000) adopted εth = 10
-3

% when 

modeling shallow footings.  Other researchers modeling the non-linear response of soils 

under static loading did not include the effect of the threshold strain such as Fahey and 

Carter (1993) on the pressuremeter; Lee & Salgado (1999) on piles; Lee & Salgado 

(2002) on shallow footings; Viana da Fonseca & Sousa on footing (2002); and Zhu & 

Chang on piles (2002). 
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Figure 6-10.  Effect of a threshold strain γth on the simulated stress-strain behavior of an 

anisotropically consolidated compression triaxial test: (a) overall behavior (case 4, Table 

6-1); (b) small strain range 
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6.3.2 Simulated stress displacement response vertically loaded circular footing 

 

The logarithmic non-linear elastic model is validated for the case of a circular footing 

resting on a homogeneous soil layer.  A schematic diagram illustrating the boundary 

conditions is shown in Figure 6-11.  Due to the symmetric nature of the problem, only 

half the footing and underlying soil are modeled.  Rollers that restrict the horizontal 

movement were positioned at the centerline and the other vertical boundary.  Allowing 

vertical movement at the other vertical boundary was adopted to avoid overestimating the 

load (Frydman and Burd, 1997).  Hinges, preventing vertical and horizontal motion, were 

placed at the bottom boundary.  A smooth footing-soil interface was replicated by 

imposing no restraint on the horizontal movement at the nodal contacts between the 

footing and underlying soil layer.  Applying uniform vertical displacements on a portion 

of the upper horizontal boundary simulates a rigid footing.  The average stress underneath 

the footing is calculated as the summation of vertical forces at the nodes at the base of the 

footing, divided by the footing area.  The footing displacement is taken equal to the 

vertical displacement applied to the footing.  A non-uniform grid was used in the footing 

analysis to use a smaller number of elements, decrease the computer running time for 

each simulation.  Similar to the triaxial test, several grid sizes and loading increments 

were trial tested before deciding on the optimum grid size and loading increment. 

 

A 65 x 65 biased mesh, shown in Figure 6-12, is the smallest mesh size that can be used 

for modeling circular footings under undrained loading without compromising the 

solution accuracy.  The mesh used for modeling the undrained loading of strip footings is 
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shown in Chapter 7.  Meshes used for modeling the drained loading of circular and strip 

footings are presented in Chapter 8.  A biased mesh was used because more elements can 

be placed in regions with anticipated higher stress changes, i.e. closer to the loaded area. 

 

 

 

 

 

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

 

Figure 6-11.  Schematic diagram illustrating the mesh size and boundary conditions 

applied for the analysis of a circular shallow footing resting on a homogeneous, isotropic 

soil layer 
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Figure 6-12.  Finite difference grid for modeling a circular smooth rigid shallow footing 

resting on a homogeneous semi-infinite half space 
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comparison to similar numerical simulations (e.g. Carrier and Christian, 1973; Jardine et 

al., 1986; Frydman and Burd, 1997; Griffiths et al., 2002). 

 

Soil properties, listed as case number 1 in Table 6-1, were used to model the stress-

displacement behavior beneath the footing centerline.  Results are compared to stress-

displacement behavior using the conventional Drucker-Prager linear elastic-plastic model 

in Figure 6-13. 

 

An excellent match is found between the stress-displacement curves up to 65% of the 

Drucker-Prager failure stress.  The discrepancy at higher stresses is attributed to the 

different normality assumptions associated with each model (Detournay, 2003).  In 

plasticity, normality defines the direction of the plastic strain vector through a flow rule, 

to which the incremental strain vectors are perpendicular (Desai and Siriwardane, 1984).  

Therefore, it was decided to further model the behavior with a more complex approach 

using a non-linear elastic-plastic formulation, as discussed subsequently. 
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Figure 6-13.  Comparison of load-displacement curves obtained from FLAC analyses 

using both the logarithmic nonlinear elastic model versus linear elastic-plastic Drucker-

Prager model (case number 1, Table 6-1) 
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under constant shear stress in the plastic range.  This criterion can be expressed 

mathematically as follows: 

 

F < 0  for the elastic range…………………………………………..….…….(6-3) 

 

F = 0  for plastic range…………………………….………………..………..(6-4) 

 

The failure surface F is represented by the Drucker-Prager failure envelope shown in 

Figure 6-14.  The Drucker-Prager failure criterion was chosen for the model not the 

Mohr-Coulomb because the latter does not account for the effects of intermediate 

principal stresses (Desai and Siriwardane, 1984).  The failure envelope F
s
 is defined 

between points A and B by (Itasca-c, 2001): 

 

φφ kJqJF D
s −⋅−= 12 ……………………………………………...……….….….(6-5) 

 

The tensile yield function defines the envelope F
t
 between points B and C according to: 

 

tt JF σ−= 1 …………………………………………………………….…………….(6-6) 

 

where: 

qφ = material property for frictional resistance (defined later in the chapter). 

kφ = material property from cohesion intercept (defined later in the chapter). 

σt
 = tensile strength of the material (zero for soils). 

3211 σσσ ++=J . 
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Figure 6-14.  Drucker-Prager failure criterion (Itasca, 2001-c) 

 

When the state of stress reaches the yield surface for a perfectly plastic material, the 

stress follows the yield surface during loading.  If the stress decreases and falls inside the 

yield surface, this is known as unloading.  When yield is reached, the stress-strain 

behavior is controlled by plasticity.  Therefore, post-yield stress-strain behavior needs to 

be defined.  This is illustrated in Figure 6-15. 
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Figure 6-15.  State of stresses for an elastic-perfectly plastic material (after Lee, 1999) 

 

6.4.2 Post-yield stress-strain relationship 

 

When failure is reached, plastic behavior can be modeled as either perfectly plastic or 

strain hardening/softening (refer to Figure 6-1).  The model considered is perfectly plastic 

with a yield surface constant and independent of the state of stress.  The stress state is not 

allowed to move outside the yield surface. 

 

The total incremental strain can be expressed as the sum of elastic and plastic strain 

increments as given by: 

 

p
ij

e
ijij ddd εεε += …………………………………………………………...……..…..(6-7) 

 

where ijdε , e
ijdε , and p

ijdε  are the total, elastic, and plastic strain increments, 

respectively.  The elastic strain component is calculated using Hooke’s law in 

 σσσσ2    

σσσσ1    

σσσσ3    

σij 

dσij, unloading 

dσij, loading 

Elastic  
F < 0 

Failure Surface, F
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incremental form.  A flow rule is what defines the relationship between the plastic strain 

increment and the current state of stress for a yielded material undergoing loading.  The 

magnitude and direction of plastic strain increment are determined according to: 

 

ij

p
ij

g
dd

δσ
δ

λε
′

= ………………………………………………………………..………(6-8) 

 

where dλ is a positive scalar proportionality constant, g
’
 is the plastic potential function.  

If the potential and yield functions are equal, the flow is called associated.  Otherwise, the 

flow is non-associated.  According to Equation 6-8, the plastic strain is normal to the 

surface of the potential function g
’
 in the stress space at the current state of stress σij.  

This is known as the normality condition.  For a perfectly plastic behavior, the work done 

by the stress increment dσij and strain increment dεij is equal to zero because the stress σij 

remains constant after failure is reached. 

 

In non-linear elastic models, large strains are generated simulating the onset of plasticity.  

When a non-linear elastic model is used in combination with a plastic flow model, both 

elastic and plastic strains are computed.  After failure is reached, plastic strains are 

computed using plasticity theory.  However, large elastic pseudo-plastic strains are also 

calculated.  This results in computing large plastic strains twice.  Therefore, the true 

elastic strains should be computed instead of large pseudo -plastic elastic strains after 

failure is reached.  This is achieved by using the maximum shear modulus Gmax in elastic 

strain computation after plasticity is reached, as demonstrated by Fahey and Carter 

(1993).  The constitutive model LOGNEP is presented in Appendix G. 
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6.5 Determination of Drucker-Prager model parameters 

 

The Drucker-Prager criterion is represented by a cone in the principal stress space with its 

axis along σ1= σ2= σ3 and apex at σ1= σ2= σ3= kφ/qφ, (refer to Figure 6-16-a).  The Mohr-

Coulomb criterion is viewed as a pyramid with an irregular hexagonal base in the same 

space.  They both share the same axis σ1= σ2= σ3 with an apex at σ1= σ2= σ3= c’ cot φ, as 

shown in Figure 6-15-b (Itasca-c, 2001).  The Drucker-Prager parameters can be adjusted 

so the cone circumscribes the hexagonal pyramid yielding (Mizuno and Chen, 1980; 

Chen and Liu, 1990): 

 

( )
φ

φ
φ ′⋅

′−⋅
= sin

sin33

6
q ………………………………………...…………………(6-9) 

 

( )
φ

φ
φ ′⋅′⋅

′−⋅
= cos

sin33

6
ck …………………………………………...…….…....(6-10) 

 

Equations 6-9 and 6-10 are used in matching conventional triaxial compression (Desai 

and Siriwardane, 1984).  If the Drucker-Prager parameters are adjusted so a cone 

inscribes the hexagonal pyramid, the following interrelationships are obtained (Chen and 

Mizuno, 1980): 

 

( )
φ

φ
φ ′⋅

′+⋅
= sin

sin33

6
q ……………………………………...………………..…(6-11) 

 

( )
φ

φ
φ ′⋅′⋅

′+⋅
= cos

sin33

6
ck ………………….………………………...………....(6-12) 
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Figure 6-16. (a) Drucker-Prager and von Mises yield surfaces in principal stress space; 

(b) Mohr-Coulomb and Tresca yield surfaces in principal stress space (Itasca, 2001-c) 
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When modeling a circular footing under undrained loading conditions “φ = 0”, Equations 

6-9 and 6-10 yield identical results to Equations 6-11 and 6-12: 

 

0=φq ………………………………………...…………………………...…………(6-13) 

 

uck ⋅=
3

2
φ …………………...………………………...……………………...…....(6-14) 

 

where cu = su = undrained shear strength.  The use of equations 6-13 and 6-14 in 

computing parameters for modeling the undrained loading of circular footings will be 

shown to match analytical results in Chapter 7.  For modeling circular footings under 

drained loading conditions, the problem is more complex because Equations 6-9 and 6-10 

(compression) yield results that are quite different from Equations 6-11 and 6-12 

(extension).  For spread footing foundations and embankments under vertical loading, a 

combination of triaxial compression (TC), direct simple shear (DSS), and triaxial 

extension (TE) best represents soil behavior along the failure surface (Kulhawy and 

Mayne, 1990; Ladd, 1991).  Therefore, it is suitable to use different strength modes 

depending on the directional loading conditions.  For simplicity, the average of the 

different strengths can be used for bearing capacity purposes involving shallow spread 

footings (Larsson, 1980; Aas et al., 1986; Ladd, 1991).  The validity of this assumption 

will be shown in Chapter 8. 
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For the plane strain case (ε33 = 0), the Mohr-Coulomb parameters (c’ and φ’) were related 

to Drucker-Prager parameters (kφ and qφ) (Drucker and Prager, 1952; Mizuno and Chen, 

1980): 

 

φ

φ
φ

′+

′
=

2tan129

tan
q …………………………...………...………………………..(6-15) 

 

φ
φ

′+

′⋅
=

2tan129

3 c
k ……………………………………………...…….……..…..(6-16) 

 

Equations 6-15 and 6-16 were successfully used to compute Drucker-Prager parameters 

for modeling strip footings under both undrained and drained loading conditions, as will 

be shown in Chapters 7 and 8. 

 

6.6 Verification of the non-linear elastic-plastic formulation (LOGNEP) 

 

The logarithmic non-linear elastic plastic model LOGNEP was calibrated versus results 

using the FLAC built-in elastic-plastic Drucker-Prager model.  Both models are based on 

octahedral stress and strain invariants and use the same yield surface and flow rules.  

Accordingly, both models should yield the same failure stress and same stress-strain 

behavior for linear analysis.  Full linearity is achieved in the LOGNEP model when a 

normalized limiting strain xL of 1.01 is used.  Simulations of anisotropically consolidated 

undrained triaxial tests were conducted to check the logarithmic nonlinear elastic plastic 

model LOGNEP versus the built-in linear elastic plastic Drucker-Prager model.  The 

same boundary conditions and grid shown in Figures 6-5 and 6-6 were used for the 
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simulation.  The test was simulated using the soil properties of case number 1 listed in 

Table 6-2.  An excellent match was found between the stress-strain curves obtained using 

both methods, as shown in Figure 6-17. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-17.  LOGNEP model verification versus the Drucker-Prager linear elastic 

plastic built-in model for a triaxial test simulation 

 

The LOGNEP model was also calibrated for the case of the vertical loading of a shallow, 

smooth, circular footing resting on a homogenous soil layer.  The boundary conditions 

and grid used in the analysis are shown in Figures 6-10 and 6-11.  Soil properties used in 

modeling the footing response are listed as case number 1 in Table 6-1.  The stress at 

failure for both the LOGNEP model and Drucker-Prager are identical.   

 

0

50

100

150

200

250

0 0.02 0.04 0.06 0.08 0.1

Axial Strain, εεεε v %

D
e
v
ia
to
ri
c
 s
tr
e
s
s
,     σσ σσ

1
- σσ σσ
3
 (
k
P
a
)

LOGNLEP

Drucker-Prager

Triaxial compression

h/d = 2

(σσσσ1-σσσσ3)ini = 50 kPa

Ko = 0.5

Gmax = 100 MPa

ν ν ν ν = 0.495

ρρρρ  = 1800 kg/m3

su = 100 kPa

xL = 1.01 

LOGNEP 



 163

The generated load-displacement curve is shown in Figure 6-18.  The influence of stress-

strain non-linearity is explored by varying the normalized limiting strain xL.  Simulations 

of the behavior of vertically loaded circular footings are conducted where all soil 

parameters are kept the same except for the normalized limiting strain xL (case numbers 2 

and 3 listed in Table 6-1).  The simulated stress-displacement responses are shown in 

Figure 6-19.  The linear elastic plastic model (xL = 1.01) generates the stiffest response.  

As expected, the stress-displacement response becomes softer as xL increases.  Figures 6-

20-a and 6-20-b show the vertical displacement contours within the soil mass for xL = 

1.01 and 50, respectively, for a load factor of 0.75.  Displacements close to the edge of 

the soil mass are nil, confirming that the mesh used in the analysis is of sufficient size to 

eliminate boundary effects.  Figures 6-21-a and 6-21-b show the variation of footing 

displacement s under the footing centerline relative to the displacement at ground surface 

sG for load factors (q/qult) of 0.2, 0.35 and 0.5.  It is observed that the displacements 

diminish faster with depth for a non-linear elastic material (xL = 20, 50) compared to 

linear elastic plastic one (xL = 1.01).  This observation agrees with similar findings by 

Jardine et al. (1986).   
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Figure 6-18.  LOGNEP model verification for a 1-m diameter footing resting on a semi-

infinite half space (undrained loading) 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-19.  Effect of the normalized limiting strain xL on the stress-displacement 

response of vertically loaded circular footings under undrained loading conditions 
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Figure 6-20.  Contours of vertical displacement (in meters) due to the loading of rigid, 

circular footing under undrained loading conditions for a load factor of 0.2 for (a) xL = 

1.01; and (b) xL = 50 (load factor = 0.75) 
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Figure 6-21.  Effect of the normalized limiting strain xL on the displacement distribution 

beneath the centerline of vertically loaded circular footings under undrained loading 

conditions for load factors q/qult (a) 0.2; (b) 0.35; and (c) 0.5 

 

 

6.7 Synopsis 

 

Geomaterial behavior is described using constitutive models that vary in their complexity 

and accuracy in representing mechanical behavior.  First, a logarithmic non-linear elastic 

model was introduced and calibrated for triaxial compression tests and shallow footing 

load tests, by comparison with the linear elastic Drucker-Prager model.  Excellent 

agreement of stress-strain curves from triaxial compression simulations, under both 

isotropic and anisotropic conditions, was found using both models.  However, there was 
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high stress levels.  This was attributed to the different coaxiality criteria associated with 

each model.  It was, therefore, decided to add a plastic component to the model to match 

the well-established Drucker-Prager model.  The modified form gave a logarithmic non-

linear elastic-plastic LOGNEP model.  When the LOGNEP was calibrated versus the 

Drucker-Prager model under both triaxial compression conditions and shallow footing 

simulations tests, excellent agreement was found between both models.  The influence of 

varying the normalized limiting strain xL on the stress-displacement behavior beneath the 

footing and displacement distribution are investigated. 
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CHAPTER VII 

 

UNDRAINED DISPLACEMENT RESPONSE OF SHALLOW FOUNDATIONS 

 

 

 

7.1 Overview 

 

Numerical simulations are conducted of footings resting on soil exhibiting non-linear 

stress-strain-strength behavior under undrained conditions.  The logarithmic non-linear 

elastic perfectly plastic LOGNEP model was formulated and incorporated into the 

numerical modeling software FLAC (Fast Lagrangian Analysis of Continua) as a user-

defined constitutive model, presented in Chapter 6.  Input soil parameters required by the 

model are: (1) initial shear modulus, Gmax, (2) non-linear modulus reduction parameter, 

xL, (3) Poisson’s ratio, ν; (4) strength defined by either effective stress parameters 

(cohesion intercept c’, angle of internal friction φ’, and angle of dilation ψ), or undrained 

shear strength, su; and (5) mass density ρ.  The degree of material non-linearity is 

controlled by the normalized limiting strain xL, as discussed in previous chapters.  As 

undrained loading is addressed here, the relevant failure state is represented by the 

undrained shear strength, su. 

 

The detailed numerical modeling of any geotechnical problem requires special finite 

element or finite difference software, which is typically expensive and involves special 

user skills and modeling experiences. 
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It would be valuable to directly relate the non-linear behavior of a soil element to the 

overall non-linear behavior of the structure/foundation resting on the soil medium, as 

shown in Figure 7-1.  That is, there is an observed parallelism between the non-linear 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-1.  Schematic diagram illustrating the purpose of the current study of relating 

soil behavior on the element level to the overall behavior of a soil mass under loading 
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stress-strain-strength of a soil element and the complete non-linear load-displacement-

capacity response of a footing, supported by thousands or millions of soil elements.  How 

can one scale up the “representative” single soil element behavior to mimic an equivalent 

foundation system?  The current research is focused on the FLAC numerical modeling of 

a rigid, smooth, shallow footing, subjected to vertical loading, resting on a homogeneous 

deep soil profile. 

 

Attempts have been made to directly relate the behavior of a soil element to the 

performance of an integrated soil mass under loading.  Atkinson (2000) proposed an 

upward scaling factor of three relating the stress-strain behavior of a triaxial compression 

specimen to the overall load-displacement curve beneath the centerline of a footing 

resting on the same medium.  However, this scaling factor was based on two small model 

chamber plate load tests resting on carbonate and silica sands, where the triaxial 

compression stress-strain data were synthetically simulated.  Tatsuoka et al. (2001) 

conceptually proposed a parallelism between the stress-strain behavior of a single soil 

element and the load-displacement behavior of foundations.  Lehane and Fahey (2002) 

presented an approach for computing displacements underneath circular footings resting 

on sand at working stress levels.  The method accounts for the non-linear behavior of soil 

stiffness with strain/stress levels, and density dependence, but assumes Boussinesq’s 

stress distributions underneath the footing.  

 

In this chapter, a parametric study of the different soil and footing properties affecting the 

stress-displacement response of shallow footings was performed.  Parameters considered 
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in the study include: a) initial soil stresses (mass soil density ρ and at rest earth pressure 

coefficient Ko); b) footing width; c) undrained shear strength; d) small-strain stiffness 

Gmax; and e) normalized limiting strain xL. 

 

7.2 Initial in-situ stresses 

 

The grid and boundary conditions used for modeling the footing/soil system are the same 

as presented in figures 6-11 and 6-12.  Soil is assumed to behave according to the 

logarithmic elastic plastic LOGNEP model.  Initial stresses within the soil mass are 

generated before any load is applied to the footing. 

 

At any site, initial soil stresses exist before any construction work is started.  It is 

important to replicate the in-situ stress conditions because they could influence any 

subsequent analysis.  Although there could be an infinite number of initial stress profiles, 

the problem is limited by maintaining equilibrium and not violating yield conditions 

when using a plastic constitutive model.  The vertical overburden stress at any depth z 

within the soil mass is computed as the summation of vertical stress σvo = (Σ ρig ∆zi), 

where g is the gravitational acceleration, ρi is the soil mass density, and ∆z i is the soil 

layer thickness.  For a homogeneous soil profile, the vertical overburden stress can be 

calculated as (ρgz), where z is the depth measured from the ground surface.  Effective 

stresses are simulated by replacing ρ with (ρ−ρw), where ρw is the soil mass density.  

Horizontal stresses are not as easily computed.  In many cases, the horizontal stress σho’ 
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is determined by the at rest coefficient Ko, where Ko = σho’/ σvo’ (e.g., Mayne and 

Kulhawy, 1982). 

 

A number of simulations were conducted where the soil mass density and the at-rest earth 

pressure coefficient Ko were varied to investigate their effect on the load-displacement 

behavior of footings.  After initial stresses are generated within the grid, soil is assigned 

the proper constitutive model, i.e. LOGNEP.  The footing is loaded by the incremental 

application of vertical displacements to the grid points representing the footing.  The 

applied stress is computed as the average applied load divided by the area of the footing. 

 

The simulated load-displacement results are presented in Figures 7-2-a through 7-2-c.  

Figure 7-2-a illustrates the effect of the at-rest earth pressure coefficient Ko on the stress-

displacement response of vertically loaded footing resting on a linear elastic plastic soil 

(xL = 1) medium.  Simulations were performed for Ko of 0.5 and 1.0.  The effect of 

varying Ko is small.  The influence of varying Ko was further investigated for xL = 50, 

where Ko was varied between 0.4 and 2.1.  No appreciable effect for Ko can be found, as 

shown in Figure 7-2-b.  Similarly, the effect of varying the soil mass density ρ is shown 

in Figure 7-2-c, where ρ is varied between 1800 kg/m
3
 (total) and 800 kg/m

3
 

(submerged).  There is no significant influence for ρ on the stress-displacement footing 

response. 
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Figure 7-2.  Effect of initial stresses on the stress-displacement response of circular: (a) 

varying Ko for linear elastic plastic soil; (b) varying Ko for non-linear elastic plastic soil 

(xL = 50); (c) varying soil mass density for xL = 50. 
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7.3 Parameters affecting footing stress-displacement response 

 

The effect of varying the input soil and footing properties on the stress-displacement 

response of circular footings is explored in this section.  The non-linear LOGNEP model 

is used for the simulations.  Parameters considered in the study include: (a) footing 

diameter d; (b) undrained shear strength su; (c) small-strain shear modulus Gmax; and (d) 

the normalized limiting strain xL representing varying degrees of stress-strain non-

linearity.  The different parameters included in the study are listed in Table 7-1. 

 

In all the simulations, soil is considered fully saturated (γtotal = 18 kN/m
3
, γsub = 8 kN/m

3
) 

and the at-rest earth pressure coefficient Ko was maintained constant at 1.  Undrained 

loading conditions are simulated by using a Poisson’s ratio νu of 0.495.  Simulations are 

denoted using five part alphanumeric acronyms, according to Table 7-1.  The first letter 

of the test name indicates the footing shape: Ci for circular footings and St for strip 

footings.  Subsequent numbers denote the footing width B, undrained shear strength su, 

the maximum shear modulus Gmax, and the normalized limiting strain xL, respectively.  

For example, simulation Ci-1-1-2-10 corresponding to a 0.5-m diameter footing resting 

on a clay soil that is subjected to undrained loading conditions, where the clay has an 

undrained shear strength su of 50 kPa, small-strain shear modulus Gmax of 50 MPa, and 

normalized limiting strain xL of 10. 

 

In cases Ci-1-1-2-5 through Ci-3-1-2-200, the undrained shear strength and maximum 

shear modulus were kept constant, while the footing diameter was varied.  Simulations 

using six different values of normalized limiting strains xL ranging between 5 and 200  
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Table 7-1. Notations for naming footing simulations using LOGNEP model 

Parameter Notation Value/Meaning 

Footing shape Ci 

St 

Circular 

Strip 

Footing width, B 1 

2 

3 

0.5 m 

1 m 

2 m 

Undrained shear strength, su 1 

2 

3 

50 kPa 

100 kPa 

200 kPa 

Maximum shear modulus, Gmax 1 

2 

3 

50 MPa 

100 MPa 

200 MPa 

Normalized limiting strain, xL 1 

5 

10 

30 

50 

100 

200 

1.01 

5 

10 

30 

50 

100 

200 

Note: Acronym defining case number given by alphanumerical code: Ci/St-B-su-Gmax-xL 
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(highly non-linear).  The calculated stress-displacement curves underneath the footing 

centerlines are plotted in Figures 7-3.  As expected, the average stress underneath the 

footing remains constant (same constitutive model and shear strength), while 

displacements increase with the footing size because the influence zone beneath the 

footing increases with size (Poulos and Davis, 1974).  The bearing capacity factor Nc 

computed from the analyses is 6, approximately within 2% from Vesic (1975) solution of 

6.14. 

 

In simulations Ci-2-1-1-5 through Ci-2-2-1-200, a 1-m rigid circular footing with smooth 

interface is analyzed.  The small-strain shear modulus Gmax is kept constant at 100 MPa 

for all analyses.  Three values for the undrained shear strength (su = 50, 100, 200 kPa) are 

used in the simulations.  The normalized limiting strain xL is varied between 5 and 200.  

The applied stress-displacement curves from the simulations are presented in Figure 7-4.  

As anticipated, the stress at failure varies with shear strength.  The resulting stress-

displacement curves are dependent on both the undrained strength su, and the normalized 

limiting strain xL. 

 

Another set of simulations (Ci-2-2-1-5 through Ci-2-2-2-200) was performed to examine 

the effect of changing the small-strain stiffness Gmax.  The footing diameter, undrained 

shear strength and Poisson’s ratio were kept constant for all the simulations.  The 

normalized limiting strain xL was varied between 5 and 200.  Figure 7-5 shows the stress-

displacement curves from all the simulations.  As the value of the small-strain stiffness 

Gmax becomes higher, the stress-displacement footing behavior becomes stiffer. 
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Figure 7-3. The effect of footing size on the stress-displacement behavior of a circular 

footing resting on homogeneous clay (cases Ci-1-1-1-5 through Ci-3-1-1-200) 
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Figure 7-4. The effect of soil strength on the stress-displacement behavior of a circular 

footing resting on homogeneous clay (cases Ci-2-1-1-5 through Ci-2-2-1-200) 
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Figure 7-5. The effect of small-strain stiffness on the stress-displacement behavior of a 

circular footing resting on homogeneous clay (cases Ci-2-2-1-5 through Ci-2-2-2-200) 
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Based on the numerical simulations, the stress-displacement response of vertically loaded 

circular footings under undrained conditions depends on footing diameter d, undrained 

shear strength su, small-strain stiffness Gmax, and degree of non-linearity defined by the 

normalized limiting strain xL.  As mentioned earlier, one objective of this study is to scale 

up the behavior of a single soil element to the overall behavior of a footing.  Therefore, 

normalizing the results can help minimize the factors influencing the stress-displacement 

response.  A new normalization scheme is introduced and verified in the coming section. 

 

7.4 Proposed stress-displacement normalization scheme 

 

Load-displacement curves for shallow or deep foundations are typically plotted as 

applied load (Q) versus the displacement (s), or alternatively as applied stress (q) versus 

pseudo-strain (s/B), where s is the displacement of the foundation and B is the foundation 

width or its equivalent diameter (e.g., Berardi and Lancellota, 1994; Briaud and Jeanjean, 

1994; Hight and Higgins, 1995; Consoli et al., 1998; Atkinson, 2000).  Although this 

normalization scheme is simple and convenient to use, it is merely an approximate 

“averaged” strain in definition.  It was, therefore, decided to normalize the data using a 

new scheme that accounts for soil elastic properties (shear modulus, G and Poisson’s 

ratio, ν), bearing capacity (Qult or qult), and footing diameter or width (B).  Accordingly, 

the following normalization, which accounts for these factors, is used: 

 

X = s/sr………………………………………………………….……………….…..(7-1-a) 

Y = q/qult……………………………………………………………….………..…..(7-1-b) 

sr = qult/Ki……………………………………….....…………..………………….…(7-1-c) 
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where X is the normalized displacement, s is the vertical displacement, sr is a vertical 

reference displacement (function of soil elastic properties, bearing capacity, and footing 

width), Y is the normalized stress, q is the vertical applied stress, qult is the peak stress 

(i.e. bearing capacity), and Ki is the initial stiffness of the soil-footing system.  The 

definitions of the various parameters used in the analysis are illustrated in Figure 7-6-a 

and 7-6-b. 

 

This type of normalization scheme has been previously used for developing non-linear 

modulus degradation formulae based on fitting laboratory stress-strain data (e.g. Hardin 

and Drnevich, 1972; Puzrin and Burland, 1996). 

 

As discussed in Chapter 2, bearing capacity is not particularly well defined from actual 

footing load tests.  It was therefore decided to compute the peak stress or bearing capacity 

qult as the hyperbolic extrapolated asymptote, for consistency.  The initial stiffness of the 

footing-soil system is calculated from the theory of elasticity according to: 

 

IB

E

s

q
K

r

ult
i

⋅
== max …………………….……………………………...………………..(7-2) 

 

where B is the foundation width (or equivalent diameter for non-circular footings), Emax 

( )[ ]ν+⋅⋅= 12 maxG  is the maximum Young’s modulus, I is an influence factor depending 

on the footing rigidity, layer thickness, and Poisson’s ratio.  For example, I=1 for a 

flexible circular footing resting on a semi-infinite elastic medium with homogeneous 

modulus having ν = 0.  Therefore, the reference displacement is defined by: 
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Figure 7-6. Illustration of parameters used in the normalization of foundation load-

displacement response 
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maxE

BIq
s ult
r

⋅⋅
= ………………………………………………...……………………..(7-3) 

 

The displacement influence factors for rigid circular shallow footings resting on a deep 

homogeneous soil profile, under both undrained and drained conditions, are computed 

according to the solutions presented in Chapter 3.  The factors for rigid circular footings 

are 0.60 and 0.75 for undrained (ν = 0.5) and drained (ν = 0.2) cases, respectively, 

according to Equations 3-13 and 3-15.  For strip footings, the influence factors are 1.31 

and 1.90 for undrained (ν = 0.5) and drained (ν = 0.2) analyses, respectively, according to 

Milovic (1993). 

 

7.5 Verification of the proposed normalization scheme 

 

The effect of using the proposed normalization scheme on the representation of the load-

displacement response under circular footings is investigated in this section. 

 

7.5.1 Circular footing resting on linear elastic-plastic medium 

 

It was decided to simulate the behavior of circular rigid footings resting on a linear 

elastic-plastic Drucker-Prager medium.  In these simulations, the footing width, soil 

undrained shear strength and shear modulus were varied.  Both simulated “raw” and 

normalized stress-displacement response curves are plotted for comparison. 

 

Table 7-2 shows the input soil properties and footing dimensions used in the study.  In 

simulations 1 through 7, a 1-m diameter footing resting on a soil having undrained shear 

strength su of 20 kPa is used.  The equivalent shear modulus G is varied between 0.2 MPa 
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and 100 MPa.  In simulation 8, a 2-m diameter footing resting on a soil with undrained 

shear strength su and equivalent shear modulus G of 100 kPa and 10 MPa, respectively, is 

modeled.  All simulations are undrained (νu = 0.495).  Figure 7-7-a shows the stress-

displacement results for simulations 1 through 8.  The large variability in the stress-

displacement response is obvious. 

 

Table 7-2. Soil properties and footing dimensions used in the analysis of circular rigid 

footings resting on homogeneous Drucker-Prager linear elastic-plastic model 
 

Simulation 

case  

number 

Footing  

diameter, d 

(m) 

Undrained shear  

Strength, su 

(kPa) 

Shear  

modulus, G 

(MPa) 

Rigidity index 

G/su 

1 1 20 0.2 10 

2 1 20 0.4 20 

3 1 20 1 50 

4 1 20 2 100 

5 1 20 10 500 

6 1 20 20 1000 

7 1 40 5 125 

8 2 100 10 100 

 

The simulation results are re-plotted in normalized form as q/qult versus s/d shown in 

Figure 7-7-b.  The normalization of the vertical applied stress q by the bearing capacity 

qult caused all the curves to flatten to a common q/qult ratio approaching unity at large 

displacements. However, there are still significant differences in the normalized 

displacement curves using the pseudo-strain parameter, s/d.  Figure 7-7-c shows the fully 

normalized results plotted as q/qult versus s/sr.  The proposed normalization scheme 

causes all the stress-displacement curves to collapse onto a single line, regardless of soil 

properties and/or footing dimensions. Thus, the procedure appears reasonable as a means 

of dimensional analysis to allow comparisons of results and rational normalization. 
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Figure 7-7. FLAC simulations of circular footing for undrained cases on linear elastic-

plastic clay as given in Table 7-2: a) “raw” q versus s plot, b) q/qult versus pseudo-strain 

s/d plot, c) Normalized q/qult versus s/sr plot 
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7.5.2 Circular footing resting on non-linear elastic-plastic medium 

 

It has been shown that there is a unique stress-displacement relationship for linear elastic-

plastic soil models.  In this section, the proposed normalization scheme is applied to the 

simulated stress-displacement responses presented in Figures 7-3 through 7-5.  The 

normalized stress-displacement plots are presented in Figures 7-8 through 7-10. 

 

Figure 7-8 demonstrates how the proposed normalization scheme makes the stress-

displacement response independent of the footing size represented by the diameter.  

Similarly, Figure 7-9 and 7-10 show that the normalized stress-displacement response is 

independent of the value of the undrained shear strength and the small-strain stiffness 

Gmax, respectively.  Accordingly, normalized stress-displacement response become only a 

function of the normalized limiting strain xL. 

 

Figure 7-11-a summarizes all the normalized stress-displacement response plots from the 

vertical loading for a smooth, circular footings resting on a homogeneous soil layer, 

under undrained loading conditions.  The curves are only a function of the normalized 

limiting strain xL.  Normalized stress-strain curves depicting the behavior of a single 

element are shown in Figure 7-11-b for different values of the normalized limiting strain 

xL.  Parallelism between the overall stress-displacement behavior of a footing and the 

stress-strain response of a single soil element is noticed and is further investigated in 

Chapter 9. 
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Figure 7-8. Stress-displacement curves underneath the centerline of a circular footing on 

homogeneous clay (cases Ci-1-1-1-5 through Ci-3-1-1-200) plotted in normalized form 

(cases varying the footing size) 
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Figure 7-9. Stress-displacement curves underneath the centerline of a circular footing on 

homogeneous clay (cases Ci-2-1-1-5 through Ci-2-2-1-200) plotted in normalized form 

(cases varying the undrained shear strength) 
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Figure 7-10. Stress-displacement curves underneath the centerline of a circular footing 

on homogeneous clay (cases Ci-2-2-1-5 through Ci-2-2-2-200) plotted in normalized 

form (cases varying the small-strain stiffness) 
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Figure 7-11. a) Normalized stress-displacement curves for a circular, rigid, footing 

resting on a homogenous non-linear elastic plastic clay layer for undrained loading 

conditions; b) normalized stress-strain response for a single soil element 
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7.5.3 Strip/continuous footings resting on non-linear elastic-plastic medium 

 

The analysis of a shallow strip footing resting on a soil layer can be solved as a plane 

strain problem when the footing width is considerably smaller compared to its length 

(B/L < 0.2).  A rigid strip footing resting on a thick clay layer that is fully saturated (γtotal 

= 18 kN/m
3
, γsub = 8 kN/m

3
) is now simulated using the LOGNEP model to obtain the 

load-displacement behavior under undrained loading conditions (νu = 0.495).  Due to the 

symmetric nature of the problem, only half the footing and underlying soil are input.  

Rollers that restrict the horizontal movement were positioned at the centerline and 

vertical boundary.  Hinges, preventing vertical and horizontal motion, were placed at the 

bottom boundary.  A smooth footing-soil interface was replicated by imposing no 

restraint on the horizontal movement at the nodal contacts between the footing and 

underlying soil layer.  The boundary conditions are shown in Figure 7-12.  Applying 

uniform vertical displacements on a portion of the upper horizontal boundary simulates a 

rigid footing.  The average stress beneath the footing is calculated as the summation of 

vertical forces at the nodes at the base of the footing, divided by the footing width.  The 

footing displacement is taken equal to the vertical displacement applied to the footing.  A 

non-uniform grid was chosen for the footing analysis to use a smaller number of 

elements, decreasing the computer running time for each simulation.  The smallest size 

mesh to overcome mesh dependency consisted of 4225 elements (65 x 65 biased mesh), 

shown in Figure 7-12. 

 

The aim of the study is to find a unique load-displacement relationship for the non-linear 

behavior of the strip footing.  First, a number of runs were performed where the footing 
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Figure 7-12.  Finite difference grid for modeling a rigid strip footing resting on a 

homogeneous clay layer 

 

width B, maximum shear modulus Gmax, and undrained shear strength su were varied, 
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The “raw” simulated stress-displacement curves are presented in Figure 7-13-a and 7-13-

b.  The bearing capacity factor Nc computed from the analyses is 5.14, which is in 

excellent agreement with the Prandtl’s wedge solution (Nc = 5.14) that is derived in a 

Mohr-Coulomb failure criterion.  The load-displacement curves are dependent on footing 
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normalized limiting strain xL = 10, as shown in Figures 7-13-c and 7-13-d.  Normalized 

stress-displacement curves for a plethora of normalized limiting strains xL (10, 30, 50, 

100, 200) are presented in Figure 7-13.  As the value of the normalized limiting strain 

increases, the stress-displacement behavior becomes more non-linear. 

 

7.6 Summary and conclusions 

 

The non-linear elastic plastic LOGNEP model was used to simulate the stress-

displacement behavior under the centerline of vertically loaded rigid footings under 

undrained loading.  The effects of varying the overburden stresses σvo and at rest earth 

pressure coefficient Ko on the stress-displacement behavior under footings were found to 

have small influences on the stress-displacement behavior of shallow footings.  Factors 

controlling the footing behavior under vertical loading are: maximum shear modulus 

(Gmax), Poisson’s ratio (ν), undrained shear strength (su), normalized limiting strain (xL), 

footing shape (circular or strip), and footing width (d or B).  A new normalization scheme 

is suggested that accounts for the effect of the soil properties (Gmax, ν, su) and footing size 

(d or B).  Applied stresses are normalized with respect to the ultimate bearing capacity 

(qult) while displacements are normalized by a reference displacement (sr=qult/Ki), where 

(Ki) is the initial stiffness of the footing-soil system.  Subsequently, the normalized 

stress-displacement behavior is dependent on the footing shape and the normalized 

limiting strain xL that represents the degree of non-linearity in the soil stress-strain-

strength behavior.  Figures7-11-a and 7-14 show the unique stress-displacement 

relationship for circular and strip footings, respectively, under undrained conditions for 

differing degrees of non-linearity. 
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Figure 7-13. FLAC simulations of strip footing for undrained cases on non-linear elastic 

plastic LOGNEP clay: a) simulated “raw” stress-displacement curves for xL = 10; b) 

simulated “raw” stress-displacement curves for xL = 50; c) normalized stress-

displacement curves for xL = 10; and d) normalized stress-displacement curves xL = 50 
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Figure 7-14. Normalized stress-displacement curves for a rigid, smooth, strip footing 

resting on a homogenous clay layer under undrained loading conditions 
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CHAPTER VIII 

 

DRAINED LOADING OF RIGID SHALLOW FOUNDATIONS 

 

 

 

8.1 Overview 

 

The drained stress-displacement response of rigid shallow footings on homogeneous 

soil is numerically investigated using the logarithmic nonlinear elastic perfectly plastic 

LOGNEP model.  Input soil parameters required by the model include: soil density ρ; 

initial shear modulus Gmax and normalized limiting strain xL, Poisson’s ratio ν; and 

drained strength envelope defined by: cohesion intercept c’, angle of internal friction φ’, 

and angle of dilation ψ.  The analyses herein address shallow circular and strip footings 

situated at the ground surface, resting on purely cohesionless soil (φ’, c’ = 0), with non-

associated flow (ψ = 0). 

 

8.2 Modeling the drained stress-displacement response of circular footings 

 

First, the biased mesh used to model the undrained stress-displacement response beneath 

circular footings presented earlier in Chapters 6 and 7 was used for simulating drained 

stress-strain footing response.  However, the solution was found not to be numerically 

stable.  Similar observations were made by Erickson & Drescher (2002) and Yin et al. 

(2001) when modeling footings resting on purely cohesionless soils (c’ = 0).  The use of 

an unbiased mesh with square elements provided better stability for analyzing the 

footings.  Due to symmetry, only half the problem is modeled.  Several mesh sizes were 
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tested to ensure the solution is independent of mesh size.  A 50x50 mesh, shown in 

Figure 8-1, has been used because it provided accurate results with minimum number of 

elements.  The ratio of depth to rigid base to footing radius (h/R) is 10.  The ratio of the 

distance between the symmetry line to the non-symmetry vertical boundary to footing 

radius (x/R) is 10.  Horizontal displacements are restricted along both the symmetry and 

non-symmetry vertical boundaries.  Both vertical and horizontal displacements are 

restricted at the horizontal lower boundary. 

 

Vertical stresses were computed assuming the soil is fully saturated (γsat = 18 kN/m
3
).  

The at-rest earth pressure coefficient Ko is assumed equal to unity.  The footing is loaded 

by the incremental application of vertical displacements to the grid points representing 

the footing.  Horizontal displacements are permitted at these nodal locations simulating a 

smooth footing/soil interface.  The applied stress is computed as the average applied load 

divided by the area of the footing. 

 

A series of simulations has been conducted to investigate parameters influencing the 

drained stress-displacement response of vertically loaded footings.  In the numerical 

study, the footing shape is varied (circular and strip).  The following parameters have 

been varied to explore their effect on footing response: footing width B, small-strain 

shear modulus Gmax, angle of internal friction φ’, and normalized limiting strain xL.  Only 

purely cohesionless materials (c’ = 0) with non-associated flow (angle of dilation ψ = 0
o
) 

are considered in this study.  Simulations are denoted using a five part alphanumeric 

acronyms (similar to Table 7-1).  The first letter of the test name indicates the footing 



 198

shape: circular Ci or strip St.  Subsequent numbers denote the footing with B, angle of 

internal friction φ’, the maximum shear modulus Gmax, and the normalized limiting strain 

xL, respectively.  For example simulation Ci-1-2-2-10 is of a 0.5-m diameter footing, 

angle of internal friction φ’ of 30
o
, small-strain shear modulus Gmax of 50 MPa, and 

normalized limiting strain xL of 10.  Soil properties and footing dimensions used in the 

simulations are listed in Table 8-1.   

 

 

 

 

 

 

 

 

 

 

 

Figure 8-1. Uniform 50x50 square element mesh for modeling shallow footings under 

drained loading conditions 
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surcharge stress to the ground surface (e.g. Lehane and Fahey, 2002).  Alternatively, 

assigning the soil a cohesion intercept (c’> 0) would do likewise (Erickson and Drescher, 

2002).  However, it is safer from a design standpoint to neglect the contributions of 

cohesion intercept and surcharge stress to footing stability.  Alternatively, the problem 

has been solved by neglecting the threshold strain when modeling surface footings resting 

on purely cohesionless soil (φ’, c’= 0).  Other researchers modeling the non-linear stress-

strain response of footings did not take the threshold strain into consideration e.g. Fahey 

and Carter (1993); Lee and Salgado (2002); and Viana da Fonseca & Sousa (2002). 

 

8.2.1 Normalized drained stress-displacement response of circular footings 

 

Figure 8-2-a shows the stress-displacement response under a circular footing resting on a 

cohesionless soil for φ’ = 30
o 

and xL = 30.  Simulations have been performed for three 

values of the small-strain shear modulus Gmax= 50, 100, 200 MPa.  Three footing 

diameters have been used 0.5-m, 1.0-m, and 2.0-m.  Similarly, Figures 8-2-b and 8-2-c 

show the stress-displacement response for (φ’ = 35
o
, xL = 50) and (φ’ = 40

o
, xL = 100), 

respectively.  As expected, the stress-displacement response in all cases is dependent on 

the small-strain stiffness Gmax and footing diameter d.  By normalizing footing 

displacement by a reference displacement s/sr and applied stress by bearing capacity 

q/qult, all curves collapse onto a single line as shown in Figures 8-3-a through 8-3-c. 
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Table 8-1. Notations for naming footing simulations using LOGNEP model 

Parameter Notation Value/Meaning 

Footing shape Ci 

St 

circular 

strip 

Footing width, B  1 

2 

3 

0.5 m 

1 m 

2 m 

Angle of internal friction, φ’ 1 

2 

3 

30
o
 

35
o 

40
o
 

Maximum shear modulus, Gmax 1 

2 

3 

50 MPa 

100 MPa 

200 MPa 

Normalized limiting strain, xL 10 

30 

50 

100 

10 

30 

50 

100 

Notes:  

1. Acronym defining case number given by alphanumerical code: Ci/St-B-φ‘-Gmax-xL 

2. Angle of dilation ψ = 0
o
 

3. Cohesion intercept c’ = 0 
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Figure 8-2.  Simulated stress-displacement curves representing vertical displacements 

beneath circular rigid footings under drained loading conditions: a) φ’ = 30
o
, xL =30; c) φ’ 

= 35
o
, xL =50; d) φ’ = 40

o
, xL =100. 
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Figure 8-3.  Normalized simulated stress-displacement curves representing vertical 

displacements beneath circular rigid footings under drained loading conditions: a) φ’ = 

30
o
, xL =30; b) φ’ = 35

o
, xL =50; c) φ’ = 40

o
, xL =100. 
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8.2.2 Bearing capacity factors for circular surface footings 

 

The bearing capacity of a vertically-loaded foundation resting on a homogeneous half-

space is classically determined using the Terzaghi (1943) superposition method: 

 

qvocult NNBcNq σγ γ ′++= *
2

1
………………………………………………………(8-1) 

 

where qult = ultimate stress beneath the footing, c = effective cohesion intercept for 

drained behavior (c’) or the undrained shear strength (cu = su) for undrained loading, B = 

foundation width, γ*= effective or total unit weight depending on the groundwater level, 

σvo’ is the effective overburden stress at the foundation level, and Nc, Nγ, Nq are 

dimensionless bearing capacity factors. 

 

An accurate assessment of the bearing capacity factors Nc, Nq, and Nγ is essential for the 

correct evaluation of bearing capacity.  In general, there is relatively good agreement 

between the different methods for calculating Nc and Nq, while the variation is much 

higher for the factor Nγ (Vesić, 1973; Chen, 1975; Chen and McCarron, 1991).  A 

shallow footing resting directly on the surface of cohesionless soil (c’=0) has essentially 

zero surface surcharge (σvo’ = 0).  Therefore, equation (8-1) reduces simply to (e.g. Ingra 

and Baecher, 1983): 

 

sult NBq γγ ζγ ⋅⋅⋅⋅= *
2

1
………..……………………………………….………(8-2) 
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where ζγs is footing shape correction factor (refer to Appendix E).  The bearing capacity 

factors Nγ for the different friction angles are backfigured from the current numerical 

analyses via Equation 8-2.  The computed values of Nγ are compared to values reported 

in the literature in Table 8-2.  Present computations provide results close to those 

reported previously in the literature.  Erickson and Drescher (2002) numerically 

computed the bearing capacity factor Nγ for different values of φ’ and ψ.  Results reported 

in Table 8-2 are for a non-associated flow with ψ = 0.  It should be noted that Erickson & 

Drescher (2002) mention that their reported factors may have been overestimated because 

of the grid coarseness.  Using a finer mesh, Erickson & Drescher (2002) found a 10% 

drop in Nγ for φ' = ψ = 35
o
. 

 

Table 8-2. Summary of Nγ values for smooth circular footings for non-associative flow 

φ’ 
(o) 

This research Erickson & Drescher 

(2002) 

Bolton & Lau 

(1993) 

20 1.5 1.5 1.3 

30 6.7 ---- 7.1 

35 15.0 17.0 18.2 

40 36.5 43.0 51.0 

Notes: 

1. Angle of dilation ψ = 0
o
 

2. Cohesion intercept c’ = 0 
 

8.2.3 Generalized drained stress-displacement response of circular footings 

 

A series of simulations has been performed to investigate the effect of varying the 

normalized limiting strain xL on the footing stress-displacement response for (φ’ = 30
o
, 

35
o
, and 40

o
).  The simulations have been conducted for xL = 10, 30, 50, and 100.  The 

footing width and small-strain stiffness Gmax have been maintained constant at 1-m and 

100 MPa, respectively.  The normalized stress-displacement footing responses, for φ’ = 

30
o
, 35

o
, and 40

o
, are presented in Figures 8-4, 8-5, and 8-6, respectively. 
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The stress-displacement curves show some fluctuations that become more obvious for 

higher friction angles φ’.  The curves presented in this chapter have been adjusted for 

minor instabilities.  Yin et al. (2001) noticed similar behavior when modeling strip 

footing resting on soil with non-associative flow (ψ = 0).  De Borst and Vermeer (1984) 

noted numerical instabilities occurred when modeling a footing resting on soil with non-

associative flow (ψ < φ’).  The instabilities increased as the flow became more non-

associative with the difference between the angle of internal friction φ’ and ψ increasing.  

Solutions for the case of ψ = 0
o
 could not be obtained.  The FLAC manual acknowledges 

the persistence of fluctuations in the load and velocity fields for materials with high 

friction angles and low dilatancy (Itasca-d, 2001). 

 

As the stress-strain behavior becomes more non-linear (xL increases), the displacement 

necessary to reach failure also increases.  With the increase in values of the normalized 

limiting strain xL and the angle of internal friction φ’, the displacement to failure can 

become unrealistically high, as illustrated in Figure 8-7 which shows the stress-

displacement behavior beneath a 1-m circular footing (φ’= 40
o
, xL = 50).  The simulation 

was allowed to run up to a displacement of 1-m (which is unreasonably high but was 

performed for illustrative purposes).  As discussed in Chapter 2, it is common practice to 

take the bearing capacity as the stress corresponding to a pseudo-strain s/d of 10 %.  The 

bearing capacity interpreted based on a specific value of s/d is dependent on the soil 

stiffness.  Although this is suitable for use at a specific site (constant stiffness, footing 

size), a more consistent approach is needed that accounts for soil elastic properties in  
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Figure 8-4. Normalized stress-displacement curves for a smooth, rigid, circular footing 

resting on non-linear elastic plastic LOGNEP soil (φ’ = 30
o
, ψ = 0

o
) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-5. Normalized stress-displacement curves for a smooth, rigid, circular footing 

resting on non-linear elastic plastic LOGNEP soil (φ’ = 35
o
, ψ = 0

o
) 
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Figure 8-6. Normalized stress-displacement curves for a smooth, rigid, circular footing 

resting on nonlinear elastic plastic LOGNEP soil (φ’ = 40
o
, ψ = 0

o
) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-7. Simulated stress-displacement underneath a 1-m diameter smooth, rigid 

footing (φ’=40
o
, xL=50). 
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addition to footing dimensions.  It was decided to cut off the graphs at a normalized 

displacement (s/sr) of 100, even though stresses continued higher. 

 

8.3 Modeling the drained stress-displacement response of strip footings 

 

The strip footing is modeled similar to the circular footing discussed previously in this 

chapter, shown in Figure 8-1, but using plane strain conditions instead of the 

axisymmetric case.  The applied stress is computed as the average applied load divided 

by the footing width.  Displacements are calculated as the average displacement of the 

grid points underneath the footing. 

 

8.3.1 Normalized drained stress-displacement response of strip footings 

 

Similar to the drained loading of vertically loaded circular footings, a parametric study 

was performed to investigate factors influencing the stress-displacement response of strip 

footings.  The study included varying the footing width B, maximum shear modulus 

Gmax, normalized limiting strain xL, and internal friction angle φ’.  Simulated stress-

displacement footings responses are shown in Figure 8-8.  Figure 8-8-a shows the drained 

stress-displacement response under a strip footing resting on a soil having an angle of 

internal friction φ’ = 30
o 

and xL = 30.  Simulations have been performed for three values 

of the small-strain shear modulus Gmax= 50, 100, 200 MPa.  Three footing diameters have 

been used 0.5-m, 1.0-m, and 2.0-m.  Similarly, Figures 8-8-b and 8-8-c show the stress-

displacement response for (φ’ = 35
o
, xL = 50); and (φ’ = 40

o
, xL = 100), respectively.  By 

normalizing footing displacement by a reference displacement s/sr and applied stress by 

bearing capacity q/qult, all curves collapse onto a single line as shown in Figures 8-9-a 
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through 8-9-c.  As anticipated, the stress-displacement behavior varies with the footing 

width B, small-strain shear modulus Gmax, normalized limiting strain xL and angle of 

internal friction φ’.   

 

8.3.2 Bearing capacity factors for strip footing 

 

Equation 8-2 was used to backfigure the bearing capacity factor Nγ equivalent to the 

values of the angle of friction φ’.  Results are compared to other values reported in 

literature as shown in Figure 8-10.  There is a large variation in results depending on 

method of analysis and associative/non-associative flow.  For φ’ = 20
o
, the bearing factor 

(Nγ) varied between 1.15 (Steenfelt, 1977) and 7.74 (French, 1999), while the factor 

ranged between 16.96 (Michalowski, 1997) and 145.2 (Chen, 1975).  The factors 

computed in the current study are in close agreement with values computed by 

Michalowski (1997) for a smooth, strip footing with a non-associative flow (ψ=0
o
) using 

a kinematical approach of limit analysis (multi-block mechanism). 

 

8.3.3 Generalized stress-displacement curves of strip footings 

 

Similar to circular footings, a number of simulations of load tests of strip footings resting 

on homogeneous soil profile under drained loading (νo=0.2) were conducted to generate 

normalized stress-displacement curves characteristic of the different angles of friction 

angles: φ’ = 30
o
, 35

o
, and 40

o
.  The simulations were performed using normalized limiting 

strains xL of 10, 30, 50, and 100.  The normalized stress-displacement results are 

presented in Figures 8-11 through 8-13 for φ’ = 30
o
, 35

o
, and 40

o
, respectively. 
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Figure 8-8. Simulated stress-displacement curves representing vertical displacements 

beneath rigid strip footings under drained loading conditions: a) φ’ = 30
o
, xL =30; b) φ’ = 

35
o
, xL =50; c) φ’ = 40

o
, xL =100. 
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Figure 8-9. Normalized simulated stress-displacement curves representing vertical 

displacements beneath rigid strip footings under drained loading conditions: a) φ’ = 30
o
, 

xL =30; b) φ’ = 35
o
, xL =50; c) φ’ = 40

o
, xL =100. 
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Figure 8-10. Comparison of the bearing capacity factor Nγ computed from the current 

study and other studies from literature for smooth strip footings 
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Figure 8-11. Normalized stress-displacement curves for a smooth, rigid, strip footing 

resting on nonlinear elastic plastic LOGNEP soil (φ’ = 30
o
, ψ = 0

o
) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-12. Normalized stress-displacement curves for a smooth, rigid, strip footing 

resting on nonlinear elastic plastic LOGNEP soil (φ’ = 35
o
, ψ = 0

o
) 
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Figure 8-13. Normalized stress-displacement curves for a smooth, rigid, strip footing 

resting on nonlinear elastic plastic LOGNEP soil (φ’ = 40
o
, ψ = 0

o
) 

 

8.4 Summary and conclusions 

 

This chapter deals with the stress-displacement behavior of smooth, rigid, surface 

footings subjected to vertical loading under drained loading conditions.  Two types of 

surface footings were considered: circular and strip.  The computed bearing capacity 

factors Nγ for circular foundations were found in good agreement with values reported by 

Erickson and Drescher (2002), as shown in Table 8-2.  For strip footings, the bearing 

capacity factors Nγ agreed well with factors reported by Michalowski (1997), as 

presented in Figure 8-10. 

 

Normalizing the applied stresses by bearing capacity qult and displacements by reference 

displacement sr was shown to work for both circular and strip footings.  The “raw” 

simulated stress-displacement curves under vertically loaded footings depend on the 
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angle of internal friction φ’, maximum shear modulus Gmax, footing shape (circular or 

strip) and dimensions (d or B), and the normalized limiting strain xL.  With proper 

normalization, stress-displacement curves were generated that are only dependent on the 

normalized limiting strain xL and the angle of internal friction φ’.  General normalized 

stress-displacement curves for circular footings are presented in Figures 8-4 through 8-6 

for φ’ = 30
o
, 35

o
, and 40

o
, respectively.  Similar curves were produced for vertically 

loaded strip footings as presented in Figures 8-11 through 8-13. 
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CHAPTER IX 

 

APPROXIMATE EQUIVALENT NON-LINEAR ELASTIC  

CLOSED-FORM SOLUTION FOR FOOTING DISPLACEMENTS 

 

 

 

Normalized stress-displacement curves were presented graphically for the behavior of 

circular and strip footings under both undrained and drained loading conditions in 

Chapters 7 and 8, respectively.  Results were presented in graphical form.  It would be 

convenient to have a closed-form solution that enables designers to directly produce 

stress-displacement curves using spreadsheet programs or commercial mathematical 

software. 

 

An approximate closed-form solution is proposed within an elastic continuum 

framework.  The footing-soil system is represented by an elastic continuum with an 

average equivalent stiffness K.  The system stiffness starts at an initial value Ki 

(corresponding to the small-strain shear modulus Gmax).  The footing bearing capacity qult 

is computed analytically using appropriate bearing capacity factors presented in Chapters 

7 and 8.  A modulus reduction scheme is used to degrade the footing-soil stiffness Ki 

until failure is reached.  Beginning at the maximum equivalent stiffness Ki, it is reduced 

as a function of the normalized applied stress q/qult, where q and qult are the average 

applied stress and bearing capacity, respectively. 
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9.1 Approximate equivalent elastic closed-form solution for footing displacement 

 

Footing displacements are computed within an elastic continuum framework (e.g. Poulos, 

1967; Ueshita and Meyerhof, 1968; Brown, 1969a), according to: 

 

K

q
s = ………………………………………………………...…..……………………(9-1) 

 

where s = foundation displacement, q = applied stress acting beneath the foundation, 

BIEK s /= = representative footing-soil system stiffness, where Es = equivalent elastic 

Young’s modulus, and I = surface displacement influence factor that depends Poisson’s 

ratio, foundation rigidity, layer thickness, interface roughness, and soil stiffness variation 

with depth.  This equation can be modified to account for soil non-linearity by 

substituting Ki.rf instead of the representative footing-soil system stiffness K according 

to: 

 

fi rK

q
s

⋅
= …………………………………………………..…..……………….……(9-2) 

 

where Ki is initial stiffness of the footing-soil system [ ]BIEK i /max= , where Emax is the 

maximum Young’s modulus and rf is a modulus reduction factor as a function of the 

normalized applied stress (q/qult).  Equation 9-2 will be formulated in terms of normalized 

stress (q/qult) and normalized displacement (s/sr), according to: 
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⋅
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/

………………………………….………………………………..(9-3) 

 

where sr is the reference displacement computed as iultr Kqs /=  and qult is the ultimate 

bearing capacity.  Given that rulti sqK =  (refer to Equation 7-2), Equation (9-3) reduces 

to: 

 

( )
f

ult

r r

qq

s

s /
= …………………………………...……………………………………..(9-4) 

 

It is now necessary to choose a mathematical expression for modulus reduction that 

begins at the small-strain stiffness and allows the modulus to diminish with the increase 

in stress level.  It is also advantageous to choose a simple formulation suitable for 

simplified analytical solutions (Mayne, 2003).  Therefore the modified hyperbola (Fahey 

and Carter, 1993; Fahey et al., 1994; Fahey, 1998) was chosen for modulus reduction: 

 

























−=

*

*1

g

ult

f
q

q
fr ……………………………...………….…..…………….…….(9-5) 

 

where f
*
 and g

*
 are empirical fitting parameters that distort the shape of the hyperbolic 

function.  The modified hyperbola was used to fit stress-displacement data for footings on 

sand by Mayne & Poulos (2001) and for a footing on clayey silt by Mayne (2003).  
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Equation 9-5 reduces to a regular hyperbola for f
*
 = 1 and g

*
 =1.  The rate of modulus 

reduction decreases at initial loading for g
*
 > 1.  While the modulus reduces more rapidly 

when the value of g
*
 is less than 1.  For f

*
 = 1, failure is never reached.  The value of f

*
 

must be set below 1 for failure to be reached at a finite displacement.  Values of f
*
 greater 

than 1 are meaningless (Fahey, 2001).  Figure 9-1 shows the effects of varying the fitting 

parameters f
*
 and g

*
.  The f

*
 parameter is essentially the same as the Rf parameter in 

Duncan-Chang hyperbola to reduce the hyperbolic asymptote to the measured 

failure/peak value.  Duncan and Chang (1970) recommended Rf ~ 0.9.  Lee and Salgado 

(2004) reported Rf values varying between 0.86 and 0.99 for drained triaxial compression 

tests on sand samples with different silt contents and relative densities. 

 

It should be noted that the normalized applied stress is the reciprocal of the factor of 

safety ( )[ ]ultqqFS /1= .  Therefore, the reciprocal of the factor of safety can be 

substituted instead of the normalized stress (q/qult), allowing for simpler estimates of the 

equivalent soil modulus for deformation analyses following stability calculations. 

 

9.1.1 Undrained loading of circular and strip footings 

 

Figure 9-2 shows the hyperbolic function fitted to the normalized simulated stress 

displacement curves beneath rigid, circular footings under undrained loading conditions, 

for different values of the normalized limiting strain xL.  The model fitting parameters (f* 

and g*) are listed in Table 9-1.   
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Figure 9-1. The effect of varying the fitting parameters f and g on the modulus reduction 

factor Rf: (a) f
*
 = 1 and g

*
 variable; (b) f

*
 variable and g

*
 = 1 
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Figure 9-2. Fitted non-linear hyperbolic functions to normalized simulated stress-

displacement curves under rigid circular footings under undrained loading 
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Similarly, modified hyperbolas were fitted to the normalized stress-displacement curves 

beneath strip footings under undrained loading conditions, as shown in Figure 9-3.  The 

fitting parameters are listed in Table 9-1.  The value of f* was maintained at 0.99 for all 

values of the normalized limiting strain. 

 

As the degree of soil non-linearity increases (higher values of xL), the value of the fitting 

parameter g* (controlling the rate at which the modulus reduces) decreases, indicating an 

increase in the displacement to failure.  The variation of the fitting parameter g* with the 

normalized limiting strain xL, for both circular and strip footings, is plotted in Figure 9-4, 

for the undrained loading cases.  The dots shown in the Figure represent the results given 

in Table 9-1.  As an approximation, the non-linear parameters g* and xL are interrelated 

by: 

 

( ) 95.0* 0024.007.0

1

+
≈

g
xL  (circular footing)………………………………..……..(9-6-a) 

034.0
29.14
05.1

* −≈
Lx

g  (circular footing)………………………………………..……..(9-6-b) 

( ) 86.0* 0011.0027.0

1

+
≈

g
xL  (strip footing)……………………………...………....(9-7-a) 

041.0
04.37
16.1

* −≈
Lx

g  (strip footing)……………………………...……………..…....(9-7-b) 

 

The approximate closed form equations interrelating xL and g*, for both circular and strip 

footings, are plotted in Figure 9-4. 
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Figure 9-3. Fitted non-linear hyperbolic functions to normalized simulated stress-

displacement curves under rigid strip footings under undrained loading 
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Figure 9-4. Variation of the hyperbolic fitting parameter g* (defining the overall non-

linear stress-displacement behavior of shallow foundations) with the normalized limiting 

strain xL (defining the representative non-linear stress-strain behavior of a single soil 

element) under undrained loading conditions 

 

 

Table 9-1. Fitting parameters (f* and g*) under rigid footings in undrained loading 

Circular footing Strip footing Normalized limiting 

Strain xL g* R
2
 g* R

2
 

10 1.20 0.93 2.5 0.87 

20 0.60 0.97 1.1 0.94 
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9.1.2 Drained loading of circular and strip footings 

 

The modified hyperbolic function was fitted to normalized stress displacement results 

obtained from drained loading simulations presented in Chapter 8.  Figures 9-5 through 

9-7 show the fitted curves for rigid, circular footings under drained loading conditions for 

friction angles of 30
o
, 35

o
, and 40

o
, respectively.  The fitting parameters are summarized 

in Table 9-2.  Similarly, normalized stress displacement behavior under strip footings 

were fitted with the hyperbolic function, as shown in Figures 9-8 through 9-10 for 

friction angles 30
o
, 35

o
, and 40

o
, respectively.  Fitting parameters f* and g* are presented 

numerically in Table 9-2.  The value of the fitting parameter g* decreases as non-linearity 

(expressed by xL) increases, while the value of f* increases because the displacement to 

failure increases.  The variation of g* with the normalized limiting strain xL for circular 

footings under drained loading is presented in Figure 9-11 as dots.  Approximate close-

form solutions are given by: 

φ’ = 30
o
: 

003.011.0

1
* +

≈
g

xL , f*=0.99.……………………………..……….…….(9-8-a) 

φ’ = 30
o
: 03.0

09.9
* −≈

Lx
g , f*=0.99.………..…………………………….…..……(9-8-b) 

φ’ = 35
o
: 

( )2* 086.051.0

1

+
≈

g
xL , f*=0.99…………………………….………..….(9-9-a) 

φ’ = 35
o
: 17.0

96.1
* −≈

Lx
g , f*=0.99……………………………………...……..….(9-9-b) 

φ’ = 40
o
: 

( ) 1.1*5.0

1

g
xL ≈ , f*=1.00……………………………………………..….(9-10-a) 
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Figure 9-5. Fitted non-linear hyperbolic function to normalized simulated stress-

displacement curves under rigid, circular footings under drained loading (φ’ = 30
o
) 

 

 

 

 

 

 

 

 

 

 

 

Figure 9-6. Fitted non-linear hyperbolic function to normalized simulated stress-

displacement curves under rigid, circular footings under drained loading (φ’ = 35
o
) 

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80

s/s r

q
/q
u
lt

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

s/s r

q
/q
u
lt

Circular Footing

B = variable 

Gmax= variable

νo= 0.2

φ' = 30o

xL = 10

f* = 0.99, g* =0.85

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40

s/s r

q
/q
u
lt

Circular Footing

B = variable 

Gmax= variable

νo= 0.2

φ' = 30o

xL = 30

f* = 0.99, g* = 0.28

Circular Footing

B = variable 

Gmax= variable

νo= 0.2

φ' = 30o

xL = 50

f* = 0.99, g* = 0.15

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80

s/s r

q
/q
u
lt

Circular Footing

B = variable 

Gmax= variable

νo= 0.2

φ' = 30o

xL = 100

f* = 0.99, g* = 0.06

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

s/s r

q
/q
u
lt

Circular Footing

B = variable 

Gmax= variable

νo= 0.2

φ' = 35o

xL = 10

f* = 0.99, g =0.45

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

s/s r

q
/q
u
lt

Circular Footing

B = variable 

Gmax= variable

νo= 0.2

φ' = 35o

xL = 30

f* = 0.99, g* = 0.20

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80

s/s r

q
/q
u
lt

Circular Footing

B = variable 

Gmax= variable

νo= 0.2

φ' = 35o

xL = 50

f* = 0.99, g* = 0.10

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80

s/s r

q
/q
u
lt

Circular Footing

B = variable 

Gmax= variable

νo= 0.2

φ' = 35o

xL = 100

f* = 0.99, g* = 0.03



 227

 

 

 

 

 

 

 

 

 

 

Figure 9-7. Fitted non-linear hyperbolic function to normalized simulated stress-

displacement curves under rigid, circular footings under drained loading (φ’ = 40
o
) 

 

 

 

 

 

 

 

 

 

 

 

Figure 9-8. Fitted non-linear hyperbolic function to normalized simulated stress-

displacement curves under rigid, strip footings under drained loading (φ’ = 30
o
) 
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Figure 9-9. Fitted non-linear hyperbolic function to normalized simulated stress-

displacement curves under rigid, strip footings under drained loading (φ’ = 35
o
) 

 

 

 

 

 

 

 

 

 

 

 

Figure 9-10. Fitted non-linear hyperbolic function to normalized simulated stress-

displacement curves under rigid, strip footings under drained loading (φ’ = 40
o
) 
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Table 9-2. Fitting parameters (f* and g*) under rigid footings in drained loading 

Circular footing Strip footing Angle of 

friction 

Normalized     

limiting strain, xL f* g* R
2
 f* g* R

2
 

10 0.99 0.70 0.97 0.79 0.80 0.99 

30 0.99 0.28 0.97 0.91 0.33 0.99 

50 0.99 0.20 0.95 0.95 0.23 0.98 

30 

 

100 0.99 0.09 0.92 0.97 0.11 0.99 

10 0.99 0.45 0.96 0.82 0.64 0.99 

30 0.99 0.20 0.98 0.93 0.26 0.99 

50 0.99 0.10 0.99 0.96 0.17 0.95 

35 

100 0.99 0.05 0.99 0.98 0.08 0.96 

10 1.00 0.25 0.98 0.84 0.45 0.99 

30 1.00 0.09 0.98 0.94 0.19 0.99 

50 1.00 0.06 0.98 0.96 0.11 0.99 

40 

100 1.00 0.03 0.98 0.98 0.05 0.99 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9-11. Variation of the hyperbolic fitting parameter g* (defining the overall non-

linear stress-displacement behavior of shallow foundations) with the normalized limiting 

strain xL (defining the representative non-linear stress-strain behavior of a single soil 

element) for circular footings under drained loading conditions 
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φ’ = 40
o
: 

91.0

2
*

Lx
g ≈ , f*=1.00……………………………………...…………..….(9-10-b) 

 

Similarly, the variation of the fitting parameter g* with the normalized limiting strain xL 

for strip footings under drained loading is presented graphically in Figure 9-12.  The 

values of the fitting parameters f* and g* are listed in Table 9-2.  Approximate closed-

form solutions interrelating g* and xL are given by: 

 

φ’ = 30
o
: 

( ) 43.1
014.0*23.0

1

+
≈

g
xL ..…………………..……..…..…….………….(9-11-a) 

φ’ = 30
o
: 06.0

35.4
*

7.0
−≈

Lx
g ..……………………..……..…..…………………..….(9-11-b) 

φ’ = 35
o
: 

( ) 43.1
017.0*29.0

1

+
≈

g
xL ..…………………..……..…..…….………….(9-12-a) 

φ’ = 35
o
: 06.0

45.3
*

7.0
−≈

Lx
g ……………………..…..….…………….……..….….(9-12-b) 

φ’ = 40
o
: 

( ) 43.1
02.0*4.0

1

+
≈

g
xL ..……………………..……..…..…….………….(9-13-a) 

φ’ = 40
o
: 05.0

5.2
*

7.0
−≈

Lx
g ……………………….………..……...……...…......….(9-13-b) 

φ’ = 30
o
, 35

o
, 40

o
: 

Lx
f

φ ′−
−≈

046.05.3
99.0* …………………………..………...…(9-14) 

 

Figure 9-12 compares the computed and approximate values of the fitting parameters g* 

computed using Equations 9-11-a through 9-13-b, with good agreement.  The value of f* 
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varied with both xL and φ’ according to Equation 9-14.  The accuracy of Equation 9-14 is 

demonstrated in Figure 9-13. 

 

It is worth noting that although the value of f* was not maintained constant at 0.99 for the 

drained stress-displacement response of both circular and strip footings under drained 

loading conditions, using f* of 0.99 yield good agreement with the simulated stress-

displacement response in the working stress level up to a load factor of 2.  This is 

illustrated by the dotted lines shown in Figures 9-7 through 9-10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9-12. Variation of the hyperbolic fitting parameter g* (defining the overall 

nonlinear stress-displacement behavior of shallow foundations) with the normalized 

limiting strain xL (defining the representative nonlinear stress-strain behavior of a single 

soil element) for strip footings under drained loading conditions 
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Figure 9-13. Variation of the hyperbolic fitting parameter f* with the normalized limiting 

strain xL for strip footings under drained loading conditions 

 

9.2 Summary and conclusions 

 

An approximate closed-form solution within a non-linear elastic framework is proposed 

to simplify displacement computations.  The closed-form solution assumes an equivalent 

average soil/footing stiffness, which starts at a value corresponding to the small strain 

stiffness Emax.  This “global” modulus reduces with the increase in stress level 

represented by q/qult, where qult is determined by bearing capacity.  A modified hyperbola 

(Fahey and Carter, 1993; Fahey et al., 1994; Fahey, 1998) was used as a simple means to 

express the modulus reduction. 
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drained loading conditions.  The fitting parameters of the modified hyperbola (describing 

the overall behavior of the footing) are matched with the corresponding normalized 

limiting strain xL (defining the non-linear behavior of the soil element). 

 

It should be noted that the normalized applied stress is the reciprocal of the factor of 

safety ( )[ ]ultqqFS /1= .  Therefore, the reciprocal of the factor of safety can be 

substituted instead of the normalized stress (q/qult), allowing for simpler calculations of 

non-linear stress-displacement curves for routine design (Mayne, 2003). 
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CHAPTER X 

 

CALIBRATION OF CLOSED-FORM SOLUTION USING FOOTING  

LOAD DISPLACEMENT RESPONSE DATA 

 

 

 

In this chapter, a database of footing load tests is used to calibrate the closed-form 

model presented in Chapter 9. The database comprises shallow footings on soils under 

both undrained and drained loading conditions.  All analyses start at the fundamental 

small strain stiffness Gmax.  In most of the case studies, Gmax values are available from in-

situ measurements.  When measurements are unavailable, other soil parameters were 

used to provide an estimate of Gmax.  Modified hyperbolae were fitted to the normalized 

load test data and average normalized limiting strains xL were backcalculated using 

relationships presented in Chapter 9. 

 

10.1 Model calibration based on footing load tests 

 

Load test data are classified into 2 categories depending on prevalent drainage conditions 

during loading, i.e. undrained versus drained.  Generally, undrained loading is associated 

with footings situated on fine-grained soils (clays), whereas drained loading corresponds 

to foundations on sands. 

 

10.1.1 Undrained loading 

 

The database of undrained loading cases consists of 9 full-scale loading tests from 6 sites 

(Brand et al., 1972; Schnaid et al., 1993; Bowey and Wood, 1994; Jardine et al., 1995; 
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Lehane, 2003; Powell and Butcher, 2003), one case study failure (Nordlund and Deere, 

1972), and 8 model footing tests (Kinner and Ladd, 1973; Stallebrass and Taylor, 1997).  

Table 10-1 summarizes soil types, footing dimensions, and groundwater table elevations 

relative to the footing.  Soil profiles include 6 natural soil deposits (varying from soft 

clays to stiff overconsolidated clays and glacial tills), 7 model tests on reconstituted 

Boston blue clay, and 1 centrifuge test on remolded Speswhite kaolin.  Footing shapes 

include circular, square, and rectangular.  The foundation sizes varied widely, ranging 

from very small 0.06-m model circular footings to large unexpected failures of mat 

foundations (66.5 by 15.9 m). 

 

The small strain stiffness is a required input for the proposed nonlinear model.  It can be 

measured using either field measurements (e.g. crosshole test, downhole test, spectral 

analysis of surface waves, seismic piezocone/dilatometer) or laboratory tests (resonant 

column, torsional shear apparatus, bender elements, or specially instrumented triaxial 

tests with internal local strain measurements), as discussed in Chapter 4.  Measured 

values of Gmax were available for most sites.  Otherwise, Gmax was evaluated empirically 

from correlative relationships with other in-situ and/or laboratory test results (e.g., 

Larsson and Mulabdić, 1991; Mayne and Rix, 1995; Hegazy and Mayne, 1995).   

 

Index soil properties and small-strain stiffness Gmax at each site are reported in Table 10-

2.  Soils ranged from normally to lightly overconsolidated (e.g. Bothkennar and 

Shellhaven) to overconsolidated (e.g. kaolin) with an overconsolidation ratio of 8.5. 
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Table 10-1.  Database of footing load tests under undrained loading conditions 

Site Soil Type GWT below 

foundation  

level (m) 

Dimensions 

B x L 

(mxm) 

L/B Test type Bearing 

capacity 

qult (kPa)
a
 

Reference 

1.05 x 1.05 1 154 

0.9 x 0.9 1 187 

0.75 x 0.75 1 207 

0.675 x 0.675 1 194 

Bangkok, 

Thailand 
soft clay 0 

0.6 x 0.6 1 

Full-scale 

245 

Brand et al. 

(1972) 

Shibuya & 

Tamrakar 

(1999) 

Belfast, 

Ireland 

soft 

clayey silt 
0 2 x 2  1 Full-scale 100 

Lehane 

(2003) 

0.0159 x 0.127 8 472
b
 

0.0159 x 0.127 8 428
c
 

Boston Blue 

Clay, USA 

reconstitut

ed 

soft clay 
0 

0.0159 x 0.127 8 

Model tests 

379
d
 

Kinner and 

Ladd (1973) 

Bothkennar, 

UK 
soft clay 0.2 2.2 x 2.2  1 Full-scale 150 

Hight et al. 

(1997) 

Jardine et al. 

(1995) 

Cowden, UK glacial till 0 0.865 x 0.865 1 Plate load 

test 
1600 Powell & 

Butcher 

Fargo, USA 

(Grain 

Elevator) 

silty clay 

(sand 

layer 4.5 

to 6m) 

2.2 66.5 x 15.9 4.2 
Actual 

failure 
244 

Nordlund and 

Deere (1972) 

Speswhite 

Kaolin 

reconstitut

ed clay 
0.026-0.052 0.06 x 0.06 1 

Model 

centrifuge 
373 

Stallebrass 

and Taylor 

(1997) 

Shellhaven, 

UK 
soft clay 0.75 5 x 14 2.8 Full-scale 86 

Schnaid et al. 

(1993) 
a
 Bearing capacities computed using the hyperbolic asymptote presented in Chapter 2. 
b
 Number of tests =2, OCR = 1. 

c
 Number of tests =2, OCR = 2. 
d
 Number of tests =3, OCR = 4. 
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Soil rigidity is represented by the ratio of Young’s modulus to compressive strength, 

E/qmax (Atkinson, 2000), where ( ) ura sq ⋅=−= 2
maxmax σσ .  Young’s modulus E can be 

defined at different strain levels.  In this section, the maximum Young’s modulus 

( )[ ]ν+= 12 maxmax GE  is used to describe soil rigidity.  The undrained shear strengths 

reported in Table 10-2 are backcalculated from the load tests using the hyperbolic 

extrapolated bearing capacity qult, where qult = Nc su with the appropriate bearing capacity 

factors (Nc= 6.14 for all cases except for tests on Boston blue clay, Fargo and Shellhaven 

that were analyzed as strip footings with Nc = 5.14).  The maximum rigidity Emax/qmax for 

the natural clays varied between 611 and 1885.  The reconstituted kaolin had a much 

higher Emax/qmax ratio of 5000, as reported by Atkinson (2000).  There is generally good 

agreement between the computed Emax/qmax in comparison to worldwide data for a 

number of different materials summarized by Tatsuoka and Shibuya (1992), shown in 

Figure 10-1.  Data from the current study are plotted as solid symbols.  Atkinson (2000) 

showed Emax/qmax varying between 5000 (reconstituted kaolin deposit) and 1000 (stiff 

soils). 

 

The rigidity index Ir is defined as the ratio of the shear modulus to the undrained shear 

strength IR= G/su (e.g. Vesic 1972).  For undrained loading (ν=0.5), the maximum 

rigidity index Gmax/su relates to the maximum soil rigidity Emax/qmax according to: 

 

maxmaxmax /
3

2
/ qEsG u ⋅=  
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Table 10-2.  Soil properties in the vicinity of the footings in the database 

Site 
PL 

(%) 

LL 

(%) 

wc 

(%) 
OCR 

Gmax 

MPa 

Operational 

su 

kPa 

Emax/qmax Reference 

Bangkok, 

Thailand 
35 90 80 1-2 12a 25-40 900-1440 

Brand et al. 

(1972) 

Shibuya & 

Tamrakar (1999) 

Belfast, 

Ireland 
22-37 41-74 40-60 1.5-2 10a 16.3 920 Lehane (2003) 

Boston Blue 

Clay 
39-43 18-22 100g 1-4 46b 74-92 750-935 

Kinner and Ladd 

(1973) 

Bothkennar, 

UK 
24-35 50-78 45-70 1.5 14a 24.4 800 

Hight et al. 

(1997) 

Jardine et al. 

(1995) 

Cowden, UK 10-15 36-40 15-20 2-5 100c 172 873 Powell & Butcher 

Fargo, USA 

(Grain 

elevator) 

29-43 
80-

112 
21-74 1.2-2 50d 40 1885 

Nordlund and 

Deere (1972) 

Speswhite 

Kaolin 
31-38 53-69 N/A 8.5 117e 35 5000 

Stallebrass & 

Taylor (1997) 

Almeida & Parry 

(1988) 

Esquivel & Silva 

(2000) 

Shellhaven, 

UK 
26-41 

70-

117 

40-

120 
1.2-2.1 

7-

11.5f 
14 960  

Schnaid et al. 

(1993) 

a Downhole test 

b
 Gmax estimated from index soil properties using Weiler (1988) relationship. 

c
 Average value based on downhole, crosshole, Rayleigh wave test results reported by Powell and Butcher (2003) 

d
 Gmax estimated from vane shear test results (correlation by Larsson and Mulabdić, 1991). 

e
 f

u qEmax  = 5000 (Atkinson, 2000). 

f
 Field measurements of Gmax available from 3-10 m (Hight and Higgins, 1995).  Above 3 m, Gmax is computed 

based on piezocone data (Mayne and Rix, 1993). 

g 
Water content before consolidation. 
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Figure 10-1.  Relationship between the maximum Young’s modulus Emax and 

compressive strength qmax for a wide range of materials compared to values used in 

current study (modified after Tatsuoka and Shibuya, 1992) 
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10.1.1.1 Non-linear soil properties computed from footing load tests 

 

For each of the case studies, applied stresses q were normalized by the bearing capacity 

qult to provide a mobilized resistance, q/qult.  Footing displacements were normalized with 

respect to the reference displacement sr.  The reference displacement value sr is the 

displacement intersect of the projected value of the initial elastic soil-foundation stiffness 

IBEK i ⋅= /max  with bearing capacity qult, or maxEIdqs ultr ⋅⋅= .  Bearing capacities 

were evaluated by fitting hyperbolae to stress-displacement curves, as presented in 

Chapter 2.  The determination of the initial overall stiffness of the soil-footing system is 

outlined in more detail in Chapter 9.  Computed values of Ki varied between 8.7 MN/m
3
 

(Fargo grain elevator: 66.5 m x 15.9 m) and 10.6 GN/m
3
 (model centrifuge circular 

footing).  The wide range in the value of Ki reflects the broad variation in footing sizes 

included in the database, since Ki is inversely proportional with footing width.  The 

values of the reference displacement sr ranged between 0.02 mm and 28 mm for the 

kaolin model footing and Fargo grain elevator, respectively.  The reference displacement 

depends on footing size, resulting in a wide range of values.  The ratio of the maximum 

to minimum reference displacements is 1400.  Normalizing the reference displacement sr 

with respect to footing width resulted in a narrower range of (sr/B) values ranging 

between 3.4x10
-4
 and 4.8x10

-3
, with a ratio of maximum to minimum of 14. 
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Table 10-3.  Database of footing load test data for undrained loading conditions 

Site 

Dimension 

B x L 

(m x m) 

Bearing 

capacity 

qult  

(kPa)
a
 

Initial 

stiffness 

Ki 

(MN/m
3
) 

Ref 

displ. 

sr 

(mm) 

sr/B 

Fitting 

parameter 

g* 

Normal 

limiting  

strain 

xL 

Ref. 

strain 

γr 

(%) 

Failure  

Strain 

γf 

(%) 

1.05 x 1.05 154 65 2.4 2.3x10
-3
 0.25 41 0.21 8.6 

0.9 x 0.9 187 67 2.8 3.3x10
-3
 0.26 40 0.25 10.2 

0.75 x 0.75 207 68 3.0 3.8x10
-3
 0.36 34 0.28 9.5 

0.675 x 

0.675 
194 67 2.9 4.0x10

-3
 0.32 30 0.26 7.9 

Bangkok, 

Thailand 

0.6 x 0.6 245 76 3.2 4.8x10
-3
 0.40 28 0.33 9.3 

Belfast, 

Ireland 
2 x 2  100 25 4.0 2.0x10

-3
 0.22 46 0.16 7.5 

0.016 x 

0.13 
472 7559 0.062 3.9x10

-3
 1.0 22 0.20 4.3 

0.016 x 

0.13 
428 7559 0.057 3.6x10

-3
 1.2 19 0.18 3.4 

Boston Blue 

Clay, USA 

0.016 x 

0.13 
379 7559 0.05 3.2x10

-3
 0.52 37 0.16 5.9 

Bothkennar, 

UK 
2.2 x 2.2 150 30.8 4.9 2.0x10

-4
 0.4 28 0.17 4.9 

Cowden, 

UK 

0.865 x 

0.865 
1602 630 2.5 2.9x10

-3
 0.25 41 0.17 7 

Fargo, USA 

(Grain 

elevator) 

66.5 x 15.9 244 8.7 29 7.7x10
-4
 1.1 20 0.1 2 

Kaolin 0.06 x 0.06 373 10590 0.02 3.4x10
-4
 0.03 170 0.03 5.1 

Shellhaven, 

UK 
5 x 14 86 10 8.8 9.3x10

-4
 0.6 33 0.19 6.1 

Notes:
 

• qult is defined by the hyperbolic asymptote, as discussed in Chapter 2. 

• sr =reference displacement, introduced in Chapter 7. 

• Ki is the initial soil-footing stiffness computed according to Equation 7-2. 

• Reference displacement sr is calculated according to Equation 7-1-c. 

• B is the footing equivalent diameter circle ( except for Boston Blue Clay and Fargo that are analyzed as strip 

footing, with B taken as the footing width. 

• The hyperbolic fitting parameter f* = 0.99 for all the case studies. 

• The normalized limiting strain xL is back-calculated from the fitting parameter g* according to Equation 9-6 
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Figure 10-2.  Fitted hyperbolic functions and normalized stress-displacement curves 

under shallow footings for undrained loading conditions 
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Modified hyperbolae were fitted to the normalized stress-displacement curves.  Data are 

presented in Table 10-3.  The fitting parameter f* is maintained constant and equal to 

0.99, in agreement with statistical fitting of simulated stress-displacement results for all 

natural soil deposits.   

 

It should be noted that the fitting parameter f* mainly influences the displacement needed 

to reach failure and has small influence on the working stress region, which is the stress 

level of concern of engineers.  The fitting parameter g* was varied to match the data.  

The lower values of g* indicate higher degrees of nonlinear stress-displacement behavior.  

The values of g* and corresponding normalized limiting strain xL are listed in Table 10-3.  

All the footings were analyzed as circular except for Boston Blue Clay, Fargo, and 

Shellhaven.  These footings are rectangular in shape with L/B ratio greater or equal to 

2.8, and therefore were considered as strip.  Values of g* ranged between 1.1 (Fargo) and 

0.03 (kaolin), with the corresponding xL varying between 19 and 170.  These values are 

within the range of 10 to 200 reported by Atkinson (2000). 

 

Using the backcalculated value of the normalized limiting strain xL and the reference 

strain γr (=su/Gmax), the average strain to failure γf of a representative soil element is 

computed.  The respective values for each case are reported in Table 10-3.  The 

computed strains to failure ranged between 2% and 10.2%.  The backcalculated strains to 

failure are plotted versus the representative plasticity index at each site as shown in 

Figure 10-3.  The backcalculated failure strains compare well with failure strains 

measured in direct simple shear tests presented on the same plot.  There is a relatively 
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good match between the two data sets, except for Fargo.  This discrepancy can be 

attributed to the fact that there is no measured small-strain stiffness and presence of a 

sand layer approximately 5-m below ground surface.  Also, the top soil layer was highly 

cracked (Nordlund and Deere, 1972). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10-3.  Comparison of backcalculated failure strains from footing load tests versus 

failure strains in direct simple shear under undrained loading conditions 
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on sandy silty clay till (Larsson, 2001).  All eleven tests were performed at four different 

sites.  Table 10-4 summarizes the soil information, footing dimensions, and location of 

groundwater table relative to the footing.  All the footings included in the database are 

square, with plan sizes varying between 0.5 m x 0.5 m and 3 m x 3 m.  The reported 

bearing capacities are hyperbolic asymptotes.  Additional details about determining the 

bearing capacities of footings are in Chapter 2.  The interpreted bearing capacities varied 

between 571 and 2000 kPa.  In comparison with Table 10-1, drained bearing capacities 

are generally greater than undrained bearing capacity cases. 

 

Due to the high permeability of sands, the footing load tests at the sand sites are 

considered fully drained.  For the Tornhill and Vagverket sites, the rate of loading was 

conducted slow enough to ensure that the excess porewater pressures, monitored using 

piezometers, dissipated before the load was increased at each step (Larsson, 1997; 

Larsson, 2001). 

 

Relevant soil properties are listed in Table 10-5.  Soils in the database include sands 

(Labenne; Texas A and M), sandy silty clay till (Tornhill), and silt (Vagverket).  The bulk 

unit weights varied between 15.5 kN/m
3
 and 21 kN/m

3
.  Angles of internal friction varied 

between 30
o
 and 35

o
.  The small-strain shear modulus was either measured using in-situ 

methods (crosshole test or seismic cone penetrometer) or evaluated indirectly from cone 

penetration data.  The values of Gmax ranged from 28 MPa (Vagverket) and 116 MPa 

(Tornhill). 
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Table 10-4.  Database of footing load test data under drained loading conditions 

Site 
Soil 

Type 

GWT 

below 

foundation 

level (m) 

Dimensions 

B x L 

(m x m) 

Test type 

Bearing 

capacity 

qult 

(kPa) 

Reference 

Labenne, 

France 

dune 

sand 
3 0.7 x 0.7 Full-scale 1090 Amar et al (1994) 

1 x 1 2000 

1.5 x 1.5 1481 

2.5 x 2.5 1600 

3 x 3 1235 

Texas A 

& M, 

USA 

Eocene 

deltaic 

Sand 

4.9 

3 x 3 

Full-scale 

1073 

Briaud and Gibbens 

(1999) 

0.5 x 0.5 1353 

1 x 1 1667 
Tornhill, 

Sweden 

Sandy 

silty 

clay till 

0.2 

2 x 2 

Full-scale 

817 

Larsson (2001) 

0.5 x 0.5 1120 
Vagverket

, Sweden 
Silt variable 

1 x 1 

Full-scale 

571 

Larsson (1997) 

* B/L =1 for all footings. 

 

Table 10-5. Soil properties in the vicinity of the footings in the database of drained 

loading of shallow footings 

Site 
PL 

(%) 

LL 

(%) 

wc 

(%) 

φ’ 

(degree) 

γ 

KN/m
3
 

Gmax 

MPa 
Reference 

Labenne N/A N/A 5 35 16 30
a
 

Amar et al (1994) 

Jardine and Lehane 

(1993) 

Texas 

A&M 
N/A N/A 5 32

d
 15.5 95-107

b
 

Briaud and Gibbens 

(1999) 

Tornhill 10-38 20-45 10-23 30 21 107-116
c
 Larsson (2001) 

Vagverket 18-24 30 30 35 19-20 28
c
 Larsson (1997) 

a
 Gmax estimated from cone penetration test reported by Jardine and Lehane (1993) using Mayne and 

Hegazy (1996) 

b
 Shear wave velocities measured using the cross hole method 

c
 Shear wave velocities measured using the seismic cone penetrometer 
d
 Based on the borehole shear test (Briaud and Gibbens, 1999) 
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10.1.2.1 Non-linear soil properties computed from drained footing load tests 

 

The normalized stress-displacement curves (q/qult versus s/sr) were plotted for all the case 

studies, as shown in Figure 10-4.  All relevant parameters (qult, Ki, sr, sr/B) are listed in 

Table 10-6.  The maximum global stiffness Ki varied between 85 MN/m
3
 and 355 

MN/m
3
.  Reference displacements sr varied between 3.5 mm and 13 mm. 

 

Modified hyperbolae were fitted to the normalized stress-displacement curves, shown in 

Figure 10-6.  The hyperbolic fitting parameter f* was maintained at 0.99 for all the case 

studies.  The fitting parameter g* was varied to best match the normalized data.  The 

values of g* ranged from 0.05 (Vagverket) up to 0.45 (Texas A and M – 3 m), with an 

average of 0.22.  The corresponding non-linear parameter xL varied between 15 and 80 

with an average of 39. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10-4.  Fitted hyperbolic functions fitted to normalized stress-displacement curves 

under shallow footings under drained loading conditions 
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Table 10-6.  Database of footing load test data under drained loading conditions 

Site 

Dimensi

ons 

B x L * 

(m x m) 

Bearing 

capacity 

qult (kPa) 

Initial 

stiffness 

Ki 

(MN/m3) 

Ref.  

displ.  

(mm) 

Normalized 

reference 

displacement 

sr/B 

Fitting 

parameter, 

g * 

Normal. 

limiting 

strain, 

xL 

Labenne, 

France 
0.7 x 0.7 1090 131 8.3 1.2x10-2 0.2 28 

1 x 1 2000 271 7.4 7.4x10-3 0.16 44 

1.5 x 1.5 1481 214 6.9 4.6x10-3 0.24 29 

2.5 x 2.5 1600 131 12 4.9x10-3 0.18 39 

3 x 3 1235 97 13 4.3x10-3 0.45 15 

Texas A 

& M, 

USA 

3 x 3 1073 97 11 7.4x10-3 0.39 17 

0.5 x 0.5 1353 355 7.4 7.4x10-3 0.26 31 

1 x 1 1667 329 5.1 5.1x10-3 0.18 44 
Tornhill, 

Sweden 

2 x 2 817 237 3.5 1.7x10-3 0.23 34 

0.5 x 0.5 1120 169 6.6 1.3x10-2 0.05 80 Vagverk

et, 

Sweden 1 x 1 571 85 6.7 6.7x10-3 0.08 62 

Notes: 

• qult is defined by the hyperbolic asymptote, as discussed in Chapter 2. 

• Ki is the initial soil-footing stiffness computed according to Equation 7-2. 

• Reference displacement sr is calculated according to Equation 7-1-c. 

• B is the equivalent diameter circle. 

• The hyperbolic fitting parameter f* = 0.99 for all the case studies. 

• The normalized limiting strain xL is back-calculated from the fitting parameter g* according to Equation 

9-6 
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10.2 Summary and conclusions 

 

In this Chapter, the closed-form analytical solution was applied to 14 footings under 

undrained loading conditions and 11 footings under drained loading.  The applied stresses 

were normalized by the hyperbolic extrapolated bearing capacity qult.  Displacements are 

normalized by reference displacement (sr = Ki/qult).  The normalized limiting strains were 

back-calculated to best fit the normalized stress-displacement data (q/qult versus s/sr). 

 

For the database of undrained loading, soil stress histories varied from normally 

consolidated  (OCR = 1-2) to overconsolidated (OCR = 8.5).  The normalized data were 

fitted with modified hyperbolae starting at Ki according to the method outlined in Chapter 

9.  The fitting parameter f* was maintained constant at 0.99, while the fitting parameter 

g* was varied to fit the data, ranging between 1.1 and 0.03.  The corresponding 

normalized limiting strains were computed.  The lowest xL of 19 and highest of 170 

corresponded to the model strip footing tests on Boston Blue Clay and Speswhite 

remolded kaolin, respectively.  Failure strains backcalculated for the case studies 

compare well with the direct simple shear failure strains suggested by DeGroot et al. 

(1992). 

 

The soils in the drained loading database contained sands, silty sand clay till, and clay.  

The angles of internal friction varied between 30
o
 and 35

o
.  Due to the high permeability 

of sands, the footing load tests in the sand sites are considered fully drained.  For the 

Tornhill and Vagverket sites, the rate of loading was slow enough to ensure pore water 



 250

pressures, monitored using piezometers, dissipate before the load is increased (Larsson, 

1997; Larsson, 2001).  Thus these too were drained loading tests. 

 

Stress-displacement data were normalized and plotted as q/qult versus s/sr.  Modified 

hyperbolae were fitted to the normalized stress-displacement curves.  The hyperbolic 

fitting parameter f* was maintained at 0.99 for all the case studies.  The fitting parameter 

g* was varied to fit the normalized data.  The values of g* ranged between 0.05 

(Vagverket) and 0.45 (Texas A & M – 3 m), with an average of 0.22.  The corresponding 

nonlinear parameter xL varied between 15 and 80 with an average of 39. 



 251

CHAPTER XI 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

 

11.1 Conclusions 

 

A parametric study was performed to model the stress-displacement behavior of 

vertically loaded shallow footings starting from the fundamental small-strain stiffness 

Gmax up to failure.  A generalized schematic diagram of the stress-displacement curve of a 

vertically loaded footing is presented in Figure 11-1.  The initial slope of the stress-

displacement curve is defined by the soil-footing stiffness obtained from classical 

continuum theory Ki [= 
IB

G

⋅

+⋅⋅ )1(2 max ν
], where Gmax = small-strain shear modulus, ν = 

Poisson’s ratio, B = footing width, and I = displacement influence factor. 

 

 

 

 

 

 

 

 

 

 

 

Figure 11-1. Schematic diagram of a “typical” stress-displacement curve of a vertically 

loaded shallow footing 
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Failure is defined by the bearing capacity defined by classical limit plasticity solutions 

where qult [= Ncsu (undrained loading) or 0.5γ*NγB (drained loading)].  The two regions 

are connected by a non-linear modulus reduction scheme and used to develop a closed-

form approach for practical use.  The different parts comprising the stress-displacement 

footing response were explored in the dissertation.  A new analytical non-linear elastic 

method is proposed to simulate footing behavior.  The main findings of the study are 

outlined herein. 

 

Bearing capacity can be defined conceptually as the ultimate stress qult when the footing 

approaches infinite settlement. However, full-scale load tests may not always reach this 

plateau due to constraints of performance and/or equipment limitations.  The hyperbolic 

asymptote provides a consistent and rational method for evaluating bearing capacity from 

full-scale load test results.  These extrapolated values represent upper limit values that are 

suitable for comparative purposes.  Although full-scale load tests are the most definitive 

means to determine bearing capacity, they are very expensive and time consuming.  

Analytical solutions based on limit plasticity theory are more commonly used for 

obtaining bearing capacity qult. 

 

A realistic evaluation of foundation displacement at working stress levels (
FS

q
q ult
all = ) is 

essential to guarantee the structural soundness and serviceability of a structure.  

Analytical methods based on the theory of elasticity offer versatile solutions that can be 

used with soil properties measured laboratory and/or in-situ tests.  Displacement 

influence factors provide expedient means to compute foundation displacements.  These 
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factors depend on the footing shape, soil layer thickness, compressible/rigid base 

interface roughness, stiffness variation with depth, and footing rigidity.  A large number 

of numerical and rigorous solutions are available for specific cases.  Most of these 

solutions are presented either graphically or in tabular format or as equations, making 

them appear very different from each other, although they are quite similar.  Based on 

Boussinesq’s stress distribution, an approximate closed-form solution was derived for use 

in evaluating the magnitude of displacement at the center of circular flexible footings 

resting on either homogeneous or Gibson soil profiles of finite to infinite depth.  

Approximate correction factors are used to account for footing rigidity and depth of 

embedment.  The new solution facilitates deflection calculations for shallow footings and 

raft foundations in a unified approach that compares reasonably well with other solutions 

(e.g. Harr, 1966; Poulos, 1968; Ueshita and Meyerhof 1968; Carrier and Christian, 1973; 

Scott and Boswell, 1975; Milovic, 1992, Mayne and Poulos, 1999).  The applicability of 

this approach is demonstrated for use in rectangular footings is demonstrated, with good 

comparisons with available rigorous solution Harr (1966) and numerical solution Milovic 

(1992). 

 

The small-strain shear modulus Gmax is a fundamental soil property that is applicable to 

both monotonic static and dynamic loading conditions, as well to both drained and 

undrained loading.  Yet, Gmax is too stiff for direct use in computing foundation 

displacements.  For dynamic tests, modulus reduction curves [G/Gmax versus log(γ)] have 

been developed to calculate the shear modulus at a given strain level (e.g. Vucetic and 

Dobry 1991).  A database of static torsional shear tests was created to explore modulus 
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reduction trends under monotonic loading.  The trends are similar to those observed for 

dynamic tests, yet the more fundamental monotonic tests are not governed by the high 

strain rate effects influencing data from resonant column and cyclic triaxial tests. 

 

A large number of mathematical formulae have been derived to simulate modulus 

reduction with increased strain (or stress) levels.  A review of modulus reduction schemes 

for representing non-linear stress-strain response was performed including hyperbolic, 

logarithmic, parabolic, and power function.  The logarithmic modulus reduction scheme 

(Puzrin and Burland, 1996; 1998) was found to be the most suitable method because the 

parameters have physical meaning and can be easily measured. 

 

The degree of stress-strain non-linearity represented by a logarithmic function is 

expressed by the normalized limiting strain xL = γf/γr, where γf is the failure shear strain 

and γr is a reference strain computed as τmax/Gmax.  The degree of stress-strain non-

linearity increases for higher values of xL.  The influence of sample disturbance, mode 

and rate of loading on the degree of stress non-linearity were reviewed by fitting xL 

values to available laboratory test data. 

 

The normalized limiting strain xL can be computed knowing the small-strain stiffness 

Gmax, strength τmax, and failure strain γf.  The small-strain stiffness Gmax can either be 

measured from in-situ tests (e.g. seismic piezocone) or using empirical correlations (e.g. 

Hardin, 1978).  Similarly, soil strength can either be measured in the laboratory (e.g. 

triaxial compression, direct simple shear, triaxial extension) or evaluated from in-situ 
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tests (e.g. cone penetration test CPT, dilatometer DMT, standard penetration test SPT).  

Accordingly, the reference strain εr can be computed in a straightforward manner.  Due to 

the difficulty of obtaining “undisturbed” soil specimens, it would be beneficial to 

estimate the strain at failure γf. 

 

The logarithmic modulus reduction scheme is incorporated into a non-linear elastic 

plastic model in three-dimensional stress space.  The shear modulus is maintained 

constant at G = Gmax below a specified threshold strain γth.  The degree of soil non-

linearity is defined by the normalized limiting strain xL.  When a yield surface is reached, 

soil becomes perfectly plastic where the stress-strain relationship is defined by a flow 

rule.  The model was formulated to allow the representation of both associated and non-

associated flow.  The logarithmic non-linear elastic plastic model LOGNEP was encoded 

using FISH language in the finite difference program FLAC.  For xL =1, the simulated 

LOGNEP stress-strain response becomes linear elastic plastic.  Accordingly, the 

LOGNEP model was verified versus the FLAC built-in Drucker-Prager model for xL =1, 

with excellent agreement.  LOGNEP has the advantage of defining the degree of non-

linearity using the normalized limiting strain xL which is easily calculated from soil 

properties. 

 

One of the objectives of this research is to probe the parallelism between the behavior of 

a single soil element and the overall stress-displacement of shallow footings. Typically, 

soil stress-strain response can be described as partially-saturated, fully-undrained, or 

fully-drained.  In the current research, only completely undrained (ν=0.5) and drained 
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(ν=0.2) stress-strain responses were considered.  For the undrained footing response to 

vertical loading, displacements were found to be controlled by the small-strain shear 

modulus Gmax, normalized limiting strain xL, undrained shear strength su, and footing 

width B or diameter d.  A new normalization scheme was introduced to account for the 

effects of the small-strain shear modulus Gmax, undrained shear strength su, and footing 

width B or diameter d.  Applied stresses are normalized with respect to the ultimate 

bearing capacity qult while displacements are normalized by a reference displacement 

(sr=qult/Ki), where Ki is the initial stiffness of the footing-soil system. The normalized 

simulated stress-displacement data are reduced to functions of the normalized limiting 

strain xL.  The validity of the normalization scheme was verified for both circular and 

strip footings.  Generalized stress-displacement curves were generated to simulate the 

response of vertically loaded circular and strip footings for different values of the 

normalized limiting strain xL.  Similarly, the stress-displacement response of circular and 

strip footings -under drained conditions- was simulated using LOGNEP for different soil 

properties.  Generalized stress-displacement response curves were generated for φ’= 30o, 

35
o
, and 40

o
, for both circular and strip footing subjected to vertical loading. 

 

An approximate closed-form solution was introduced to simulate the stress-displacement 

response of vertically loaded footings within an elastic framework.  The proposed method 

deals with the footing-soil system as an elastic medium with an average modulus K.  The 

soil-footing stiffness starts at an initial stiffness Ki (equivalent to the small-strain shear 

modulus Gmax).  This “global” modulus reduces with the increase in applied stress level 

represented by q/qult, where qult is determined by bearing capacity.  A modified hyperbola 
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(Fahey and Carter, 1993; Fahey et al., 1994; Fahey, 1998) was used as simple means to 

reduce Ki with the applied stress level q.  The modified hyperbola was fitted to 

normalized stress-displacement response data simulated using the LOGNEP model.  The 

hyperbolic fitting parameters f* and g* (describing the stress-displacement response of 

the footing) were matched to the normalized limiting strain xL (describing the stress-

strain behavior of a soil element).  It should be noted that the normalized applied stress 

q/qult is the reciprocal of the factor of safety, allowing for simpler computations of non-

linear stress-displacement response in routine design. 

 

The approximate closed-form solution was calibrated using a database of stress-

displacement response data of full-scale footing and plate load tests, model plate tests, 

and centrifuge model load tests.  The database incorporated data from undrained and 

drained loading conditions.  Soils included in the database comprise clays, silts and 

sands.  The small-strain shear modulus Gmax was measured using in-situ and/or laboratory 

tests for most of the case studies.  When no actual measurements were available, Gmax 

was evaluated using index soil properties.  The fitting parameter f* was maintained 

constant at 0.99, for both undrained and drained loading conditions.  For undrained 

loading, the fitting parameter g* varied between 1.1 and 0.03, with equivalent normalized 

limiting strain xL varying between 19 and 170.  Corresponding backfigured failure strains 

γf were computed and found to compare well with the direct simple shear failure strains 

compiled by DeGroot (1992) further expanded database as presented in Chapter 5.  For 

drained loading, the fitting parameter g* varied between 0.05 and 0.45 with 

corresponding xL values of 80 and 15. 
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11.2 Proposed closed-form method for computing footing displacements 

 

1. Calculate bearing capacity (qult) according to: 

• Undrained loading: ucult sNq ⋅= * , where Nc
*
 = 5.14 and 6.00 for shallow strip 

and square/circular footings, respectively; and su is the undrained shear strength. 

• Drained loading: **5.0 γγ NBqult ⋅⋅⋅= , where B = footing width, γ* = effective 

or total unit weight depending on groundwater level, Nγ
*
 = bearing capacity 

factors (ψ = 0o, c=0) given in Table 11-1. 

 

Table 11-1. Summary of Nγ values for smooth circular and strip footings  

φ’ 
(
O
) 

Circular 

Footing 

Strip 

Footing 

20 1.5 1.5 

30 6.7 5.9 

35 15.0 11.4 

40 36.5 22.1 

Notes: 

1. Angle of dilation ψ = 0o 
2. Cohesion intercept c’ = 0 

 

2. Compute the initial “global” soil-footing stiffness (Ki): 

 

EFh

i
IIIB

G
K

⋅⋅⋅

+⋅⋅
=

)1(2 max ν
………………………………………………………….(11-1) 

 

where Gmax = small-strain shear modulus, ν = Poisson’s ratio = 0.5 and 0.2 for 

undrained and drained loading, respectively; B = footing width, Ih = displacement 

influence factor, IF = foundation flexibility influence factor, and IE = influence 
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factor for embedment.  For circular footings, the influence factors can be computed 

as shown in Table 11-2.  The influence displacement factors for strip footings are 

1.31 and 1.90 for undrained loading (ν=0.5) and drained (ν=0.2) analyses, 

respectively, according to Milovic (1992). 

 

Table 11-2. Summary of equations for computing displacements under circular footings 

Generalized 

Equation for  

computing 

displacement 
s

EFh

E

IIIdq
s

)1( 2ν−⋅⋅⋅⋅⋅
=  

Displacement 

influence factor for 

flexible footings on 

homogeneous soil 

profile, IG 












+⋅

+⋅
−+=

1*4

1*2
1

2

2
*

h

h
hI h  

Foundation rigidity 

influence factor, IF F

F
K

I
106.4

1

4 +
+≈

π  

Embedment 

influence factor, IE ( )[ ]6.1)4.022.1exp(5.3

1
1

+−
−≈

E

E
zd

I
ν

 

Notes: 

s= foundation displacement. 

q= average applied stress. 

d= foundation diameter. 

Ih= elastic displacement influence factor for a flexible footing on a homogeneous soil layer. 

IF= foundation flexibility influence factor. 

IE= influence factor for embedment. 

ν= soil Poisson’s ratio. 
Eso= equivalent elastic soil Young’s modulus beneath foundation base. 

h* = thickness factor = h/d. 

KF = foundation flexibility factor. 

Efoundation = modulus of elasticity of the foundation material (e.g. reinforced concrete). 

Esoil = average soil modulus beneath the foundation over a depth z = 2d. 

t = foundation thickness. 

zE = depth to foundation base beneath ground surface. 

 

3. Evaluate the normalized limiting strain 
min

max

G

G
xL =  defining the degree of stress-

strain non-linearity where 2
max sT VG ⋅= ρ  and 

f

G
γ
τmax

min = .  The shear wave 

velocity Vs, shear strength τmax, and shear strain at failure γf can be obtained from 

laboratory and/or in-situ tests: 
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• High-quality “undisturbed” soil specimens are essential for all laboratory tests.  

The shear wave velocity Vs can be measured from resonant column, bender 

elements, torsional shear apparatus, and specially instrumented triaxial tests 

with internal local strain measurements.  Strength and strain to failure are 

measured from direct simple shear, triaxial and/or plane strain compression and 

extension tests. 

• The shear wave velocity Vs is measured from in-situ geophysical tests (e.g. 

crosshole test, downhole test, spectral analysis of surface waves).  Shear 

strength τmax evaluated from in-situ tests (e.g. CPTu, DMT).  The seismic 

piezocone and dilatometer provide expedient and economic means for 

determining both Gmax and τmax.  For clays under undrained loading, shear strain 

at failure γf can be estimated using DeGroot et al. (1992) database showing γf 

increases with plasticity index.  For drained loading of sands, it was shown that 

the failure strain γf depends on the confining stress, relative density, and degree 

of particle angularity. 

4. Based on the value of the normalized limiting strain xL, footing type, and drainage 

type, appropriate modulus reduction factor (rf = G/Gmax) are presented in Table (11-

3). 

5. Evaluate the stress-displacement response of the footing according to: 

 

( ) frG

IBq
s

⋅+⋅⋅
⋅⋅

=
ν12 max

…………………………………………………….(11-2) 
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Table 11-3. Formulae for computing modulus reduction factor rf 

Footing shape Drainage Reduction factor, rf 

Undrained 










−
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ult
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q

q
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q
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11.3 Simplified closed-form method for computing footing displacements 

 

Generally, geotechnical engineers are interested in estimating footing displacements in 

the working stress region (factor of safety greater than 3).  For factors of safety between 2 

and 10, a simplified formula was developed to calculate footing displacements under 

circular footings according to (2 < FS < 10): 

 

6.1

85.0

min

max

FS

G

G

s

s

r









⋅

=

θ

………………………………………………………………..(11-3) 
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where: 

s = footing displacement.  

sr = reference displacement = ( )υ+⋅⋅

⋅⋅⋅

1maxGd

IIIq EFhult . 

Ih, IF, IE = displacement, footing flexibility and embedment influence factors, respectively 

(refer to Table 11-2). 

Gmax = representative small-strain shear modulus = 
22
sT V⋅ρ . 

ρT= representative total soil mass density. 

Vs = representative shear wave velocity. 

Gmin = minimum secant shear modulus = 
fγ

τmax . 

τmax = representative soil strength. 

γf = representative failure strain. 

ν = Poisson’s ratio. 

θ = constant dependent on drainage type and friction angle according to Table (11-4). 

q = applied stress. 

qult = ultimate bearing capacity. 

 

Table 11-4. Values of constant θ 

Friction angle, φ’ (o) θ 

Undrained “φ = 0o” 0.58 

Drained, 30
o
 0.56 

Drained, 35
o
 0.75 

Drained, 40
o
 1.06 
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The accuracy of Equation 11-3 in representing the normalized displacement of circular 

footings is demonstrated in Figures 11-2 and 11-3, which show the variation of the 

normalized displacement s/sr with factor of safety q/qult for different degrees of non-

linearity.  Simulated results are presented as dots while the approximate closed-form 

solution is shown as solid lines.  Good match is found between the simulated and closed-

form solutions. 

 

 

 

 

 

 

 

 

Figure 11-2. Variation of the normalized footing displacement (s/sr) with factor of safety 

for different normalized limiting strains for undrained loading of circular footings 

 

Alternatively, Equation 11-2 can be reformatted to calculate displacement (s) as a 

function of applied stress (q) according to: 

 

( ) 6.0

6.1

85.0
min

15.0
max 12 ult
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Figure 11-3. Variation of the normalized footing displacement (s/sr) with factor of safety 

for different normalized limiting strains for drained loading of circular footings for f’ = 

30
o
, 35

o
, 40

o
 

 

0

1

2

3

4

5

6

7

8

9

10

2 3 4 5 6 7 8 9 10
Factor of safety, qult/q

N
o
rm

a
li
z
e
d
 d
is
p
la
c
e
m
e
n
t,
 s
/s
r

6.1

85.0

min

max56.0

FS

G

G

s

s

r









⋅

=

φ ' = 30o

0

1

2

3

4

5

6

7

8

9

10

2 3 4 5 6 7 8 9 10
Factor of safety, qult/q

N
o
rm

a
li
z
e
d
 d
is
p
la
c
e
m
e
n
t,
 s
/s
r

6.1

85.0

min

max75.0

FS

G

G

s

s

r









⋅

=

φ ' = 35o

0

1

2

3

4

5

6

7

8

9

10

2 3 4 5 6 7 8 9 10

Factor of safety, qult/q

N
o
rm

a
li
z
e
d
 d
is
p
la
c
e
m
e
n
t,
 s
/s
r

φ ' = 40o

6.1

85.0

min

max06.1

FS

G

G

s

s

r









⋅

=



 265

11.4 Recommendations for future research 

 

The current study proposed numerical and analytical solutions to the small-strain stiffness 

Gmax in modeling non-linear response of shallow footings.  It would be highly desirable 

to explore the applicability of the same procedure for use with deep foundations under 

both drained and undrained conditions. 

 

The non-linearity of the soil stress-strain response was defined using small-strain soil 

properties (Gmax, γth) and high-strain levels (su or τmax).  The possibility of measuring a 

soil modulus at an intermediate stress level would improve the degree of accuracy of 

defining the degree of stress-strain non-linearity.  An intermediate soil modulus can be 

obtained using the research dilatometer (e.g. Campanella et al., 1985) and/or the 

pressuremeter (e.g. Mayne, 2001). 
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APPENDIX A 

 

SHALLOW FOUNDATION LOAD-DISPLACEMENT DATABASE  

 

 

 

A database of 29 load tests on footings and large plates was compiled to examine the 

different criteria to determine bearing capacity.  The full set of data is from 14 test sites, 

as presented in Table A-1.  The case histories include a wide range of surface foundations 

varying from 0.4-m square footings (Federal University of Rio Grande do Sul, Brazil) to 

large unexpected failures of mat foundations 66.5 x 15.9 m (Fargo, USA).  Soil types 

range from soft to stiff clays to silts and sands. 
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Table A-1. Database of load test data on shallow footings 

Site Soil Type 
GWT  

(m) 

Foundation 

dimensions 

B x L 

(m x m) 

Test 

No. 

Drainage 

Conditions 

during 

loading 

Reference: 

1.05 x 1.05 BK-1 

0.9 x 0.9 BK-2 

0.75 x 0.75 BK-3 

0.675 x 0.675 BK-4 

Bangkok, Thailand Soft clay 0 

0.6 x 0.6 BK-5 

Undrained 
Brand et al. 

(1972) 

Belfast, Ireland Soft clayey silt 0 2 x 2 BL-1 Undrained Lehane (2003) 

Bothkennar, UK 
Soft marine to 

estuarine clay 
0.2 2.2 x 2.2 BO-1 Undrained 

Hight et al. 

(1997) 

Jardine et al. 

(1995) 

0.865 x 0.865 CO-1 
Cowden, UK Glacial till 1a 

0.865 x 0.865 CO-2 
Undrained Marsland & 

Powell (1980) 

Fargo, USA 

(Grain Elevator) 

Silty clay (sand 

layer 4.5 to 6m) 
2.2 66.5 x 15.9 FO-1 Undrained 

Nordlund and 

Deere (1972) 

0.4 x 0.4 BR-1 Federal University of 

Rio Grande do Sul, 

Brazil 

Silty sand 

residuum 
4 

0.7 x 0.7 BR-2 

Partially 

Saturated 

Consoli et al. 

(1998) 

Greenfield, Portugal 
Silty sand to 

silty clayey 
variable 

1.2 x 1.2 

(Circular) 
GR-1 

Partially 

Saturated 

Viana da 

Fonseca (2001) 

1 x 1 HA-1 
Haga, Norway 

Medium stiff 

OC clay 
> 8 

1 x 1 HA-2 
Undrained 

Andersen and 

Stenhamar 

(1982) 
Labenne, France Dune sand 3 0.7 x 0.7 LA-1 Drained Amar, et al 

(1994) 
Shellhaven, UK Soft clay 0.75 5 x 14 SN-1 Undrained Schnaid et al. 

(1993) 
1 x 1 TX-1 

1.5 x 1.5 TX-2 

2.5 x 2.5 TX-3 

3 x 3 TX-4 

Texas A & M, USA 
Eocene deltaic 

sand 
4.9 

3 x 3 TX-5 

Drained 
Briaud and 

Gibbens (1999) 

0.5 x 0.5 TL-1 

1 x 1 TL-2 Tornhill, Sweden Clay till 0.2 

2 x 2 TL-3 

Drained Larsson (1997) 

0.5 x 0.5 VT-1 
Vagverket, Sweden Silt 0.2 

1 x 1 VT-2 
Drained Larsson (1997) 

0.5 x 0.5 VR-1 Vattahammar, 

Sweden 
Silt to clayey silt 12.65 

1 x 1 VR-2 
Drained Larsson (1997) 

Notes: 

a
 Underdrainage to lower chalk layer. Ground water table is not fully hydrostatic. 

GWT = groundwater table below foundation 

level 

B = footing width 

L = footing length 
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Figure A-1. Footing stress-displacement response plotted on (a) standard axes, (b) per 

Chin’s transformed axes, (raw data from Brand et al., 1972) 
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Figure A-2. Footing stress-displacement response plotted on (a) standard axes, (b) per 

Chin’s transformed axes (raw data from Brand et al., 1972) 
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Figure A-3. Footing stress-displacement response plotted on (a) standard axes, (b) per 

Chin’s transformed axes, and (c) per De Beer’s transformed axes (raw data from Brand et 

al., 1972) 
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Figure A-4. Footing stress-displacement response plotted on (a) standard axes, (b) per 

Chin’s transformed axes (raw data from Brand et al., 1972) 
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Figure A-5. Footing stress-displacement response plotted on (a) standard axes, (b) per 

Chin’s transformed axes (raw data from Brand et al., 1972) 
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Figure A-6. Footing stress-displacement response plotted on (a) standard axes, (b) per 

Chin’s transformed axes (raw data from Lehane, 2003) 
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Figure A-7. Footing stress-displacement response plotted on (a) standard axes, (b) per 

Chin’s transformed axes (raw data from Hight et al., 1997; Jardine et al. 1995) 
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Figure A-8. Footing stress-displacement response plotted on (a) standard axes, (b) per 

Chin’s transformed axes (raw data from Marsland and Powell, 1980) 
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Figure A-9. Footing stress-displacement response plotted on (a) standard axes, (b) per 

Chin’s transformed axes (raw data from Marsland and Powell, 1980) 
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Figure A-10. Footing stress-displacement response plotted on (a) standard axes, (b) per 

Chin’s transformed axes (raw data from Nordlund and Deere, 1972) 
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Figure A-11. Footing stress-displacement response plotted on (a) standard axes, (b) per 

Chin’s transformed axes (raw data from Consoli et al., 1998) 
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Figure A-12. Footing stress-displacement response plotted on (a) standard axes, (b) per 

Chin’s transformed axes (raw data from Consoli et al., 1998) 
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Figure A-13. Footing stress-displacement response plotted on (a) standard axes, (b) per 

Chin’s transformed axes (raw data from Viana da Fonseca, 2001) 
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Figure A-14. Footing stress-displacement response plotted on (a) standard axes, (b) per 

Chin’s transformed axes (raw data from Andersen and Stenhamar, 1982) 

0.E+00

2.E-05

4.E-05

6.E-05

8.E-05

1.E-04

0 0.01 0.02 0.03 0.04

Normalized displacement, s/deq 

s
/d
e
q
/q
 (
m
2
/k
N
)

Shallow Footing

Haga-1x1 m

0

100

200

300

400

0 5 10 15 20 25 30 35 40

Displacement, s (mm)

A
p
p
li
e
d
 s
tr
e
s
s
, 
q
 (
k
P
a
)

Shallow Footing

Haga-1x1 m



 282

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-15. Footing stress-displacement response plotted on (a) standard axes, (b) per 

Chin’s transformed axes (raw data from Andersen and Stenhamar, 1982) 
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Figure A-16. Footing stress-displacement response plotted on (a) standard axes, (b) per 

Chin’s transformed axes (raw data from Amar, et al., 1994) 
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Figure A-17. Footing stress-displacement response plotted on (a) standard axes, (b) per 

Chin’s transformed axes (raw data from Schnaid et al., 1993) 
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Figure A-18. Footing stress-displacement response plotted on (a) standard axes, (b) per 

Chin’s transformed axes (raw data from Briaud and Gibbens, 1999) 
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Figure A-19. Footing stress-displacement response plotted on (a) standard axes, (b) per 

Chin’s transformed axes (raw data from Briaud and Gibbens, 1999) 

0.0E+00

1.0E-05

2.0E-05

3.0E-05

4.0E-05

5.0E-05

0 0.01 0.02 0.03 0.04 0.05 0.06

Normalized displacement, s/deq 

s
/d
e
q
/q
 (
m
2
/k
N
)

Shallow Footing

Texas A&M-1.5x1.5 m

0

300

600

900

1200

1500

0 40 80 120 160

Displacement, s (mm)

A
p
p
li
e
d
 s
tr
e
s
s
, 
q
 (
k
P
a
)

Shallow Footing

Texas A&M-1.5x1.5 m



 287

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-20. Footing stress-displacement response plotted on (a) standard axes, (b) per 

Chin’s transformed axes (raw data from Briaud and Gibbens, 1999) 
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Figure A-21. Footing stress-displacement response plotted on (a) standard axes, (b) per 

Chin’s transformed axes (raw data from Briaud and Gibbens, 1999) 
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Figure A-22. Footing stress-displacement response plotted on (a) standard axes, (b) per 

Chin’s transformed axes (raw data from Briaud and Gibbens, 1999) 
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Figure A-23. Footing stress-displacement response plotted on (a) standard axes, (b) per 

Chin’s transformed axes (raw data from Larrson, 1997) 
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Figure A-24. Footing stress-displacement response plotted on (a) standard axes, (b) per 

Chin’s transformed axes (raw data from Larsson, 1997) 
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Figure A-25. Footing stress-displacement response plotted on (a) standard axes, (b) per 

Chin’s transformed axes (raw data from Larsson, 1997) 
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Figure A-26. Footing stress-displacement response plotted on (a) standard axes, (b) per 

Chin’s transformed axes (raw data from Larsson, 1997) 

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100 120 140 160

Displacement, s (mm)

A
p
p
li
e
d
 s
tr
e
s
s
, 
q
 (
k
P
a
)

Shallow Footing

Vagverket-0.5x0.5 m

0.E+00

1.E-04

2.E-04

3.E-04

4.E-04

0 0.05 0.1 0.15 0.2 0.25 0.3

Normalized displacement, s/deq 

s
/d
e
q
/q
 (
m
2
/k
N
)

Shallow Footing

Vagverket-0.5x0.5 m



 294

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-27. Footing stress-displacement response plotted on (a) standard axes, (b) per 

Chin’s transformed axes (raw data from Larsson, 1997) 
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Figure A-28. Footing stress-displacement response plotted on (a) standard axes, (b) per 

Chin’s transformed axes (raw data from Larsson, 1997) 
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Figure A-29. Footing stress-displacement response plotted on (a) standard axes, (b) per 

Chin’s transformed axes (raw data from Larsson, 1997) 
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APPENDIX B 

 

LABORATORY STRESS-STRAIN DATA FOR CALIBRATION 

OF LOGARITHMIC FITTING FUNCTION 

 

 

 

This appendix contains undrained laboratory stress-strain curves used to calibrate the 

non-linear stress-strain response of clays and silts.  Soils included in the calibration are 

listed in Table B-1.  The table includes: site location, test type, sampler type, small-strain 

stiffness Gmax, effective overburden stress σvo’, at rest earth pressure coefficient, 

normalized shear strength su/ σvo’, ∆qu = (σ1-σ3)max, failure strain εf (%), reference strain 

εr (%), normalized limiting strain xL, and relevant references.  The database includes 

stress-strain response data from unconfined compression tests, Ko-consolidated 

compression tests, direct simple shear tests and Ko-consolidated extension tests.  Table B-

2 lists the references for direct simple shear failure strains, plastic limit, liquid limit, and 

plasticity indices for data presented in Chapter V.  Soils included in the database have 

plasticity indices ranging from 6% and 84.1%.  The stress-strain data presented in Table 

B-1 are plotted in Figures B-1 through B-40. 
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Table B-1. List of properties of soils used in investigating factors affecting xL 
Site and 

Depth (m) 

Test 

Type 

Sampler 

Type 

Gmax 

MPa 
σσσσvo' 
kPa 

Ko su/σ/σ/σ/σvo'    
∆∆∆∆qu 

kPa 

εεεεf 

(%) 

εεεεr 

(%) 
xL Figure Reference 

Ariake-8 m CKoUC Laval 4.4 35 0.45 0.48 214 1.20 0.11 11 B-1 

Ariake-8 m CKoUE Laval 4.4 35 0.45 0.29 40 7.00 0.30 23 B-2 

Tanaka & Tanaka 
(1999) 

Ariake-10 m CKoUC Sherbrooke 5.4 40 0.45 0.51 20 1.25 0.12 10.4 B-3 

Ariake-10 m CKoUC ELE100 5.4 40 0.45 0.51 20 2.30 0.12 19.0 B-4 

Tanaka & Tanaka 

(1999); 

Tatsuoka (2002) 

BKK1-5.6 m CKoUC Laval 9.4 57 0.70 0.34 38 1.60 0.14 11.4 B-5 

BKK1-9.6 m CKoUC Laval 10.9 85 0.74 0.40 44 2.00 0.13 15.4 B-6 

BKK1-13.6 m CKoUC Laval 17.2 133 0.74 0.33 53 1.50 0.10 15.0 B-7 

BKK1-17.2 m CKoUC Laval 51.8 174 0.53 0.39 61 0.50 0.04 12.5 B-8 

Shibuya & 

Tamrakar(1999) 

BKK2-5.3 m CKoUC Laval 9.0 35 0.54 0.76 37 0.70 0.14 5.0 B-9 
Shibuya et al. 

(2000) 

BKK2-7.3 m CKoUC Laval 9.0 50 0.40 0.53 23 0.80 0.09 9.0 B-10 
Shibuya et al. 

(2000) 

BKK2-9.3 m CKoUC Laval 10.0 70 0.37 0.46 20 0.70 0.07 10.0 B-11 
Shibuya et al. 

(2000) 

BKK2-11.3 m CKoUC Laval 18.0 97 0.44 0.40 23 0.65 0.04 15.5 B-12 
Shibuya et al. 

(2000) 

BKK2-13.3 m CKoUC Laval 23.0 143 0.51 0.34 26 0.65 0.04 15.5 B-13 
Shibuya et al. 
(2000) 

BOK-2.62 m CKoUC Laval 12.0 28.5 0.79 0.72 35 1.10 0.10 11.0 B-14 

BOK -2.67 m CKoUC Sherbrooke 12.0 28.5 0.79 0.64 31 1.50 0.09 16.7 B-15 

BOK -2.73 m CKoUC Piston 12.0 28.5 0.79 0.63 30 2.70 0.08 33.8 B-16 

BOK -5.3 m CKoUE Laval 17.0 48 0.60 0.26 44 1.60 0.09 18.7 B-17 

BOK -5.4 m CKoUC Laval 17.0 48 0.60 0.52 31 0.85 0.06 14.0 B-18 

BOK –6.0 m CKoUC Laval 17.0 53 0.60 0.43 26 1.00 0.051 19.6 B-19 

BOK -7.89m CKoUC Laval 20.3 67 0.58 0.58 32 1.15 0.05 23.0 B-20 

BOK -12.57m CKoUC Piston 28.4 100 0.70 0.36 43 2.80 0.050 56.0 B-21 

BOK -12.61m CKoUC Laval 28.4 100 0.70 0.38 46 1.40 0.054 27.7 B-22 

BOK -15.35m CKoUC Laval 43.4 120 0.67 0.40 56 1.50 0.04 36 B-23 

BOK -15.26m CKoUC Piston 43.4 120 0.67 0.33 40 2.60 0.03 85 B-24 

Hight et al. 

(1992); 

Hight et al. (1997) 

BOK -11 m UC Sherbrooke 16.7 89 N/A 0.39 69 2.50 0.14 17.9 B-25 

BOK -11 m UC ELE100 16.7 89 N/A 0.28 50 11.5 0.10 115 B-26 

Hight et al. (1997) 
Tanaka (2000) 

LIE -16m CKoUC Sherbrooke 78.0 136 0.50 0.37 32 0.40 0.014 29.6 B-27 Lunne and 

Lacasse (1999) 

Tanaka (2000) 

LOU -12 m CKoUC Laval 26.0 92 0.89 0.46 113 1.20 0.14 8.6 B-28 Tanaka et al. 

(2001) 

Onsoy-3.2 m CKoUC Sherbrooke 10.5 24 0.41 0.63 14 1.00 0.046 19.3 B-29 

Onsoy-3.5 m CKoUC NGI95 10.5 24 0.51 0.52 13 1.35 0.043 31.4 B-30 

Onsoy-6.2 m DSS Sherbrooke 14.1 35 N/A 0.36 13 1.55 0.09 17.2 B-31 

Onsoy-6.2 m DSS NGI95 14.1 35 N/A 0.38 14 1.30 0.096 13.5 B-32 

Lacasse et al. 

(1985) 

Gillespie et al. 
(1985) 

 

SF -7.3 m DSS Piston 10.7 67 N/A 0.27 18 6.0* 0.17* 35.5 B-33 

SF -7.75 m CKoUC Piston 10.7 67 0.62 0.40 28 1.20 0.09 14 B-34 

SF -12.4 m CKoUC Piston 14.8 105 0.62 0.35 22 1.62 0.05 32 B-35 

SF -23.25 m CKoUC Piston 25.5 178 0.62 0.33 27 1.20 0.04 33.6 B-36 

Hunt et al. (2002) 

Pestana et al. 

(2002) 

SNG -20 m CKoUC JPN 29.0 196 0.29 0.68 52 0.75 0.06 12.7 B-37 

SNG -22 m CKoUC JPN 39.0 210 0.66 0.38 89 0.85 0.08 11 B-38 

SNG -22 m CKoUE JPN 39.0 210 0.62 0.33 220 6.40 0.19 34 B-39 

Tanaka et al. 

(2001) 

Watabe (1999) 

YAM -29.5m CKoUC JPN 43.0 250 0.50 0.79 253 1.10 0.20 5.4 B-40 Tanaka et al. 

(2001) 

Notes: 

CKoUC = Ko-consolidated undrained triaxial compression 

CKoUE = Ko-consolidated undrained triaxial extension 

UC = unconfined compression 

DSS = direct simple shear 

Gmax = small-strain shear modulus 

σvo’ = effective overburden stress 
Ko = at rest earth pressure coefficient 

su = undrained shear strength 

∆qu = (σ1-σ3)f-(σ1-σ3)o 
εf = strain at failure 

εr = reference strain 

xL = normalized limiting strain 

*shear strain γ 

BKK1 = Bangkok (AIT) 

BKK1 = Bangkok (NNH) 

BOK = Bothkennar 

LIE = Lierstranda 

LOU= Louiseville 

SF = San Francisco 

SNG = Singapore 
YAM = Yamashita 
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Table B-2. List of soil properties used in direct simple shear failure strain database 

Location OCR 
wn 

(%) 

LL 

(%) 

PI 

(%) 
γf 

(%) 
Reference 

Higher Harrison Bay, 

Alaska 
1 N/A N/A 9.7 11.3 Yin (1985)* 

Lower Harrison Bay, 

Alaska 
1 N/A N/A 18.3 11.0 Yin (1985)* 

Smith Bay W, Alaska 1 N/A N/A 24.4 10.9 Young (1986)* 

Smith Bay T, Alaska 1 N/A N/A 24.8 13.8 Young (1986)* 

Bangkok (CH), Thailand 1 48.6 65 41.0 8.7 Ladd and Edgers (1972)* 

Bangkok (CH), Thailand 1 52.2 65 41.0 7.0 Ladd and Edgers (1972)* 

Bangkok (CH), Thailand 1 52.2 65 41.0 10.0 Ladd and Edgers (1972)* 

Bombay, India 1 N/A N/A 43.9 12.3 MIT (1982)* 

Ariake, Japan 1 130 110 65.0 10.5 Tang et al. (1994) 

Ariake, Japan 1 140 120 70.0 12.5 Tang et al. (1994) 

Omaha, Midwest 1 N/A N/A 43.0 11.9 MIT (1985)* 

Franklin NH, New 

England 
1 N/A N/A 5.5 5.1 MIT (1983)* 

Portsmouth, New England 1 N/A N/A 15.0 1.6 Ladd and Edgers (1972)* 

Portland, New England 1 N/A N/A 20.0 4.0 Ladd and Edgers (1972)* 

Boston, New England 1 N/A N/A 21.0 6.1 Ladd and Edgers (1972)* 

Draw 7 Mass, New 

England 
1 N/A N/A 30.5 11.8 MIT (1987)* 

Maine, New England 1 N/A N/A 34.0 10.6 Ladd and Edgers (1972)* 

New Jersey, New England 1 32 36 18.0 7.5 Koutsoftas (1970) 

AGS, New England 1 N/A N/A 38.0 11.9 Koutsoftas and Ladd (1970) 

Connecticut Valley, New 

England 
1 N/A N/A 20.5 6.5 Lacasse et al. (1972)* 

James Bay`B-2, Canada 3 40 31 12.0 2.81 Lefebvre et al. (1988) 

James Bay`B-6, Canada 1.45 42.4 31 10.0 1.69 Lefebvre et al. (1988) 

Linkoping, Sweden 1 90 80 52.0 15.0 Larsson (1977) 

Linkoping, Sweden 1 90 80 52.0 14.0 Larsson (1977) 

Ellingsrud, Norway 1.3 37 27 6.0 1.5 Lacasse et al. (1985) 

Ellingsrud, Norway 1.3 36 27 6.0 1.4 Lacasse et al. (1985) 

Ellingsrud, Norway 1.3 39 27 6.0 1.5 Lacasse et al. (1985) 

Ellingsrud, Norway 1.3 35 27 6.0 1.3 Lacasse et al. (1985) 

Manglerud, Norway 1 34.6 27 8.0 4.0 Bjerrum and Landva (1966) 

Manglerud, Norway 1 34.6 27 8.0 3.1 Bjerrum and Landva (1966) 

Manglerud, Norway 1 34.3 27 8.0 5.3 Bjerrum and Landva (1966) 

Manglerud, Norway 1 35.6 27 8.0 3.8 Bjerrum and Landva (1966) 

Emmerstad, Norway 1.2 44 28 8.0 2.8 Lacasse et al. (1985) 

Emmerstad, Norway 1.2 44 28 8.0 1.8 Lacasse et al. (1985) 

Drammen, Norway 1 50 55 28.0 4.0 Dyvik et al. (1987) 

Haga, Norway 1 N/A N/A 15.0 2.2 Lacasse and Vucetic (1970) 

Onsoy, Norway 2.3 64 58 30.0 3.0 Lacasse et al. (1985) 

Onsoy, Norway 1.5 70 70 40.0 2.8 Lacasse et al. (1985) 
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Location OCR 
wn 

(%) 

LL 

(%) 

PI 

(%) 
γf 

(%) 
Reference 

Onsoy, Norway 1.5 71 70 44.0 3.0 Lacasse et al. (1985) 

Cowden, UK  N/A N/A 18.0 10.67 Atkinson et al. (1991) 

Bothkennar, UK 1.5 N/A 61 34.0 8.1 Hight (2003) 

Bothkennar, UK 1.5 N/A 69 35.0 9.5 Hight (2003) 

Bothkennar, UK 1.5 N/A 73 38.0 5.7 Hight (2003) 

Bothkennar, UK 1.5 N/A 72 40.0 5.2 Hight (2003) 

Bothkennar, UK 1.5 N/A 68 37.0 6.0 Hight (2003) 

Bothkennar, UK 1.5 N/A 73 38.0 5.7 Hight (2003) 

Bothkennar, UK 1.5 N/A 58 29.0 3.1 Hight (2003) 

Empire, LA, Southern 

USA 
N/A N/A N/A 54.2 13.6 Azzouz and Baligh (1984) 

Alabama, Southern USA N/A N/A N/A 56.0 10.4 MIT (1988)* 

Atchafalaya, LA, Southern 

USA 
1 N/A N/A 75.0 21.0 Williams (1973)* 

Atchafalaya, LA, Southern 

USA 
1 72 95 75.0 18.4 Ladd and Edgers (1972)* 

Atchafalaya, LA, Southern 

USA 
1 72.6 95 75.0 22.8 Ladd and Edgers (1972)* 

Atchafalaya, LA, Southern 

USA 
1 76.3 95 75.0 21.9 Ladd and Edgers (1972)* 

Tuy Cariaco, Venezuela 1 N/A N/A 20.0 6.0 Mishu et al. (1982)* 

Orinoco, Venezuela 1 N/A N/A 42.8 11.8 Ladd et al. (1980)* 

Orinoco, Venezuela 1 N/A N/A 47.3 11.1 Ladd et al. (1980)* 

North of Paria, Venezuela 1 N/A N/A 47.5 9.6 Mishu et al. (1982)* 

Tuy Cariaco, Venezuela 1 N/A N/A 49.1 13.2 Mishu et al. (1982)* 

San Francisco, Western 

USA 
1 N/A N/A 25.2 8.6 MIT (1985)* 

Great Salt Lake, Western 

USA 
1 N/A N/A 30.0 9.1 MIT (1987)* 

Great Salt Lake, Western 

USA 
1 N/A N/A 31.3 6.3 MIT (1985)* 

Klamath Falls, Western 

USA 
1 N/A N/A 84.1 11.7 MIT (1986)* 

Boston, Eastern USA 1 37 41 21.0 6.0 Ladd and Edgers (1972)* 

Boston, Eastern USA 1 37 41 21.0 4.5 Ladd and Edgers (1972)* 

Boston, Eastern USA 1 37 41 21.0 6.2 Ladd and Edgers (1972)* 

* DeGroot et al. (1992) 

 

 

 

 

Table B-2. (continued) 
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Figure B-1. Logarithmic function fitted to stress-strain data from CKoUC test on a Laval 

clay sample from Ariake-Japan, depth = 8-m (Tanaka and Tanaka, 1999) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-2. Logarithmic function fitted to stress-strain data from CKoUE test on a Laval 

clay sample from Ariake-Japan, depth = 8-m (Tanaka and Tanaka, 1999) 
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Figure B-3. Logarithmic function fitted to stress-strain data from CKoUC test on a 

Sherbrooke clay sample from Ariake-Japan, depth = 10-m (Tanaka and Tanaka, 1999; 

Tatsuoka, 2002) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-4 Logarithmic function fitted to stress-strain data from CKoUC test on an 

ELE100 clay sample from Ariake-Japan, depth = 10-m (Tanaka and Tanaka, 1999; 

Tatsuoka, 2002) 
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Figure B-5. Logarithmic function fitted to stress-strain data from CKoUC test on a JPN 

clay sample from Bangkok (AIT)-Thailand, depth =5.6-m (Shibuya and Tamrakar, 1999) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-6. Logarithmic function fitted to stress-strain data from CKoUC test on a JPN 

clay sample from Bangkok (AIT)-Thailand, depth = 9.6-m (Shibuya and Tamrakar, 1999) 
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Figure B-7 Logarithmic function fitted to stress-strain data from CKoUC test on a JPN 

clay sample from Bangkok-Thailand, depth = 13.6-m (Shibuya and Tamrakar, 1999) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-8. Logarithmic function fitted to stress-strain data from CKoUC test on a JPN 

clay from Bangkok-Thailand, depth = 17.2-m (Shibuya and Tamrakar, 1999) 
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Figure B-9 Logarithmic function fitted to stress-strain data from CKoUC test on a Laval 

clay sample from Bangkok (NNH)-Thailand, depth = 5.3-m (Shibuya et al., 2000) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-10.  Logarithmic function fitted to stress-strain data from CKoUC test on a 

Laval clay sample from Bangkok (NNH)-Thailand, depth = 7.3-m (Shibuya et al., 2000) 
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Figure B-11. Logarithmic function fitted to stress-strain data from CKoUC test on a 

Laval clay sample from Bangkok (NNH)-Thailand, depth = 9.3-m (Shibuya et al., 2000) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-12. Logarithmic function fitted to stress-strain data from CKoUC test on a 

Laval clay sample from Bangkok (NNH)-Thailand, depth = 11.3-m (Shibuya et al., 2000) 
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Figure B-13. Logarithmic function fitted to stress-strain data from CKoUC test on a 

Laval clay sample from Bangkok (NNH)-Thailand, depth = 13.3-m (Shibuya et al., 2000) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-14. Logarithmic function fitted to stress-strain data from CKoUC test on a 

Laval sample from Bothkennar-UK, depth = 2.62-m (Hight et al., 1992; 1997) 
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Figure B-15. Logarithmic function fitted to stress-strain data from CKoUC test on a 

Sherbrooke clay sample from Bothkennar-UK, depth = 2.67-m (Hight et al., 1992; 1997) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-16. Logarithmic function fitted to stress-strain data from CKoUC test on a 

piston clay sample from Bothkennar-UK, depth = 2.73-m (Hight et al., 1992; 1997) 
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Figure B-17. Logarithmic function fitted to stress-strain data from CKoUC test on a 

Laval clay sample from Bothkennar-UK, depth = 5.3-m (Hight et al., 1992; 1997) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-18. Logarithmic function fitted to stress-strain data from CKoUC test on a 

Sherbrooke clay sample from Bothkennar-UK, depth = 5.4-m (Hight et al., 1992; 1997) 
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Figure B-19. Logarithmic function fitted to stress-strain data from CKoUC test on a 

Laval clay sample from Laval-UK, depth = 7.9-m (Hight et al., 1992; 1997) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-20. Logarithmic function fitted to stress-strain data from CKoUC test on a 

Laval clay sample from Bothkennar-UK, depth = 7.9-m (Hight et al., 1992; 1997) 
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Figure B-21. Logarithmic function fitted to stress-strain data from CKoUC test on a 

Laval clay sample from Bothkennar-UK, depth = 12.57-m (Hight et al., 1992; 1997) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-22. Logarithmic function fitted to stress-strain data from CKoUC test on a 

Laval clay sample from Bothkennar-UK, depth = 12.61-m (Hight et al., 1992; 1997) 
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Figure B-23. Logarithmic function fitted to stress-strain data from CKoUC test on a 

piston clay sample from Bothkennar-UK, depth = 15.26-m (Hight et al., 1992; 1997) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-24. Logarithmic function fitted to stress-strain data from CKoUC test on a 

Laval clay sample from Bothkennar-UK, depth = 15.35-m (Hight et al., 1992; 1997) 
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Figure B-25. Logarithmic function fitted to stress-strain data from UC test on a 

Sherbrooke clay sample from Bothkennar-UK, depth = 11-m (Hight et al., 1997; Tanaka, 

2000) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-26. Logarithmic function fitted to stress-strain data from UC test on an ELE100 

clay sample from Bothkennar-UK, depth = 11-m (Hight et al., 1997; Tanaka, 2000) 

0

10

20

30

40

50

60

70

80

0 0.5 1 1.5 2 2.5

Axial strain    εεεε a (%)

D
e
v
ia
to
ri
c
 s
tr
e
s
s
        
σσ σσ
a
−
σ

−
σ

−
σ
−
σ
r     
(k
P
a
)

Bothkennar - UK

Depth = 11-m

CKoUC

Sherbrooke sampler

Emax = 50.1  MPa

su/σvo' = 0.39

ε r = 0.14 %

ε f = 2.50 %

xL = 17.9

0

10

20

30

40

50

0 1 2 3 4 5 6 7 8 9 10 11 12

Axial strain    εεεε a (%)

D
e
v
ia
to
ri
c
 s
tr
e
s
s
        
σσ σσ
a
−
σ

−
σ

−
σ
−
σ
r     
(k
P
a
)

Bothkennar - UK

Depth = 11-m

CKoUC

ELE100 sampler

Emax = 50.1  MPa

su/σvo' = 0.28

ε r = 0.10 %

ε f = 11.5 %

xL = 115



 314

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-27. Logarithmic function fitted to stress-strain data from CKoUC test on a 

Sherbrooke clay sample from Liestranda-Norway, depth = 16-m (Lunne and Lacasse, 

1999; Tanaka, 2000) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-28. Logarithmic function fitted to stress-strain data from CKoUC test on a 

Sherbrooke clay sample from Louisville-Canada, depth = 12-m (Tanaka et al., 2001) 
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Figure B-29. Logarithmic function fitted to stress-strain data from CKoUC test on a 

Sherbrooke clay sample from Onsoy, depth = 3.2-m (Lacasse et al., 1985; Gillespie et al., 

1985) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-30. Logarithmic function fitted to stress-strain data from CKoUC test on a 

piston clay sample from Onsoy-Norway, depth = 3.5-m (Lacasse et al., 1985; Gillespie et 

al., 1985) 
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Figure B-31. Logarithmic function fitted to stress-strain data from DSS test on a 

Sherbrooke clay sample from Onsoy-Norway, depth= 6.2-m (Lacasse et al., 1985; 

Gillespie et al., 1985) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-32. Logarithmic function fitted to stress-strain data from DSS test on a NGI95 

piston clay sample from Onsoy-Norway, depth= 6.2-m (Lacasse et al., 1985; Gillespie et 

al., 1985) 

0

2

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Shear strain    γγγγ (%)

S
h
e
a
r 
s
tr
e
s
s
,     
 τ τ  τ τ
    (
k
P
a
)

Onsoy - Sweden

Depth = 6.2-m

DSS

Sherbrooke sampler

Gmax = 14.1  MPa

su/σvo' = 0.36

γr = 0.09 %

γf = 1.55 %

xL = 17.2

0

2

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Shear strain,    γγγγ (%)

S
h
e
a
r 
s
tr
e
s
s
,     
 τ τ  τ τ
    (
k
P
a
)

Onsoy - Sweden

Depth = 6.2-m

DSS

NGI95 sampler

Gmax = 14.1  MPa

su/σvo' = 0.38

γr = 0.096 %

γf = 1.30 %

xL = 13.5



 317

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-33. Logarithmic function fitted to stress-strain data from DSS test on a piston 

clay sample from San Francisco-USA, depth= 7.3-m (Hunt et al., 2002; Pestana et al., 

2002) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-34. Logarithmic function fitted to stress-strain data from CKoUC test on a 

piston clay sample from San Francisco-USA, depth= 7.75-m (Hunt et al., 2002; Pestana 

et al., 2002) 
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Figure B-35. Logarithmic function fitted to stress-strain data from CKoUC test on a 

piston clay sample from San Francisco-USA, depth= 12.4-m (Hunt et al., 2002; Pestana 

et al., 2002) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-36. Logarithmic function fitted to stress-strain data from CKoUC test on a 

piston clay sample from San Francisco-USA, depth= 23.25-m (Hunt et al., 2002; Pestana 

et al., 2002) 

30

35

40

45

50

55

60

65

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Axial strain ε ε ε εa    (%)(%)(%)(%)

D
e
v
ia
to
ri
c
 s
tr
e
s
s
 σσ σσ

a
−
σ

−
σ
−
σ
−
σ
r     
(k
P
a
)

San Francisco - USA

Depth = 12.4-m

CKoUC

Piston sampler

Emax = 44.3  MPa

su/σvo' = 0.35

ε r = 0.05 %

ε f = 1.62 %

xL = 32

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1 1.2

Axial strain ε ε ε ε a    (%)(%)(%)(%)

D
e
v
ia
to
ri
c
 s
tr
e
s
s
 σ σ  σ σ

a
−
σ

−
σ

−
σ
−
σ
r     
(k
P
a
)

San Francisco - USA

Depth = 23.25-m

CKoUC

Piston sampler

Emax = 76.5  MPa

su/σvo' = 0.33

ε r = 0.04 %

ε f = 1.20 %

xL = 34



 319

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-37. Logarithmic function fitted to stress-strain data from CKoUC test on a JPN 

clay sample from Singapore, depth= 20-m (Tanaka et al., 2001, Watabe 1999) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-38. Logarithmic function fitted to stress-strain data from CKoUC test on a JPN 

clay sample from Singapore, depth= 22-m (Tanaka et al., 2001, Watabe 1999) 
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Figure B-39. Logarithmic function fitted to stress-strain data from CKoUE test on a JPN 

clay sample from Singapore, depth= 22-m (Tanaka et al., 2001, Watabe 1999) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-40. Logarithmic function fitted to stress-strain data from CKoUE test on a clay 

sample from Yamashita-Japan, depth= 29.5-m (Tanaka et al., 2001, Watabe 1999) 
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APPENDIX C 

 

SOIL PROFILES AT SHALLOW FOUNDATION CASE STUDY SITES 

 

 

 

This appendix contains relevant soil parameters and properties at footing load test sites 

used for calibrating the proposed method for predicting footing stress-displacement 

response under vertical loading.  A list of footing load test sites is provided in Table C-1.  

The table includes predominant soil type, groundwater table, footing dimensions, 

predominant drainage conditions, and relevant references for each site.  Relevant soil 

profiles are plotted in Figures C-1 through C-14.  Piezocone and seismic piezocone test 

results are presented for all sites except Fargo (Figure C-8).  The use of the seismic 

piezocone for obtaining soil properties needed for shallow foundation design is explained 

in Appendix D. 
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Table C-1.  Database of footing load tests under undrained loading conditions 

Site Soil Type 
GWT 

(m) 

Dimensions 

B x L 

(mxm) 

L/B Test type Drainage Reference 
Figure 

No. 

1.05 x 1.05 1 Full-scale undrained 

0.9 x 0.9 1 Full-scale undrained 

0.75 x 0.75 1 Full-scale undrained 

0.675 x 0.675 1 Full-scale undrained 

Bangkok, 

Thailand 
soft clay 0 

0.6 x 0.6 1 Full-scale undrained 

Brand et al. 

(1972) 

Shibuya & 
Tamrakar 

(1999) 

C-1 

C-2 

Belfast, 

Ireland 

soft clayey 

silt 
0 2 x 2  1 Full-scale undrained Lehane (2003) C-3 

Bothkennar, 

UK 
clay 0.2 2.2 x 2.2  1 Full-scale undrained 

Hight et al. 

(1997) 

Jardine et al. 
(1995) 

C-4 

C-5 

Cowden, UK glacial till 0 0.865 x 0.865 1 Plate load 

test 
undrained Powell & 

Butcher (2003) 

C-6 

C-7 

Fargo, USA 

(Grain 
Elevator) 

silty clay 

(sand layer 
4.5 to 6m) 

2.2 66.5 x 15.9 4.2 
Actual 

failure 
undrained 

Nordlund and 

Deere (1972) 
C-8 

Shellhaven, 

UK 
soft clay 0.75 5 x 14 2.8 Full-scale undrained 

Schnaid et al. 

(1993) 

C-9 

C-10 

Labenne, 

France 
dune sand 3 0.7 x 0.7 1 Full-scale drained 

Jardine & 

Lehane (1993) 

Amar et al 

(1994) 

C-11 

1 x 1 1 Full-scale drained 

1.5 x 1.5 1 Full-scale drained 

2.5 x 2.5 1 Full-scale drained 

3 x 3 1 Full-scale drained 

Texas A & M, 

USA 

Eocene 

deltaic 

Sand 

4.9 

3 x 3 1 Full-scale drained 

Briaud and 

Gibbens (1999) 
C-12 

0.5 x 0.5 1 Full-scale drained 

1 x 1 1 Full-scale drained 
Tornhill, 

Sweden 

Sandy silty 

clay till 
0.2 

2 x 2 1 Full-scale drained 

Larsson (2001) C-13 

0.5 x 0.5 1 Full-scale drained 
Vagverket, 

Sweden 
Silt variable 

1 x 1 1 Full-scale drained 

Larsson (1997) C-14 

GWT is measured below foundation level. 
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Figure C-1.  Seismic piezocone test results at Bangkok-AIT (Shibuya and Tamrakar, 

1999) 

 

 

 

 

 

0

5

10

15

20

25

0 2 4 6 8 10

qT(MPa)

D
e
p
th
 (
m
)

0

5

10

15

20

25

0 50 100 150 200

fs (kPa)

0

5

10

15

20

25

0 50 100 150 200

uw (kPa)

0

5

10

15

20

25

0 100 200 300

Vs (m/sec)



 324

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C-2.  (a) Estimated bulk unit weight γtotal (using Equation D-3); (b) interpreted 

small strain stiffness Gmax; (c) Water content and plasticity indices at Bangkok (raw data 

from Shibuya and Tamrakar, 1999) 
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Figure C-3.  Original test data supplied by Trinity College for the Belfast test site 

(Lehane, 2003) 
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Figure C-4.  Seismic piezocone test results at Bothkennar (Nash et al., 1992) 
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Figure C-5.  Soil total unit weight, small-strain shear modulus Gmax, and index soil 

properties at Bothkennar (Hight et al., 1997). 
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Figure C-6.  Piezocone test results at Cowden (Powell and Butcher, 2003). 
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Figure C-7.  Small-strain shear modulus Gmax and index soil properties at Cowden 

(Powell and Butcher, 2003) 
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Figure C-8.  Site specific soil properties at Fargo: a) estimated small-strain shear 

modulus with depth; b) Natural water content and plasticity index profiles (Nordlund and 

Deere, 1970); c) void ratio profile (Nordlund and Deere, 1970) 
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Figure C-9.  Cone penetration data at Shellhaven site (Schnaid, et al. 1993) 
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Figure C-10.  Site specific soil properties at Shellhaven: a) small-strain shear modulus 

with depth; b) Natural water content, plastic and liquid limits profiles (Schnaid, et al. 

1993); c) void ratio profile (Schnaid, et al. 1993) 
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Figure C-11.  (a) Cone tip resistance (Jardine and Lehane 1993); (b) sleeve friction 

(Jardine and Lehane, 1993); (c) small-strain stiffness estimated using equation by Hegazy 

and Mayne (1995) 
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Figure C-12.  (a) Cone tip resistance; (b) sleeve friction; (c) small-strain stiffness 

measured from crosshole testing (Briaud and Gibbens, 1994) 

 

 

 

 

 

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12

qT (MPa)

D
e
p
th
 (
m
)

0

2

4

6

8

10

12

14

16

0 100 200 300 400

fS (kPa)

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100

Gmax (MPa)



 335

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C-13.  Seismic piezocone data at Tornhill, Sweden site (Larsson, 2001) 

 

 

 

 

 

 

 

0

1

2

3

4

5

6

7

8

0 5 10 15 20

qT (MPa)

D
e
p
th
 (
m
)

0

1

2

3

4

5

6

7

8

0 200 400 600

fs (kPa)

0

1

2

3

4

5

6

7

8

0 500 1000

u2 (kPa)

0

1

2

3

4

5

6

7

8

0 200 400 600

Gmax (kPa)



 336

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C-14.  Seismic piezocone data at Vagverket, Sweden site (Larsson, 1997) 
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APPENDIX D 

 

EVALUATION OF SOIL PARAMETERS FROM SEISMIC PIEZOCONE  

TEST DATA FOR SHALLOW FOUNDATION ANALYSIS  

 

 

 

A proper selection of the input soil parameters is a pre-requisite for any reliable analysis 

of bearing capacity and displacements.  The conventional way to characterize a specific 

site for stratigraphy and assessment of relevant soil properties is to drill borings and 

extract soil specimens at regular depth increments.  Index tests (water content, grain size 

distribution, plasticity) are performed for classification and stratigraphy purposes.  

Engineering properties (modulus, strength) are evaluated by testing soil specimens under 

various boundary and loading conditions (triaxial tests, direct simple shear, torsional 

shear, consolidation, resonant column). 

 

Alternatively, soil can be characterized from in-situ tests where soil is tested in its natural 

environment (stress-condition, natural soil structure, chemical and thermal conditions).  

In-situ tests are classified into penetration and geophysical tests.  Penetration tests include 

standard penetration test (SPT), cone penetrometer (CPT), piezocone (CPTu), flat 

dilatometer (DMT), field shear vane test (VST), and the pressuremeter (PMT).  

Geophysical tests are suitable for evaluating the small strain shear modulus Gmax.  

Crosshole (CHT), downhole (DHT) and spectral analysis of surface waves (SASW) are 

examples of geophysical testing methods.  Results from field penetration tests have long 

been successfully used to evaluate the shear strength of soils, corresponding to failure 

strains.  Geophysical tests are valuable in computing small-strain stiffness Gmax.  It is 
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therefore significantly useful to collect both small- and high-strain data from a single 

sounding (i.e., seismic cone; seismic dilatometer) as these represent opposite ends of the 

stress-strain-strength curve.  The seismic piezocone test (SCPTu) with dissipation phases 

collects data (qt, fs, ub, t50, Vs) that relates to several aspects of soil behaviour, which are 

discussed in this chapter. 

 

D.1 Seismic Piezocone Test 

 

The seismic piezocone test is a hybrid between the piezocone and seismic downhole tests.  

A seismic receiver is added to the piezocone.  The test is conducted as a regular 

piezocone test with tip, sleeve friction, and pore pressure readings taken every 2 cm.  The 

probe is stopped at given intervals (typically every 1 meter) to add a new rod, at which 

time; it is convenient to measure the shear wave velocity in a downhole manner.  The 

SCPTu is advanced into the ground at a constant rate of 20-mm/sec and measurements of 

cone tip resistance qc, sleeve friction fs, and pore water pressure at the shoulder u2 are 

recorded with depth.  Tip resistance is corrected for the porewater effects at the back of 

the cone tip (Lunne et al, 1997) and designated as qT. 

 

The piezocone provides continuous readings making it very efficient in determining soil 

strata, boundaries, and the presence of any seams, as well as the determination of 

strength, stiffness, stress state, and flow characteristics.  Piezocone data can be used for 

soil classification using a number of different methods (e.g. Robertson et al., 1986; 

Senneset et al., 1989; Olsen & Malone, 1988; and Robertson, 1990).  Parameters 
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evaluated from the piezocone include clay stress history (Chen and Mayne, 1994), clay 

unit weight (Larsson and Mulabdic, 1993), effective friction angle of sands (Robertson 

and Campanella, 1983) and clays (Sennest et al., 1989).  Figure D-1 (after Mayne et al., 

2003) outlines the different properties deduced from the seismic piezocone in clays. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D-1. Schematic diagram showing soil properties evaluated from the seismic 

piezocone in clays (after Mayne et al., 2003) 

 

D.2 Tip Resistance, Sleeve Friction, and Porewater Pressure Measurements 

 

Both cone tip and sleeve resistance are used together with the porewater pressure for soil 

classification and evaluating soil properties.  The cone tip resistance qc must be corrected 

for porewater pressures at the back of the cone tip (Lunne et al., 1997) yielding the total 

tip resistance known as qT.  Therefore, a standard cone penetrometer requires a porewater 

pressure reading at the shoulder (ub or u2).  For sands, the porewater pressure is very 

close to hydrostatic making qc ~ qT.  In contrast, high excess porewater pressures are 
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generated in soft to stiff intact clays when the cone penetrometer is pushed.  This makes 

porewater pressure measurements paramount in clayey soils because qT is appreciably 

larger than qc.  In fissured and highly overconsolidated clays, the porewater pressure u2 

can be negative or nil making the correction small or unnecessary.  Results from five 

seismic piezocone soundings at the Amherst national test site are presented in Figure D-2.  

The Amherst test site consists of a 24-m thick deposit of soft lightly-overconsolidated 

lacustrine varved clay overlain by a 3-m desiccated crustal layer and 1-m thick clay fill 

(Lutenegger, et al. 2000; DeGroot and Lutenegger, 2002).  Variability in the upper clay 

fill and crust are quite evident, while uniformity in the lower soft clay is seen.  Sounding 

B shows dissipations in the porewater channel at the 1-m rod breaks. 

 

The maximum shear modulus is a fundamental soil property and measured either by 

laboratory or field tests. Results based on field testing are superior to laboratory values 

that can be affected by sample disturbance during extraction, transportation, and 

mounting (Hicher, 1996). The maximum shear modulus is obtained from: 

 

2
max sT VG ⋅= ρ ……………………………………………………………………..…(D-1) 

 

where ρT is the total mass density. The saturated soil mass density can be estimated from 

the shear wave velocity and depth using an empirical correlation (Mayne, 2001): 

 

( )zVssat log16.0)log(85.0 ⋅−⋅=ρ …....…..………………………………………….(D-2) 

 

where ρsat is in gm/cm
3
, Vs is in m/s, and z is the depth in meters. 
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Figure D-2.  Results of five seismic piezocone tests in varved clay at Amherst national 

test site (after Mayne et al., 2003) 

 

D.3 Soil Classification from SCPTu data 

 

Soil classification can be judged either from soil samples extracted from borings or based 

indirectly on in-situ test readings (e.g. piezocone or flat plate dilatometer tests).  Soil 

classification systems based on laboratory tests (e.g. Unified Soil Classification System, 

AASHTO) define soil type according to grain size distribution as well as other index 

properties (e.g. plasticity index).  On the other hand, classifications based on in-situ tests 

are indicative of the soil behavior at the time of testing.  The seismic piezocone provides 

continuous reading making it very valuable for detecting changes in soil stratigraphy and 

the existence of lenses and inclusions.  Typically, visual inspection of the raw penetration 

records is sufficient for classification.  In clean sands, qT > 4 MPa while in soft clays qT < 

1 MPa.  In clean sands, no excess porewater pressure is generated during penetration, 
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while high excess porewater pressures are generated when penetrating low permeability 

soils (silts and clays).  In clean sands, the friction ratio (
T

s

q

f
FR = ) is generally small 

( %)1<FR  while in insensitive clays ( %)103 << FR .  However, in sensitive clays the 

friction ratio is small ( %)1<FR .  Alternatively, soil empirical soil classification charts 

are available (e.g. Begemann, 1965; Douglas and Olsen 1981; Senneset et al., 1989; 

Robertson, 1990; Olsen and Mitchell, 1995). 

 

D.4 Evaluation of soil strength from piezocone test results 

 

Soil strength can be determined in the laboratory on undisturbed soil specimens.  

However, a small number of these tests are typically performed because of cost and time 

limitations.  Also, the issue of sample disturbance arises and is never impossible to avoid.  

In-situ tests (e.g. VST, DMT, CPTu) offer an alternative and compliment to evaluate soil 

strength using theoretical and/or empirical relationships, providing an immediate, 

continuous and economic supplement to laboratory tests. 

 

For saturated soils, it is traditional to assume the soil behaves under either fully drained 

or fully undrained conditions.  Drained soil strength is expressed by the effective friction 

angle φ’.  For undrained loading, no volume change occurs and strength is described by 

the undrained shear strength su.  The undrained shear strength is not a fundamental 

material property but depends on several factors including the stress level, stress state, 

failure mode, strain rate, stress history, and soil anisotropy.  The proper value of shear 

strength used in the analysis depends on the problem type.  There are several 
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relationships (theoretical and/or empirical) for evaluating shear strength in different 

loading modes (CKoUC, DSS, CKoUE) from piezocone test results.  The existence of 

several approaches to measure the same parameter leads to different interpretations that 

require interrelationships to tie them together.  Therefore it is recommended to relate 

undrained strength to a more stable parameter such as the overconsolidation ratio, OCR 

(Mayne, 2001; Mayne et al., 2003).  Hence, a stress history based analysis is pursued 

herein. 

 

It has been shown both experimentally (e.g., Ladd, 1991) and theoretically (e.g., Wroth, 

1984) that the normalized undrained shear strength su/σvo' depends on the 

overconsolidation ratio OCR.  Kulhawy and Mayne (1990) calibrated this method versus 

a huge database of laboratory tests including triaxial compression (CIUC and CKoUC), 

triaxial extension (CIUE and CKoUE), plane strain (PSC and PSE), and direct simple 

shear (DSS).  Because Modified Cam Clay comprises an isotropic yield surface, a more 

rigorous solution was needed to differentiate between compression and extension 

loading.  This led to the development of a hybrid Wroth-Prevost model, which relates the 

undrained shear strengths of the different shearing tests to the effective friction angle, as 

demonstrated in Figure D-3.  The undrained shear strength measured from isotropically 

consolidated undrained compression test CIUC yields the highest strength.  While shear 

strength from anisotropically consolidated undrained extension tests CKoUE represent 

the lower bound.  The direct simple shear test DSS represents an intermediate strength 

suitable for analysis of slope stability, foundation bearing capacity, and excavation 

problems. 
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Figure D-3.  Variation of undrained strength ratio with test type (after Kulhawy and 

Mayne, 1990) 

 

 

Ladd et al. (1977) showed the normalized undrained strength to overburden stress 

(su/σvo')OC to increase with overconsolidation ratio OCR according to: 

 

( ) ( ) Λ′=′ OCRss
NCvouOCvou σσ // ……………………………………………………(D-3) 

 

where Λ is the plastic volumetric strain ratio = 1-Cs/Cc, where Cs and Cc are the swelling 

and compression indices, respectively; and OCR = σp’/σvo’ is the overconsolidation ratio.  

The plastic volumetric strain ratio Λ is calculated from oedometer test results.  Generally, 

8.0≈Λ  is appropriate for clays of low to medium sensitivity.  For highly cemented and 
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structured clays, 9.0≈Λ  up to 1.0 is suitable.  Lower values of Λ were computed for 

remolded  clays (Mayne, 2001).  The dependence of the undrained shear strength on 

stress history is best represented in normalized form (i.e. su/svo’) and known as “Stress 

History and Normalized Soil Engineering Parameters” or the SHANSEP approach (Ladd 

et al., 1977). 

 

As mentioned earlier, the undrained shear strength is not a unique value but depends on 

the mode of loading.  For the stability of embankments and shallow footings, it is 

appropriate to use the undrained shear strength from direct simple shear test DSS, which 

can be determined from the modified Cam clay model (Wroth, 1984) according to: 

 

Λ⋅=









OCR

s

DSSvo

u

2

'sin
'

φ
σ

…...…………………………………………....…..…....(D-4) 

 

There are similar correlations for the various shear tests.  These correlations have been 

extensively calibrated for use with piezocone data (e.g. Kulhawy and Mayne, 1990; 

Mayne, 2001).  Alternatively, if the effective friction angle is not known, one can make 

use of the correlation proposed by Ladd (1991): 

 

80.0

'
22.0 OCR

s

DSSvo

u ⋅=








σ
…...……………………………………………..…..…....(D-5) 
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Traditionally, the effective friction angle φ’ is determined from laboratory shear tests on 

undisturbed samples.  Alternatively, porewater pressure measurements obtained from the 

piezocone offer the possibility for assessing the effective friction angle φ’.  The 

Norwegian Technical Institute NTH developed a technique for evaluating the effective 

friction angle from piezocone data (Senneset et al., 1989).  The NTH theory is based on 

the bearing capacity concept, stress field theory, and plane strain conditions.  This model 

can be applied to drained penetration (∆u = 0) in sandy soils and in fine-grained soils for 

positive excess pore pressure (∆u > 0) for saturated soils.  There is a special procedure if 

negative porewater pressures are generated during cone penetration (Sandven, 1990).  

The method relates the effective friction angle φ’ to the cone resistance number 

Nm=∆qnet/(σvo’+a’) where a’ is attraction and the normalized porewater pressure parameter 

Bq=∆u2/qnet, where qnet=(qT-σvo). 

 

For clean sands, it is common to interpret angle of internal friction from CPT data using 

the relationship suggested by Kulhawy and Mayne (1990): 

 















′
⋅+=′

vo

to q

σ
φ log0.116.17 ………………………………………………………..(D-6) 

 

where qT and σvo’ are in atmospheres.  Equation D-4 was developed based on the 

statistical analysis of corrected calibration chamber test data.  Mayne (2004) calibrated 

Equation D-4 friction angles measured using drained triaxial compression tests on 

“undisturbed” frozen sand specimens procured at four river sites (Mimura, 2005).  As 
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shown in Figure D-4, friction angles derived using Equation D-4 compare favorably with 

measured friction angles.  More information about the three sands are provided in 

Chapter 5, where logarithmic functions were fitted to the stress-strain curves from 

isotropically consolidated triaxial compression tests. 

 

 

 

 

 

 

 

 

 

 

 

Figure D-4.  Comparison of measured angle of friction φ’ from frozen sand samples 

(Mimura, 2003) with CPT normalized tip stress (after Mayne, 2005) 

 

D.5 Stress history from piezocone test measurements 

 

The stress history of a specific profile is described by the overconsolidation ratio OCR.  

Conventionally, OCR is determined from one-dimensional oedometer tests on 

undisturbed soil specimens.  Several methods, both empirical (e.g. Baligh et al., 1980; 

Mayne & Holtz, 1988) and theoretical (e.g. Wroth, 1988; Mayne and Chen, 1994), have 
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been developed to evaluate the OCR from piezocone data.  An analytical model based on 

cavity expansion and critical state soil mechanics for piezocone penetrometers with u2 

readings gives: 

 

Λ





















 −

+
=

/1

`

2

195.1

1
2

vo

T uq

M
OCR

σ
……………………………………………..….(D-7) 

 

where M = 6sinφ’/(3-sinφ’) in triaxial compression.  This method has been extensively 

calibrated (e.g. Mayne and Chen, 1994; Chen and Mayne, 1996).  However, as soils vary 

widely in their characteristics, site-specific calibrations of in-situ methods with laboratory 

consolidation test results on high quality samples is always warranted (Demers & 

Leroueil, 2002; Lunne et al., 1997).  Another empirical correlation that is used as a first 

order estimate of the OCR is given by (Chen & Mayne, 1996; Demers & Leroueil, 2002): 

 

vo

voTqOCR
σ
σ
′⋅

−
=

3

)(
…………………………………………………………………..(D-8) 

 

Empirical correlations provide means for double-checking the rationality of the 

interpreted results. 

 

D.6 Application to case histories to determine DSS undrained shear strength 

 

The aforementioned procedures were applied to four sites where high quality seismic 

piezocone and laboratory DSS stress-strain data were available to calibrate the 

methodology (Elhakim and Mayne, 2003; Mayne et al., 2003). 
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D.6.1 OnsØy, Norway 

 

The soil profile at OnsØy consists of a one-meter thick crust underlain by 44-meters of 

soft plastic clay with some organic content (Lacasse et al., 1985). Figure D-5 shows 

seismic piezocone results at the site (Gillespie et al., 1985).  Figure D-6 shows laboratory 

versus piezocone predicted OCR and DSS undrained shear strength values for Λ = 0.8 

and φ’ = 34
o
. 

 

D.6.2 Skå Edeby, Sweden 

 

The test site is located on an island 25 km west of Stockholm where the soil profile 

consists of 15 m thick layer of soft clay underlain by till or rock (Larsson and Mulabdić, 

1991a). Seismic piezocone test results are shown in Figure D-7. Laboratory and 

piezocone predicted OCR and DSS undrained shear strengths are presented in Figure D-8 

using Λ=0.8 and φ’=34
o
. 

 

D.6.3 San Francisco, California, USA 

 

The soil profile at Islais Creek consists of several layers: (1) fill down to 3.5 m; (2) young 

Bay Mud from 3.5 to 15.5 m; (3) a clayey sand layer from 15.5 to 17 m; underlain by (4) 

young Bay Mud down to 33.5 m (Hunt et al., 2002). Seismic piezocone results are 

presented in Figure D-9.  Laboratory versus piezocone predicted profiles of OCR and 

DSS undrained shear strength are presented in Figure D-10 using Λ = 0.8 and φ’ = 36
o
. 
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Figure D-5.  Seismic piezocone profile at OnsØy (after Gillespie et al., 1985) 

 

 

 

 

 

 

 

 

 

 

Figure D-6.  Predicted versus laboratory OCR and DSS strength profiles at OnsØy 

(laboratory data after Lacasse et al., 1985) 
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Figure D-7.  Seismic piezocone profile at Skå Edeby (after Larsson and Mulabdic, 1991a 

and 1991b) 
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Figure D-8.  Predicted versus laboratory OCR and DSS strength profiles at Skå Edeby 

(laboratory OCR from Massarsch et al., 1975; lab DSS from Soydemir, 1976) 
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Figure D-9. Seismic piezocone profile at San Francisco (after Pestana et al., 2002) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D-10. Predicted versus laboratory OCR and DSS strength profiles at San 

Francisco (laboratory data from Hunt et al., 2002) 
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D.6.4 Amherst NGES, Massachusetts, USA 

 

The Amherst test site consists of a 24-m thick deposit of soft lightly-overconsolidated 

lacustrine varved clay overlain by a 3-m desiccated crustal layer and 1-m thick clay fill 

(Lutenegger, et al. 2000; DeGroot and Lutenegger, 2002). The groundwater table lies one 

meter deep. Results from several SCPTu soundings are shown in Figure D-11. Variability 

of the shallow crust is evident from the CPT soundings.  Figure D-12 shows comparisons 

between predicted and laboratory measured OCR and DSS undrained shear strength at 

the site, using Λ = 0.81 and φ’ = 21
o
. 
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Figure D-11. Results of Five Seismic Piezocone Tests in Varved Clay at Amherst 

National Test Site. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D-12. Predicted versus laboratory OCR and DSS strength profiles at Amherst 

NGES (laboratory data from Bonus, 1995). 
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APPENDIX E 

 

ANALYTICAL EVALUATION OF BEARING CAPACITY 

 

 

 

Solutions to calculate theoretical bearing capacity of spread footings have been solved 

since the beginning of the 20
th
 century.  Analytical solutions for the bearing capacity of 

shallow footings were presented in Chapter 2.  A generalized formula for calculating the 

bearing capacity of vertically-loaded shallow footings of any given shape, at any 

embedment depth is represented by (Vesić, 1973): 

 

qdqsqvodscdcscult NNBNcq ζζσζζγζζ γγγ ⋅⋅⋅′+⋅⋅⋅⋅⋅+⋅⋅⋅= *
2

1
………………(E-1) 

 

where qult = the ultimate bearing capacity, c = cohesion, B = footing width, σvo’ = 

effective overburden stress, Nc, Nγ, and Nq are bearing capacity factors for a strip footing, 

ζcs, ζγs, ζqs are shape correction factors, and ζcd, ζγd, ζqd are footing embedment depth 

correction factors.  Available bearing capacity factors Nc, Nγ, and Nq are reviewed.  

Results are presented graphically in Figures 2-14 through 2-17.  More details about the 

different solutions are provided in Tables E-1 through E-4.  Solutions for the bearing 

factor Nc for surface strip footings are listed in Table E-1.  A summary of Nc solutions for 

the undrained loading conditions “φ’=0” of surface strip footings is provided in Table E-

2.  The bearing capacity factor Nq for surface strip footings are summarized in Table E-3.  

Relationships for computing the bearing capacity factor Nγ are summarized in Table E-4.  
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It should be noted that the variation in the values of Nγ compared to Nc and Nq, as pointed 

by Vesić (1973); Chen (1975); and Chen and McCarron (1991).  The influence of footing 

shape and embedment depth can be accounted for using correction factors presented in 

tables E-5 and E-6, respectively.   
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Table E-1. Solutions for the bearing factor Nc for a surface strip footing 

Bearing factor, Nc Type Reference 

Prandtl-Reisner bearing factors: 
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+′= ′

1
24

tancot 2tan φπ
φ φπeNc  

Analytical Chen (1975) 

 

Limiting equilibrium analysis of a shallow, rough strip footing Numerical Craig & Pariti 

(1978) 

Approximate limit equilibrium closed-form solution: 
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Analytical French 

(1999) 

Rigorous analysis based on the upper-bound limit analysis theory Analytical Soubra 

(1999) 

Numerical results presented in Figure E-1 Numerical Yin et al. 

(2001) 

 

Table E-2. Solutions for the bearing factor Nc for a surface strip footing “φ’=0” 

Bearing factor, Nc Type Reference 

Ideal plastic material under plane strain conditions 

π+= 2cN  

Analytical Prandtl (1920)* 

Circular failure surface: 

52.5=cN  

Analytical Fellenius (1929)* 

Circular failure surface: 

33.6=cN  

Analytical Bjurstrom (1944)* 

Circular failure surface: 

π2=cN  

Limit plasticity 

(upper bound) 

Atkinson (1981) 

Three triangular wedge failure zone 

6=cN  

Limit plasticity 

(upper bound) 

Atkinson (1981) 

Two wedges and a fan slip failure surface 

π+= 2cN  

Limit plasticity 

(upper bound) 

Atkinson (1981) 

Vertical stress discontinuities 

4=cN  

Limit equilibrium 

(lower bound) 

Atkinson (1981) 

Inclined discontinuities: 

)222( +=cN  

Limit equilibrium 

(lower bound) 

Atkinson (1981) 

Overlapped inclined discontinuities: 

π+= 2cN  

Limit equilibrium 

(lower bound) 

Atkinson (1981) 

*Foldin and Broms (1981). 
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Table E-3. Solutions for the bearing factor Nq for surface strip footing 

Bearing factor, Nq Type Reference 

2
pq KN =  

where: 

φ
φ
′−

′+
=

sin1

sin1
pK

 

Analytical Lambe and Whitman 

(1969) 

Prandtl-Reisner bearing factors: 








 ′
+= ′

24
tan 2tan φπφπeN q

 

Limit plasticity Chen (1975) 

 

Limiting equilibrium analysis of a shallow, rough strip footing, refer to 

Figure E-2 

Numerical Craig & Pariti (1978) 

( ) 






 ′
+= ′−

24
tan 2tan φπφβπeN q

 

where β =angle of plastification 

Limit plasticity Senneset et al. (1989) 

Based on Sokolovskii’s theory of characteristics: numerical data, refer to 

Figure E-2 

Analytical Bolton and Lau (1993) 

Approximate limit equilibrium closed-form solution: 
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qN
 

Analytical French (1999) 

Rigorous analysis based on the upper-bound limit analysis theory: 

numerical data – no closed-form solution 

Analytical Soubra (1999) 

Based on a finite difference program analysis: numerical data – no 

closed-form solutions 

Numerical Yin et al. (2001) 

 

 

 

 

 

 



 359

Table E-4. Methods for calculating the bearing factor Nγ for surface strip footings 

Bearing factor, Nγγγγ Type Reference 

Solution based on the integration of Boussinesq’s differential equations using a 

method of successive approximation: 
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, for l=1, where 







 −=
22
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Analytical Caquot & Kerisel (1953) 

( ) ( )φγ ′−= 4.1tan1qNN   Meyerhof (1961) 
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5
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1
pKNN φγ

 

where: 

φ
φ
′−

′+
=

sin1

sin1
pK

 

 Lambe and Whitman 

(1969) 

Approximate closed-form equation for numerical data developed by Caquot & 

Kerisel (1953):  

( ) φγ ′+≈ tan12 qNN  

Approximate Vesić (1973) 

Several solutions are presented. The author recommends the solution given by: 

( ) 






 ′
+′+=

54
tantan12

φπ
φγ qNN ,where 
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24
tan 2tan φπφπeN q

 

Limit 

plasticity 

Chen (1975) 

Approximate closed-form solution of Nγ obtained by Lundgren and Mortensen 

(1953): 

( )
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′
12sin04836.02sin3231.008705.0

tan
22

φ
π

γ φφ eNN q

 

where 

φπ

φ
φ ′⋅
′−

′+
= tan

sin1

sin1
eNq

 

Empirical 

fitting 

Steenfelt (1977) 

Limiting equilibrium analysis of a shallow, rough strip footing: numerical data: refer 

to Figure 3-4 

Analytical Craig and Pariti (1978) 

Solution based on statistical analysis of footing load test data with L/B ratio of 6: 

( )064.2173.0 −′= φ
γ eN  

Statistical Ingra & Baecher (1983) 

Based on Sokolovskii’s theory of characteristics: numerical data.  For a rough strip 

footing, the solution approximated by: 

( ) )5.1tan(1 φγ ′−≈ qNN , for 30o<φ’<50o 

Analytical Bolton and Lau (1993) 

Finite element and finite difference calculations: numerical data: refer to Figure 3-5 Numerical Frydman and Burd (1997) 

Upper bound solution based on limit analysis. Exact numerical solution 

approximated by: 

Rough interface - associative flow: φφ
γ ′= ′+ tantan11.566.0eN  

Smooth interface - associative flow: φφ
γ ′= ′

tantan1.5eN  

Rough interface – nonassociative flow: **tan11.566.0 tanφφ
γ

+= eN  

Smooth interface - nonassociative flow: **tan1.5 tanφφ
γ eN =  

where 

φψ
φψ

φ
sinsin1

sincos
tan 1*

−
= −  

Numerical Michalowski (1997) 

Approximate limit equilibrium closed-form solution: 
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Analytical French (1999) 

Rigorous analysis based on the upper-bound limit analysis theory: numerical data: 

refer to Figure E-3 

Analytical Soubra (1999) 

Least upper-bound solution: numerical data – no closed-form solution Analytical Zhu (2000) 

Finite difference program analysis simulating a rough rigid strip footing: refer to 

Figure E-3 

Numerical Yin et al. (2001) 

Upper and lower bound solutions using a linear Mohr-Coulomb failure envelope 

with associated flow and finite element discretization: refer to Figure E-3 

Numerical Ukritchon et al. (2003) 
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Table E-5. Shape factors for shallow foundations 

Equation Reference 

Circular footing on dense or stiff soil: 

2.1=csζ , 1=qsζ , 3.0=sγζ  

Square footing on dense or stiff soil: 

2.1=csζ , 1=qsζ , 4.0=sγζ  

Terzaghi (1943) 

L

B
Ncs φζ 2.01+=  

1== sqs γζζ     for    o0=′φ  

L

B
Nsqs φγζζ 1.01+==     for    o10>′φ  

where 






 +=
24

tan 2 φπ
φN

 

Meyerhof (1963) 

φζ sin
1

1
−

+=
q

q

cs
N

N

L

B  

L

B
qs 2.01+=ζ  

L

B
s 4.01−=γζ  

De Beer (1970) 

 

c

q

cs
N

N

L

B
+= 1ζ  

φζ tan1
L

B
qs +=  

L

B
s 4.01−=γζ  

Vesić (1973) 

Finite element analysis for undrained 

loading: 

B

d
C

L

B
Ccs 211 ++=ζ , where: 

B/L C1 C2 

1 (circle) 0.163 0.210 

1 (square) 0.125 0.219 

0.50 0.156 0.173 

0.33 0.159 0.137 

0.20 0.190 0.090 
 

Salgado et al. (2004) 
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Table E-6. Depth factors for shallow foundations 

Equation Reference 

B

z
N E

cd φζ 2.01+=  

1== dqd γζζ     for    “ 0=′φ ” 

B

d
Ndqd φγζζ 1.01+==     for    

o10>′φ  

where 






 +=
24

tan 2 φπ
φN

 

Meyerhof (1963) 

φ

ζ
ζζ

′

−
−=

tan

1

q

qd

qdcd
N

 

( )
B

zE
qd

2
sin1tan21 φφζ −′+=  

1=dγζ  

For undrained loading “ 0=φ ”, 

B

zE
cd 4.01+=ζ  

Brinch Hansen factors 

after Vesić (1973) 

Finite element analysis for undrained 

loading: 

B

zE
cd 27.01+=ζ  

Salgado et al. (2004) 

Notes: 

zE = depth of foundation embedment 

B = footing width (smaller dimension) 

L = footing length. 
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APPENDIX F 

 

MODULUS REDUCTION DATABASE 

 

 

 

A database of monotonic triaxial and plane strain compression modulus reduction curves 

is compiled.  References, test types, and index soil properties are listed in Table F-1.  

Data is presented as E/Emax versus q/qmax shown in Figure F-1.  Soils included in the 

database include both clays and sands that are normally consolidated or overconsolidated.  

Tests were performed under both drained and undrained conditions. 
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Table F-1. Reference sources for shear modulus reduction data from static (monotonic) 

triaxial compression tests 
Soil Type Reference Test Type Notes 

Bangkok clay 
Shibuya and Tamrakar 
(1999) 

CKoUC 
Depth = 13.6 m, qmax = 88.6 kPa, qo = 28.2 kPa, wn = 
65%, LL = 88%, PL = 25%, OCR = 1.6 

Bothkennar clay Clayton et al. (2003) CKoUC 
Depth = 5.4 m, ∆qmax = 30 kPa, σaini = 50 kPa, σrini = 30 

kPa, wn = 68%, LL = 75%, PL = 35%, OCR = 1.5 

Bothkennar clay Clayton et al. (2003) CKoUC 
Depth = 6.0 m, ∆qmax = 44 kPa, σaini = 47 kPa, σrini = 27 
kPa, wn = 68%, LL = 75%, PL = 35%, OCR = 1.5 

Bothkennar clay Clayton et al. (2003) CIUC 
Depth = 7.9-8.3 m, ∆qmax = 36 kPa, σaini = 62 kPa, σrini 

= 38 kPa, wn = 71%, LL = 73%, PL = 34%, OCR = 1.4 

Pisa clay Lo Presti et al. (2003) CKoDC LL = 84 %, PL = 33.5 %, wn = 63 %, OCR = 1.75 

Hime sand/gravel 
Shibuya and Tamrakar 
(1999) 

CIDC Ko = 1.0, qmax = 182 kPa, eo = 0.548 

Fujinomori clay Yamashita et al. (2001) CIUC eo = 1.538, Emax = 118 MPa, qmax = 110 kPa 

NC SLB sand 
Tatsuoka and Kohata 

(1995) 
PSC 

Air pluviated dense samples, eo = 0.557, OCR = 1, D50 

= 0.62 mm 

OC SLB sand 
Tatsuoka and Kohata 
(1995) 

PSC Air pluviated dense samples, eo = 0.563, OCR = 4 

Vallericca clay Georgiannou et al. (1991) CIUC 
LL= 53.2%, PL= 22.2%, wn = 28.6%, Gmax= 72 MPa, 

su = 200 kPa, σ3 = 60 kPa 

Todi clay Georgiannou et al. (1991) CIUC 
LL= 47.6%, PL= 19.6%, wn = 17.2%, Gmax = 158 MPa, 

su = 649 kPa, σ3 = 200 kPa,  

Pietrafitta clay Georgiannou et al. (1991) CIUC 
LL= 62.0%, PL= 32.4%, wn = 41.8%, Gmax = 158 MPa, 

su = 649 kPa, σ3 = 320 kPa 

Bothkennar clay Clayton et al. (2003) CIUC 
Depth = 5.4 m, ∆qmax = 30 kPa, σaini = 47 kPa, σrini = 27 

kPa, wn = 68%, LL = 75%, PL = 35%, OCR = 1.5 

Bothkennar clay Clayton et al. (2003) CIUC 
Depth = 6 m, ∆qmax = 44 kPa, σaini = 50 kPa, σrini = 30 
kPa, wn = 68%, LL = 75%, PL = 35%, OCR = 1.5 

Kaolin 
Tatsuoka and Shibuya 

(1991) 
CIDC LL= 55%, PL= 29% 

OC Ticino sand 
Tatsuoka and Shibuya 
(1991) 

CIDC eo = 0.64, OCR = 4 

NC Ticino sand 
Tatsuoka and Shibuya 
(1991) 

CIDC eo = 0.64, OCR = 1 

Toyoura sand 
Tatsuoka and Shibuya 

(1991) 
PSC emax = 0.985, emin = 0.985, eo = 0.67, D50 = 0.22 mm 

Toyoura sand 
Tatsuoka and Shibuya 

(1991) 
PSC emax = 0.985, emin = 0.985, eo = 0.83, D50 = 0.22 mm 

Notes: 
D50 = particle size equivalent to 50% passing 

eo = initial void ratio 
Emax = small-strain Young’s modulus 

Gmax= small-strain shear modulus 

LL= liquid limit 
OCR= overconsolidation ratio 

PL= plastic limit 

qmax = soil strength 
su= undrained shear strength 

wn= natural water content 

σaini = initial axial stress 

σrini = initial radial stress 

σ3 = confining stress 
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Figure F-1. Modulus reduction data from compiled monotonic triaxial and plane strain 

compression tests plotted versus mobilized stress (note: references in Table F-1) 
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APPENDIX G 

 

NON-LINEAR ELASTIC-PLASTIC MODEL (LOGNEP) 

 
 
 

A non-linear elastic-perfectly plastic model was developed and incorporated into FLAC 

as a user-defined constitutive model using FISH language.  The soil shear modulus starts 

at the small-strain shear modulus Gmax.  The shear modulus is reduced with the strain 

level according to the logarithmic modulus reduction scheme (Puzrin and Burland, 1996; 

1998).  When the stresses reach the yield surface, the stress-strain behavior is no longer 

defined by elasticity.  A flow rule defines the plastic stress-strain relationship by means 

of a plastic potential function.  The model details are described in Chapter 6.  The 

logarithmic non-linear elastic-plastic model is given herein. 
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;Logarithmic Non-linear Elastic Plastic model (LOGNEP) 
;User-defined constitutive model 
;FISH  
set echo on 
def logpuplas 
constitutive_model 
 
 
f_prop dif1_2 dif2_2 dif3_2 gam_2 
f_prop $ar $alf $Rf  
f_prop m_s11t m_s22t m_s33t m_s12t 
f_prop m_s11 m_s22 m_s33 m_s12  
f_prop m_g m_k m_gi yield p_ratio 
f_prop m_qvol m_qdil m_ind m_ten 
f_prop m_gkq m_kq m_tand m_facg 
f_prop m_e1 m_e2 m_g2 nls ns kphi m_sv 
float $sigi $sign $ds11 $ds22 $ds33 $ds12 $taui 
float $lam $taun $sign $s11i $s22i $s33i $s12i 
float $fi $ft $apex 
 
 
case_of  mode 
;--- initialization --- 
case 1 
  if m_g = 0.0 then 
    m_g = m_gi 
  end_if 
  m_e1 = m_k + 4.0 * m_g / 3.0 
  m_e2 = m_k - 2.0 * m_g / 3.0 
  m_g2 = 2.0 * m_g 
  m_kq = m_k * m_qdil 
  m_gkq = m_g + m_kq * m_qvol 
  m_tand = sqrt(m_qvol * m_qvol + 1.) - m_qvol 
  kphi = 1./(3.^0.5)*yield 
  m_facg = kphi - (m_qvol + m_tand) * m_ten 
  $ar  = (1.+nls)*(LN(1.+nls))/nls/(nls-1.) 
  $alf = (nls-1.)/nls/(LN(1.+nls))^$ar 
 
 
; --- set tension to cone apex if larger than apex --- 
  $apex = m_ten 
   if m_qvol # 0.0 then 
     $apex=kphi/m_qvol 
   end_if 
     m_ten=min($apex,m_ten) 
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;--- running section --- 
case 2 
    zvisc = 1.0 
 
;--- Strain invariant calculations 
  m_s11t = m_s11t + zde11 
  m_s22t = m_s22t + zde22 
  m_s33t = m_s33t + zde33 
  m_s12t = m_s12t + zde12         
 if zsub > 0.0 then 
    m_s11 = m_s11 + m_s11t/zsub 
    m_s11t= 0.0    
    m_s22 = m_s22 + m_s22t/zsub 
    m_s22t= 0.0  
    m_s33 = m_s33 + m_s33t/zsub 
    m_s33t= 0.0    
    m_s12 = m_s12 + m_s12t/zsub 
    m_s12t= 0.0 
 end_if     
   dif1_2 = (m_s11-m_s22)*(m_s11-m_s22) 
   dif2_2 = (m_s22-m_s33)*(m_s22-m_s33) 
   dif3_2 = (m_s11-m_s33)*(m_s11-m_s33) 
   gam_2  = m_s12*m_s12 
   m_sv = sqrt(1./6.*(dif1_2+dif2_2+dif3_2)+gam_2)        
    
;--- Normlized strain 
   ns= 2.*m_gi*m_sv/kphi 
 
; --- get new trial stresses from old, assuming elastic increments --- 
   $s11i = zs11 + zde11 * m_e1 + (zde22+zde33) * m_e2 
   $s22i = zs22 + (zde11+zde33) * m_e2 + zde22 * m_e1 
   $s33i = zs33 + (zde11+zde22) * m_e2 + zde33 * m_e1 
   $s12i = zs12 + zde12 * m_g2 
; --- mean stress --- 
   $sigi = ($s11i+$s22i+$s33i)/3.0 
; --- deviatoric stresses --- 
   $ds11 = $s11i - $sigi 
   $ds22 = $s22i - $sigi 
   $ds33 = $s33i - $sigi 
   $ds12 = $s12i 
; --- second deviatoric stress invariant --- 
  $taui=sqrt(0.5*($ds11*$ds11+$ds22*$ds22+$ds33*$ds33)+$ds12*$ds12) 
; --- Drucker-Prager yield criterion --- 
  $fi=$taui+m_qvol*$sigi-kphi 
  $ft=$sigi-m_ten  
;--- Modulus Degradation  
SECTION   
; --- plasticity indicator --- 
 if $fi > 0.0 then 
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   EXIT SECTION 
 end_if 
  if $fi = 0.0 then 
   EXIT SECTION 
 end_if 
 
 if $taui - m_tand * $sigi - m_facg > 0.0 then 
   EXIT SECTION 
 end_if 
 
 if $taui - m_tand * $sigi - m_facg = 0.0 then 
   EXIT SECTION 
 end_if 
   
 if $ft>0.0 then 
    EXIT SECTION 
 end_if 
 
 if $ft=0.0 then 
    EXIT SECTION 
 end_if 
if m_g <=1000. then 
     m_g = 1000. 
  else 
   if ns <=1.e-6 then 
    m_g = m_gi 
     else 
      $Rf = 1.-$alf*(LN(1.+ns))^$ar   
      $Rf = $Rf-$alf*$ar*ns/(1.+ns)*(LN(1.+ns))^($ar-1.) 
      m_g = m_gi*$Rf 
    end_if 
   end_if  
ENDSECTION 
 
      if $ft < 0.0 then 
         if $fi > 0.0 then 
       m_g   = m_gi 
       m_gkq = m_g + m_kq * m_qvol 
; --- shear failure --- 
       $lam=$fi/m_gkq 
; --- correct second deviatoric stress invariant --- 
       $taun=$taui-$lam*m_g 
; --- correct volumetric stress --- 
       $sign=$sigi-$lam*m_kq 
; --- correct deviatoric stresses --- 
       $ds11 = ($ds11 / $taui) * $taun 
       $ds22 = ($ds22 / $taui) * $taun 
       $ds33 = ($ds33 / $taui) * $taun 
       $ds12 = ($ds12 / $taui) * $taun  
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; --- new stresses --- 
       zs11 = $ds11 + $sign 
       zs22 = $ds22 + $sign 
       zs33 = $ds33 + $sign 
       zs12 = $ds12 
       zvisc = 0.0 
       m_ind = 1.0 
       else 
; --- no failure --- 
       zs11 = $s11i 
       zs22 = $s22i 
       zs33 = $s33i 
       zs12 = $s12i 
      end_if 
 
  else 
      if $taui - m_tand * $sigi - m_facg > 0.0 then 
       m_g   = m_gi 
       m_gkq = m_g + m_kq * m_qvol 
; --- shear failure --- 
        $lam = $fi / m_gkq 
; --- correct second deviatoric stress invariant --- 
        $taun = $taui - $lam * m_g 
; --- correct volumetric stress --- 
        $sign = $sigi - $lam * m_kq 
; --- correct deviatoric stresses --- 
        $ds11 = ($ds11 / $taui) * $taun 
        $ds22 = ($ds22 / $taui) * $taun 
        $ds33 = ($ds33 / $taui) * $taun 
        $ds12 = ($ds12 / $taui) * $taun 
; --- new stresses --- 
        zs11 = $ds11 + $sign 
        zs22 = $ds22 + $sign 
        zs33 = $ds33 + $sign 
        zs12 = $ds12 
        zvisc = 0.0 
        m_ind = 1.0 
       else 
; --- tensile failure --- 
        zs11 = $s11i - $ft 
        zs22 = $s22i - $ft 
        zs33 = $s33i - $ft 
        zs12 = $s12i 
        zvisc = 0.0 
        m_ind = 3.0 
    end_if 
  end_if  
 
   m_g2 = 2.*m_g 
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   m_e1 = m_k + 1.333333  * m_g 
   m_e2 = m_k - 0.6666667 * m_g              
    case 3 
;--- max modulus --- 
      sm_max = m_g 
      cm_max = m_k + 1.333333 * m_g 
  end_case 
end 
opt logpuplas 
set echo on 
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