# Final report for the project# 2106ANQ, "Sixtron Advanced Materials/Quebec, Cananda

Optimizing the silane-free silicon carbon nitride  $(SiC_xN_y) \\ antireflection \ coating$ 

Moon Hee Kang, Dr. Ajeet Rohatgi, Dr. Abasifreke Ebong, Brian Rounsaville

# **Table of Contents**

$$\label{eq:section} \begin{split} & \text{Introduction} \\ & \text{Section 1: Property of SiC}_xN_y \text{ film} \\ & \text{Section 2: SiC}_xN_y \text{ AR coated solar cell fabrication} \\ & \text{Section 3: LID reduction on SiC}_xN_y \text{ coated solar cell} \\ & \text{Section 4: Low illumination performance of SiC}_xN_y \text{ coated solar cell} \end{split}$$

# Introduction

Plasma enhanced chemical vapor deposition (PECVD) silicon nitride  $(SiN_x)$  films are widely used for commercial silicon solar cells. SiN<sub>x</sub> films provide excellent surface passivation on the phosphorus doped emitters because of their high positive fixed charge density, which causes an inversion or accumulation layer in p-type or n-type Si under the SiN<sub>x</sub>. The optimum refractive index of the AR coating layer for an encapsulated solar cell is about 2.4, which is achievable by using silicon rich SiN<sub>x</sub> films. However, such films absorb significant short wavelengths photons and decrease the quantum efficiency. Glunz et. al. and Martin et al reported on PECVD silicon carbide (SiC<sub>x</sub>) films for surface passivation of crystalline silicon. Surface recombination velocity (SRV) less than 30 cm/s at the  $SiC_x$  / Si interface have been reported.  $SiC_x$  films also have a high refractive index (more than 2.3), suggesting that  $SiC_x$  may be an improvement over PECVD deposited  $SiN_x$ . Deposition of  $SiN_x$  and  $SiC_x$  films typically require dangerous pyrophoric silane (SiH<sub>4</sub>), which is a significant inhibiting factor in the cost reduction economies-of-scale strategies employed by silicon PV plants. To eliminate the need for storage and handling of silane, SiXtron Advanced Materials has developed a silane-free polymeric solid or liquid source process and aparatus. This novel source contains silicon, carbon, and hydrogen; therefore, silicon carbon nitride film  $(SiC_xN_y)$  with different compositions can be obtained by adjusting source composition during the deposition or by changing the NH<sub>3</sub> flow rate. The new source can be adapted to the existing PECVD production line without any modification. Complete solar cells are fabricated with SiC<sub>x</sub>N<sub>y</sub> film and compared with the conventional SiN<sub>x</sub> coated cells.

# **Work Summary**

GIT has completed the following:

- Chemical, optical, and electrical property analysis
- Solar cell fabrication on  $45 80 \Omega/sq$  phosphorus emitter
- Light induced degradation measurement
- Low illumination performance of SiC<sub>x</sub>N<sub>y</sub> coated solar cell

# Chemical, optical, and electrical property analysis

GIT has performed SiC<sub>x</sub>N<sub>y</sub> film analysis:

- XPS (X-ray photoelectron spectroscopy) and Elastic Recoil Detection (ERD) for chemical composition
- Woollam variable angle spectroscopic ellipsometer for optical property
- Sinton's photoconductance tool and surface charge analyzer for electrical property

# Solar cell fabrication

• Fabricated 5 or 6 inch industrialized full aluminum BSF solar cells using 1 or 2  $\Omega$ cm boron doped Cz wafers with silane SiN<sub>x</sub> or silane-free SiC<sub>x</sub>N<sub>y</sub> AR coating

#### Light induced degradation (LID) measurement

• Reduced LID was observed on SiC<sub>x</sub>N<sub>y</sub> coated solar cells

# Low illumination performance of SiC<sub>x</sub>N<sub>y</sub> coated solar cell

- SiCxNy coated solar cells have extremely high shunt resistance
- Small efficiency degradation on low illumination due to its high shunt resistance

# Section 1: Property of SiC<sub>x</sub>N<sub>y</sub> film

Chemical composition, optical and electrical properties analysis has performed to evaluate the  $SiC_xN_y$  film as for antireflection coating and passivation material.

#### **Chemical composition**



Figure 1.1. Chemical composition (a) and hydrogen concentration (b) of the dielectric films as a function of  $NH_3$  flow rate. The flow rate of  $SiH_4$  (300sccm) and gas from the solid source (300sccm) was fixed.

Figure 1.1 shows Si/C/N/O chemical composition of  $SiC_xN_y$  films and H content as a function of NH<sub>3</sub> gas flow rate during the film deposition. Other deposition parameters including the flow rate of solid polymer gas source (300 sccm), deposition temperature (425 °C), pressure (2 Torr), and plasma power (150 W) were fixed for all the depositions in this work. Figure 1.1(a) shows no carbon in the  $SiN_x$  film formed with silane gas. However, for films deposited with the new source, nitrogen composition increases in the film with increase in NH<sub>3</sub> gas flow rate while carbon contents decreases. Figure 1.1(b) shows higher hydrogen content in SiN<sub>x</sub> films than the SiC<sub>x</sub>N<sub>y</sub> films deposited with the 3000 sccm ammonia flow rate. In general, the hydrogen composition decreases with increasing NH<sub>3</sub> gas flow rate for the  $SiC_xN_y$  films. Note, although the  $SiN_x$  films show higher hydrogen content at the same NH<sub>3</sub> flow rate, SiC<sub>x</sub>N<sub>y</sub> films supply enough hydrogen to passivate defects in the bulk and Si/SiC<sub>x</sub>N<sub>y</sub> interface during the contact firing. Note, the silicon fraction in the dielectric SiC<sub>x</sub>N<sub>y</sub> films is constant (around 31%), irrespective of the NH<sub>3</sub> gas flow rate. Thus, by adjusting the  $NH_3$  gas flow rate the carbon composition changes without affecting the silicon composition. Therefore the NH<sub>3</sub> flow rate serves as a tool to adjust the chemical composition of the SiC<sub>x</sub>N<sub>y</sub> film to approach that of SiN<sub>x</sub> formed with SiH<sub>4</sub> gas.

# **Optical property**

Figure 1.2 suggests the refractive index (n) and extinction coefficient (k) decreases with increase in nitrogen content of the  $SiC_xN_y$  films. The NH<sub>3</sub> gas flow rate in the range of 1500-4500 sccm was used to obtain similar Si/N composition to that of the  $SiN_x$  film. This was tailored to suit our screen printed contact formation process which is optimized for the

conventional  $SiN_x$  film. By adjusting the source composition and gas flow rates,  $SiC_xN_y$  films with a refractive index in the range of 1.93-2.00 at a wavelength of 630 nm were obtained.



Figure 1.2. Refractive indices (n) and extinction coefficient (k) of the  $SiN_x$  and  $SiC_xN_y$  films as a function of  $NH_3$  flow rate in sccm. The n and k values were measured at the wavelengths of 630 nm and 300 nm, respectively.

# **Electrical property**



Figure 1.3. (a)Surface charge densities and carbon concentration and (b) interface trap densities of  $SiN_x$  and  $SiC_xN_y$  films as a function of  $NH_3$  gas flow rate after annealing in an RTP chamber at 800 °C for 2 sec.

Figure 1.3(a) shows the surface charge density,  $Q_{FB}$ , in the dielectric films. The surface charge density of dielectrics plays a critical role in controlling the surface passivation and solar cells performance. The positive surface charge density in the SiC<sub>x</sub>N<sub>y</sub> film was in the range of  $1.58-1.77 \times 10^{12}$ /cm<sup>2</sup> which is high but slightly lower than that of conventional SiN<sub>x</sub> film ( $1.89 \times 10^{12}$ /cm<sup>2</sup>) for these specific samples. However, the surface charge density depends strongly on deposition conditions for SiCxNy such as NH<sub>3</sub> gas flow. Figure 1.3(b) shows the interface trap density (D<sub>it</sub>) between Si and dielectric film interface. The trap density decreases as carbon contents decreases which suggest that a low carbon concentration is desirable to achieve good surface passivation. However, by increasing the ammonium flow rate to reduce the carbon content increases nitrogen content and decreases the refractive index. This resulted in an optimum NH<sub>3</sub> flow rate of ~ 3000 sccm.



Figure 1.4.  $J_{oe}$  values of 45, 60, and 80 ohm/sq emitters at 3000 sccm NH<sub>3</sub> gas flow rate. The samples were annealed in an RTP chamber at 800 °C for 2 sec.

Fig 1.4 compares the  $J_{oe}$  values for silane deposited SiN<sub>x</sub> film and the silane free SiC<sub>x</sub>N<sub>y</sub> film on 45, 60, and 80 ohm/sq emitters. Both films show similar  $J_{oe}$  values for 45 and 60 ohm/sq emitters, but conventional SiN<sub>x</sub> showed slightly lower value of  $J_{oe}$  than the SiC<sub>x</sub>N<sub>y</sub> for the 80ohm/sq emitter. This suggests the presence of carbon in the SiC<sub>x</sub>N<sub>y</sub> films, which may interfere with the hydrogen released from the film to passivate silicon surface. However, with the thermally grown SiO<sub>2</sub> at the interface, the  $J_{oe}$  gap decreased for the 80ohm/sq emitter. This suggests the hydrogen released from the film can decrease the interface trap density at the Si/SiO<sub>2</sub> interface.

#### Conclusion

A novel silane-free solid polymer source was developed at SiXtron Advanced Materials to eliminate the dangerous pyrophoric silane gas in a manufacturing line. The polymer source can be Fedexed, which significantly removes handling and transport issues. Electrical and optical properties of the SiC<sub>x</sub>N<sub>y</sub> film was studied and compared with that of the conventional SiN<sub>x</sub> film formed with pyrophoric SiH<sub>4</sub> as a silicon source. The ratio of carbon to nitrogen (C/N), hydrogen content, refractive index, and extinction coefficient of the SiC<sub>x</sub>N<sub>y</sub> film was found to decrease with the increase in the NH<sub>3</sub> flow rate. Comparable quality surface passivation of the SiC<sub>x</sub>N<sub>y</sub> film because of high surface charge density and hydrogen concentration provided low J<sub>oe</sub> values of ~4x10<sup>-13</sup>A/cm<sup>2</sup> on 450hm/sq emitter.

# Section 2: SiC<sub>x</sub>N<sub>y</sub> AR coated solar cell fabrication

~2  $\Omega$ -cm boron doped Cz silicon wafers were used for substrate material. The as-cut saw damage was removed by a heated potassium hydroxide (KOH) solution. An anisotropic random pyramid texture was applied using a KOH and Isopropyl Alcohol (IPA) mixture. The textured wafers were RCA cleaned followed by 45 - 80  $\Omega$ /sq phosphorous emitter diffusion using a standard POCl<sub>3</sub> tube furnace diffusion. Following the emitter diffusion, wafers were chemically edge isolated. Same low frequency (50 KHz) PECVD reactor was used for depositing the silane SiN<sub>x</sub> and silane-free SiC<sub>x</sub>N<sub>y</sub> antireflection coating. Front and rear metallization were formed by screen printed silver and aluminum pastes respectively, followed by high temperature belt firing for contact formation and back surface field.

Table 1.1. Performance of 149 cm<sup>2</sup> Cz solar cells with industrial type phosphorus diffused 45, 60, and 80  $\Omega$  /sq emitters. NH<sub>3</sub> flow rate was 3000sccm and silane or silane-free source flow rate was 300sccm.

| ARC                                               | Plasma    | Voc  | J <sub>sc</sub>       |       | Eff (%) | Emitter |
|---------------------------------------------------|-----------|------|-----------------------|-------|---------|---------|
|                                                   | Power (W) | (mV) | (mA/cm <sup>2</sup> ) | FF    |         | (Ω/sq)  |
| SiN <sub>x</sub>                                  | 100       | 624  | 35.1                  | 0.777 | 17.0    | 45      |
| SiC <sub>x</sub> N <sub>y</sub>                   | 150       | 622  | 34.8                  | 0.780 | 16.9    | 45      |
| SiNx                                              | 100       | 620  | 36.1                  | 0.763 | 17.1    | 60      |
| SiC <sub>x</sub> N <sub>y</sub>                   | 150       | 618  | 35.8                  | 0.766 | 17.0    | 60      |
| SiNx                                              | 100       | 623  | 36.3                  | 0.767 | 17.4    | 80      |
| SiC <sub>x</sub> N <sub>y</sub>                   | 150       | 612  | 36.2                  | 0.775 | 17.2    | 80      |
| SiO <sub>2</sub> / SiN <sub>x</sub>               | 100       | 632  | 36.2                  | 0.770 | 17.6    | 80      |
| SiO <sub>2</sub> /SiC <sub>x</sub> N <sub>y</sub> | 150       | 625  | 36.1                  | 0.772 | 17.4    | 80      |



Figure 2.1. IQE responses of the solar cells with the  $SiN_x$  AR layer coated using  $SiH_4$  source and  $SiC_xN_y$  AR layer coated using the silane-free source with 45, 60, 80  $\Omega/sq$  emitters.

Table 1.2. Performance of 149 cm<sup>2</sup> Cz solar cells with industrial type phosphorus diffused 45  $\Omega$  /sq emitter as a function of plasma power. NH<sub>3</sub> flow rate was 3000sccm and silane or silane-free source flow rate was 300sccm.

| ARC                             | Plasma<br>Power (W) | Voc<br>(mV) | Jsc<br>(mA/cm <sup>2</sup> ) | FF    | Eff<br>(%) |
|---------------------------------|---------------------|-------------|------------------------------|-------|------------|
| SiN <sub>x</sub>                | 100                 | 622.9       | 35.6                         | 0.778 | 17.2       |
| SiC <sub>x</sub> N <sub>y</sub> | 150                 | 618.0       | 34.9                         | 0.774 | 16.7       |
| SiC <sub>x</sub> N <sub>y</sub> | 200                 | 619.3       | 35.1                         | 0.781 | 17.0       |
| SiC <sub>x</sub> N <sub>y</sub> | 250                 | 619.4       | 35.4                         | 0.785 | 17.2       |

Table 1.3. Performance of 239 cm<sup>2</sup> Cz solar cells with industrial type phosphorus diffused 60  $\Omega$  /sq emitter as a function of plasma power.

| ARC                                | V <sub>oc</sub><br>(mV) | J <sub>sc</sub><br>(mA/cm <sup>2</sup> ) | FF    | Eff (%) | n<br>factor | Rseries<br>(Ω-cm <sup>2</sup> ) | <b>Rshunt</b> $(\Omega - \mathbf{cm}^2)$ |
|------------------------------------|-------------------------|------------------------------------------|-------|---------|-------------|---------------------------------|------------------------------------------|
| SiN <sub>x</sub>                   | 628                     | 37.0                                     | 0.783 | 18.2    | 1.06        | 0.697                           | 3296                                     |
| SiC <sub>x</sub> N <sub>y</sub> -1 | 625                     | 36.6                                     | 0.787 | 18.0    | 1.04        | 0.680                           | 15348                                    |
| SiC <sub>x</sub> N <sub>y</sub> -2 | 625                     | 36.8                                     | 0.786 | 18.1    | 1.04        | 0.687                           | 14536                                    |

#### Conclusion

Screen printed Si solar cells with  $SiC_xN_y$  AR coating layer formed from the new silanefree source gave an efficiency of 18.1% on the textured 239cm<sup>2</sup> Cz compared to 18.2% from conventional silane process.

# Section 3: LID reduction on SiC<sub>x</sub>N<sub>y</sub> coated solar cell

There have been some reports of reduced LID in carbon rich Si materials. For example, Schmidt and Bothe reported a 30% reduction in the B-O<sub>2i</sub> defects concentration in carboncontaminated (C=1.9-3.3x10<sup>17</sup> cm<sup>-3</sup>) Si material relative to conventional boron doped Si which contains  $\sim$ 5x10<sup>16</sup> cm<sup>-3</sup> Carbon. In 2006, Coletti et al. also found a reduced concentration of the B-O<sub>2i</sub> defects in Si wafers in the presence of carbon. They used multicrystalline (mc) Si wafers with same interstitial oxygen (O<sub>i</sub>) concentration (1.5 to  $5.6 \times 10^{17}$  cm<sup>-3</sup>) but different carbon concentrations (2 to 10 ppma). The wafers with a higher carbon concentration (8-10 ppma) showed fewer B-O<sub>2i</sub> defects and higher bulk lifetime after LID compared to the wafers with lower (2-4 ppma) carbon concentration. We observed carbon can be incorporated into bulk Si during cell processing via modified AR coating.  $SiC_xN_y$  antireflection coating contains significant amount of in situ carbon. Therefore the SiC<sub>x</sub>N<sub>y</sub> film can serve as a source of carbon during the subsequent high temperature processing. In this experiment, we found that it indeed supplies additional carbon into the bulk during the high temperature annealing or contact firing. Diffused carbon in the bulk competes with boron and effectively reduces the concentration of B-O<sub>2i</sub> complex. As a result,  $SiC_xN_y$  coated solar cells showed less LID than the solar cells coated with SiN<sub>x</sub> film without the in situ carbon.



Figure 3.1. SIMS profile of carbon inside the Cz wafers after high temperature annealing. Significant amount of carbon is injected from  $SiC_xN_y$  film and diffuses into the bulk Si.

#### Solar cell results

Large number of SiN<sub>x</sub> and SiCxN<sub>y</sub> solar cells were fabricated on boron doped Cz wafers to investigate the LID. Figure 3.2 summarizes the statistical degradation of 22 SiN<sub>x</sub> and 37 SiC<sub>x</sub>N<sub>y</sub> coated boron doped Cz (oxygen  $\sim$ 7x10<sup>17</sup>cm<sup>-3</sup>) solar cells after  $\sim$ 72hours of illuminations. It is clear from Figure 3.2 that SiC<sub>x</sub>N<sub>y</sub> coated solar cells show lower LID than SiN<sub>x</sub> coated cells. SiCxN<sub>y</sub> coated solar cells showed an average loss of 0.1% in absolute efficiency compared to 0.3% loss in efficiency for the SiN<sub>x</sub> coated cells. In addition, LID-induced loss in V<sub>oc</sub> and J<sub>sc</sub> of the SiN<sub>x</sub> coated cells was approximately twice that of the SiCxN<sub>y</sub> coated cells. Quantitatively 59% of SiN<sub>x</sub> coated solar cells suffered a loss of 0.3 - 0.6% in absolute efficiency after the LID while 75% SiC<sub>x</sub>N<sub>y</sub> coated solar cells showed a LID of  $\leq$ 0.1% along with 32% cells with no LID. It is interesting to note that this nearly makes up for the  $\sim$ 0.2% lower initial efficiency of the SiC<sub>x</sub>N<sub>y</sub> coated cells, due to a slightly inferior surface passivation. Consequently SiN<sub>x</sub> and SiC<sub>x</sub>N<sub>y</sub> coated cells in this study showed nearly the same efficiency after the LID.



Figure 3.2. Statistical plot of degradation after several hours of illumination of boron doped Cz solar cells with  $SiN_x$  (left) or  $SiC_xN_y$  (Right) AR coating.

#### **PC1D simulation**

In order to quantify and understand the LID phenomena in both kinds of cells, we measured internal quantum efficiency (IQE) and bulk lifetime in the finished cells, before and after LID. By matching the measured and modeled short and long wavelength response, using the measured bulk lifetime value, we extracted the front and back surface recombination velocities (FSRV and BSRV). We found that LID has no effect on the FSRV and BSRV values. However, FSRV value was lower in the case of SiN<sub>x</sub> AR coating (45,000cm/s as opposed to 75,000cm/s) which accounts for the ~0.2% higher pre-LID efficiency of the SiN<sub>x</sub> coated cells. Figure 3.3 shows that the LID lowered the bulk lifetime from 234 to 113us in the SiN<sub>x</sub> coated cells which, according to PC1D model calculations, accounts for the observed ~0.2% loss in efficiency from 17.3% to 17.1%. In the case of SiC<sub>x</sub>N<sub>y</sub> coated cells lifetime decreased from 250 to 160us after LID which amounts to a negligible loss in efficiency because efficiency becomes insensitive to bulk lifetime above 150us for the current cell design. This is supported by the PC1D model calculations shown in Figure 3.4. Therefore the cell efficiency remains ~17.1% before and after LID in the SiC<sub>x</sub>N<sub>y</sub> coated cells, which is quite comparable to the SiN<sub>x</sub> coated cells after the LID.



(a)



(b)

Figure 3.3. Internal quantum efficiency (IQE) (a) and bulk lifetime and corresponding solar cell values (b) from PC1D for  $SiN_x$  and  $SiC_xN_y$  coated solar cell.



Figure 3.4. Solar cell efficiency as a function of bulk lifetime.

#### Conclusion

Carbon inside the  $SiC_xN_y$  AR coating diffuses into Si after the deposition and high temperature contact firing and competes with boron to form complex with oxygen dimmers. This reduces the number of B-O<sub>2i</sub> metastable defect complexes which are responsible for LID. As a result,  $SiC_xN_y$  coated boron doped Cz solar cells show appreciably less LID compared to conventional  $SiN_x$  coated solar cells, which have no source of additional carbon. In this study  $SiN_x$  coated solar cells suffered an average loss of 0.3% in absolute efficiency due to LID compared to 0.1% for the  $SiC_xN_y$  coated solar cells. PC1D simulations showed that the observed efficiency loss is entirely consistent with the measured bulk lifetime degradation from 234 to 113us and 250 to 160us in the  $SiN_x$  and  $SiC_xN_y$  coated cells, respectively. This is because efficiency is very weak function of bulk lifetime in the range of 160 to 250us.

#### Section 4: Low illumination performance of SiC<sub>x</sub>N<sub>y</sub> coated solar cell

We have studied the beneficial effect of carbon containing AR coating on screen-printed metal contact formation and the cell performance under low illumination. It is well known that if the shunt resistance of solar cell is more than (>7  $\Omega$ ), it does not hurt the cell performance under STC condition (AM 1.5G with intensity of 1000 W/m<sup>2</sup>). However, module under operation is seldom under STC condition. Most of the day module is well below the STC condition depending on the geographical location and the weather. Moreover solar cell efficiency decreases at lower than STC illumination due to lower R<sub>sh</sub> even if the starting cell efficiency is identical. This section shows that SiC<sub>x</sub>N<sub>y</sub> film deposited by a silane-free organic source gives much higher R<sub>sh</sub>, which in turns leads to smaller FF degradation, lower efficiency loss, and higher annual energy production. Theoretical calculations are performed first to calculate the effect of R<sub>sh</sub> on FF and efficiency as a function of illumination level.





Figure 4.1. Average values of (a) Shunt resistance, (b) series resistance, and (c) Fill factor from several hundred  $SiN_x$  and  $SiC_xN_y$  coated solar cells fabricated with different silver pastes.





Figure 4.2. (a) Calculated FF and (b) solar cell efficiency (Area = 239cm<sup>2</sup>, V<sub>oc</sub> = 630 mV, and J<sub>sc</sub> = 37mA/cm<sup>2</sup> at STC) as a function of illumination intensity with various shunt resistance. Based on measured statistical shunt resistance data, range of SiN<sub>x</sub> and SiC<sub>x</sub>N<sub>y</sub> solar cells are marked on the Figure.

In order to validate the model calculations in Figure 4.2, we also measured the  $SiN_x$  and  $SiC_xN_y$  coated solar cell efficiency, with known value of  $R_{sh}$ , at various illuminations. Experimental data agrees fairly well with the model calculations (Figure 4.3). Also note that even though  $SiN_x$  cell efficiency was slightly higher (~0.2%) at 1 Sun, the  $SiC_xN_y$  cell efficiency became equal or greater than the  $SiN_x$  coated cells at below 600 W/m<sup>2</sup> illuminations even though its starting efficiency at 1 Suns was ~0.2% lower.



Figure 4.3. Measured solar cell efficiency as a function of illumination intensity of  $SiN_x$  and  $SiC_xN_y$  coated solar cells. Values for  $SiC_xN_y$  coated solar cells are gray-highlighted.

SAM program from NREL was used to quantify the effect of  $R_{sh}$  on annual energy production and LCOE for locations with various solar insolation (high, medium, and low). Recently released SAM (Version 2010.11.9) has the capability to account for the impact of change in efficiency as a function of solar irradiance. Efficiency Vs. insolation data in Figure 4.2 was fed into the SAM model for different R<sub>sh</sub> values. Other key inputs for SAM are shown in Table 4.1. SAM's output includes annual energy production and LCOE. Four different locations, Phoenix, LA, Atlanta, and Seattle, were selected for comparison because they have appreciably different solar insolation ranging from 2117 KWh/m<sup>2</sup>-yr to 1222 KWh/m<sup>2</sup>-yr. Figure 4.4 shows the change in calculated annual energy production and LCOE as a function of location and R<sub>sh</sub> value. It is found that for any given location if the  $R_{sh}$  is above 30  $\Omega$  or 7000  $\Omega$ -cm<sup>2</sup>, then  $R_{sh}$  has very little affect on LCOE. However if  $R_{sh}$ is below 15  $\Omega$  or 3000  $\Omega$ -cm<sup>2</sup>, it could reduce the energy production and raise the LCOE. In addition, the impact of  $R_{sh}$  below 15  $\Omega$  is increased for regions of lower solar insolation like Seattle. Because SiC<sub>x</sub>N<sub>y</sub> coated solar cells show always high shunt resistance (>30  $\Omega$ ) compared to  $SiN_x$ , its slightly lower initial efficiency (~0.1 - 0.2%) at STC is compensated by higher R<sub>sh</sub> with regards to annual energy production.

Table 4.1. Specified parameters used for SAM calculation. Values are referenced from DOE MYPP Benchmarks for residential.

| System element               |                               |
|------------------------------|-------------------------------|
| Module efficiency at STC (%) | 16.0                          |
| Number of module             | 40                            |
| PV module cost (\$/W)        | 1.82                          |
| Inverter cost (\$/W)         | 0.69                          |
| BOS cost (\$/W)              | 0.40                          |
| Installation cost (\$/W)     | 0.57                          |
| Indirect cost (\$/W)         | 1.14                          |
| Inverter efficiency (%)      | 90                            |
| System loss (%)              | 10.5                          |
| Annual fixed O&M             | 0.5% of installed system cost |





Figure 4.4. (a) LCOE and (b) annual power output calculation using SAM with various illumination regions and shunt resistances.

#### Conclusion

It is found that carbon containing  $SiC_xN_y$  film show much higher  $R_{sh}$  value after contact firing compared to its counterpart carbon free  $SiN_x$  film. The size of silver crystallites at the contact interface are smaller in the presence of carbon in the AR coating which reduces the parasitic shunting in the cell. Theoretical calculations and experimental data confirm that lower  $R_{sh}$  values reduce the cell efficiency at lower insolation. Economic calculations show that shunt resistance above 30  $\Omega$  or 7000  $\Omega$ -cm<sup>2</sup> is required to minimize the loss in energy production or increase in LCOE due to  $R_{sh}$  induced loss in efficiency at reduced illumination. Shunt resistance of  $SiC_xN_y$  cell was mostly over 60  $\Omega$  compared to the  $SiN_x$ coated cells, which average around 23  $\Omega$  5500  $\Omega$ -cm<sup>2</sup>. This makes up for slightly lower starting efficiency of  $SiC_xN_y$  coated cells compared to  $SiN_x$  coated cells.