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SUMMARY

Laser-cooled atomic ions have led to an unprecedented amount of control over

the quantum states of matter. The Coulombic interaction allows for information to

be transferred between neighboring ions, and this interaction can be used to entangle

qubits for logic operations in quantum information processors. The same procedure

for logic operations can be used for high resolution atomic spectroscopy, and is the

basis for the most accurate atomic optical clocks to date. This thesis describes how

laser-cooled atomic ions can impact physical chemistry through the development of

molecular ion spectroscopy techniques and the simulation of magnetic systems by ion

trap quantum computers.

A new technique developed for spectroscopy, Sympathetic Heating Spectroscopy

(SHS), takes advantage of the Coulombic interaction between two trapped ions: the

control ion and a spectroscopy ion. SHS uses the back action of the interrogating

laser to map spectroscopy ion information onto the Doppler shift of the control ion

for measurement. SHS only requires Doppler cooling of the ions and fluorescence

measurement and represents a simplification of quantum logic spectroscopy. This

technique is demonstrated on two individual isotopes of calcium: 40Ca+ for cooling

and 44Ca+ as the spectroscopy ion.

Having demonstrated SHS with atomic ions, the next step was to extend the

technique by loading and characterizing molecular ions. The identification of an

unknown molecular ion is necessary and can be achieved by monitoring the change

in motion of the two ion crystal, which is dependent on the molecular ion mass.

The motion of two trapped ions is described by their normal modes, which can be

accurately measured by performing resolved sideband spectroscopy of the S1/2-D5/2

x



transition of calcium. The resolved sidebands can be used to identify unknown ions

(atomic and molecular) by calculating the mass based on the observed value in axial

normal mode frequencies. Again, the trapped molecular ion is sympathetically cooled

via the Coulombic interaction between the 40Ca+ and the unknown molecular ion. The

sensitivity of SHS could be improved by implementing sympathetic sideband cooling

and determining the heating by measuring single quanta of motion.

The ultimate limit of control would be the development of an ion trap quantum

computer. Many theoretical quantum computing researchers have made bold claims

of the exponential improvement a quantum computer would have over a classical

computer for the simulation of physical systems such as molecules. These claims are

true in principle for ideal systems, but given non-ideal components it is necessary to

consider the scaling due to error correction. An estimate of the resource requirements,

the total number of physical qubits and computational time, required to compute the

ground state energy of a 1-D quantum Transverse Ising Model (TIM) of N spin-1/2

particles, as a function of the system size and the numerical precision, is presented.

This estimate is based on analyzing the impact of fault-tolerant quantum error correc-

tion in the context of the quantum logic array architecture. The results show that a

significant amount of error correction is required to implement the TIM problem due

to the exponential scaling of the computational time with the desired precision of the

energy. Comparison of this result to the resource requirements for a fault-tolerant im-

plementation of Shor’s quantum factoring algorithm reveals that the required logical

qubit reliability is similar for both the TIM problem and the factoring problem.

xi



CHAPTER I

INTRODUCTION

The primary accomplishment of my graduate career was development of a new spec-

troscopy technique for both atomic and molecular ions. Spectroscopy is the study of

the interaction of matter with light. To develop techniques which have high resolution

and precision, it is necessary to have good control of the matter and light. Over the

last few centuries, scientists have made substantial advances in the control of both

light and matter. In this Chapter, we review the development of spectroscopy, the

laser, and relevant applications. Sec. 1.1 focuses on the historical background of

spectroscopy, the laser, and laser cooling. In Sec. 1.2, the use of laser cooled atomic

ions in quantum information processing and in the construction of highly accurate

atomic clocks is discussed. Finally, Sec. 1.3 concludes with a review of cold molecules

and discusses the application of quantum information processing techniques to high

precision spectroscopy.

1.1 Historical background

In the 17th century, only broadband light sources such as fire and the sun were avail-

able. In 1666, I. Newton showed that sunlight could be dispersed into a continuous

array of colors [1], the first step in showing that light could be controlled. Using a

small pinhole and a lens he was able to collimate the sunlight through a prism causing

the light to disperse into the visible light spectrum [1]. In the 1880’s, J. Fraunhofer

showed that monochromatic light could be selected from a broadband light source

with the invention of the diffraction grating [1]. It was because of this ability to se-

lect monochromatic light that G. Kirchhoff was able to perform experiments showing
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that each element and chemical compound had a unique absorption spectrum when

interacting with light [1]. His studies demonstrated that a spectrum of an unknown

compound would yield the composition of the compound and represent the birth of

spectroscopy as a discipline [1].

By the late 19th century, the study of atomic spectral lines was a robust discipline.

In 1885, J. J. Balmer, a mathematician by training, showed the spectral line of atomic

hydrogen could be represented by a simple mathematical formula, now known as the

Balmer series [1, 2]. It was later determined that his formula was a specific case of

the Rydberg-Ritz combination principle, which gave a more natural expression for

the spectral lines. J. R. Rydberg empirically determined the general formula, which

related the frequencies of spectral lines to the sum difference between two quantities.

He found the emission frequencies could be determined by a single, universal con-

stant known as the Rydberg constant [1, 2]. N. Bohr’s quantum theory of hydrogen

described J. J. Balmer and J. R. Rydberg’s results [1, 2] and suggested that light is

emitted when an electron makes a transition from a higher energy state to a lower

one. Further, he claimed the ”lost” energy was carried away by a photon. This work

was a revolutionary step in spectroscopy and the insight needed for E. Schrodinger

and W. Heisenberg to develop modern quantum mechanics [1, 2]. Using the new de-

velopments in spectroscopy, W. Pauli determined in 1925 that no two electrons in an

atom have the same quantum numbers; now famously known as the Pauli Exclusion

Principle [1, 2].

For years, advances in spectroscopy were made using spectral lamps, but now

most modern spectroscopy techniques use lasers. A laser allows for intense, phase

coherent, collimated monochromatic radiation to be provided throughout the optical

spectral range [1, 2, 3]. The advent of lasers immediately stimulated new interest

in atomic and molecular spectroscopy leading to high resolution spectroscopy. The

important theoretical milestone in the development of the laser was the introduction

2



of the concept of spontaneous and stimulated emission by A. Einstein in 1916 [4, 5].

Einstein was able to combine classical and quantum theories with Bohr’s spectral the-

ory and introduced stimulated emission [5]. Within a few years, theoretical physicists

were able to build a quantum theory that describes scattering, refraction, and light

dispersion [5].

The underlying principle of a laser is stimulated emission of electromagnetic (EM)

radiation in a medium of atoms, molecules, or other material. A laser requires a las-

ing medium that undergoes a population inversion. This means more particles in

the lasing medium are in an excited state than are in the ground state. Population

inversion in working devices was first demonstrated in the microwave region of the

EM spectrum where spontaneous emission probabilities are negligible [5]. In 1955,

Microwave Amplification by Stimulated Emission of Radiation (MASER) was ex-

perimentally demonstrated by C. H. Townes [5, 6], for which he was awarded the

Nobel prize in 1964 with N. G. Basov and A. M. Prokhorov. The development of the

MASER prompted many researchers to pursue an optical maser, which is now known

as a laser. It was another five years (July 1960) before the laser was implemented at

Hughes Research Laboratories by T. H. Mainman, with ruby as the active material

[5, 7]. Later in 1960, the He-Ne gaseous laser was developed at Bell Laboratories

by A. Javan and W. R. Bennet Jr. [8, 5]. Ever since the development of the first

lasers, researchers have been interested in new lasing materials. Other types of lasers

include: ion lasers (1963 [9]), molecular lasers (CO2, 1963 [10, 11, 12]), excimer lasers

(1970 [13], 1972 [14]), liquid dye lasers (1967 [15, 16, 17]), and semiconductor lasers

(1962 [18, 19]). Over the last half century many advances in laser technology have led

to scientific discoveries across many disciplines, specifically in atomic and molecular

physics.

If the state of matter is not well controlled, it is assumed that the system is in

a thermal state. In gas samples this inhomogeneity leads to Doppler broadening
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of spectral lines and measurement uncertainty. With advances in laser technology,

we can now use lasers to cool atoms and molecules. This increased control of light

has led to better control of matter. In 1975, D. Wineland and R. Dehmelt [20],

and simultaneously T. Hänsch and A. Schawlow [21], proposed the use of a laser

to exert a radiative pressure on an atom by tuning the laser frequency red of the

atomic resonance thus removing energy from the external motion of the atom on

emission of a photon. The 1997 Nobel prize was awarded to S. Chu, W. Phillips, and

C. Cohen-Tannoudji for advances made in laser cooling techniques. Currently, laser

cooling of atoms is used by many research groups to cool the atom’s motion close to

absolute zero. The 2001 Nobel prize was awarded to E. Cornell, C. Wieman, and W.

Ketterle for the demonstration of Bose-Einstein Condensation, which requires initial

laser cooling of neutral atoms followed by evaporative cooling to demonstrate this

new state of matter.

One might wonder why laser cooling atoms has garnered such an interest in the

scientific community. Clearly, the laser is a useful tool to study atoms and molecules.

If these species are in the gas phase at room temperature, then their thermal velocity

is≈ 300 m/s. At this high speed, accurate measurements are very difficult because the

laser-atom interaction time is very small leading to lower resolution [22]. Additionally,

the spectral measurements are Doppler broadened and shifted [22]. One method to

improve gas phase spectra is to use a refrigerant such as liquid nitrogen (77 K) or

helium (4 K) to slow down the gas to ≈ 150 m/s or ≈ 90 m/s respectively [22]. To

slow the thermal velocity to 1 m/s would result in a gas at equilibrium to condense

leaving no particle in the gas phase [22]. With the advent of laser cooling, thermal

velocities below 1 m/s could be achieved for certain gas phase species leading to

interesting scientific applications including higher resolution spectra [22].

Since the 17th century, many advances in controlling light and matter have given

scientist the ability to develop applications which rely on spectroscopic information.
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The use of laser cooled atoms has led to applications in quantum computation using

neutral and ionic species [23, 24], quantum logic gates [25, 26, 27], quantum tele-

portation [28, 29], and quantum memories [30]. Another important advancement

is the testing of fundamental physical constants (e. g., the fine structure constant

[31, 32, 33]). Laser cooling atomic species allows high resolution spectroscopy to be

performed [24, 34, 35, 36, 37], which has resulted in more accurate atomic optical

clocks [38, 39, 40, 41, 33, 42].

The use of laser cooled atoms has also led to advancements in molecular physics

by using the atomic species to sympathetically cool the molecules or by reacting

ultracold atoms to form ultracold molecules. Scientists have started to investigate

if reactions proceed differently at the single molecule level [43, 44], considered the

effects of cold reactants by combining ion traps with quadrupole velocity guides [43],

performed fundamental high resolution spectroscopy of molecules [43, 45, 46, 47, 48,

44, 49, 50, 51, 52, 53], compared differences in the mass of the electron to the mass of

the proton [33, 54], more recently investigated laser cooling rotational and vibrational

degrees of freedom [55, 56], and even explored molecular species for direct laser cooling

[57, 58, 59]. All of these research areas are a direct result of advances in spectroscopy.

1.2 Trapped atomic ions for quantum information process-
ing

This section focuses on some of the fundamental work related to laser-cooled trapped

atomic ions and their practical applications to Quantum Information Processing

(QIP). In 1994, P. Shor introduced a new quantum algorithm to factor numbers

more efficiently [60], resulting in increased interest in quantum information science.

A year later (1995), I. Cirac and P. Zoller proposed a scheme for using trapped atomic

ions as computational elements in a quantum computer [61]. In their scheme, two
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ions in a common potential well are entangled using their mutual Coulombic inter-

action [61]. Later in 1995, quantum logic operations were first demonstrated [62]

with the development of sideband cooling but the proposed Cirac-Zoller gate was not

completely implemented until 2003 [63].

Many researchers have decided to follor R. Feynman’s insight from 1982 to use

one quantum system to simulate the dynamics of another quantum system [64]. One

prime candidate for quantum simulation is trapped atomic ions, although many other

systems have been proposed for a quantum simulator [65]. Quantum simulation with

trapped ions has been applied to problems in condensed matter physics. C. Monroe’s

group simulated the quantum phase transition of a 1D transverse Ising model using

a string of trapped ions by varying the strength of the spin-spin and magnetic field

interaction [66], and they have started to simulate effects of spin frustration [67].

Quantum simulators may also be used to investigate relativity. R. Blatt’s group has

performed a quantum simulation of the Dirac equation [68] , the Klein Paradox [69],

and relativistic quantum mechanics [70]. These quantum simulations are milestones

which have arisen on the path to using trapped atomic ions to make a large scale

quantum processor.

Although ion traps have been used for QIP for over 16 years, other applications

have emerged from the field. One such application takes advantage of entangled states

to improve the sensitivity of spectroscopy [24, 34, 35, 36, 37]. It has also been shown

that spectroscopic information for species that do not have cycling transitions, or have

transitions at inconvenient wavelengths, can be studied by coupling the spectroscopic

information onto a species that can be measured. It was shown that using a Cirac-

Zoller type approach that spectroscopic information of 27Al+ can be measured via a

9Be+ ion [38, 39]. This technique, known as Quantum Logic Spectroscopy (QLS), was

one of the motivations for the advances reported in this thesis. This optical transition
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in 27Al+ is now used for a very accurate optical clock [42] and comparison to a Hg+

optical clock results in an uncertainty of a few parts in 1017 [39, 71].

1.3 Cold molecules

Physical chemists began studying cold molecules using supersonic free-jet molecular

beams [72] in the 1980’s. This method provides a way for a variety of molecules to be

produced with cold translational temperatures on the order of 1 K in the beam frame

[72, 73, 74]. As a result of the collisions that occur in the expansion of the beam,

the internal degrees of the molecule relax towards the translational temperature [73],

especially for the rotational degrees of freedom which equilibrate quickly [73]. Be-

cause the vibrational temperature equilibrates more slowly, the supersonic molecular

beam also results in substantial vibrational cooling upon expansion [72]. Using su-

personic crossed molecular beams creates an ideal environment to study dynamics

of reactions, giving access to quantum mechanical effects [75]. Although molecular

beams create a platform for dynamic studies of cold chemical reactivity, they lack

the robustness to perform repeated measurements of single molecules, which are of

interest for metrology studies.

In the mid 1990’s, chemical physicists became interested in cold molecular gases

due to the many advances in atomic physics that resulted from studying cold atoms

[76]. Because molecules have intriguing properties, researchers have proposed possible

advances in QIP [46, 77] or even in quantum degenerate dipolar systems [76, 46, 77].

Some envision using cold molecules to test fundamental physics such as time-reversal

symmetry, parity [76, 46, 77] and the Pauli principle [46, 77]. Performing high reso-

lution spectroscopy of cold molecules is also important to astrophysical observations,

such as possible space-time variations of fundamental constants [33, 54, 76, 46, 77].

There are two main methods for producing cold molecules (<1 K). The first is an

indirect method which involves using ultracold (<1 mK) atoms to produce molecules
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by decelerating a supersonic molecular beam [76, 46, 77], or selecting slower molecules

of an ensemble [76, 46, 77]. Molecules produced via a direct method can be cooled

further through sympathetic cooling with a cold atomic buffer gas [76, 46, 77], or in

the case of trapped molecules, laser cooled atoms [76, 46, 77].

It has been demonstrated that molecular ions can be loaded in ion traps and

sympathetically cooled to milikelvin temperatures using atomic ions as a refrigerant

[78, 79, 80, 81]. Even molecules as large as Alexa Flour 350 and some biomolecules

can be trapped and cooled [80, 82]. Rotational and vibration spectroscopy can be

performed using large Coulomb crystals in a destructive manner [83, 84, 85, 86], and

this thesis presents a series of experiments resulting in a non-destructive spectroscopy

technique for single, sympathetically cooled, trapped molecular ions. Some research

groups have also started to look at reaction rates of ultracold molecules [43, 51,

87, 88]. If the de Broglie wavelength is long compared to the molecular dimensions

(range of interaction) then wave effects dominate the collisional behavior. At low

temperatures in a thermal distibution, few internal quantum states are populated and

these collisional dynamics in the quantum regime have yet to be studied extensively.

Physical chemist, T. Softley, and two physicists, M. Drewson and S. Schiller, have

demonstrated the first proof of concept experiments using ion traps to investigate

cold reaction [43, 51, 87, 88]. For a review of the emerging field of cold molecules see

Ref. [76].

1.4 Organization of this thesis

The remainder of this thesis is divided into six chapters. Chapter 2 provides an

introduction to the theory and operation of linear Paul ion traps and laser cooling

techniques. Chapter 3 provides an overview of the calcium ion trapping experiment.

Chapter 4 discusses a new spectroscopy technique termed Sympathetic Heating Spec-

troscopy (SHS). SHS uses a two-step process in which we heat a two ion Coulombic

8



crystal via the spectroscopy ion and then obtain spectroscopic information by observ-

ing changes in fluorescence of the control ion as the system is recooled. Chapter 5

discusses results of resolved sideband measurements and ground state cooling of both

atomic Ca+ and molecular ions. These measurements are used to accurately measure

molecular ion masses by optical detection. Chapter 6 changes direction and discusses

a theoretical result regarding the resource requirements for fault tolerant quantum

simulation of the 1-D Ising model. The thesis concludes with Chapter 7, which sum-

marizes the results presented and provides an outlook for future experiments.
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CHAPTER II

ION TRAPPING, COOLING, AND HEATING

Ion trap technology has been used for years to study atomic and molecular ions, in

both mass spectrometry and atomic and molecular physics [89]. In the few decades,

ion trap quantum processors have attracted attention [90]. The included work has

used ion traps to study atomic and molecular ions using similar protocols as those

used for ion trap quantum computing. In this chapter, the fundamental formulas

describing ion trapping are derived and the basic concepts of laser cooling and heating

are presented. A complete, detailed description of ion traps can be found in Ref. [89]

and laser cooling in Ref. [91].

2.1 Linear rf ion traps and ion motion

2.1.1 Quadrupole potentials in a 3D linear ion trap

In this work quadrupole ions traps are used, and the quadrupole electric scalar po-

tential (ϕ) in three dimensions is given by

ϕ(t) =
ϕ0

2r20
(λx2 + σy2 + γz2), (1)

where ϕ0 is the externally applied potential, and λ, σ, γ are geometric constants

which depend on the spatial boundary conditions [89]. From Laplace’s equation, the

geometric constants must satisfy

∇2(
ϕ0

2r20
(λx2 + σy2 + γz2)) = 0, (2)
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requiring (λ+σ+γ) = 0, which implies as least one component of the potential must

be repulsive [89]. Therefore, to successfully confine a charged particle the applied

fields cannot be static in time. A basic example of a quadrupole linear ion trap is

shown in Figure 1 in which a radio-frequency (rf) field is applied to opposite rods to

confine an ion in the radial (x,y) direction. Considering only the radial components

the potential may be written as

ϕx,y =
ϕ0

2r20
(λx2 + σy2). (3)

Satisfying Laplace’s equation leads to a potential which is attractive in one direction

(x) and repulsive in the other (y), thus creating a saddle potential (Figure 2) [89].

The radial confining potential with the addition of a DC bias, Ux, is

ϕx,y(t) =
1

2
(Ux + V0 cos (ΩT t)(1 +

x2 − y2

r20
), (4)

where V0 is the amplitude of the rf potential, and r0 is the distance from the center

of the trap to the rods [89]. The ion is confined in the axial (z) direction by applying

a DC potential, U0, to the electrodes known as the endcaps (Figure 1).

This introduces the basic physics of the electric trapping potential, in the next

section we use Equation 4 to describe the motion of the confined charge particle.

2.1.2 The Mathieu equations and trap stability

Given the electric trapping potential (Equation 4), the classical equations of motion

of a charged particle of mass m and charge e are given by the set of differential

equations

d2x

dt2
+

e

mr20
(Ux + V0 cos (ΩT t))x = 0 (5)
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Figure 1: Schematic of the linear Paul trap. Two opposing rods provide a potential
V = Ux + V0 cos (ΩT t), where V0 is the amplitude of the rf voltage and Ux is a DC
bias. The other pair of rods are held at ground or an additional DC bias can be
applied for compensation purposes which will be discussed later [92].

d2y

dt2
− e

mr20
(Ux + V0 cos (ΩT t))y = 0 (6)

d2z

dt2
= 0 (7)

and are simplified by substituting

a =
4eUx

mr20Ω
2
T

; q =
2eV0

mr20Ω
2
T

, 2ζ = ΩT t (8)

to obtain the Mathieu equations. The Matheiu equations are

d2x

dζ2
+ (a− 2q cos (2ζ))x = 0 (9)

d2y

dζ2
− (a+ 2q cos (2ζ))y = 0. (10)

These equations can be solved using Floquet theory [94], and result in stable ion

trajectories for only certain ranges of a and q. Figure 3 shows a plot of the primary
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Figure 2: The radial potential at two points in time, with Ux = 0. (a)The potential
is attractive in x and repulsive in y,at t = 0. (b)The situation has reversed, and the
potential is now attractive in y, after half a period [93].

stability region. The ion is stable in the region labeled xy-stable [93]. If it is assumed

that the DC bias Ux = 0 then a = 0, which gives an upper limit within the primary

stability region on the value of q of 0.908. Typically the trap parameters are set such

that q is between 0 and 0.908. For trapping Ca+, we set our trap parameters such

that q ≈ 0.4, which makes it possible to trap a range of masses (13-200 amu for singly

charged ions) without changing the trap parameters.

2.1.3 Secular motion and micromotion

Now that we have derived a set of parameters (a and q) which are useful for deter-

mining appropriate fields to trap charged particles, it is possible to investigate the

ion motion. A trapped ion undergoes two types of movements: fast micromotion and

slow, harmonic secular oscillations. Micromotion results from the fast oscillation of

the rf field. At the null of the rf field the micromotion vanishes [92]. For an ideal

linear Paul trap, the rf null overlaps the trap minimum, but due to imperfections

in trap construction and stray charges this is not always the case. Therefore a set

of compensation electrodes are used to apply DC voltages to minimize micromotion
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Figure 3: Mathieu stability regions in the a - q plane. Stability region along x (blue)
or y (red) and in both dimensions labeled xy-stable.

in non-ideal traps. For small micromotion displacements, the micromotion can be

detected by the correlation between the ion fluorescence and the rf drive [92]. In

contrast, the secular motion is harmonic within the pseudopotential well, and the

secular frequency can be calculated from the trap parameters [92].

To detail these motions, we separate the ion’s movement into two components:

the fast micromotion, and the slow secular motion. For clarity we only consider one

radial dimension and decompose the ion’s coordinates as x = Xs + xµ, where Xs is

the amplitude of the secular motion and xµ is the amplitude of the micomotion in

the x-dimension [88, 89, 93]. Assuming

Xs ≫ xµ and
dxµ

dt
≫ dXs

dt
(11)

and substituting x into the equation of motion (Equation 9), we arrive at
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d2xµ

dζ2
= −(a− 2q cos (2ζ))Xs. (12)

If Xs does not vary over a single rf cycle and a ≈ 0, which is normally the case, then

integrating the previous equation gives

xµ =
qXs

2
cos (2ζ). (13)

The micromotion is driven at the fundamental frequency (2ζ = ΩT ) of the trap,

its amplitude is linearly dependent on the secular amplitude, and it is proportional to

the rf amplitude through the q parameter. It should be noted that the micromotion

over a single rf cycle integrates to zero [88, 89, 93]. Equation 13 can be substituted

in x = Xs + xµ, giving a new expression for x to be used in Equation 9. We can

simplify further by assuming that the secular amplitude varies little over a single rf

cycle, which eliminates the micomotion and the cosine terms to obtain [93, 89, 88]

d2Xs

dt2
= −(a+

q2

2
)
Ω2

T

4
Xs. (14)

This equation is exactly the equation of motion for a harmonic oscillator with fre-

quency

ωx = (a+
q2

2
)1/2

ΩT

2
. (15)

Now that we have determined that the secular motion is that of a harmonic

oscillator, the trap potential can be approximated in terms of a two dimensional

harmonic oscillator as [93, 89, 88]

ϕpseudo(r) =
1

2
mω2

xx
2 +

1

2
mω2

yy
2. (16)
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This effective potential is referred to as the pseudopotential. If we now assume that

a = 0, and substituting the trap radius r0 for the appropriate spatial coordinates, we

can obtain a term for the maximum trap depth of

ϕpseudo(r0) =
eV 2

0

mr20Ω
2
T

. (17)

Normal quadrupole trap depths are on the order of several eV.

The previous discussion has only considered the radial motion of the ion in the x

and y dimensions, but there is also motion in the z dimension. Axial confinement is

achieved in a linear Paul trap by applying DC voltages to a set of endcaps (labeled by

U0) as shown in Figure 1. The axial confinement potential can also be approximated

as a harmonic potential and is written as

ϕaxial(z) =
1

2
mω2

zz
2, (18)

which leads to an axial secular frequency of

ωz =
√
2az

ΩT

2
, (19)

with

az =
4Z0eκU0

mr20Ω
2
T

(20)

where U0 is the voltage applied to the endcaps, κ is a constant which depends on the

trap geometry, and Z0 is the distance between endcaps [92, 89]. It is now possible

to determine the secular frequencies and amplitude of the micromotions from the

applied trap voltages.

Using these arguments, we have derived formulas based on the Mathieu stability

parameters to describe the fundamental frequency of a trapped charge particle by
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separating the variables in terms of the fast and slow motion. The ions are effectively

in a three dimensional harmonic potential.

2.2 Laser cooling and heating

2.2.1 Doppler cooling and heating

2.2.1.1 Two level atom

Once the ion is confined in the trap, excess translational energy is removed by using

laser cooling techniques; the basis for this technique arises from a velocity-dependent

radiative pressure exerted by the laser on the atom or ion. One laser cooling method

is Doppler cooling, and it is easiest to describe in terms of a two level system with

the level structure shown in Figure 4 [91]. With this method, ion temperatures in

the mK regime can be readily obtained; a schematic of the Doppler cooling process

is shown in Figure 5.

Figure 4: Schematic of a two level system.

Figure 5: Schematic of Doppler cooling cycle. See text for a description

17



An atom interacting with a near resonant laser (red detuned) with wavevector k⃗

results in a momentum kick of ~k⃗ in the direction of the laser beam for each photon

that is absorbed [91, 95]. The photon is absorbed due to the Doppler shift associated

with the counter propagating motion of the atom with respect to the direction of

the wave vector of the laser. If each spontaneously emitted photon is emitted in a

random direction, when averaging over many absorption-emission cycles the net force

will only be in the direction of the laser beam . The radiative force is defined by the

momentum change per photon scattered, ~k⃗, times the scattering rate [91]

F = ~k⃗γρee, (21)

with γ equal to the natural linewidth of the atomic transition, and ρee equal to the

excited state population given by

ρee =
s/2

1 + s+ (2δ/γ)2
. (22)

Here δ is the detuning of the laser from the atomic resonance and s is the saturation

parameter defined as [91]

s =
I

I0
, (23)

where I0 is the saturation intensity given by

I0 =
πhc

2λ3τ
, (24)

and τ = γ−1. The Rabi frequency is also defined in terms of the saturation intensity

as [91]

ΩRabi = γ

√
I

2I0
. (25)
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The intensity of the laser is the easiest parameter to measure in most experiments,

and can be used as a variable to control the Rabi frequency.

The radiative force slows the atom down as long as the atom’s velocity is opposite

the laser’s direction of propagation. As the ion’s velocity changes so will the excited

state population through the detuning parameter. The atomic transition is Doppler

shifted by the atom’s velocity by an amount [91]

δDoppler = k⃗ · v⃗. (26)

The above case describes laser cooling of a free atom. When dealing with a trapped

atomic ion the process is slightly different because the direction the ion moves depends

on the rf cycle. A bound ion oscillates harmonically with the trap which leads to a

sinusoidally time dependent velocity. If a resonant laser is directed at the trapped

ion, the ion will experience a force in the direction of the laser that will result in

heating for half of the trap cycle and cooling the other half. Therefore it is important

to ensure that the cooling for a cycle is greater than the heating. This is achieved by

tuning the laser frequency below the atomic resonance for the atom at rest [95]. The

detuning of the laser with respect to the true atomic resonance is

δ = δ0 + δDoppler, (27)

where δ0 is the laser detuning and δDoppler is the detuning of the atomic resonance

due to the Doppler shift. As the ion oscillates in the trap the detuning δ, and ρee,

will oscillate, and by setting δ0 < 0 this will ensure that δ is closer to 0 as the ion

moves opposite k⃗. During the half cycle that the ion moves opposite k⃗ there is a small

detuning, which results in more scattered photons and leads to cooling [95].
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The lowest temperature that can be achieved by Doppler cooling is the Doppler

limit,

kBTD =
~γ
2
, (28)

where kB is Boltzmann’s constant and TD is the temperature limit for Doppler cooling

[91, 95]. In Ca+, the S1/2 −P1/2 cooling transition at 397 nm has a natural linewidth

γ = 2π × 22 MHz, which results in TD = 570 µK.

It should be noted, and is important later in this document, that if the laser is

tuned to the blue of the atomic resonance the ion will be heated, because δ0 > 0

results in δ (Equation 27) being closer to 0 as the ion moves with k⃗. As the ion moves

with k⃗ during half of the rf cycle, this results in Doppler heating which dominates

the process.

2.2.1.2 Three level atom

The description above is the simplest way to consider Doppler cooling. When dealing

with most atomic systems there are also metastable states which require additional

repumper lasers to maintain the closed cooling cycle. In this work, the laser cooled

ion is Ca+, which has an excited state that is linked to both the ground state and

a metastable state as shown in Figure 6. This level configuration is known as a Λ-

system. The addition of the metastable state affects the maximum likelihood the

atom will be in the excited state. This is due to the branching ratio of the decay

from the excited state to the ground and metastable states [95, 96]. For Ca+, the

branching ratio is 18:1 for the decay to S1/2:D3/2 from P1/2 [97].

One common issue to avoid in a Λ-system is coherent population trapping. Coher-

ent population trapping occurs when two laser fields coherently couple to a common

excited state creating a dark resonance [95, 96]. When trapped in the dark state, the
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Figure 6: Schematic of a three level system. |g⟩ is the ground state,|e⟩ the excited
state and |m⟩ is the metastable state

ion’s excited state population, ρee, is zero. Since the radiative force and the cool-

ing rate depend on the excited state population, coherent population trapping must

be avoided in order to efficiently Doppler cool a three level atom. By detuning the

repumper laser blue of the atomic resonance, coherent population trapping can be

avoided. A detailed description of coherent population trapping can be found in Ref.

[96].

Now that there is a metastable state which couples to the excited states, Equation

22 no longer describes the excited state population. If the two applied lasers are

denoted e and m, which represent transitioning from the ground to excited state and

metastable to excited states, respectively, then ρee as a function of detunings δe and

δm, Rabi frequencies (as in Equation 25) Ωe and Ωm, and linewidths γe and γm is [96]

ρee =
N

D
(29)

N = 4Ω2
eΩ

2
m(γe + γm)(δe − δm)

2 (30)

D = (δe − δm)
2{8Ω2

eΩ
2
m(γe + γm) + 16Ωeγm[(γe + γm)

2 + δ2m] (31)

+16Ωmγe[(γm + γe)
2 + δ2e ]}+ 8(δe − δm)(Ω

4
eδmγm − Ω4

mδeγe)

+(Ω2
eγm + Ω2

mγe)(Ω
2
e + Ω2

m)
2.
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Equation 29 is the excited steady state population for a Λ-system and Eqs. 30 and

32 show that as δe → δm then N → 0 and D 9 0, resulting in an excited state

population of zero. Figure 7 is an example of the excited state population of Ca+ as

the detuning of the two lasers are varied with the saturations held constant at se=10

and sm=1000, which are common saturations used in our experiments.

Figure 7: (a) The excited state population as the detuning of two Ca+ lasers are varied
with se=10 and sm=1000. The coherent population trapping occurs when δe = δm.
(b) The exited state population varying δe with δm =20 MHz, which is common for
most experiments in this thesis.
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It should be noted that for a two level system the maximum excited steady state

population is 1
2
as the saturation is increased however for a three level system the

maximum excited population is 1
3
. This leads to a lower fluorescence signal than for a

two level system. Also, with the application of a B⃗ field the energy levels experience a

Zeeman shift. In this case a more accurate description of the excited state population

requires the optical Bloch equation for all eight sub-levels to be solved [98]. In this

work the three level approximation is sufficient.

2.2.2 Resolved sideband cooling

While discussing Doppler cooling we determined a lower temperature limit know as

the Doppler limit, TD. Earlier in this chapter we also determined that the trapped ion

effectively behaves as a harmonic oscillator. Therefore, by combining these concepts,

it is possible to determine the average number of quanta a trapped ion has after

Doppler cooling. Using an energy argument, the average occupation number ⟨n⟩ of

the trapped ion can be determined as follows [99, 100, 62]

kbTD = ~ω(⟨n⟩+ 1

2
). (32)

For example, for a trapped Ca+, TD is 570 µK and a common radial secular frequency

is 1.2 MHz, which results in ⟨n⟩ = 8 after Doppler cooling. From this equation we

see that even after reaching the Doppler cooling limit the ion still has many quanta

of energy. Therefore, to cool the ion to the ground harmonic state, a second stage

of laser cooling must be performed, which is known as resolved sideband cooling or

ground state cooling.

The Lamb-Dicke parameter, η, relates the spatial extent of the lowest harmonic

oscillator state to the wavelength of the atomic transition,
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η =
2π

λ
x0 =

2π

λ

√
~

2mωsec

. (33)

In the Lamb-Dicke regime, defined by the condition η2⟨n⟩ ≪ 1, the atomic wavepacket

is confined to a space much smaller than the wavelength of the transition. It should be

stated that the Lamb-Dicke regime is always defined with respect to the wavelength

of the transition involved [99, 100].

Sideband cooling on an atomic transition requires the trap frequency to be larger

than the laser linewidth (ω ≫ γlaser), and the excited state to have a long decay rate

allowing the laser to be tuned to the lower (red, ∆n=-1) motional sideband of the

transition. Pulsing the laser on the lower motional sideband leads to the reduction of

one quanta with each excitation to the upper level. If spontaneous decay occurs, it

will most likely not affect the motional state as long as the Lamb-Dicke criteria holds

[99, 100].

Figure 8 shows two schemes for sideband cooling. The first shows excitation to an

upper state lowers the number of quanta by one, and the second scheme shows that

the lifetime of the upper state may be shortened by coupling it to an auxiliary level

that has a fast decay rate [99, 100]. For our sideband cooling experiments with Ca+,

the second scheme is used. We first excite the quadrupole S1/2 −D5/2 transition and

then drive the dipole D5/2 − P3/2 transition to take advantage of the fast decay rate

of the P3/2 − S1/2 transition.

Assuming the atom has been sufficiently cooled the average number of quanta can

be obtained by comparing the ratio of the red and blue sideband amplitudes as in

Ref. [101]

⟨n⟩ = Ared

Ablue − Ared

. (34)
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Figure 8: (a) Each excitation to the upper state lowers the number of vibrational
quanta by one. (b) The lifetime of the upper level may be artificially shortened by
coupling to an auxiliary level that has a higher decay rate, which speeds up the cooling
process.

After successful sideband cooling, the atomic ion will be cooled to T ≈ 10µK for an

axial frequency of 600 kHz. It should be noted that the temperature is a representation

of the zero-point kinetic energy. The quantum limited motion of the ion after sideband

cooling has been used to perform high resolution spectroscopy [38, 39, 102], to perform

basic trap characterization [103, 104], and as a qubit due to its long coherence time

[90].

2.2.3 Sympathetic cooling

Sympathetic cooling of trapped ions has been demonstrated by many groups, as

discussed in Chapter 1 [36, 37, 34, 38, 39]. With two ions in a trap, one can be laser

cooled while the other has no direct interaction with the laser field. There are two

ways to achieve this. First by focusing the laser such that the second ion does not

interact with the beam, or more commonly, by using a different ion species. The

thermalization of the two ions, which possible due to the Coulomb interaction, allows

the ion being laser cooled to dampen the motion of the other ion. Thermalization

allows ions without accessible laser cooling transitions to be cooled via the Coulomb

interaction. This was first demonstrated by Larson et al. [105].
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2.2.4 Trap heating

A common concern for high precision measurements in ions traps is heating of the

motional states of the ion. Excess trap heating leads to broadening of transitions and

to decoherence of the system, which is a major problem for many quantum computing

protocols [106]. Trap heating is thought to come from electrical noise or charge build

up on the electrodes [106]. Quantifying the trap heating is determined by turning the

cooling lasers off for a fixed time, which typically results in an increase in motional

quanta. There are two methods for measuring the heating rate. The first method

uses the fluorescence during Doppler re-cooling to determine the heating, and the

second uses the change in the motional sideband amplitudes [107, 104].

2.3 Conclusion

In this chapter, we have defined the trap potential and described the motion of a

trapped ion in terms of the Mathieu stability parameters. It was shown that the

motion of the ion is harmonic, which allows us to describe the effective pseudopotential

which defines a harmonic oscillator potential. This chapter also introduced the basic

concepts of Doppler, sideband, and sympathetic cooling of a trapped ion. These are

all fundamental concepts used to perform the experiments described in this thesis.

Chapter 4 uses Doppler cooling and heating for a novel spectroscopy technique. In

Chapter 5, we use the motional sidebands of the optical qubit transition to identify

dark molecular ions.
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CHAPTER III

EXPERIMENTAL OVERVIEW

Now that the general concepts of ion traps and laser cooling techniques have been

introduced in Chapter 2, it is possible to explore the basic experimental overview.

This chapter introduces the atomic ion used in our experiment, the laser systems,

and the experimental apparatus. It should be noted that any atomic ion which has

a hydrogen-like structure (alkali earth metals, Yb+, Hg+, Cd+, Zn+) can be used

for similar experiments. These ions have simple energy structures resulting in direct

cooling transitions. In this work, we choose Ca+ because the transitions are positioned

such that standard diode lasers are readily available. Also, the mass allows for a

fixed set of trap parameters to probe a variety of species with different masses using

sympathetic cooling and heating techniques. In this thesis two similar experimental

setups are used and both are described in detail in this chapter.

3.1 Sublimation and ionization of calcium

To trap calcium, it is first sublimated and then photoionized. Solid calcium is sub-

limated by resistively heating a stainless steel packet with a small hole in the center

sending a stream of hot calcium through the trapping region. Calcium ions can be

isotopically selected via two photon photoionization of neutral calcium (Figure 10)

by exciting the 4s2 1S0 ↔ 4s5p 1P1 transition at 423 nm [108, 109]. A second photon

at 375 nm then ionizes the excited calcium. Figure 9 is a CCD image of different

numbers of ions loaded into the trap. We use the abundant isotope, 40Ca+, for most
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experiments and an energy level diagram is shown in Figure 10. Each of the tran-

sitions can be addressed with the appropriate laser, and the details of each of the

transitions, along with isotope shifts, are shown in Tables 1 and 2 [110, 108, 109, 97].

Figure 9: CCD image of calcium ions in the trap. a)one ion b) string of three ion c)
sting of five ions d) string of 18 ions e) large Coulomb crystal of ions.

Figure 10: (a) Two photon photoionization of neutral calcium (b) Energy diagram of
singly ionized calcium

3.2 Laser systems and frequency stabilization

All lasers necessary for cooling Ca+ are commercially available as diode lasers. The

photoionization lasers consist of an external cavity diode laser (ECDL) at 846 nm,
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Table 1: Physical properties of 40Ca. * Relevant neutral calcium transition.[110, 35,
36, 40, 97]

Transition Calcium Frequency (air) (THz) A21/2π (s−1) tspon
1S0 −1 P1 (423 nm)* 709.07837 [110] 2.18×108 0.73 ns
S1/2 − P3/2 (393 nm) 761.9050 [35] 23.7×106 6.8 ns
S1/2 − P1/2 (397 nm) 755 2228 [36] 22×106 7.1 ns
S1/2 −D5/2 (729 nm) 411.0421 [40] 2.1×10−1 0.77 s
S1/2 −D3/2 (732 nm) 409.2122 [97] 2.1×10−1 0.77 s
D3/2 − P3/2 (850 nm) 352.6734 [97] 176×103 900 ns
D5/2 − P3/2 (854 nm) 352.6734 [97] 1.6×106 101 ns
D3/2 − P1/2 (866 nm) 345.9913 [97] 1.7×106 94.3 ns

Table 2: Isotope transition shifts in MHz. All shift can be found in Ref. [110, 108, 109]

Mass Natural Ca 1S0 −1 P1 Ca+ S-P Ca+ P-D
number abundance 423 nm 397 nm [393 nm] 866 nm [854, 850 nm]

40 96.9 % 0 0 0
42 0.647 % 393.1 426 -2340
43 0.135 % 610.7 688 -3465
44 2.09 % 773.8 842 -4496
46 0.004 % 1160 1287 -6478
48 0.187 % 1513.1 1697 -8288

which is cavity-enhanced and frequency-doubled to 423 nm (Toptica SHG 110), and

a free-running 375 nm laser diode (Nichia). The Ca+ Doppler cooling lasers are a

tapered amplified ECDL at 792 nm, which is cavity-enhanced and frequency-doubled

to 397 nm (Toptica TA-SHG 110), or an ECDL at 397 nm (Toptica DL100), and one

of two ECDLs at 866 nm (Toptica DL100). Each Doppler cooling laser is stabilized

with a Toptica PID lock circuit using a home built low finesse Ultra Low Expansion

(ULE) cavity with piezo control for easy tunablity. The sideband cooling lasers are an

ECDL at 854 nm (Toptica DL100), which is locked to a High Finesse WS7 wavemeter

[10 MHz resolution and 60 MHz (3σ) absolute accuracy] and an ECDL at 729 nm. The

729 nm laser is locked with a home built Pound-Drever Hall circuit to an Advanced

Thin Film ULE etalon cavity, with a finesse of ≈ 100000, which is held at high vacuum

(10−8 torr) with two stages of temperature control (∆T=0.01◦C). The 729 nm laser
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is narrowed using a Toptica Fast Analog Linewidth Control (FALC 110) with active

feedback to a Field-Effect Transducer (FET) on the current. The result is a 500 kHz

laser narrowed to 10 kHz. The laser powers and beam profiles are measured using

a Thorlabs S140A power meter (5% error) and a Thorlabs WM100-SI beam profiler

(5% error). In some cases, the lasers are pulsed using shutters with 2-ms response

times (Uniblitz VS25), but most experiments are controlled using AOMs and driven

with a home built pulse programmer consisting of an Opal Kelly XEM3010-1000 Field

Programmable Gate Array (FPGA) and three Analog Devices AD9850 Direct Digital

Synthesizer (DDS) controllers.

3.3 Experimental traps, vacuum systems and imaging sys-
tems

3.3.1 Atomic ion trap

The experiments described in Chapter 4 are performed in a linear Paul trap held in

vacuum at 1×10−10 torr. The trap is a five-segment version of the three-segment trap

described in Ref. [111] and a duplicate of the trap used in Ref. [112]. The trap parts

were machined at the University of Osaka under the supervision of Prof. S. Urabe.

Figure 11 shows an image of the trap along with a schematic of the electrode layout.

The trap is driven at 14.5 MHz and the secular frequencies for 40Ca+ are measured to

be 0.5, 1.0, and 1.3 MHz. It should be noted that when a from Equation 15 is not zero,

then ωx ̸= ωy resulting in three secular frequencies. The ion micromotion is minimized

by applying compensation voltages (to electrode 2, 3, and the compensation electrode)

while measuring the correlation between the fluorescence and the trap drive [92].

Ion fluorescence is collected simultaneously using an electron-multiplied CCD

(EMCCD) camera (Princeton Instruments Photon Max 512) and a photon counter

(Hamamatsu H7360-02 with a dark count rate of 50 counts/second). A beam splitter

directs 70% of the light to the photon counter which measures fluorescence. The

30



Figure 11: (a) Schematic of the linear ion trap electrode structure (b) Image of ion
trap under vacuum

spatial resolution of the EMCCD is used to monitor ion position and ion loss. The

collection efficiency at the photon counter (including all losses) is 0.01% of the photons

scattered from the ion.

3.3.2 Molecular ion trap

The experiments in Chapter 5 are performed in a linear Paul trap held in vacuum at

2×10−10 torr. The trap consists of eleven wedge-shaped segments allowing for up to

five distinct trapping regions. All electrodes are made of Nitronic 50 stainless steel.

The trap was machined by Wiesmanntool, Inc, of Roswell, GA and designed by James

Goeders. A more detailed description of the trap can be found in Ref. [113]. The

trap is driven at 14 MHz and typical secular frequencies for 40Ca+ are 0.7 MHz in

the axial direction and 1.2 MHz radially but vary depending on the trap parameters.
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The edge of each electrode has a curvature of 0.5 mm and is located a distance

r0=1.0 mm from the trap axis. Diagonally opposed rf electrodes span the entire length

of the trap (52 mm total). DC electrodes are also diagonally opposite, and consist

of nine 3 mm wide electrodes arranged at 0.5 mm intervals, and two 10 mm wide

endcaps. The electrode structure is shown in Figure 12. Additionally, two stainless

steel rods of 0.8 mm diameter and 52 mm in length are placed 5 mm from the trap

axis, for the application of compensation voltages. The eleven segments are secured

along one axis by screwing them into 5 mm thick Macor plates placed on the side of

the electrodes furthest from the trapping region. The electrodes are secured in the

other two axes by Macor rods 3 mm in diameter that run the length of the trap. Two

grounded 10 mm thick stainless steel end pieces secure the Macor rods and plates in

place and are located 5 mm from the endcaps.

Figure 12: (a) side and (b) axial CAD drawing of the linear ion trap electrode struc-
ture (c) Image of ion trap and and vacuum chamber
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In this set-up, we image the ions by sending 30 % of the signal to a CCD (SBIG

Astronomical Instruments ST-3200) and the remaining signal to a photon counter

(Hamamatsu H10682 with a dark count rate of 30 counts/second) . All fluorescence

measurements are obtained using the photon counter, and after considering all losses

we determine a collection efficiency of 0.04 % for the photon counter.

3.4 Conclusion

In this chapter, basic information about our experimental setup, laser system, and

atomic ion were introduced in detail. The experiments described in the following

chapters reference this chapter and specific sections to distinguish which setup is used.

The atomic trap is used in Chapter 4 to perform sympathetic heating spectroscopy,

and the molecular trap is used in Chapter 5 to perform resolved sideband spectroscopy

on the optical qubit transition.
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CHAPTER IV

SYMPATHETIC HEATING SPECTROSCOPY OF

CALCIUM ISOTOPES

This chapter is based on

Craig R. Clark, James E. Goeders, Yatis K. Dodia, C. Ricardo Viteri, and

Kenneth R. Brown, Phys. Rev. A, 81, 043428 (2010).

4.1 Introduction

Laser-cooled ions in linear Paul traps are an ideal tool for studying gas phase atomic

and molecular ions at very low temperatures. The large trapping depth (on the

order of eV) and the wide mass acceptance range allow the simultaneous trapping of

different ion species. An ion that can be laser cooled can be used to sympathetically

cool another species through the Coulombic interaction between the ions [78, 79, 114,

81, 115, 116, 80, 117]. Sympathetic cooling brings the motion of all trapped ions

to the equilibrium temperature of the laser-cooled ions [118] in a time proportional

to the secular frequency of the trap [119, 120]. Controlled ensembles of cold atomic

and molecular ions have the potential for many applications, including: quantum

information processing [23, 24], ultra-high-resolution spectroscopy [24, 34, 35, 36, 37],

optical clocks [38, 39], nano deposition of dopant atoms in semiconductors [121], and

studies of molecular properties and chemical reactions [43, 45, 46, 47, 48, 44, 49, 50,

51, 52, 53].

At low temperatures the trapped ions form an ordered structure known as a

Coulomb crystal. This presents an opportunity to heat the crystal with one ion
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and detect that heating with another. Laser-cooled fluorescence mass spectrometry

(LCFMS) [78] uses a probe voltage at the secular frequency of the target ion to heat

the crystal. The fluorescence drops as the cooling ions are sympathetically heated

and Doppler shifted with respect to the cooling laser. The charge-to-mass ratio of

the target ion can then be determined. This method has been applied to detect the

photofragmentation of molecular ions in a Coulomb crystal [122, 52, 53, 123].

Resonance-enhanced multiphoton dissociation, in combination with LCFMS, can

be used to gain high-resolution spectral information as demonstrated with a crystal of

HD+ and Be+ ions [122]. First, a vibrational overtone line was excited in HD+ with an

infrared diode laser locked to a stable frequency comb. An UV laser then transferred

the excited population to a dissociative state. The HD+ population decay can then be

monitored by observing the Be+ fluorescence. The resulting spectral line had a width

of 40 MHz, dominated by Doppler shifts due to the micromotion inherent in large

crystals in a linear quadrupole ion trap. Recently, the same rotational state selective

dissociation spectroscopy technique has been utilized to map the state populations

of translationally and vibrationally cold molecular ions and achieve a high degree of

rotational cooling [123, 55, 56].

Narrower linewidths can be achieved by limiting the ions to a linear chain. Quan-

tum logic spectroscopy (QLS) transfers information between two trapped ions, a logic

ion and a spectroscopy ion, through the quantized vibrational motion of the crystal.

The logic ion serves as a quantum sensor for detecting transitions in the spectroscopy

ion [24]. The reported absolute frequency measurements on single trapped ions using

QLS have been performed on narrow transitions [38, 39] where the secular frequency

of the ions in the trap exceeded the transition linewidth. In this strong-binding

limit [102], the absorption spectrum consists of a carrier and a number of motional
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sidebands separated by the secular frequency. Initialization in QLS experiments re-

quires cooling of the vibrational modes of the crystal to the ground state, which is

achieved by addressing the motional sidebands [62].

There are a wide variety of interesting transitions that cannot be studied with

QLS due to their large linewidths. High-precision spectroscopy outside the strong-

binding limit is challenging since the spectroscopy laser induces detuning-dependent

heating and cooling which distorts the line profile. Recently, experiments in the weak

binding limit have been performed using low-intensity spectroscopy laser beams on a

chain of sympathetically cooled ions [36, 37, 34]. The sympathetic cooling removes

the heating limitation by counteracting the back action of the interrogating lasers.

High resolution is achieved by calibrating the probe laser to an absolute frequency by

referencing it to a frequency comb or using the comb light directly [35]. In this case,

the ion fluorescence is measured directly as the constantly sympathetically cooled ion

absorbs the minimal heating due to the low intensity lasers.

In this work, the frequency-dependent heating of a spectroscopy ion is measured

by observing the fluorescence of a second ion (control ion) as the system is recooled.

We refer to this method as sympathetic heating spectroscopy (SHS). The method

is demonstrated on two isotopes of calcium: 40Ca+, the control ion, and 44Ca+, the

spectroscopy ion. Even a low scattering rate of photons from the spectroscopy ion

can create a significant stochastic optical force that builds up quickly with the laser

interaction time (theat), and dramatically changes the trajectory of both ions. This

results in a large Doppler shift of the control ion which can be observed in the re-

cooling process. Laser induced fluorescence (LIF) experiments using similar very low

laser intensities will require long photon counting times to acquire line profiles with

decent signal to noise. Potentially, SHS can become an effective tool to study dipole

transitions that are weak or fall in regions of the electromagnetic spectrum where the

sensitivity of detectors is marginal or non-existent.
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4.2 Experiment

4.2.1 Experimental setup

The experiments in this chapter are performed in the atomic trap described in Sec.

3.3.1. The Doppler recooling method [103, 104] was used to measure the trap heating.

For a single ion, no heating was observed for dark times up to 20 s.

The experiment requires the loading of one 40Ca+ and one 44Ca+. This is accom-

plished using resonance-enhanced two-photon ionization [124, 125, 108] as described

Sec. 3.1 with appropriate laser frequencies for Doppler cooling/heating as shown in

Table 1.

The absolute frequency calibration involves measuring the fluorescence spectra

for each ion (Figure 13) and fitting to a three-level system, which allows for coher-

ent population trapping when ∆397 = ∆866 (blue dot-dashed line) [96]. The only

adjustable parameters are the frequency center of the S1/2-P1/2 and D3/2-P1/2 tran-

sitions. The resulting uncertainties in the absolute frequencies are 13 MHz for the

S1/2-P1/2 transition and 20 MHz in the D3/2-P1/2 transition.

4.2.2 Experimental procedure

Sympathetic Heating Spectroscopy (SHS) detects the scattering of photons from a

spectroscopy ion by observing the heating and recooling of a control ion (Figure

14). Initially, the two ions are trapped (Figure 14(a)), and the spectroscopy ion is

sympathetically cooled by a laser-cooled control ion (Figure 14(b)). By turning off the

laser-cooling on the control ion and applying a near-resonant laser to the spectroscopy

ion, the two-ion system will be heated (Figure 14(c)) for a time theat. The resulting

laser heating is measured by blocking the spectroscopy laser and monitoring the

fluorescence of the control ion as it recools (Figure 14(d)).
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Figure 13: Emission spectrum of the S1/2-P1/2 line of a calcium ion. Each data
point (circles) is the number of photons acquired in 3 ms for each 397 nm laser
detuning, 40∆397 (averaged over 100 experiments). The solid blue line is a fit to the
data using Equation (9) of Ref. [96] which theoretically describes the scattering rate
for a three level system. The fitting function is evaluated over the range of 40∆397

where fluorescence is observed. The blue dotted line shows the complete theoretical
scattering profile across negative and positive detunings (assuming a motionless ion)
when 40∆866 = 20 MHz, 40s866 = 1000 and 40s397 = 8.
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This technique is demonstrated using two isotopes of Ca+. In the experiments,

the 40Ca+ serves as the control ion and the 44Ca+ as the spectroscopy ion. The

40Ca+ lasers are detuned 40∆866 = 20 MHz and 40∆397 = −30 MHz from resonance

with intensities fixed to yield saturation values of 40s866 = 1000 and 40s397 = 8. In

the absence of ions in the trap, the photon counter reads ∼ 500 photons/second of

background scattering at these laser intensities. The 44Ca+ repumper laser has a fixed

detuning 44∆866 = 20 MHz, while the 44∆397 is varied to obtain spectra for a range

of laser intensities.

b)

d)

44
Ca

+40
Ca

+

a)

c)

Figure 14: Procedure for Sympathetic Heating Spectroscopy. The solid circles repre-
sent the two ions, the brackets represent the magnitude of vibrational energy in the
Coulomb crystal, and the diagonal line represents an applied laser beam. (a) First,
the spectroscopy (44Ca+) and control (40Ca+) ions are trapped. (b) The Coulomb
crystal is then laser cooled via the control ion. (c) By simultaneously switching off
the cooling laser and turning on the induced heating laser, the Coulomb crystal heats
for a fixed interaction time (theat). (d) Finally, the magnitude of heating is observed
by measuring the fluorescence of the control ion as the crystal recools.

Doppler recooling curves are obtained for a range of theat, laser intensities, and

detunings. Two representative curves are shown in Figure 15 illustrating the return of

the 40Ca+ fluorescence to steady state as the ions are cooled. In comparison, a third

curve shows that without spectroscopy lasers there is no visible heating at theat = 250

ms. Each of the three curves is an average of 20 individual experiments and the

data points measure the number of photons collected in a time tbin. Due to a limited
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number of available measurement bins (100 per experiment), the first 70 points are

taken consecutively, and the last 30 points are taken every other time bin. This gives

us the ability to observe the dynamic return to steady-state fluorescence at short times

with a higher resolution. Depending on the experimentally observed fluorescence, tbin

is chosen to be between 3 and 8 ms to ensure that most of the trajectories reach a

steady-state fluorescence. Recooling lasers remain on for an additional 500 ms (tint)

to ensure that the system is initialized.

The heating and recooling is stochastic, and the individual experiments show a

variety of behaviors for the same laser parameters (Figure 16). To simplify the mea-

surement, we report the percent of experiments where there is noticeable heating at

short times, Pheat. To calculate Pheat, the average number of photons in the first

three data points is compared to a threshold value, T = ⟨Γc⟩tbin − 2σ, where ⟨Γc⟩

is the steady-state scattering rate and σ is the standard deviation of the Poissonian

distribution. If the signal is below the threshold, the experiment is marked as heat-

ing. False positives for cases without heating occur less than 2.5% of the time. An

example of applying this threshold to experimental data is shown in Figure 17. A

clear distinction between heating and no heating is observed.

SHS is compared to the expected fluorescence for a cold ion,

ILIF = ⟨Γs⟩tmeas (35)

where Γs is the steady state scattering rate of the spectroscopy ion (44Ca+) calculated

using Equation (9) of Ref. [96], and scaled by our experimental collection efficiency. In

SHS, no signal is collected during theat and tint, but for LIF, photons can be collected

the whole time, thus tmeas = theat + 130 · tbin + tint. In practice, many experiments

should be averaged to obtain a fluorescence spectrum with a high signal to noise ratio.

An SHS signal is expected when 44∆397 > 0, which is the opposite of the standard

fluorescence spectra (Figure 13) where fluorescence is detected when 44∆397 < 0. In
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Figure 15: Comparison of Doppler recooling fluorescence for three laser-induced heat-
ing parameters. In two heating situations, lasers are kept at 44∆866 ≈ 20 MHz,
44∆397 ≈ 40 MHz, and 44s866 = 0.5. Blue diamonds and red circles show recooling
after laser induced heating is applied on the spectroscopy ion with intensities propor-
tional to 44s397 = 0.1 and 44s397 = 0.4, respectively, and for a period of theat = 250 ms.
The black points show no deviation from steady-state fluorescence after turning off
all lasers for the same period of time. Each time dependent curve is the average of 20
fluorescence trajectories. The ordinate shows the mean number of photons detected
in 8 ms.
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Figure 16: Example of three single Doppler recooling fluorescence trajectories after
heating of the Coulomb crystal for the average shown in Figure 15 by the red circles.
The black line represents the average steady state fluorescence over all 20 experiments.
The ordinate shows the number of photons detected in 8 ms. Dotted lines are to guide
the eye.

the standard measurement, the laser cools the ion and reduces the Doppler shift to

below the natural linewidth. As a result, the observed fluorescence can be described

assuming the ion is motionless. For SHS, the ion is heated by the scattered photons

and the resulting Doppler shift dramatically changes the scattering rate. How the

total heating depends on the interaction time and the laser intensities is difficult

to calculate. Experiments examining the limits of detecting this heating are now

described.

4.2.3 Effect of laser powers on SHS

The photon scattering rate and laser heating are most strongly affected by the power

of the 397 nm laser. Figure 18(a) shows the variation in the SHS spectra with 397 nm

laser power. The spectra has a wide range of detunings yielding equivalent signals.

The maximum signal is detected with 44∆397 between +10 and +70 MHz. The spectra
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Figure 17: Average of the first 3 fluorescence points for 20 Doppler recooling trajecto-
ries versus heating laser detunings. The ordinate shows the average number of photons
detected in 8 ms. The solid black line shows the average steady-state fluorescence for
a cold crystal. The dotted black line represents the threshold, which is 2σ from the
average of the steady-state fluorescence and is used to determine whether heating is
observed during the experiment (spectroscopy laser parameters: 44∆866 = 20 MHz,
44s866 = 0.5, and 44s397 = 0.4).
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have a sharp rise at zero detuning, and the width of the peak reduces with laser

power resembling the trend observed for the calculated LIF spectra in Figure 18(b).

For certain laser intensities and detunings, the three-level system shows fine features

arising from both resonance with dressed states and coherent population trapping

[126]. Following Ref. [96], the calculations assume lasers without linewidths and a

motionless ion.

A difficulty in the measurement of atomic and molecular spectra by fluorescence

arises from the existence of metastable states. In Ca+, the effective lifetime of the

metastable D3/2 state can be controlled by the intensity of the 866 nm laser. Example

SHS spectra are shown in Figure 19(a) for varying 44s866. A less pronounced effect on

peak width is observed compared to changing 44s397, which is the same trend observed

in the predicted LIF spectra shown in Figure 19(b). SHS spectra show laser induced

heating more than 50% of the time at 44∆397 between +5 and +65 MHz for all of the

experimental repumper laser intensities.

4.2.4 Effect of theat on SHS

In order to determine the limits of observable heating, the laser powers were decreased

and the heating time extended. The heating time plays a large role in the accumu-

lative heating mechanism, as shown in Figure 20. The Pheat line profiles not only

increase in height, but also broaden. For long heating times the red edge of the peak

is within 10 MHz of the S1/2-P1/2 transition (blue circles and red squares). This is

not the case as the heating time is reduced (green diamonds). In future work, we

plan to connect the peak of the accumulated heating spectra to the transition peak

center and linewidth.

The heating rate of the trap limits the amount of laser induced heat that can be

detected. For a single ion, no heating is measured up to 20 seconds. For two ions, a

small amount of heating is observable at 1 second corresponding to a Pheat ≈ 10− 30
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Figure 18: (a) The effect of varying the power of the heating laser, 44s397, on the SHS
spectra. The repumper laser is held constant at 44∆866 = 20 MHz with an intensity
proportional to 44s866 = 0.5. Percentages are based on 20 experiments for each 44∆397

with tbin = 8 ms and theat=250 ms. SHS peaks are clearly saturated, and broadening is
correlated with the intensity of the 397 heating laser. Lines connecting experimental
data are to guide the eye. (b) Simulated ILIF using the same experimental parameters
and tmeas = 1.79 s. A monotonic broadening of the profile is seen with increasing 44s397
at the chosen set of repumper experimental parameters.
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Figure 19: The effect of varying the power of the heating repumper laser, 44s866, at
constant detuning (44∆866 = 20 MHz), on the SHS spectra. Percentages are based
on 20 experiments for each 44∆397, which is held at a constant 44s397 of 0.03 (tbin = 5
ms and theat = 250 ms). Lines connecting experimental data are to guide the eye.
(b) Simulated ILIF using the same experimental parameters and tmeas = 1.4 s. The
intensity of the repumper laser does not appear to have an effect on the linewidth
when using a very low 397 saturation.
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Figure 20: The effect of varying theat on SHS spectra. The intensity of the 397
spectroscopy laser is proportional to 44s397 = 0.03, and the heating repumper laser is
tuned to 44∆866 = 25 MHz with a saturation value fixed at 44s866 = 0.5. Lines shown
are to guide the eye.

and a temperature of approximately 7 K. Figure 21(a) shows that for very low laser

powers (44s397=0.01 and 44s866 = 1× 10−3), the Pheat spectrum has a signal to noise

ratio of ∼ 2. The predicted LIF spectrum at these conditions is shown in Figure 21(b),

together with a simulation of the photon counting noise associated with the dark

counts of the device employed in these experiments. The number of scattered photons

(ILIF) is at least 9 times smaller than the photon shot noise. For tmeas = 2 s and

averaging over 20 experiments, an ILIF > 4.5 would be required to distinguish the

laser induced fluorescence from noise in the detector with high confidence. One way to

overcome the shot noise is to average over more than 7000 experiments. Alternatively,

an increase in the collection efficiency will reduce the time required to obtain a LIF

spectra. For SHS, the same detection improvement would enhance our ability to

distinguish laser induced heating from trap heating.
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A SHS signal is observed when the calculated optimal fluorescence would result

in at most 1500 photons per second being scattered into a solid angle of 4π. This

is very dim compared to the millions of photons per second typically scattered by

alkaline earth ions. Experiments with extremely low heating powers, corresponding

to a maximum fluorescence of a few hundred photons from the spectroscopy ion,

resulted in indistinguishable signal from the case without heating lasers.

4.3 Conclusion

Sympathetic heating spectroscopy is a sensitive way to detect spectral lines in ions. In

the experiment, a few scattered photons from the spectroscopy ion are transformed

into a large deviation from steady-state fluorescence on the control ion. Although

application to low-scattering rate transitions is natural, this technique would be most

useful for transitions at the frequency limit of detectors.

The current work uses a simple metric, Pheat, to measure the heating in a two ion

Coulomb crystal. This reveals the approximate line position but does not provide a

clear method for determining the natural linewidth. The resolution of the spectrum is

limited by the accumulative stochastic heating mechanism. A better understanding

of the distribution of ion energies after heating and during the recooling process

may allow for the extraction of the transition dipole moment. Future work will

include developing a Monte Carlo simulation that accounts for the effect of stochastic

scattering of photons on the ion motion.

Furthermore, this work suggests a middle ground between QLS and SHS where

the atomic sidebands are used to determine the temperature. This method will allow

for the detection of even lower scattering rates with the limit being the absorption of

a single photon as demonstrated by QLS [24]. Either this intermediate technique, or

perhaps an improved SHS, would be able to resolve the peak centers of the Fe+ lines
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Figure 21: Comparison of a low power SHS spectra with simulated LIF signal. (a)
The blue circles show a SHS spectra for 44s397=0.01 and 44s866=1×10−3 with theat= 1
s, tbin = 3 ms, and 44∆866 = 20 MHz (averaged over 20 experiments). The background
Pheat measurements without heating lasers are shown by the red squares. Lines are to
guide the eye. (b) The predicted LIF spectrum with a tmeas = 1.89 s is shown in blue
for comparison. The dotted black line is a simulation of the shot noise corresponding
to the dark counts of the experimental device (50 counts/sec).
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between 234-260 nm for comparison with high-redshift astronomical data [127]. An

immediate improvement to SHS can be obtained by simply increasing the collection

efficiency.

Based on these observations for a two ion Coulomb crystal, it is possible to detect

the heat induced by less than 1500 scattered photons. Recent results showing signifi-

cant photon scattering from SrF using two lasers to address the (0,0) and (0,1) vibra-

tional bands of an electronic transition, together with sidebands from an electro-optic

modulator (EOM) to address hyperfine structure [57], suggest that a clever choice of

molecular ion can lead to similar rates. We envision an experiment in which a con-

trol loop optimizes intensities, laser frequency, and the position of EOM sidebands to

maximize the radiative force that heats the Coulomb crystal. The parameter results

obtained by the control loop will encode information about the internal structure of

the molecular ion.
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CHAPTER V

SPECTROSCOPY ON THE S1/2-D5/2 OPTICAL QUBIT

TRANSITION

5.1 Introduction

Mixtures of trapped molecular and laser-cooled atomic ions are a promising system

for the study of molecular ion reactivity and spectroscopy [44, 87]. The strong optical

transition of atomic ions allows for rapid cooling to millikelvin temperatures, and co-

trapped molecular ions are sympathetically cooled to similar temperatures through

the Coulombic interaction. Due to the wide mass acceptance of a linear Paul trap, a

broad array of molecular ions have been sympathetically cooled ranging in size from

HD+ [122] to C+
60 [116].

At low temperatures, the mixture forms an ordered structure known as a Coulomb

crystal. The fluorescence of the laser-cooled atomic ions can be observed by a camera

and the molecular ions can be inferred from the dark regions of the image. For systems

where the molecular ions are known, the position of the imaged atomic ions can be

compared to molecular dynamics simulations to observe reactions [43] and perform

spectroscopy [85].

The fluorescence of the atomic ions is very sensitive to Doppler shifts and can be

used to measure the temperature or kinetic energy of the system [104, 128]. This can

also be used to detect the presence of molecular ions by exciting the motion of the

trapped ions by an electric field and observing the change in total fluorescence. This

method, known as laser-cooled fluorescence mass spectrometry (LCFMS) [78], can

be used to follow reactions; e.g., the multi-step photodestruction of analine cation
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(C6H5NH
+
2 ) [52]. The technique has also been combined with resonant enhanced

multi-photon dissociation to accurately measure vibrational lines with sub-MHz pre-

cision [122].

For a chain of ions, the axial motion of the ions can best be described by normal

modes. In the limit of two ions, LCFMS has been used to non-desctructively identify

a single molecular ion with a single known atomic ion by exciting the center-of-mass

(COM) mode [114]. The axial normal modes have also been measured by exciting

the ion motion and then Fourier transforming the autocorrelation of the fluorescence

[129].

Here we use resolved sideband spectroscopy of an atomic reporter ion (40Ca+) to

measure the normal mode frequencies of a two ion crystal to determine the mass of an

unknown target ion. To calibrate our system, we examine even isotopes of Ca+, which

we can load by selective photoionization and independently identify by spectroscopy.

The method is then tested on an odd isotope of calcium, 43Ca+, and two molecular

ions, 40CaH+ and 40CaO+. The resolved sideband spectroscopy not only identifies the

molecular ion, but serves as a first step towards high-precision molecular ion quantum

logic spectroscopy [24, 130].

In this chapter we present results using the quadrupole S1/2-D5/2 transition of

calcium for various experiments. We start by presenting some preliminary results

associated with performing resolved sideband spectroscopy of Ca+. Sec. 5.3 presents

novel work for optically detecting dark trapped ions using the S1/2-D5/2 transition.

5.2 Resolved sideband spectroscopy of Ca+

5.2.1 Experimental

All experiments are performed in the molecular trap described in Sec. 3.3.2. Each

experiment begins by loading a 40Ca+. The 40Ca+ ion is Doppler cooled by driving
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the S1/2-P1/2 transition at 397 nm and repumping from the metastable D3/2 state

with an 866 nm laser shown in Figure 10 [131]. Once cooled, the narrow S1/2-D5/2

quadrupole transition and its motional sidebands are probed using a 729 nm laser

[132]. The transition frequencies are listed in Table 1.

Sideband spectroscopy of the S1/2-D5/2 transition is performed in a pulsed fashion

and is described in Ref [132]. The following steps describe the pulse procedure:

1. Doppler Cooling- The ion is initialized to the ground electronic state, S1/2,

and Doppler cooled on the S1/2-P1/2 dipole transition.

2. Spin Polarization- The ion is spin polarized to the S
mj=−1/2

1/2 level by tuning the

729 nm laser to excite the S
mj=1/2

1/2 -D
mj=−3/2

5/2 . The D
mj=−3/2

5/2 state is depopulated

by driving D
mj=−3/2

5/2 -P
mj=−1/2

3/2 using an 854 nm laser. This process is repeated

k times to ensure the S
mj=−1/2

1/2 state is populated (Figure 23). The 729 nm laser

is pulsed for t729 = 25− 50µs and the 854 nm laser is pulsed for t854 = 1µs.

3. Sideband Cooling- The 729 nm laser is tuned to the lower motional sideband.

The 854 nm laser is again used to depopulated the D
mj=−5/2

5/2 state by repumping

to the P
mj=−3/2

3/2 . Experimentally the 854 nm laser intensity is adjusted for

optimum cooling results. If several normal modes of motion are to be cooled to

the ground state, the tuning of the cooling laser has to be sequentially alternated

between the different sidebands. This is achieved using an AOM to shift the

laser frequency. This processes is repeated n times to sufficiently remove all

motional quanta. The 729 nm laser is pulsed for t729 = 25− 50µs and the 854

nm laser is pulsed for t854 = 1µs. It is should be noted that the t729 is increased

by 50-100 ns after each cooling cycle.
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4. Detection- The Doppler cooling lasers at 397 nm and 866 nm are switched on

and the fluorescence of the ion is monitored for tmeas=1000-3000 µs. Discrim-

ination between the ion being in the S1/2 or D5/2 level is done by comparing

the number of photon counts with a threshold value. The shelving rate is then

plotted as a percentage of the experiments which fall below the threshold. The

threshold is determined by comparing the distribution of photons counts with

the ion dark versus bright.

The entire experiment takes 20 ms and Figure 22 shows the pulse sequence. By

repeating the whole sequence 100 times, the shelved D state occupation is measured.

Figure 22: Typical pulse sequence for spectroscopy of the S1/2-D5/2 transition.

5.2.2 Zeeman effect on S1/2-D5/2 transition

One way of having quantum control of Ca+ is by using the Zeeman sublevels of the

S1/2-D5/2 transition of calcium. In the presence of an external magnetic field, the
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Table 3: Landé g factors for calcium

S1/2 P1/2 P3/2 D3/2 D5/2

gj 2 2/3 4/3 4/5 6/5

degeneracy is lifted resulting in two separated S1/2 sublevels and six D5/2 sublevels

(Figure 23) and splitting of this energy level is described by

∆E = gjµBBmj (36)

where µB is Bohr’s magneton and gj is the Landé factor. Table 3 is a list of the

Landé factors for each of the levels in calcium and can be used to determine the

energy splitting of the Zeeman levels.

Figure 23: (a) Energy diagram of 40Ca+ including Zeeman sublevels, and the excita-
tion scheme demonstrating spin polarization. (b) Energy diagram include the dressed
motional states after spin polarization, and the excitation scheme demonstrating side-
band cooling.

In a non-zero magnetic field the Zeeman spectrum of the S1/2-D5/2 transition would

show all ten peaks with amplitudes proportional to the square of the Clebsch-Gordan

factors. In our case, we choose to use the S
mj=−1/2

1/2 -D
mj=−5/2

5/2 transition for sideband
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cooling and couple to the upper P
mj=−3/2

3/2 level for quick decay and maximum cooling

before the ion is lost from the cooling cycle. It should be noted that the selection

rule for the quadrupole transition can be forced to be ∆mj = ±2 by fixing the

polarization, ϵ⃗, of the beam to be perpendicular to the B⃗ field which is perpendicular

to the wavevector, k⃗ (⃗ϵ ⊥ B⃗ ⊥ k⃗). This allows for only four Zeeman sublevels to

be excited. Figure 24 is an example Zeeman spectrum of the S1/2-D5/2 transition

obtained from our lab. It can be seen that ϵ⃗ is not optimized because eight Zeeman

lines are still visible.
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Figure 24: Zeeman spectrum of S1/2-D5/2 with B⃗ = 3.6 gauss t729=50 µs, tmeas= 1000

µs, νax = 700 kHz, and νrad = 1.4 MHz. (black) data (red) fit to the S
mj=1/2

1/2 -D5/2

transitions (blue) fit to the S
mj=−1/2

1/2 -D5/2 transitions

As mentioned, we will focus on the S
mj=−1/2

1/2 -D
mj=−5/2

5/2 transition and the pop-

ulation in this state is maximized by spin polarizing the system into the S
mj=−1/2

1/2

level. This is achieved by optically pumping the S
mj=1/2

1/2 -D
mj=−3/2

5/2 transition shown
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in Figure 23, and ensures that before the experiment is started the spin population is

initialized in the S
mj=−1/2

1/2 state. Figure 25 shows spectra of the motional sidebands

of the S
mj=−1/2

1/2 -D
mj=−5/2

5/2 transition with and without spin polarizing the state.

Figure 25: Sideband spectra of the S
mj=−1/2

1/2 -D
mj=−5/2

5/2 transition before and after op-

tical pumping the S
mj=1/2

1/2 -D
mj=−3/2

5/2 transition. t729=50 µs, tmeas= 2000 µs. The blue
line corresponds to the fit of the black squares which was with the Spin Polarization
(SP) loops set to zero. The red line is the fit of black circles after 25 SP loops. Each
peak was fit to a Gaussian.

5.2.3 Sideband measurement, cooling and coherent dynamics

To measure the resolved motional sidebands of the S
mj=−1/2

1/2 -D
mj=−5/2

5/2 transition we

scan a double-passed AOM with 1 kHz steps. Figure 26 is an example of a sideband

spectrum of the S
mj=−1/2

1/2 -D
mj=−5/2

5/2 transition without spin polarizing or sideband

cooling. It should be noted that this spectrum is Fourier limited and to measure

narrow linewidth requires reducing the laser power and exciting for a longer time

(t729). One motivation for measuring narrow lines is to measure the slow drift of

the laser frequency. Figure 27 is a plot of the carrier transition over the course of
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Figure 26: Resolved sideband spectrum of S
mj=−1/2

1/2 -D
mj=−5/2

5/2 (t729=46 µs, tmeas=

2000 µs, νax = 600 kHz and νr = 1 MHz).

seven hours and it shows that the laser frequency drifts 10 kHz over four hours. It was

determined that over the course of one experiment, correction of the frequency drift is

unnecessary but is achievable using software to shift the AOM frequency. Measuring

narrow spectral lines sets an upper bound to the linewidth of the excitation laser

and allows an estimate of the short-term stability of the magnetic field and the trap

frequency. We determined that the upper bound of the laser linewidth is 10 kHz.

It has been shown that the motional sidebands can be measured, and after side-

band cooling the ion can be put into a pure state (⟨n⟩=0 state) [99]. Following the

pulse sequence in Figure 22, and addressing the lower motional sideband as shown in

Figure 23, the ion can be cooled below the Doppler limit. The ground state occupa-

tion is determined by probing absorption on the lower and upper motional sidebands
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Figure 27: Carrier S
mj=−1/2

1/2 -D
mj=−5/2

5/2 transition over a 7 hour period to map the drift

of the laser. It appears that the frequency drifts 10 kHz over four hours (t729=46 µs,
tmeas= 2000 µs). The color scale shows the shelving rate.

immediately after cooling pulses. Figure 28 shows an example of the first order ax-

ial motional sidebands and carrier before and after sideband cooling. The motional

sideband occupation number was extracted by observing the motional dephasing of

the carrier Rabi transition (Figure 29) after Doppler and sideband cooling. These

experiments were fit using

Ωcarrier = Ω(1− η2n) (37)

where Ω is the overall coupling strength and η is the Lamb-Dicke parameter, and

assuming the occupation number is a Boltzmann distribution, which explains the

decoherance of our system. For a detailed derivation of coherent dyanamics of the

carrier and lower and upper motional sidebands see Ref. [99]. It was determined that

after Doppler cooling, the ion was still at a much higher occupation number than

expected from Doppler cooling. It is assumed that due to power broadening of the

S1/2-P1/2 transition, the Doppler limit was not achieved. It has been suggested that if
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a magnetic field is greater that 4 gauss the S1/2-P1/2 transition will also be broadened

resulting in less efficient Doppler cooling [99]. For an axial trap frequency of 700

kHz, one would expect to have ⟨n⟩ = 16, but from fitting the coherent dynamics it

was determined that ⟨n⟩ = 40, and after sideband cooling ⟨n⟩ = 8, which is below

the Doppler limit. We expect that with an increase in the laser intensity the ion

could be cooled to the motional ground state. For the experiments presented, only

325 µW (beam waist=70 µm) of 729 nm laser power was available, which limits the

maximum number of sideband cooling cycles that can be performed before the trap

heating rate becomes comparable to the cooling rate (≈ ηΩ).

Figure 28: First order axial motional sideband of the S
mj=−1/2

1/2 -D
mj=−5/2

5/2 transition.

(Blue) After Doppler cooling (Black) After 100 sideband cooling cycles (t729=50 µs,
tmeas= 2000 µs, νax = 700 kHz)

If more than one vibrational mode is to be cooled, the cooling lasers have to be

cycled between each of the lower motional sidebands. This has yet to achieved in our

lab, but it has been demonstrated by many groups. The literature shows that it is
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Figure 29: Carrier Rabi dynamics of S
mj=−1/2

1/2 -D
mj=−5/2

5/2 transition. (Blue) After

Doppler cooling. Coherence time of 60 µs (Black) After 100 sideband cooling cycles.
Coherence time of 230 µs t729=50 µs, tmeas= 2000 µs, νax = 700 kHz

more efficient to cycle between modes instead of cooling one motional mode completely

and then jumping to the next [99]. This is to avoid re-heating of the first motional

mode, which was already cooled. Our results could be improved with some simple

experimental improvements. These include improving the Doppler precooling so the

population in the motional modes is closer to the Doppler limit. Also, increasing the

intensity of the 729 nm laser by reducing the beam waist or increasing the optical

power would lead to an increase in the Rabi frequency, which leads to more optical

pumping cycles before a loss of coherence.

5.3 Resolved sideband mass spectrometry

5.3.1 Experimental

With the basics of measuring the sideband spectrum of calcium presented, we can

discuss the detection of a second, unknown ion via the coupled motion of the two ion
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Coulomb crystal. As shown in the Chapter 2, the mass of an ion in a trap can be

determined by the secular harmonic motion of the ion. When two ions are trapped

the mass can still be determined by comparing the axial normal mode frequencies of

the two ion system via

ν2
± = [(1 + µ)±

√
1− µ+ µ2]ν2

1 , (38)

.

where µ is the mass ratio of 40Ca+ to the unknown ion, ν1 is the axial secular frequency

of a single 40Ca+, and ν− and ν+ are the center-of-mass (COM) mode and breathing

mode (BM), respectively. [114].

The target ions investigated are four isotopes of calcium: 42Ca+, 43Ca+, 44Ca+,

and 48Ca+, and two molecular ions: 40CaH+ and 40Ca16O+. For the molecular ion

experiments, two 40Ca+ ions are loaded into the trap and Doppler cooled. Hydrogen

or oxygen is introduced into the chamber using a manual leak valve (Kurt J. Lesker

VZLVM267). The background pressure is increased to 1×10−8 torr until one of the

two ions reacts without shifting the position of the bright ion [114]. The leak valve is

then shut and the experiment is started when the chamber has returned to its base

pressure. Figure 30 is a CCD image depicting the process of loading calcium and

then reacting to form a molecular ion.

5.3.2 Resolved sideband mass spectrometry

Figure 31 shows the resolved sideband spectrum of the S
mj=1/2

1/2 -D
mj=5/2

5/2 line of two

40Ca+ ions. For each AOM frequency step, the shelving experiment is performed

100 times to determine a population. The total spectrum is taken 10 times and

the average is reported. The sidebands can be identified as the center-of-mass mode
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Figure 30: CCD image of calcium and calcium oxide ions

(COM), the radial mode (R), and the breathing mode (BM). Harmonics of these

modes and combinations can also be identified.

To determine the mass, we choose to use the frequencies of the COM/BM modes.

This determination requires the accurate measurement of the COM/BM modes for

two 40Ca+ and then for the 40Ca+-X+ system. This was done by independently fitting

the carrier and the positive and negative first-order sidebands of the the COM/BM

modes to Gaussians. The difference between the center and the sidebands was used

to calculate the COM/BM frequencies. Figure 32 shows the first-order red COM

sideband for 40Ca+ with all seven target ions. This figure clearly shows that as the

mass of the target ion increases the secular frequency decreases.

From the measured sideband frequencies, Equation 38 is used to calculate the

mass of the target ion. Values were calculated for both red and blue sidebands

independently, and then averaged. All values were found to be consistent with one

another. These results were then compared to the values found in Ref. [133] and are

included in Tables 4 and 5. Good agreement is seen for the ions within 4 amu of 40Ca+.

It is hypothesized that the sharp decrease in accuracy for the two ions outside of this

range stems from the addition of a stray DC electric field. If a stray field pushed the

ion off the rf null which is out of the plane of view of the imaging optics the method
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Figure 31: Frequency scan of two laser cooled 40Ca+ ions with identified peaks. In
addtition to the carrier a series of sideband peaks are visible corresponding to the
center-of-mass mode (νCOM), the radial mode (νR), the breathing mode (νBOM), and
combinations of these modes (t729=200 µs, tmeas=3000 µs).
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Figure 32: Center-of-mass frequency scan of the first order red sideband of
a laser cooled 40Ca+ with one of the following second ions:40Ca+, 40CaH+,
42Ca+,43Ca+,44Ca+,48Ca+,40CaO+(t729=200, tmeas=3000)
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Table 4: Comparison of theoretical and experimental measured secular frequencies

Ion Calculated COM Measured COM Calculated BM Measured BM
Sec. Freq.(MHz) Sec. Freq.(MHz) Sec. Freq.(MHz) Sec. Freq.(MHz)

40Ca+ 0.7212 0.7212(3) 1.2492 1.2481(8)
40CaH+ 0.7167 0.7167(4) 1.2415 1.241(1)
42Ca+ 0.7122 0.7122(8) 1.2344 1.2359(8)
43Ca+ 0.7078 0.7077(5) 1.2276 1.235(1)
44Ca+ 0.7034 0.7032(5) 1.2212 1.229(1)
48Ca+ 0.6863 0.6846(7) 1.1984 1.24(2)

40CaO+ 0.6539 0.661(6) 1.1643 1.240(6)

Table 5: Comparison of theoretical and experimental measured masses without con-
sidering the stray field

Ion CRC Experimental ∆µ
mass (amu) Mass (amu) µ

40Ca+ 39.963 39.96(+5/-6) **
40CaH+ 40.970 40.98(+10/-9) -1.21×10−4

42Ca+ 41.959 41.98(+16/-17) -5.41×10−4

43Ca+ 42.959 42.99(+11/-9) -6.18×10−4

44Ca+ 43.955 44.02(+11/-11) -1.49×10−3

48Ca+ 47.953 48.36(+15/-17) -8.48×10−3

40CaO+ 55.958 52.98(+64/-65) 5.63×10−2

in Ref. [92] is unusable for detecting micromotion, requiring a more sophisticated

method observing the motional sidebands. This method of compensation is described

in Ref. [23] but has yet to be achieved in our setup.

As the mass gets larger, the relative strength of the coupling to the stray field mixes

the radial and axial modes, changing the expected normal mode frequencies. Figure

33 is a plot of the measured COM/BM frequencies along with the expected frequencies

using Equation 38 and the value fit to an additional stray DC field. According to

the fit there is an additional field of approximately 77.5 mV/mm. We can also see

in Table 6 that including the stray field dramatically improves the uncertainty in the

experimental mass, especially for the higher mass values.
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Figure 33: Experimental secular frequency (black) compared with the expected sec-
ular frequency from Equation 38 (red) and the addition of a 77.5 mV/mm DC stray
field (blue). (a) COM (b) BM
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Table 6: Comparison of theoretical and experimental measured masses considering
the stray field

Ion CRC Experimental ∆µ
mass (amu) Mass (amu) µ

40Ca+ 39.963 39.96(+5/-6) **
40CaH+ 40.970 40.97(+10/-8) 1.02×10−5

42Ca+ 41.959 41.96(+19/-18) -3.29×10−5

43Ca+ 42.959 42.95(+11/-8) 2.04×10−4

44Ca+ 43.955 43.83(+8/-4) 2.86×10−3

48Ca+ 47.953 48.25(+19/-9) -6.37×10−3

40CaO+ 55.958 55.96(+64/-65) -4.46×10−5

Based on these results, I would conclude that with additional compensation using

the method outlined in Ref. [23] we will have developed a very accurate optical mass

spectrometry technique easily resolving a one amu mass difference. This method

could be used for confirmation of the mass of an expected molecular ion before per-

forming spectroscopy. It should also be stated that the symmetric error in the secular

frequency measurements leads to an asymmetric error in the mass (Tables 5 and 6)

due to the nonlinear relationship of the mass to secular frequency, which can be seen

in Equation 38.

5.4 Conclusion

In this chapter we have demonstrated the use of the S1/2-D5/2 optical qubit transition

to measure the Zeeman spectrum and motional sidebands of calcium. Using these

techniques, we are able to cool the ion’s motion below the Doppler limit, and with a

few improvements to the experimental setup, we should be able to cool to the motional

ground state, T≈ 10µK. Such improvements include increasing the intensity of the

729 nm laser, stabilizing the magnetic field, and improving the lock stability.

This chapter has also introduced a new optical technique that uses the motional

sidebands to measure the charge to mass ratio of singly charged calcium isotopes,

CaH+, and CaO+. We have determined that with the current experimental setup, we
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can measure changes of 1 amu, despite the trap not being compensated. Again, with

some simple experimental improvements this technique could be a sensitive probe of

molecular mass.

Combining the improvements to both the cooling and the compensation, we expect

to sympathetically ground state cool a molecular ion. If achieved, this would lead to

a translational kinetic energy of a molecular ion in the µK regime. Also, we hope to

study even smaller mass ratios. The mass difference between 40CaD+ and 42Ca+ is

0.01807 amu, which in our setup equates to an approximately 80 Hz shift. We are

not currently able to see this small of a shift, but since the S1/2-D5/2 transition is

on the order of a single Hertz it is achievable with improvements to our laser lock,

and magnetic field stabilization. Sideband cooling could also improve this result,

making resolved sideband mass spectrometry comparable to other high resolution

mass spectrometry techniques. Additionally, these techniques are the initial steps

necessary to perform quantum logic spectroscopy and SHS on molecular ions.
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CHAPTER VI

RESOURCE REQUIREMENTS FOR FAULT-TOLERANT

QUANTUM SIMULATION: THE TRANSVERSE ISING

MODEL GROUND STATE

This chapter is based on

Craig R. Clark, Tzvetan S. Metodi, Samuel D. Gasster, and Kenneth R. Brown

Phys. Rev. A, 79, 062314 (2009).

6.1 Introduction

The calculation of the basic properties of quantum systems (eigenstates and eigen-

values) remains a challenging problem for computational science. One of the most

significant issues is the exponential scaling of the computational resource require-

ments with the number of particles and degrees of freedom, which for even a small

number of particles (∼ 100) exceeds the capabilities of current computer systems.

In 1982 R. Feynman addressed this problem by proposing that it may be possible

to use one quantum system as the basis for the simulation of another [64]. This

was the early promise of quantum simulation, and one of the original motivations for

quantum computing. Since that time, many researchers have investigated different

approaches to quantum simulation [134, 135, 136, 137, 138, 139]. For example, D.

Abrams and S. Lloyd have proposed a quantum algorithm for the efficient compu-

tation of eigenvalues and eigenvectors using a quantum computer [136]. Many of

the investigations into quantum simulation have assumed ideal performance from the

underlying components resulting in optimistic estimates for the quantum computer
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resource requirements (number of qubits and time to completion). It is well known,

however, that in order to address the effects of decoherence and other sources of faults

and errors in the implementation of qubits and gates it is necessary to incorporate

fault-tolerant quantum error correction into an estimate of the resource requirements.

In this paper we estimate the resource requirements for a quantum simulation

of the ground state energy for the 1-D quantum Transverse Ising Model, specifically

incorporating the impact of fault-tolerant quantum error correction. We apply the

general approach of D. Abrams and S. Lloyd [135, 136], and compute estimates for the

total number of physical qubits and computational time as a function of the number

of particles (N) and required numerical precision (M) in the estimate of the ground

state energy.

We have chosen to study the resource requirements for computing the ground

state energy for the 1-D quantum TIM since this model is well studied in the lit-

erature and has an analytical solution [140, 141, 142]. The relevant details of the

TIM are summarized in Sec. 6.2. In Sec. 6.3, we map the calculation of the TIM

ground state energy onto a quantum phase estimation circuit that includes the effects

of fault-tolerant quantum error correction. The required unitary transformations are

decomposed into one qubit gates and two-qubit controlled-not gates using gate iden-

tities and the Trotter formula. The one-qubit gates are approximated by a set of

gates which can be executed fault-tolerantly using the Solovay-Kitaev theorem [143].

In Sec. 6.3.3, the quantum circuit is mapped onto the Quantum Logic Array (QLA)

architecture model, previously described by Metodi, et al.[144]. Our final results,

utilizing the QLA architecture, are given in Sec. 6.3.4 and a discussion of how im-

proving the state of the art in the underlying technology affects the performance for

executing the TIM problem. In Sec. 6.4, we extend our resource estimate from 1-D to

higher dimensions. In Sec. V, we compare our present results for the TIM quantum
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simulation with a previous analysis of the resource requirements for Shor’s factoring

algorithm [60, 144]. Finally, our conclusions are presented in Sec. 6.6.

The QLA was originally developed based on the performance capabilities of ion

trap qubit technology and consists of a set of interconnected traps. The architecture

model may be applied to any two-dimensional array of qubits where the qubits are

physically moved between locations on a time scale comparable to, or longer than,

the time to execute a single qubit gate operation.

6.2 Transverse Ising model

The 1-D Transverse Ising Model is one of the simplest models exhibiting a quantum

phase transition at zero temperature [140, 145, 146, 141]. The calculation of the

ground state energy of the TIM varies from analytically solvable in the linear case

[140] to computationally inefficient for frustrated 2-D lattices [147]. For example,

the calculation of the magnetic behavior of frustrated Ising antiferromagnets requires

computationally intensive Monte-Carlo simulations [148]. Given the difficulty of the

generic problem and the centrality of the TIM to studies of quantum phase tran-

sitions and quantum annealing, the TIM is a good benchmark model for quantum

computation studies.

The Transverse Ising Model consists of N -spin-1/2 particles with nearest-neighbor

spin-spin interactions along the z-axis in the presence of an external magnetic field

along the x-axis. The Hamiltonian, HI , for this system is:

HI =
∑
i

Γσx
i +

∑
⟨i,j⟩

Jijσ
z
i σ

z
j , (39)

where J is the spin-spin interaction energy, Γ is the energy of a spin in the external

magnetic field, and ⟨i, j⟩ implies a sum only over nearest-neighbors [141]. σx
i and σz

i

are the Pauli spin operators for the ith spin, and we set ~ = 1 throughout this paper.
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In present work we focus on the 1-D linear chain TIM of N-spins with constant

Ising interaction energy Jij = −J . The ground state of the system is determined

by the ratio of g = Γ/J . For the large magnetic field case, g >> 1 the system is

paramagnetic with all the spins aligned along the x̂ axis, and in the limit of small

magnetic field, g << 1, the system has two degenerate ferromagnetic ground states,

parallel and anti-parallel to the ẑ axis. In the intermediate range of magnetic field

strength the linear 1-D TIM exhibits a quantum phase transition at g = 1 [141].

The TIM Hamiltonian in Equation 39, for the 1-D case with constant coupling

can be rewritten as:

HI = −J

(
N∑
j=1

gXj +
N−1∑
j=1

ZjZj+1

)
(40)

where the Pauli spin operators, σx
j and σz

j , are replaced with their corresponding

matrix operators Xj and Zj. For the 1-D TIM, the ground state energy can be calcu-

lated analytically in the limit of large N [140]. In the case of a finite number of spins

with non-uniform spin-spin interactions (J not constant), it is possible to efficiently

simulate the TIM using either the Monte-Carlo method [149] or the density matrix

renormalization group approach [142]. The challenge for classical computers comes

from the 2-D TIM on a frustrated lattice where the simulation scales exponentially

with N . Applying the quantum phase estimation circuit to calculate the ground state

energy of the TIM requires physical qubit resources, which scale polynomially with

N , and the number of computational time steps is also polynomial in N . In addition,

just as the complexity of the problem is independent of the lattice dimension and

layout when applying classical brute force diagonalization, the amount of resources

required to apply the quantum phase estimation circuit is largely independent of the

dimensionality of the TIM Hamiltonian.

73



6.3 TIM quantum simulation resource estimates

Our approach to estimating the resource requirements for the TIM ground-state en-

ergy calculation with Hamiltonian HI involves two steps. First, we follow the ap-

proach of D. Abrams and S. Lloyd and map the problem of computing the eigenval-

ues of the TIM Hamiltonian in Equation 40 onto a phase estimation quantum circuit

[135, 136]. Second, we decompose each operation in the phase estimation circuit into

a set of universal gates that can be implemented fault-tolerantly within the context

of the QLA architecture. This allows us an accurate estimate of the resources in a

fault-tolerant environment.

6.3.1 Phase estimation circuit

The phase estimation algorithm calculates an M -bit estimate of the phase ϕ of the

eigenvalue e−i2πϕ of the time evolution unitary operator U(τ) = e−iHIτ for fixed

τ given an eigenvector of HI . ϕ < 1 and can be represented by the binary fraction

0.x1 ... xM [135, 136]. The energy eigenvalue E = 2πϕ
τ

when Eτ < 2π. Calculation

of the ground state energy |Eg| requires that τ < 2π/|Eg|. For the 1-D TIM, the

magnitude of the ground-state energy |Eg| is bounded by NJ(1 + g) [140]. In the

region near the phase transition g ≈ 1, we choose τ=(10JN)−1.

The quantum circuit for implementing the phase estimation algorithm is shown in

Figure 34. The circuit consists of two quantum registers: an N -qubit input quantum

register prepared in an initial quantum state |Ψ⟩, and an output quantum register

consisting of a single qubit recycled M times [150, 151]. Each of the N qubits in

the input register corresponds to one of the N spin-1/2 particles in the TIM model

[152]. At the beginning of each of the M steps in the algorithm, the output qubit

is prepared into the state 1√
2
(|0⟩ + |1⟩) using a Hadamard (H) gate. The H gate is
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Figure 34: The circuit for implementing the phase estimation algorithm using one
continuously recycled control qubit.

followed by a controlled power of U(τ), denoted with U(2mτ), applied on the input

register, where 0 ≤ m ≤ M − 1.

Letting j denote to the jth step in the circuit, each time the output qubit is

measured (meter symbols) the result is in the mth bit in the estimate of ϕ, following

the rotation of the output qubit via the gate:

Rj = |0⟩⟨0|+ exp

(
iπ

M∑
m=M+2−j

2M+1xm

2m+j

)
|1⟩⟨1| (41)

where the gate Rj corresponds to the application of the Quantum Fourier Trans-

form on the output qubit at each step [150, 151]. The result after each of the M

measurements is an M -bit binary string {x1x2 . . . xM}, which corresponds the M -bit

approximation of ϕ given by 0.x1 ... xM . Using this estimate of ϕ, the corresponding

energy eigenvalue E =
2πϕ

τ
will be the ground-state energy Eg with probability equal

to |⟨Ψ|Ψg⟩|2 [135], where |Ψg⟩ is the ground eigenstate of HI .

To maximize the probability of success |⟨Ψ|Ψg⟩|2, the initial quantum state |Ψ⟩

should be an approximation of the ground state |Ψg⟩. For arbitrary Hamiltonians

the preparation of an approximation to |Ψg⟩ is generally computationally difficult

[153, 154]. For certain cases, the preparation can be accomplished using classical ap-

proximation techniques to calculate an estimated wavefunction or adiabatic quantum

state preparation techniques [152, 138]. If the state can be prepared adiabatically, the

resource requirements for preparing |Ψ⟩ are comparable in complexity to the resource

requirements for implementing the circuit for the phase estimation algorithm shown

in Figure 34 [152]. For this reason, we focus our analysis on estimating the number
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of computational time steps and qubits required to implement the circuit, assuming

that the input register has been already prepared in the N -qubit quantum state |Ψ⟩.

6.3.2 Decomposition of quantum circuit into fault-tolerant gates

Figure 34 in Sec. 6.3.1 shows the TIM circuit at a high-level, involving N +1 unitary

operators. In this section, each unitary operation of the circuit is decomposed into a

set of basic one and two qubit gates which can be implemented fault-tolerantly using

the QLA architecture. The set of basic gates used is

{X,Z,H, T, S,CNOT,Measure} (42)

where Measure is a single qubit measurement in the ẑ basis, CNOT denotes the

two-qubit controlled-NOT gate, and T and S gates are single-qubit rotations around

the ẑ-axis by π/4 and π/2 radians respectively. The high-level circuit operations

which require decomposition are the controlled-U(2mτ) gates and each Rj gate.

The Controlled-U(2mτ) gate can be decomposed using the second-order Trotter

formula [155, 156]. First, HI is broken into two terms: HX =
∑N

j=0 gXj, represent-

ing the transverse magnetic field, and HZZ =
∑N−1

j=0 ZjZj+1, representing the Ising

interactions. By considering the related unitary operators

Ux(2τ) =
N∏
j=1

exp(−igτXj) (43)

Uzz(2τ) =
N−1∏
j=1

exp(−iτZjZj+1), (44)

and setting g = 1 (as discussed in Sec. 6.2), we can construct the Totter approxima-

tion of U(2mτ), denoted by Ũ(2mτ) as:

U(2mτ) = [Ux(θ) Uzz(2θ) Ux(θ)]
k + ϵT

= Ũ(2mτ) + ϵT , (45)
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Figure 35: Circuit for the controlled unitary operation U(2mτ) approximated using
the Trotter formula.

where θ = (2mτ/k) and ϵT is the Trotter approximation error, which scales as

O
(

(2mτ)3

k2

)
[155]. The Trotter approximation error can be made arbitrarily small

by increasing the integer Trotter parameter k. Since the controlled-U(2mτ) corre-

sponds to the (M − m)th bit, ϵT must be less than 1/2M−m, which is the precision

of the (M −m)th measured bit in the binary fraction for the phase ϕ. Thus, when

approximating U(2mτ), k is increased until ϵT is less than 1/2M−m. For a given M ,

we estimate a numerical value for the Trotter parameter k(m = 0) = k0 as a function

of N ≤ 10, with the constraint that ϵT < 1/2M . We thus find that for fixed M , k0

scales as 1/N . We extrapolate k0 for larger N based on a power-law fit of N ≤ 10.

For m > 0, we set k = 2mk0, which will satisfy the error bound based on the scaling

of ϵT with k.

The circuit corresponding to the Trotter approximation of U(2mτ) is shown in Fig-

ure 35, where it can be seen that the controlled-U(2mτ) is composed of two controlled-

Ux(θ) operations and a controlled-Uzz(θ) operation, repeated k times and controlled

on the mth instance of the output qubit denoted with Qm. Expanding the circuit in

Figure 35, we can express Ũ(2mτ) as:

Ũ(2mτ) = Ux(θ) [Uzz(2θ)Ux(2θ)]
k−1 Uzz(2θ)Ux(θ), (46)
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Figure 36: The decomposition of the controlled unitary operation Ux(θ) into single-
qubit Rz gates and CNOT gates.
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Figure 37: The decomposition of the controlled unitary operation Uzz(2θ) gate into
single-qubit Rz gates and CNOT gates.

which shows that, approximating U(2mτ) will require the sequential implementation

of k controlled-Uzz(2θ) gates, (k − 1) controlled-Ux(2θ) gates, and two instances of

controlled-Ux(θ) gates, all controlled on the mth instance of the output qubit.

The quantum circuits for the decomposition of the controlled-Ux(2θ) and controlled-

Uzz(2θ) gates are shown in Figure 36 and 37, respectively. The gates are decomposed

into rotations about the ẑ-axis, Rz(θ) = exp(−i θ
2
Z) and CNOT gates. (N − 1) addi-

tional qubits are used to prepare an N -qubit cat state in order to parallelize each of

the N Rz(θ) gates. The preparation of an N -qubit cat state requires (N − 1) CNOT

gates, which can be implemented in O(N) time steps in parallel with the Rz(θ/4)

gates in Figure 36 and in parallel with the Rz(θ/2) gates in Figure 37.

The three single-qubit Rz gates (Rz(θ), Rz(θ/2), and Rz(θ/4)) can be approxi-

mated using O(log3.97(1/ϵsk)) basics gates (H, T ,S) by the Solovay-Kitaev theorem
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[143, 157]. The Solovay-Kitaev error (ϵsk) is equivalent to a small rotation applied to

the qubit. The algorithm of Dawson and Nielsen [157] is used to compute the sequence

of H, T , and S gates required to approximate each of the three Rz gates for θ = 2mτ
k

. We define SR as the length of the longest of these three sequences. For M=30,

for example, we find that SR = 4 × 105, requiring a sixth order Solovay-Kitaev ap-

proximation [157]. The results of this calculation show that the Solovay-Kitaev error

ϵsk <
ϵT
k
, in order that the total error, ϵT is less than the required precision (1/2M−m),

when we approximate U(2mτ). As a result SR scales as O(log3.97(k/ϵT )) = O(M3.97).

We now have a complete decomposition of the controlled-U(2mτ) into the basic

gates given in Equation 42. As a function of SR, the number of time steps required

to implement controlled-Ux(θ) and Uzz(θ) is equal to (3SR + 4), and (6SR + 7), re-

spectively. Following Equation 46, the number of time steps required to implement

the entire controlled-U(2mτ) is k(9SR+11)+3SR+4, where k = 2mk0. Each Rj gate

in Figure 34 is equivalent to at most a rotation by Rz(θ) and requires less than SR

gates.

Putting all of the above together, the total number of time steps (K) required to

implement the TIM circuit as a function of SR, k0, and M is given by:

K =
M−1∑
m=0

[2mk0(9SR + 11) + 3SR + 4 + SR]

= O(2M)× SR. (47)

Since SR scales as O(M3.97), the total number of time steps is dominated by the

exponential dependence on the precision (M). The number of qubits Q required to

implement the circuit is 2N , since N qubits are needed for the input register |Ψ⟩, one

qubit is needed for the output register, and N −1 qubits are needed for the cat state.

In the next section we include fault-tolerant QEC into our circuit model and

determine the resulting resource requirements, K and Q. We also provide an estimate

on how long it could take to implement the TIM problem in real-time by taking into
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account the underlying physical implementation of each gate and qubit in the context

of the QLA architecture.

6.3.3 Mapping onto the QLA architecture

Incorporating quantum error correction and fault-tolerance [158, 159, 160, 161] into

the TIM circuit design will impact the resource requirements in two ways. First, each

of the qubits becomes a logical qubit, that is encoded into a state using a number

of lower-level qubits. Second, each gate becomes a logical gate, realized via a circuit

composed of lower-level gates applied on the lower-level qubits that make-up a logical

qubit. Each lower-level qubit may itself be a logical qubit all the way down to the

physical level. Thus, quantum error correction and fault-tolerance increases the num-

ber of physical time steps and qubits required to implement each basic gate and may

even require additional logical qubits, depending on how each gate is implemented

fault-tolerantly and the choice of error correcting code. The resource requirements

necessary to implement encoded logical qubits and gates will depend on the perfor-

mance parameters of the underlying physical technology, the type of error correcting

code used, and the level of reliability required per logical operation. The physical

technology performance parameters that are taken into account in the design of the

QLA architecture are the physical gate implementation reliability, time to execute a

physical gate, and the time it takes for the state of the physical qubits to decohere.

The QLA architecture [144] is a tile-based, homogeneous quantum computer archi-

tecture based on ion trap technology, employing 2-D surface electrode trap structures

[61, 162, 163]. Each tile represents a single computational unit capable of storing

two logical qubits and executing fault-tolerantly any logical gate from the basic gate

set given in Equation 42. One of the key features of the QLA architecture is the

teleportation-based logical interconnect which enables logical qubit exchange between
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any two computational tiles. The interconnect uses the entanglement-swapping pro-

tocol [164] to enable logical qubit communication without adding any overhead to the

number of time required to implement a quantum circuit [144].

The QLA was originally designed to factor 1024-bit integers [144]. This re-

quirement resulted in the need to employ the second order concatenated Steane

[[7, 1, 3]] quantum error correcting code [165]. Second order concatenation means that

each logical qubit is a level 2 qubit, composed of 7 level 1 logical qubits each encoded

into the state of 7 physical ion-trap qubits.

To estimate the reliability for executing each of the basic-gates fault-tolerantly, a

lower-bound of 3.1 × 10−6 for the fault-tolerant threshold of the [[7, 1, 3]] code. This

value was derived by Metodi, et al. [166], by analysis of the ion-trap-based geometrical

layout of each logical qubit tile. The [[7, 1, 3]] code threshold value used in the current

research differs from the previously published estimate of 1.8 × 10−5 [167] due to

our more detailed account of the operations specific to the ion trap technology in the

implementation of each logical qubit [166]. These threshold results are combined with

Gottesman’s method for including qubit movement [168] to estimate the reliability

for each logical operation at levels 1 and 2.

Since each qubit in the [[7, 1, 3]] code moves an average of 10 steps during error

correction [166], we find that each level 1 gate has a failure probability of 3.2× 10−10

and each level 2 gate has a failure probability of 3.5×10−14. In our failure probability

estimates, we have assumed optimistic physical ion trap gate error probabilities of

10−7 per physical operation, consistent with recent ion-trap literature [169]. We also

determine the physical resources required for each logical qubit. Each level 1 qubit

requires 21 ion-trap qubits (7 data qubits and 14 ancilla to facilitate error correction)

and each level 2 qubit requires 21 level 1 qubits. Given that the duration of each

physical operation on an ion-trap device is currently on the order 10 µs [170, 171],
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Figure 38: QLA architecture for the TIM problem

the time required to complete a single error correction step is approximately 1.6 ms

at level 1 and 0.26 seconds at level 2.

The number of logical qubits Q directly maps to the number of computational tiles

required by the QLA, allowing us to estimate the size of the physical system. Similarly,

the number of time steps K maps directly to the time required to implement the

application since the duration of a single time step in the QLA architecture is defined

as the time required to perform error correction, as discussed in Ref. [144]. We define

an aggregated metric KQ called the problem size equal to K ×Q, which is an upper

bound on the total number of logical gates executed during the computation [172].

The inverse of the problem size, 1/KQ, is the maximum failure probability allowed

in the execution of a logical gate [172], which ensures that the algorithm completes

execution at least 36% of the time. Taking into consideration the failure probabilities

per logical gate, the maximum problem size KQ which can be implemented in the

QLA architecture is 3.1 × 109 at level 1 error correction, 3 × 1013 at level 2, and

2.8 × 1020 at level 3. Level 3 error correction is not described in the design of the

QLA architecture, however, its implementation is possible since a level 3 qubit is

simply a collection of level 2 qubits and the architecture design does not change. The

estimated failure probability for each level 3 logical gate is 3.6× 10−21.
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The parametersK and Q for the TIM problem were estimated in Sec. 6.3.2, where

Q was found to be 2N and K is O(2M) × SR. The fault-tolerant implementation

of the T gate, however, requires an auxiliary logical qubit prepared into the state

T |+ ⟩ for one time step followed by four time steps composed of H, CNOT, S, and

Measure gates [173], causing the value of K and Q to increase. Since many of the

gates in the Solovay-Kitaev sequences approximating the Rz gates are T gates, when

calculating K using Equation 47, the value of SR must take into consideration the

increased number of cycles for each T gate. All other basic gates are implemented

transversally and require only one time step.

The resulting functional layout for the QLA architecture for the TIM problem is

shown in Figure 38. The architecture consists of 4N logical qubit tiles. The tiles

labeled with Q1 through QN are the data tiles which hold the logical qubits used in

the N -qubit input register |Ψ⟩ and the “OUT” tile is for the output register. The tiles

labeled with C1 through CN−1 are the N − 1 qubit tiles for the cat state. The T |+ ⟩

tiles are for the preparation of the auxiliary states in the event that T gates are applied

on any of the data qubits. All tiles are specifically arranged as shown in Figure 38 in

order to minimize the communication required for each logical CNOT gate between

the control and target qubits. For example, when preparing the cat state using all Ci

tiles and the “OUT” tile, CNOT gates are required only between the “OUT” tile,

C1, and Cr. Similarly, C1 interacts via a CNOT gate only with C2, while C2 interacts

only with Q3, during the cat state preparation.

6.3.4 Resource estimates for the 1-D TIM problem

The resource requirements for implementing the 1-D TIM problem using the QLA

architecture are given in Figure 39, where we show a logarithmic plot of the number

of time steps K (calculated using Equation 47) as a function of the energy precision

M ≤ 20, assuming N = 100. The figure clearly shows K’s exponential dependence
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Figure 39: Numerical calculations for the number of logical cycles K (solid line) and
days of computation necessary assuming N = 100 spin TIM problem as a function of
the desired maximum precision M ≤ 20.

on M . The dependence of K on the number of spins (N) is negligible and appears

only in the k0 term in Equation 47 as O(1/N), as discussed in Sec. 6.3.2. In fact,

since Q = 4N , we expect very little increase in the value of the total problem size

KQ as N increases.

We see that for M ≤ 8 no error correction is required. This is because the required

reliability per gate of 1/KQ is still below the physical ion-trap gate reliability of

1× 10−7. Without error correction, the architecture is composed entirely of physical

qubits and all gates are physical gates. This means that each single-qubit Rz gate can

be implemented directly without the need to approximate it using the Solvay-Kitaev

theorem, resulting in SR = 1 in Equation 47, and the total number of qubits becomes

2N instead of 4N . For M ≥ 9 error correction is required, resulting in a sudden jump

in the number of timesteps at M = 9, with an additional scaling factor of O(M4)

in K due to SR’s dependence on M . In fact, K increases so quickly that at M = 9

that level 2 error correction is required instead of level 1. At M ≥ 18 level 3 error
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correction is required and while there is no increase in K, each time step is much

longer, so there is a jump in the number of days of computation. The Solovay-Kitaev

order [157] for M = 9 is three and increases to order five for M = 20.

6.3.5 Discussion of the resource estimates

Our resource estimates for the 1-D TIM problem indicate that multiple levels of error

correction, even for modest precision requirements, results in long computational

times. As shown in Figure 39, it takes longer than 100 days, even for M = 7, when

level 2 error correction is required. When level 3 error correction is required the

estimated time is greater than 7.5× 103 years.

The number of logical cycles K, which grows exponentially with M , contributes to

the long computational times. However, the primary factor contributing to the long

computational time is the time it takes to implement a single logical gate using error

correction. Presently, it is difficult to see how one might reduce the value of K short

of implementing a different approach for solving quantum simulation problems. On

the other hand, the logical gate time can be improved by implementing small changes

in three parameters: decreasing the physical gate time tp, increasing the threshold

failure probability pth, and decreasing the underlying physical failure probability p0.

The effect of these three parameters on the overall computational time for the 1-D

TIM problem is shown in Figure 40. The figure shows how the total time, in days,

for M = 18 varies as we improve each of the three parameters by a factor of 2 during

each of the 10 iterations shown. The starting values for each parameter in the figure

are 3.1 × 10−6 for pth, 10
−7 for p0 and 10 µs for tp. Decreasing the physical failure

probability and increasing the threshold values by a factor of 2 during each iteration

causes the number of days to decrease quadratically whenever lower error correction

level is required, otherwise the number of days remains constant from one iteration

to the next. A single change in the error correction level from level 3 to level 2 occurs
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Figure 40: The total computation time in days as we vary the physical cycle time tp
(square markers), physical failure probability p0 (starred markers), threshold failure
probability pth (diamond markers), and all together (circular markers) by a factor of
two over 10 iterations.

by increasing pth by a factor of 2 but there is no gain from additional increases in the

threshold alone. Decreasing only p0 by a factor of 512 yields a reduction of two levels

of error correction.

From this analysis, we see that in order to reach a computational time on the

order of 100 days with only level 1 error correction, we need to achieve parameter

values of pth = 1 × 10−4, p0 = 3 × 10−9, and tp = 300 ns, or better. This provides

goals for the improvement in the device technologies necessary for quantum simula-

tion. It should also be noted that these parameters are not completely independent

and improvements in one of them may result in improvements in the others. For ex-

ample, improving the physical failure probability may lead to better threshold failure

probability by allowing some of the underlying operations to be weighted against one

another. Similarly, improving the threshold failure probability may require choosing

a more efficient quantum error correcting code which could have a fundamentally

shorter logical time.
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6.4 Generalizing to higher spatial dimensions

The 1-D TIM ground state energy can be efficiently computed using classical com-

puting resources by taking advantage of the linear geometry of the spin configuration

and significantly reducing the effective state space to a polynomial in N [142]. A

2-D TIM with ferromagnetic and antiferromagnetic Ising couplings can be difficult

to solve due to spin frustration. Many reductions to this problem still yield an expo-

nential number of states with near degenerate energy [147]. As a result, the problem

size scales exponentially with the size of the lattice. In contrast, the implementation

of the quantum phase estimation circuit in Figure 34 is independent of the values of

Γi and Jij and is weakly dependent on the geometry of the N spin system. This sug-

gests that, given an approximation of the ground state, the TIM ground state energy

can be calculated for systems with random couplings [174] or higher dimensions with

similar computational resources. Consider, for example, the calculation of the ground

state energy for the 2-D Villain’s model [175] using the phase estimation circuit.

Villain’s model is a 2-D square lattice Ising model with N2 spin sites in which the

rows have all ferromagnetic coupling and the columns alternate between ferromagnetic

and antiferromagnetic. Each of the N2 sites in Villain’s model are represented by N2

qubits in a N × N grid. The only change to the circuit for the phase estimation

algorithm is the application of Uzz Ising interaction, which must be decomposed into

two successive steps. First the rows of spin states are treated as the 1-D TIM problem

in parallel, followed by the columns. Since the Uzz operations within each step are

done in parallel, we still require N/2 additional qubits for the cat-states. Given that

the remaining operations, including the Quantum Fourier Transform implementation,

remain the same, the increase in the number of time steps to implement an N2-spin

2-D TIM problem, compared to the 1-D TIM problem, is by less than a factor of two.
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Similarly, the increase in the resource requirements between a 1-D and a 3-D TIM

problem will be by less than a factor of three.

6.5 Comparison with factoring

Since the QLA architecture was initially evaluated in the context of Shor’s quantum

factoring algorithm [60], it would be interesting to consider how the resource require-

ments for implementing the TIM problem compare to those for implementing the

factoring algorithm. In this section, we compare the implementation of the two ap-

plications on the QLA architecture and highlight some important differences between

each application.

Even though both applications employ the phase estimation algorithm, there are

several important differences. First, the precision requirements are different. For

Shor’s quantum factoring algorithm, the precision M must scale linearly with the size

N of the N -bit number being factored [60], where N ≥ 1024 for modern cryptosys-

tems. For quantum simulations, the desired precision is independent of the system

size N, and the required M is small compared to factoring. The second difference lies

in the implementation cost of the repeated powers of the controlled-U(τ) gates for

each application. In Shor’s algorithm, the gate is defined as U(τ)|x⟩ = |ax mod N⟩.

Higher order powers of the unitary can be generated efficiently via modular exponen-

tiation [60]. The result is that the implementation of U(2mτ) requires 2m times the

number of gates used for U(τ). For generic quantum simulation problems, the imple-

mentation cost of U(2mτ) equals 2m times the cost of U(τ), because of the Trotter

parameter k. The implementation of the control unitary gates for quantum simu-

lation is not as efficient as that for the modular exponentiation unitary gates. The

third difference lies in the preparation of the initial N -qubit state |Ψ⟩. The prepa-

ration of |Ψ⟩ for the TIM problem by adiabatic evolution is comparable in resource
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Figure 41: Performance characteristics of different QLA-based quantum computers in
KQ space with fixed amount of physical resources. The binary precision for the Ising
problem of M = {5, 10, 15, 20, 25} corresponds to decimal precision of {1, 3, 4, 6, 7}
digits, respectively.

requirements to the phase estimation circuit. For Shor’s quantum factoring algorithm

|Ψ⟩ = |1⟩ in the computational basis and is easily prepared.

Finally, factoring integers large enough to be relevant for modern cryptanalysis

requires several orders of magnitude more logical qubits than the scale of quantum

simulation problems considered in this paper. At minimum, the factoring of an N -bit

number requires 2N + 3 qubits, using the same one-control qubit circuit given in

Figure 34 [176]. As shown later in this section, choosing to use only the minimum

number of qubits required for factoring leads to very high error correction overhead.

A more reasonable implementation of the factoring algorithm requires O(N2) number

of logical qubits, which corresponds to millions of logical qubits for factoring a 1024-

bit number. Quantum simulation problems require significantly less computational

space and the problems considered in this paper require less than 500 logical qubits.

We examine how these differences affect the relative size of the QLA architecture

required to implement each application. In particular, Figure 41 shows the perfor-

mance of QLA-based quantum computers in KQ space with fixed physical resources.
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Each horizontal line corresponds to the KQ limit for a QLA-based architecture mod-

eled for factoring a 1024-bit number (top-most horizontal dashed line), a 512-bit

number, a 128-bit number, and an 8-bit number, respectively. The physical resources

for each QLA-N quantum computer (where N = {1024, 512, 128, 8} bits) are deter-

mined by how many logical qubits at level 2 error correction are required to implement

the Quantum Carry Look-ahead Adder (QCLA) factoring circuit [177, 144], which

requires O(N2) logical qubits and O(N log2N) logical cycles. The plateaus in each

QLA-N line of Figure 41 represent using all of the qubits at a specific level of encod-

ing, with the top-most right-hand plateau representing level 1. Where the lines are

sloped, the model is that only a certain number of the lower level encoded qubits can

be used. Once this reaches the number of qubits that can be encoded at the next

level, the quantum computer is switched from encoding level L to L+ 1 by using all

the available level L qubits.

A QLA-N quantum computer is capable of executing an application using level L

encoded qubits if the application instance is mapped underneath the line representing

the computer at level L in Figure 41. Factoring a 1024-bit number, for example, falls

directly on the level 2 portion of the QLA-1024 line (see the square markers). Any-

thing above that line cannot be implemented with the QLA-1024 computer. Similarly,

factoring a 128-bit number maps under the QLA-128 line, but can be accomplished

using level 1 qubits. The TIM problem is mapped onto Figure 41 for N = 50, 100, 150

and several binary precision instances: M = {5, 10, 15, 20, 25}. As expected, factoring

requires many more logical qubits, however, both applications require similar levels

of error correction. A decimal precision of up to 4 digits of accuracy (M = 15) can be

reached by using a quantum computer capable of factoring an 8-bit number at level

2 error correction, however higher precision quickly requires level 3 error correction.

The resources for implementing quantum factoring with one-control-qubit were

calculated following the circuit in Figure 34, where the unitary gates are replaced
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with the unitary gates corresponding to modular exponentiation, as discussed in Ref.

[176]. The results are shown with the diamond-shaped markers in Figure 41. While

this particular implementation is the least expensive factoring network in terms of

logical qubits, the high precision requirement of M = O(N) makes this network very

expensive in terms of time steps. In fact, the number of time steps required pushes the

reliability requirements into level 4 error correction for factoring even modestly-sized

numbers.

6.6 Conclusion

In this paper, the TIM quantum simulation circuit was decomposed into fault-tolerant

operations and we estimated the circuit’s resource requirements and number of logical

cycles K as a function of the desired precision M in the estimate of the ground state

energy. Our resource estimates were based on the QLA architecture and underlying

technology parameters of trapped ions allowing us to estimate both K, as a function

of the level of the error correction level, and the total length of the computation in

real-time.

Our results indicate that even for small precision requirements K is large enough

to require error correction. The growth of K is due to its linear dependence on the

Trotter parameter k, which scales exponentially with the maximum desired precision

M . In order for K to scale polynomially with the precision, new quantum simula-

tion algorithms are required or systems must be chosen where the phase estimation

algorithm can be implemented without the Trotter formula. The linear dependence

of the number of time steps on k is due to the fact that Ux and the Uzz do not com-

mute. However, there are some physical systems, whose Hamiltonians are composed

of commuting terms, such as the nontransversal classical Ising model, which has a

solution to the partition function in two dimensions but is NP-Complete for higher

dimensions[178]. In those cases, Trotterization is unnecessary. In future work, we
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intend to generalize the calculations of the resource requirements to other physical

systems and consider different ways to implement the phase estimation algorithm

that limit its dependence on the Trotter formula.
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CHAPTER VII

CONCLUSION AND OUTLOOK

My thesis work has focused on demonstrating the necessary preliminary steps needed

to perform a single molecule, non-destructive spectroscopy technique, which is the

long term goal of our group. A proof of concept experiment was performed using

atomic ions to demonstrate the Sympathetic Heating Spectroscopy (SHS) technique,

which is described in Chapter 4. The technique is an incoherent analogue of quan-

tum logic spectroscopy, and works by transferring information from a spectroscopy

ion (44Ca+) to a control ion (40Ca+), where measurements can be performed using

fluorescence spectroscopy. We demonstrated that the spectrum of 44Ca+ could be

measured when as few as 1500 photons were scattered into 4π, modulating the flo-

rescence signal of the control ion. It is not yet clear if this method would be sensitive

enough to study molecular ions due to the rotational and vibrational degrees of free-

dom in molecules, which will limit the number of scattered photons.

Two other experimental issues that must be addressed before performing molecu-

lar ion spectroscopy are the detection/identification of dark molecular ions and sym-

pathetic cooling of a molecular ion to the ground state. The first of of these issues

may be addressed by performing a new type of mass spectrometry, which relies on

optical detection of the motional sideband of the trapped atomic ion. In this scheme,

the molecular and atomic ions are coupled through the normal modes of their mo-

tion, and the mode structure is superimposed on the S1/2-D5/2 optical qubit transi-

tion of calcium. The normal modes are a function of the mass, and the unknown

ion is identified based on the sideband shift, as described in Chapter 5. Since the

molecule is coupled to the atom through the normal modes, sideband cooling the atom
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should sympathetically cool the molecule. Results demonstrating sideband cooling of

an atomic ion were presented in Chapter 5 along with the necessary improvements

needed to translationally ground state cool a molecular ion. With the ability to cool

the molecular ion to the ground state, it is possible to perform quantum-SHS using

the resolved sidebands to detect the spectrum. These preliminary results solve some

of the experimental issues for the performance of SHS with a molecular ion. The

greatest challenge when performing molecular ion spectroscopy is scattering sufficient

photons to measure a spectrum. Our group, in collaboration with B. Odom’s group

at Northwestern University and D. Sherill’s group at the Georgia Institute of Technol-

ogy, has worked on theoretical calculations for identifying molecules to test SHS [59].

These molecules may also be good candidates for direct laser cooling of molecular

ions, which has never been achieved [59].

7.1 Future direction

This work has focused on developing techniques to study molecular ions. Other

groups have also started to use trapped atomic ions to sympathetically cool molecular

ions. Most of the previous work has focused on using large Coulomb crystals of

hundreds to thousands of atomic and molecular ions to perform applications in mass

spectrometry, chemistry, and spectroscopy, which suggests that using these techniques

are of scientific interest. For the molecular physicists and physical chemists using these

techniques, the true potential is unknown because we are still in the development

stages.

Reactive scattering experiments at lower temperatures (µ K) could lead to molec-

ular ion quantum logic experiments. Our lab is currently pursuing sympathetically

ground state cooling a molecular ion as a means to perform quantum logic experi-

ments. Another area of interest is the ability to produce a translationally cold molec-

ular ion while also having control of the internal (rovibrational) degrees of freedom.
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This is necessary for performing state-selective low-temperature reactive-collision

studies [87]. A few groups have demonstrated the ability to control the rotational

and vibrational degrees of freedom using optical pumping techniques, essentially per-

forming laser rotational cooling [55, 56]. Alternatively, rovibrational state selectivity

can be achieved by using state-selective photoionization. Resonance-enhanced multi-

photon-ionization techniques are highly selective of the final state of the ion, and

pulsed field ionization can be even more selective [85, 86]. These techniques could

be coupled to experiments using sympathetically cooled, trapped molecular ions to

perform many experiments in a new temperature regime.

For frequency-metrology experiments with molecular ions it is important to use a

non-destructive technique to perform multiple measurements on the same ion. It has

been our focus to lay the ground work for this type of experimental protocol that has

been demonstrated at NIST using atomic species [38, 39, 42]. It has proven to be very

challenging to sympathetically ground state cool a molecular ion and to repeatedly

prepare the molecular ion into the same internal quantum state. Although this type

of experiment is difficult, it may be within reach for our lab in the near future. These

types of frequency-metrology experiments with molecular ions will also allow quantum

theoretical chemists to test new methods leading to more accurate computation of

molecular systems. Additionally, these types of metrology experiments have been

proposed to test variations in the ratio of the electron and proton masses [179, 180].

I have mentioned a few directions this field is moving in and it should be noted

that there are many possible applications of using cold molecular ions to further

understand physics and chemistry. Ultracold atoms have made a dramatic impact in

science from the conformation of the Bose-Einstein Condensate to the use of ultracold

atoms for quantum computation. Ultracold atoms have also had a large impact on

society with the development of accurate atomic clocks, which are used in global
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positioning systems. It is exciting to theorize what impact the new field of ultracold

chemistry will have on both science and technology.
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