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Abstract 
 

A new flux-gradient relation for the ion particle flux in the edge pedestal is derived from 
continuity and momentum balance, taking into account atomic physics, and cast in the form of a 
generalized ‘diffusion-pinch’ transport relation.  This flux-gradient relation is used to derive a 
new expression for a first-principles calculation of the ion density gradient scale length. 

 
1. Introduction 

 
The importance of the edge pedestal region in establishing and maintaining high 

confinement mode (H-mode) plasmas is now well established (e.g. Refs. 1-3).  While factors that 
determine the gradients and widths of the edge pedestal have been the subject of intensive 
investigation for a number of years (e.g. Refs. 4-6), the ‘first-principles’ determination of the 
structure of the edge pedestal remains elusive.   

We have previously suggested7-9 that temperature and density gradient scale lengths [Lx ≡ -
x/(dx/dr)] in the edge pedestal are determined by transport constraints, at least between or in the 
absence of ELMs. Expressions for calculating (LTe, LTi , Ln) in terms of local particle and heat 
fluxes from the core, local transport coefficients, atomic physics effects associated with recycling 
neutral atoms and impurities have been presented.  These expressions have been based on the 
conventional heat conduction closure relation q = nTχLT

-1 and the pinch-diffusion particle flux 
relation Γ = nDLn

-1 + vp.  The heat conduction relation is theoretically well founded and lends 
itself to comparison of LT resulting from various theoretical expressions for χ with directly 
measured LT.  However, the pinch-diffusion relation is heuristic and does not lend itself readily 
to comparison of theory with experiment.  The purpose of this paper is 1) to present the 
derivation of a theoretically well founded pinch-diffusion model for particle fluxes in the edge 
pedestal and 2) to employ this model to develop an expression for the first-principles calculation 
of density gradient scale lengths in the edge pedestal.   

 
2. Generalized ‘Pinch-Diffusion’ Particle Flux Relations  

 
 The particle continuity equation for ion species ‘j’ is 
 
 j j jn S∇⋅ =υ  (1) 
 
where Sj(r,θ) = ne(r,θ)nj0(r,θ)<συ>ion ≡ ne(r,θ)νion(r,θ) is the ionization source rate of ion 
species ‘j’ and nj0 is the local concentration of neutrals of species ‘j’.  Taking the flux surface 
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average of this equation yields <(∇⋅njυj)r > = <Sj> because  <∇⋅njυj)θ> = 0 identically and  
<∇⋅njυj)φ> = 0 by axisymmetry, which allows  Eq. (1) to be written 
 
 ( )j j j j jn S S S

θ
∇ ⋅ = − ≡ %υ  (2) 

 
Integration of this equation, in toroidal (r,θ,φ) coordinates, yields 
 

 
( )

( ) ( ) ( )
1

1
j jo

j j j j

K B rB cos S
n K r I r B r

cos

θ

θ θ
θ θ

ε θ
υ θ

ε θ

+ +
⎡ ⎤= ≡ +⎣ ⎦+

∫ %
,  (3) 

 
where j j j j jK n B n Bθ θ θ θυ υ= ≈  and the overbar denotes the average value over the flux 
surface.  
 Subtracting mjυj times Eq. (1) from the momentum balance equation for ion species ‘j’ 
and noting that ( ) ( )j j j jr

n n
θ

∇ ⋅ ∇ ⋅υ υ  leads to 
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where Fj represents the interspecies collisional friction, Mj represents the external momentum 
input rate, and the last two terms represent the momentum loss rate due to elastic scattering and 
charge exchange with neutrals of all ion species ‘k’[νatj = Σk nc

k0(<συ>el +  <συ>cx)jk  ] and due 
to the introduction of ions with no net momentum via ionization of a neutral of species ‘j’.   Only 
the ‘cold’ neutrals that have not already suffered an elastic scattering or charge-exchange 
collision in the pedestal are included in νatj. 
 Taking the cross product B×Eq. (4) yields a ‘radial’ (nr) component equation 
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and a ‘perpendicular’ (Bφnθ - Bθnφ) component equation 
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and taking the scalar product B⋅Eq. (4) yields a third, independent parallel momentum balance 
equation 
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The quantity Eφ
A is the induced toroidal field due to transformer action. 

 Using Eq. (7) in Eq. (5), multiplying the result by R and taking the flux surface average 
leads to an expression for the flux surface average radial particle flux 
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The first (inertial) term on the right vanishes identically.  The remaining terms on the right 
represent the transport fluxes in response to the toroidal viscous force, the (beam) momentum 
input, the interspecies collisional momentum exchange, the inductive toroidal electric field, and 
the momentum loss due to interactions with neutral particles, respectively.   
 Neglecting the viscous and inertial terms in Eq. (6), using Eq. (3), and assuming that the 
radial electric field is electrostatic leads to an expression for the flow velocity of ion species ‘j’ 
in the flux surface   
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Flux surface averaging this equation yields an expression for the average toroidal rotation over 
the flux surface in terms of the average poloidal rotation and radial gradients of the pressure and 
electrostatic potential 
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  The particle fluxes within and across the flux surface are determined by Eqs. (9) and (8), 
respectively.  In order to evaluate these fluxes it is necessary to specify the models for the 
viscosity and collisional friction, to know the constant Kj (equivalently the average value of the 
poloidal velocity), and to know the radial electric field. 

Using the Lorentz approximation for the collisional friction 
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Eqs. (8) may be reduced to 
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where the total ‘drag’ frequency νdj* is given by 
 
 *

dj dj atj ionj jν ν ν ν ξ≡ + +  (14) 
 
which consists of a cross-field viscous momentum transport frequency formally given by   
 
 2

dj j j j jR Rn m φν φ υ≡ ∇ ⋅∇ ⋅π  (15) 
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and of the two atomic physics momentum loss terms discussed previously, with the neutral 
ionization source asymmetry characterized by 
 
 2

j j j j j j jR m S Rm Sφ φξ φ υ υ≡ ∇ ⋅ %  (16) 
 
 Writing 
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T
P L L

e Bθ

− −′ = − +  (17) 

the ‘perpendicular’ component of the momentum balance given by Eq. (10) can be used to 
eliminate the toroidal velocity in the ’radial’ component given by Eq. (13) to obtain a generalized 
pinch-diffusion equation for each ion species present 
 
 ( ) ( )1 1 1 1
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where the diffusion coefficients are given by 
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the pinch velocity is given by 
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and where a sum over the ‘k’ terms is understood when more than two ion species are present.  
Note that the ‘self-diffusion’ coefficient Djj involves the atomic physics and viscous momentum 
transfer rates as well as the interspecies collisional momentum exchange frequency.  The vθ can 
be obtained by solving the poloidal momentum balance equations10 (the left side of Eqs. (7) set 
equal to zero) numerically.   
 

3. Density Gradient Scale Length 
 
Since the temperature gradient scale lengths for each ion species in principle can be 

determined from the heat conduction relations qj = njTjχjLTj
-1, the set of Eqs. (18) can be recast as 

a coupled set of inhomogeneous equations that can be solved for density gradient scale lengths in 
terms of these temperature gradient scale lengths, the local particle fluxes, Γj, the terms 
appearing in the generalized pinch velocities given by Eq. (20) and the diffusion coefficients 
given by Eqs. (18) 

 1 1 1 1j
jj nj jk nk pj jj Tj jk Tk j

j

D L D L D L D L
n

υ α− − − −Γ
− = − − + ≡  (21) 

There are as many coupled Eqs. (21) as there are ion species present, and again the ‘k’ terms are 
understood to represent sums over species k ≠ j. 
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 For a two-species (ion-i, impurity-I) model these equations can be solved explicitly for 
the ion density gradient scale length 
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and a similar expression for the impurity density gradient scale length with the ‘i’ and ‘I’ 
interchanged. 
 In order to more clearly display the physics involved, we use Eqs. (17) and (10) to 
eliminate the toroidal velocity only in the last term in Eq. (13), leading to an expression for the 
density gradient scale length of ion species ‘j’ 
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The coupling among species has not disappeared; it is present in the friction term, which may be 
small, and in the poloidal rotation velocity and radial electric field dependence on all species.  
The density gradient scale length not only depends on the particle flux, as would be intuitively 
expected, but also on the poloidal rotation velocity and the radial electric field, which latter in 
turn depends on the toroidal and poloidal rotation velocities because of toroidal momentum 
balance.  Note that these expressions result from momentum balance and are independent of the 
mechanisms causing the particle transport (e.g. of whether local or non-local phenomena are 
involved). 
 We have applied Eq. (23) to predict the average density gradient scale length in several 
DIII-D shots11 covering a wide range of edge parameters.  The particle flux was calculated from 
particle balance, the beam momentum input was calculated directly, EφA , LTj, nj and Tj  were 
taken from experiment, Er was calculated from toroidal momentum balance using the 
experimental pressure gradient11,  νdj was calculated from neoclassical gyroviscous theory12, υθj 
and the density asymmetries needed to evaluate νdj were calculated from poloidal momentum 
balance10, and νatj and νionj were calculated using a 2D neutral recycling code13.  The friction term 
involving differences in main ion and carbon υφ was neglected.  The density gradient scale 
lengths calculated by this procedure are compared with the values directly measured by 
Thomson scattering in Table 1.  Although there is some roll-over in the experimental data at the 
separatrix and the top of the pedestal, extraction of an average value of the density gradient scale 
length is relatively unambiguous, and Eq. (22) corresponds to the theoretical average value. 
 
  
 
 
 



 6

 Table 1:  Calculated and Measured Density Gradient Scale Lengths (cm) 
                 in the Pedestal of DIII-D H-Mode Shots11 

 
Shot 93045 87085 97979 106005 106012 92976 98893 
Exp. Ln 2.8 4.3 3.3 2.7 2.4 6.0 1.5 
Calc. Ln 2.7 3.3 2.4 1.9 1.8 3.3 0.8 
 

4. Summary 

We have derived from particle continuity and momentum balance a fundamental 
relationship among the radial particle flux and gradients in the density and temperature for each 
ion species present in the edge pedestal. This expression may be cast in the form of a generalized 
‘diffusion-pinch’ relation.  This relation has been used to construct an expression for the  
calculation of ion density gradient scale lengths in the edge pedestal, which are found to be in 
good agreement with experiment for a representative set of DIII-D H-mode shots.  When 
combined with the previously presented7-9 expressions for the temperature gradient scale lengths 
based on heat conduction, LTj

-1 = qj/njTjχj , these new expressions provide a first-principles 
calculation of gradient scale lengths in the edge pedestal from edge transport constraints 
involving particle fluxes, atomic physics and local transport coefficients.  
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