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SUMMARY 

It is the purpose of this thesis to develop an overall theory for 

and to demonstrate the feasibility of certain base-band negative-

resistance amplifier configurations that utilize a single tunnel diode 

in conjunction with a uniformly distributed RC transmission line. The 

investigation is specifically oriented toward the integrated circuit 

morphologies, and the areas on which greatest attention is focused are 

the stability criteria for the amplifier configurations, the gain-

bandwidth properties, and the techniques and considerations involved in 

their practical design together with experimental verification of the 

analytical results. 

After a discussion of the two-port parameters and null properties 

of the transmission line, a choice is made for the two-port null network 

used throughout the remainder of the investigation. The Transmission, 

Series, and Reflection amplifiers are then defined as well as the inser

tion power gain (IPG) which is used to describe their performance. 

The stability criteria of the amplifier configurations on both a 

static and dynamic (signal) basis are developed, and the relationship 

between the coupling mechanism and stability is discussed in detail. It 

is concluded that for the same degree of bias stability, a directly-

coupled amplifier will exhibit higher gain for the signal components 

than a capacitance-coupled amplifier, and the gain exhibited by the 

directly-coupled amplifier will be maximum for the given degree of bias 

stability. For this reason, directly-coupled configurations are 
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employed throughout the investigation. The signal stability criteria 

are then established with the aid of a theorem due to Mitra, with the 

result that the bias and signal stability criteria are identical, and 

stabilizing the DC operating point completely stabilizes the circuit. 

In the study of the stability criteria a fundamental limitation of these 

negative-resistance amplifiers is found in that there is a trade-off 

between the conditions of high signal gain and high stability margin, 

where stability is taken to mean total (both static and signal) stability. 

A description of the gain-bandwidth properties and design tech

niques associated with the various amplifiers is then given. It is 

shown that, theoretically, the gain-bandwidth product for these negative-

resistance amplifiers can be made arbitrarily large, but this property 

is of limited practical value because of the gain-stability limitation 

discussed previously. A detailed proof of this property is given in 

an appendix. 

In order to establish some techniques'for designing these ampli

fiers an approximation for the half-power bandwidth is derived for each 

configuration. This approximate expression in each case is taken from 

a rational function, in the frequency variable s, that approximates the 

IPG-frequency response of the amplifier in the frequency range of inter

est. In addition, a definition of stability margin is made and related 

to the maximum possible gain for a given stability margin. The stability 

margin, A, is defined for each configuration by the relation 

Rd = <! + W0> Req • 
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where R, is the diode resistance and R is the equivalent DC resistanc< 
d eq 

of the circuit external to the tunnel diode. The gain-stability limi

tations for the amplifier configurations are found to be 

Reflection: IPG(O) g (-— + 1) , 

Series: IPG(O) g (-^p)2 

and 

Transmission: IPG(O) g (—- + I ) 2 , 

where IPG(O) is the DC value of the insertion power gain. Thus, the 

results are that the Reflection and Transmission amplifiers have an 

identical gain-stability limitation, and it is less severe than that for 

the Series amplifiers. 

For the Series and Transmission amplifiers (whose geometry per

mits a real-frequency transmission zero in the gain expression) a study 

was made of the rapidity of cutoff outside their passband and how this 

may be optimized. For the Series and Transmission configurations the 

cutoff properties are studied in terms of a frequency ratio defined as 

o = - ^ 
fnull 

where f, is the half-power frequency, and f .., is the frequency of 
hp r n J null 

the transmission zero in the IPG-frequency response. With a frequency 

ratio of unity defined as the ideal case, a least upper bound is found 



for each of these configurations to be 

Series: 1. u. b. [o] = 0.07368 , 

and 

Transmission: 1. u. b. [5] = 0,19458 . 

Thus, it is found that the Transmission configurations can be made to 

exhibit the most rapid cutoff above the half-power frequency. 

Design considerations are made for each amplifier configuration 

included in the investigation, and examples are worked out in order to 

provide experimental verification of the analytical results. 
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CHAPTER I 

INTRODUCTION 

Motivation of the Problem 

In recent years many authors have been concerned with the theory 

and development of tunnel diode negative-resistance amplifiers. In gen

eral, most of the research to date has dealt with amplifiers employing 

lossless coupling networks, and these amplifiers have been either base

band (low-pass) or tuned, depending on the type and design of the coup

ling network. 

At the same time the advances and developments made in the space 

technologies, integrated circuits, and related fields have caused the 

network designer to search for new and better methods of reducing the 

physical size of components and networks. In addition to exploiting new 

devices which show the possibility of performing some well-established 

function or of being employed in some innovation, the objectives of 

microminiature network techniques are to lower cost, increase perfor

mance and reliability, and to reduce the overall network size by orders 

of magnitude. One possibility of achieving these goals lies in the use 

of distributed-parameter circuitry composed of three or more homogeneous 

layers. Circuits of this type are simple to fabricate, can be made very 

small, and are easy to integrate with transistor circuits. As pointed 

out by Kaufman, the development of a distributed-parameter null device 

to replace the twin-T network grew out of a desire to create a tuned 
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amplifier in the form of a semiconductor monolith [1]. Kaufman further 

noted that circuits of this type, being fabricated of semiconductor 

materials, are physically simple thus giving rise to greater reliability. 

They are well suited to integrated solid-state systems and can be made 

very small. He cites an example of prototypes operating with null fre

quencies in the vicinity of 1 MHz with overall dimensions of 0.09 inch 

by 0.04 inch by 0.003 inch. 

One of the most easily constructed distributed-parameter networks 

is the RC transmission line. This line may be fabricated so that its 

parameters are uniform, vary linearly, exponentially, trigonometrically, 

or hyperbolically. Su has recently investigated the properties of tri

gonometric and hyperbolic RC transmission lines [2], [3], and Googe has 

investigated the properties of the five-layered, or Double-Kelvin, line 

[4]. The uniform line was the earliest to be investigated and its pro

perties are well known. Depending on its orientation as a two-port, the 

uniform line offers an open-circuit voltage transfer ratio whose fre

quency response may be base-band, high-pass, or constant. In addition, 

external elements may be employed so that the overall -y19(jco) or 

z-\n(j&>) °f the two-port may be controlled in a manner such that the 

voltage transfer ratio frequency response will exhibit a null at certain 

frequencies. 

The versatility of even the simple uniform RC line and the proven 

performance of tunnel diodes in various types of negative-resistance 

amplifiers suggest that the two might be combined to form a new class 

of negative-resistance amplifiers in which the coupling networks are not 

lossless but which would be practically feasible and would find 
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engineering applications. It should be pointed out that the tunnel diode, 

due to its two-terminal simplicity, is a logical first choice for the 

negative-resistance device, but the results of this work could be 

extended in the main to cover amplifiers of this type that employ other 

negative-resistance devices of perhaps wider dynamic range or greater 

power level capability. If the device or circuit used to produce the 

negative resistance is voltage-controlled, then its incremental signal 

model will be of the same general form as that of the tunnel diode, and 

(except for perhaps some practical details of biasing) the work that 

follows could be used to describe the overall behavior of an amplifier 

using such a device. In addition, further motivation is provided by 

the fact that the analysis that follows involves the combination of 

distributed-parameter and lumped-constant components, and it is hoped 

that the techniques developed herein to cope with this situation will 

serve as a starting point for future investigations in which the trans

mission line may possess one of the more exotic tapers mentioned above. 

Definition of the Problem 

The purpose of this thesis is to investigate the overall theory 

of certain base-band negative-resistance amplifier configurations that 

utilize a single tunnel diode in conjunction with a uniformly distri

buted RC transmission line. The investigation is specifically oriented 

toward the integrated circuit morphologies, and the areas on which 

greatest attention is focused are the stability criterion for any given 

amplifier configuration, the gain-bandwidth properties, and the design 

techniques involved in shaping the insertion-power-gain frequency response 

together with experimental verification of the analytical results. 
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CHAPTER II 

BASIC PRACTICAL AND THEORETICAL CONSIDERATIONS 

Basic Properties of the Transmission Line 

Before considering an amplifier configuration in any detail, it 

is convenient to note some of the basic properties of the uniform RC 

line and discuss the practical details of its fabrication. 

In practice, with proper deposition equipment, the uniform line 

may be fabricated in miniature form by depositing films of conductive, 

dielectric, and resistive materials on a nonconducting supporting 

substrate. Such a fabrication is shown in Figure 2.1. 

Film Fabrication of Uniform RC Lines . 

R 

° wwwvw ° r = 

c = 

resistance 
unit length 

capacitance 
unit length 

Two-Port Circuit Symbol . 

Figure 2.1 The Uniform RC Transmission Line. 
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Various materials may be used in the film fabrication of the 

uniform line. A typical example might be: Stratum 1 is a near-ideal 

conducting film of aluminum, Stratum 2 is a dielectric film of silicon 

monoxide, and the final Stratum 3 is the resistive film of nichrome. 

The input and output terminals are attached to Strata 1 and 3 with low-

temperature indium solder. Typical parameter values with this type of 

construction are on the order of 50.0 ohms per square and 0.080 micro

farads per square inch, and the film fabrication of the uniform line, 

with the proper equipment, can be achieved very simply with high reli

ability and very small physical size. 

In the absence of film deposition equipment it is possible to 

model the uniform line on an expanded scale so that prototypes may be 

constructed for experimental work. One method of doing this is shown 

in Figure 2.2. 

Silver Paint 
Electrode 

Figure 2.2 Teledeltos-Mylar Model of Uniform Line. 
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The Teledeltos-Mylar model is constructed by sandwiching layers 

of Teledeltos resistance paper, Mylar film, and aluminum or copper foil, 

with polystyrene cement as the bonding agent. This type of model, 

although usually much larger in physical size than the film fabrication, 

has the same type of terminal characteristics and is very simple to con

struct. Typical parameter values achieved in this manner are 2000 ohms 

per square and 300 picofarads per square inch. Since the resistance per 

square is fixed by the resistive coefficient of the Teledeltos paper, 

this type of model has a limitation in the range of RC products which 

can be achieved. 

Another method of modeling the uniform line, the one used in the 

experimental work of this thesis, is similar to the Teledeltos-Mylar 

model. The resistance paper is replaced by a layer of conducting radio-

frequency shielding paint. Depending on the spraying density, the 

resistive coefficient of this layer may be adjusted to values as low as 

2.0 ohms per square and as high as that of the Teledeltos paper. In 

addition to this increased range in the resistive coefficient, another 

advantage of this model is that the bond between the sprayed-on resis

tive layer and the Mylar is much better than that of the Teledeltos 

model with a consequent increase in the capacitance and decrease in 

overall size. A typical value of the capacitance achievable is 0.005 

microfarads per square inch. The range of RC products obtainable with 

this model makes it more useful than the Teledeltos-Mylar model. 

The open-circuit impedance parameters of the uniform line when 

viewed as a two-port network are 



r cothysrcL , / n , . 
Z n = z 0 0 = ( 2 . 1 ) 11 22 i/src 

and 

r c s c h v s r c L / 0 nN 

z 1 0
 = z 0 1 = , ( 2 . 2 ) 12 "21 

•/src 

where r and c are the resistance and capacitance per unit length, as 

shown in Figure 2.1, L is the length of the line, and s is the complex 

frequency variable, o + jo). Since R = rL and C = cL, equations (2.1) 

and (2.2) may be rewritten as 

= z = • coth (a-/s) , (2.3) 
11 "22 r (aVs) 

and 

z12 = z21 = ' ' (2-**) 
(a/s) sinh(aTs^) 

where 

a = VSc" , (2.5) 

and R and C represent the total resistance and capacitance of the 

transmission line. 



The transformation from open-circuit impedance parameters to 

short-circuit admittance parameters yields 

11 ^22 = - ^ H . Coth (a/F) , (2.6) 

and 

y12 == y21 
(aTs-) 
R 

csch (a-/s~) (2.7) 

Since the RC line is a reciprocal device (i.e., z = z and 

y12 = y2p it: m a y b e r e P r e s e n t e d > as shown in Figure 2.3, with the 

simple Tee and Pi networks of classical two-port theory. 

z l l ' - *iTf Z22 " • z12 z l l ' - *iTf Z22 " • z12 
1 i 

|z12 

0 < > o 

1 ~Vl2 \ 1 ~Vl2 \ —* » u —* 

E l yXl + y12 y22 + y12 

( > 1 1 < • 0 

Figure 2.3 Two-Port Models of the Uniform RC Line. 

The open-circuit voltage transfer ratio of the line is then 

E2 T (s) = ~ ocv J E 

i2=o 

12 "y12 

11 yll cosh(a/s") 
(2.8) 



The magnitude-frequency response of this transfer ratio for s = jco is 

shown in Figure 2.4 and is of the base-band or low-pass type. 

T (jo))| •» 
OC J ' 

1.0 

GO 

0 

Figure 2.4 Open-Circuit Voltage Transfer Frequency 

Response of the Uniform RC Line. 

The voltage transfer ratio can be made to exhibit real-frequency 

transmission zeros through the use of externally connected elements. 

This can be shown by investigating z.. (JGD) and -y,?(JGo) of the two-port, 

The polar plots of z (JGD) and -y,?(jcD) are shown in Figure 2.5. 

Z-,-, (j<̂ 0 Plane 

Im 

Increasing GO 

-y12(jtD) Plane 

Increasing GO 

Figure 2.5 Polar Plots of z _(jco) and -y,?(ja)) for the 

Uniform RC Transmission Line Two-Port. 



The polar behavior of z19(jco) shows that a transmission zero can 

be produced by connecting an external element in series with the two-

port. In particular, a positive resistance of the proper value will 

produce a transmission zero at a frequency where z19(jo)) is purely real 

and negative, such as point 1 in Figure 2.5. Likewise, a capacitor of 

the proper value connected in series with the two-port will produce a 

transmission zero at a frequency where z19(jao) is purely imaginary and 

positive, such as point 2 in Figure 2.5. Consideration of the polar 

behavior of -y,9(ja)) shows that real-frequency transmission zeros may 

be produced by connecting an external element in parallel with the two-

port. A capacitor of the proper value will produce a transmission zero 

at a frequency where -y19(ja)) is purely imaginary and negative, such as 

point 3 in Figure 2.5. Likewise, a positive conductance of the proper 

value connected in parallel with the two-port will produce a transmission 

zero at a frequency where -y19(jco) is purely real and negative, such as 

point 4 in Figure 2.5. 

In any case, only elements of positive resistance (conductance) 

or capacitance will be considered for producing real-frequency transmis

sion zeros. Even though it is theoretically possible to produce real-

frequency transmission zeros with a series-connected or parallel-connected 

inductor, this method is impractical since inductance is very difficult 

to achieve with the present thin-film technology. In addition, the 

values of <x> for which an inductor may be used, such as points 5 and 6 in 

Figure 2.5, are so high that the amplitude of the response is well below 

the dynamic range of interest, and a transmission zero at these frequen

cies would be of little practical value in shaping the frequency response. 
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For these reasons, inductors as null-producing elements are not considered 

In light of the foregoing discussion, any one of the two-port 

networks shown in Figure 2.6 will possess a voltage transfer frequency 

response that displays a null at some real frequency co . 

R 

-WWWWVWT 

R = 0 .056184 R 
n 

co Jn = 1.78040 
n 2TT RC 

(a) S e r i e s - R N u l l i n g . 

C = 0 .056184 C n 

R 
*—lM/WWWWV\r* 

f =J±= 1-78040 
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(b) P a r a l l e l - C N u l l i n g . 

R 

VWWVW 

^ C == 4 . 5 6 8 1 4 C 
n 

= -2 = 4 . 9 0 7 7 5 
n "" 2JT " RC 

(c ) S e r i e s - C N u l l i n g . 

— = R = 4 .56814 R 
G n 

—\m— 
R 

-\AAMMAMMr 

f = ^D = 4 . 9 0 7 7 5 
n " 2jt RC 

(d) Parallel-R Nulling. 

Figure 2.6 RC Transmission Line Two-Ports with 

External Null-Producing Elements. 

In a practical case, the chosen coupling network will be doubly-

terminated. That is, it will be inserted between a non-ideal source and 

a finite load resistance. In addition to the effects of the source and 

file://-/AAMMAMMr
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Figure 2.7 Doubly-Terminated Coupling Networks and Typical 

Overall Voltage Transfer Response Curves. 



load resistances, the externally connected null-producing element will 

also affect the overall voltage transfer response. Figure 2.7 shows the 

four coupling networks in the doubly-terminated case. The overall volt

age transfer function is now 

A EL 

s 
(2.9) 

s=jao 

In the first case, that of series-R nulling, the DC value of 

|T(JCJD)| is no longer unity. As co-»0, the capacitance of the line is 

effectively open-circuited, and the circuit reduces to a simple series 

connection of the resistors R , R, and R . The DC value of |T(jo))| is 

then found by simple voltage division to be 

T(°)l • i r+bc < l • (2-10) 

s L 

In addition to this reduced low-frequency value, the overall response is 

altered at high frequencies since R and R are effectively in parallel, 

and the response no longer approaches a zero asymptote. Since the main 

interest of this investigation is in directly-coupled base-band amplifier 

configurations, the doubly-terminated coupling network with series-R 

nulling must be eliminated as a possible choice. 

The second case, that of parallel-C nulling, has the same low-

frequency response value as the first, and because of the capacitive 

voltage divider effect of C and C the response at high frequencies 

again approaches a non-zero value. The high-frequency response of this 

circuit also eliminates it from further consideration. 
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The third and fourth cases, those of series-C and parallel-R 

nulling respectively, both have capacitive paths shunting the load at 

high frequencies, and the response approaches zero with increasing 

frequency. Theoretically at least, both could be used in conjunction 

with a tunnel diode to form a directly-coupled base-band amplifier. 

Certain practical considerations, however, rule in favor of one over the 

other. First of all, the DC response of the circuit with parallel-R 

nulling will be higher than that utilizing series-C nulling. This is 

because at DC the resistor R appears directly in parallel with the line 

resistance R, and the equivalent resistance of the parallel combination 

i s 
RnR (4.56814R)R A o o n / „ , 0 11N 

R
P

 = R^T = 5.56814R = ° ' 8 2 0 4 R < 2 - n > 
n 

The low-frequency value of the transfer ratio is then 

R
L

 R
L 

l T ( 0 ) l R +0 .8204R + RT
 > R +R+RT ' C 2 - * 2 ) 

s L s L 

and the response at low frequencies will be the higher of the two. In 

addition, the physical layout of the circuit using series-C nulling is 

more cumbersome and more prone to involve parasitic elements than the 

two-port employing parallel-R nulling. This is recognized from the 

fact that the model transmission lines used are on the order of one 

foot square and will therefore require standoff insulators to isolate 

the conducting layer (a copper sheet) from the chassis so that between 

the two the nulling element C may be connected. If the conducting 
n 

plate of the transmission line is physically separated from the chassis, 

then the effective flux linkage areas of the two meshes of the network 
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are increased, and this physical realization will have more parasitic 

inductance in both the input and output meshes than the circuit using 

parallel-R nulling. If parallel-R nulling is used, the conducting 

plate of the model transmission line is bolted directly to the chassis 

so that there is a common ground both physically and electrically, the 

construction is simpler, and the parasitic inductance introduced in 

the input and output meshes is held to a minimum. For these reasons, 

the coupling network utilizing parallel-R nulling was chosen for the 

amplifier configurations investigated in this thesis. 

The Amplifier Configurations 

Now that a choice has been made for the prototype coupling cir

cuit, we are in a position to consider the specific amplifier configura

tions which are investigated in the work that follows. In order to 

negate some of the losses in the doubly-terminated circuit, a tunnel 

diode is imbedded in the network so that the overall network will have 

a gain greater than unity and thereby become a useful amplifier. The 

position in which the tunnel diode is placed defines the type of 

amplifier. 

A Transmission Amplifier is defined as one in which a source and 

load terminate opposite ports of a reciprocal two-port network with a 

tunnel diode, suitably biased in the negative-resistance region, placed 

across one of these ports [5], This type of amplifier is shown in 

Figure 2.8 The configuration with the tunnel diode across the input 

port will be designated as the Transmission I amplifier, and it will be 

designated as the Transmission II amplifier when the tunnel diode is 

placed across the output port. 
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Transmission I Amplifier. Transmission II Amplifier 

Figure 2.8 Transmission Amplifier Configurations. 

For the work at hand each reciprocal two-port network indicated 

in Figure 2.8 is the RC transmission line with a parallel-R nulling 

element as shown in Figure 2.7(d). The complete amplifiers, including 

bias supplies, are shown in Figure 2.9. 
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R 11WJV-R 
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bb 

Transmission I Amplifier Transmission II Amplifier. 

Figure 2.9 Transmission Amplifiers Utilizing the Uniform 

RC Line and Parallel-R Nulling Element. 

A Series Amplifier is defined here as one in which a source and 

load terminate opposite ports of a reciprocal two-port network but with 

the tunnel diode inserted in series with the top lead of the two-port 

either between the source and the two-port or between the two-port and 
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the load. This type of amplifier is shown in Figure 2.10. The configura

tion with the diode between source and two-port will be designated as 

the Series I amplifier, and it will be designated as the Series II ampli

fier when the tunnel diode is placed between the two-port and the load. 

The complete amplifiers, including bias supplies, are then as shown in 

Figure 2.11. 
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Series I Amplifier. 
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Series II Amplifier. 

Figure 2.10 Series Amplifier Configurations. 
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Series I Amplifier. Series II Amplifier. 

Figure 2.11 Series Amplifiers Utilizing the Uniform RC 

Line and Parallel-R Nulling Element. 
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A Reflection Amplifier is defined here as one in which a source 

and load terminate the same port of a reciprocal two-port network and 

a tunnel diode, suitably biased in the negative-resistance region, ter

minates the other port. This type of amplifier is shown in Figure 2.12. 

The complete amplifier, including the bias supply, is shown in Figure 2.13. 

R 

•mk-

R, 
Reciprocal 

Two-Port 

Network 

Figure 2.12 The Reflection Amplifier Configuration. 
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'bb 
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Figure 2.13 The Reflection Amplifier Utilizing the 

Uniform RC Transmission Line. 

* The geometry of the Reflection amplifier prevents the production 
of real-frequency transmission zeros through the use of a single 
external element, hence the absence of Rn in Figure 2.13. 



The gain function employed in this study is the insertion power 

gain (IPG) which is defined in Figure 2.14. 

I WMr 

o 
R 

R, 

R 

-o-\ 

Active 
Two-Port 
Network 

(a) Source connected directly 
to load. 
(Power to load = P .) 

(b) Active two-port inserted 
between source and load. 
(Power to load = P ) 

IPG = 
Insertion 
Power 
Gain 

A 
Power delivered to the load 
with active two-port in place t 
Power delivered to the load when 
connected directly to source. 

M 
5L0 

Figure 2.14 Definition of the Insertion Power Gain (IPG). 

There are other definitions of power gain which are in common use 

They usually depend on some degree of impedance matching between source 

and load. In practice, however, it is more common to be faced with the 

problem of providing gain between a source and load of fixed impedances, 

and the definition given above is the most useful in this case since it 

provides a measure of the effectiveness of the active two-port that is 

inserted between the source and load. 

The IPG for the general amplifier shown in Figure 2.14(b) is 

IPG = (Rg+RL) 
- y 12N 

R S R
L M N + VllN + V22N+ 1 

2 

3 

S=JCD 

(2.13) 
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where y.. , ŷ ioM* ^ ^ N * a n d I^IN a r e t h e o v e r a 1 1 y-parameters and system 

determinant of the active coupling network. 

Taking the Transmission I amplifier, for example, the y-parameters 

of the active two-port coupling network are 

* n n = Y a + ^ n + V • <?-14> 

and 

" y 12N = " y 12 + G n > < 2 - 1 5 > 

y 2 2 N = y l l + G n > < 2 - 1 6 > 

y U = yllNy22N " y12N 

2 
" [ Yd + ( y l l * V ] • ^ l l + V " ( y 1 2 - V • <2-17) 

where y,, and y,„ are y-parameters of the RC line alone, Y, is the 

admittance of the tunnel diode, and G = 1/R is the conductance of the 
n n 

null-producing element. 

With proper adjustment of the circuit parameters the IPG-

frequency response has the general form shown in Figure 2.15. Adjust

ment of -y 1 9 N through the use of the null-producing conductance G 

produces a null in the response at a) near the band edge, and the gain 

in the pass band is greater than unity. 
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Figure 2.15 General IPG-Frequency Response of the 

Transmission I Amplifier. 

The low-frequency value of the IPG can be found by taking the 

limit of equation (2.13) as co approaches zero, or it may be found from 

a low-frequency equivalent circuit of the Transmission I amplifier. The 

low-frequency gain is found to be 

IPG(O) = (RS+RL) R RT (-G,) + R (1-R G_,) + R, + R 
s L d sv p d ' L t 

(2.18) 

where -G, is the negative conductance of the tunnel diode, and R is the 
d p 

parallel combination of the line resistance R and the null-producing 

resistance R . Equation (2.18) shows that, theoretically at least, the 

IPG may be made very large in the pass band. 

In order to illustrate more clearly the amplifying mechanism in 

the frequency range of the pass band, it is useful to resort to the low-

frequency equivalent circuit of the amplifier and the technique of load-

line analysis. The low-frequency equivalent circuit of the Transmission I 

amplifier for zero-signal condition is shown in Figure 2.16. 



Figure 2.16 Low-Frequency Equivalent Circuit of the Transmission I 

Amplifier Under No-Signal Condition. 

The equivalent resistance of the circuit external to the diode is 

R v R
P
 + y 

e q - R s + R p + R L * 
(2.19) 

The volt-ampere characteristic of the tunnel diode is shown in 

Figure 2.17. The slope of the characteristic in the linear region is 

-G, = -1/R,. Superimposed on the characteristic is the dynamic load 

line of slope -1/R , (It is assumed that the circuit is biased pro

perly so that the load-line intersects the diode characteristic in the 

negative-resistance region as shown). 

Dynamic load line of 
slope -1/R . 

eq 

Diode Characteristic 
of slope -1/R,. 

Figure 2.17 Load-Line Analysis of Transmission I Amplifier. 
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In light of equation (2.19), equation (2.18) may be cast in the 

form 

IPG(O) = (RS+RL) 
R 

< V W (VReq> 
(2.20) 

Now, considering the slope of the dynamic load line and the form 

of equation (2.20), it is apparent that as R approaches R in value 

(i.e., as the slope of the dynamic load line approaches that of the 

diode characteristic) the insertion power gain can assume very large 

values. This point of view will be useful in the next two chapters 

where the stability criteria and gain-bandwidth properties are discussed. 

It should be noted that all of the practical amplifier configura

tions shown in Figures 2.9, 2.11, and 2.13 are directly-coupled, and 

the DC bias circuit is not isolated from the signal circuit in any of 

these configurations. There are several reasons for this. These reasons 

are now presented. 

One method of isolating the bias and signal circuits employs 

inductors that act as radio-frequency chokes to the signal components 

but act as short circuits to the DC bias voltages and currents. It 

should be noted, however, that the object here is to realize strictly RC 

amplifier configurations in order to take advantage of the microminia

ture integrated circuit technology (where inductance is very difficult 

to achieve). In addition to this is the fact that if the circuits are 

free of inductance, the stability problem is simplified a great deal, 

and the resulting stability criteria are very simple and easy to meet. 

For these reasons inductors as isolating elements are ruled out of 

consideration. 



Another standard technique for isolating the bias and signal cir

cuits lies in the use of capacitance coupling. Here, the signal compon

ents are coupled into and out of the circuit through capacitors that 

act as short circuits to the signal components but act as open circuits 

to the DC bias currents and voltages. The absence of inductance elimin

ates the possibility of tuned tank circuits, and in this case it can be 

shown that the signal gain of a capacitance-coupled circuit will always 

be less than that of a directly-coupled circuit. In addition, the low-

frequency response of the capacitance-coupled circuits is degraded while 

the directly-coupled circuits possess a response that is flat down to 

zero frequency. For these reasons capacitance coupling is also ruled 

out of consideration, and all the amplifiers to be investigated are 

directly-coupled. 

The type of coupling to be used is intimately related to the pro

blem of circuit stability, and the supporting details of the arguments 

presented above will be given in the next chapter where the stability 

criteria are developed. 



CHAPTER III 

THE STABILITY CRITERIA 

Basic Assumptions 

An important question to be answered regarding any amplifier con

figuration that utilizes a negative-resistance device is whether or not 

the circuit can be made stable. The practical and theoretical aspects 

of this facet of the investigation are dealt with in this chapter. 

Incremental signal models of the tunnel diode are shown below in 

Figure 3.1. The ohmic losses in the leads and semiconductor material 

are represented by the series resistance R , and the parasitic indue-

tance of the leads by the series inductance L . The junction capacitance 

° \IMl OUJLr 
R L 

•R, = - — -R, = -

(a) Model containing ohmic 
losses (R ) and parasitic 
lead inductance (L ). 

s 

(b) Model with negligible 
ohmic losses and parasitic 
lead inductance. 

Figure 3.1 Incremental Signal Models of the Tunnel Diode. 

of the diode is represented by the shunt capacitance C,, and the dynamic 

negative resistance is represented by the shunt resistance of value 

-R . The complete incremental signal model is as shown in Figure 3.1(a) 
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With the continuing advances being made in the semiconductor technology 

and packaging techniques, however, the series resistance and inductance 

can be made very small to the point of becoming negligible for most pur

poses. This is especially true in the case of the microminature diodes 

which would be used in the integrated versions of the amplifiers under 

investigation. A distinct advantage of microminiaturization is that 

parasitic elements are also reduced in size and effect. In the work 

that follows, the series resistance and inductance are assumed negligible, 

and the incremental model of the tunnel diode is taken to be that shown 

in Figure 3.1(b). 

Another assumption of practical importance is that the parasitic 

inductance of the circuit layout is negligible. This point was raised 

earlier in Chapter II with the choice of the transmission line coupling 

network to be used. It should be stressed that any practical layout of 

the amplifiers considered here must be made with this point in mind. An 

effort must be made to eliminate, as far as possible, any stray induc

tance that might be present in the circuits. As stated before, the 

object here is to make the overall circuits strictly RC. This not only 

takes advantage of the integrated circuit technology, but it will allow 

the use of a theorem due to Mitra concerning the pole-zero properties 

of a strictly RC network containing a single tunnel diode [6], Mitra's 

theorem is the heart of the technique used here to investigate the sig

nal stability of the proposed amplifier configurations, and it is very 

important that the conditions allowing its use be approached as closely 

as is practically possible. Again, it should be noted that with thin-

film microminiature fabrication, the networks will be almost ideally RC, 



and the conditions allowing the use of Mitra's theorem will be approached 

even more closely than is possible with the expanded scale prototypes 

used in the experimental work of this investigation. At any rate, a 

stability criterion is only as good as its practical application. If, 

after taking the needed precautions in the physical layout of a circuit, 

a proposed stability criterion fails, then it is the task of the inves

tigator to revise the incremental signal model of the circuit in such 

a way as to arrive at a practical working solution. Since the experi

mental work of this investigation bears out the validity of the stability 

criteria established here, the assumption of negligible stray inductance 

is considered a reasonable one with the comforting thought that it is 

even more accurate in the case of thin-film microminiature construction. 

Bias Point Stability and Coupling Considerations 

The first part of the stability criterion concerns the DC operat

ing point, or bias point, of the tunnel diode. This aspect of the 

stability problem is discussed in terms of the Transmission I amplifier 

in Figure 3.2. The DC equivalent circuit for the Transmission I ampli

fier is shown in Figure 3.3. 

y^^^-\ 
^wwNMm-^—Tn 

iRL 

_y Ebb 

Figure 3.2 Transmission I Amplifier. 
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Figure 3.3 DC Equivalent Circuit of the Transmission I Amplifier. 

The static volt-ampere characteristic of the tunnel diode with a 

superimposed DC (or static) load line is shown in Figure 3.4. 

Slope of static load line = -1/R 
DC" 

Slope of tunnel diode characteristic 
in the negative resistance region 

Figure 3.4 Static Load-Line Analysis. 

For a stable bias point, the slope of the static load line must 

be such that it intersects the tunnel diode characteristic at only one 

point. The static load line is given by the linear volt-ampere 

relationship at the terminals of a DC Thevenin equivalent circuit taken 

with respect to the diode. For a single intersection of the static load 

line with the diode characteristic in the negative-resistance region 

E,, (and hence the Thevenin voltage E, , ') must be adjusted properly, 

and the magnitude of the diode's negative resistance, R , must be 

greater than the DC Thevenin resistance of the external circuit, i.e., 
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R d > R D C - ( 3 a ) 

From Figure 3.3, the DC stability criterion for the Transmission I ampli

fier takes the form 

R (R +R ) 
Rd>RDC = (RV-HO • <3-2> 

s p L 

A summary of the DC stability criteria for the amplifiers under inves

tigation is as follows: 

R R 
Reflection: R, > R + _s,r' , (3.3) 

Q K "TK-. 

s L 

R (R +RT) 
S D L 

Transmission I: Rd > R + R ^ + R — , ( 3 . 4 ) 
s p L 

RT (R +R ) 
L D S 

Transmission II: R, > ^ — , (3.5) 
s p L 

Series I: R, > R +R +RT , (3.6) 
d s p L 

Series II: R, > R +R +RT , (3.7) 
d s p L 

where 
A 

R = R R/(R +R) = 0.8204 R . (3.8) 
p n n 

In addition to a single intersection of the static load line and 

the diode characteristic, good bias stability requires that small changes 
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in the supply voltage E,, (and hence the Thevenin voltage E, , ') should 

have a minimum effect on the location of the bias point, Q. The ideal 

situation would be to have a static load line that is vertical in slope. 

Since this corresponds to a DC equivalent circuit of zero resistance, a 

vertical static load line would be impossible to achieve without the use 

of a choke inductor to couple the supply voltage directly to the tunnel 

diode. Since inductors have been ruled out of consideration for reasons 

previously discussed, this brings to mind the possibility of improving 

the bias stability by isolating the bias circuit and signal circuit 

through the use of capacitance coupling. With this approach it might be 

possible to adjust the DC resistance of the equivalent circuit to a mini

mum while retaining control of the resistance offered to the signal com

ponents. If so, it would be possible, hopefully, to achieve a nearly 

vertical static load line (resulting in very good bias stability) and at 

the same time adjust the dynamic load line, as discussed in the previous 

chapter, so that its slope approaches that of the diode characteristic 

(resulting in very high gain for the signal components in the pass band). 

One possibility of capacitance coupling in the Transmission I 

amplifier is shown in Figure 3.5. To set the operating point, we must 

satisfy the bias stability criterion 

R d > R ^ = R s . (3.9) 

The incremental signal model of the amplifier in the frequency range 

of the pass band is shown in Figure 3.6. (Here, it is assumed that we 

have perfect coupling by the capacitance C and that the frequencies are 

low enough so that the total line capacitance C and the diode shunt 



capacitance C, are essentially open-circuited). 

R, 

Figure 3.5 Transmission I Amplifier with Capacitance 

Coupling to Isolate Bias and Signal Circuits. 

R, 

Figure 3.6 Incremental Signal Model of the Transmission I 

Amplifier in the Pass-Band Frequency Range. 

As shown in the previous chapter, the resistance external to the diode 

in this incremental signal model is 

Rc(R + R ) 
= s p L 

eq R +R +RT n s p L 

(3.10) 

and this resistance value governs the slope of the dynamic (signal) load 

line. The diode characteristic with both the static and dynamic load 

lines superimposed in shown in Figure 3.7. 



Static load line: Slope = -1/R 

Dynamic load line: 

R +R +RT s p L 
S l 0 p e = " R (R +R T ) = 

s p L eq 

~ E
d 

Figure 3.7 The Static and Dynamic Load-Line Analysis of 

the Transmission I Amplifier with Capacitance Coupling. 

It is obvious from Figure 3.7 and the values of R and R given above 
DC eq 

that, with capacitance coupling, the slope of the dynamic load line will 

be steeper than that of the static load line. This will always be true 

in the amplifier configurations under investigation, since the equiva

lent resistance of the signal circuit, R , will always be less than 

the resistance of the DC equivalent circuit, R . This will be true for 
DC 

any practical orientation of the coupling capacitance(s) and the supply 

voltage. By the same type of analysis, it is observed that the same 

state of affairs exists in the other amplifier configurations as well. 

This result is the opposite of what we hoped for. 

In a directly-coupled amplifier, the resistance of the bias cir

cuit, Rnr, and the resistance of the signal circuit, R , are the same, 

and the static and dynamic load lines are identical. We can therefore 

draw the following conclusion: For the same degree of bias stability 

(static load lines of the same slope) a directly-coupled amplifier will 

exhibit higher gain for the signal components than a capacitance-coupled 
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amplifier, and the gain exhibited by the directly-coupled amplifier is the 

maximum possible for the given degree of bias stability. This result, 

plus the fact that the response of a capacitance-coupled amplifier is 

degraded at very low frequencies, is one motivation for considering only 

directly-coupled amplifier configurations in this investigation. In 

short, there is nothing to be gained by using capacitance coupling to 

isolate the bias and signal circuits in any of the amplifiers under con

sideration. 

At this point it should be noted that a fundamental limitation of 

both practical and theoretical importance is involved in the conclusion 

stated above. As we have seen, a directly-coupled amplifier possesses 

a single load line that serves for both the static and dynamic behavior, 

and once the slope is fixed (thus fixing the degree of bias point stabi

lity) the maximum possible gain for this condition is simultaneously 

achieved. As the slope of this load line is made to approach that of 

the tunnel diode characteristic (so that high gain results), the stability 

of the bias point becomes more critical (small changes in E , will now 

cause large changes in the bias point voltage). Therefore, a fundamental 

limitation exists in amplifiers of this type in that there will be a 

trade-off between the conditions of high bias .point stability and high 

signal gain. This will be discussed further after the signal stability 

criterion has been developed. 

Signal Stability 

The second part of the overall stability criterion is concerned 

with the stability of the amplifiers for the signal components. The 



method of establishing the signal stability criterion will now be pre

sented with the Series I amplifier taken as an example. 

The incremental signal model of the Series I amplifier is shown 

in Figure 3.8. The short-circuit admittance parameters for the two-port 

N are 

Y11N y22N Yll + Gn ' (3.11) 

and 

y12N y2lN y12 " Gn ' 
(3.12) 

where y, . and y.. „ are the parameters of the line alone 

Y, = C..S - GJ mhos d d d 

R 

Tunnel 
Diode 

r^wrH 

"O Y . 
i n 

G = 

-wmt 

- y 12 

y l l + y 1 2 y 1 1 ^ 1 2 

.Symmetrical 
RC Line 

GL-R. 

Overall Coupling Network N. 

(yllN' y12N' y22N^ 

Figure 3.8 Incremental Signal Model of Series I Amplifier. 
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The y-parameter determinant for the two-port N is then 

y lN y l l N y 2 2 N " y l2N Y 2lN 

( y l l + G n ) 2 " ( y l 2 " G n ) 2 

2 G n ( y l l + y 1 2 > + ( y l l 2 - y 1 2 2 ) 

= 2 G
n ( y n

+ y 1 2 ) + | y | > ( 3 - 1 3 ) 

where |y| is the determinant for the line parameters only. The loaded 

input admittance to the network N is 

. _ yUNGL+ lyU 
l n (y22N+GL) 

and the total series impedance seen by the voltage source E is 

( 3 . 1 4 ) 

7 D 1 ( y 2 2 N + G L ) 

Z = R + — + S Yd y l W G L + l y U 

V V l l N + R s R l > l N > + y l lN
+ RLlyU + VV22N+1) 

Yd^llN
+RLlylN> ' 
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Substituting equations (3.11) and (3.13) and grouping terms yields 

[Y, (R +R +2G R R_) + 2G RT + 1] • y 1 n d v s L n s L n L 11 

+ [ 2 G n R L ( Y d R s + 1 ) ] ' y 1 2 

Z = 
+ (Y,[R G +R RT lyl + RT G +1] + RT I y I + G } 

d s n s L L n L n 
[Yd(2RLGn + 1)] y u + 2YdRLGny12 + V ^ J ^ ^ ) (3.16) 

For the symmetrical uniform RC transmission line the short-circuit 

admittance parameters are 

(a/s) cosh(a/s) 
yll " R sinh(a/s) ' 

(3.17) 

12 
(a/s") . 1 
R sinh(a-/s) 

(3.18) 

and 

where 

= (a/s) 

R 
(3.19) 

a = -/RC" . (3.20) 

Now, substituting these expressions into equation (3.16) and 

2 r-

multiplying the numerator and denominator by R sinh(ays) to clear frac

tions, we get 
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R[Y,(R +R+2G R RT) + 2G RT + 1 ] (a/s") cosh(a / s" ) 
d s L n s L n L 

- R[2G R (Y.R + 1 ) ] (a/s~) 
n L d s 

Y j R R T ( a / s ) 2 + G R2(R +RT ) + R 2 ] 
d s L n s L 

+ < s i n h (a/s~) 

+ RT ( a / s ) 2 + G R2 

L_ \ L n 

(Denominator) 
(3.21) 

The driving-point impedance of the circuit is then 

Z(a/s) 
_ N(a/s~) 
D(a/s) * 

(3.22) 

where N(a/s~) and D(a/s~) are the numerator and denominator of the expres

sion considered as functions of a,s, and the short-circuit natural fre

quencies of the network are the zeros of N(a-/s~). 

Considering equation (3.21), the numerator function may be written 

in the form 

N(a/s) = P(aVs") * sinh(a-/s) + Q(a/s) • cosh(a-Zs) - W(a7s") , (3.23) 

where 

P ( a / s ) = Y l R R T ( a / s " ) 2 + G R2 (R +R T )+R 2 ] + R T ( a / s " ) 2 + G R 2 , ( 3 . 2 4 ) 
d s L n s L L n 

Q(a/s~) = [Y d (R s +R L + 2GnR sRL) + 2 6 ^ + 1 ] • R • (a/s~) , ( 3 . 2 5 ) 

and 

W(a / s ) = 2G R RT(Y.R + 1 ) ( a / s ) n L d s ( 3 . 2 6 ) 
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The question of stability then reduces to finding the values of 

s for which N(a-/s~) is zero, or for which 

P(a7s) ' sinh(a-Zs) - W(a/s) + Q(a/s) • cosh(a/s) = 0 . (3.27) 

Now, substituting 

Cd ? 
Y d = c d s " G d = " i ( a ^ } " Gd ' ( 3 - 2 8 ) 

a 

into equations (3.24), (3.25), and (3.26) and making use of the DC sta
bility criterion, R, > R +R +RT , the functions P(a-/i), W(a-/s~), and 

j ' d s p L 

Q(a-/s) may be cast in the following forms: 

/ i 

P(a/s) = D • (a/s) + E • (a/s) + F , (3.29) 

where 

C, 
D = -f R RT > 0 , (3.30) 

z s L 
a 

E = -f [GnR
2(Rg+RL) + R

2] + GdRL(Rd-Rs) > 0 , (3.31) 
a 

and 

where 

2 > 
F = GdGnR (Rd-(RS+

RL+Rn)} = °* (3'32) 

W(a-/s") = (a/i)[G • (a/s~)2 + H] , (3.33) 

cd 

G = 2G RR RT —z > 0 , (3.34) 
n s L 2 a 



and 

Likewise 

where 

and 

H = 2G.G RRT(R,-R ) > 0 . (3.35) 
d n L d s 

Q(a/s) = (a/?) [J • (a/s~)2 + K] , (3.36) 

Cd , CdR 

J = 2G RR RT —z + — r (R +RT ) > 0 n s L 2 I s L a a 

= G + M , (3.37) 

K = 2G.G RRT(R -R ) + G J R [ R J - ( R +RT) ] > 0 
d n L v d s 7 d L d v s L 

= H + N , ( 3 . 3 8 ) 

where H and N are both positive constants. 

The governing equation (3.27) may now be written in the form 

[D • (aVs) + E • (a-/s)2 + F] sinh(a-/s) 

- (a/s")[G • (a/s")2 + H - {J • ( a / i ) 2 + K} cosh(av / i ) ] = 0. (3.39) 

Employing equations (3.37) and (3.38) this may be rewritten as 

/ 
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[D • (a/s) + E • (a/s") + F] sinh(a/s") 

-(a/s") 

[G • (a/s) + H] [1 - cosh(a/s")] 

-[M • (a/s) + N] cosh(a/s) 

= 0 . (3.40) 

At this point it is necessary to make use of Mitra's theorem 

which states that the driving-point impedance of a strictly RC network 

containing a single tunnel diode can have at most one zero on the posi

tive real axis in the s-plane [7]. Since the network is strictly RC, 

the zeros of the driving-point impedance must fall on the a-axis (i.e., 

they must be purely real), and using the result of Mitra's theorem it 

is known that, at most, there can be only one zero on the positive 

a-axis in the s-plane. Hence, there can be at most one natural frequency 

that falls in the right-half s-plane causing instability. The question 

is then posed: _I_s there a positive real value of s for which equation 

(3.40) is satisfied? Taking s to be purely real and positive, the 

following change of variables is made: 

(a/s") = x, (± real) . (3.41) 

Equation (3.40) may now be written as 

4 2 
(D • x + E • x + F) sinhx 

- x{(G • x2 + H)(l - coshx) - (M • x + N) coshx} = 0, (3.42) 

where the constants D, E, G, H, M, N, and a, are all real and positive, 

and the variable x is a purely real variable. 
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Equation (3.42) is very difficult to solve in closed form. If 

part of it is transposed, however, so that it takes the form 

4 2 (D • x + E • x + F) sinhx 

2 2 
= x{(G • x + H)(l - coshx) - (M • x + N) coshx] , (3.43) 

then the left and right members of equation (3.43) may be plotted graph

ically to determine if there are any intersections other than at x = 0. 

[The point x = 0 is a degenerate point since it will always be a root of 

equation (3.43). This is the result of clearing fractions of the form 

cosh(a-/s)/sinh(a-/s") or l/sinh(a-/s) in the numerator and denominator of 

the expression for the driving-point impedance thereby placing the 

factor sinhx in the left member of equation (3.43).] 

The signal stability criterion is then established by finding the 

relation between the constants of equation (3.43) for which there are 

no intersection points corresponding to values of x other than x = 0. 

This is arrived at by the following sequence of steps: 

1.) The left member of equation (3.43), 

4 2 
L(x) = (D • x + E • x + F) • sinhx , (3.44) 

is sketched as shown in Figure 3.9. 

2.) The right member of equation (3.43) , 

2 
R(x) = x[(G • x + H)(l - coshx) 

- (M • x2 + N) coshx] , (3.45) 

is sketched as shown in Figure 3.10. 



Dx +Ex +F 

\ 
\ 

o-c_ 

/ 
/ 

> 
F = 0 

sinhx 

Dx +Ex +F 

4 2 
(Dx +Ex +F)«sinhx 

> 
F = 0 

x 

(Dx +Ex+F)-sinhx 

(a) Sketch of left member 
of equation (3.43) 
for case where F -̂  0. 

(b) Sketch of left member 
of equation (3.43) 
for case where F < 0. 

Figure 3.9 Sketches of the Left Member of Equation (3.43), 
4 2 

L(x) = (Dx +Ex +F) • sinhx. 



Gx2+H 

H x 

Mx +N 

N 

(1-coshx) 

X 

(Gx +H)(1-coshx) 

x 

^ 

SUM 

(Mx +N) coshx 

-(Mx +N) coshx 

-N 

J 

2 2 
(Gx +H)(1-coshx) - (Mx +N) coshx 

-N x 

x[(Gx2+H)(1-coshx) - (Mx2+N) coshx] 

Figure 3.10 Sketch of the Right Member of Equation (3.43), 

R(x) = x[(Gx2+H)(1-coshx) - (Mx2+N) coshx]. 
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dLl = F = o 
dx x=0 

R(x) \ 

\ 
\ 
^ > 

L(x) 

L(x) 

\ R(x) 
dR 
dx 

= -N < 0 

x=0 

(a) No intersection other than at x=0 for F = 0. 

(b) No intersection except at x=0 for F < 0 if, at x=0, 
the slope of R(x) is less than the slope of L(x). 

Figure 3.11 Superposition of R(x) and L(x) to Inspect for 

Intersection Points Other than at x=0. 



3.) The sketches of L(x) and R(x) are then superimposed, 

as in Figure 3.11, and inspected for intersections 

other than the one at x = 0. 

4.) From Figure 3.11, it is concluded that there are no 

other intersections of R(x) and L(x), and hence no 

positive-real zeros of the driving-point impedance, if 

dL 
dx > f 

X=0 

(3.46) 
x=0 

or 

F > -N . (3.47) 

The interpretation of expression (3.47) in terms of equations 

(3.32) and (3.38) yields the incremental signal stability criterion for 

the Series I amplifier as 

RR 
R

d
> R s + i s r + R L - . < 3 - 4 8 > 

n 

It should be noted that the signal stability criterion given by expres

sion (3.48) and the DC stability criterion given by expression (3.6) 

are identical. This means that for the Series I configuration, if the 

bias point is stabilized, then the circuit is automatically stable for 

the signal components as well. Applying this procedure to the other 

amplifiers to be studied yielded the same general result: Stabilizing 

the DC bias point completely stabilizes the circuit. 

A summary of the overall stability criteria is given below: 
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and 

R R 
R e f l e c t i o n : R. > R + „ S , „ . ( 3 . 4 9 ) 

d Rs+RL 

R (R +R^) 
Transmission I: R, > p

S,p
P,p , (3.50) 

S p L 

R (R +R ) 
Transmission II: R, > _ ,p

P,_S , (3.51) 
Q R T"R "i*R_ 

s p L 

Series I: R^ > R +R +RT (3.52) 
d s p L 

Series II: R^ > R +R +RT , (3.53) 
d s p L 

where 

RR 
R = zr^r: = 0.8204 R . (3.54) 
p R +R n 

The simplicity of this general result is another motivation for 

the use of direct coupling. For directly-coupled amplifiers the ques

tion of stability is answered by one simple criterion. It must be noted, 

however, that the gain-stability limitation mentioned previously is now 

extended to the signal case as well. Since the problems of static and 

signal stability are identical and governed by a single load line, it 

must be reiterated that there is a trade-off between the conditions of 

high signal gain and high stability margin, where stability is now 

taken to mean total (both static and signal) stability. 



CHAPTER IV 

GAIN-BANDWIDTH PROPERTIES AND DESIGN PROCEDURES 

Fundamental Gain-Bandwidth Considerations 

The gain-bandwidth properties of any amplifier are always of 

prime importance, and this aspect of the investigation is dealt with in 

this chapter. 

In connection with a general base-band amplifier and its gain-

frequency response, we have three definitions of fundamental importance: 

A poo 

"o 
Gain-Area: GA = / IPG(CD) dm , (4.1) 

as < ' ' 

A Aip 

0 

Pass-Band Gain-Area: PBGA = / IPG(a>) dco , (4.2) 

A 
Gain-Bandwidth Product: GBP = IPG(O) • ai . (4.3) 

Likewise, the same definitions may be made in terms of the Hert

zian frequency f instead of the angular frequency CD, i.e., 

A roo 

/ 

~0 

GAf = / IPG(2*f) df , (4.4) 

A r hp 
PBGAf = / IPG(2:rf) df , (4.5) 

and 
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A 
GBP. = IPG(O) • f, . (4.6) 

f hp 

Since a) = 2jtf it is clear that 

GA = 2TT(GA£) , (4.7) 

PBGA = 2*(PBGAr) , (4.8) 
Oi f 

and 

GBP = 2jt(GBP ) . (4.9) 

In the work to follow, both forms of these definitions will be used with 

the choice based on convenience. Hereafter, the subscripts cu and f will 

be dropped except in those cases where confusion might arise. It is 

understood that any result arrived at with one form is equally valid 

with the other provided the factor 2it (or l/2it) is properly taken into 

account. 

The gain-area (GA) is the total area bounded by the gain-frequency 

response curve. It is this fund of gain-area with which the network 

designer has to work in order to meet the usual specifications of DC 

gain, half-power frequency, shape of the gain-frequency response curve, 

and so forth. As far as the synthesis or design of base-band amplifiers 

is concerned, the most general problem concerns itself with approaching 

the near-ideal condition where most of the gain-area is devoted to the 

pass-band gain-area (PBGA) with as little area as possible employed above 

the cutoff frequency. The gain-bandwidth product (GBP) is a useful measure 
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of the ideal situation that is desired. The GBP represents the area 

under an ideal low-pass gain function of flat gain IPG(O) and pass-band 

av (or f ). While no actual amplifier can ever achieve this type of 

idealized low-pass response, the GBP is useful in that it is a convenient 

figure of merit, assuming the design is a good one and the gain in the 

pass-band is reasonably flat with little roll-off until the frequency 

nears the band edge. 

A knowledge of the GA is sometimes useful in predicting an upper 

bound on the maximum ideal flat gain achievable over a band of frequen

cies. More specifically, an upper bound can be placed on the achievable 

GBP. The method is as follows [8]: The GA is found as 

A r°° 
GA = / IPG(CD) dco = r . (4.10) 

0 

We then have an upper bound on the PBGA since 

P^hp 
PBGA = / IPG(CD) da>'̂  GA = r . (4.11) 

0 

Now, suppose that it: is possible to shape IPG(o)) so that in the pass-

band (0 ^ 03 ̂  oi ) it is equal to a constant, Gn. Then, irrespective 

of the behavior of IPG(o)) outside this frequency band, it is true that 

r hp 
PBGA = / GQ dco = o^ ' G s r . (4.12) 

0 
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Clearly for a given bandwidth ai , the maximum flat gain cannot exceed 

r GA 

max ^ P % 
(4.13) 

The result is that if the maximum flat gain G„ were realized over the 
max 

frequency band 0 ^ to ̂  ai , then 

PBGA = a^ • GQ = r = GA , 
max 

(4.14) 

and all of the GA would be utilized in an ideal low-pass characteristic 

as shown in Figure 4.1. 

IPG(co) 

IPG(O) = G 
0 
max 

Area = «x • GQ 

max 

Figure 4.1 An Ideal Low-Pass Gain Function. 

For this idealized case the GBP is maximum, and 

GBP = G 

max max 
o • <%>• (4.15) 



Using equation (4.13) we can write (4.15) as 

GBP 
max 

GA 
<% = GA (4.16) 

We then have the result that the GA is an upper bound on the GBP, and 

knowing the GA (or an upper bound on the GA) gives us a bound on the 

achievable GBP or on the maximum flat gain attainable over a band of 

frequencies. Likewise, from equations (4.2) and (4.3), we see that 

PBGA g GBP , (4.17) 

and the GBP is an upper bound on the PBGA. 

An Elementary Amplifier 

In order to extend the ideas above to the case where a negative 

resistance is involved, it is convenient to consider the elementary 

amplifier shown in Figure 4.2. 

R 

I—mn—r 
i 

s I 

O 
R, 

R 

r—-m̂ r 

Figure 4.2 An Elementary Negative-Resistance Amplifier. 

This circuit may be considered a very simple lumped-element 

approximation of the Reflection amplifier where the total line 
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capacitance is lumped across the load, and the capacitance of the tunnel 

diode is assumed to be negligibly small. As might be expected, the gain-

frequency response of this amplifier is not close enough on a point-by-

point basis to that of the Reflection amplifier to warrant using it as 

an approximation. This elementary amplifier does, however, exhibit a 

similar base-band frequency response, an identical DC gain, and its 

gain-bandwidth properties provide further insight and motivation for the 

study of the more complicated lumped/distributed-parameter configurations 

of this investigation. 

For this elementary amplifier, the IPG is 

A d - * Y 
IPGfo) = R . R 2 ' (4>18) 

' 03 
"d e cl/ i + /_J±L 

where 

% • fe^J * ' 
R =: R + R , (4.20) 
eq x ' 

and 

R RT 
• = s L 

Lx R + RT 
s L 

(4.21) 

The PBGA associated with the IPG of (4.18) is 

(Rd - R) , 
PBGA. - o f r n r - ) • r e • f - <4-22) 

d eq x 



the GBP is 

GBP = 
GO 

R, - R 
d 
R, - R d eq 

R C x 
(4.23) 

and the GA is 

GA = 
0) 

R, - R a 
R, - R d eq 

R C x 
(4.24) 

From equations (4.22), (4.23), and (4.24), we see that the properties 

stated in the preceding section are exhibited by this elementary ampli

fier, i.e. 

PBGA < GBP < GA . (4.25) 

The salient point here is that through control of the factor 

(R, - R ), all three of these quantities may be made arbitrarily large 
d eq "-

despite the fact that the source resistance, load resistance, and 

capacitance across the load are all fixed. The mechanism through which 

this phenomenon occurs can readily be seen with the aid of equations 

(4.18), (4.19), (4.22), (4.23), and (4.24). If we make the definition 

A (R, - R) (R, - R) 
K = 

(R, - R ) (R - R) - R 
d eq d x 

(4.26) 

then 

IPG(CD) = K2 • » 

1+fe) 
(4.27) 
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%P
=drr • < 4 - 2 8 > 

x 

it 
P B G A c o = K " R C • 4 ' ( 4 ' 2 9 ) 

GBP = K • ^ , ( 4 . 3 0 ) 
CD R C * 

and 

JT 
GA

m • K • F c 2 • < 4 - 3 1 ) 

X 

Now , as the DC value of the gain is increased, the half-power frequency 

ai does decrease as one would expect, but from equations (4.26) and 

2 
(4.27) we see that IPG(O) increases as K , and oi decreases as 1/K. 

The DC gain simply increases faster than the half-power frequency 

decreases, and from equations (4.29), (4.30), and (4.31) it is clear 

that 

PBGA < GBP < GA , (4.32) 

and each can be made arbitrarily large while still satisfying this 

inequality. 

Obviously, there are practical problems connected with achiev

ing this state of affairs. First of all, the factor 

(R, - R ) = R, - R - R , (4.33) 
d eq d x ' x 

is intimately connected with the overall stability of the amplifier. By 
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inspection, the stability criterion for the circuit is 

(R, - R ) = R, - R - R > 0 . (4.34) 
v d eqy d x 

To achieve arbitrarily large gain values, however, it is precisely this 

factor that must be made arbitrarily small. Theoretically, it is pos

sible to do this while satisfying (4.34), but practically it is very 

difficult to accomplish. The situation calls for a tunnel diode char

acteristic and load line that are arbitrarily close in slope. Small 

perturbations in the supply voltage and/or the resistance values would 

then have a drastic effect on the overall stability of the circuit. 

Hence, any practical attempt to achieve an arbitrarily large GBP will 

encounter the gain-stability limitation discussed in the previous chapter. 

Another problem of a practical nature is that the GBP for this amplifier 

can be made arbitrarily large only for the conditions of very high 

gain and very small bandwidth. Practically speaking, this is far too 

restrictive. It would be much more desirable to have more flexibility 

in shaping the IPG(GD) function so that any arbitrarily large value selec

ted for the GA could be distributed in a manner to achieve a large GBP 

at some fixed value of DC gain. Thus we see that, even though this 

simple negative-resistance amplifier can theoretically achieve an un

bounded GBP, the property is of very limited practical value. 

At this point: one might wonder about the practical gain-bandwidth 

limitations and the direction a feasible design procedure might follow. 

The basic question to be answered can be put in two forms: 

1.) For a specified value of DC gain, IPG(O), what are 

(f, ) and (GBP.) ? hp max f max 
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or 

2.) For a specified value of f, , what are [IPG(O)] 
hp max 

and (GBP.) ? 
f max 

Before answering these questions it should be noted that there are two 

basic assumptions made in all of the work that follows: The source and 

load resistances are fixed, and there is a practical minimum value of 

the capacitance C beyond which it cannot (or should not) be reduced. In 

the case of the elementary amplifier, the minimum value of C corresponds 

to the parasitic shunt capacitance across the load. In the case of the 

distributed RC lines to be used in the work that follows, the minimum 

value of C corresponds to the practical minimum value attainable for the 

line capacitance. There is a limit on the minimum value of this capa

citance because, as the thickness of the dielectric layer is increased, 

fringing effects eventually change the electrical properties of the line 

to the point that the two-port parameters given by equations (2.3) and 

(2.4) no longer apply [9]. With these points in mind, we may now answer 

the question(s) above. 

From equation (4.28) we may write 

%-ihz> < 4 - 3 5 > 
X 

where 

K = / IPG(O) . ( 4 . 3 6 ) 

Since the source and load resistances are fixed, it is convenient to 

consider their ratio, a, defined by 



Rg = a RL . (4.37) 

Using (4.21), (4.36), and (4.37), equation (4.35) may be cast in 

the form 

: = (a+1) (4.38) 
hP 2jrRLC • a -/IPG(O) 

If we define the normalized half-power frequency as 

% > N • 2«RLC • <£hp> ' ( 4 - 3 9 ) 

then we have 

( fuJ . = 
a + l . (4.40) 

hp N a 7lPG(0) 

The graph of (4.40) for some typical values of the ratio a is shown in 

Figure 4.3. Likewise, we can define the normalized gain-bandwidth 

product as 

A 
(GBP)N = 2rtRLC • (GBP) 

= 2«RLC • [IPG(O) • fh ] 

IPG<°> * <fhp>N 

,a+l, 
= (-f) T/IPG(0) . (4.41) 

The graph of (4.41) for some typical values of the ratio a is shown in 

Figure 4.4 With the aid-of Figures 4.3 and 4.4, the basic questions 
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Figure 4.3 Normalized Half-Power Frequency vs. IPG(O) 
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posed above can now be answered. 

For specified values of IPG(O) and source and load resistances, 

the corresponding value of (f ) is read directly from Figure 4.3. 

Then, at that value of IPG(O), we compute 

L m m 

where R,. is the specified load resistance and C . is the minimum pos-
L m m r 

sible value of the capacitance C. Likewise, for the specified values 

of IPG(O) and resistances, (GBP) is taken directly from Figure 4.4. At 

that value of IPG(O) we compute 

(GBP) 
GBP = 9 p r

 N . (4.43) 
max 2jtRTC . x ' 

L mm 

On the other hand, if f is specified, we compute 

(f, )„ = 2jtRTC . • (f, ) , (4.44) 
v hp'N . L mm v hp ' v ' 

mm r 

and since IPG(O) is a decreasing function of (f, ) , we can take 

IPG(O)] directly from Figure 4.3. At that value of IPG(O), we can 
max 

take (GBP),1 directly from Figure 4.4 and compute 
x 'N max 

(GBP).T] ^^•r. N max .. , ,_. 
GBPmax = 2nRTC . ' (*-4« 

L m m 

As stated previously, this elementary amplifier is not intended 

as a good approximation for any of the amplifiers to be considered, but 
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as we shall see it does possess some similar properties, and the results 

given here point the way for the analysis to follow. 

The Reflection Amplifier 

Gain-Bandwidth Properties 

The Reflection amplifier, shown in Figure 4.5, is the simplest of 

the five amplifiers investigated in this thesis. The expression for its 

IPG is given in Appendix A, and some typical frequency response curves 

are shown in Figures 4.6 and 4.7. 

R 
s R 

M/mm/m 
R, 

O 'bb 

Figure 4.5 The Reflection Amplifier 

The response curves shown in Figure 4.6 indicate that, as the 

magnitude of the negative resistance approaches the value of the exter

nal circuit resistance, the following occur: The DC gain increases, the 

half-power frequency decreases, and the GBP increases. This behavior is 

very similar to that observed in the elementary amplifier of the preced

ing section, and leads one to wonder if the GBP of the Reflection 

amplifier might also be made arbitrarily large. 

The answer to this question is, in this case, more difficult to 

attain. An exact closed-form expression for f is very difficult to 

find for the Reflection amplifier utilizing the distributed-parameter RC 
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Figure 4.6 Typical IPG-Frequency Response Curves 
for the Reflection Amplifier. 
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transmission line. An alternate approach, however, can be made via the 

fundamental definitions given at the beginning of this chapter. The 

basic inequality 

PBGA < GBP (4.46) 

and its graphical interpretation, shown in Figure 4.8, can be used to 

advantage here. In Appendix B it has been shown that the PBGA of the 

1 IPG(co) 

IPG(O) 
Area of rectangle 

is the GBP. 

Figure 4.8 Graphical Interpretation of (4.46). 

Reflection amplifier may be made arbitrarily large, and in light of 

(4.46) it is then obvious that there is no upper bound on the GBP of the 

Reflection amplifier. This statement is based, of course, on strictly 

theoretical considerations. As in the case of the elementary amplifier 

of the preceding section, the property of unlimited GBP in the Reflection 

amplifier is of very limited practical value. This is true precisely 

for the same reasons as with the elementary amplifier: An arbitrarily 

large GBP can be achieved only in the high-gain narrow-band mode, and 

any attempt to achieve this in practice will invariably meet with the 

gain-stability limitations discussed previously. With these points in 

mind, a practical consideration of the gain-bandwidth properties and a 
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feasible design procedure will be patterned after the techniques devel

oped for the elementary amplifier of the preceding section. 

The first step to be taken is that of establishing a useful ana

lytical approximation for the half-power frequency of the Reflection 

amplifier. An incremental model of the Reflection amplifier with a 

Norton equivalent circuit taken at the input is shown in Figure 4.9. 

R 

R 

-WVWWWW" 

R-

Rc 

^t> 
y 

© 

R 

"MMMMMAT 

-Ri 

Figure 4.9 Incremental Model of the Reflection Amplifier 

The IPG can be cast in the form 

IPG(co) 
R s + R L 

R RT ^ s L / 
ZT(jo>) 

I N " 2 
ZT(ja.) (4.47) 

where Z is the impedance indicated in Figure 4.9. The IPG thus reaches 

half its DC value when the magnitude of the impedance Z goes to 1/-/2 

of its DC value. The input impedance Z is found to be 

Z = 
T 

R RjR0 coshe + (RJCJs-l)R R sinhe 
x d d d x  

2 
RjRB cosh© + (R,C,s-l)R sinhe 
d d d 

^•(RX^-l) R R0 cosh© + R R,6 sinhe v d d x x d 

(4.48) 
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where 

e = 7RCS (4.49) 

It has been found that, in the frequency range of interest here, 

a reasonable approximation for the hyperbolic functions in (4.48) is 

made by truncating their series expansions after the first three terms. 

Thus we take 

2 4 2 4 
, _ ~ , e e , , e e v 

coshe = l + y 7 + - ^ 7 = (1 + — + Y^ ' 
(4.50) 

and 

3 5 H 2 4 

sinhe ^ @ + | r + f T = e ( i + | - + ~^) (4.51) 

Substitution of (4.49), (4.50), and (4.51) in (4.48) yields an expres

sion which is a rational function of the complex frequency variable, s. 

Numerical experience has shown that, in the frequency range of interest, 

the terms involving constants and the first power of s are predominant, 

and the impedance Z is approximated by 

rO 

[ (60R R,,R - 20R R )C + 120R R R C j s 
x d x x d d 

+ 120R (R, -R) 
; X d  

[{120R R, + 60R(R,-R )-20R 2}C + 120(R+R ) R , C , ] s L x d d x' J v x 7 d d 

+ 120(R -R-R ) 
d x 

(4.52) 

Equation (4.52) is of the form 

z (s) g k s + m 

V S ; ds + e * (4.53) 
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This approximate expression for Z has the DC value 

(R,-R) (Rj-R) 
Z T ( 0 ) = I " (R.-R-R ) = (R.-R ) ' (4-54) 

d x d eq 

which is an exact expression, and the angular frequency at which the 

magnitude of Z goes to 1/-/2" of this value is closely approximated by 

Thus, we have 

rU 
6 (R.-R ) 

^ - ^ - 2 — . (4.56) 
P 2jt[{6R Rj + 3R(R -R ) - R̂ } C + 6 (R+R )RJCJ] L x d d x x7 d dJ 

Numerical experience also indicates that the denominator term of (4.56) 

involving the diode capacitance C, will always be several orders of 

magnitude smaller than the other denominator term involving the line 

capacitance C. This is a consequence of the fact that the diode capaci

tance is always a very small parasitic quantity, and the line capacitance 

is a quantity that will be fixed by design and possesses a practical 

minimum value beyond which it should not be reduced if the distributed 

RC line is to retain the two-port properties that were assumed at the 

outset of the investigation. The expression of (4.56) does indeed show 

the general effect of each circuit parameter on the half-power frequency. 

Since C. will always be much smaller than the line capacitance C, we can 

use the simpler expression 



68 

6(R,-R ) 
f 1 £ d ecl (4 57) 
hP Reflection 6 R _ R 2 • 

amplifier x d d x' 

where 

R = R + R , (4.58) 
eq x 

and 

R R 
R

x=int- < 4 - 5 9 > 
s L 

As in the previous section dealing with the elementary amplifier, 

the half-power frequency must now be expressed as a function of the DC 

gain value. The DC gain is of the form 

A 2 

IPG(O) = K , (4.60) 

and, from Appendix A, we find that 

R -R R.-R 
K = vr = V R T ' < 4 - 6 1 > 

d eq d x 

2 
From (4.61) we see that, for a specified DC gain of value K , we must 

have 

Rd " < & > Rx + R • (4'62) 

and this expression will be useful later in the design of the Reflection 

amplifier. Using (4.62) we can write 

<w= ( V R > - R X = - A • <4-63) 



69 

Substituting (4.63) into (4.57) and eliminating R, with (4.62) yields 

~ 1 
6R 

"hp 2nC K[6R 2 + 6RR + 2R2] - (3RR + 2R2) 
X X X 

(4.64) 

In the design problem, we will be given the desired value of 

IPG(O) and f (with specified values of source and load resistances), 

and it will be our task to select the parameter values of the active 

insertion two-port so as to meet the design specifications. It is con

venient at this point to define two design parameters in the form of 

resistance ratios in order to generalize, as far as possible, the results 

of this section as well as the design procedure that follows. Specifi

cally, these design parameters (a and b) are defined by the relations 

R = aRT , s L 
(4.65) 

and 

R = bRg = abR^ . >RL (4.66) 

Using (4.65) and (4.66), (4.64) may be cast in the form 

6(a+l) 
hp 2JTRLC K[6a + 6a(a+l )b + 2 a ( a + l ) 2 b 2 ] 

- [ 3 a ( a + l ) b + 2 a ( a + l ) 2 b 2 ] 

(4.67) 

It is convenient to again define the normalized half-power frequency as 

A 
(f, ) = 2*RC • (f ) 
hp L hp 

(4.68) 
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Thus, for the Reflection amplifier we have 

Reflection 

6(a+l) 

K[6a + 6a(a+l )b + 2 a ( a + l ) 2 b 2 ] 

- [ 3 a ( a + l ) b + 2 a ( a + l ) 2 b 2 ] 

(4.69) 

Likewise, it is again convenient to define the normalized gain-bandwidth 

product as 

A 
(GBP)N = 2TTRLC • (GBP) 

= 2JTRTC • [IPG(O) • f, ] 
L hp 

" IPG(0) • ( V N • (4 .70) 

Therefore, for the Reflection amplifier we have 

(GBP)N -

Reflection 

IPG(O) • 6(a+l ) (4.71) 
K[6a + 6a(a+l )b + 2 a ( a + l ) 2 b 2 ] 

- [ 3 a ( a + l ) b + 2 a ( a + l ) 2 b 2 ] 

Expressions (4.69) and (4.71) may be used to construct families of 

curves that give the normalized half-power frequency and gain-bandwidth 

product as a function of the DC gain, IPG(O). Examples of this con

struction for typical values of the parameters a and b are shown in 

Figures 4.10 and 4.11. 

These curves are used in precisely the same manner as those for the 

elementary amplifier. For specified values of IPG(O), source and load 

resistances, and a selected value of line resistance, the corresponding 

value of (f, )„ is taken directly from Figure 4.10. For that value of 
hp N 
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Figure 4.10 Normalized Half-Power Frequency vs. IPG(O) for the 
Reflection Amplifier. 
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Figure 4.11 Normalized Gain-Bandwidth Product vs. IPG(O) for 
the Reflection Amplifier. 



IPG(O) we compute 

( t n ) N 
(f ) = hP N (4 72) 
U h p ; m a x 2jtILC . ' K '' } 

r X mi min 

where RT is the specified load resistance, and C . is the minimum allow-
L m m 

able value of the line capacitance. Likewise for the specified values 

of IPG(O) and the resistance ratios (a and b), the (GBP) is taken 

directly from Figure 4.11. We then compute 

(GBP) 
(GBP) = , p „

 M . (4.73) 
max 2;tRTC . L min 

If, however, f. is specified (along with the appropriate resistance 
hp 

values), we compute 

<fhp>« . " 2«Vmln • < V ' ( 4 ' ? 4 ) 

and since IPG(O) is a decreasing function of (f, )„, we take IPG(0)1 
& hp N max 

directly from Figure 4.10. At this value of IPG(O) we take (GBP) 1 
J b \ / \ 7NJmax 

directly from Figure 4.11, and compute 

(GBP)J 
(GBP) = 9 - /

 m 3 X . (4.75) v 'max 2^RC . 
L min 

As an example of the accuracy attainable with the curves of 

Figures 4.10 and 4.11 let us consider the response curves shown in 

Figure 4.6. For the circuit parameters designated, a=l, b=0.1, and 

2JTR,C = 37.69908 x 10 . From Figures 4.10-and 4.11 we read and compute 
Li 
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the following: 

1. At IPG(O) = 25, (f, XT ̂  0.334 — f, ~ 8.86 KHz , 
hp N hp 

(GBP)AT ̂  8.4 -* GBP = 222.8 KHz , 
N 

2. At IPG(O) = 64, (f )XT = 0.210 -> f, = 5.570 KHz , 
hp N hp 

(GBP)„ ̂ 13.2 - GBP ^350.14 KHz , 
N 

and 

3. At IPG(O) = 100, (f, )„ = 0.164 - f, = 4.350 KHz , 
hp N hp 

(GBP)„ = 16.4 - GBP = 435.0 KHz . 
N 

These "predicted" values are all within two per cent of the exact values 

calculated via the transfer function and shown in Figure 4.6. 

Another functional relationship that is very useful to the net

work designer is found by considering the approximation for (f ) as 

a function of the resistance ratio b with the ratio a and IPG(0) taken 

as parameters. Rewriting equation (4.69), we have 

(f ) = ^m> . (4.76) 
Reflection [2a(^+l)2(K-1)]b2 + [3a(a+l)(2K-1)]b + [6aK] 

This is of the form 

( f h P >N = — y ^ • ( 4 - 7 7 ) 

P D b + Eb + F 

where the coefficients N, D, E, and F indicated in (4.76) are all posi

tive if K = 7lPG(0) > 1. For all positive coefficients, the general 
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shape of the graph of (4.76) i s shown in Figure 4 .12 . 

VN 
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v alC 

' <VN 
v hp N 
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2aK2 

' <VN 

bb 
b=0 

( a+ l ) 2 (2K- l ) 

2aK2 

' <VN 

K = /IPG(O) 

0 b 

Figure 4.12 Normalized Half-Power Frequency vs. b 

for the Reflection Amplifier. 

Examples of this graph for selected values of IPG(O) and the parameter 

a are shown plotted to logarithmic scales in Figures E.l, E.2, and E.3 

of Appendix E. 

To illustrate the usefulness of these graphs, let us consider one 

step in the design of the three amplifiers presented in Figure 4.6. The 

details of the complete design procedure will be covered in the following 

section, and for the. present we will be concerned only with choosing the 

values of the line parameters R and C. The specifications for the three 

amplifiers are: 

1. IPG(O) = 25, f, = 8.961 KHz with R = RT = 200£, (a=l ) ; 
hp s L 

2. IPG(O) = 64, f = 5.549 KHz with Rg = R = 200£, (a=l), 

and 
3. IPG(O) = 100, f, = 4.425 KHz with R = RT =• 200£, (a=l). 

hp s L 
At this point it should be noted that there is a certain degree of 
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flexibility characteristic of the design problem. The network designer 

has the freedom to choose the value of R (and hence the ratio parameter 

b) and then compute the value of C required to achieve the specified 

half-power frequency, or he could choose the value of C and compute the 

value of R needed. As we shall see, there are definite considerations 

to be made when making this choice such as the role of the line resis

tance in the stability criterion and the resulting magnitudes required 

of the remaining circuit parameters, but these are details to be covered 

in the next section. For the sake of illustration here, let us choose 

R = 20& so that b = 0.1 for all three amplifiers. From Figures E.l, E.2, 

and E.3 we find: 

1. ( f h p ) N = 0 . 3 2 8 , 

2- < V N = 0 - 2 0 5 ' 

and 

Since 

3- ( V N = 0 - 1 6 4 -

A 

< V H = 2rtV • ( V • (4-78) 

we compute the required value of the line capacitance as 

(fhp}N . (4.79) 

" 2«h • < V 

For the three cases at hand, we find: 

1. C = ^^mi . 0.02912 nf , 
2jt(200)(8.91 x 10 ) 
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2. c 2 (0-205) 

and 

~- = 0.02939 ,j.f , 
2^(200)(5.549 x 10J) 

3. C * £ ° - ^ ) = 0.02949 ^f . 
2*(200)(4.425 x 10 ) 

Each of these values is within three percent of the exact value used in 

the calculations for the frequency responses of Figure 4.6, and this is 

within the tolerance that can be expected of the physical circuit com

ponents . 

Design Considerations 

Generally speaking, the question of utmost importance in the 

initial stage of the design problem is that of overall circuit stability 

and the consequences of the inherent gain-stability limitation. For the 

Reflection amplifier, the stability criterion is 

R d > R e q " R + RT5- • <4-8°) 
s L 

In terms of the resistance ratio parameters, this expression may be 

written as 

R, > R = [ab + . * ] RT . (4.81) 
d eq (a+l)J L 

2 
For a specified value of IPG(0) = K , the value of the required diode 

resistance is given in (4.61) as 

Rd • <&> S i r + * - (4.82) 
s L 



and, in terms of the resistance ratios, this may be written as 

Rd = r<iri> ; s i + « * ] * ! . • (4-83) 

Inspection of (4.81) in terms of (4.83) shows that the stability criter

ion is always met if the diode resistance is selected via (4.83). In a 

practical design, however, the margin by which R is greater than R should 
d eq 

not be fixed arbitrarily. In general, the design procedure should be 

one in which this degree of "stability margin" is taken into account and 

related to the other performance specifications of gain and half-power 

frequency. In this light, it is convenient to assign the diode resis

tance with the relation 

Rd " (1 + I5o> V (4-84) 

where A is defined as the percent stability margin. Substituting (4.83) 

and the equality of (4.81), we can write 

Refl. = (K-D[(a+l)b+l] •
 (4-85) 

From (4.85), it is apparent that 

A * T^yr , . (4.86) 
Refl. ( K _ 1 ) 

with the equality satisfied only when b=0. From the above expression we 

deduce that 

^ 2 100 2 
IPG(O) = KZ ^ C^P + 1)Z . (4.87) 
Refl. A 



This is an interesting expression in that it is another manifestation of 

the previously discussed gain-stability limitation. If, for example, 

practical considerations dictate a stability margin of ten per cent 

(A=10), then we know at the outset that the DC gain cannot exceed 121, 

and it will be less than this value for all values of b greater than 

zero. 

Graphs of (4.85), considering A as a function of the parameter b, 

are also useful to the network designer. From (4.85) we find 

ck = 100 (a+1) 

^"'(K-V [ ( a + l ) b + l ] 2 ' 
(4.88) 

and the general shape of the graph of (4.85) is shown in Figure 4.13. 

hA 

A 

100(a+1) 
(K-l) 

b=0 
max (K-l) 

K = 7lPG(0) 

Figure 4.13 Percent Stability Margin vs. b for 

the Reflection Amplifier. 

Families of this graph, for selected values of IPG(O) and the parameter 

a, are shown plotted to logarithmic in Figures E.4, E.5, and E.6 of 

Appendix E. 

As stated previously, the design problem of interest here is one 
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in which the desired values of IPG(O) and f are specified alone with — hp c = 

the source and load resistances that terminate the insertion two-port. 

The task of the network designer is to select the parameter values of 

the insertion two-port so that the design specifications are met while, 

at the same time, taking into account any practical limitations that 

might have an effect on the performance of the amplifier. 

In addition to the practical considerations presented in Chapters 

II and III regarding the physical layout of these amplifiers and its 

effect on the circuit stability, there are other salient points that 

should be kept in mind. An upper limit on the design parameter b can 

arise from several causes. Let us assume first that the source and load 

resistances are fixed (hence a is fixed), and we are given a transmission 

line of fixed area and geometry. There is an upper limit on the resis

tance per square that can be achieved reliably with the present state-

Vc 

of-the-art thin-film technology. Hence, the total line resistance for 

the given geometry will have some upper limit, R . Since 
° o y -rr- m a x 

R = abR (4.89) 

we have 

R 
(4.90) 

max aR_̂  

Another factor that can limit the parameter b to some maximum 

value is its relationship to the half-power frequency and the line capa

citance, C. From Figure 4.12 we are reminded that (f, )„ is a 
hp N 

Holland cites this upper limit in the order of 4000 ohms per square [10]. 
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decreasing function of b. For a specified value of half-power frequency, 

f , we compute the required line capacitance from (4.79) as 

Hence, the required line capacitance is a decreasing function of b. The 

present thin-film technology is also limited in the minimum value of the 

capacitance per unit: area that can be attained with reliability. It is 

this limit beyond which the capacitance per unit area must be decreased 

by increasing the thickness of the dielectric film. If this is carried 

too far, however, the transmission line is no longer described by the 

two-port parameters assumed at the outset of this study. Thus, increas

ing b eventually leads to a point where the line capacitance attainable 

with the given line geometry is reduced to 

( £ h P ) N m l n , (4.92) 
min 2^R . f 

and a further increase in the parameter b is not possible. Another 

point that dictates against high values of b is that the required diode 

resistance given in (4.83) increases linearly with b, and large values 

of b can require large values of R in the design. This is impractical 

since the tunnel diode is inherently a low impedance device, and values 

of R nominally greater than 600 ohms are uncommon. The most stringent 

limitation on the maximum value of b, however, is the fact that the 

Holland cites this value in the order of 0.001 uf per cm [ H ] . 
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percent stability margin, A, is a decreasing function of b. In every 

case, there is some minimum value of the stability margin, A . * beyond 
y m m J 

which any design would be impractical. Thus, design parameter b has an 

upper limit placed on it by a decreasing stability margin. The specific 
value of A . (and hence b ) depends on the power supply used, its 

min max r r r J ' 

internal resistance, the regulation of its supply voltage, the toleran

ces of the resistors in the circuit, and any other practical considera

tions that may affect the location and stability of the operating point 

and the associated load line. In any particular application, a decision 
will have to be made on an acceptable A . consistent with sound engineer-

min 

ing judgement. It appears, then, that we should attempt to make the 

parameter b as small as possible. This seems reasonable since the sta

bility margin increases with decreasing b, and the required value of diode 

resistance decreases with decreasing b. On the other hand, decreasing b 

beyond a certain point leads to other problems of a practical nature. 

The present thin-film technology also has limitations on the minimum 

resistance per square and the maximum capacitance per unit area that can 

be reliably achieved. Hence, for a given line geometry, the line resis

tance will have some lower limit, R . , and b is limited to 
min 

b . = ^ . (4.93) 
min aR J 

.Li 

In addition, since (f. )„, increases with decreasing b, we see from 
hp N 

(4.91) that for a specified half-power frequency, fn, the required line 

Holland cites these values in the order of 0.36 ohms per square and 
0.3 nf per cm , respectively [12], 
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capacitance increases with decreasing b. Thus, decreasing b will eventu

ally lead to a point where the required line capacitance increases to 

C = f ̂ P>N T X , (4.94) 
max 2^R • f ' 

beyond which it cannot be increased with the given line geometry. Hence, 

the design parameter b also has a lower limit on its range because of 

the limitation on the maximum capacitance that is attainable. 

There is an additional point that should be considered. The mag

nitude of the diode resistance must be greater than the sum of the 

resistors R and the parallel combination of R and R_̂  . Since tunnel 

diodes with a negative resistance of 600 ohms or more are relatively un

common, R given by (4.81) should be in a range falling below 600 ohms. 

eq 

From the curves of Appendix E we also see that, for a ^ 1, we get large 

values of (fn )„ and very large values of A, particularly for b ^ 0.1. 
hp N 

Thus we see that the Reflection amplifier is best suited for those cases 

where R is equal to or less than R and the overall impedance level is 
S J_J 

low. 

Design Example and Experimental Results 

As an example of a typical design procedure, let us consider the 

following problem: A Reflection amplifier is desired that will operate 

between equal source and load terminations of 790 ohms while providing 

an IPG of 25(13.98 db) in the pass band with a half-power bandwidth of 

6.5 KHz. For equal values of R and R (a=l) and IPG(0) = 25, the 
S i_i 

curves of Figures E.l and E.4 serve as the basis of the design. Simul

taneous consideration of both curves points out the freedom allowed the 
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designer in the choice of the parameter b. For the case at hand, it was 

decided to choose b = 0.057, thus attaining the relatively high stability 

margin that may be achieved for this relatively low value of IPG(O). At 

the same time, this value of b results in a near-maximum value of (f, )„ 
hp N 

and a physically realizable value of the required diode resistance, R , 

consistent with the specified values of the parameter a and IPG(O). 

For IPG(O) = 25(K=5), a = 1, and b = 0.057, the curves of Figures 

E.l, and E.4 yield respectively 

( V N = 0 - 3 5 0 • 

and 

A = 22.5 . 

For the specified value f, =6.5 KHz = fn, (4.91) is used to compute the 
hp 0 

required value of line capacitance as 

(fu_) 
C 'hp̂ N 

2*RL ' f0 

0.350 

(6.28318)(790)(6.5xl03) 

= 10.848 nf . (4.95) 

The required line resistance is 

R = bR 
s 

= (0.057)(790) 

= 45.03 Q, , (4.96) 
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and the required value of diode resistance is computed from (4.83) as 

Rd ' t <STI> <75I> + * J R L 

= [(|)(|) + 0.057] (790) 

= 538.78 fl . (4.97) 

In the experimental verification of these results, a model of the 

uniform line was fabricated using radio-frequency shielding paint and 

Mylar film, as described in Chapter II. It is appropriate at this point 

to describe the technique used in measuring its parameters. The total 

line resistance, R, may be accurately determined by a simple DC measure

ment with an impedance bridge connected to the terminals 1-2 indicated 

in Figure 4.14. The measurement of the effective line capacitance C 

R 

l ° WlAAAAAAAAAMAAA/W ° 2 

o- o 
1* ' 2' 

Figure 4.14 The Uniform RC Transmission Line. 

is not as simple, however. Most impedance bridges measure capacitive 

reactance at a nominal frequency of 1.0 KHz, and a capacitance measure

ment made between terminals 1-1' or 2-2' will be in error since the 

impedance measured there will possess a resistive component at frequen

cies above DC. Depending on the relative magnitudes of R and C and the 



frequency of measurement, the error may or may not be significant. 

Because of this ambiguity, the above technique of measuring C is not 

recommended. A more accurate method makes use of the null properties of 

the uniform line summarized in Figure 2.6 of Chapter II. As indicated 

by Figure 2.6(a), a transmission zero can be achieved by connecting a 

resistance in two-port series with the line. This situation is indica

ted in Figure 4.15 and is the basis of the capacitance measurement. The 

line resistance, R, as well as the null-producing resistance, R , can be 
n 

R 

1/VW\AAAAAAAA/WW" 

R = 0.056184 R 
n 

f = 1.78040 
n RC 

Figure 4.15 RC Transmission Line with Series 

Null-Producing Resistance. 

measured accurately with a bridge, and the null frequency can be measured 

accurately with an electronic counter. The effective line capacitance is 

then computed from the null frequency expression as 

C - ^ 2 4 0 . (4.98) 
n 

The parameters of the model transmission line fabricated for this 

design example were measured using the above technique and found to be 

R = 45.0 a , 
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and 

C = 10.9 nf . 

A Hoffman 1N2928 tunnel diode (having a nominal shunt capacitance, C_., 

of 50 pf) biased at 160 mv was used to achieve the required negative 

resistance. The bias adjustment of the tunnel diode as well as the 

actual measurement of IPG vs. frequency is facilitated by the relation

ship between the IPG and voltage amplification of the general amplifier 

shown in Figure 4.16. 

R, 

WLMM 

Active 

p 
Two-Port 

Insertion 1 Network 

Figure 4.16 The General Amplifier Configuration, 

The definition of insertion power gain is 

IPG = 

to the load with \ 
—-port inserted. / 

Power delivered to the load when 

Power delivered 
the active two-p< LA 

connected directly to the source . ) 
L0 

(4.99) 

From Figure 4.16 we see that 

L0 

Es(jm)|RL 

<Rs + V 
E s ( j m ) r R

L 

(R
s
 + V2 

(4.100) 
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and 

EL(ja>) 

LA *L 
(4.101) 

Thus 

IPG(a)) = 
EL(jas) 

R 

(Rs+RL> 

R.2 

<W 
Eg(ja>) 

EL(ja)) 

Es(jco) 

R, 

W Av(ja)) (4.102) 

where 

A EL(ja>) 
A (jco) = _ , . v 
v E (JCD) 

(4.103) 

is, by definition, the complex voltage amplification of the overall 

amplifier configuration. Thus, we see that the IPG may be measured by 

simply measuring the magnitude of the voltage amplification. At DC, we 

have 

IPG(O) = 
Rs + RL 

R, 
A (0) 
v 

(4.104) 

Using previous definitions, we may write this as 

2 2 ,2 
K = (a+1) • A (0) , (4.105) 



and we have the simple relationship 

K = (a+1) • |Av(0)| . (4.106) 

2 
Therefore, for a specified value of IPG(O) = K and resistance ratio a, 

the input voltage is fixed at a very low frequency, the bias is adjusted 

so that 

and that value of bias is maintained throughout the measurement of 

|A (jco) | over the frequency range of interest. For the example under 

discussion, K = 5, and a = 1, thus the bias was adjusted to achieve a 

low-frequency voltage amplification of |A (0)| = 5/2 = 2.5. 

The resulting frequency response is shown in Figure 4.17. The 

solid curve depicts the theoretically predicted response calculated via 

the exact gain expression given in Appendix A. Superimposed are points 

representing the measurements made on the prototype amplifier. The 

experimental results were in close agreement with the calculated response 

as well as the results predicted from the design curves of Figures E.l 

and E.4. The exact value of f. for the chosen set of parameters was 
hp 

calculated to be 6.674 KHz which was 2.7 per cent higher than the design 

goal of 6.5 KHz. The value of f achieved experimentally was 6.810 KHz 

which was 4.8 per cent higher than the design goal. These results are 

well within the tolerances normally accepted in practice. If greater 

accuracy is desired, the most efficient and rapid method of achieving it 

is by making a few incremental changes in the value of the line capaci

tance used in the computer calculation of the exact response. The value 
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of line capacitance required for a specified half-power frequency can 

then be found to any desired degree of accuracy by making a few reitera

tive calculations. 

The Series Amplifiers 

Gain-Bandwidth Properties 

The next amplifiers to be discussed are of the Series type. The 

Series I and Series II configurations are shown in Figure 4.18, and 

expressions for their IPG are given in Appendix C. 

R 

R 
s 

Mitt-

iHWK-

o 
R 

mmmm- R, 

Jbb 

(a) The Series I Amplifier. 

R 
s 

r^MMr 

6 

R 

•am-
Mtmmtowt 

R 

bb 

(b) The Series II Amplifier. 

Figure 4.18 The Series Amplifier Configurations. 

At this point., it should be noted that there is a symmetry of form 

in all of the analytical work describing the Series amplifiers. Since 
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Figure 4.19 Typical IPG-Frequency Response Curves 
for the Series I Amplifier. 
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the networks are reciprocal, any result derived for the Series I configu

ration is equally valid for the Series II configuration provided an 

interchange is made between R and IL. everywhere in the analysis. With 

this point in mind, the Series I configuration occupies the majority of 

the following presentation, but the behavior of the Series II amplifier 

is simultaneously discussed, if the proper interpretation is made. 

Some typical response curves for the Series I amplifier are shown 

in Figures 4.19 and 4.20. Again, we see that as the magnitude of the 

negative resistance approaches the resistance of the external circuit, 

the gain increases, the half-power frequency decreases, and the gain-

bandwidth product increases. By exactly the same type of reasoning and 

analysis made for the Reflection amplifier, it has been found that the 

PBGA of the Series I amplifier may be made arbitrarily large, and there 

is no upper bound on the GBP of the Series I amplifier. Likewise, this 

property is of the same limited use as in the Reflection amplifier (for 

exactly the same reasons discussed there), and a practical consideration 

of the gain-bandwidth properties of the Series I amplifier will follow a 

pattern similar to that developed in the preceding sections. 

A useful analytical approximation for the half-power frequency 

may be found from the expression for the IPG given in Appendix C. From 

the expression in Appendix C, the IPG may be expressed as 

IPG = (R + R T ) 2 | R a t i o | 2 , (4.108) 
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where 

Ratio = 
Yje + G R sinh 0] 
d n 

EL(R Y +l)(sC) sinh© + [JY +K]0 coshG 

- [L(R Yj+1)]© + R(MYJ+G ) sinh© s d d n 

(4.109) 

0 = /RCs , (4,110) 

and the remaining terms and constants in (4.109) are defined in 

Appendix C. Again, taking the approximate expressions 

2 4 
cosh 0 = (1 + "2 •" "o7/ s (4.111) 

and 

^2 H 4 

sinh 6 = 6(1 +|- + I20) , (4.112) 

and retaining only those terms involving constants and the first power 

of s, we can approximate the indicated ratio by 

Ratio 
[-20G.G R0" - GJ(120+120G R) + 120(1+G R)C,s] 

d n d_ n n d  
120(R -RTR G,)Cs + 60(K-JGJ@2 + 20(RG - R M G J 0 2 

L L s d d n d 

+ 120(J-LR +RM)Cds + 120[(K-JGd)-L(l-R Gd) 

+ (RG -RMG,)] 
n d 

(4.113) 

If we substitute 0 = sRC, and (as before) neglect the terms involving 

the diode capacitance, C_., the approximation becomes 



R a t i o = 
- 2 0 G X R C s - 120G,(14€ R) 

d n d n 

[120(R L -R L R g G d )C + 60(K-JGd)RC + 20(RGn"RMGd)RC]s 

+ 120[(K-JG ) - L(l-R G ) + (RG -RMG )] 

. (4.114) 

This is of the form 

Ratio = 
ks + m 
ds + e 

(4.115) 

and the angular frequency at which the magnitude of this ratio goes to 

1/-/2" of its DC value (and the IPG goes to half its DC value) is closely 

approximated by 

r-> e 
%) = d ' 

(4.116) 

Substituting the expressions for the constants J, K, L, and M from 

Appendix C, and the expression 

RR 
R = R + RT + ^ - r -

eq s L R+R 
( 4 . 1 1 7 ) 

where 

RR 

isr • R
P = ° - 8 2 0 4 R • (4.118) 

enables us to wr i t e the approximation for the half-power frequency as 

f * -i. 
hp 2JTC 

S e r i e s I 

6<RH " R . J a eq 

"[6RL + 2 .64079R]R d - [ 6RgRL 

+ (2 .64079R) (R +RT) + 0.8204R ] 

( 4 . 1 1 9 ) 
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Again, it is convenient to express f, as a function of the DC gain 
hp 

value. From Appendix C, the DC gain is 

/ R +R \ 2 A 
IPG(O) = r^f- ) = KZ 

V s eq 
(4.120) 

where 

A R +RT 
s L 

K = 

Rs+RL 

V Req Rd " <Rs+V - (°-8204R) 
(4.121) 

From (4.121) we see that for a specified DC gain of value K , we must 

have 

Rd = ( K ) ( W + (°- 8 2 0 4 R) > (4.122) 

and this expression v̂ ill be useful later in the design of the Series 

amplifiers. Using (4.121) we can write 

(R -R ) = 
d eq 

(W 
K 

(4.123) 

Substituting (4.123) into (4.119) and eliminating R with (4.122) yields 

(W 
hp 2itC 

S e r i e s I 
K[6R L (0 .8204R+R L ) + (1 .34610)R ] 

+ (R g +R L ) [6R L + ( 2 . 6 4 0 7 9 ) R ] 

2 . -i 
(4.124) 

It is convenient at this point to insert the design parameters, a and b, 

defined by (4.65) and (4.66) as 



Rg = a \ (4.125) 

and 

R = bR = abR (4.126) 

so that the expression for the half-power frequency becomes 

hp 
Series I 

2*RLC 

(a+D 
"K[1 + (0.8204)ab + (0.22435)a2b2] 

+ (a+l)[l + (0.44013)ab] 

(4.127) 

Again, it is convenient to define the normalized half-power 

frequency and normalized gain-bandwidth product as in (4.68) and (4.70), 

so that, for the Series I amplifier, the final results are 

Series I 

(a+D 
K[l + (0.8204)ab + (0.22435)a2b2] 

+ (a+l)[l + (0.44013)ab] 

and 

(4.128) 

(GBP)N - K • (f h p) N - IPG(O) • (f h p) N , 

Series I 

(4.129) 

where 

A 
K = -/IPG(O) . (4.130) 

Families of curves constructed from (4.128) and (4.129) are shown in 

Figures 4.21 and 4.22 for selected values of the parameters a and b. 

These curves are used to describe the gain-bandwidth limitations of the 
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Series I amplifier in precisely the same manner as those in Figures 4.10 

and 4.11 are used to describe the Reflection amplifier, and further dis

cussion of them is unnecessary. 

Further paralleling the development of the Reflection amplifier, 

the description of the Series I amplifier is also facilitated by consi

dering the expression of (f. )„ as a function of the resistance ratio b 
hp N 

with the ratio a and IPG(O) taken as parameters. Rewriting (4.128), we 

have 

Series I 

(a+D 
[(0.22435)a2 K]b2 + [K+a+1] 

+ [(0.8204)aK + (0.44013)a(a+l)]b 

(4.131) 

where K = VlPG(O) . This is of the form 

(VN 
M 

Ab + Bb + C 
(4.132) 

where the coefficients M, A, B, and C indicated in (4.132) are all posi

tive. The general shape of the graph of (4.132) is shown in Figure 4.23 

(£hp>N 
max 

(a+1) 
(K+a+1) 

' (fhp}N 

0 

s < f h ^ 

K = T/IPG(0) 

Figure 4.23 Normalized Half-Power Frequency vs. b 

for the Series I Amplifier. 
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Families of this graph for selected values of IPG(O) and the parameter 

a are shown plotted to logarithmic scales in Figures F.l, F.2, and F.3 

of Appendix F. These curves play the same role in the description of 

the Series I amplifier as those of Figures E.l, E.2, and E.3 play in the 

description of the Reflection amplifier, and further discussion of them 

is unnecessary. 

The presence of the nulling resistor, R , in the Series amplifiers 

offers the network designer additional control in shaping the IPG-

frequency response. A hypothetical frequency response is shown in 

Figure 4.24. 

IPG(O) 

IPG(0)/2 

0 

IPG 

fu f 11 hp null 

Figure 4.24 Hypothetical Frequency Response of 

the Series I Amplifier. 

From Figure 2.6(d), we know that the null frequency is given by 

4.90775 30.8364 
null RC 2*RC 

(4.133) 

In terms of the design parameters, a and b, we can write 

30.8364 
null 2*RC C • ab 

(4.13 4) 



and we can define the normalized null frequency as 

A 
(f n L = 2JTBLC • (f n 1 ) 

n u l l N L n u l l 
( 4 . 1 3 5 ) 

so t h a t 

. - 3 0 . 8 3 6 4 
U n u l i ; N " ab 

(4.136) 

Considering the hypothetical response depicted in Figure 4.24, it is con

venient to define a frequency ratio, 5, as 

A f 
& = 

hp_ 

null (fnulpN 
(4.137) 

This frequency ratio is a useful measure of the rapidity of cutoff near 

the edge of the passband. A value of unity for this ratio corresponds 

to the ideal case where the half-power and null frequencies coincide. 

A natural question at this point is: For a specified value of IPG(O) and 

the parameter a, what value of the parameter b results in a maximum value 

for this frequency ratio, and what is this maximum value? Using (4.136) 

and (4.137) we can write 

o = 
<Wa * ab 
(30.8364) 

Thus, using (4.131), we have 

(4.138) 

[a(a+l)]b 

Series I [ (6.91814)a2K]b2 + [30.8364(K+a+l)] 

+ [ (25.29818)aK + (13.57202)a(a+l)]b 

(4.139) 
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This is of the form 

5 = 
Nb 

Db + Eb + F 
(4.140) 

where the coefficients N, D, E, and F indicated in (4.139) are all posi

tive. The general shape of the graph of (4.140) is shown in Figure 4.25 

max 

Figure 4.25 Frequency Ratio vs. b for the 

Series I Amplifier. 

The maximum value of the frequency ratio occurs when 

b = b n « + 1 , I = (2.11124) Kja+1 
0 V D a V K 

where K = -/IPG(O), and the value of 5 at this value of b is 

(4.141) 

(a+D 
max 

Series I 

(4.142) 

(29.21162) /K2+K(a+1) 

+ [(25.29818)K + (13.57202)(a+1)] 

Thus, for any specified values of IPG(O) and the resistance ratio a, the 

frequency ratio 5 has a least upper bound of 



l.u.b. ( 5 ) = X3.57202 = °-07368 • (4.143) 
Series I 

Families of curves constructed from (4.139), for selected values of 

IPG(O) and the parameter a, are shown plotted to logarithmic scales in 

Figures F.4, F.5, and F.6, of Appendix F. These curves will be useful 

in the design of the Series amplifiers, which is the next topic of dis

cussion. 

Design Considerations 

The design considerations to be made for the Series amplifier are 

very similar to those made for the Reflection amplifier. Except for the 

inclusion of the frequency ratio &, and certain salient features charac

teristic of the Series I amplifier, the pattern of this section follows 

that set in the discussion of the Reflection amplifier design. 

For the Series I amplifier, the stability criterion is 

RR 
R, > R = R + -,p

n + RT d eq s R+R L 
n 

= R + 0.8204R + R . (4.144) 
S Li 

In terms of the design parameters, we have 

RJ > R = [a + (0.8204)ab + 1] RT . (4.145) 
d eq L 

2 
For a specified value of IPG(O) = K , the required diode resistance is 

given by (4.122) as 

Rd = ^K^(Rs+V + °'8204 R' (4.146) 



and, in terms of the design parameters, this may be written as 

Rd = [<TT)<a+1> + (0.8204)ab] RL . (4.147) 

Series I 

Inspection of (4.145) in terms of (4.147) shows that the stability cri

terion is always satisfied if the diode resistance is selected via (4.147). 

Again it is convenient to define the percent stability margin, A, by 

assigning the diode resistance as 

Rd " (1 + W0> Req • <4-148> 

Thus, via (4.145) and (4.147), we can express the percent stability mar

gin as 

100(a+l)  

c ^ T ~ K[(a+1) + (0.8204)ab] * (4.149) 
Series I 

From (4.149), it is apparent that 

(A) £ (r^jr) , (4.150) 
n • -r &* 

Series I 

with the equality satisfied only when b = 0. From (4.150), we deduce 

that 

^ 2 100 2 
IPG(0) = K £ (-̂ ) . (4.151) 
Series I 

Again, we see a manifestation of the inherent gain-stability limitation 

of these negative-resistance amplifiers. If practicality should dictate 
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a stability margin of ten per cent (A = 10), then we know at the outset 

that the DC gain cannot exceed 100, and it will be less than this for all 

values of b greater than zero. It is of practical value to note that, 

for identical values of stability margin, the Series I amplifier cannot 

achieve the gain attainable with the Reflection amplifier. Conversely, 

for identically specified values of gain, the operation of the Series I 

amplifier is more critical than the Reflection amplifier since a smaller 

stability margin is required. These properties can be seen by comparing 

(4.151) with (4.87) and/or (4.150) with (4.86). 

Considering A as a function of the design parameter b, we get 

from (4.149) 

hh = 100(a+1) 
hb K 

(0.8204)a 

[(a+1) + (0.8204)ab] 2 ' 
(4.152) 

and the general shape of the graph of (4.149) is shown in Figure 4.26. 

Families of this curve, for selected values of IPG(0) and the parameter a 

A 
max 

A 

100 

^A 
bb 

b=0 

( 8 2 . 0 4 ) a 
K(a+1) 

K 

K = 7 lPG(0) 

0 b 

Figure 4.26 Percent Stability Margin vs. b for 

the Series I Amplifier. 
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are shown plotted to logarithmic scales in Figures F.7, F.8, and F.9 

of Appendix F. 

All of the practical limitations discussed in the design of the 

Reflection amplifier are inherent to the Series amplifiers. The reasons 

for the limits on the design range of the parameter b are exactly those 

given in the previous discussion of the Reflection amplifier. One 

additional point to be considered, however, is that in the configuration 

of the Series I amplifier the magnitude of the diode resistance must be 

greater than the sum of the series-connected resistors R , R , and 

R = RR /(R+R ). Thus, as indicated in (4.145), large values of a or b 
p n n ° 
(or both) must be accompanied, in general, by small values of R . Since 

i-j 

tunnel diodes with a negative resistance of 600 ohms or more are rela

tively uncommon, it is observed that the Series I amplifier will be most 

useful in those cases where the overall impedance level is low. This 

is more readily seen when it is recognized that the parameter b will, in 

general, be set at the value bQ in order to achieve maximum frequency 

ratio, 6 . If this is the case, we can substitute (4.141) into (4.147) 
max 

to get the required value of R, as 

R 

(b=bQ) L 

K+1 
( K )(a+1) + (1-73206) 

K + a+1 
K 

(4.153) 

From (4.142) and Figures F.4, F.5, and F.6 of Appendix F it is also 

observed that, for a specified gain, the maximum frequency ratio, 6 , 
max 

increases with increasing a. With this in mind, we see from (4.153) 

that the Series I amplifier is best suited for those situations where the 

overall impedance level is low and Rs is much greater than Rj.. 
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Design Example and Experimental Results 

As an example of the design procedure for the Series I amplifier 

let us consider the following problem: A Series amplifier is desired 

that will operate between source and load terminations of 300 ohms and 

30 ohms respectively, while providing an IPG of 64 (18.06 db) in the pass 

band with a half-power bandwidth of 120 KHz. At the same time, the maxi

mum possible value of the frequency ratio, 5, is desired. 

As pointed out in the preceding section, the Series I configura

tion is best suited for those cases where the overall impedance level is 

low and R is much greater than RT. For the case at hand. R = 10RT, s Q L s L 
i< 

and the Series I configuration is the logical choice for the design. 

Since the specified value for the parameter a is 10, and IPG(0) is 

specified as 64 (K=8), the curves of Figures F.2, F.5, and F.8 serve as 

the basis for the design. From Figure F.5, for a = 10, the value of b 

yielding maximum frequency ratio is taken as b = b = 0.3. From 

Figure F.2 and F.8 (for a = 10, b = 0.3) we read the values 

< V N = ° - 1 6 > 
and 

A = 10 . 

For the specified value of f = 120 KHz = f , the required line capaci

tance is computed as 

•k 

From the symmetry-of-form property it follows that the Series II con
figuration is best suited for those situations where the overall 
impedance level is low and R.̂  is much greater than R . In a later 
example dealing with the Transmission amplifiers, the results of 
making an incorrect choice of configuration will be covered in detail 
as well as the details of making use of the aforementioned symmetry-
of-form property. 
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c--^L 
2nRLf 0 

0.16 

(6.28318)(30)(120 x 103) 

= 7.074 nf. (4.154) 

The required line resistance is 

R = b R = bAR s 0 s 

= (0.3)(300) 

= 90 £ , (4.155) 

and the required value of null resistance shown in Figure 2.6(d) is 

R = 4.56814 R 
n 

= 4.56814 (90) 

== 411.132 a . (4.156) 

The required value of diode resistance is computed from (4.147) as 

Rd = [(^)(a+l) + (0.8204)ab] RL 

== [(f) (11) + (0.8204) (10) (0.3)] (30) 

= 445. 086 Q, . (4.157) 



I l l 

The parameters of the model line fabricated for this example were 

measured to be 

R = 90 Q, , 

and 

C = 7.07 nf . 

The null resistance used was measured to be 411 ohms, and a Hoffman 

1N2928 tunnel diode (having a nominal shunt capacitance, C,, of 50 pf) 

was biased at approximately 120 mv to achieve the appropriate negative 

resistance. A fine bias adjustment was made via (4.107) so that the 

low-frequency voltage amplification was 

A (0)1 = 
v v / | (a+1) 

= _8 
11 

= 0.727 , (4.158) 

and that value of bias was maintained throughout the measurement of the 

frequency response. 

The resulting frequency response is shown in Figure 4.27. The 

solid curve depicts the theoretically predicted response calculated via 

the exact gain expression given in Appendix C. The superimposed points 

represent the measured response and exhibit close agreement with the 

calculated response. The exact value of f. for the chosen set of para-
hp 

meters was calculated as 111.553 KHz and was 7.0 per cent lower than the 

design goal of 120 KHz. The measured value of f, was 117 KHz and was 
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2.5 per cent lower than the design goal. The value of the frequency 

ratio achieved experimentally was 0.01516 based on the measured values 

of f, and the line parameters. This was 2.2 per cent lower than the 
hp 

value 0.0155 predicted by the design curve of Figure F.5. 

In general, the experimental results were in close agreement with 

those calculated from the exact gain expression and even closer to those 

predicted from the design curves. The largest source of discrepancy was 

most likely in the measurement of the line capacitance. The technique 

used in determining the line capacitance depends on the measurement of 

a null frequency and is quite sensitive to small discrepancies in the 

value of the nulling resistor used. The overall results of the design 

procedure were very favorable, however, and fell within the usual toler

ances accepted in practice. As stated previously, when greater accuracy 

is desired, this can be achieved most rapidly and efficiently by making 

incremental changes in the value of line capacitance used in the com

puter program for calculating the exact response, and making a few 

reiterative calculations. 

The Transmission Amplifiers 

Gain-Bandwidth Properties 

The final amplifiers to be discussed are the Transmission type. 

The Transmission I and II configurations are shown in Figure 4.28, and 

expressions for their IPG are given in Appendix D. 

For the sake of brevity, it is noted at the outset that the 

methods of analysis developed in the preceding discussion of the Reflec

tion and Series amplifiers apply throughout the analysis of the 
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(a) The Transmission I Amplifier. 

R 

•mm 
-mm R 

•wm^mm 
R. 

^r 
Jbb 

(b) The Transmission II Amplifier. 

Figure 4.28 The Transmission Amplifier Configurations. 

Transmission amplifiers as well. As in the case of the Series amplifi

ers, the reciprocity of the Transmission amplifier configurations ensures 

the symmetry of form between the analytical description of the two types. 

The Transmission I configuration will receive greatest attention in the 

work presented here, but it should be kept in mind that a simultaneous 

analysis of the Transmission II configuration is being carried out pro

vided that R and R_̂  are interchanged everywhere in the analysis. This 

will be pointed out in detail when a design example is presented later. 

Since the line of attack in the analysis of the Transmission amplifiers 

follows that of the preceding sections exactly, only the results will be 
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Figure 4.29 Typical IPG-Frequency Response Curves 
for the Transmission I Amplifier. 
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given here. If, at any point, there is a salient feature characteristic 

of the Transmission configurations, it will be discussed fully. Other

wise, the results given here can be arrived at by exactly the same 

approach taken in the preceding sections. 

Some typical response curves are shown in Figures 4.29 and 4.30. 

Again, we see the same type of gain-bandwidth behavior as witnessed in 

the previous sections,. It has likewise been shown that the PBGA of 

Transmission I amplifier may be made arbitrarily large, and there is no 

upper bound on the GBP of the Transmission I amplifier. 

With the same techniques, approximations, and general definitions 

used previously, the normalized half-power frequency and normalized gain-

bandwidth product are found to be 

Trans. I 

and 

[(a+1) + (0.8204)(a+l)abl 

K[a + (0.8204)a2b + (0.22435)a3b2] 

where 

2. 2. 
+ [(0.44013)(a+l)ab + (0.13673)(a+l)a b ] 

(GBP) 
N 

Trans. I 

(4.159) 

K * < V N - IPG<°> * < V * ' (4.160) 

A 
K = APG(0) (4.161) 

Families of curves constructed from (4.159) and (4.160) are shown in 

Figures 4.31 and 4.32 for selected values of the parameters a and b. 
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Figure 4 31 Normalized Half-Power Frequency vs. IPG(O) 
for the Transmission Amplifier(s). 
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Figure 4.32 Normalized Gain-Bandwidth Product vs. IPG(0) 
for the Transmission Amplifier(s). 



Rewriting (4.159) as a function of b yields 

< V N • 
Trans. I 

[(0.8204)a(a+l)]b + [(a+1)] 

[(0.22435)a3K + (0.13673)a2(a+l)]b2 

+ [(0.8204)a2K + (0.44013)a(a+l)]b + [aK] 

(4.162) 

which is of the form 

<VN -
Pb + Q 

Ab + Bb + C 
(4.163) 

where the indicated coefficients are all positive. The general shape of 

the graph of (4.163) is shown in Figure 4.33. Families of this graph 

for selected values of IPG(O) and the parameter a are shown plotted to 

logarithmic scales in Figures G.l, G.2, and G.3 of Appendix G. 

I <fhp>N 

(f ) - i s + n 
k hp'N aK 

max 

*<VN 
bb 

(0.44013)(a+1) 

b=0 aK2 

K = 7lPG(0) 

0 

Figure 4.33 Normalized Half-Power Frequency vs. b for 

the Transmission I Amplifier. 

In the study of the frequency ratio, 6, for the Transmission I 

configuration, we again have 
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(fnull^N " 
30.8364 
ab 

(4.164) 

so that, using (4.162), the frequency ratio as a function of the design 

parameter b is 

Trans. I 

[(0.8204)a(a+l)]b + [(a+l)]b 

[(6.91814)a2K + (4.21626)a(a+l)]b2 

+ [(30.8364)K] + [(25.29818)aK 

+ (13.57202)(a+l)]b 

(4.165) 

This is of the form 

& = 
Nb + Mb 

Db + Eb + F 
(4.166) 

where the indicated coefficients are all positive. The general shape 

of the graph of (4.166) is shown in Figure 4.34. The frequency ratio 

approaches its maximum value asymptotically for increasing values of 

max 

& J 1 

d& 
db b=0 

(a+1) 
(30.8364)K 

K = 7IPG(0) 

0 
b 

Figure 4.34 Frequency Ratio vs. b for the 

Transmission I Amplifier. 
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the parameter b, and 

8 = Lim N (0.8204)a(a+l) (4.167) 
m a x b^-ho D (6.91814)a2K + (4.21626)a(a+l) 

where K = 7lPG(0), and the coefficients N and D are taken from (4.165). 

Thus, for any specified values of IPG(O) and the resistance ratio a, the 

frequency ratio has a least upper bound of 

1-U-b'(T
 S > " (4.1l626) -0-»«8 • (*•"«) 
Trans.I v ' 

Families of curves constructed from (4.165), for selected values of 

IPG(O) and the parameter a, are shown in Figures G.4, G.5, and G.6 of 

Appendix G. 

Design Considerations 

For the Transmission I amplifier, the stability criterion is 

Rg[(0.8204)R + R^] 
Rd > Req = Rg + (0.8204)R + £7 ' (4.169) 

which, in terms of the design parameters a and b, may be expressed as 

R >R = a[(0.8204)ab + l] RL ( 4 > 1 7 Q ) 
d ecl [(a+1) + (0.8204)ab] 

o 
For a specified value of IPG(O) = K , the required value of diode resis

tance is 

K Rg[(0.8204)R + R^] 
Rd = K[Rg + (0.8204)R + R^] - (R +1^) ' <4-171) 
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which, in terms of the parameters a and b, can be written as 

Ka[(0.8204)ab+1] R 
Rd K[(a+1) + (0.8204)ab] - (a+1) * (4.172) 

Inspection of (4.170) in terms of (4.172) shows that the stability cri

terion is always satisfied if the diode resistance is chosen via (4.172) 

The percent stability margin, A, defined by 

Rd " <L + l £ o > R e q < 4 - 1 7 3 > 

may be expressed, via (4.170) and (4.172), as 

. 100 (a+1)  

m
A
 T [ (K-l) (a+1) + K(0.8204) ab] * (̂ .i/'U 

Trans, x 

From (4.174) it is apparent that 

I r a n i x * ^ • (4-1?5) 

where the equality holds only when b = 0. From (4.175), we get the 

inherent gain-stability limitation of the Transmission I amplifier as 

^ 2 100 2 
IPG(0) = K g (-̂  + 1) . (4.176) 

Trans. I A 

It is worth noting at this point that the gain-stability limitation of 

the Transmission amplifier is identical to that found for the Reflection 

amplifier, and comparison of the three amplifier types (Reflection, 

Series, Transmission) shows the Series type to be more critical in its 



operation. That is, for a given value of gain, the maximum stability 

margin attainable in the Series configuration will be less than that 

achievable in either the Reflection or Transmission configuration. This 

is obvious upon comparing (4.175), (4.150), and (4.86). 

Considering A as a function of the parameter b, we get from 

(4.174) 

^A (82.04)a(a+l)K 

[(K-l)(a+l) + K(0.8204)ab] 
(4.177) 

and the general shape of the graph of (4.174) is shown in Figure 4.35. 

Families of this curve, for selected values of IPG(O) and the parameter 

a, are given in Figures G.7, G.8, and G.9 of Appendix G. 

A 

A 
100 

max (K-l) 

aA 
&> 

= _ (82.04)a K 

b=0 (K-l)2(a+l) 

K = yiPG(O) 

0 

Figure 4.35 Percent Stability Margin vs. b for the 

Transmission I Amplifier. 

All of the practical limitations discussed for the Reflection 

amplifier are applicable to the Transmission amplifiers. One additional 

point that should be noted, however, is that the opposing nature of the 
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frequency ratio and the percent stability margin, when considered as 

functions of b, might necessitate some compromise in the design. Speci

fically, the frequency ratio is an increasing function of b while the 

stability margin is a decreasing function of b. From the graphs of these 

functions given in Appendix G, however, it is observed that (for a speci

fied gain) we can make b large in order to achieve large frequency ratios 

and still maintain acceptable stability margins if the parameter a is 

small. Thus, the Transmission I amplifier is best suited for those situ-

ations in which R is much smaller than RT. s L 

Design Example and Experimental Results 

As an example of the design procedure for the Transmission type 

amplifiers, let us consider the following problem: A Transmission ampli

fier is desired that will operate between source and load terminations 

of 41 K ohms and 410 ohms, respectively, while providing an IPG of 100 

(20 db) in the passband with a half-power bandwidth of 10.5 KHz. At 

the same time, it is desired to achieve a frequqncy ratio as large as 

possible consistent with a realistic choice for the stability margin. 

The source and load terminations fix the parameter a at 100, and 

since the specified IPG(0) is 100, the curves of Figures G.3, G.6, and 

G.9 serve as the basis for the design. Inspection of Figure G.9 shows 

that, for a = 100, the stability margin falls off rapidly for values of 

b greater than 0.1. As a rule-of-thumb, it is difficult to maintain a 

stable bias point if the stability margin is less than about 10 per cent, 

and this dictates that the parameter b should be restricted to values 

equal to or less than about 0.1. Simultaneous consideration of Figures 

G.3, G.6, and G.9 shows that a compromise must be made in fixing the value 
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of b . If b i s fixed a t 0 . 1 , then 

( V N = ° - 0 2 7 ' 

and 

o = 0.009, 

A = 10 . 

Thus, a reasonable value is achieved for the stability margin, but the 

frequency ratio is such that the separation between f, and f -. is 
hp null 

over two decades. In addition, the value of (f, )„ is so low that the 
hp N 

required line capacitance is computed to be 

(tuJi 
C = 'hpxN 

2«h ' f0 

0.027 

(6.28318)(410)(10.5xl03) 

= 0.998 nf , (4.178) 

and this value is low enough that it may be difficult to achieve reli

ably. Another factor that must be considered is the magnitude of the 

required negative resistance. For IPG(0) = 100(K=10), a = 100, and 

b = 0.1, the required R, is calculated from (4.172) to be 

R, = 
Ka[(0.8204)ab + 1] R^ 

d K[(a+1) + (0.8204)ab]-(a+l) 

(10)(100) [8 .204 + 1] R^ 

10[101 + 8.204] - (101) 
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= (9.28721) R 

= (9.28721)(410) 

= 3807.75 Q , (4.179) 

which is totally unrealistic. If the parameter b is reduced to 0.01, 

then 

( V N • °-088 • 

o = 0.0028 , 

and 

A ^ 11 . 

Thus, the reduction in b achieves the slightly higher stability margin 

of 11 per cent, and the required line capacitance is now computed to be 

C - ^ N 

* * L f 0 

0.088  

(6.28318)(410)(10.5xl03) 

= 3.253 nf , (4.180) 

which is a more reasonable value. The required negative resistance is 

now calculated from (4.172) to be 

Ka[(0.8204)ab +. 1] R 
D =

 L 

d K[(a+1) + (0.8204)ab]-(a+l) 



= (1.98472) R 
J_i 

= (1.98472)(410) 

= 813.735 Q, (4.181) 

which is also unrealistic. In addition, the frequency ratio has been 

further reduced to about one third of its initial value which is just 

the opposite of what is desired, i.e. an increased value of frequency 

ratio. Thus, it seems that, no matter how we are willing to compromise 

in the choice of the parameter b, one or more of the network parameters 

must take on an unrealistic value in order to meet the design specifica

tions. This is a discouraging state of affairs until one realizes that 

there is a fundamental fault in all of the preliminary design calculat

ions above. They were made for a Transmission I amplifier. In the 

previous section dealing with design considerations it was pointed out 

that the Transmission I configuration is best suited for those cases 

where R is much smaller than R . The case at hand (R = 41K&, 
S Li S 

R̂  = 410&) hardly fits this description, and the unrealistic values cal

culated above are a manifestation of this fact. From the symmetry-of-

form property it follows that the Transmission II configuration is best 

suited for those situations where R is much larger than R̂  . Since the 

specifications in the original design problem call for a source termina

tion that is 100 times larger than the load termination, the Transmission 

II configuration is the proper choice here. The first task in the design, 

therefore, is to modify the preceding analysis so that it applies to the 

Transmission II configuration. 
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Fortunately, all of the previously developed design formulas and 

curves hold for the Transmission II configuration if R and R are inter-
S 1J 

changed everywhere in the analysis. This symmetry of form was mentioned 

earlier, and it is a direct consequence of the reciprocity of these amp

lifiers. For the Transmission II configuration, the following changes 

are made: The design parameters a and b, originally defined by (4.125) 

and (4.126), are now given by the modified definitions 

RL = a Rg, (4.182) 

and 

R = b R = ab R . (4.183) 

If the derivation of (f, )„ is carried out, we find that (4.159) and 
hp N 

Figures 4.31 and 4.32 are still valid (provided the normalization factor 

is interpreted as 2̂ R C instead of 2jtRTC). Likewise, (4.162) and 

Figures G.l, G.2, and G.3 are applicable with the modified normalization 

factor. It is also found that, with the proper normalization factor of 

2jtR C, (4.164) and (4.165) are valid exactly as they are. Hence, the 

curves of Figures G.4, G.5, and G.6 are applicable without further modi

fication. The modified forms of (4.170) and (4.172) become 

a[(0.8204)ab + 1] R 
Rd > Req = [(a+1) + (0.8204) ab] ' (4.184) 

* 
There is a single exception to this statement that will be discussed 
in detail. 
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and 

Ka[(0.8204)ab + 1] R 
Rd K[(a+1) + (0.8204)ab]-(a+l) * (4.185) 

The stability margin is universally defined by (4.173), and we see that, 

using (4.184) and (4.185), we arrive at exactly the same expression for 

A given by (4.174). Hence, the gain-stability limitation for the Trans

mission II configuration is precisely the same as that for the Transmis

sion I configuration, and the curves of Figures G.7, G.8, and G.9 apply 

without further modification. With these points in mind, the design can 

now be carried out. 

For the case at hand, the modified value of the parameter a 

becomes 0.01, and the curves of Figures G.3, G.6, and G.9 serve as the 

basis of the design. If b is chosen as 27.6, then 

( fhp>N= 4- 7 5> 

& = 0.043 , 

and 

A =8.9 . 

Since (f. )>T is now defined as 
hp N 

A 
(f. )„ = 2jtR C ' (f ) , (4.186) 
hp N s hp 

All of these properties similarly hold for the Series II configuration 
and the design curves of Appendix F. 
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the required line capacitance is computed as 

c • ( V » 
2TTR . f„ 

s 0 

4.75 

(6 .28318) (41x l0 3 ) (10 .5x l0 3 ) 

= 1.756 nf . (4.187) 

The new value of frequency ratio is considerably improved over those 

reached in the initial design attempts, and the slightly reduced value 

for the stability margin is a consequence of the compromise that must be 

made between high frequency ratio and high stability margin. With a 

gain as high as 100 a slightly more critical stability problem is to be 

expected. The required line resistance is now given by 

R = b R 

= (27.6) (410) 

= 11.316 KG , (4.188) 

and the required nulling resistor, R , is given by 

R = (4.56814) R 
n 

= (4.56814)(11.316 KG) 

= 51.693 KG . (4.189) 

The required negative resistance is computed from (4.185) as 



Ka[(0.8204)ab + 1] R 
R, = 
d K[(a+1) + (0.8204)ab] - (a+1) 

= (0.010814) R 

= (0.010814)(41xl03) 

= 442.857 a , (4.190) 

and this value may be realized physically. 

The model transmission line fabricated for this example achieved 

the parameter values 

R = 11.310 K6 , 

and 

C = 1.77 nf . 

The null resistance, R , was measured to be 51.666 K&, and a Hoffman 

1N2928 tunnel diode biased at approximately 120 mv furnished the required 

negative resistance. Again, the fine adjustment of the bias and value 

of IPG(0) was made by adjusting the low-frequency voltage amplification 

via (4.104) so that 

l A v ( 0 ) l = F ^ - < 4 - m ) 

It should be noted that (4.104) was used directly without any interchange 

of R and R . Since (4.104) is derived for the general amplifier con-

figuration of Figure 4.16, it is invariant. Thus, (4.191) applies for 

the Transmission II as well as the Transmission I configuration, and 

(4.191) is the single exception in the use of the symmetry-of-form 
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"k 

property in describing the Transmission II configuration. The modified 

design parameter a, defined by (4.182), can be substituted in (4.191), 

however, so that for the Transmission II configuration we have 

Av(0)| - 5 J L . (4.192) 

For the case at hand, a = 0.01 and K = 10, and the bias was finely adjus' 

ted so that the low-frequency voltage amplification had a magnitude of 

A (0)1 = (0.01)(10) = o 099 

V u ; l ( l .oi) u , u y y ' (1.01) 

and the bias was then maintained throughout the measurement of the fre

quency response. 

The resulting frequency response is shown in Figure 4.36. The 

solid curve represents the theoretically predicted response (based on 

the chosen parameter values) calculated via the exact gain expression 

given in Appendix D. Superimposed are points representing the experi

mental measurements made on the prototype amplifier. The exactly calcu

lated value of f. based on the chosen set of parameters was 12.33 KHz 

hp 

which was 17 per cent higher than the design goal of 10.5 KHz. The 

measured value of f, was 13.1 KHz which was 24 per cent higher than the 

design goal. The value of the frequency ratio achieved experimentally 

was 0.05343 based on the measured value of f, and the line parameters. 
hp 

This was 24.2 per cent higher than the value 0.0430 predicted by the 

design curve of Figure G.6. 

* This point also applies to the Series I and II configurations. 
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Figure 4.36 IPG-Frequency Response of Prototype Transmission II Amplifier. 



The experimental results of this example were not as favorable as 

those presented earlier, but since the design curves of Figures G.3 and 

G.6 are based on approximate expressions it is not surprising that the 

correlation varies between experimental and theoretical results. There 

are two sources of error in this case that can have significant effect 

on the results. The first source of error is that the method of measur

ing the effective line capacitance is very sensitive to small variations 

in the nulling resistance and thus subject to significant error. The 

second source of error in this case is that the line capacitance is 

relatively small, and it is likely that in the derivation of the approxi

mation for f the assumptions made about dropping certain terms are 

beginning to break down. At any rate, the expressions derived for f 

and 5 are approximations and as such are subject to limitations in the 

range of parameter values that can be used to any specified degree of 

accuracy. The approximate expressions for f and & do serve their 

intended purpose, however, in that they do give the network designer pre

liminary design information from which he can make a few reiterative cal

culations to arrive at his design goal. 



CHAPTER V 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

It has been the purpose of this investigation to develop an over

all theory for and to demonstrate the feasibility of certain base-band 

negative-resistance amplifier configurations that utilize a single tunnel 

diode in conjunction with a uniformly distributed RC transmission line. 

The problem was conceived in terms of the monolithic integrated circuit 

technology which is presently receiving much attention by research 

workers, and the practical details and limitations encountered in this 

thesis are specifically related to this type of circuit morphology. The 

areas of the investigation on which greatest attention was focused were 

the stability criteria for the amplifier configurations, their gain-

bandwidth properties, and the techniques and considerations involved in 

their practical design together with experimental verification of the 

analytical results. 

Background material was given in Chapter II describing the con

struction of the uniformly-distributed RC transmission line and methods 

of modeling it. The line, shown symbolically in Figure 5.1, was then dis

cussed regarding its two-port parameters and nulling properties. The 

coupling network for the proposed amplifier configurations was chosen to 

be either the RC line section of Figure 5.1 or the null network of 

Figure 5.2 which realizes a real-frequency transmission zero at the fre

quency f . The insertion power gain (IPG) used to describe the 
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performance of the amplifiers was defined as shown in Figure 5.3, and 

the proposed amplifier configurations were defined as shown in Figure 5.4, 

-»- o-
1 

R 

wMim--c i 

zn1 = z00 = - 5 — • cosh(a/s~). 
11 22 (a^) 

Z12 == Z21 
R 

a = VRC. 
(a-/s) sinh(a-/s~) 

Figure 5.1 The Uniform RC Transmission Line. 

R 
n 

-p«r-
-VWWWMW-

4 o 
Null Resistor: R = 4.56814 R, 

n 

Null Frequency: f = 
4.90775 

n RC 

Figure 5.2 RC Transmission Line Null Network. 

R 

;R. 

(a) Source connected 
directly to load. 
(Power to load = PTQ.) 

Ac t ive 
Insertion 
Two-Port 

(b) Active two-port inserted 
between source and load. 
(Power to load = PTA») 

R, 

I P G - PLA/PL0 

Figure 5.3 Definition of Insertion Power Gain (IPG). 
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(b) Transmission II Amplifier. 

(c) Series I Amplifier. (d) Series II Amplifier 
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*-—mwmwr 

R, 

(e) Reflection Amplifier. 

Figure 5.4 The Amplifier Configurations Utilizing a Single 

Tunnel Diode in Conjunction With a Uniformly-

Distributed RC Transmission Line. 
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Chapter III dealt with the stability criteria of the amplifier 

configurations on both a static (bias) and dynamic (signal) basis. The 

relationship between the method of coupling and the bias stability was 

discussed in detail with the following conclusion: 

For the same degree of bias stability, a directly-coupled 
amplifier will exhibit higher gain for the signal compo
nents than a capacitance-coupled amplifier, and the gain 
exhibited by the directly-coupled amplifier will be maxi
mum for the given degree of bias stability. 

For this reason, directly-coupled configurations were employed throughout 

the investigation. With the aid of a theorem due to Mitra [13] the sig

nal stability criteria were established with the following results: 

The bias and signal stability criteria are identical, and 
stabilizing the DC operating point stabilizes the circuit 
in a signal sense as well. 

A fundamental limitation exists in these negative-
resistance amplifiers in that there is a trade-off 
between the conditions of high signal gain and high 
stability margin, where stability is taken to mean 
total (both static and dynamic) stability. 

A summary of the stability criteria for the various configurations is: 

R R 
Reflection: R, > R + p

s^ p , (5.1) 
a. K. -rK,. 

s L 

Series I: R, > R +R +RT , (5.2) 
d s p L 

Series II: R, > R +R +RT , (5.3) 
d s p L 

Rs ( Rp + RL } 

Transmission I: Rd > + R + R — » (5-4) 
s p L 



140 

and 

R T ( R +R ) . 
T r a n s m i s s i o n I I : Rd > R + / + / > ( 5 , 5 ) 

s p L 

where 

RR 
R
P

 =^r = 0-8204R • <5-6> 
n 

and Rj is the magnitude of the negative resistance furnished by the 

tunnel diode. 

From the results given above, it is concluded that the most 
general form of the stability criteria is R, > R , where 
R is the equivalent DC resistance of the circuit external 
eq 
to the tunnel diode. 

Chapter IV dealt with the gain-bandwidth properties and design 

techniques associated with the various amplifier configurations. In an 

effort to establish a least upper bound on the realizable gain-bandwidth 

product of these amplifiers, the following conclusion was reached: 

The gain-bandwidth product of these negative-resistance 
amplifiers can, theoretically, be made arbitrarily large. 
This result is of limited practical value, however, because 
unbounded gain-bandwidth products can be achieved only for 
high-gain narrow-band operation, and in practice the pre
viously mentioned gain-stability limitation will prevent 
the realization of arbitrarily large gain values. 

The basic question concerning the gain-bandwidth properties was then cast 

in the two forms: 

1.) For a specified value of DC gain, IPG(O), what are the 

maximum values of the half-power frequency, f , and the 

gain-bandwidth product, GBP? 
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or 

2.) For a specified value of half-power frequency, f , 

what are the maximum values of IPG(O) and GBP? 

These questions were answered by deriving approximate expressions rela

ting f , GBP, and IPG(O) for each of the amplifier configurations. The 

results were presented in graphical form for various sets of circuit 

parameters and, as such, served as valuable aids in the design of the 

amplifiers. 

In addition a stability margin, A, was defined by the relation 

Rd = (1 + W0> Req • <5"7> 

where R, and R are defined above. Since the general form of the sta-
d eq ° 

bility criteria is R, > R , we see that the value of A is the percentage 
d eq 

by which R, > R . The gain-stability limitations for the amplifier con

figurations were found to be: 

100 2 
Reflection: IPG(O) g ("̂  + D » (5-8) 

Series I, II: IPG(O) g ( ^ ) 2 , (5.9) 

and 

Transmission I, II: IPG(O) g (~- + l) 2 , (5.10) 

where IPG(O) is the DC value of the insertion power gain. Thus, we see 

that for a stability margin of ten per cent (A = 10) the maximum reali

zable gain for the Reflection and Transmission configurations is 121 

(20.8 db), and it is 100 (20 db) for the Series configurations. In 



practice, the minimum value of A that may be used is on the order of 10, 

and we may draw the following conclusions: 

The Reflection and Transmission configurations have an 
identical gain-stability limitation, and it is less severe 
than that for the Series configurations. 

As a rule-of-thumb, the practical minimum value for the 
stability margin is on the order of ten per cent, and 
the resulting maximum realizable gain is on the order 
of 20 db. 

For the Series and Transmission amplifiers (whose geometry permits 

the realization of a real-frequency transmission zero in the gain expres

sion) a study was made of the rapidity of cutoff outside their passbands. 

The cutoff properties were investigated in terms of a frequency ratio 

defined as 

A f u 
b-T*-, (5.11) 

null 

where f is the half-power frequency, and f . is the frequency of the 

transmission zero in the IPG-frequency response. With a frequency ratio 

of unity defined as the ideal case, a least upper bound was found for 

each of these amplifiers to be: 

Series I, II: 1. u. b. [Q] = 0.07368 , (5.12) 

and 

Transmission I, II: 1. u. b. [5] = 0.19458 . (5.13) 

Thus, it was found that the Transmission configurations 
can be made to exhibit the most rapid cutoff above the 
half-power frequency. 



Design considerations were made with regard to stability margin, 

rapidity of cutoff, and the values required of the circuit parameters to 

meet specified values of f and IPG(O) [with specified values of R and 

R ]. These considerations led to the following conclusions: 
Li 

The Reflection amplifier is best suited to those situ
ations where R < RT and the overall impedance level is 
n s — L r 

low. 

The Series I configuration is best suited to those 
situations where R » R and the overall impedance 
level is low. 

The Series II configuration is best suited to those 
situations where R « R and the overall impedance 
level is low. 

The Transmission I configuration is best suited to 
those situations where R « R_ . 

s L 

The Transmission II configuration is best suited to 

h-those situations where R » 
s 

As verification of the analytical results of the investigation, a 

design example was worked out for three of the amplifier configurations. 

In general the correlation between theory and experiment was favorable, 

and the feasibility of these amplifiers was demonstrated. 

There are several extensions of this investigation that might be 

worthy of future research. The most obvious and natural extension, of 

course, is the analysis of amplifiers with the RC line reoriented so that 

band-pass, or high-pass gain response is achieved. Another facet worthy 

of investigation is that of employing tapered RC lines such as those 

whose parameters are distributed linearly, exponentially or 



trigonometrically. The frequency characteristics of such amplifiers 

would certainly be interesting and worthy of research effort. In addi

tion, the use of inductance in shaping the frequency response of these 

lumped/distributed-parameter amplifiers would be an important contribution 

to the theory. Admittedly, the foregoing investigation was specifically 

intended for the strictly RC case of monolithic integrated circuit 

morphologies, but as the state-of-the-art advances a method of realizing 

suitable integrated inductors must surely be in the offing. In that 

event, the analysis of the lumped/distributed RLC case would be a valu

able contribution to this growing area of research. There would be a 

formidable problem, however, in predicting stability criteria for this 

case. The presence of inductance would rule out the use of Mitra's 

theorem, and it would be very difficult to make general statements about 

the natural frequencies of a circuit containing lumped and distributed 

R, L, and C and a negative resistance. It might be that computer-oriented 

numerical procedures would have to be employed to search for the natural 

frequencies, but the results of such an investigation could prove both 

interesting and useful. 
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APPENDICES 



APPENDIX A 

INSERTION POWER GAIN OF THE REFLECTION AMPLIFIER 

R 

0 R, 
R 

wmmir 
R 

r-WWWr^ 

O'. 
R 

R, 

Figure A.1 The Reflection Amplifier (Standard Configuration). 

The insertion power gain (IPG) of the Reflection amplifier shown 

in Figure A.1 is 

IPG = <Rs + V 
^11 + Yd 

*11 + Yd 

R
s

R L ( yn Y d + M> + (W^n+V 

2 

Rx (^i iYd + M > + y n + Y d 
S = JCD 

S=JCD 

( A . l ) 

where 

R s R L 
R x =

 F+R~ 
s L 

(A. 2) 

(a-i/s) cosh(a-/s~) 
y l l " R s i n h ( a / s ) 

(A.3) 



and 

For S=JCD we have 

where 

Equation (A.1) then takes the form 

where 

N = A(coshA cosA - s inhA s inA) 
r 
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(a/s~) 

R2 
(A.4) 

Y, = C d S " Gd ' 
(A.5) 

a = VRC . (A.6) 

i-/s = a-Zjoo = A + jA , 

s=joo 

(A. 7) 

A = 
0)RG (A.8) 

IPG = 

2 2 
N + N. 

r i _ 
2 2 ' 

D + D. 
r I 

(A.9) 

2C 
— A coshA s inA - RG, s inhA cosA , 
C a 

(A.10) 



N. = A(coshA cosA + s inhA s inA) 

and 

1 

2C A 0 

+ ——- A sinhA cosA - RG, coshA sinA , (A.11) 
L. a 

2RxCd 3 
D = - — — — A (coshA cosA + sinhA sinA) 
r KL> 

+ (1 - G,R ) A(coshA cosA - sinhA sinA) 
d x' 

- 2( ̂  + -§ A2(coshA sinA) 

- RG. sinhA cosA , (A.12) 

2RxCd 3 
D. = — — — A (coshA cosA - sinhA sinA) 
i K.0 

+ (1 - G,R ) A(coshA cosA + sinhA sinA) 

+ 21 ̂  + -~ j A2(sinhA cosA) 

- RG coshA sinA . (A.13) 

At zero frequency, the insertion power gain is 

[ / . R ] 
d eq 

where 

R = R + R . (A. 15) 
eq x 



149 

APPENDIX B 

PBGA PROPERTY OF THE REFLECTION AMPLIFIER 

The insertion power gain of the Reflection amplifier is of the 

form 

,Gd) = f f-^p , Gd 1 = f(A,Gd) 

If G. takes on the limiting value G , then we have the resulting 
d eq & 

upper-limit gain function, i.e., 

Lim(IPG) = g(o),G ) = f(A,G ) . (B.2) 
Q _<; e<l eH 
d eq 

The PBGA of the upper-limit gain function is 

r> 
PBGA = / g(05,G ) do) (B.3) 

CD=0 

As shown in Appendix A, the insertion power gain is more con

veniently written as a function of A = VtJcRC/2 rather than CD. Rewriting 

equation (B.3) in terms of the function f(A,G ) and making the proper 

change of variable yields 

A=AU A=A,_ 

4 r ^P 4 r «*P 
PBGA = |g J A • f(A,Geq) dA = — J F(A) dA, (B.4) 

A=0 A=0 
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where 

2 2 
N +N. 

f(A,G ) = r L eq D V 2 
r I G,=G d eq 

fD(A) 
(B.5) 

F(A) = A • f(A,G ) = 
A(N 2+N.2) A-f (A) r I N 

6(1 (D2+D.
2) V A> ' 

r I 

(B.6) 

and the terms N , N., D , and D. are given in equations (A.10), (A.11), 

(A.12), and (A.13) of Appendix A. At this point, it is convenient to 

investigate the behavior of both the upper-limit gain function, f(A,G ), 

and the function F(A), as A approaches zero. From this point on. G,= G 
d eq 

Inspection of equations (A.10), (A.11), (A.12), and (A.13) shows 

that 

Lim N = Lim N. = Lim D = Lim D. = 0 , 
A->0 r A->0 L A->0 r A^O X 

(B.7) 

and therefore 

Lim f(A,G ) = 
A^O eq' 

Lim £ (A) 
A->0 
Lim f (A) 
A-0 U 

(B.8) 

assumes the indeterminate form 0/0 necessitating the use of L'Hospital's 

rule. Differentiating we have 

f̂  '(A) == 2N N ' + 2N.N. ' , N V r r I l (B.9) 

and 

f '(A) = 2D D ' + 2D4D.' , D r r i l ' 
(B.10) 



from which it is obvious 

Limf -(A) 
A-*0 

= 0 , (B.ll) 

and 

Lim f '(A) = 0 . 
A-0 D 

(B.12) 

A second differentiation yields 

fN"(A) = ^ [ N ^ N j * + ( N j ) 2 + N , N , " + ( N . ' ) 2 ] , 
r r 1 I 

(B.13) 

and 

f D "(A) = 2[D D " + ( D r ' ) 2 + D . D . " + ( D . ' ) 2 ] (B.14) 

T h e r e f o r e 

Lim f "(A) 
A->0 

= 2 Lim N y)2 + ( Lim N . ' V 
A - . 0 , r J l/UO L ) 

(B.15) 

and 

Lim f " (A) = 2 
A+0 D 

Lim D » \ 2 + / L i m D. | V 

A-0 r / I A-0 1 
(B.16) 

Computing N * from equation (A.10) and taking the limit yields 

Lim N ' = (1 - RG ) . 
A-0 eq' 

(B.17) 

Likewise, computing N.' from equation (A.11) and taking the limit 
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y i e l d s 

Lira N . ' = (1 - RG ) . (B .18) 
A-0 X e^ 

Thus, from (B.15), we get 

Lim f "(A) = 4(1 - RG ) 2 . (B.19) 
A-0 N eq 

Computing D ' from equation (A.12) and taking the limit yields 

Lim D ' = 1 - G (R +R) = 1 - G R = 0 . (B.20) 
A_>0 r eq x eq eq 

Likewise, computing D ' from equation (A.13) and taking the limit 

yields 

Lim D.' = 1 - G (R +R) = 1 - G R = 0 . (B.21) 
A_4) i -• eqv x eq eq 

Thus, from (B.16) we get 

Lim fn
M(A) = 0 . (B.22) 

A-+0 ° 

The final result for the limit of (B.8) is then 

Lim f "(A) 
A-vO 

Lim f(A,G ) = fr , „/Ax = + oo . (B.23) 
e q L i m fD ^ 

A-+0 

Now, investigating the function F(A) = A«f (A)/f (A) in light of the 

foregoing development, it is obvious that L'Hospital's rule yields an 

indeterminate form until the ratio is formed with the limits of third 
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d e r i v a t i v e s , i . e . 

[ A . f N ( A ) f = A-f » (A) + 3 f N "(A) , (B .24) 

and 

f J " ( A ) = 2[D D"1 + D "D • + 2D 'D n 

D r r -r r r r 

+ D.D. + D . " D . ' + 2 D . ' D . M ] , (B .25) 
1 1 l i l i 

so t h a t 

Lim [ A ' f (A) ] " ' = 3[Lim f »(A) ] = 1 2 ( 1 - RG ) 2 , (B .26) 
A-»0 A-+0 q 

and 

Lim f '" (A) =. 0 . (B .27) 
A-*0 D 

The final result from L'Hospital's rule is then 

Lim[A.fN(A)]
1" 

Lim F(A) == ^f • ,„ ( . = +«> . (B.28) 
A-0 ,™ *D {A) 

A-*0 

From the definition of the upper-limit gain function in equation 

(B .2) and t h e f a c t t h a t A = -/CJDRC/2, i t i s o b v i o u s t h a t 

Lim f (A,G ) = + oo ^ Lim g(o3,G ) = + » , (B .29) 
A-+0 e q 03-0 e q 

indicating that the upper-limit gain function (in either of its forms) 
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is unbounded as the frequency goes to zero. The limits of (B.28) and 

(B.29) likewise indicate that the PBGA associated with the upper-limit 

gain function must be found from a gain-integral [either (B.3) or (B.4)] 

which is improper since the integrand is unbounded at the lower limit of 

integration. The question of convergence naturally arises at this point, 

and it is convenient to make use of the following [14]: 

Theorem: If F(A)e C, where 0 < A ̂  A , ^ 

and Lim [A-F(A)] = K (or i » ) 1 0, 
A-»0 

A P \ 

> 
(B.30) 

then / F(A) dA d i v e r g e s . 

A=0 J 

In order to test the gain-integral of (B.4) we must now investi

gate the 

Lim[A-F(A)] = Lim 
A-+0 A-+0 

2 V ^ 
1 VA> 

(B.31) 

From previous work and some additional differentiation it is found that 

L'Hospital's rule yields an indeterminate form until the ratio of fourth 

derivatives is used, i.e., 

Lim[A-F(A)] 
A-»0 

Lim [A2f (A)] ( 4 ) 

A->0  

Lim f n
( 4 )(A) 

A-̂ 0 

(B.32) 

where 

Lim[A2-fAT(A)]
(4) = 12 Lim f " (A) = 48(1 - RG ) 2 , 

A-*0 N A->0 N eq 
(B.33) 
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and 

Lim f (4)(A) = 6 
A-*0 D 

Lim D " \2 +[ Lim D." 
A_>0 r J \ A-*0 L 

(B.34) 

Computing D " from equation (A.12) and taking the limit yields 

Lim D " = 0 . 
A-+0 r (B.35) 

Likewise, computing D." from equation (A.13) and taking the limit yields 

Lim D." = 0 . 
A-+0 X 

(B.36) 

Thus, from (B.34) we get 

Lim f ( 4 \ A ) = 0 
A-̂ 0 D 

(B.37) 

The final result for the limit of (B.32) is then 

Lim[A'F(A)] = + oo , 
A-+0 

(B.3.8) 

and from the theorem of (B.30) we see that the gain integral of (B.4) 

diverges. Hence, the PBGA associated with the upper-limit gain function 

is unbounded. 
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APPENDIX C 

INSERTION POWER GAIN OF THE SERIES AMPLIFIERS 

Series I Amplifier 

R 
s 

r^jm-*-

6 

-mt-
R 

"\AAAA/\A/WVW" 

R, 

Figure C.l The Series I Amplifier . 

The insertion power gain (IPG) of the Series I amplifier shown 

in Figure C.l is 

IPG = (R +R ) 
S L 

Vl2*V 
Wd+1)lyl + ( J V K ) yn 
+L(R sY d+l)y 1 2 + md + Gn 

S = JOJ 

(C. l ) 

where 

(a-/s) cosh(a-/s") 
11 ~ R s i n h ( a / s ) 

(C2) 

12 
. . la£l . 1 

R sinh(a-/s) ' 
(C3) 

(a/s")2 

" R2 
(C0 4) 



and 

For S=JCD we have 

where 

E q u a t i o n ( C . l ) t h e n t a k e s t h e form 

Yd " C d S " Gd ' 
(C5) 

J = 2G R L + R + RT , 
n s L s L 

( C 6 ) 

K = 2G RT + 1 , 
n L 

L ="- 2G 
n*L 

(C7) 

(C8) 

M = G R + G RT + 1 , n s n L 
( C 9 ) 

a = -/RC" (C.10) 

ii/s" = a/jaD = A + jA , 
s=jco 

( C l l ) 

A = 
CDRC ( C 1 2 ) 

2 2 
N + N. 

I P G = ( R s + v ( _ ¥ _ i . 2 
( C 1 3 ) 

where 

N r = - A ( a £ d + Gd) 

- G R(CDC, coshA s inA + G, s inhA c o s A ) , (C .14) 
n a a 
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and 

N. = KfrC - G ) 

+ G R ( a £ , s inhA cosA - G,, coshA s inA) , (C .15) 
n d d 

D = -CDCRT [ ( 1 - G J R ) coshA s inA + a £ , R s inhA cosA] 
r L d s ' d s 

+ A [ ( K - G , J ) ( c o s h A cosA - s inhA s inA) 
a 

-cuC,J(coshA cosA + s inhA s i n A ) ] 

-LA[(1-G,R ) - a £ , R ] v d s d s 

+ R[ (G -G,M) s inhA cosA - ooC^M coshA s inA] , (C.16) 

D^ = a£RT [ (1-G,R ) s inhA cosA - a £ , R coshA s inA] 
i L d s ' d s J 

+ A[ (K-G, J ) (coshA cosA •+- s inhA s inA) 
a 

-h£C_,J (coshA cosA - s inhA s i n A ) ] 

- LA[(1-G,R ) + a £ , R ] d s 7 d s 

+ R[ (G -GdM) coshA sinA + a£ M sinhA cosA] . (C.17) 

At zero frequency, the insertion power gain is 

(Rs + R L ) 2 

IPG(O) = — 2 ±—- , (C.18) 

(R, - R r 
d eq 



where 

R = R + RT + eq s L 

R R 
n R + R 
n 

(C19) 

Series II Amplifier 

wm-
R 

^wwwwvw^i-
:R, 

Figure C.2 The Series II Amplifier. 

The insertion power gain of the Series II amplifier is the same 

as that given above for the Series I amplifier with R everywhere 
s 

replaced by R̂  and R̂  everywhere replaced by R . That is, 

IPG Ser ie s I I ^ I P G ' S e r i e s I 
R - RT s L 
RT^ R L s 

(C.20) 
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APPENDIX D 

INSERTION POWER GAIN OF THE TRANSMISSION AMPLIFIERS 

Transmission I Amplifier 

m 

R, 

Figure D.l The Transmission I Amplifier. 

The insertion power gain (IPG) of the Transmission I amplifier 

shown in Figure D.l is 

IPG = (RS+RL)' 
•y12 + G 

KsW^l+V + 2 Gn (yil^l2> + Ml 

**s<V*n+V + RL^ll^n
) + 1 

(D.l) 

S = J03 

where 

v = i*Hl . cosh(aTi) 
y l l R s inh(a-/s ) (D.2) 

12 
= (a^i) . 1 

R s i n h ( a / s ) ' 
(D.3) 



= (a^B) 

R 
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(D.4) 

Y, = C d S " Gd ' (D.5) 

and 

a == -/RC" . (D.6) 

For s=ja) we have 

7~s ays = a/ja} - = A + jA , 
S=JCJO 

(D.7) 

where 

A = 
CDRC 

(D.8) 

Equat ion ( D . l ) then takes the form 

IPG * <W 
2 2 

, N + N. 2 / r i_ 
2 2 

D + D. r I 

(D.9) 

where 

N = AR + G R sinhA cosA, r n (D.10) 

and 

N. = AR + G R coshA sinA 
I n ( D . l l ) 
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The denominator terms are 

and 

where 

and 

3 
D = (P A - MA ) coshA cosA 
r r 

3 
- (P A + MA ) sinhA sinA - KA 

r 

+ Q sinhA cosA . r̂ 

- NA coshA sinA , (D.12) 

3 
D. = (P A + MA ) coshA cosA 
l r 

3 
+ (P A - MA ) sinhA sinA - KA 

+ Q coshA sinA xr 

2 
+ NA sinhA cosA , (D.13) 

Pr " 2GnRsRRL + R ( R s + V " GdRsRRL > (D'14) 

M = 2C,R RT/C , (D.15) 
d s L 

K = 2G R RRT , (D.16) 
n s L 

Q •= R2 + G R 2 (R +RT) - G,R2R (G RT+1) , (D.17) 
x r n s T. d s n L 

N = 2R EL + 2C,RR (G RT + 1) /C . (D.18) 
s L d s n L 
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At zero frequency, the insertion power gain is 

IPG(O) = <W 2 R , 2 

<VV*L>2 (Rd-Req)2 

(D.19) 

where 

RR 
«p R+R 

(D.20) 

and 

R 
Rs (VRL ) 

^ <Rs+W 
(D.21) 

R 

Transmission I I Amplifier 

G 
n 

R 

iAAAMAAAMWr 

R, 

Figure D.2 The Transmission II Amplifier. 

The insertion power gain of the Transmission II amplifier is 

the same as that given above for the Transmission I amplifier with R 
s 

everywhere replaced by R and R_̂  everywhere replaced by R . That is, 

IPG - (IPG) 
Trans.II Trans.I 

(D.22) 

V*! 
V Rs 
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APPENDIX E 

DESIGN CURVES FOR THE REFLECTION AMPLIFIER 
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Figure E.l Normalized Half-Power Frequency vs. b for the Reflection Amplifier 
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Figure E.3 Normalized Half-Power Frequency vs. b for the Reflection Amplifier. 
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DESIGN CURVES FOR THE SERIES AMPLIFIERS 
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