
Data-Driven Live Coding with DataToMusic API

Takahiko Tsuchiya & Jason Freeman
Georgia Institute of Technology
Center For Music Technology

840 McMillan St., Atlanta, GA 30318
takahiko@gatech.edu

jason.freeman@gatech.edu

Lee W. Lerner
Georgia Institute of Technology
Georgia Tech Research Institute

250 14th St. NW, Atlanta, GA 30318
lee.lerner@gatech.edu

ABSTRACT
Creating interactive audio applications for web browsers
often involves challenges such as time synchronization
between non-audio and audio events within thread
constraints and format-dependent mapping of data to
synthesis parameters. In this paper, we describe a unique
approach for these issues with a data-driven symbolic
music application programming interface (API) for rapid
and interactive development. We introduce DataToMusic
(DTM) API, a data-sonification tool set for web browsers
that utilizes the Web Audio API1 as the primary means of
audio rendering. The paper demonstrates the possibility of
processing and sequencing audio events at the
audio-sample level by combining various features of the
Web Audio API, without relying on the
ScriptProcessorNode, which is currently under a redesign.
We implemented an audio event system in the clock and
synthesizer classes in the DTM API, in addition to a
modular audio effect structure and a flexible
data-to-parameter mapping interface. For complex
real-time configuration and sequencing, we also present a
model system for creating reusable functions with a
data-agnostic interface and symbolic musical
transformations. Using these tools, we aim to create a
seamless connection between high-level (musical structure)
and low-level (sample rate) processing in the context of
real-time data sonification.

Keywords
Web Audio API, Data Sonification, Sample-Level
Modulation, Real-Time Clock, Live Coding

1. INTRODUCTION
In recent years, web browsers have become a versatile

platform for interactive multimedia applications. Many
web pages, for example, integrate various data sources and
real-time visual rendering to create interactive data

1http://www.w3.org/TR/webaudio/

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2016, April 4–6, 2016, Atlanta, USA

c© 2016 Copyright held by the owner/author(s).

visualizations2. Similar to visualization, data sonification,
the use of non-speech audio to represent information [14],
is a widely explored area for analytics, communication, and
other purposes. Data sonification is used in both practical
and artistic applications. In the latter, musicians have
created algorithmic compositions and live performances
with non-musical information, such as weather and sensor
input [7, 8]. In recent years, more and more applications of
data sonification have been deployed on-line for web
browsers.

In a previous paper, we introduced the DataToMusic
(DTM) application programming interface (API), a
JavaScript tool set for data sonification for web browsers
[13]. In the paper, we discussed the effectiveness of
common musical structures and expressions for
representing multi-dimensional data. Using the DTM API,
we explored possibilities in data-agnostic models that can
flexibly translate unknown data input to musical output.
We created such algorithms by combining various analysis
and transformation tools of the API as well as rendering
methods including real-time notation with Guido [5] and
audio synthesis and playback using the Web Audio API.
We also developed a live coding [1] capability in the DTM
API, allowing us to use it in a musical performance in
addition to interactive development within a web browser.
Live coding benefits performers and developers in data
sonification in many ways. For example, it lets us
experiment with the design of musical algorithms as we
process a large data set or a data stream in real time.
With immediate feedback on the design changes, it creates
a “continuity between the old and the new behavior” [10]
that enables fine tuning of designs without interrupting the
musical flow in time and rhythm. Live coding also requires
a robust modular framework in which we can safely
connect and disconnect modules, facilitating the
reconfiguration of a complex application easier.

Developing a real-time system capable of live coding,
however, involves technical challenges. For instance,
creating a precise and fail-safe clock in single-thread
JavaScript is very difficult when we want to transform and
map data to audio, automate synthesis parameters, and
sequence audio events all in a synchronized manner. In
addition, creating an interface for a simple
data-to-parameter mapping can be challenging as we work
with high-level sequencing as well as low-level audio
processing that the Web Audio is capable of. In this paper,

2For example, http://www.nytimes.com/interactive/2015/
us/year-in-interactive-storytelling.html

we discuss a runtime data-driven approach for audio
synthesis and performance that takes advantage of the
functionalities of Web Audio and addresses some of its
limitations. This paper will describe the design problems
and propose solutions for them in the context of
implementations of the modules of our API. In the
following section, we will review the literature and compare
prior approaches to our approach. Section three introduces
the DataToMusic API, focusing on both the
implementations of synthesizer and clock modules and the
adaptive musical model, which may be applied to symbolic
as well as timbre-level transformations.

2. RELATED WORK
In the last few decades, interactive and real-time coding

in native environments has become increasingly popular
among multimedia artists and developers with popular tool
sets such as Max/MSP3, SuperCollider4, Chuck5, and
many more. Compared to native tool sets, web tool sets
often offer less comprehensive but more specialized or
characteristic functionalities, and bring higher accessibility
for general users and developers. For example, Gibber is an
audio-visual live-coding environment [9] with a high
flexibility for parameter mapping and automation. It takes
an “everything is a sequence” stance, with which enables
easy sequencing of any property or method of any Gibber
object6. Using Gibber’s audio engine Gibberish API7,
BRAID allows us to interactively construct musical
instruments with graphical interfaces and to quick
configure the synthesizer using an in-line code editor [12].
Another audio live-coding application is Wavepot8, which
automatically evaluates the changes of code at a musical
interval to provide real-time and incremental feedback for
design changes. Lissajous9 allows multi-track musical
sequencing with rapid chainable methods, utilizing the
browser JavaScript console for read-eval-print-loop (REPL)
based live coding. Another web API capable of live coding
is EarSketch, an on-line programming education system
based on music remixing [6]. In EarSketch, while the audio
graph is constructed at user-script compilation, it supports
live coding in the form of quick re-compilation of audio
tracks during a playback. This live-coding approach is
effective for the real-time manipulation of audio events
with a minimum downtime between the events.

These different applications use or combine runtime
development paradigms such as just-in-time (JIT)
compilation [10], REPL, or selective line evaluation,
functional programming that allows the dynamic creation
and handling of functionalities and algorithms as well as
the automatic update of the audio graph. Collins suggests
the dynamic restructuring of the audio graph as the main
principle of audio live coding, as found in Max/MSP and
SuperCollider [1]. The DTM API extends this idea with
real-time data processing and mapping for creating

3https://cycling74.com/
4http://supercollider.github.io/
5http://chuck.cs.princeton.edu/
6https://www.gitbook.com/book/bigbadotis/
gibber-user-manual/details
7http://www.charlie-roberts.com/gibberish/
8http://wavepot.com/
9http://lissajousjs.com/

complex audio expressions using JIT compilation as well as
intervalic evaluation of code.

3. DATATOMUSIC API

3.1 Overview
DataToMusic API is a JavaScript library for

data-agnostic sonification in web browsers. We originally
developed this tool set to experiment with symbolic
musical structures and create reusable models for varying
data formats. When creating an application of sonification,
our dataset or the data stream usually has a unique
dimensionality, cardinality, types, and value ranges.
Integrating a specific data format can lead to the design of
an audio- and data-mapping scheme that is not easily
reusable; and its audio or musical expressivity may also
depend on particular data.

To address such problems, researchers of sonification
have proposed reusable design frameworks such as
model-based sonification (MBS) [4] and parameter
mapping sonification (PMSon) [3]. MBS offers a high
interactivity and generalizability with acoustic modeling.
Nonetheless, it can be computationally demanding for
web-browser-based implementations, and it is also mainly
specialized in timbral rather than musical expressivity.
PMSon recommends strategies for generalized data
preprocessing, analysis, and mapping procedures for
data-to-sound synthesis. While this technique is widely
accepted, the mapping of a PMSon system may not be
compatible with various data sources.

Although DTM was inspired by PMSon in the audio
synthesis domain, it focuses on creating a model structure
that adaptively maps data input to parameters of a
musical structure, providing uniform mapping interface
similar to the “flowboxes” of UrSound proposed by Essl [2].
The following code example shows the default adaptive
mapping models of DTM, which take a single-dimensional
array of any type, convert the type (e.g., for a character
array, it may be encoded into a numerical representation
such as bag-of-words vector, ordered by the frequency),
and normalize, while preserving the domain range of the
input and re-sampling into a target length if specified
(Code Example 1).

// Default mapping models that convert an
input array (of any type) into a
normalized numeric array.

uni = dtm.model(’unipolar ’); // 0 to 1
bi = dtm.model(’bipolar ’); // −1 to 1

// Create a synthesizer object
s = dtm.synth ().freq (440).play ()

// Synth amp modulated with ’hello ’
s.amp(uni(’hello ’).fit (16, ’linear ’))

// Pan modulated with a linear envelope
s.pan(bi ([1 ,3 ,2 ,5]).fit (1000))

// Random values with the length of 1024.
random = dtm.gen(’random ’).size (1024) ;
s. wavetable (bi(random));

Code Example 1: Adaptive Mapping Models

Table 1: The Main Modules in DTM
Data Real-time Model Output

Structure Operations Abstracts
dtm.data, dtm.master, dtm.model, dtm.synth,
dtm.array dtm.clock dtm.instr dtm.osc,
dtm.gen dtm.guido

For creating an adaptive mapping interface,
transformation functions, and other real-time processing
features, the DTM API includes various modules
categorized as follows: data structures, helper functions,
real-time event handlers, model abstracts, and output and
renderers (Table 1). In this paper, we mainly focus on the
dtm.synth (output) and dtm.clock (event handler) modules
that together integrate the Web Audio API in a novel
approach.

3.2 Synthesizer Implementation
In designing and developing the synthesizer class, we

examined a few unconventional approaches to achieve a
balance among the ease of data mapping, the modularity of
audio effects, and the sample-level operation on the audio
event with high-resolution automation and sequencing.
The dtm.synth module is essentially an interface to the
Web Audio API that offers real-time audio synthesis and a
flexible audio graph environment. Writing out
instantiations and connections of nodes directly in Web
Audio, however, can become quite verbose and is not
suitable for rapid development or live coding scenarios.
The dtm.synth instead provides simple chainable methods
for constructing as well as reordering audio nodes (which
may or may not consist of the default Web Audio nodes
such as a DelayNode) by simply moving the insertion point
of a method call (see Code Example 2). Similar techniques
of dynamic construction of an audio effect chain are found
in other Web Audio applications such as EarSketch.

// Create a note
var s = dtm.synth ().play ()

// Set the wavetable (a square wave)
s. wavetable ([−1,1])
// Pre−rendering delay effect
s.delay (0.3)
// Another delay for comb−filtering
s.delay (0.9 , 0.001 , 0.8)
// A low pass filter .
s.lpf (2000)
// Post−rendering sample−level effect
s. bitquantize (8)
// Post−rendering LPF effect
s.lpf.post (5000 , 1)
// Panning only applied at the post−

rendering stage
s.pan(−0.2)

Code Example 2: Chaining Audio Effects

In the dtm.synth, we can apply custom effects to an
audio event at the sample level without the
ScriptProcessorNode while operating with data in “real
time”. This operation is done by utilizing the automation
methods such as the setValueCurveAtTime and multiple
offline audio contexts of the Web Audio. The basic
framework of audio synthesis and parameter mapping in

Figure 1: Audio Event Overview

the dtm.synth consists of two distinct phases: an off-line
rendering of audio events followed by a real-time playback
and processing of the rendered clip (see Figure 1). In the
first phase, the basic parameters such as the wavetable,
amplitude, and frequency are created with default values in
an instance of the OfflineAudioContext. The off-line
events, including the pre-rendering effect chain, are
processed with parameter automations, and then passed to
a new BufferSourceNode for real-time playback. The
pre-rendering effects can be such as a delay, a filter, or a
ring modulator and a frequency modulator that utilize
audio-rate (or control-rate depending on the parameter of
an AudioNode) modulation of the setValueCurveAtTime
function.

In the second stage, post-rendering audio effects are
applied to the rendered buffer. The post-rendering effects
may include the similar types from the pre-rendering
effects, but also adds sample-level operations such as a bit
quantizer and wave shapers that directly modify the
rendered buffer. This structure, therefore, allows us to
apply custom audio effects either in real time or an
instantaneous manner. The two-fold rendering is especially
effective with wavetable synthesis, in which one may want
to apply sample-level effects to the wavetable itself (that is
typically very short) as well as to the resulting audio from
parameter automations with a longer duration.

Another design challenge for the dtm.synth was
interfacing the data input to the Web Audio synthesis and
parameter curves. In our previous implementation of the
dtm.synth, the audio synthesis parameters, such as an
oscillator’s frequency (a “number” type), a wavetable (a
PeriodicWave generator using a numerical array), and an
amplitude envelope ([A, D, S, R]), all accepted
non-uniform data structures. Many of the parameters had
a single-value interface, and they were automated with the
setTargetAtTime method triggered by the real-time clock.
With this interface, one could take some values from a data
source to modulate various parameters, but it lacked in
flexibility of mapping any length of sequence to a
parameter, or synthesizing and modulating at a higher rate

and with complex curves. In addition, the timing of
real-time clock for updating parameters was also not
reliable enough for precise sequencing. To address these
issues, we took a completely new approach for parameter
mapping and automation. In the new version, the
dtm.synth uses a variable-length Float32Array for every
modulatable parameter, including the wavetable for the
oscillator. Compared to the previous single-value mapping
interface (which still can be done by using a single-value
array), this allows more direct mapping of data points to
time-ordered events, close to linear value-to-value mapping.
One can process complex curves with a large number of
data points (e.g., 10,000 or more) using the dtm.array or
generate simple shapes as a LFO with a few data points
and map to any parameter.

// Create a synth object
var s = dtm.synth ().play ();

// Create a wavetable with array generator
var someSteps = dtm.gen(’noise ’).size (10);

// Stretch the wavetable into the length
of 3000 , using the cubic interpolation

s. wavetable (someSteps .fit (3000 , ’cubic ’));

// Generate a pattern , rescale and
quantize

var melody = dtm.gen(’fibonacci ’)
.size (10).range (60, 90).round ();

// Assign to the MIDI pitch with some
transformation

s. notenum (melody . repeat (2). mirror ());

// Set the base amplitude
s.amp (0.5);

// Modulate the base amplitude with
repeating ramps

s.amp.mult(dtm.gen(’decay ’)
. repeat (melody .len))

Code Example 3: Mapping Arrays to the dtm.synth

For automating parameters in real-time, we tested and
implemented two approaches: one with a single call of the
setValueCurveAtTime, and the other with the
setValueAtTime called for every data point. The
setValueCurveAtTime method is beneficial in several ways;
for example, it automatically fits an array to the target
length, and it can modulate a parameter at a higher rate,
as described above. It has, however, limitations in the
current browser implementations in terms of the
interpolation method and synchronization of array data
points to time. For the value interpolation, as opposed to a
linear interpolation specified in the API documentation, it
only applies a step interpolation to the array. The resulting
stepped value curve also is shifted in time when applied,
causing an unwanted rhythmic offset.10 The
setValueAtTime method, in contrast, works more reliably
for time synchronization. Therefore, by default, the

10In addition to these limitations, the audio-rate modulation
of the setValueCurveAtTime does not work well in FireFox.
These issues were present in Chrome, FireFox, and Safari in
the late 2015. As of February, 2016, Chrome has the linear
interpolation behavior implemented.

dtm.synth first tries to use the setValueAtTime. As both
automation methods do not provide a linear interpolation
for all browsers, it is expected for the user of the DTM
API to utilize the fit and stretch functions of the dtm.array
when mapping it to a parameter of the dtm.synth. These
functions re-sample the input array into the target length
with interpolation methods such as linear, step, cubic,
fill-zeros, and many other. With a relatively lower number
of data points (up to a few thousand per second), the
setValueAtTime method works reliably and precisely.
However, when the number of data points is larger or even
exceeding the duration of the audio event in samples, a
large number of the setValueAtTime being scheduled in
the process starts to cause delays in the main and the
audio threads. In such cases, the dtm.synth automatically
switches at a certain threshold to use the
setValueCurveAtTime method for less computation but
with less timing accuracy.

3.3 Clock Implementation
When programming real-time musical algorithms and

applications, a clock generator is likely to be essential for
playing musical notes and processing other events in a
synchronized manner. The DTM API, in fact, heavily
relies on clocks for audio synthesis, creating rhythmic
structures, processing data such as streaming and
block-wise querying, and live-coding operations. Despite
the many attempts to implement a precise and robust
clock in browser JavaScript, implementation has always
been difficult with the limitation of single-thread
operation, which may randomly delay a clock callback
because of other heavy computations such as rendering of
visual elements. We try to implement a clock system that
minimizes such artifacts on the audio synthesis and the
rhythmic performance of audio events by utilizing the Web
Audio schedulers and error compensation with a lookahead
time for the dtm.synth.

In our earlier implementation of the DTM API, we
experimented with the behaviors of callback clocks with
the setInterval, the ScriptProcessorNode, the onended
EventHandler with audio source nodes, and the
requestAnimationFrame method. As discussed by Wilson
[15], the delay caused by the main-thread operations is
highly unpredictable, directly affecting the callback timing.
Even using the audio-thread timer and callback with the
Web Audio functions such as the BufferSourceNode,
OscillatorNode, and ScriptProcessorNode, the main-thread
delays cannot be isolated, and it adds a complication of
correcting the timing gap caused by buffer-based audio
processing. For implementing a re-schedulable clock with
the Web Audio, the most common approach may be to
combine a lower-rate main-thread clock for
short-segmented scheduling and a higher-rate and
higher-precision audio-thread scheduler for Web Audio
events [15, 11], with optional overlaps for overcoming
unpredictable delays on the main thread. This technique is
effective in managing tempo changes in real time, but its
application is basically limited to Web Audio events as we
cannot precisely synchronize main-thread functions with
the Web Audio events. In order to synchronize the audio
events, rhythmic structure generated from data, and
constant array processing, we employed a similar approach
to the above-mentioned twofold clocks with additional

functions such as process deferring and lookahead delay for
a timing error compensation, master-slave synchronization,
and the callback management for live coding. For clock
synchronization, the real-time master clock runs at the
highest resolution for a given tempo, and the tick of a slave
clock is triggered at a specified lower-rate. This allows
multiple instances of dtm.clock with different rates to be
synchronized. In the musical context, a synchronized clock
is typically used at a fixed rate between a quarter note to a
few measures with the dtm.synth audio events. In this
rather large interval, a precisely-timed sequence of Web
Audio events can be generated using a single note event or
a set of notes with specified delays. This callback clock is
also used in other output formats such as real-time musical
notation and note list, as shown in Section 3.1.

As mentioned above, the dtm.synth utilizes the
lookahead value of the dtm.clock for error compensation.
The API connects these objects in an automatic and
context-aware manner. That is, once a dtm.synth object is
instantiated within a dtm.clock’s callback function, the
synth object locates the parent clock in the context11 and
retrieves its look-ahead value as well as the tick interval.
From these, the dtm.synth calculates the starting time of
the audio processes and the event duration for parameter
modulations (see Code Example 4). In particular, the
lookahead period is used to defer the first off-line buffer
rendering until all the array operations (and other heavy
computations) are resolved, then the second on-line
rendering is played at a delayed timing using the specified
lookahead value. Besides this automatic time adjustment,
it is also possible to separate the clock and synth and
assign an external clock used in another synth object to
synchronize the audio events together.

// Generate a decaying envelope with the
length of 1000.

var env = dtm.gen(’decay ’).size (1000) ;

dtm.clock(function () {
// Note duration set to 0.25 seconds .
dtm.synth ().play ()

. notenum (60).amp(env);

// Duration may also be manually
specified .

dtm.synth ().play ().dur (2.0)
. notenum (67).amp(env);

// Set the clock behavior
}). lookahead (0.1).bpm (120).time (1/8);

Code Example 4: Automatic Duration and Lookahead

In the context of live coding, the clock may be used for
periodically (re-)evaluating the entire or a selected part of a
script as well as managing the registered callback functions.
It keeps track of named and anonymous callback functions
using either the function name or the whole (stringified)
structure of the object, detects live modification in them,
and selectively retains, updates, or clears them. This helps
prevent registering the old and new versions of a callback
function separately.

11This is done by using the Function.caller.arguments
property.

3.4 Live Coding and Mapping Complex
Sequences

The dtm.synth and dtm.clock modules, therefore, allow a
complex sequence of audio events constructed in (almost)
real time with a sample-rate parameter modulation by
data. A parameter curve may contain values from a single
data point to thousands of data points that can be time
scaled dynamically with the dtm.array transformation
functions (i.e., using up or down sampling with various
interpolation methods), which then is fit into the total
sample length of the audio event (Code Example 5).

// Load an offline data set.
dtm.data(’sample .csv ’, function (d) {

// Get a column by the index.
var data = d.col (0);

// Create an exponentially decaying
curve from 1 to 0

var env = dtm.array ([1 ,0])
.fit (1000 , ’linear ’)
. expcurve (100);

// Random jitter between 0 to 0.3 of the
length 100

var sus = dtm.gen(’random ’, 0.3)
.size (8).fit (100 , ’cubic ’);

env. concat (sus);

var s = dtm.synth ().play ().amp(env)

// clone () allows multiple edits from
the same source

s. wavetable (data.clone ().range(−1,1))
s.freq(data.clone ().range (1000 , 8000)

. logcurve (200).fit (16))
// Downsample into the length of 16 (a

typical musical beat length).
s. bitquantize (data.clone ().range (16 ,2))

var sin = dtm.gen(’sine ’).size (32);
s.lpf(sin.range (200 ,2000). logcurve (30));

});

Code Example 5: Mapping Data to a dtm.synth

One concern, however, is that the time scale of the
parameter curve is always relative to the duration of an
audio event (set by the clock interval or the duration
parameter of the dtm.synth), which may require the user’s
attention on the resulting speed of modulation for the
temporal or rhythmic alignment in a musical structure.
Another potential inconvenience is that the dtm.synth
expects a certain range of numerical values for each
parameter. A data input needs to be, therefore, converted
accordingly to the input data type, range, distribution, as
well as the synth parameter ranges. Such requirements of
appropriating data format for various parameters is
sometimes not ideal for live-coding situations, as it slows
down the design process, data (re)mapping, and may also
cause semantic errors. We can automate the mapping
process by using the previously-mentioned model system as
a simple scaler and type converter (Code Example 6).

// Create a model object
var freqModel = dtm.model(’array ’)

// Specify the type conversion method
. toNumeric (’histogram ’)
// Modify the preset behavior
. domain (function (a) {

freqModel . params . domain = a.get(’
extent ’);

})
// Default behavior : freqModel (data)
. output (function (a, c) {

return a.range (20, 200)
. logcurve (30)
.fit(c.get(’div ’));

});

// Create a self−repeating note
dtm.synth ().play (). repeat ()

.freq(freqModel (data.block (100)));

Code Example 6: Creating a Model for Synth Parameter

Lastly, although a single audio event with the dtm.synth
may be able to create a rich musical expression using the
data-driven parameter automation, one can create
furthermore dynamic expressions with rhythmic, melodic,
or harmonic sequences with audio events. Code Example 7
shows a simple sequencing model for making the specific
beats to be delayed for creating a swing effect.

var swing = dtm.model ()
// Modify the default method call

behavior
. output (function (clock) {

if (clock.get(’beat ’) % 2 === 0) {
// No delay for the down beats
return 0;

} else {
// Delay the up beats by 15%
return clock.get(’interval ’) ∗ 0.15;

}
});

dtm.clock(function (c) {
var delay = swing(c);
// Delay the playback timing
dtm.synth ().play (). offset (delay);

});

Code Example 7: Creating a Swing-Rhythm Model

Another approach for rhythmic sequencing is to modulate
the interval and duration of self-repeating synth notes.

// Create a self−repeating note
dtm.synth ().play ().rep(Infinity)

.amp(dtm.gen(’decay ’). expcurve (10))

// Each note ’s duration is randomized
.dur(dtm.gen(’random ’ ,0 ,0.5).size (8))

// The onset intervals alternates
between these values

. interval ([0.5 , 0.3])

// Each note can contain a complex pitch
modulation

. notenum (data.fit (16))

Code Example 8: Rhythmic Sequencing Without Clock

4. CONCLUSION
We presented our approaches for implementing a

data-driven interface for a Web-Audio-based synthesizer,
as well as a real-time clock system for controlling audio
and non-audio events with fewer timing errors. In addition,
using the sample-level mapping and musical structure
models, we described possibilities of complex musical
expressions in both symbolic and timbre-level time scales.
We experimented with these features in the DataToMusic
API, a data sonification library for web browsers capable of
live coding. The DataToMusic API is publicly available as
a GitHub repository12, and as a demo application for
on-line live coding13.

5. REFERENCES
[1] N. Collins. Generative music and laptop performance.

Contemporary Music Review, 22(4):67–79, 2003.

[2] G. Essl. Ursound: Live Patching Of Audio And
Multimedia Using A Multi-Rate Normed Single-Stream
Data-Flow Engine. Ann Arbor, MI: MPublishing,
University of Michigan Library, 2010.

[3] F. Grond and J. Berger. Parameter mapping
sonification. The sonification handbook, pages 363–397,
2011.

[4] T. Hermann. Model-based sonification. The
Sonification Handbook, pages 399–427, 2011.

[5] H. H. Hoos, K. A. Hamel, K. Renz, and J. Kilian. The
GUIDO Notation Format: A Novel Approach for
Adequately Representing Score-Level Music. 1998.

[6] A. Mahadevan, J. Freeman, B. Magerko, and J. C.
Martinez. EarSketch: Teaching computational music
remixing in an online Web Audio based learning
environment. 2015.

[7] A. Polli. Atmospherics/Weatherworks: A
Multi-Channel Storm Sonification Project. In ICAD,
2004.

[8] T. Riley and K. Quartet. Sun Rings, 2002.

[9] C. Roberts and J. Kuchera-Morin. Gibber: Live coding
audio in the browser. Ann Arbor, MI: MPublishing,
University of Michigan Library, 2012.

[10] J. Rohrhuber, A. de Campo, and R. Wieser.
Algorithms today - Notes on language design for just
in time programming. context, 1:291, 2005.

[11] N. Schnell, V. Saiz, K. Barkati, and S. Goldszmidt. Of
Time Engines and Masters. 2015.

[12] B. Taylor and J. Allison. BRAID: A Web Audio
Instrument Builder with Embedded Code Blocks.
2015.

[13] T. Tsuchiya, J. Freeman, and L. W. Lerner.
Data-to-Music API: Real-Time Data-Agnostic
Sonification with Musical Structure Models. Proc. of
the 21st Int. Conf. on Auditory Display, 2015.

[14] B. N. Walker and M. A. Nees. Theory of Sonification.
In The Sonification Handbook. Berlin, 2011.

[15] C. Wilson. A tale of two clocks: Scheduling Web audio
with precision. 2013.

12https://github.com/GTCMT/DataToMusicAPI
13http://dtmdemo.herokuapp.com/

