13:56:54 OCA PAD AMENDMENT - P

Project #: C-36-X21 Cost shar

Center # 10/26-6-R7964-0A0 Center sh
Contract#: F33615-93-1-1338
Prime #®:

Subprojects ? N

Main project #:

Project unit: COMPUTING
Project director(s):

NAVATHE S B COMPUTING
Sponsor/division names: AIR FORCE
Sponsor/division codes: 104
Award period: 930930 to 970131

Sponsor amount New this change

Contract value 0.00
Funded 86,638.00
Cost sharing amount
Does subcontracting plan apply ?: N

Title:

ROJECT HEADER INFORMATION 01/12/96
Active
e #: Rev #: 6
r #: 0OCA file #:
Work type RES
Mod #: P00003 Document : GRANT

Contract entity: GTRC

CFDA:
PE #:

Unit code: 02.010.300

(406)896-3152

/ WRIGHT-PATTERSON AFB, OH
/ 002

(performance) 970331 (reports)
Total to date
472,815.00
472,815.00

0.00

A KNOWLEDGE-BASED APPROACH TG INTEGRATING AND QUERYING DISTRIBUTED HETEROGEN.

PROJECT ADMINISTRATION DATA

OCA contact: Anita D. Rowland
Sponsor technical contact

CHARLES SATTERTHWAITE
(513)255-6548

WL/AAAF-3

BUILDING 635

2185 AVIONICS CIRCLE
WRIGHT-PATTERSON AFB, OH 45433-7301

Security class (U,C,S,TS)
Defense priority rating
Equipment title vests with: Sponsor
SEE GRANT PARAGRAPHS I.15 AND I1.16
Administrative comments -
MOD P-3 AWARDS THE FINAL INCREMENT OF

U

8946-64820

Sponsor issuing office

BILL BEEMAN
(513)255-6908

WL/AAKG

AREA B, BUILDING 7

2530 C STREET

WRIGHT-PATTERSON AFB, OH 456433-7607
FAX: (513) 255-3985

ONR resident rep. is ACO (Y/N):
supplemental sheet
GIT X

Y

FUNDS; CONTRACT IS FULLY FUNDED.



Yy

CARZ20 Georgia Institute of Technology Page: 1 —
Office of Contract Administration 03-JUL-1997 16:23 (/Ei
PROJECT CLOSEQUT - NOTICE -
1 \
} ;) Closeout Notice Date 03-JUL-1997
Project Number C-36-X21 Doch Id 45412

g
S\‘Center Number 10/24-6-R7964-0A0
O~

Project Director NAVATHE, SHAMKANT

-

5&4?roject Unit COMPUTING
Q/ﬂSponsor AIR FORCE/WRIGHT-PATTERSON AFB, OH

Division Id 3347

Contract Number F33615-93-1-1338 Contract Entity GTRC

Prime Contract Number

Titile A KNOWLEDGE-BASED APPROACH TO INTEGRATING AND QUERYING
DISTRIBUTED HETEROG

Effective Completion Date 31-JAN-1997 (Performance) 31-MAR-1997 (Reports)

Closeout Action: Y/N Date
Submitted

Final Invoice or Copy of Final Invoice

Final Report of Inventicns and/or Subcontracts
Government Propertiy Inventory and Related Certificate
Classified Material Certificate

Reiease and Assignment

Other

Z222Z2<K

Comments

Distribution Required:

Project Director/Principal Investigator
Research Administrative Network
Accounting

Research Security Department

Reports Coordinator

Research Property Team

Supply Services Department

Georgia Tech Research Corporation
Project File

KKK KK Z2 KR

NOTE: Final Patent Questionnaire sent to PDPI



‘*‘)'(2'/

' ~ i
Georoia Tech ot tom i
Q a.
Georgia Institute of Technology
190 Bobby Dodd Way
January 22, 1996 Atlanta, Georgia 30332-0259
USA
404 +8944624; 2629

AF PROGRAM MANAGER

Avionics Directorate Wright Laboratory
Attn: WL/AAF - 3- (Charles Satterthwarte)
2185 Avionics Circle, Bldg. 620

Wright- Patterson AFB, OH 45433-7301

Subject: Grant # F33615-93-1-1338

Dear Manager:

Fax: 404+8945519

Enclosed is the Federal Cash Transactions Report (SF 272) and the Financial Status Report
(SF269A) for the above noted grant covering the period January 1, 1995 through December 31,

1995.

If you have any questions or require additional information, please contact Kate Edwards at (404)

894-5522.

Sincerely,

David V. Welch
Director

DVW/ke
Enclosures

xc:  C-36-X21/246R79640A0
Contracting Officer
ARPA/SSTO
WL/AAF
Wanda Simon, OCA, mailcode 0420

A Unit of the University System of Georgia

An Equal Education and Employment Opportunity Institution



FINANCIAL STATUS REPORT
(SHORT FORM)
(Follow instructions on the back)

1. FEDERAL AGENCY AND ORGANIZATIONAL ELEMENT 2. FEDERAL GRANT OR OTHER IDENTIFYING NUMBER OMB Approval PAGE |OF
TO WHICH REPORT IS SUBMITTED ASSIGNED BY FEDERAL AGENCY No.
U S AIR FORCE F33615-93-1-1338 0348-0039 1 1 Pages

3. RECIPIENT ORGANIZATION (Name and complete address, including ZIP code)
GEORGIA TECH RESEARCH CORPORATION, P.O. BOX 100117, ATLANTA, GA 30384

4. EMPLOYER IDENTIFICATION NUMBER 5. RECIPIENT ACCOUNT NUMBER OR IDENTIFYING NUMBER 8. FINAL REPORT 7. BASIS
58-0603146 C-36-X21/246R79640A0 YES E]NO ECASH DACCRUAL
8. PROJECT/GRANT PERIOD (See instructions) 9. PERIOD COVERED BY THIS REPORT
FROM: (Month, Day, Year) | TO: (Month, Day, Year) FROM: (Month, Day, Year) TO: (Month, Day, Year)
9/30/93 1/31/97 1/1/95 12/31/95

10. TRANSACTIONS: I il

PREVIOUSLY REPORTED THIS PERIOD CUMULATIVE

a. Total Outlays 190,464.16 47,000.00 237,464.16
b. Recipient share of outlays 0.00 0.00 0.00
¢. Federal share of outlays 190,464.16 167,558.96 358,023.12
d. Total unliquidated obligations 0.00
e. Recipient share of unliquidated obligations 0.00
f. Federal share of unliquidated obligations 21,665.05
g. Total Federal share (sum of lines ¢ and f) 379,688.17
h. Total Federal funds authorized for this funding period 388,377.00
i. Unobligated batance of federal funds (Line h minus line g) 8,688.83

a. Type of Rate (Place "X" in appropriate box)
11. Indirect [x_|Provisional Predetermined [ |Fina [ |Fixed

Expense b. Rate c. Base d. Total Amount e. Federal Share

FY94 37.00% | 65,741.38 24,324.31 24,324.31
12. Remarks: Attach any explanations deemed necessary or information required by Federal sponsoring agency in compliance with goveming legislation.

FY95 40.00% 111,764.99 44,706.01 44,706.01

FY96 43.00% 77,962.54 33,523.89 33,623.89
13. Certification: I certify to the best of my knowledge and belief that this report is correct and complete and that all outlays and unliquidated

obligations are for the purposes set forth in the award documents.
Typed or Printed Name and Title Telephone (Area code, number and extension)
David V. Welch, Director (404) 894-2629
Grants and Contracts Accounting
Signature of Authorized Certifying Official Date Report Submitted
1/22/96
NSN 7540-01-218-4387 269-201 Standard Form 269A  (rev 4-88)

Prescribed by OMB Circulars A-102 and A-110

Questions concerning this report should be directed to Kate Edwards (404) 894-5522.




Approved by Office of Management and Budget, No. 8O-RO182

FEDERAL CASH TRAN SACTIONS REPORT 1. Federal sponsoring agency and organizational slement to which this report

(See instructions on the back. If report is for more than one grant or

assistance agreement, attach completed

is submitted

Standard Form 272-A.)

U S AIR FORCE

Questions concerning this report should be directed to Kate Edwards (404) 894-5522.

2. RECIPIENT ORGANIZATION 4. Federal grant or other identifica- 5. Recipient's account number or
tion number identifying number
Name : GEORGIA TECH RESEARCH CORPORATION F33615-93-1-1338 C-36-X21/R79640A0
6. Letter of credit number 7. Last payment voucher number
Number N/A N/A
and Street : P.0. BOX 100117 Give total number for this period
8. Payment Vouchers credited to 9. Treasury checks received (whether
your account or not deposited)
City, State 1
and ZIP Code: ATLANTA, GA 30384 10. PERIOD COVERED BY THIS REPORT
3. FEDERAL EMPLOYER FROM (Month, day, year) ‘ TO (month, day, year)
IDENTIFICATION NO. 58-0603146 1/1/95 12/31/95
a. Cash on hand beginning of reporting period $ (44,632.98)
b. Letter of credit withdrawals 0.00
11. STATUS OF c. Treasury check payments 44,632.98
FEDERAL d. Total receipts {Sum of lines b and c) 44,632.98
CASH e. Total cash available (sum of line a and d) 0.00
f. Gross disbursements 167,558.96
(See specific g. Federal share of program income 0.00
instructions
on the back)
h. Net disbursements (Line f minum line g) 167,558.96
i. Adjustments of prior periods 0.00
j. Cash on hand end of period $ (167,558.96)
12. THE AMOUNT SHOWN ON LINE 13. OTHER INFORMATION
) 11J, ABOVE, PRESENTS CASH a. Interest Income $
REQUIREMENTS FOR THE b. Advances to subgrantees or subcontractors $
ENSUING DAYS
14. REMARKS (Attach additional sheets of plain paper, if more space is required)
15. CERTIFICATION
SIGNATURE DATE REPORT SUBMITTED
| certify to the best of my
knowledge and belief that AUTHORIZED 1/22/96
this report is true in all re-
spects and that all disburse- CERTIFYING
ments have been made for TYPED OR PRINTED NAME AND TITLE TELEPHONE (Area code,
the purpose and conditions OFFICIAL Number, Extension)
of the grant or agreement. DAVID V. WELCH, DIRECTOR (404) 894 - 2629
| Office of Grants and Contracts Accounting
THIS SPACE FOR AGENCY USE
272-102 STANDARD FORM 272 (7-76)
Prescribed by Office of Management and Budget
Cir. No. A-110



== PROJECT SUMMARY ===
ORGANIZATION: Georgia Institute of Technology
SUBCONTRACTORS: None

PRINCIPAL INVESTIGATORS:
Shamkant B. Navathe, Professor Phone: 404 853 0537
email:sham@cc.gatech.edu Fax 404 894 9442

TITLE OF EFFORT: Knowledge Based Query Processing

OBJECTIVE:
(A concise statement of what you are attempting to accomplish and
why. At most a few sentences.)

We are trying to address various aspects of query processing in
distributed heterogeneous environments with special emphasis on
incorporating knowledge at different levels. The knowledge relates to
information about the sources of data, their structure, their content,
and their overall relevance to the problem at hand.

APPROACH:

Our present approach to the issue of incorporating knowledge into
query processing and formulation can be broken down in three areas:

1. Query Formulation
2. Semantic and multiple Query Optimization
3. Incorporation of learning into the mediation task.

We discuss each area briefly below.
1. Query Formulation:

In the query formulation area

We are investigating issues involved in integrating multiple sources
of semi-structured data like text documents. We are studying user
interface and visualization techniques to let the user discover the
ways in which data is organized. This allows the user to determine
how meaningful the underlying information sources are. and to

discover the potentially useful ones. Some of the methods being

used are:

a. Use of thesaurus during the query formulation process to
prompt the user with additional words related to the query.

b. Techniques to visualize the query results and compare them
with query words.

o8 feedback from the user at different levels of granularity (like

clusters of documents, individual documents, parts of a document,
phrases and words.

The preliminary implementation shows that the performance of
Information Retrieval systems can be improved by providing the
right set of interaction technigques and visualization schemes.

2. Semantic and Multiple Query Optimization:

Query optimization is a decision process that selects the best query evaluation stre
of this process can be improved by providing better information

about the contents of the database (i.e., meta-data). Furthermore,

the process itself can be improved by incorporating the semantics of

the database and by considering global plans which optimize

execution over a set of queries.



A Meta-Data View Graph (MVG) is a network for organizing and
managing information about a database. The nodes of the network
represent logical views of the database and contain information

specific to the corresponding data set. Statistical information (e.g.,
selectivity factors) is used by the query optimizer to generate more
accurate estimates of execution cost. Semantic information (e.g.,

integrity constraints) is used to transform a query into a set of
semantically equivalent queries giving the selection process more
plans to choose from. Finally, when given a set of queries, the MVG
network can identify common subexpressions, the results of which

can be computed once and shared among the set of queries.

3. Incorporation of learning into heterogeneous database mediation:

Larrge-scale integrated knowledge systems can be, and often are,
opaque to their users. But if the knowledge organization and
information processing in these systems is not transparent, then the
user may not be comfortable in using the system or be confident of
the results it produces. Three issues are considered in designing
transparent knowledge systems: how to explain and illustrate the
system’s reasoning to a user, how to explain and justify its results,
and how to enable the user to explore and navigate its knowledge
base.

In particular, endowing the knowledge systems with Structure-
Behavior-Function meta-models may provide useful answers to these
questions. Structure-Behavior-Function (SBF) models typically have
been used for representing knowledge of the functioning of physical
devices. KRITIK, an integrated autonomous system, for example,

uses such device models for conceptual design in engineering
domains. CANAH-CHAB, an interactive learning environment, views
Kritik itself as an abstract device, and represents its knowledge
organization and information processing in the form of a SBF model.
Canah-Chab uses this SBF system model for explaining Kritik’s
reasoning and justifying its results to a user, and for enabling the
he plan is to use the above systems together with real large scale
databases to enable designers to access information of a
heterogeneous nature intelligently for solving their design problems.

PROGRESS:

In the first year of this effort so far we have dealt with independent

problems related to the areas of query formulation, optimization, and

learning in the context of design application. We are now embarking on making use of
(from Linguistic Data COnsortium) produced from previous ARPA efforts.

We will be developing an integrated prototype as described below.

PRODUCTS: NONE.

FY94 ACCOMPLISHMENTS:

1. Developed a prototype query formulation system for dealing with real-life
text databases with visualization and user feedback techniques.

2. Integrated previous work on semantic and multiple query optimization into
a single problem environment.

3. Produced new techniques for explaining answers, use of meta-data, and
model-based reasoning in the context of query processing.

Current work focuses on interfacing the KRITIK and Canah-Chab design
tools with external D/KBSs. To accomplish this, we are studying the
possibility of utilizing/extending the tools constructed under the
ARPA I3 initiative. For example, IDI provides the design system



a uniform access mechanism to a set of external component database
systems. IDI and LIM will provide a basis for easily importing D/KBS
information into the existing design system structures. KQOML is
being studied for use in remote access of D/KBSs to facilitate
transparent access of data on an internetwork.

FY-95 PLANS:

Our main objective is to build and

demonstrate an intelligent interface to a set

of (possibly autonomous) information sources including structured
databases, knowledge bases, and unstructured data. The approach we
have selected involves development of a mediator which utilizes
meta-knowledge of the underlying information stores to aid a user in
"browsing” the data for relevant information. To demonstrate this
technology, we intend to augment the capabilities of both an
autonomous (KRITIK) and interactive (Canah-Chab) device design system
by providing a mediated interface between the design system and a
collection of data/knowledge based systems (D/KBS). The mediator
should provide the following to the design system:

(see figure 1).

1. A uniform access method and view of any D/KBSs with relevant
information irrespective of individual information system design.

2. Meta-data query facilities allowing the design system to determine
relevant information about component parameters, previous design
specifications, device function descriptions, etc. The mediator

may also take an active role in helping the design tool determine what
information may be helpful.

3. The mediator design must maintain the separation of concerns of the
device design system from the query system. This will allow reuse of the
mediated query system for other intelligent tasks such as planning.

4. The mediator must make data location (local vs. remote) and data
organization (relational, knowledge-base, rule system, etc)
transparent to the design tool.

5. The mediator should provide easy import of external D/KBS information
into existing design system data structures including the integration of
completely autonomous systems with

transparent access of data on an internetwork. Future work will

focus on extending the mediator to construct a system which, in

addition to presenting a unified view/access of disparate information
sources, provides at least a rudimentary understanding of the
information in external sources to aid the user in location relevant
data.

TECHNOLOGY TRANSITION:

The technology transition efforts will start after we have developed the
above prototype in FY95. Currently plans are under way to collaborate with
IBM and Stanford in the use of databases as well as with the Xerox

Design Center for use of design data.

PUBLICATIONS:
1. S. B. Navathe and M.J. Donahoo, " Towards Intelligent Integration of
Heterogeneous Information Systems," Sixth Int. Hong Kong Computer Society

Database Workshop on Database Reengineering and Interoperability,
March 3-4, 1995.

2. A, Veerasamy, S. Hudson and S. B. Navathe, " Visual Interfaces for Text
Information Retrieval Systems," Proc. of Visual Database Systems -3, an



IFIP WG 2.6 Workshop, Lausanne, Switzerland, March 1995.

DATE PREPARED (ORIGINAL REPORT TO SPONSOR): August 29, 1994.

(NOTE: This entire summary should not be more than about 120 lines
in length.)

v



A Federated Database Environment for Device Design

Design System C\ Design Process

Data Structure

Design Process J ({ >\

Other
Intelligent
System

?

Data to Populate
Program Structures (LIM)

Report

Relevant Information
Query

Relevant Information

Intelligent Meta-Knowledge -
Query Derivation Meta-Data
Processor Module - j

Schema Info.

Remote Database Access Module

(IDI)
_\A [y
= I =
(@ ;—J [»
g5 4 9J¢€
g9 g =
M = I
= § 3
® |
Unstructured
Remote Knowledge Local Database Data

Base

o
\_/

Figure 1: Proposed Architecture for an Intelligent Mediator
for Device Design (Georgia Tech)




)

=== ADMINISTRATIVE DATA ===
1. ARPA ORDER NUMBER: A522
2. CONTRACT/GRANT NUMBER: F33615-93-1-1338
3. AGENT: AIR FORCE - Wright Patterson Air Force Base, Ohio.
4. CONTRACT TITLE: Knowledge Based Query Processing
(official title: A Knowledge Based Approach to Integrating and Querying
Distributed Heterogeneous Information Systems).
5. CONTRACTOR/ORGANIZATION: Georgia Institute of Technology
6. SUBCONTRACTORS: None
7. CO-PRINCIPAL INVESTIGATORS: None listed.
8. CONTRACT:

8.1. ACTUAL START DATE: September 30, 1993

8.2. EXPECTED END DATE: January 31, 1997.

9. FUNDING PROFILE:

9.1. Current contract: $472,815.

9.2. Total funds provided to date for all years $328, 377
Total funds expended to date for all years $143, 677
Report as of date July 31, 1994
9.3. Date total current funding will be expended: June 30, 1995.
9.4. Funds required in FY95:
(i.e., funds needed to fund you from date in 9.3 above through

11/30/95) at least $60K.

Note: The Government Fiscal year is 1 Oct - 30 Sep. Our intent is to fund
through two months of the first Quarter of FY9%96 (i.e. 11/30/95).

10. ANYTHING ELSE YOU NEED (from ARPA):
Quick acquisition of software licensed under ARPA.

===SIGNIFICANT EVENTS===

No events to report for FY 93.

I
"
I
!
28]
&3]
n
53]
2
H
>
=
H
o]
2
%
H
0n
I
1
I

i
I
%
S~
=
O
n
>
H
N
o
@]
=
=
!
>
@
=
I
I
I

http://www.cc.gatech.edu/computing/Database/database.html



Towards Intelligent Integration of Heterogeneous Information Sources*!

Shamkant B. Navathe Michael J. Donahoo

College of Computing
Georgia Institute of Technology

Atlanta, Georgia 30332-0280
{sham,mjd} @ cc.gatech.edu

Abstract

Current methodologies for information integration are inadequate for solving the problem of integration of
large scale, distributed information sources (e.g. databases, free-form text, simulation etc). The existing
approaches are either too restrictive and complicated as in the “federated” (global model) approach or do
not provide the necessary functionality as in the “multidatabase” approach. We propose a hybrid approach
combining the advantages of both the federated and multidatabase techniques which we believe provides
the most feasible avenue for large scale integration. Under our architecture, the individual data site admin-
istrators provide an augmented export schema specifying knowledge about the sources of data (where data
exists), their structure (underlying data model or file structure), their content (what data exists), and their
relationships (how the data relates to other information in its domain). The augmented export schema from
each information source provides an intelligent agent, called the “mediator,” knowledge which can be used
to infer information on some of the existing inter-system relationships. This knowledge can then be used to
generate a partially integrated, global view of the data.

1 Introduction

Much of the research in database interoperability has focused on two extremes: multidatabase
and federated systems. Multidatabase [Lit90, Spe88] systems provide a uniform access language to a
set of database systems. While this is a necessary first step in solving the problems of heterogeneity,
it places most of the integration responsibility on the user which may be unacceptable. Federated
systems[She90] propose to create a global view of the underlying systems making the heterogeneity
completely transparent to the user. While this approach is enticing, the complexity of constructing
a global schema for large scale integration makes this approach infeasible because it requires an
administrator who understands the semantics of all underlying systems and can resolve all inter-
system schematic conflicts[Bat86]. In addition, the maintenance of a global schema in the face of
addition/deletion of systems is difficult.

A better approach to interoperability involves the combination of techniques of reasoning and
learning with techniques of data modeling and access to provide a partially integrated, global view.
To accomplish this, the administrator of each underlying system presents a semantic description
(augmented export schema) of their information to the “mediator.” This augmented export schema
may be as simple as the typical export schema or as detailed as a knowledge-based data description of
the data, its relationships, and the system’s domain. A knowledge-base system, such as Loom|[Bri94],
provides the capability to represent knowledge about the underlying information repositories and to

*Appeared in Proceedings of Sixth International Hong Kong Computer Society Workshop on Database Reengi-
neering and Interoperability, Hong Kong, March 1995

tBoth authors’ work partially supported by ARPA Grant No. F33615-93-1-1338 under the Intelligent Integration of
Information Program and Navathe's work partially supported by Army Research Office supported Center of Excellence
in Information Science at Clark Atlanta University



make inferences as to the relationships among the various autonomous systems and generalizations
concerning the information in each system. We have previously demonstrated that classification
hierarchies can be effectively used to carry out integration of schemas[Sav91]. In this paper, we
review the goals and strategy of the project HIPED, Heterogeneous Information Processing for
Engineering Design, which we are currently pursuing at the Georgia Institute of Technology.

2 Related Work

Earlier work in integration provides the motivation and framework for our efforts. Batini et
al. [Bat86] detail the problems of schema integration and provide a methodology for comparison
of proposed solutions. Unlike many earlier integration efforts, we do not limit ourselves strictly
to integration of databases. Instead, we focus on the integration of information sources including
databases, free-form text, hypertext, etc. One possible method of dealing with this wide variety of
information is to use Stanford’s Object Exchange Model (OEM)[Pap94] which allows information
exchange via self-described objects[Mar85] between different types of information sources. We pro-
pose to adapt the mediator paradigm[Pap94, Wei92, Wei93, Are94] to perform integration of the
. augmented export schemas. Integration of heterogeneous information sources requires a semantically
rich data model. Earlier work has shown that the CANDIDE[Bec89, Nav91] model provides unique
integration capabilities not found in traditional models. One major feature of the CANDIDE model
1s 1ts ability to compute class-subclass relationships even among classes from dissimilar systems by
subsumption from class relationship information[Sav91, She93, Wha93, Bra85]. Work with classi-
fication in the object-oriented model has produced similar results[Nav95, Are]. A variety of such
systems supporting description logics are surveyed in [Bor94].

3 Approach

Our main objective is to build and demonstrate an intelligent interface to a set of (possibly
autonomous) information sources including structured databases, knowledge bases, and unstruc-
tured data. Figure 1 shows our proposed architecture. The parenthetical references are made
to applications developed under the ARPA I3 Initiative. KQML (Knowledge Query and Manip-
ulation Language)[Cha92] allows remote access to knowledge/data bases. LIM (Loom Interface
Module)[Par93b] allows import of external database information into Loom data structures. IDI
(Intelligent Database Interface)[Par93a) is a common access language to several commercial database
systems.

The approach we have selected involves development of an Engineering Design Mediator (EDM)
which utilizes meta-knowledge of the underlying information to aid a user in “browsing” the data
for relevant information sources and to make informed decisions about a plan for retrieving the
appropriate data. To demonstrate this technology, we intend to augment the capabilities of both an
autonomous (KRITIK2) and an interactive (Canah-Chab[Goe93]) device design system by providing
a mediated interface between the design system and a collection of data/knowledge based systems
(D/KBS). The mediator will be responsible for processing queries from the device design systems by
determining where relevant data is, sending the appropriate query to the information site, performing
the appropriate translations on the data, and returning the data to the design system. The design
of the mediator i1s predicated on the following design goals:

1. Autonomy of the remote systems. Additionally, the remote systems should not be required to
perform any functions outside of those defined for the internetwork connecting the system to
the mediator.

2. Meta-data query facilities which allow the design system to determine relevant information
about component parameters, previous design specifications, device function descriptions, etc.



Design System Design Process
Data Structure

Other

, Intelligent
Design Process
System
/V——’jp
c =
g 3 ol 2
= = S| »
4_ 3 2 3
—Hc P - o
. Nl o = =| W
da. d e «
d o 3 S| E
g Ho Al 8
g 3 .
H &
Intelligent Meta-Knowledge -
Query Derivation Meta-Data
Processor Moidile
S
=
<
£
2
Q
122}
Remote Database Access Module
IDI)
= =
43 b5
3 » 4 0o
g = & =
= O
Unstructured
Remote Knowledge
s Local Database Data

Base

Fig. 1: Proposed Architecture for the Engineering Design Mediator (EDM)



The mediator may also take an active role in helping the design tool determine what informa-
tion may be helpful (e.g. by use of a thesaurus, domain concept hierarchy, etc).

3. Separation of concerns of the device design system from the query system. This will facilitate
reuse of the mediated query system for other intelligent tasks such as planning.

4. Data location (remote vs. local) and data organization (relational, knowledge base, text, etc)
transparency.

5. Easy import of external D/IKXBS information into existing design system data structures min-
imizing the required changes to the device design system.

These constraints are designed to facilitate reuse of the mediator and to make the use of the system
as transparent to intelligent applications as possible. Figure 2 presents an example query processing
scenario.

4 Ongoing Research

Research 1s currently under way in the following areas to facilitate construction of a prototype
query system which can be integrated with the device design system:

e Selection and development of the appropriate export data model to represent the data stored
at each information source.

e Construction of an export knowledge model whereby information source administrators can
express the relationships between their data and real world domain concepts. This in combi-
nation with the export data model will define the augmented export schema.

e Development of techniques for providing integration of the schemas of information sources into
a partially integrated, global schema.

e Determination of optimization techniques for querying the remote information sources. Since
the information sources may be interconnected with a WAN, a query processing bottleneck
may arise with frequent remote data transmission.

e Provision of a query interface which aids the user in deriving the best answer to a query.
Since no completely integrated schema exists and the user does not know what information is
available, a query processor is required to guide users to the desired information.

e Capability of inferencing intersource knowledge from the augmented export schemas specifi-
cally concerning the relationships between information source entities.

e Ability to learn new. relevant knowledge about information sources based on user interaction.

5 Future Direction

Our initial focus s on providing access of integrated information to intelligent device design
systems, but many other applications of this technology exist. With the advent of internetworks
which connect thousands of computers all over the world, an explosion has resulted of the available
data, both unstructured (text, graphical documents, audio, video, program sources) and structured
(under DBMS control), accessible to hundreds of thousands of users. It would be difficult, if not
impossible, to integrate all these sites with the current heterogeneous database techniques especially
since most sites will not all be willing to provide services beyond those defined by the internetwork.
Many query applications already exist for the Internet. WAIS servers provide keyword access to
documents; however these documents must be under the control of a WAIS server. Gopher allows



Y
—

Physical
Domain

Query from Canah-Chab

Consult Thesaurus

Expand%d Query

Look for Related Target Schemas

Concept
Hierarchy

>
>

Design
Thesarus

Possibly Uskful Schema

Input '""Relevant'' Schemas
and Meta Data

Expanded Information on Schemas

>

o
—
Meta

Database/
Knowledgebase

of

Validation of Schemas
Against User’s Domain View

Subset 0* Schemas

User Approval

l

Package Query in KQML and
Send Response to Canah-Chab

|

Send Results to Canah-Chab

Fig. 2: Query Processing Scenario in the EDM

S—

* Databases to populate



sites to setup directories of information that users can browse, but the information can only be
accessed in the organization defined by the site manager. Archie provides a keyword query interface
to find source code, but the keywords only work on the name of the source file (the user cannot
ask for a program that performs some function, X; instead they must find the name of a program
that performs X and search for it by name. World Wide Web (WWW) provides a nice interface
to information organized by site managers (similar to gopher), but users suffer from the “hypertext
navigation problem” which creates difficulties in locating specific information and keeping track of
where they are in the web of hypertext documents over time.

Several problems exist for the tools mentioned above. First, the tools access a particular type
of data (e.g. Archie only finds source code). If a manual exists for a particular application whose
source code is found by Archie, the user is not informed. Second, the tools lack relativism because
the users must access the data in the manner dictated by the site manager (e.g. in WWW the
data is explicitly organized by hyperlinks). Third, some of the applications require a particular site
organization (e.g. Gopher requires a specific directory structure). If a site has information but no
desire to organize it, a gopher search may not find the relevant information at that site. Fourth,
the query processors provide little organization to the data (e.g. Archie does not organize its source
code references by application type, instead all applications with a substring match on the query
are returned). For these reasons, the Internet environment provides a true testbed for large scale,
heterogeneous information source integration.

We propose a query processing application which, using the native internetwork capabilities,
provides a single interface for accessing all types of data regardless of source or format. The following
list proposes some of the necessary extensions to the EDM:

e The system should perform automated “net surfing” to create an intelligent index of each data
store’s information. The intelligence of the index lies in the ability to discern between types
of data (audio, text, source, etc), utilize an indexing methodology tailored to the particular
data type (e.g. organize keywords of a text document by the document section), and facilitate
determination of an object’s relevance for a query based on the knowledge of the user’s interests
and technical expertise. This should require no a priori knowledge of the individual data
site organization. Work is being done at the Georgia Institute of Technology in intelligent
text document processing and work has been done at IBM Almaden Research Center in file
classification[Vee95a]. Extensive work has been done on parsers for the various document types
(e.g. html, LaTeX) on the Internet.

e The problem of data overload may result from this large scale integration. Our query processor
should utilize user profiles so that only data of specific relevance and technical difficulty will
be derived. Unfortunately, the user profile method of data overload reduction may eliminate
relevant documents. To deal with this problem, the user needs feedback from the query
processor in the form of a description of what information is/is not being considered and an
explanation of why. Work in explanation is part of the Canah-Chab System[Goe93].

o Keyword searches should not be limited by the vocabulary of the query; instead, a thesaurus
should be used to consider synonyms. This may result in synonym overload so user profiles
should also be used in pruning the list of synonyms.

e The user is assumed to be “browsing” the available information; therefore, the query interface
should provide reformulation capabilities. Reformulation techniques include iterative query
alteration and positive/negative feedback from the user[Vee95b].

e 'The system should attempt automated knowledge acquisition to provide a better understanding
of indexed objects and to find other available data stores. The following list orders levels of
object knowledge in ascending complexity:

ID Knowledge - System only knows site assigned ID of object (e.g. filename)



Content Knowledge - System knows information about object content (e.g. keywords for
text)

Description Knowledge - System knows content knowledge and an external specification
of the object.

Interrelational Knowledge - System knows all of the above and interobject relationships
(e.g. papers about cancer research grouped together).

e The system should be extensible with respect to “plugging-in” different types of data in-
dexing components and user profiles. Additionally, the system should transparently handle
adding/subtracting participating sites. Utilities already exist for component indexing including
parsers for various document types, image recognition utilities, etc.

e Different server systems should be able to exchange information and knowledge. Work in
KQML at the University of Maryland facilitates knowledge interchange even with differing
ontologies[Cha92].

e Objects must be described in terms of a nested model. For example, a document may be
composed of sections which are composed of text, subsections, and graphics. Stanford’s Object
Exchange Model (OEM) provides “self-describing,” nested objects[Pap94].

e The distributed control of the system leads to problems of object identity. For example,
identical application source code may reside in multiple locations; therefore, the system should
attempt to provide object identity to facilitate replicated object identification. Additionally,
object versioning will allow the system to keep track of more recent versions of a retrieved
object. A primitive form of object identification is supported in Stanford’s OEM project
[Pap94].

e External knowledge sources should be used to learn about objects in the system. For example,
the query processor could inspect newsgroups or look at the manner in which objects are used
in WWW to acquire knowledge about the objects and their relationships. Primitive forms of
natural language understanding and concept derivation techniques may be used.

e Use of existing query systems should be considered (e.g. use WAIS server to augment search).

e Special consideration should be given to optimization including reuse of retrieved data[Don93].

6 Conclusion

We have presented a framework for research in the area of intelligent, large scale integration of
information sources. Clearly, much more work needs to be done before any of the detailed function-
ality can be implemented. We believe that much of the research into the necessary technology has
begun, and the main task lies in tailoring these technologies to the needs of large scale integration
and applying them in a prototype environment. We intend to further study the concepts presented
above in order to develop a flexible and extensible scheme for integrating information from heteroge-
neous sources. Although we wish to experiment by applying our research in the area of augmenting
intelligent device design in engineering, the applicability of this technology obviously extends beyond
the engineering domain.

References

[Are] Yigal Arens, Chin Chee, Chun-Nan Hsu, and Craig A. Knoblock. Retrieving and inte-
gration data from multiple information sources. To appear in International Journal on
Intelligent and Cooperative Information Systems.



[Are94]

[Bat86]

[Bec89]

[Bor94]

[Bra85]

[Brig4]
[Cha92]

[Don93]

[Goe93]

[Lit90]

[Mar85]

[Nav9l]

[Nav95]

[Pap94]

[Par93a]

[Par93b]

[Sav91]

Yigal Arens, Chin Chee, Chun-Nan Hsu, Hoh In, and Craig A. Knoblock. Query processing
in an information mediator. ISI Technical Report, 1994.

C. Batini. M. Lenzernini, and S. B. Navathe. A comparative analysis of methodologies for
database schema integration. ACM Computing Surveys, 18(4):325-364, Dec. 1986.

Howard \V. Beck, Sunit K. Gala, and Shamkant B. Navathe. Classification as a query
processing technique in the CANDIDE semantic data model. In 1989 IEEE Conference
on Data Engineering, pages 572-581. IEEE, 1989.

Alexander Borgida. Description logics in data management. Technical report, Rutgers
University. July 1994.

R. Brachman and G. Schmolze. An overview of the KL-ONE knowledge representation
system. Cognitive Science, 9(2):171-216, 1985.

David Brill. Loom Reference Manual (Version 2.0). ISX Corp, October 1994.

Hans Chalupsky, Tim Finin, Rich Fritzson, Don McKay, Stu Shapiro, and Gio Weiderhold.
An overview of KQML: A knowledge query and manipulation language. Technical report,
KQML Advisory Group, April 1992.

Michael J. Donahoo. Integration of Information in Heterogeneous Library Information
Systems. Master’s thesis, Baylor University, May 1993.

Ashok IX. Goel. Andres Garza, Nathalie Grue, M. Recker, and T. Govindaraj. Beyond
domain knowledge: Towards a computing environment for the learning of design strategies
and skills. Technical report, College of Computing, Georgia Tech, 1993.

Witold Litwin, Leo Mark, and Nick Roussopoulos. Interoperability of multiple autonomous
databases. ACM Computing Surveys, 22(3):267-293, September 1990.

Leo Mark. Self-Describing Database Systems - Formalization and Realization. PhD thesis,
Computer Science Department, University of Maryland, 1985.

Shamkant Navathe, Sunit K. Gala, and Seong Geum. Application of the CANDIDE se-
mantic data model for federations of information bases. In Invited paper, COMAD ’91,
Bombay, India. December 1991.

Shamkant B. Navathe and Ashoka N. Savasere. A practical schema integration facility using
an object-oriented model. To be published in Object Oriented Multidatabase Systems: A
Solution for Advanced Applications (O. Bukhres and A. Elmagarmid, eds), Prentice-Hall,
January 1995.

Yannis Papakonstantinou, Hector Garcia-Molina, and Jennifer Widom. Object exchange
across heterogeneous information sources. Stanford University, Department of Computer
Science, Technical Report, 1994.

Paramax System Corporation. Computer System Operator’s Manual for the Cache-Based
Intelligent Data Interface of the Intelligent Database Interface, revision 2.3 edition, Feb.
1993.

Paramax Systems Corporation. Software Design Document for the Loom Interface Module
(LIM) of the Cache-Based Intelligent Database Interface, revision 2.0 edition, Jan. 1993.

Ashoka Savasere. Amit Sheth, Sunit Gala, Shamkant Navathe, and Howard Marcus. On
applying classification to schema integration. In First International Workshop on In-
teroperability in Multidatabase Systems, pages 258-261. IEEE Computer Society, IEEE
Computer Society Press, April 1991.



[She90]

[She93]

[Spe88]

[Vee95a]

[Vee95b]

[Wei92]

[Wei93]

[Wha93]

Amit P. Sheth and James A. Larson. Federated database systems for managing dis-
tributed, heterogeneous, and autonomous databases. ACM Computing Surveys, 22(3):183-
236, September 1990.

Amit P. Sheth, Sunit . Gala, and Shamkant B. Navathe. On automatic reasoning for
schema integration. International Journal of Intelligent and Cooperative Information Sys-
tems, 2(1):23-50, 1993.

R. Speth, editor. Global View Definition and Multidatabase Languages - Two Approaches
to Database Integration. Amsterdam: Holland, April 1988.

Aravindan Veerasamy, Scott Hudson, and Shamkant Navathe. Visual interface for tex-
tual information retrieval systems. To appear in Proceedings of IFIP 2.6 Third Working
Conference on Visual Database Systems, Lausanne, Switzerland, Springer Verlag, March
1995.

Aravindan Veerasamy and Shamkant Navathe. Querying, navigating and visualizing an
online library catalog. Submitted for Publication, January 1995.

Gio Weiderhold. Mediators in the architecture of future information systems. IEEE Com-
puter, pages 38-49, March 1992.

Gio Weiderhold. Intelligent integration of information. In Arie Segev, editor, ACM SIG-
MOD International Conference, volume 22, pages 434-437. ACM, ACM Press, June 1993.

Whan-Kyu Whang, Sharma Chakravathy, and Shamkant B. Navathe. Heterogeneous
databases: Toward merging and querying component schema. Computing Systems, 6(3),
August 1993. (a Univ. of California Press publication).



Visual Interface for Textual Information
Retrieval Systems'?

Aravindan Veerasamy
Scott Hudson
Shamkant Navathe
{veerasam. hudson, sham}@Qcc.gatech.edu
College of Computing
801, Atlantic Drive
Georgia Institute of Technology
Atlanta, Georgia 30332-0280

Abstract

A prototype user interface implementation for text information retrieval system is
described. Using a visualization scheme, the interface provides visual feedback to the
user about how the query words influence the ranking of retrieved documents. The -
interface also helps the user in constructing complex structured queries by simple
drag-and-drop operations. An intuitive model where the user classifies the informa-
tion provided to him/her as being positive and negative aids him/her in supplying
rich relevance feedback information to the system. Our prototype interface has been
built on top of INQUERY [CCH92|. Preliminary experience with the interface shows
it to be a valuable tool in aiding the interactive search process between the user and
the svstem. To test the effectiveness of the interface, we plan to conduct studies on
users with real information need searching a large corpus of articles.

KNeywords: Visualization of results, visual query languages, query processing, in-
formation retrieval

'This work was supported in part by ARPA Grant No. F33615-93-1-1338 under the Intelligent
Integration of Information Program

>Appeared in the Proceedings of the Third Conference on Visual Database System, IFIP 2.6.,
Lausanne, Switzerland, March 1995



1 User Interface issues for Information Retrieval
systems

User Interface issues and interaction techniques for full text information retrieval sys-
tems have in general received much less attention than system issues like document
representation and retrieval algorithms. We have developed an interface that facil-
itates the user in visually constructing powerful queries for ranked output retrieval
systems. The interface includes a scheme for visualizing the query results in a form
that enables the user to see the relationships between the query results and the query.
While a majority of online library catalog systems use a boolean model of retrieval, a
vast majority of existing experimental information retrieval systems retrieve a ranked
set of documents in decreasing order of relevance in response to a free-form textual
query. In ranked output systems, the documents and the queries are modeled by a
set of weighted index terms. The index term weighting function for the documents
primarily takes into consideration

e the frequency of occurrence of the index term in the document,

e the number of documents in the corpus containing that index term.

The effectiveness of a retrieval system is measured by two metrics: recall (the ratio of
the number of relevant documents retrieved to the total number of relevant documents
in the corpus) and precision (the ratio of the number of relevant documents retrieved
to the total number of documents retrieved). The reader is referred to [BC87, Rij79,
SM83] for a comprehensive description of evaluation metrics of information retrieval
systems, document representation and retrieval techniques.

While processing a free-form textual query, most ranked output Information Re-
trieval systems automatically extract index terms from the query and weight them.
The weighted query index terms are then matched against the weighted index terms
of documents to retrieve a ranked set of documents in decreasing order of relevance.
Each document is weighted, the higher the weight of a document, the more likely it is
to be relevant to the query. Most of the existing library information systems (On-line
Public Access Catalogs, OPAC) follow a boolean retrieval model. In this model, the
documents retrieved in response to a boolean query are not ranked. If a document
satisfies the boolean query specification, it is retrieved. Compared to boolean sys-
tems. ranked output systems are a significant improvement since the query can be
in a free-form text as opposed to a strict boolean syntax. Also, the retrieved docu-
ments are ranked, thereby placing the more useful documents at the top of the list.
This is a particularly useful feature since it has been shown that users of boolean



svstems spend a considerable effort in reducing the size of the result set [Spi93]. On
the other hand. ranked output systems introduce a new problem: For a naive user,
the logic behind the ranking of documents in response to a query is not as appar-
ent and straightforward as a boolean system. The interface we have developed is
aimed at alleviating this problem. It helps the user in understanding how the system
computed the ranking of retrieved documents by visualizing the relationship between
querv terms and the results of the query.

The interface also aids the user in formulating complex structured queries by
graphically manipulating objects on the screen. A simple mechanism of classifying
any information on the screen into positive and negative instances lends itself to easy
formulation of structured queries. The interface is built on top of INQUERY [CCH92],
a ranked output retrieval system based on Bayesian inference networks. The interface
supports two types of feedback:

e feedback from the user to the system and

e feedback from the system to the user.

[t is interesting to note that the term “feedback” in the field of Information Retrieval
typically refers to user’s feedback to the system, while in the field of Human Computer
Interfaces, “feedback™ usually refers to the system’s feedback to the user. The user’s
feedback to the system and the different levels of granularity at which the feedback
can be provided is discussed in section 4. The system’s feedback to the user and the
visualization technique is discussed in section 5.

2 Related Work

Numerous studies on user interaction with online library access catalog systems with
a boolean retrieval model have been conducted [Spi93, SS92, Dal90, Fid9la, Fid91b,
Fid91c]. Spink [Spi93] studies the different forms of user feedback during a retrieval
session. Of the total number of feedback actions by the user, 45% were aimed at
adjusting the size of the retrieved set of documents, and about 40% were related to
relevancy of documents. Fidel [Fid9la, Fid91b, Fid91c] discusses the issue of user
interaction by studying the process of search term selection and searching styles in
online library access catalogs. Dalrymple [Dal90] looks at the feedback process from
a user-centered perspective. Bates [Bat] describes a boolean retrieval system which
integrates an online thesaurus. None of the above studies involve a ranked output
system supporting free-form textual queries. All of the systems deal with boolean



retrieval model only. We believe that there is a significant difference in the way users
interact with a boolean system and a ranked output system. The reader is referred
to [Har92] and [HB92| for a comparative discussion of boolean systems and ranked
output systems. While building our interface we have borrowed valuable ideas from
the studies mentioned above. In particular, the need to integrate an on-line thesaurus
with the search interface in an easy-to-use fashion and a simple interaction scheme
to include words from documents into the query have been influenced by the results
of above-mentioned studies.

Walker and Beaulieu [Wal87, HB92] describe their OKAPI system which is a
ranked output retrieval system for library catalogs. Similarly, Fox [FFS*93] describes
their MARIAN sysem which is also a ranked output system for library catalogs based
on the vector-space model. While OKAPI has facilities for relevance feedback and
query expansion using a thesaurus, it largely lacks any means of providing system
feedback to the user about how the ranking was computed. The in'=rface we have
developed integrates relevance feedback information from the user as well as feedback
from the system illustrating the relationship between query results and query words.

A number of visualization schemes for information retrieval systems have also been
proposed. The perspective wall [CRM91] describes a visualization scheme which sup-
ports browsing of documents. While such a system will not handle qualitative doc-
ument classifications such as library subject catalogs, it is very useful for visualizing
documents based on data which is linear in nature (like date of publication). Other
visualization schemes such as [Kor91, Spo94, HKW94| have facilities for viewing a
large document space. But visualizing the document space along more than 3 - 4
dimensions simultaneously becomes very cumbersome using the above systems. Also,
most of them do not provide support for querying with relevance feedback and none
of them provide support for query expansion using a thesaurus. The visualization
scheme in our interface can gracefully handle much higher number of query word
dimensions.

2.1 Novelty of our approach

The novelty of our system is in integrating a diverse set of interaction features in a
seamless fashion into a single system thereby facilitating the interactive and iterative
nature of the information seeking process. The following features are integrated in
our system:

e Using a visualization scheme, the interface provides visual feedback to the user
about how the query words influence the ranking of retrieved documents.



e By simple drag-and-drop operations of objects on the screen, the interface fa-
cilitates a naive end-user in constructing complex structured queries and in
providing relevance feedback. This feedback is utilized by the system in a man-
ner described later.

e The interface integrates an online thesaurus which provides words related to
the query that can be used by the user to expand the original query.

Belkin and his group's work [BMC93, BMA*91. HB94| on user interfaces for
information retrieval systems elucidates the issues in user interface and interaction
techniques for full text retrieval systems. Belkin [BMA*91] mentions that “This type
of analysis led to another important conclusion, namely that information systems
for end users must support a variety of goals and tasks, but through some common
interface or seamless access mechanism to a variety of relevant information sources and
system functionalities”. Our interface takes a step in that direction by integrating
different pieces of information with a visualization scheme and simple interaction
techniques.

3 Interactive Construction of Queries

Searching a database for information is a highly interactive process with the user
constantly refining the query after examining the results of previous iteration until
he/she is either satisfied with the results or is frustrated with the process and gives up.
In existing information retrieval systems, the interaction proceeds by the user provid-
ing feedback on which of the retrieved documents are relevant to his/her information
need. The system uses this information to modify the original query resulting in an
improved ranking of retrieved documents. It has also been shown by Spink [SS92]
that during iterative query reformulation, users tend to expand the query using search
terms from various sources such as a thesaurus, previously retrieved documents and
user’'s background knowledge. Expanding the query with terms from such sources
can contribute to retrieval of more relevant documents in the next iteration.

Our interface encourages the interaction between the user and the system by pro-
viding the user with simple interaction technique to let him/her supply relevance feed-
back at different levels of granularity: whole documents, document portions, phrases
and individual words. Almost any information appearing on the screen can be used
for feedback. This is achieved by simple “drag-and-drop”ping the feedback object
into either a “Positive Objects” window colored green or a “Negative Objects” win-
dow colored red. This scheme provides a simple abstraction to the user for classifying



any type of information without having to worry about what action to take for what
tvpe of information. A typical user session along with the response of the interface
for every user action is described below using an example (please refer to Figure 1).
The database being queried contains a collection of titles, authors and abstracts of
thousands of CACM articles.

e The user types in his free form textual query in the query window. In the ex-
ample shown in figure 1, the query is *image audio and text data compression”.

e As every query word is typed in, the system consults an on-line thesaurus and
displays words and phrases related to the query word in an adjacent window.

e At any point during the session the user can drag-and-drop any of the related
words/phrases into the positive and negative windows. I[nternally the system
expands the query by treating the positive words/phrases as synonyms of the
corresponding query word. The negative words/phrases are included in the
query with a NOT operator. For example, if for a query word “bank”, the
phrase “financial institution” is classified as positive and “river bed” is clas-
sified as negative, the corresponding internal query would be “#SYNONYM(
bank #2°( financial institution )) #NOT( #2( river bed))”. The end-result
of this classification is a possible improvement in the precision measure since
documents containing the phrase “river bed” will be weighted lower than other
documents, and a possible improvement in the recall measure since documents
containing the phrase “financial institution” are also retrieved. The interface
facilitates construction of such structured queries by simple drag-and-drop op-
erations. In the example in figure 1, three words related to the query word
“compression”, namely, “compaction, “shortening” and “condensation” have
been classified as positive. Internally the systems treats these three words as
synonyms of “compression”.

e After the user types in the query, the system evaluates the query and displays
the titles of top-ranked documents in the “Query Results” window.

e The user examines the query result. Double-clicking any title with the mouse
will bring up the full document.

e The user can classify any document as being relevant or non-relevant by drag-
and-drop’ing the document into positive and negative windows. In the example
in figure 1, the user has classified three documents titled “Experiments in text

3#2 is the proximity operator in INQUERY specifying that the words should appear within a
distance of 2 within each other



A .
sitive Objects 2 Hegative Oljects

L. Experiments

; : S I oy ! : [ L Preliminary I
1{ & trope text § compaction ‘
figure of speec | texthook : compression
l‘ 3

figure i textediion (@8 concretion
A Newr Techn i
nnaye { school text i densificaition

> rhetorical (i

prototype :

y Automatic Da | B epitome i
mare i 5\ g condensation

consoldatior |

conmpressuon

> model i l I contra
compaction i example wntten male ;. | shorte
shortening i b E—— )

condensation 3 r / : ,

(MIG'H [image andio and text data compression

gl audio data i
sotmnd ] s collection |
> audhtory cof ¢ aggregation
{ audio i accumulation
B8 autho frequency} assemblage ©
| > frequency || RB datum
frequence  |F 8 dlata point i
f oftenness | > Information |
; aulio «
3 > component

[ '] Pid
Oplions:

Search More (legr Query Reset TextDB  Help

| Query resulls

Query Results
- p— ot
i Experiments in Text Flls Compression _
!1.53134 AMTadmfwmm&Mum :
0.439958 Binery Pattem Reconstruction from Frojectians [7] (Aigorithen R445)
10.496841 Preliminary investigation of Teclinkues for Automated Reading of Unformatied
0.49243 Agurithmic Selection of the Best Methad for Comprassing Map Data Strings

0404415 Reconstruction of Pictres from Thelr Projections
0483078 An Aigorith for Extracting Phrases in & Space- Optimal Fashion [7] (Aigorithm

Figure 1: Sample querying session. The window titled “Positive object” is colored
green and the window title “Negative Objects” is colored red. When a document
is classified as positive/negative, the title of that document in the “Query results”
window is also colored green/red.



file compression™. “A new technique for compression and storage of data” and
“Automatic data compression” as positive. The document titled “Preliminary
investigation of techniques for automated reading of unformatted text” has
been classified as negative. Internally, the systems extracts 4 - 6 high frequency
words from the positive documents and adds it to the query thereby expanding
the query. This results in the retrieval of documents similar to the positive
documents.

e The user can also highlight a portion of a document and drag-and-drop it into
the positive and negative windows. The words in the highlighted document
portion are used to expand the query in the next iteration.

e During the next iteration, the reformulated query with the relevance feedback
information is processed by the system resulting in an improved ranking of
documents.

The positive and negative windows for feedback are aimed at mimicking the user’s
view that some information is in line with the information need and some not. After
an object has been classified as positive (or negative), the system always colors the
object green (or red) whenever the object is displayed, thereby reinforcing the user
with the fact that the object is being used for relevance feedback. While arguing for
the use of direct manipulation techniques for Information Retrieval, Mitev [Mit89]
mentions that

“Parts of document(s), individual word(s), sentences or groups of word(s)
displayed could be used directly as something to be input for another
search. This could be done, for example, by pointing and ’picking’ them
on the screen and carrying them across another area of the screen. The
user would not have to input them again.”

This is precisely what has been accomplished in our interface. In their retrieval
system. Campbell [CS] uses a cut-and-paste mechanism for relevance feedback by
letting the user add portions of retrieved documents back into the query window.

This section dealt with the interaction technique to let the user provide relevance
feedback information to the system. The next section deals with visual feedback from
the system on how the query results were computed.



mage DI T 11 1o

audio “

- e T I

data Mokt thwber 0 B to ww e

1 It

compression

Total sum: o

Figure 2: Visualization of results for the base query.
4 Visualization of query results

While systems with a boolean retrieval model retrieve an unordered set of documents
in response to a query, ranked output information retrieval systems retrieve a ranked
set of documents. While the reason for retrieving a document is fairly clear in the
case of a boolean system, the reason why a document is assigned a specific rank
is not apparent in the case of a ranked output system. Without knowing how the
system computed the ranking of documents, the user will have to treat the retrieval
mechanism as a black box. We stand to gain a lot by keeping the user more informed
about the retrieval process of the system. If the user has more information about
how the ranking was computed, he/she will be in a better position to reformulate
the query for the next iteration. He/she can take into account the deficiencies of the
system in adjusting his/her query. It will also help in reinforcing the right mental
model.

In our interface, we keep the user informed about the retrieval mechanism by
providing visual feedback about how the query results are related to the query words.
This is done by a visualization scheme as shown in the figure 2. The visualization
reveals the extent to which each query word was responsible for retrieving the set
of documents. The visualization consists of a set of histograms, one for every query



mage 1 111 |

i |

text |1 bl 1 1 W non

data Ikt e 1ol ol B0 e omn o O S OCAMTRAUOUACMTATAATAIOUOUMATANSY o 0 MR OO

compression |l

Total sum:  ||[Ilammmmmmmmwmm

Figure 3: Visualization of results for query with feedback information.

word (except stop words) typed in by the user, and one histogram for the total
query (labeled “Total sum”). All the histograms are placed one below the other with
the “Total sum” histogram appearing at the bottom and the query-word-histograms
appearing in the order in which query words were typed in. Each histogram consists
of a set of vertical bars, one bar for each retrieved document. For the top ranked
document, a vertical bar is drawn in the leftmost position (i.e, lowest X coordinate
position) in the “Total sum” histogram. The height of the bar is proportional to the
weight of the document. (Note that each document is given a weight. The higher
the document weight, the more likely it is to be relevant to the query.) For the same
document. vertical bars in the same X-coordinate position are also drawn in the query-
word-histograms. The height of the vertical bar in any given query-word-histogram
is proportional to the weight of the query word in that document. It represents the
contribution of the query word in retrieving that document. If the query word does
not appear in the document, thereby getting a weight of zero, a bar of zero height is
drawn which shows up as an empty space in that X-coordinate position. The second
ranked document occupies the next higher X-coordinate to the right and so on upto
a maximum of top 200 documents.

The visualization shown in Figure 2 corresponds to the base query with no feed-
back information from the user. We can see that all but two of the top 200 documents



have nothing to do with audio. Almost all of the second half of the 200 documents
were retrieved because they contained the query word “data”. More significantly,
only about 10% of the documents have anything to do with compression - which is
the crux of the query. This illustrates that the query should be expanded with more
words related to “compression”. In fact, the decision to classify the three synonyms
of “compression” (as shown in figure 1) was made after examining the distribution of
“compression” in the visualization. Figure 3 shows the distribution of query terms
in the query result for the revised query in the second iteration with all the feed-
back information. We can see that almost all the documents about “compression”
have been ranked at the very top. Also there are more documents retrieved due to
“compression” because of the synonyms and the positively classified documents. Qur
experience with this visualization scheme has shown it to be very useful in identifying
differents facets of the query.

5 Conclusion & Future work

A prototype interface for a ranked output information retrieval system has been imple-
mented. The interface facilitates the inherently interactive nature of the information
seeking process. Drag-and-drop operations form the basis of interaction encouraging
the user to provide feedback information to the system and helps in the dialog be-
tween the user and the system. Almost any information on the screen can be used
by the user to provide feedback information. An online thesaurus, WordNet [Mil85],
is integrated with the interface to form a single system.

The interface also supports a visualization scheme which illustrates how the query
results are related to the query words. Visualizing the results of the query keeps the
user more informed on how the system computed the ranking of documents. With
this information, the user is better equipped to reformulate the query for the next
iteration. It is our opinion that integrating all of the above features in a seamless
interface leads to an interplay between different items that is much more beneficial
than the sum of the individual items in isolation.

In demonstrating the system to the reference librarians at Georgia Tech and in
observing casual users of the system, we believe that the features we have implemented
in this system contributes to enhancing the end-user’s interaction with the system.
As a result, the system is better able to access the user’s need and the user has
a better understanding of the system’s inference. However we cannot categorically
conclude the effectiveness and the utility of the interface without conducting formal
user-studies.



[n future. we plan to test the effectiveness of the interface by conducting two
studies: One with users having real information needs searching a traditional library
database and another with volunteers searching the TREC [TRE94] document col-
lection with supplied search statements. Since all the relevant documents for the
supplied search statements in the TREC collection are known, recall and precision of
searches performed with our interface can be compared against other systems.

6 Acknowledgments

We are thankful to Dr. Bruce Croft for letting us use the INQUERY retrieval system.

References

[Bat]

[BC37]

[BMA*91]

[BMC93]

[CCHY2]

[CRMO1]

[CS]

Marcia J. Bates. Design for a subject search interface and online thesaurus
for a very large records management database. In Proceedings of the

Annual Meeting of the American Society for Information Science, pages
20-28.

Nick Belkin and W.B. Croft. Retrieval techniques. In E. Martha, ed-
itor, Annual Review of Information Science Technology, pages 110-145.
Elsevier Science Publishers, 1987.

N.J. Belkin, P.G. Marchetti, M. Albrecht, L. Fusco, S. Skogvold,
H. Stokke, and G. Troina. User interfaces for information systems. Journal
of Information Science, 17:327-344, 1991.

N.J. Belkin, P.G. Marchetti, and C. Cool. Braque: Design of an interface
to support user interaction in information retrieval. Information Process-
ing and Management, 29(3):325-344, 1993.

J.P. Callan, W.B. Croft, and S.M. Harding. The inquery retrieval sys-
tem. In Third International Conference on Database and Ezpert Systems
Applications, September 1992.

S. Card, G Robertson, and J. Mackinlay. The information visualizer,
an information workspace. In Proceedings of CHI 91 Human Factors in
Computer Systems., 1991.

[. Campbell and M. Sanderson. Personal communication. University of

Glasgow.



[Dal90]

[FFS*93]

[Fid9la]

(Fid91b]

(Fid91c]

(Har92]

[HBY?]

[HB94]

[HKW94]

[Kor91]

P.W. Dalrymple. Retrieval by reformulation in two library catalogs: to-
ward a cognitive model of searching behaviour. Journal of the American
Society for Information Science, 41(4):272-281. 1990.

Edward A. Fox, Robert K. France, Eskinder Sahle, Amjad Daoud, and
Ben E. Cline. Development of a modern opac: From rectolc to marian. In
Robert Khorfhage, Edie Rasmussen, and Peter Willett, editors, Proceed-
ings of sizteenth ACM SIGIR conference, pages 248-259. ACM SIGIR,
June-July 1993.

Raya Fidel. Searcher’s selection of search keys: 1. the selection routine.
Journal of the American Society for Information Science, 42(7):490-500,
1991.

Raya Fidel. Searcher’s selection of search keys: Ii. controlled vocabulary
or free-text searching. Journal of the American Society for Information
Science. 42(7):501-514, 1991.

Raya Fidel. Searcher’s selection of search keys: lii. searching styles. Jour-
nal of the American Society for Information Science, 42(7):515-527, 1991.

Donna Harman. User-friendly systems instead of user-friendly front-
ends. Journal of American Society for Information Science, 43(2):164-
174, 1992.

Micheline Hancock-Beaulieu. User friendliness and human-computer in-
teraction in online library catalogues. Program, 26(1):29-37, January
1992.

Scott Henninger and Nick Belkin. Tutorial on interface issues and inter-
action strategies for information retrieval systems. In Human Factors in
Computing Systems CHI 94 Conference Companion, pages 387-388, 1994.

Matthias Hemmje, Clemens Kunkel, and Alexander Willet. Lyberworld -
a visualization user interface supporting full text retrieval. In Proceedings
of the 17th Annual International Conference on Research and Develop-
ment in Information Retrieval, pages 249-259, 1994.

Robert Korfhage. To see, or not to see — is that the query? In Proceedings
of the 14th Annual International ACM/SIGIR conference on Research and
Development in Information Retrieval, pages 134-141, 1991.



IN183]

[Mits9]

[Rij79]

[SMS3]

Spi93]

[Spo94]

$592]

[TRE94]

[Wals7]

G.A. Miller. Wordnet: A dictionary browser. In Proceedings of the First
Conference of the UW Centre for the New Ozford Dictionary. Unversity
of Waterloo. 1985.

Nathalie N. Mitev. Ease of interaction and retrieval in online catalogues:
contributions of human-computer interaction research. In Charles R. Hil-
dreth. editor. The online catalogue, chapter 8, pages 142-176. Library
Association Publishing, London, 1989.

Keith Van Rijsbergen. [Information Retrieval. Butterworths, London.
second edition, 1979.

Gerard Salton and Michael J. McGill. Introduction to Modern Information
Retrieval. McGraw-Hill Book Company, New York, 1983.

Amanda Spink. Interaction with information retrieval systems: Reflec-
tions of feedback. In Proceedings of the Annual Meeting of the American
Society for Information Science, pages 115-121, 1993.

Anslem Spoerri. Infocrystal: A visual tool for information retrieval and
management. In Human Factors in Computing Systems CHI 94 Confer-
ence Companion, pages 11-12, 1994.

Amanda Spink and Tefko Saracevic. Sources and use of search terms
in online searching. In Proceedings of the 55th Annual Meeting of the
American Society for Information Science, pages 249-255, 1992.

In D.K. Harman, editor, The Second Text RFEtrieval Conference (TREC-
2). NIST Special Publication, March 1994.

Stephen Walker. Okapi: Evaluating and enhancing an experimental online
catalog. Library Trends, Spring:631-645, 1987.



Il

KNOWLEDGE BASED
QUERY PROCESSING-
(Project Summary-Tech Report)

L

by

Shamkant Navathe, P.I.
College of Computing
Georgia Institute of Technology
Atlanta, Georgia

July 1995

Submitted to Advanced Resaerch Project
Agency
Grant No. F33615-93-1-1338



arpa.report.95

THE FOLLOWING REPORT WAS FILED WITH ARPA by email on July 5, 1995.

=== ADMINISTRATIVE DATA ===
1. ARPA ORDER NUMBER: A522
2. BAA NUMBER: BAA 92-06
3. CONTRACT/GRANT NUMBER: F33615-93-1-1338
4 AGENT: AIR FORCE - Wright Patterson Air Force Base, Ohio.

5. CONTRACT TITLE: Knowledge Based Query Processing
Known as the KBQP project

(official title: A Knowledge Based Approach to Integrating and Querying
Distributed Heterogeneous Information Systems).

6. CONTRACTOR/ORGANIZATION: Georgia Institute of Technology

7. SUBCONTRACTORS: None

8. CO-PRINCIPAL INVESTIGATORS: Prof. Edward Omiecinski and Prof. Ashok Goel
9. CONTRACT:

9.1 ACTUAL START DATE: September 30, 1993

9.2. EXPECTED END DATE: January 31, 1997.

10. FUNDING PROFILE:

9.1. Current contract: $472,815.

9.2. Total funds provided to date for all years $388, 377
Total funds expended to date for all years $247 K
Report as of date May 31, 1995
9.3. Date total current funding will be expended: Dec. 31, 1995.
9.4. Funds required in FY96:
(i.e., funds needed to fund you from date in 9.3 above through
11/30/96) remaining balance of $84, 433.
===PRESENTATION CHARTS===

To be supplied later in the required format.

(SEE ATTACHED)



arpa.report.95

http://www.cc.gatech.edu/computing/Database/database.html

‘'The above page is being set up.

10. ANYTHING ELSE YOU NEED (from ARPA):
Quick acquisition of software licensed under ARPA.

===SIGNIFICANT EVENTS===

No events to report for FY 93.

The following summary was posted according to the instructions given at
the Web URL:

http://www.arpa.mil/sisto/project-sum.html
on July 5, 1995.

It is slightly modified and submitted below. Additionally, some viewgraphs
are attached to give a complete idea of the overall thrust of the project.

=== PROJECT SUMMARY ===
(TECHNICAL REPORT)

ORGANIZATION: Georgia Institute of Technology
SUBCONTRACTORS: None

PRINCIPAL INVESTIGATORS:
Shamkant B. Navathe, Professor Phone: 404 894 0537
email : sham@cc.gatech.edu Fax 404 894 9442

CO- P.I.’s: Edward Omiecinski (edwardo@cc.gatech.edu)
Ashok Goel (goel@cc.gatech.edu)

TITLE OF EFFORT: "Knowledge Based Query Processing"
SUBTITLE: "HIPED: Heterogeneous Intelligent Processing for Engineering Design"
TEAM MEMBERS / GRADUATE STUDENTS:

Shamkant Navathe (PI)
Ashok Goel (Co-PI)
Edward Omiecinksi (Co-PI)

Jeffrey Donahoo (Graduate Student)
Yaakov Eisenberg (Graduate Student)
William Murdock (Graduate Student)
Jeffrey Pittges (Graduate Student)
Aravindam Veersamy (Graduate Student)
Sameer Mahajan (Graduate Student)

EXECUTIVE SUMMARY
The development of large-scale information/knowledge systems continues

to be a cherished goal for computer/information science. Some of the
difficulties arise due to the heterogeneity of information (i.e.,




arpa.report.95

content, structure, form), while others arise because of the
heterogeneity of reasoning (e.g., rule-based reasoning, case-based
reasoning, model-based reasoning). We are exploring several critical
elements in the design of large-scale systems including query
formulation, query optimization, knowledge compilation in query
answering, the integration of multiple information sources, the
integration of multiple methods of reasoning, and device ontologies
for engineering design problems. Basic research on query formulation
and semantic query optimization has resulted in one completed and one
ongoing Ph.D. dissertation.

OBJECTIVE:

To address various aspects of query prccessing in large scale
distributed heterogeneous environments with special emphasis on
incorporating knowledge (meta-data) at different levels. The knowledge
relates to information about the sources of data, their structure,
their content, and their overall relevance to the problem at hand.
Another objective is to incorporate knowledge compilation, schema
integration and data integration in a flexible way. Finally, the overall
gosl is to develop a prototype system that instantiates, evaluates and
demonstrates the intelligent integration of concepts for the
application domain of engineering design.

APPROACH:

Our present approach to the issue of incorporating knowledge into

query processing and formulation can be broken down into six areas

which can be grouped into two categories. The first one deals with query
formulation, optimization, and answering. The second deals with
knowledge and data integration.:

A. Query Formulation, optimization, and answering:
1. Query Formulation:

Query formulation using free form textual queries is investigated.
The target databases contain of semi-structured data like text
documents. User interface and visualization techniques are developed
and tested to let the user discover the ways in which data is
organized. A thesaurus is incorporated to guide the user.

Current work addresses extensive studies with the user interface and
visualization to determine the overall utility of the approach.

2. Semantic and Multiple Query Optimization:

Query optimization is a decision process that selects the best query
evaluation strategy from a set of execution plans. The performance of
this process can be improved by providing better information about the
contents of the database (i.e., meta-data). A new approach called
Meta-Data View Graphs (MVG) and their efficient maintenance in light of
database updates has been developed.

3. Knowledge Compilation in Query Answering: In determining how to
efficiently answer a query, one can learn from the history of the
performance of previously dealt with queries. A solution technique
using case-based reasoning is being developed where retrievals are
compiled into meta-cases consisting of (query, answer, trace)
triplets.

B. Knowledge and Data Integration
4. Integration of Knowledge Systems with External Information Sources:

An existing autonomous knowledge system called Kritik that combines
case-based and model-based reasoning for designing engineering devices




arpa.report.95

was developed earlier at Georgia Tech. It is being enhanced to link

with existing databases of past design cases and components. It generates
requests for data that are compiled and processed against the avilable
databases.

5. Integration of Data from Multiple Information Sources: This is a
classical problem of having to deal with data with heterogeneous
models and systems. With our long-standing track record of work in the
schema integration area, a practical approach to integration with
partially integrated schemas based on meta-data is being developed.

6. Transparency of Knowledge-Based Reasoning: Knowledge organization
and information processing in the integrated information source
environments must be transparent to users. Three issues are under
investigation: how to explain and illustrate the system’s reasoning,
how to explain and justify its results, and how to enable the user to
navigate and browse its knowledge bases.

PROGRESS:

In the second year of this effort so far we have made considerable
progress in each of the six areas listed above. Work in areas one and
two is nearly complete and has resulted in two

Ph.D. dissertations. Small prototype solutions have been developed in
the remaining areas. The third year will involve further research in
areas 3 through 5 above and will result in a prototype that
underscores the theme: the use of meta-data in developing large scale
knowledge based systems.

FY 95 ACCOMPLISHMENTS
A. Query Formulation, optimization, and answering:

In the area of query formulation, a prototype query formulation system
has been implemented for dealing with real-life text databases with
visualization and user feedback techniques. The prototype has been
extended to work with an online library catalog and with a standard
collection of full text documents, called the TREC collection
(sponsored by NIST) containing TIPSTER databases. The effectiveness
of the visualization scheme is being tested by conducting user
studies. The studies are aimed at discovering:
a. the different ways in which end-users utilize the
visualization and
b. the improvement in performance in terms of
"recall" and "precision", the two standard measures used in the
Information Retrieval community.

The MVG (Meta-data View Graph) is a metadatabase capable of maintaining
the semantic and structural meta-data for views of a database. As the
database evolves, this meta-data may need to be updated to reflect the
current semantic content of the database. In the last year, work has
concentrated on developing solutions to this approach based on update
logs. Efficient schemes of updating the meta-data and corresponding
query execution plans have been developed.

Work has begun in the third area of knowledge compilation. In
knowledge compilation, various types of knowledge is used to enhance
query processing: the meta-model, meta-associations and meta-cases.
The meta-model can be thought of as the global schema, which can be
constructed from the meta-data. Meta-associations are compiled from
past experiences (i.e., from searching the meta-model). Meta-cases
consist of the past experiences (the search plan followed) together
with the query and its answer. Use of a deductive database system
called CORAL is being considered for stcring meta-data.



arpa.report.95

B. Knowledge and Data Integration

To investigate integration of knowledge systems with external
information sources, knowledge of engineering components has been
ported from Interactive Kritik to a relational database implemented in
Oracle. Then LOOM and IDI were used to enable Interactive Kritik to
access the Oracle database. In the area of data integration, we have
developed a mechanism where administrators can describe their data.
This description is then used to create a partially integrated
representation of the data from a collection of information sources.
We have started development of a tool to take the information source
descriptions and produce an integrated data representation. In the
area of transparency of knowledge-based reasoning, a graphical
interface has been built to Kritik and used to partially explain and
illustrate the system’s reasoning. Tools for enabling different kinds
of user interaction with the system such as enabling a user to
explore, navigate and browse through the design cases in the systems
knowledge base are under development.

PRODUCTS: NONE.

PUBLICATIONS: A list of publicly accessible papers published in technical
journals, conference proceedings, magazines, etc. Give full citation as in a
reference list for a technical publicat:ion.

1. S. B. Navathe and M.J. Donahoo, " Towards Intelligent Integration of
Heterogeneous Information Systems," Sixth International Hong Kong Computer
Society Database Workshop on Database Reengineering and Interoperability,
March 3-4, 1995.

2. A, Veerasamy, S. Hudson and S. B. Navathe, " Visual Interfaces for
Text Information Retrieval Systems," Proc. of Visual Database Systems
-3, an IFIP WG 2.6 Workshop, Lausanne, Switzerland, March 1995, Chapman
Hall Publishing.

3. J. Pittges, Improving Query Optimization with Instance Based
Constraints, Proc. IFIP WG 2.6 Working Conference on Database
Semantics (DS-6) , Stone Mountain, GA, June 1995, Chapman Hall
Publishing.

DATE PREPARED: July 5, 1995

SIGNIFICANT EVENTS:

1. A user interface tool has been developed to work against large
document databases. It incorporates the INQUERY information retrieval
engine combined with the WORDNET Thesaurus. Currently, the tool has
been integrated with the TIPSTER data and is undergoing user field
testing. We will also be competing in the TREC conference to compare
our system with other information retrieval systems worldwide.

2. A Ph.D. dissertation on semantic query optimization by Jeff Pittges
has been completed.

FY 96 PLANS

1. User studies on the query formulation interface will be completed
by September 1995. Based on the results of the user study, we plan to
go through an iterative design cycle of the interface to better suit
the end-user needs. The study will also shed light on which kinds of




arpa.report.95

visualization suits the information searching process.

2. Current set of integration tools will be enhanced tbo accomplish
large-scale integration. This incorporates:

a). Construction of Augmented Export Schema development tools to allow
information source administrators to completely/accurately represent
their data.

b). Extend the reasoning capabilities of schema integration tool by
allowing more types of inferencing on schema correspondences and
consideration of user feedback.

3. Development of query processing facilities which support users
searching a very large information space. Such facilities include
explanation of query results, suggestion of future query directions,
and visualization of information relevancy. We will use a deductive
database system (DDBS) to store and access the meta-data. The main
advantage is that the DDBS will provide us with a built-in inferencing
capability. The system will allow us to make inferences over IS-A,
PART-OF and more general relations which we define in the DDBS. Also,
from searching the meta-data, the query processor will determine the
different information sources that will be searched to process the
query. To aid in processing the same or similar queries, we will use
knowledge compilation techniques. '

TECHNOLOGY TRANSITION:

We are presently investigating the potential use of our prototype
system for the design of demanufacture processes such as product
service and disassembly processes. This work is in collaboration with
a group of mechanical engineers at Georgia Tech.

We are also exploring the potential use of our system for the
procurement of engineering components, devices and systems. This work
'ls in collaboration with a group of computer and logistics scientists
at Michigan State University.

In addition, in collaboration with Warner Robbins AFB and the Air
Force, we are exploring the

potential use of our system for accessing information about Air Force
Alternative Fuel Vehicle (AFV) Program.

QUAD Charts
Background:

Sham Navathe has spent many years working in the area of information
integration (e.g. CANDIDE Project, etc). The technologies developed in
those projects and the recognition of the need for large-scale integration
of information sources led to the proposed research direction of this
project. Ashok Goel has spent many years working in the area of

knowledge representation and reasoning (e.g. Kritik, Ideal, etc). We

hope the reasoning/representation techniques from his work can be

applied to query processing. In addition, large-scale knowledge bases
resulting from the integration work in our project will facilitate

scaling of the reasoning systems developed by Ashok Goel.

Technical Approach:

1. Develop a method to represent information sources. Then, create
a procedure to take information source specifications and produce a
global representation of all the data in the information

sources.




arpa.report.95

2. Develop techniques to efficiently query the data from the
information sources. Semantic query optimization, query result
visualization, and case/model-based reasoning will be used to augment
the functionality of traditional database query systems.

3. Test the usability and scalability of the knowledge of the system
by allowing an intelligent system to attempt to utilize the information
available after integration. Kritik will be used to test if the

HIPED system provides the necessary data for its reasoning processes.

Objectives:

1. Large-scale integration of information sources: This will provide
DoD with the capability to perform decentralized integration of a
large number of databases.

2. Access of a large collection of data: This allows

access of a large amount of loosely related data. Traditional
database query processing is only suited for domain specific searching
with a relatively small schema.

3. Integration of intelligent systems with large, non-application
specific knowledge bases: This will allow intelligent systems to
utilize knowledge which is useful in their reasoning processes that
is widely distributed and heterogeneous.

Technical Challenge:

1. One of the main difficulties is defining a method to properly
describe the semantics of an information source. We will use

basic knowledge representation constructs (e.g. associations,

domain concept hierarchies, etc) to allow the administrator to
relate their information source entities to other information source
entities.

2. Due to the complexity of information source semantics, it is
intractable to automatically generate a completely integrated
representation of all the data. We will be using various reasoning
techniques (case/model-based) and meta-data to aid a user in finding
information which will be difficult to find since the integration is
incomplete.

3. Knowledge is the key to successful reasoning in intelligent
systems; however, ad hoc access of knowledge from other systems is
difficult. The semantic description of each information source in
concert with the query processor reasoning facilities will provide
the necessary information to import knowledge for external bases into
an intelligent system.




Integration of Information from DB & KB Systems

User
Global
Request Router
/"//'4 A k \\
o — / ; \-‘
- Task- ; Data
Method g Schema
Structure " ; - e,

Schema / /\ Query Schema / ~~~~~~~~~ \ Query
Builder \Other Meta- / Prpcessor & Bunder \ Meta-Data / Prqgessor
Know|edge . Reposnory
New Data Now Dats

Requests )
P _Database Wrappers
/’// ; i - PP P

~
A T

S— | e e ~—— -

Knowfed eS fstems |
Saoe Y Information Sources

. i S e P g

N\\
L

NewData
.y | A |
Local Informatlon Sources Method isiecmc Knowledge
e e | Transformers
| - J L ‘ | L o




Research Approach 1:
Integration of Data from Database Systems

User
; A
Request - Result
A »
Global
~ Request Router
Partially Integrated \ T
Global Schema
T T Data Data
Meta-Data Meta-Data & e Request
Request ,
, -~ y Query Processor
Y ~ ‘ \
- . ~ Query Result
Schema Builder Generator Composer
B —
. Other.
Meta-
Data
Augmented Data \ e o
Export Schemas -~
E .\\ \\\\ ’ />
\ .‘\
AN \\ " /
3 //)K \
\\. / ) s | //
| Database Wrappers

e e o i

" Information Sources



Reasearch Approach 2:'
Integration of Services from Knowledge Systems

User
A
Request Result
Y
Global
Request Router
< T ~
Service Schema Service Dsta
e —_— - Request
Meta-  Meta-Knowledge -~ = " Querv P
Knowledge  Request e TR R y \uery Frocessor
S | e e .
s el ' Query ~ Result
Schema Builder * Generator . Composer
T v
) Other Meta-
‘Knowledge
| Knowledge Systems ;
L_rﬁ R New Request to the
v K —rL' Knowledge Based

i, \z i p [

g™ 1‘ e S 1

| Local lnformatlon Sources |

Request Processor



Current Implementation - 1

Large-Scale Information Source Integration
Rule Based Flexible Integration of Information Sources

Using the Coral System

Dat !
dala
S vRequest Datg
P Query Processor (Run Time)
; lobal Meta-
Schema Builder ~ — Glo o Query Query
(Compile Time) (Coral Facts “Generator Generator
&Rules) = s
~N__ ' )
| .
Database Wrappers |

i

S BN L
Information Sources
: i_ : l

Tl




Current Implementation - 2

Method Specific Knowledge Transformation
Connection of Knowledge System with External Database

Query Processor

v (IDI Based)
— - ’ A
Knowledge o ;_//—*1 B
System o ) P _
(Interactive / Information Source
Kritik) : (Oracle Database)
B 2 S
R i ‘ M \
~ ~Local- Method Specific
Information: Knowledge Transformer:

Source. i -

Sl e




R

Georgia Tech

Georgia Institute of Technology
Atlanta, Georgia 30332-0280

USA

404989493152

4048539378 FAX

May 2, 1997

Charles Satterthwaite
WL/AASH Bldg. 620
2241 Avionics Circle
Wright-Patterson AFB
Ohio, 45433-7318

Re: Contract No. F 33615-93-1-1338 - Annual and Final Report for “KBQP: A
Knowledge-Based Approach to Integrating and Querying Distributed
Heterogeneous Databases”.

Dear Mr. Sattherthwaite:

Enclosed please find a complete set of publications that we produced on our
project entitled: “KBQP - A Knowledge-Based Approach to Integrating and
Querying Distributed Heterogen Databases”.

Please note that I am sending you separately by e-mail the material that will
go as the front matter explaining the contents of these papers. Once you have
marked up the other material, I will send you the final formatted copy so you
can bind and circulate copies. Thank you for your cooperation.

Sincerely,

Shamkant B. Navathe
Principal Investigator

SBN/gb
cc: Anita Rowland, Office of Contract Administration \/

Enclosures

An Equal Education and Employment Opportunity Institution A Unit of the University System of Georgia



PART 1

HIPED: Heterogeneous
Intelligent Processing for
Engineering Design



PUBLICATIONS (PART1):

1." Towards Intelligent Integration of Heterogeneous Information
Sources ," Shamkant B. Navathe and Michael J. Donahoo.. In
Proceedings of the 6th International Workshop on Database Re-
engineering and Interoperability, Computer Society of Hong Kong,
March 1995.

2. " Rule Based Database Integration in HIPED : Heterogeneous
Intelligent Processing in Engineering Design ", Shamkant B. Navathe,
Sameer Mahajan, Edward Omiecinski . In Proceedings of
International Symposium on Cooperative Database Systems for
Advanced Applications, World Scientific Press, 1996.

3. "Integrating Heterogeneous Databases for Engineering Design,"
Sameer Mahajan and Shamkant B. Navathe, submitted to Conference
on Deductive Databases and Logic Programming, Leuven, Begium,1997.

4. " From Data to Knowledge: Method-Specific Transformations,"
Michael J. Donahoo, J. William Murdock, Ashok K. Goel, Shamkant B.
Navathe, Edward Omeicinski, submitted for publication.



PART 2

VISUALIZATION AND USER
INTERFACE TECHNIGQUES FOR
INFORMATION RETRIEVAL



PUBLICATIONS (PART2):

1. Visual Interface for Textual Information Retrieval Systems",
Aravindan Veerasamy, Scott Hudson, Shamkant Navathe. In
Proceedings of IFIP 2.6 3rd Working Conference on Visual
Database Systems 1995, Elsevier, North Holland, pp. 333-345.

2. TQuerying, Navigating and Visualizing a Digital Library Catalog",
Aravindan Veerasamy, Shamkant Navathe.
In Second International Conference on the Theory and
Practice of Digital Libraries ,June 11-13, 1995, Austin, TX

3. "Interactive TREC-4 at Georgia Tech",
Aravindan Veerasamy. In Fourth Text REtrieval Conference,
Oct, 1995, Gaithersberg, MD

4. “Evaluation of a tool for visualization of information retrieval
results”, Aravindan Veerasamy, Nick Belkin. In Proceedings of
the SIGIR 1996, the 19th Annual International Conference on
Research and Development in Information Retrieval., ACM, New
York.

5. "Effectiveness of a graphical display of retrieval results",
Aravindan Veerasamy and Russell Heikes. In
Proceedings of the SIGIR 1996, the 19th Annual
International Conference on Research and Development in
Information Retrieval.. ACM, New York.



PART 3

Metadata Management for
Intelligent Query Processing



PUBLICATIONS (PARTS3):

1. Jeff Pittges. " Maintaining Instance-Based Constraints for Semantic
Query Optimization," In Proceedings of the Sixth IFIP TC-2 Working
Conference on Data Semantics (DS-6) , Stone Mountain, Georgia,
May1995

2. " Maintaining Semantic and Structural Metadata in

the Metadata View Graph," J. Pittges, L. Mark, and S. Navathe. In
Proceedings of the Seventh International Conference On
Management of Data, Pune, India, December 1995.



/7)) -
(C-36-x A
DEPARTMENT OF THE AIR FORCE

WRIGHT | ARORATORY (AFMT) 41. 3 e & vé
WRIQHT-PATTEROON AIA FORCE BASE, OHIO 0 27)

19 June 1997

FROM: WL/AASH, Bidg 635
2185 Avionics Circle
Wright-Fatterson AFB OH 45433-7301

SUBJ: Receipt of Technical Papers and Draft Write-up towards Final Repart for
Grant F33615-93-1-1338 entitled “A Knowledge-Based Approach to Integrating and Querying
Distributed Heterogeneous Information (also called HIPED”

TO: QGeorgia Instinite of Technology College of Computing
ATTN: Dr. Sham Navathe

1. Wright Laboratory has received 11 Published Technical Papers (attached with this letter) and a
program synopsis relating these papers to the HIPED program, a Defense Advanced Research .
Projects Agency (DARTPA) Intolligent Integration of Information (I3) Broad Area Announcemrent
(BAA) effort. Thess papers an synopals will serve ag the Pinal Report far this effort.

2. Wright Laboratory i3 currently revicwing these submitted materials for publication into its Defense
Technology Information Center (DTIC) and expecta thig to be finalized in the later part of July.

3. The Project Bngineer for this effort Is fully satisfed with the work performed under this Grant, and
with the written materials received to date. He is waiting for the DD 250, o that final payments can
be made to Georgia Tech.

4, Please contact Mr, Charles Satterthwaits (WL/AAAI-2) if you require further
information at DSN 785-3%47 or commcacial 513-255-3947.

CHARLES P. SATTERTHWAITE, Project Enginear
WL/AASH, 937-255-6548 ext. 3584



FINAL REPORT

A Knowledge-Based Approach to Integrating
and Querying Distributed Heterogeneous
Information Systems

(Also called HIPED: Heterogeneous Intelligent Processing for
Engineering Design)

SPONSOR: DARPA (Defense Advanced Research Project Agency)
under the I3 (Intelligent Integration of Information) program.

submitted to

Department of the Air Force

Wright Laboratories
Wright Patterson Air Force Base, Ohio

under contract number F 33615-93-1-1338

by

Prof. Shamkant B. Navathe, P.I.
Colege of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332-0280



PART 1

HIPED: Heterogeneous
Intelligent Processing for
Engineering Design



PUBLICATIONS (PART1):

[1.1]." Towards Intelligent Integration of Heterogeneous Information
Sources ," Shamkant B. Navathe and Michael J. Donahoo.. In
Proceedings of the 6th International Workshop on Database Re-
engineering and Interoperability, Computer Society of Hong Kong,
March 1995.

[1.2]. " Rule Based Database Integration in HIPED : Heterogeneous
Intelligent Processing in Engineering Design ", Shamkant B. Navathe,
Sameer Mahajan, Edward Omiecinski . In Proceedings of
International Symposium on Cooperative Database Systems for
Advanced Applications, World Scientific Press, 1996.

[1.3]" From Data to Knowledge: Method-Specific Transformations,"
Michael J. Donahoo, J. William Murdock, Ashok K. Goel, Shamkant B.
Navathe, Edward Omeicinski, to appear in Proceedings of the
International Conference on Methodologies for Intelligent Systems (Z.
Ras, Ed.), IEEE Press, 1997.

[1.4] "Integrating Heterogeneous Databases for Engineering Design,"
Sameer Mahajan and Shamkant B. Navathe, Working Paper.



Towards Intelligent Integration of Heterogeneous Information Sources™

Shamkant B. Navathe Michael J. Donahoo

College of Computing
Georgia Institute of Technology

Atlanta, Georgia 30332-0280
{sham.mjd} @ cc.gatech.edu

Abstract

Current methodologies for information integration are inadequate for solving the problem of integration of
large scale. distributed information sources (e.g. databases, free-form text, simulation etc). The existing
approaches are either too restrictive and complicated as in the “federated” (global model) approach or do
not provide the necessary functionality as in the “multidatabase” approach. We propose a hybrid approach
combining the advantages of both the federated and multidatabase techniques which we believe provides
the most feasible avenue for large scale integration. Under our architecture, the individual data site admin-
istrators provide an augmented erport schema specifying knowledge about the sources of data (where data
exists), their structure (underlving data model or file structure), their content (what data exists). and their
relationships (how the data relates to other information in its domain). The augmented export schema from
each information source provides an intelligent agent, called the “mediator,” knowledge which can be used
to infer information on some of the existing inter-system relationships. This knowledge can then be used to
generate a partially integrated, global view of the data.

1 Introduction

Much of the research in database interoperability has focused on two extremes: multidatabase
and federated systems. Multidatabase [Lit90, Spe88] systems provide a uniform access language to a
set of database systems. While this is a necessary first step in solving the problems of heterogeneity,
1t places most of the integration responsibility on the user which may be unacceptable. Federated
systems[She90] propose to create a global view of the underlying systems making the heterogeneity
completely transparent to the user. While this approach is enticing, the complexity of constructing
a global schema for large scale integration makes this approach infeasible because it requires an
administrator who understands the semantics of all underlying systems and can resolve all inter-
system schematic conflicts[Bat86]. In addition, the maintenance of a global schema in the face of
addition/deletion of systems is difficult.

A better approach to interoperability involves the combination of techniques of reasoning and
learning with techniques of data modeling and access to provide a partially integrated, global view.
To accomplish this, the administrator of each underlying system presents a semantic description
(augmented export schema) of their information to the “mediator.” This augmented export schema
may be as simple as the typical export schema or as detailed as a knowledge-based data description of
the data, its relationships, and the system’s domain. A knowledge-base system, such as Loom[Bri94],
provides the capability to represent knowledge about the underlying information repositories and to
make inferences as to the relationships among the various autonomous systems and generalizations
concerning the information in each system. We have previously demonstrated that classification
hierarchies can be effectively used to carry out integration of schemas[Sav91]. In this paper, we

*To appear in Proceedings of 6th International Hong Kong Computer Society Database Workshop, Hong Kong,
February 1995



review the goals and strategy of the project HIPED. Heterogeneous Information Processing for
Engineering Design. which we are currently pursuing at the Georgia Institute of Techuology.

2 Related Work

Earlier work in integration provides the motivation and framework for our efforts. Batini et
al. [Batg6] detail the problems of schema integration and provide a methodology for comparison
of proposed solutions. Unlike many earlier integration efforts, we do not limit ourselves strictly
to integration of databases. Instead, we focus on the integration of information sources including
databases. free-form text. hypertext, etc. One possible method of dealing with this wide variety of
information is to use Stanford's Object Exchange Model (OEM)[Pap94] which allows information
exchange via self-described objects[Mar85] between different types of information sources. e pro-
pose to adapt the mediator paradigm|[Pap94. Wei92., Wei93, Are94] to perform integration of the
augmented export schemas. Integration of heterogeneous information sources requires a semanticaily
rich data model. Earlier work has shown that the CANDIDE[Bec89, Nav91] model provides unique
integration capabilities not found in traditional models. One major feature of the CANDIDE model
1s 1ts ability to compute class-subclass relationships even among classes from dissimilar systems by
subsumption from class relationship information[Sav91, She93, Wha93, Bra85]. Work with classi-
fication in the object-oriented model has produced similar results[Nav95. Are]. A variety of such
systems supporting description logics are surveyed in [Bor94].

3 Approach

Qur main objective is to build and demonstrate an intelligent interface to a set of (possibly
autonomous) information sources includirg structured databases, knowledge bases, and unstruc-
tured data. Figure 1 shows our proposed architecture. The parenthetical references are made
to applications developed under the ARPA I3 Initiative. KQML (Knowledge Query and Manip-
ulation Language)[Cha92] allows remote access to knowledge/data bases. LIM (Loom Interface
Module)[Par93b] allows import of external database information into Loom data structures. IDI
(Intelligent Database Interface)[Par93a] is a common access language to several commercial database
systems.

The approach we have selected involves development of an Engineering Design Mediator (EDM)
which utilizes meta-knowledge of the underlying information to aid a user in “browsing” the data
for relevant information sources and to make informed decisions about a plan for retrieving the
appropriate data. To demonstrate this technology, we intend to augment the capabilities of both an
autonomous (KRITIK2) and an interactive (Canah-Chab[Goe93]) device design system by providing
a mediated interface between the design system and a collection of data/knowledge based systems
(D/KBS). The mediator will be responsible for processing queries from the device design systems by
determining where relevant data is, sending the appropriate query to the information site, performing
the appropriate translations on the data, and returning the data to the design system. The design
of the mediator is predicated on the following design goals:

1. Autonomy of the remote systems. Additionally, the remote systems should not be required to
perform any functions outside of those defined for the internetwork connecting the system to
the mediator.

2. Meta-data query facilities which allow the design system to determine relevant information
about component parameters, previous design specifications, device function descriptions, etc.
The mediator may also take an active role in helping the design tool determine what informa-
tion may be helpful (e.g. by use of a thesaurus, domain concept hierarchy, etc).

3. Separation of concerns of the device design system from the query system. This will facilitate
reuse of the mediated query system for other intelligent tasks such as planning.



Design System

Design Process
Dzna Structure

Other
Intelligent

Design Process

System

=
= S =
= g 2
3 = S
= E =1 )
i HE
= = el 2
= = o| 2
. S &~ 2
Js g2 2| &
‘éo. oq L =1
k= ) A3 P E
qx 4O S| 3
94" 4 Q1 &
4 g

J-oill

Intelligent Meta-Knowledge

Query Derivation Meta-Data

Processor Module

Schema Info.

Remote Database Access Module
(IDI)

Internetwaork
(KQML)
Info

Data / Schema )

Unstructured

Remote Knowledge {oeal Databasé sl

>

Fig. 1: Proposed Architecture for the Engineering Design Mediator (EDM)

Base




4. Data location {remote vs. local) and data organization (relational. knowledge hase. toxt. e
transparency.

3. Easy import of external D/KBS information into existing design system data structures min-
imizing the required changes to the device design system.

These constraints are designed to facilitate reuse of the mediator and to make the use of the systen
as transparent to intelligent applications as possible. Figure 2 presents an example query processing
scenario.

4 Ongoing Research

Research is currently under way in the following areas to facilitate construction of a prototype
query system which can be integrated with the device design system:

e Selection and development of the appropriate export data model to represent the data stored
at each information source.

e (Construction of an export knowledge model whereby information source administrators can
express the relationships between their data and real world domain concepts. This in combi-
nation with the export data model will define the augmented ezport schema.

e Development of techniques for providing integration of the schemas of information sources into
a partially integrated, global schema.

e Determination of optimization techniques for querying the remote information sources. Since
the information sources may be interconnected with a WAN, a query processing bottleneck
may arise with frequent remote data transmission.

e Provision of a query interface which aids the user in deriving the best answer to a query.
Since no completely integrated schema exists and the user does not know what information is
available, a query processor is required to guide users to the desired information.

e Capability of inferencing intersource knowledge from the augmented export schemas specifi-
cally concerning the relationships between information source entities.

e Ability to learn new, relevant knowiedge about information sources based on user interaction.

5 Future Direction

Our initial focus is on providing access of integrated information to intelligent device design
systems, but many other applications of this technology exist. With the advent of internetworks
which connect thousands of computers all over the world, an explosion has resulted of the available
data, both unstructured (text, graphical documents, audio, video, program sources) and structured
(under DBMS control), accessible to hundreds of thousands of users. It would be difficult, if not
impossible, to integrate all these sites with the current heterogeneous database techniques especially
since most sites will not all be willing to provide services beyond those defined by the internetwork.
Many query applications already exist for the Internet. WAIS servers provide keyword access to
documents; however these documents must be under the control of a WAIS server. Gopher allows
sites to setup directories of information that users can browse, but the information can only be
accessed in the organization defined by the site manager. Archie provides a keyword query interface
to find source code, but the keywords only work on the name of the source file (the user cannot
ask for a program that performs some function, X; instead they must find the name of a program
that performs X and search for it by name. World Wide Web (WWW) provides a nice interface



3

Physical
Domain

Query from Canah-Chab

Consult Thesaurus

Expand%d Query

Look for Related Target Schemas

Concept
Hierarchy

5

Design
Thesarus

Possibly Us%ful Schema

Input '""Relevant'' Schemas
and Meta Data

Expanded Information on Schemas

==
5

Meta
Database/

Validation of Schemas
Against User’s Domain View

Subset o} Schemas

User Approval

l

Package Query in KQML and
Send Response to Canah-Chab

l

Send Results to Canah-Chab

Fig. 2: Query Processing Scenario in the EDM

Knowledgebase
of

a—

* Databases to populate




to information organized by site managers (similar to gopher). but users suffer from the “hypertext
navigation problem™ which creates difficulties in locating specific information and keeping track of
where they are in the web of hypertext documents over time.

Several problems exist for the tools mentioned above. First. the tools access a particular type
of data (e.g. Archie only finds source code). If a manual exists for a particular application whose
source cocle is found by Archie. the user is not informed. Second. the tools lack relativism because
the users must access the data in the manner dictated by the site manager {e.g. in W 1
data is explicitly organized by hyperlinks). Third, some of the applications require a particular site
organization (e.g. Gopher requires a specific directory structure). If a site has information but no
desire to organize it, a gopher search may not find the relevant information at that site. Fourth,
the query processors provide little organization to the data (e.g. Archie does not organize its source
code references by application type, instead all applications with a substring match on the query
are returned). For these reasons, the Internet environment provides a true testbed for large scale.
heterogeneous information source integration.

We propose a query processing application which. using the native internetwork capabilities.
provides a single interface for accessing all types of data regardless of source or format. The following
list proposes some of the necessary extensions to the EDM:

e The system should perform automated “net surfing” to create an intelligent index of each data
store's information. The intelligence of the index lies in the ability to discern between types
of data (audio, text, source, etc). utilize an indexing methodology tailored to the particular
data type (e.g. organize keywords of a text document by the document section), and facilitate
determination of an object’s relevance for a query based on the knowledge of the user’s interests
and technical expertise. This should require no a priori knowledge of the individual data
site organization. Work is being done at the Georgia Institute of Technology in intelligent
text document processing and work has been done at IBM Almaden Research Center in file
classification[Vee95a]. Extensive work has been done on parsers for the various document types
(e.g. html, LaTeX) on the Internet.

e The problem of data overload may result from this large scale integration. Our query processor
should utilize user profiles so that only data of specific relevance and technical difficulty will
be derived. Unfortunately, the user profile method of data overload reduction may eliminate
relevant documents. To deal with this problem, the user needs feedback from the query
processor in the form of a description of what information is/is not being considered and an
explanation of why. Work in explanation is part of the Canah-Chab System[Goe93].

e Keyword searches should not be limited by the vocabulary of the query; instead, a thesaurus
should be used to consider synonyms. This may result in synonym overload so user profiles
should also be used in pruning the list of synonyms.

e The user is assumed to be “browsing” the available information; therefore, the query interface
should provide reformulation capabilities. Reformulation techniques include iterative query
alteration and positive/negative feedback from the user[Vee95b].

e The system should attempt automated knowledge acquisition to provide a better understanding
of indexed objects and to find other available data stores. The following list orders levels of
object knowledge in ascending complexity:

ID Knowledge - System only knows site assigned ID of object (e.g. filename)

Content Knowledge - System knows information about object content (e.g. keywords for
text)

Description Knowledge - System knows content knowledge and an external specification
of the object.



Interrelational Knowledge - System knows all of the above and interobject relationships
(e.g. papers about cancer research grouped together).

e The system should be extensible with respect to “plugging-in™ different tvpes of data in-
dexing components and user profiles. Additionally. the system should transparently handle
adding/subtracting participating sites. Utilities already exist for component indexing inclucling
parsers for various document types, image recognition utilities, etc.

e Different server systems should be able to exchange information and knowledge. Work in
KQML at the University of Maryland facilitates knowledge interchange even with differing
ontologies[Cha92].

e Objects must be described in terms of a nested model. For example. a document may be
composed of sections which are composed of text. subsections. and graphics. Stanford's Object
Exchange Model (OEM) provides “self-describing,” nested objects[Pap94].

e The distributed control of the system leads to problems of object identity. For example.
identical application source code may reside in multiple locations: therefore, the system should
attempt to provide object identity to facilitate replicated object identification. Additionally.
object versioning will allow the system to keep track of more recent versions of a retrieved
object. A primitive form of object identification is supported in Stanford’s OEM project
[Pap94].

e External knowledge sources should be used to learn about objects in the system. For example.
the query processor could inspect newsgroups or look at the manner in which objects are used
im WWW to acquire knowledge about the objects and their relationships. Primitive forms of
natural language understanding and concept derivation techniques may be used.

e Use of existing query systems shoulc be considered {e.g. use WAIS server to augment search).

e Special consideration should be given to optimization including reuse of retrieved data[Don93].

6 Conclusion

We have presented a framework for research in the area of intelligent, large scale integration of
information sources. Clearly, much more work needs to be done before any of the detailed function-
ality can be implemented. We believe that much of the research into the necessary technology has
begun, and the main task lies in tailoring these technologies to the needs of large scale integration
and applying them in a prototype environment. We intend to further study the concepts presented
above in order to develop a flexible and extensible scheme for integrating information from heteroge-
neous sources. Although we wish to experiment by applying our research in the area of augmenting
intelligent device design in engineering, the applicability of this technology obviously extends beyond
the engineering domain.

References

[Are] Yigal Arens, Chin Chee, Chun-Nan Hsu, and Craig A. Knoblock. Retrieving and inte-
gration data from multiple information sources. To appear in International Journal on
Intelligent and Cooperative Information Systems.

[Are94] Yigal Arens, Chin Chee, Chun-Nan Hsu, Hoh In, and Craig A. Knoblock. Query processing
in an information mediator. ISI Technical Report, 1994.



(Batg6]

{Becr9)

[Bor94]
[Brag3]

[Bri94]
[Cha92]

[Don93]

[Goed3]

[Lit90]

[Mar83]

[Nav9l]

[Nav93]

[Pap94]

[Par93a

[Par93b]

[Sav91]

C. Batini. M. Lenzernini, and S. B. Navathe. A comparative analysis of methodologies for
database schema integration. ACM Computing Surveys. 18(4):325-364. Dec. 1936.

Howard W. Beck, Sunit K. Gala. and Shamkant B. Navathe. Classification as a query
processing technique in the CANDIDE semantic data model. In 1989 [EEE Conference
on Data Engineering, pages 572-581. [EEE. 1939.

Alexander Borgida. Description logics in data management. Technical report. Rutgers
University, July 1994.

R. Brachman and G. Schmolze. An overview of the KL-ONE knowledge representation
system. Cognitive Science, 9(2):171-216, 1985,

David Brill. Loom Reference Manual (Version 2.0). ISX Corp, October 1994.

Hans Chalupsky, Tim Finin, Rich Fritzson, Don McKay, Stu Shapiro, and Gio Weiderhold.
An overview of KQML: A knowledge query and manipulation language. Technical report,
KQML Advisory Group. April 1992.

Michael J. Donahoo. Integration of Information in Heterogeneous Library Information
Systems. Master’s thesis, Baylor University, May 1993.

Ashok K. Goel, Andres Garza, Nathalie Grue, M. Recker, and T. Govindaraj. Beyond
domain knowledge: Towards a computing environment for the learning of design strategies
and skills. Technical report, College of Computing, Georgia Tech, 1993.

Witold Litwin, Leo Mark, and Nick Roussopoulos. Interoperability of multiple autonomous
databases. ACM Computing Surveys, 22(3):267-293, September 1990.

Leo Mark. Self-Describing Database Systems - Formalization and Realization. PhD thesis.
Computer Science Department, University of Maryland, 1985.

Shamkant Navathe, Sunit K. Gala, and Seong Geum. Application of the CANDIDE se-
mantic data model for federations of information bases. In [nvited paper, COMAD /.
Bombay, India, December 1991.

Shamkant B. Navathe and Ashoka N. Savasere. A practical schema integration facility using
an object-oriented model. To be published in Object Oriented Multidatabase Systems: A
Solution for Advanced Applications (O. Bukhres and A. Elmagarmid, eds), Prentice-Hall,
January 1995.

Yannis Papakonstantinou, Hector Garcia-Molina, and Jennifer Widom. Object exchange
across heterogeneous information sources. Stanford University, Department of Computer
Science, Technical Report, 1994.

Paramax System Corporation. Computer System Operator’s Manual for the Cache-Based
Intelligent Data Interface of the Intelligent Database Interface, revision 2.3 edition, Feb.
1993.

Paramax Systems Corporation. Software Design Document for the Loom Interface Module
(LIM) of the Cache-Based Intelligent Database Interface, revision 2.0 edition, Jan. 1993.

Ashoka Savasere, Amit Sheth, Sunit Gala, Shamkant Navathe, and Howard Marcus. On
applying classification to schema integration. In First International Workshop on In-
teroperability in Multidatabase Systems, pages 258-261. IEEE Computer Society, IEEE
Computer Society Press, April 1991.



[She90]

[Shed3]

[Spes8]

[Vee93al

[Vee95b]

[Wei92]

[Wei93)

[Wha3]

Amit P. Sheth and James A. Larson. Federated database systems for managing clis-
tributed. heterogeneous. and autonomous databases. ACM Computing Surveys. 22(31 183
236. September 1990.

Amit P. Sheth. Sunit K. Gala. and Shamkant B. Navathe. On automatic reasoning for
schema integration. [nternational Journal of Intelligent and Cooperative Information Sys-

tems. 2(1):23-50. 1993.

R. Speth, editor. Global View Definition and Multidatabase Languages - Two Approaches
to Database Integration. Amsterdam: Holland, April 1988.

Aravindan Veerasamy, Scott Hudson, and Shamkant Navathe. Visual interface for rex-
tual information retrieval systems. To appear in Proceedings of IFIP 2.6 Third Working
Conference on Visual Database Systems, Lausanne, Switzerland. Springer Verlag. March
1995.

Aravindan Veerasamy and Shamkant Navathe. Querying, navigating and visualizing an
online library catalog. Submitted for Publication, January 1995.

Gio Weiderhold. Mediators in the architecture of future information systems. [EEE Com-
puter, pages 38-49, March 1992.

Gio Weiderhold. Intelligent integration of information. In Arie Segev, editor. ACM SIG-
MOD International Conference, volume 22, pages 434-437. ACM, ACM Press, June 1993.

Whan-Kyu Whang, Sharma Chakravathy, and Shamkant B. Navathe. Heterogeneous
databases: Toward merging and querying component schema. Computing Systems. 6(3).
August 1993. (a Univ. of California Press publication).



Rule Based Database Integration in HIPED : Heterogeneous
Intelligent Processing in Engineering Design

Shamkant B. Navathe

Sameer Mahajan

Edward Omiecinski

College of Computing,
Georgiz [nstitute of Technology,
Atlanta, GA 30332-0280, USA.

{sham,sameer.edwardo} @cc.gatech.edu

Abstract

In this paper ' we describe one aspect of our re-
search in the project called HIPED, which addressed
the problem of performing design of engineerirng de-
vices by accessing heterogeneous databases. The front
end of the HIPED system consisted of interactive KRI-
TIK. a multimodal reasoning system that combined
case based and model based reasoning to solve a design
problem. This paper focuses on the backend processing
where five types of queries received from the front end
are evaluated by mapping them appropriately using the
“facts” about the schemas of the underlying databases
and “rules” that establish the correspondance among
the data in these databases in terms of relationships
such as equivalence, overlap and set containment. The
uniqueness of our approach stems from the fact that
the mapping process s very forgiving in that the query
receved from the front end s evaluated with respect
to a large number of possibilities. These possibilities
are encoded in the form of rules that consider various
ways in which the tokens in the given query may match
relation names, attrribute names, or values in the un-
derlying tables. The approach has been implemented
using CORAL deductive database system as the rule
processing engine.

1 Introduction

Heterogeneity of databases is becoming a necessary
factor to contend with in the design of new applica-
tions because of the proliferation of database man-
agement systems that used diverse data models over
the last three decades. Among widely implemented
data models we have the hierarchical, network, rela-
tional and object oriented data models. A large body
of work exists that deals with the mapping of these
models among one another (e.g. see the mapping of
models using the entity relationship model as an inter-
mediate model in [1] [3]. While vendors are also pro-
viding middleware solutions to draw data from these
legacy systems, the semantic problems of resclving,
naming, scale, structure etc. that were pointed out
several years ago [5] [6] still remain. The purpose of
the present research was to develop a technique to

1To appear in the Proceedings of International Symposium
on Cooperative Database Systems for Advanced Applications,
Heian Shrine, Kyoto, Japan, World Scientific Press, 1996.

dealing with the semantic differences in data by tak-
ing a flexible rule based approach. Another goal of
the project was to tie a set of heterogeneous databases
to an “intelligent front end application” which would
make requests for data without any knowledge of the
schemas of the target databases. To limit the degree
of difficulty we assume that we are dealing with data
in relational databases only. This assumption is rea-
sonable in the sense that of the data is coming from a
hierarchical or a network DBMS, we can first convert
the schema to a relational one before treating it for
purposes of integration.

The database integration problem we discuss here
is couched in the context of engineering design which.
like any other design application, relies on extracting
data from existing databases containing material data.
components, existing designs etc. The exact context
and the application scenario will be explained in the
next section.

We assume that relevant data for the design ap-
plication is stored in relations (tables) whose schemas
are available at “design time” to construct a rule-base.
It is conceivable that to support large scale engineer-
ing designs, data from a variety of databases, i.e., from
multiple schemas would be required. To facilitate inte-
gration of data among these databases we assume that
the “correspondances”, i.e., the similarities and differ-
ences among the (meaning of) attributes is encoded
in the form of rules. Furthermore, for our application
context, the front end of HIPED issues certain queries
looking for relevant design information. We show in
this paper how a query may have several interpreta-
tions, each one of which is encoded in the form of rules
again.

Because of these two kinds of rules involved in the
integration approach we have termed our approach
a rule based approach to database integration. The
present approach is an improvement over previous ap-
proaches where we handled integration by using the
correspondance information to derive the process [2]

(6] [7] [8].
2 Application Context

In this section we will provide the overall architec-
ture of the HIPED system and point out the need for
heterogeneous database processing which will be de-



scribed and illustrated in the next two sections.

2.1 Overall Architecture of HIPED

Our main objective in the HIPED project is to build
and demonstrate an intelligent interface to a set of
(possibly autonomous) information sources including
structured databases. knowledge bases, and unstruc-
tured data. The approach we have selected involves
the development of a mediator which utilizes meta-
knowledge of the underlying information stores to aid
a user in browsing data or to enable an application
front-end to retrieve specific relevant information for
problem solving.

The overall architecture of HIPED is described in
Figure 1. We look at only the “Database Bachend” in
this paper. The data is organized at two levels namely,
(1) the metadata repository : consisting of informa-
tion about various databases and tables in them and
(2) the actual data which is distributed in various het-
erogeneous databases. This organization reduces the
data to be dealt with at the first level to get to the
appropriate database(s) and table(s). It also allows
heterogeneity in the various databases involved. The
Querying Interface is as described in section 3.1. The
“data” together with its “wrapper” forms a database
system. “Wrapper” simply defines the access methods
to the data for reading purposes. A wrapper can be de-
signed for each target database management system.
A user query would be translated into the correspond-
ing query, as understood by the corresponding “wrap-
per”, for each of the relevant tables. This query would
then be routed to the corresponding database, that
contains this table. The metadata repository is con-
sulted in determining these relevant tables and finding
the corresponding database. The user would get the
result, obtained after running the query against the ta-
ble through the concerned “Output Data” channel(s).

2.2 Interactive KRITIK Front End

We developed the HIPED architecture by assuming
a frontend system called Interactive Kritik [4]. This
system is a multimode reasoning system which works
like a design assistant for the design of devices such
as acid coolers, electrical devices. In its current form
the system uses “hard-wired” knowledge in the form
of LISP data structures. The goal was to extend the
capability of interactive Kritik to make it scalable to
real-life design problems by incorporating databases
of relevant design data as the back end. We there-
fore abstracted different forms of generic query types
which would be used as requests to the back end. By
coupling an intelligent front end application to a set
of heterogeneous databases, we can thus extend the
scope of problem solving by a large measure. For en-
gineering device design, the above front end generates
a number of requests for data from the underlying de-
sign databases such as design prototypes, properties of
devices and components, material data, design speci-
fications and tolerances etc. For illustrative purposes
we have chosen five generic types of queries that are
most commonly presented by the front end. They will
be explained in detail in the following section.

TN
USER

'

Interactive

result composition

—_—

externad data request

local
KB

Query
Processor

Database
Backend

Heterogeneous Databases

Figure 1: The High Level View of HIPED

3 Rule Based Approach to Database
Integration

As explained earlier the main contribution of this
research is the use of the two types of rules to accom-
plish access to the underlying heterogeneous informa-
tion sources. The first set of rules deals with estab-
lishing various types of relationships among relation
names and among attribute names across databases.
The second set deals with the interpretation of queries
from the front end so that various possible mappings
to the interface of underlying target databases may be
considered. We will explain both these types of rules
when we discuss the generic queries and their map-

pings.
3.1 Five generic types of queries

The user is assumed to use this system as an En-
gineering Database for device design. Let us limit the
application domain for illustrative purposes. We as-
sume that during the design process, he would typi-
cally like to find components that satisfy his require- -
ments (e.g. batteries with voltage rating higher than
10V and cheaper than $10). Keeping this user’s per-
spective in mind, the Engineering data is thought to
be made up of various “Prototypes”. Each Proto-
type has various “Properties”. Each Property takes
up some “Value” for every Prototype. We can com-
pare the Values of various properties using the rela-
tions : ==,<,>,<=,>=,<> etc. The queries can
be classified into the following five generic types,



1. (Prototype <proto.name>) here the user
is looking for all the prototypes identified by
“protoname’” . [t is implicit that the user wants
to see the various values for various properties
{attributes) of these prototvpes.

2. (Property <prop-name>) : the user is interested
in all the prototyvpes having the specific Proverty
identified by “prop-name”. It is implicit that the
user wants to see the values taken by this property

for the various prototypes, that would be listed.

3. (Prototype <proto_name>)
(Property <prop-name>) : the user wants to see
all the prototypes identified by “proto_name” and
having property identified by “prop_name”. It is
implicit that the user also wants to see the cor-
responding value that the property takes for the
particular prototype.

Prototype <proto_name>)

Property <prop-name>)

Value<value>) (Rel-op <op>) : the user is in-
terested in prototypes identified by “proto_name”
having a property 1dentified by “prop_name”. In
addition to this he wants only those prototypes
for which the property takes a value which is re-
lated to the given “value” or a constant in the
query by the operator “op” (i.e. it is equal to
“value” or greater than “value” etc.)

5. (Property <prop_name>) (Value <value>)
Rel-op <op>) : the user is interested in all the
prototypes for which the property identified by
“prop-name” takes a value which is related to the
given “value” by the operator “op.

Data is distributed among various databases and
various tables in each of those databases. The only
assumption that we make about any database system
is that it has an SQL access method. It is a reasonable
assumption and 1s made to contain the complexity of
the problem.

The system needs to find out which databases and
which tables in these databases have the relevant data
to answer a particular query. It then translates the
query into a corresponding SQL query for every table.
This SQL query is run against that table to get an
answer. As we made an assumption of a uniform SQL
interface to all the databases, we can simply translate
a request for data into a set of SQL queries in each of
these cases.

3.2 Rules for Interpretation of Queries

For better understanding of the following discus-
sion, let us take up an example query. Let the four
components of the query be,

Prototype Battery) (Property Voltage)

Value 10) (Relation ==).
As there can be various tables with different schema,
we need to run this query with only those tables that
might give meaningful results for the query. We can
easily observe that any of “Prototype”, “Battery”,
“Property” and “Voltage” can be a table or a column
of a table. The “Battery” and “Voltage” can also be

values in the columns (e.g. those labeled as “Proro-
tvpe  and “Property” respectively). Of course thiere
are a lot of dependencies amongst these components
- e.g. If "Prototype” is a table then “Battery™ has 1
be a column of this table. On the other hand if rhere
15 a table called the “Battery™. then we are looking
for values in the column “voltage™ or “volts”™ - so that
the query would generate meaningful results with the
table. Now we take up an example query for each of
the five types listed above. For every query we list the
possible interpretations according to our scheme.

1. (Prototype Battery). The user typically means
that he wants all the batteries with their prop-
ertles and their corresponding values. Hence we
will have to run this query against all the tables

which,

e are equivalent to “Prototype Table™ and
have a column equivalent to “Battery” or

e are equivalent to "Battery Table”

e have a column equivalent to “Prototype”
(and only the tuples with Prototype as "Bat-
tery” would be considered).

if and only if these tables have columns equivalent
to “Property” and “Value” each.

2. (Property Voltage). The user is interested in list-
ing all the Prototypes having “Voltage” as their
one of the Properties. The Values of these Proper-
ties would also be significant from his standpoint.
Hence we consider all the tables which,

e are equivalent to “Property Table” and have
a column equivalent to “Voltage” or

e are equivalent to “Voltage Table”

e have a column equivalent to “Property” (and
only the tuples with Property as “Voltage”
would be considered).

if and only iIf they have “Prototype” equivalent
column.

3. (Prototype Battery) (Property Voltage). The
user wants all the batteries with special interest
in their voltages. Hence we will run the query
against all the tables which,

e are equivalent to “Prototype Table” and
have “Battery”, “Property” and “Value”
equivalent columns and we would be inter-
ested only in the tuples having an entry of
“Voltage” in the “Property” equivalent col-
umn or

e are equivalent to “Prototype Table” and
have “Battery”, “Voltage” equivalent
columns or

e are equivalent to “Battery Table” and have
“Property” and “Value” equivalent columns.
We would be interested only in those tuples
having Property “Voltage” or



e are equivalent to “Battery Table” and have
a column equivalent to “Voltage” or

e are equivalent to “Property Table™ and have
columns equivalent to “Voltage”. ~Proto-
tvpe” and *Value”. We would be interested
in tuples with Prototype as “Battery™.

e are equivalent to “Property Table” and
have “Voltage™ and ~Battery” equivalent
columns.

e are equivalent to ~“Voltage Tables” and
have “Prototype” and “Value” equivalent
columns. We would look for only tuples with
Prototype as “Battery”.

e are equivalent to “Voltage Table” with “Bat-
tery” and “Value” equivalent columns.

e have “Prototype” and “Property” equivalent
columns as far as they have “Value” equiv-
alent column. Only the tuples with Proto-
type as “Battery” and Property as “Voltage”
would be considered.

4. (Prototype Battery) (Property Voltage) {Value
10) (Relation ==). Here the interest is indicated
in all the batteries having Voltage as “10”. The
query can be run with all the tables as inaicated
as above with an added constraint that only those
tuples which have an entry of “10” in the “Volt-
age” or “Value” column - whichever is applica-
ble - (Note the table can have only one of these
columns at a time) will be considered.

5. (Property Voltage) (Value 10) (Relation ==). All
the Prototypes having voltage of “10” are being
considered. Thus all the tables that,

e are equivalent to “Property Table” and have
a column equivalent to “Voltage”

e are equivalent to “Voltage Table” and have
a column equivalent to “Value”

e have “Property” and “Value” equivalent
columns along with “Prototype” column.
(only tuples with Property “Voltage” and
Value “10” would be taken into considera-
tion).

would be considered if and only if they have a
column equivalent to “Prototype”. All the tu-
ples with “Voltage” or “Value” being 10 would
be taken into account.

3.3 Rules to establish Data Correspon-
dance

We need to relate various attributes and tables,
within and across databases. The relationship could
be of equivalence, subsumption, overlap, disjointness
or containment. The relationship between attributes
needs to be supplied by the schema developer. e.g.
Attributes called “volt” and “voltage” in different ta-
bles are actually equivalent. The relationship between
tables can either be supplied or can be deduced by the
relationships of their individual attributes. A simple
deduction rule can be that two tables are equivalent if
all their attributes are equivalent.

4 Use of CORAL for rule representa-

tion and query processing
The metadata is stored in the form of CORAL [10]

[11] facts and rules. CORAL is a deductive database
system which stores data as facts and rules. and allows
for that data to be queried. By using CORAL the me-
diator can decide which database(s) and tableis) are
useful in answering any given query. [n particular.
CORAL 1s used in deriving relationships hike ~quiva-
lence; between attributes, tables and databases. Anv
creation, deletion or modification of a table results i1 4
change in the metadata repository. This dynamic be-
havior can be easily captured by CORAL. In essence.
CORAL provides us with the facility for database in-
tegration through the facts and rules specified about
tables and databases. However, this integration can be
considered implicit rather than explicit since no global
conceptual schema is explicitly formed. Also the C++
interface provided by CORAL makes writing general
purpose programs easy.

We explain the implementation with the help of
an. example. One more sample system for a single
database environment is given in Table 5. Some sam-
ple input queries and the corresponding output SQL
queries are shown in Tables 6 and 7 respectively.

4.1 A Simple Example
Consider the query,

(Prototype Battery) (Property Voltage).

Let us assume that there are two databases - dbl and
db2. Let (bl have tables : Table 1 and Table 2. and

[ C.mpNo [ Prototype [ Property | Value ]
[ BIOI Battery Voltage | 10
MIo0l Motor Voltage | 10
BII0 Battery Voltage 100
BIT1 Battery [ Current 100

]
]

Table 1: “Components” Table in dbl

le: db2 have Table 3 and Table 4.

We observe that according to the discussion in sec-
.on 3.2 only the tables in dbl would produce mean-
ngful results with the query under consideration.

[ BatteryNo | Voltage |

BI0T 15
‘B102 30

Table 2: “Battery” Table in dbl



[ BatteryNo [ Current |

BIOL_ [ 13|

BI0OZ [ 30 |

Table 3: ~“Battery” Table in db2

[ BatteryNo | Supplier No
~ BI0I 4567

B102 4568 ‘

Table 4: “Supplier” Table in db2

4.2 Schema Representation

It is stored as CORAL facts and rules. The advan-
tage of such a storage 1s that we can utilize the strong
deductive power of CORAL (e.g. deducing equiva-
lence of attributes, equivalence of tables etc.). The
various components of the repository are described be-
low.

o First we list all the tables in all the databases as
CORAL facts :

% For the first database, dbl.
belongsTo(components,dbl).
belongsTo(battery,dbl).

% For the second database, db2.
belongsTo(battery,db2).
belongsTo(supplier,db2).

e Then we list attributes of individual tables as
CORAL facts. The first argument of these pred-
icates 1s the database name. It is so because the
same table may have different attributes in dif-
ferent databases. e.g. the “battery” table in the
two databases “dbl” and “db2” as shown below.

% for dbi

hasAttribs(dbl,components,
[compName,prototype,property,value]).

hasAttribs(dbi,battery, [bName,voltage]).

% for db2
hasAttribs(db2,battery, [bName,current]).
hasAttribs(db2,supplier, [bName,sName]).

o We also need facts to list what attributes are
equivalent. The equivalence of tables can be ei-
ther given by facts or can be deduced by the rules

(e.g. two tables with equivalent attributes are
equivalent). But we do not need them in rhis
particular example.

e To find whether a table has a particular attribute
in a given database we define a CORAL rule as.

module isAttrib.

export isAttrib(bff).

isAttrib (Db,Table,Attri) :-
hasAttribs(Db,Table,Attribs),
iselem (Attri,Attribs).

end_module.

% Module ‘‘iselem’’ is defined for the
% sake of completeness.
module iselem.
export iselem(bb).
Qpipelining+. % Solve in a
% top-down fashion

iselem(X, [X
iselem(X, [
end_module.

[_1).
[Z]) :- iselem(X,Z).

4.3 Sample Query Mapping Algorithm

The mapping of input requests into SQL queries is
done according to the scheme suggested in section 3.2.
We use the C++ interface of CORAL for this matter.
In fact, an imperative interface (e.g. in C) would have
been enough for the purpose. We check for the various
conditions given in the scheme and generate the ap-
propriate SQL queries for the existing tables. We run
through the algorithm for the example query under
consideration,

begin
For every ‘‘table’’ equivalent to
‘‘prototype table’’
for every attribute equivalent
to ‘‘battery’’, say attribil
for every attribute equivalent
to ‘‘property’’, say attrib2
if ‘‘table’’ has ‘‘attribil’’
as well as ‘‘attrib2’’
for every attribute
equivalent to ‘‘value’’,
say attrib3
if ‘‘table’’ has attrib3
select the corresponding
database and fire SQL query,
SELECT * FROM table
WHERE attrib2 == voltage or
some equivalent value.
goto next table
for every attribute equivalent
to ‘‘voltage’’, say attrib4
if ‘‘table’’ has attrib4
select the corresponding
database and fire SQL query,
SELECT * FROM table



For every ‘‘table’’ equivalent to
‘‘battery table’’
for every attribute equivalent
to ‘‘voltage’’, say attribl
if ‘‘table’’ has attribl
select the corresponding
database and fire SQL query,
SELECT * FROM table
goto next table
for every attribute equivalent
to ‘‘property’’, say attrib2
for every attribute equivalent
to ‘‘value’’, say attrib3
if ‘‘table’’ has attrib2
and attrib3
select the corresponding
database and fire SQL query,
SELECT * FROM table
WHERE attrib2 == voltage or
some equivalent value.

For every ‘‘table’’ equivalent
to ‘‘property table’’
for every attribute equivalent
to ‘‘voltage’’, say attribi
for every attribute equivalent
to ‘‘prototype’’, say attrib2
if ‘‘table’’ has ‘‘attribi’’
as well as ‘‘attrib2’’
for every attribute
equivalent to ‘‘value’’,
say attrib3
if ‘‘table’’ has attrib3
select the corresponding
database and fire SQL query,
SELECT * FROM table
WHERE attrib2 == battery or
some equivalent value.
goto next table
for every attribute equivalent
to ‘‘battery’’, say attrib4
if ‘‘table’’ has attrib4
select the corresponding
database and fire SQL query,
SELECT * FROM table

For every table equivalent to
‘‘voltage table’’
for every attribute equivalent
to ‘‘battery’’, say attribil
if ‘‘table’’ has attribil
select the corresponding
database and fire SQL query,
SELECT * FROM table
goto next table
for every attribute equivalent
to ‘‘prototype’’, say attrib2
for every attribute equivalent
to ‘‘value’’, say attrib3
if ‘‘table’’ has attrib2
and attrib3
select the corresponding
database and fire SQL query,

SELECT * FROM table
WHERE attrib2 == battery or
some equivalent value.

For every table having columns
equivalent to each of
prototype, property and value
select the corresponding
database and fire SQL query
SELECT * FROM table
WHERE prototype equivalent column
== battery equivalent value
AND
property equivalent column
== voltage equivalent value
end

4.4 The Result

Let us say that the wrapper of dbl can handle SQL
queries. In that case we first select that database and
then simply run a query,

SELECT =
FROM components
WHERE prototype == ‘battery’’
AND property == ‘‘voltage’’

against the first (“components”) table in the database
We take similar actions for the other table in (possibly
various) databases. The other query in this case would
be,

SELECT =*
FROM battery

again with the same database namely, dbl. The result
1s presented to the user as displayed by the correspond-
ing “wrapper”.

5 Conclusions and Future Work

In this paper we illustrated the implementation of a
rule-based database integration scheme by considering
two types of rules : (1) Rules to establish the “corre-
spondence” among underlying component databases
and (2) Rules to interpret data requests in an “open-
ended” fashion where no knowledge of the component
database schemas is expected from the application
front end. We also described an interface to hetero-
geneous databases in which a user may directly ac-
cess the back end data by making use of the rules of
data correspondance and an SQL-like syntax for the
queries.

The system makes an assumption that all the
databases involved provide an SQL interface. This
condition can be relaxed. In this case we need to
generate different queries, as understood by each of
the databases involved. This work was predicated on
the assumption that the data relevant to our appli-
cation was stored in relational tables. An extension
of the present work involves relaxing this assumption
and illustrating the utility of the approach by actu-
ally providing wrappers for hierarchical and network
databases and sequential files. That would establish



% CORAL facts

1sTable(battery).

hasAttribs(battery,
[bname,voltage,current,life]).

isTable(compTable).
hasAttribs(compTable,
[no,prototype,property,value]).

isTable(dummy) .

hasAttrib(dummy, [prototype,propertyl).

isTable(prototype).
hasAttribs(prototype,
[motor,property,value]).

isTable(motor).
hasAttribs(motor, [property,value]).

isTable(property).
hasAttribs(property,
[rps,prototype,value]).

isTable(rps).
hasAttribs(rps, [prototype,value]).

isTable(voltage).
hasAttribs(voltage, [battery,value]).

% CORAL rules

module isAttrib.

export isAttrib(ff).

isAttrib (X,Y) :- hasAttribs(X,2),
iselem (Y,Z).

end_module.

Table 5: A Single Database System

prototype battery property voltage
prototype battery property current
prototype motor property rps
prototype sheet property size

Table 6: Sample Input Queries

++++++++ for the first data request ++++++
SELECT * FROM battery;
SELECT * FROM voltage;
SELECT * FROM compTable
WHERE prototype == battery
AND property == voltage;
++++++++ for the second data request +++++
SELECT * FROM battery;
SELECT * FROM compTable
WHERE prototype == battery
AND property == current;
++++++++ for the third data request ++++++
SELECT * FROM prototype
WHERE property == rps;
SELECT * FROM motor
WHERE property == rps;
SELECT * FROM property
WHERE prototype == motor;
SELECT * FROM rps
WHERE prototype == motor;
SELECT * FROM compTable
WHERE prototype == motor
AND property == rps;
+++++++ for the fourth data request +++++
SELECT * FROM compTable
WHERE prototype == sheet
AND property == size;

Table 7: The corresponding SQL queries

the practical utility of the approach in a significant
way. The next step would be to work on a query
optimization by introducing a stage after the query
interpretation phase to evaluate possible orderings of
sub queries and cross subquery reduction of redundant
processing.

From the engineering design standpoint, the prob-
lem horizon can be extended to include additional
types of design problems. The current implementa-
tion can be initially enhanced by considering addi-
tional types of design queries.

Currently only the individual tables are checked to
see whether they provide satisfactory data to answer
a particular query. But it is possible that two or more
tables taken separately do not have enough informa-
tion to answer a query. At the same time, when taken
together (e.g. their join), they provide data to an-
swer the query. Consider that there are two tables -
which might be in the same database or in different
databases - one with columns “Component Number”
and “Prototype”. The other with columns “Compo-
nent Number” and “Voltage”. Then neither of them
provides enough information for the query,

(Prototype Battery) (Property Voltage)

But their equijoin with the additional condition of
“Prototype == Battery” for the tuples is of interest
to us. The extended solution can exhaustively take
care of all such cases.

In essence, the overall rule based approach appears
promising in the context of Navathe’s long standing



investigation of the database integration problem [5]

(6] [7] [3] 9]

Acknowledgement

We would like to thank Ashok Goel and William
Murdock for their work on Interactive KRITIK. The
work crystallized the HIPED front end to our system.
We are also grateful to Jeff Donahoo, Ashok Savasere
and Byong-soo Jeong for initializing the implementa-
tion work. The idea of using CORAL as a deduc-
tive database system was generated by Ed Omiecin-
ski. The implementation was completed by Siddharth
Bajaj. Support from ARPA grant no. F33615-93-1-
1338 1s greatly appreciated. Prof. Navathe's work is
also partially supported by Center of Excellence in In-
formation Science, Clark Atlanta University, Contract
No. OSP-93-09-400-002.

References

(1] C. Batini, S. Ceri, and S.B. Navathe, Conceptual
Database Design: An Entity Relationship
Approach. Benjamin Cummings, August 1991,
470 pp.

(2] C.Batini, M. Lenzerini and S.B. Navathe, A Com-
parative Analysis of Methodologies for Database
Schema Integration, ACM Computing Surveys, 18,
4, December 1986, pp. 323-364.

(3] R. Elmasri, S Navathe, Fundamentals of
Database Systems, Addision Wesley Computer
Science, 2nd Edition, 1994.

[4] Ashok Goel, Andres Gomez, Nathalie Grue,
William Murdock, Margaret Recker, and T.
Govindaraj. Design Explanations in Interactive
Design Environments. In Proc. Fourth [nterna-

tional Conference on Al in Design, Palo Alto, June
1996.

[5] J. Larson, S. B. Navathe, and R. Elmasri A The-
ory of Attribute Equivalence in Databases with
Application to Schema Integration, /[EEE Trans-

actions on Software Engineering, Vol. 15, No. 4,
April 1989.

[6] S.B. Navathe, R. Elmasri and J.A. Larson, In-
tegrating User Views in Database Design, /[EEFE
Computer, Vol. 19, No. 1, January 1986, pp. 50-
62.

[71 S. B. Navathe and A. Savasere, "A Practical
Schema Integration Facility using an Object Ori-
ented Approach,” Multidatabase Systems (A. El-
magarmid and O.Bukhres, FEds.), Prentice Hall,
1996.

[8] S. Prabhakar, J. Srivastava, S.B. Navathe, et
al., Federated Autonomous Databases: Project
Overview, Proceedings of the International Confer-
ence on Interoperability in Multidatabase Systems
(IMS’93), Vienna, Austria, April 19-20, 1993.

[9] A. Sheth. S.K. Gala. S.B. Navathe. On Antomatee
Reasoning for Schema Integration. [nt. Jowrnal of

Intelligent Co-operative Information Systems. Vol
2. No.1, March 1993.

[10] R. Ramakrishnan, D. Srivastava and S. Sudlar-
shan. CORAL: Control, Relations and Logic. Pro-
ceedings of the I[nternational Conference on Very
Large Databases, 1992.

[L1] R. Ramakrishnan, D. Srivastava, S. Sudarshan
and P. Seshadri. Implementation of the CORAL
deductive database system, Proceedings of the
ACM SIGMOD Conference on Management of
Data, 1993.



From Data to Knowledge:
Method-Specific Transformations®

Michael J. Donahoo,
J. William Murdock,
Ashok K. Goel,
Shamkant Navathe,
and Edward Omiecinski
College of Computing
Georgia Institute of Technology

Keywords: Intelligent Information Systems, Integration of Knowledge and Database Systems

Abstract

Generality and scale are important but difficult issues in knowledge engineering. At the
root of the difficulty lie two hard questions: how to accumulate huge volumes of knowledge.
and how to support heterogeneous knowledge and processing? One answer to the first
question is to reuse legacy knowlecge systems, integrate knowledge systems with legacy
databases, and enable sharing of the databases by multiple knowledge systems. We present
an architecture called HIPED for realizing this answer. HIPED converts the second ques-
tion above into a new form: how to convert data accessed from a legacy database into a
form appropriate to the processing method used in a legacy knowledge system? One answer
to this reformed question is to use method-specific transformation of data into knowledge.
We describe an experiment in which a legacy knowledge system called Interactive Kri-
tik is integrated with an ORACLE database using IDI as the communication tool. The
experiment indicates the computational feasibility of method-specific data-to-knowledge
transformations.

*Contact: Ashok K. Goel, College of Computing, Georgia Institute of Technology, 801 Atlantic Drive, Atlanta,
Georgia 30332-0280, USA; email: goel@cc.gatech.edu; phone: (404) 377-3732



1 Motivations, Background, and Goals

Generality and scale have been important issues in knowledge systems research ever since
the development of the first expert systems in the mid sixties. Yet, some thirty years later.
the two issues remain largely unresolved. Consider, for example, current knowledge systems
for engineering design. The scale of these systems is quite small both in the amount and
variety of knowledge they contain, and the size and complexity of problems theyv solve. [n
addition. these systems are both domain-specific in that their knowledge is relevant only to
a limited class of domains, and task-specific in that their processing is appropriate only to
a limited class of tasks.

At the root of the difficulty lie two critical questions. Both generality and scale demand
huge volumes of knowledge. Consider, for example, knowledge systems for a specific phase
and a particular kind of engineering design, namely, conceptual phase of functional design
of mechanical devices. A robust knowledge system for even this very limited task may
require knowledge of millions of design parts. Thus the first hard question is this: How
might we accumulate huge volumes of knowledge? Generality also implies heterogeneity
in both knowledge and processing. Consider again knowledge systems for the conceptual
phase of functional design of mechanical devices. A robust knowledge system may use
a number of processing methods such as problem/object decomposition, prototvpe/plan
instantiation, case-based reuse, model-based diagnosis and model-based simulation. Each
of these methods uses different kinds of knowledge. Thus the second hard question is this:
How might we support heterogeneous knowledge and processing?

Recent work on these questions may be categorized into two families of research strate-
gies: (i) ontological engineering, and (ii) reuse, integration and sharing of information
sources. The well known CYC project [Lenat and Guha, 1990] that seeks to provide a
global ontology for constructing knowledge systems exemplifies the strategy of ontologi-
cal engineering. This bottom-up strategy focuses on the first question of accumulation of
knowledge: global (and domain-specific) ontologies may one day enable interactive knowl-
edge acquisition from external sources and autonomous acquisition of knowledge through
learning from experience. The second research strategy has three elements: reuse of in-
formation sources such as knowledge systems and databases, integration of information
sources, and sharing of information in one source by other systems. This top-down strategy
emphasizes the second question of heterogeneity of knowledge and processing, and ap-
pears especially attractive with the advent of the world-wide-web which provides access to
huge numbers of heterogeneous information sources such as knowledge systems, electronic
databases and digital libraries. Our work falls under this category which we will call the
share-integrate-reuse (or SIR) strategy.

Various members of the SIR family of research strategies focus on different aspects of
reuse, integrate and sharing. For example, KQML [Finin and Wiederhold, 1991] provides a
protocol for communication among database systems, and KIF [Genesreth and Fikes, 1991]
provides a meta-language for enabling translation between knowledge systems. In contrast,
Brodie [Brodie, 1988] has emphasized the need for integrating knowledge systems and
databases. Our work focuses on this interface between knowledge systems and databases.

McKay, Finin and O’Hare [McKay et al., 1990] have pointed out that the key question
pertaining to this interface is how to convert data in a database into knowledge useful
to a knowledge system. The answer to this question depends in part of the processing



method used by the knowledge system. The first generation of knowledge systems (called
expert systems) demonstrated the power of production systems, which combined domain
knowledge (in the form of production rules) and control of processing (forward/backward
chaining). The second generation of knowledge systems used task-specific architectures
in which both domain knowledge and control of processing are dependent on the reason-
ing task (e.g.. [Clancey. 1985, Chardrasekaran, 1988]). The current third generation of
knowledge systems emphasize method-specific architectures in which the domain knowledge
and control of processing dependent on the processing method. For example. Brown and
Chandrasekaran [Brown and Chandrasekaran, 1989] describe the generic method of plan
instantiation and expansion, and Marcus, Stout and McDermott [Marcus et al., 1988] de-
scribe the general method of propose and revise. The third generation of knowledge systems
are heterogeneous both in their domain knowledge and control of processing. They not only
use multiple methods, each of which uses a specific kind of knowledge and control of pro-
cessing, but they also enable dynamic method selection. Our work focuses on the interface
between legacy databases and legacy knowledge systems of the third generation.

The issue then becomes: given a legacy database, and given a legacy knowledge system
in which a specific processing method poses a particular knowledge goal (or query). how
might the data in the database be converted into a form appropriate to the processing
method? The form of question also indicates a possible answer: method-specific transfor-
mation (or MST), which would transform the data into a form appropriate to the processing
strategy. The goal of this paper is outline a conceptual framework for the SIR approach and
the MST technique. Portions of this framework are instantiated in an operational computer
program called HIPED (for Heterogeneous Intelligent Processing for Engineering Design).
HIPED integrates a third-generation knowledge system for engineering design called Inter-
active Kritik [Goel et al., 1996a, Goel et al., 1996b] with an external database represented
in Oracle [Koch and Loney, 1995]. The knowledge system and the database communicate
through IDI [Paramax, 1993]. The rest of paper is organized as follows: in the next sec-
tion, we describe our conceptual framework; in the following section, we describe a specific
experiment with the framework; and in the final section, we describe related work in the
HIPED project and conclude the paper.

2 HIPED Architecture

To avoid the enormous cost of constructing knowledge systems, we propose the reuse of
legacy knowledge and database systems, so that we can quickly and inexpensively con-
struct large scale systems with capabilities and knowledge drawn from existing systems. To
facilitate easy integration which, in effect, increases overall scalability, we restrict ourselves
to making few, if any, changes to the participating legacy systems. The long-term goal is to
allow a system to easily access the capabilities of a pool of legacy systems. The architecture
of Figure 1 illustrates the general scheme. We describe this architecture in the following
subsection by decomposing it into database, knowledge system, and user components.

2.1 Database Integration

An enormous amount of data is housed in various database systems; unfortunately, the
meaning of this data is not encoded within the databases themselves. At best, the database

3



User

Global
Request Broker
—g
Task- Data
Method Schema
Structure .
Schémé - Query B Schema - - duery
Builder Other Meta- ~ Processor ~ Builder 'Mata-Data " - Processor
Knowledge Repository -
NewData  New Data o
Requests
e il _ Database Wrappets
Knowledge Systems i =
Information Sources
v - i 3

i

S \\
S \\\ "\\
. Newbata e

Local Information Sources

- S

Method-SpecificTransformers
i —

/

Figure 1: This figure presents a general architecture for HIPED. Arrowed lines indicate unidi-
rectional flow of information. All other lines indicate bidirectional flow; there is a wide variety
of potential execution paths through this architecture. Annotations on lines, where they occur,
describe the nature of the information which flows through that line. Rectangular boxes indicate
functional units and cylinders represent collections of data.



schema has meaningful names for components, but often it is difficult to infer all, if any. of
the meaning of the data from the schema. This lack of metadata about the schema and a
myriad of interfaces to various database systems creates significant difficulties in accessing
data from various legacy database systems. Both of these problems can be alleviated by
creating a single. global representation of all of the legacy data, which can be accessed
through a single interface. Common practice for integration of legacy systems involves
manual integration of each legacy sckema into a global schema. That is. database designers
of the various legacy systems create a global schema capable of representing the collection of
data in the legacy databases and provide a mapping between the legacy system schemas and
this global schema|Batini et al., 1986]. Clearly, this approach does not work for integrarion
of a large number of database systeras.

We propose (See the right side cf figure 1) to allow the database designers to develop
a metadata description, called an augmented export schema, of their database system. A
collection of augmented export schemas can then be automatically processed by a schema
builder to create a partially integrated global schema. We call this “partially integrated”
because it is unlikely that the schema builder will be able to create a schema which correctly
identifies all the relationships. The augmented export schema can be as simple as the
actual database schema, allowing any database to easily participate, or as complicated
as the schema builder can understand (See [Navathe and Donahoo, 1995] for details on
possible components of an augmented export schema). A user can then submit queries
on the partially integrated global schema to a query processor which fragments the query
into queries on the local databases. Queries on the local databases can be expressed in a
single query language which is coerced to the local databases query language by a database
wrapper.

2.2 Knowledge System Integration

As with databases, a considerable number knowledge systems exist, each with their own
abilities to perform certain tasks with various methods. Users wishing to access the capa-
bilities of a collection of knowledge systems encounter problems of different interfaces and
knowledge representations. Most knowledge systems do not provide an externally accessible
description of the tasks and methods they address. As with the database system, one way
to integrate legacy knowledge systems is to gather together the designers and construct an
ad hoc interface with combines the capabilities of the underlying systems. Once again, this
approach does not work for integration of a large number of knowledge systems.

We propose (See the left side of figure 1) to allow knowledge system designers to develop
a description, called a “task-method schema,” of the tasks each local knowledge system can
perform[Stroulia and Goel, 1995]. In this approach, a set of knowledge systems, defined at
the level of tasks and methods, are organized into a coherent whole by a query processor or
central control agent. The query processor uses a hierarchically organized schema of tasks
and methods as well as a collection of miscellaneous knowledge about processing and control
(i.e. other meta-knowledge). Both the task-method structure and the other meta-knowledge
may be constructed by the system designer at design time or built up by an automated
schema builder.

an



2.3 Global User Access

The dichotomy of knowledge systems and database systems is irrelevant to global users.
Users simply want answers and are not concern with whether the answer was provided
directly from a database or derived by a process in a knowledge system. We propose the
provision of a global request broker which takes a query from a user. submits the query to
both knowledge and database systems and returns an integrated result. [t is completely
transparent to a global user how or from where an answer was derived.

2.4 Knowledge Systems as Users

The knowledge systems each have their own local repositories of data but may also find that
they need information from a database or another knowledge system. When they need ex-
ternal knowledge. they simply contact the global request router which can either recursively
call the general collection of knowledge systems to generate a response or contact the system
of databases. When either a database or a knowledge system generates a response to a re-
quest from a knowledge system, the resulting answer is then sent through a method specific
transformer which do whatever specific translation is needed for the particular system.

2.5 Method-Specific Transformation (MSTs)

In this paper, we are concerned with the transformation of knowledge from external sources
into a form suitable for use by a krowledge system method. Recall that we do not want
to alter the knowledge system, so the form of the knowledge may be very specific to the
particular method which executed the query; consequently, we call this a “method-specific
transformation.” A naive approach to providing the necessary translations involves writing
a transformation function for every permutation of knowledge system and database. That
is, for each knowledge or database system issuing a query and for each system returring
data, we must provide a function which translates answers from one representation to the
query systems representation. Clearly, this limits the overall scalability of the system.

We propose the leverage the partially integrated global representation of the knowledge
and database systems. We accomplish this by creating a method-specific transformation
for each knowledge system which transforms knowledge from the partially integrated global
schema into a knowledge system specific representation. Note that now the number of
necessary method-specific transformations is linear with respect to the number of knowledge
systems, increasing the scalability cf our approach.

2.6 Information Flow

Consider a knowledge system which spawns a task for finding a battery which has a cer-
tain voltage. In addition to continuing its own internal processing, the knowledge system
also submits a query to the Global Request Broker. The broker sends the query to the
query processors for both integrated knowledge and database systems. The database query
processor fragments the query into subqueries for the individual databases. The data de-
rived is merged, converted to the global representation, and returned to the Global Request
Broker. In the meanwhile, the knowledge query processor, using its task-method schema,



selects knowledge systems with appropriate capabilities and submits tasks to each. Solu-
tions are converted to a common representation and sent to the Global Request Broker.
The Global Request Broker then passes the output from both the knowledge and database
system query processors through a method-specific transformer which coerces the data into
a form which is usable by the requesting knowledge system. The resulting battery may be
an actual battery which satisfies the voltage specification from a knowledge or database
system information source or it may be a battery constructed from a set of lower voltage
batteries by a knowledge system.

3 An Experiment with HIPED

The general architecture presented in the previous section constitutes a preliminary solution
to the problem of integrating third-generation knowledge systems and legacy databases. In
order to further elaborate and refine this architecture, we have been conducting a series of
experiments in the form of actual system implementations. Figure 2 presents a architectural
view of one such experiment. In this experiment we examine the processing involved in a
particular event in which a legacy knowledge system requests and receives information from
a general-purpose database system. Since, this experiment deals with only one knowledge
system and only one database, we are able to abstract away a great many of the issues
and focus on a specific piece of the problem. The particular issue which this experiment
highlights is method-specific transformation.

3.1 General Method

The overall algorithm developed in this experiment breaks down into four steps which
correspond to the four architectural components shown in figure 2. These steps are:

1 The knowledge system issues a request. This happens when some information is required
by the system which is not available in its local information source.

2 The query processor translates the request into a query. This query is in the language of
the information source.

3 The information source processes the query. It returns some data to the query processor
which in turn sends the data to the method specific transformer.

4 The method-specific transformer converts the data into a knowledge representation format
which can by understood by the knowledge system.

All four of these steps pose complex problems. Executing step one requires that a
knowledge system recognize that some element is missing from its knowledge and that that
element would help it to solve the current problem; such recognition is a complex though
well studied problem. Performing step two requires a mechanism for constructing queries
and providing communication to and from the external system; the language and networking
issues here are also complex but reasonably well understood. Step three is the fundamental
problem of databases: given a query produce a data item; again this is a interesting but
thoroughly studied problem. Lastly, step four is can be a challenging problem because
the differences between the form of the data in the information source may be arbitrarily
complex.



Query Processor
(101 Based)

A

Knowledge
S

ystem
(Interactive
Kntik)

Information Source
(Oracle Database)

[
| Method Specific
[ Transformer

t

iinformation
Source

Figure 2: The portion of the architecture relating to the proposed solution



Since all four of these steps are non-trivial, a full description of the algorithm presumably
involves an elaboration of each of them. However, the full descriptions of steps one and three
are inherently outside of this project, but since we are integrating legacy knowledge systems
with legacy database technology it is outside our topic of study to propose algorithms for
these components. Step two is clearly an issue within this topic in that query generation
and communication are certainly crucial to the integration problem. However. we found
that we were able to make use of existing technology for this part of our experimental
system: a tool called IDI supports both communication and query generation from within
a LISP session. With the first three steps resolved, we were able to focus this experiment
on the fourth step: method specific transformation.

By definition, we can not specify a general algorithm for method specific transformation:
the algorithm is specific to the reasoning method which uses the knowledge. However we
can provide an example of such a transformation and examine how the individual pieces
affect the overall effect. The algorithm for the method specific transformer which was
implemented in our experimental system is:

4.1 Database data types are coerced into to knowledge system data types.
4.2 Knowledge attributes are constructed from fields in the data item.

4.3 Knowledge attributes are synthesized into a knowledge element.

3.2 Integration

The particular legacy systems which we combined in our implementation were INTERACTIVE
KRITIK as the knowledge system and ORACLE as the database system. ORACLE is ex-
tremely well known system which uses the relational data model [Codd, 1970], a general pur-
pose knowledge representation formalism which is in extremely common use among database
management systems; the interface to ORACLE is the well-known query language, SQL. IN-
TERACTIVE KRITIK is described in detail elsewhere [Goel et al., 1996a, Goel et al., 1996b];
we will only provide a very brief sumnmary here.

INTERACTIVE KRITIK is a knowledge system which performs conceptual design of sim-
ple physical devices and provides visual explanations of both the reasoning processes it
goes through and the design products it produces. INTERACTIVE KRITIK is an inherently
multi-strategy knowledge system. It uses case-based reasoning as a general framework for
performing design and it also uses an assortment of model-based methods for doing specific
design tasks such as diagnosis and repair.

The experimental code which we have written serves as an interface between INTER-
ACTIVE KRITIK and our ORACLE database. It is used when INTERACTIVE KRITIK is
attempting to redesign a device through the use of a component substitution, one redesign
strategy in its library of strategies. For example, if the system has determined that a
flashlight is not producing enough light, it may decide that a larger bulb is needed. When
model-based diagnosis techniques identify a single component whose replacement could po-
tentially solve the design problem, INTERACTIVE KRITIK consults its library of components
to see if such a replacement exists; in the example, it would check to see if it knows about
a larger bulb and would make a substitution only if it did. In earlier implementations, the
library of components was stored entirely within INTERACTIVE KRITIK itself in the form
of data structures in memory. In our experiment, these data structures are not present



in memory and the request for an appropriate component takes place through our partial
implementation of the pieces of the HIPED architecture illustrated in figure 2.

INTERACTIVE KRITIK sends its request to a query processing module which uses IDI.
The request is made as a LISP function call to a function named lookup-database-by-attribute
which takes two arguments: a prototype and an attribute value. An example of such a call
from the svstem is a request for a larger light bulb for which the prototype is a svmbol
‘I-bulb which refers to the general class of light bulbs and a symbol 'capacity-more which is
a value for the overall capacity (in lumens) for a light bulb and is internally mapped within
INTERACTIVE KRITIK to the number 18. The SQL query generated by IDI for this request
1S:

SELECT DISTINCT RV1.inst_name

FROM  PROTO_INST RV1, INSTANCE RV2
WHERE RV1.proto_name = ’1l-bulb’
AND RV1.inst_name = RV2.name

AND RV2.att_val = ’capacity-more’

IDI sends this query to the ORACLE database management system running on a remote
server. ORACLE searches through a the database tables illustrated in table 1. The first of

these tables, INSTANCE, holds the components themselves. The second table, PROTO_INST
is a cross-reference table which provides a mapping from components to prototypes.

Table 1: The tables for the ORACLE database

Table INSTANCE
NAME | ATTRIBUTE = ATT_VAL

[ littlebulb | lumens capacity-less
bigmotor watts power-more
bigbulb lumens capacity-more

Table PROTOLINST
INST_.NAME Q PROTO_NAME

littlebulb I-bulb
bigmotor motor
bighulb [-bulb

If ORACLE finds a result, as it does in this example, it returns it via the method
specific transformer. In this case, the query generates the string “bigbulb” as the result;
the prototype name and the value are also part of the result but they are not explicitly
returned by the database since they were the values used to select the database entry in
the first place. The method specific transformer converts the raw data from the database
to a form comprehensible to INTERACTIVE KRITIK by using the algorithm described in
section 3.1. In step 4.1, the string “bigbulb” is converted into a LISP symbol. In step 4.2,
the attributes of the new bulb are generated. The symbols 'bigbulb and 'I-bulb are already
in the correct form to be the knowledge attributes of name and prototype-comp; the values
‘capacity and 'capacity-more are combined into a CLOS object of a class named parameter

10



and a list containing this one object is created which corresponds to the parameters attribute
of the component being constructed. Finally, in step 4.3 these three attribute values are
synthesized into a single CLOS object of the component class. This object if then returned
to INTERACTIVE KRITIK which is able to continue with its processing.

4 Discussion

The complexity involved in constructing a knowledge system makes reuse an attractive
option for true scalability. However, the reuse of legacy systems is non-trivial because we
must accommodate the heterogeneity of the “federation” of systems. To require a system to
change dramatically to participate in exchanges will, no doubt, limit the scalability of the
system by significantly slowing the speed (and willingness of legacy system designers) for
integration of a system. The scale comes from the easy integration of legacy systems and
transparent access to the resulting pool of legacy knowledge. Sharing data simply requires
that a legacy system designer augment the existing schema with metadata that allows a
global coordinator to relate data from one system to another, providing a general solution
to large scale integration.

The three steps of the method for converting data into knowledge described in Section
3 can all reasonably be considered to be relatively generic units of functionality. It is not
unreasonable to suspect that a wide variety of methods might have the same data coer-
cion requirements and thus be able to use the same data coercion routines in their method
specific transformers. Furthermore, a great many knowledge systems use representations
which are characterized as knowledge elements composed of a set of attribute / value pairs.
The general framework for the second and third steps of the algorithm (building attribute
/ value pairs and then combining them to form a knowledge element) could potentially
be applied to a wide variety of knowledge methods; furthermore, to the extent that some
methods have similar forms and mechanisms for constructing these elements, they might be
able to share specific routines. Our experiment suggests that it may be possible to abstract
generic components of method specific transformations; doing so would dramatically miti-
gate the problem of the quantity of method specific transformers required as the individual
transformers could be built from a small, parsimonious set of components. More research
is required to fully validate this hypothesis.

The specific experiment described in Section 3 models only a small portion of the general
architecture described in Section 2. In a related experiment, we have experimented with
another portion of the architecture [Navathe et al., 1996]. In the other experiment, five
types of queries that Interactive Kritik may create are expressed in a SQL-like syntax. The
queries are evaluated by mapping them using facts about the databases and rules that
establish correspondences among data in the databases in terms of relationships such as
equivalence, overlap, and set containment. The rules enable query evaluation in multiple
ways in which the tokens in a given query may match relation names, attribute names, or
values in the underlying databases tables. The query processing is implemented using the
CORAL deductive database system [Ramakrishnan et al., 1992].

While the experiment described here demonstrates method-specific transformation of
data into knowledge usable by Interactive Kritik, the other experiment shows how queries
from the Interactive Kritik can be flexibly evaluated in multiple ways. We expect an inte-
gration of the two to provide a seamless and flexible technique for integration of knowledge

11



systems with databases through method-specific transformation of data into useful knowl-
edge.

Acknowledgements

This work was funded by a DARPA grant monitored by WPAFB, contract #F33615-93-1-
1338, and has benefited from feedback from Chuck Sutterwaite of WPAFB. We appreciate
the support.

References

(Batini et al., 1986] Batini, C., Lenzernini, M.. and Navathe, S. B. (1986). A comparative
analysis of methodologies for database schema integration. ACM Computing Surveys.
18(4):325-364.

[Brodie. 1988] Brodie, M. (1988). Reading in artificial intelligence and databases. chapter
Future Intelligent Information Systems: AI and Database Technologies Working To-
gether, pages 623-641. Morgan Kauffman.

(Brown and Chandrasekaran, 1989] Brown, D. and Chandrasekaran, B. (1989). Design
Problem Solving: Knowledge Structures and Control Strategies. Pitman, London, UK.

(Chandrasekaran, 1988] Chandrasekaran, B. (1988). Generic tasks as building blocks for
knowledge-based systems: The diagnosis and routine design examples. Knowledge Engi-
neering Review, 3(3):183-219.

(Clancey, 1985] Clancey, W. (1985). Heuristic classification. In Artificial Intelligence, vol-
ume 27, pages 289-350.

[Codd, 1970] Codd, E. (1970). A relational model for large shared data banks. CACM,
13(6).
[Finin and Wiederhold, 1991] Finin, T. and Wiederhold, G. (1991). An overview of KQML:

A knowledge query and manipulation language. Available through the Stanford Univer-
sity Computer Science Department.

[Genesreth and Fikes, 1991] Genesreth, M. R. and Fikes, R. (1991). Knowledge Interchange
Format Version 2 Reference Manual. Stanford University Logic Group.

[Goel et al., 1996a] Goel, A., Gomez, A., Grue, N., Murdock, J. W., Recker, M., and
Govindaraj, T. (1996a). Explanatory interface in interactive design environments. In
Gero, J. S. and Sudweeks, F., editors, Proc. Fourth International Conference on Artificial
Intelligence in Design, Stanford, California. Kluwer Academic Publishers.

[Goel et al., 1996b] Goel, A., Gomez, A., Grue, N., Murdock, J. W., Recker, M., and
Govindaraj, T. (1996b). Towards design learning environments - I: Exploring how devices
work. In Frasson, C., Gauthier, G., and Lesgold, A., editors, Proc. Third International
Conference on Intelligent Tutoring Systems, number 1086 in Lecture Notes in Computer
Science, Montreal, Canada. Springer.

(Koch and Loney, 1995] Koch, G. and Loney, K. (1995). Oracle: The Complete Reference.
Osborne/McGraw Hill/Oracle, 3rd edition. ‘

12



[Lenat and Guha, 1990] Lenat, D. and Guha, R. (1990). Building Large Knowledge Based
Systems: Representation and Inference in the CYC Project. Addison-Wesley.

[Marcus et al., 1988] Marcus, S., Stout, J., and McDermott, J. (1988). VT: An expert
elevator designer that uses knowledge-based backtracking. In 47 Magazine, volume 9.
pages 95-112.

McKay et al., 1990] McKay. D.. Finin, T., and O'Hare, A. (1990). The intelligent database
interface. In Proc. Eight National Conference on Artificial Intelligence, pages 677-684.
Menlo Park, CA. AAAL

(Navathe and Donahoo, 1995] Navathe, S. B. and Donahoo, M. J. (1995). Towards in-
telligent integration of heterogeneous information sources. In Proceedings of the 6th
International Workshop on Database Re-engineering and Interoperability.

{Navathe et al.. 1996] Navathe, S. B., Mahajan, S., , and Omiecinski, E. (1996). Rule
based database integration in HIPED: Heterogeneous intelligent processing in engineering
design. In Proc. International Symposium on Cooperative Database Systems for Advanced
Applications. World Scientific Press.

[Paramax. 1993] Paramax (1993). Software User’s Manual for the Cache-Based Intelligent
Database Interface of the Intelligent Database Interface. Paramax Systems Organization.
70 East Swedesford Road, Paoll, PA, 19301. Rev. 2.3.

[Ramakrishnan et al., 1992] Ramakrishnan, R., Srivastava, D., , and Sudarshan, S. (1992).
CORAL: Control, relations, and logic. In Proc. International Conference of the Interna-
tion Conference on Very Large Databases. ¢

(Stroulia and Goel, 1995] Stroulia, E. and Goel, A. (1995). Functional representation and
reasoning in reflective systems. Journal of Applied Intelligence, 9(1). Special Issue on
Functional Reasoning.

13



Integrating Heterogeneous Databases for Engineering Design *

Sameer Mahajan Shamkant Navathe

College of Computing,
Georgia Institute of Technology,
(sameer.sham)@cc.gatech.edu

Abstract

A number of applications access data residing in heterogeneous databases, based on various data
models. having differing schemas, consisting of different internal representations etc. In this paper
we pick up a generic application of Engineering Design and assume a predetermined intelligent user
interface. We concentrate mainly on relational databases with the SQL interface for the purpose of an
illustrative implementation. We demonstrate the use of the CORAL deductive database management
svstem for the representation and maintenance of the metadata repository; and for the generation of
multiple possible interpretations of the user queries. CORAL facts store information about the various
schemas in the system. CORAL rules establish various relationships amongst different databases.
tables, attributes and values. The C++ interface of CORAL (also termed as CORAL++) along with
its deductive power is used for arriving at the multiple interpretations of the user queries.

1 Introduction

Heterogeneity of databases is becoming a necessary factor to contend with in the design of new
applications because of the proliferation of database management systems that used diverse data
models over the last three decades. Among widely implemented data models we have the hierarchi-
cal, network, relational and object oriented data models. A large body of work exists that deals with
the mapping of these models among one another (e.g. see the mapping of models using the entity
relationship model as an intermediate model in [1] [2]. While vendors are also providing middle-
ware solutions to draw data from these legacy systems, the semantic problems of resolving conflicts
regarding naming, scale, structure etc. that were pointed out several years ago [3] [4] still remain.
The purpose of the project was to tie a set of heterogeneous databases to an “intelligent front end
application” which would make requests for data without any knowledge of the schemas of the target
databases. To limit the degree of difficulty we assume that we are dealing with data in relational
databases only. This assumption is reasonable in the sense that if the data is coming from a hierar-
chical or a network DBMS, we can first convert the schema to a relational one before treating it for
purposes of integration. The database inzegration problem we discuss here is couched in the context
of engineering design which, like any other design application, relies on extracting data from existing
databases containing material data, components, existing designs etc. The exact context and the
application scenario will be explained in the next section.

We assume that relevant data for the design application is stored in relations (tables) whose
schemas are available at “design time”. It is conceivable that to support large scale engineering
designs, data from a variety of databases, i.e., from multiple schemas would be required. To facilitate
integration of data among these databases we assume that the “correspondences”, i.e., the similarities
and differences among the (meaning of) attributes is encoded in the form of rules. Furthermore, for
our application context, the user issues certain queries looking for relevant design information. We

*submitted to Deductive Databases and Logic Programming, Leuven, Belgium 1997



show in rhis paper how a query may have several interpretations. A deductive database system like
CORAL makes it easy to represent the schema information and the interrelationships in a narnral
way. The C++ interface embedded in CORAL++ makes it easy to write general purpose programs
to access and update this information.

2 Problem Definition

Our main objective is to build and demonstrate an intelligent interface to a set of (possibly au-
tonomous) information sources including structured databases, knowledge bases, and unstructured
data. The approach we have selected involves the development of a mediator which utilizes meta-
knowledge of the underlying informationstores to aid a user in browsing data or a system in retrieving
specific relevant information.

2.1 Predetermined Querying Interface

The user is assumed to use this system as an Engineering Database for designing purposes. So he
would typically like to find components that satisfy his requirements (e.g. batteries with voltage rat-
ing higher than 10V and cheaper than $10). Keeping this user’s perspective in miad, the Engineering
data is thought to be made up of various “Prototypes”. Each Prototype has various “Properties™.
Each Property takes up some “Value” for every Prototype. We can compare the Values of various
properties using the relations : ==, <, >, <=, >=.<> etc. For the purpose of our implementation,
the queries can be classified into the following five types.

1. (Prototype <protoname>) : here the user is looking for all the prototypes identified by
“protoname”. It is implicit that the user wants to see the various values for various prop-
erties of these prototypes.

2. (Property <prop_name>) : the user is interested in all the prototypes having the Property
identified by “prop-name”. It is implicit that the user wants to see the values taken by this
property for the various prototypes, that would be listed.

3. (Prototype <protoname>) (Property <prop-name>) : the user wants to see all the prototypes
identified by “proto.name” and having property identified by “prop.name”. It is implicit that
the user also wants to see the corresponding value that the property takes for the particular
prototype.

4. (Prototype <proto_name>) (Property <prop-name>) (Value <value>) (Relation <rel>) : the
user is interested in prototypes identified by “protoname” having a property identified by
“prop.name”. In addition to this he wants only those prototypes for which the property takes
a value which is related to the given “value” in the query by the relation “rel” (i.e. it is equal
to “value” or greater than “value” etc.)

Ot

. (Property <prop-name>) (Value <value>) (Relation <rel>) : the user is interested in all the
prototypes for which the property identified by “prop-name” takes a value which is related to
the given “value” by the relation “rel”.

2.2 Heterogeneous Databases as the Backend

Data is scattered in various databases and various tables in each of those databases. The databases
are assumed to be relational with the SQL interface for the illustrative purpose. It is a reasonable
assumption and is made to contain the complexity of the problem. The system needs to find out
which databases and which tables in these databases have the relevant data to answer a particular
query. It then translates the query into a corresponding SQL query for every table. This SQL query
is run against that table to get an answer. As we made an assumption of a uniform SQL interface
to all the databases, we can simply translate a query into one in SQL against a target database in
each of these cases.



3 Overall Operations in the System

The data 1s organized at two levels namely. (1) the metadata repository : consisting of informa-
tion about various databases and tables in them and (2) the actual data : which is cistributed in
various heterogeneous databases. This organization reduces the data to be dealt with at the first
level to get to the appropriate database(s) and table(s). It also allows heterogeneity in the various
databases involved. The Queryving Interface 1s as described in section 2.1. The ~“dara” rtagether wirh
its “wrapper forms a database system. “Wrapper™ simply defines the access methods to the ata
for reading and updating purposes. A user query. which is of the form described above, would be
translated into the corresponding query, as understood by the corresponding “wrapper”. for each of
the relevant tables. This query would then be routed to the corresponding database, that contains
this table. The metadata repository is consulted in determining these relevant tables and finding the
corresponding database. The user would get the result, obtained after running the query against all
the applicable databases through the “Result Composer”. The overall system architecture is given
in figure 1.

INTELLIGENT
USER
INTERFACE

’

/
query , result user \request
’

_______ e e e e = = r
? Result i Query l Cn(l)eiliaAL i
© Composer Processor | Tt

i

Heterogeneous Databases

Figure 1: The High Level System View

3.1 Multiple Interpretations of the various types of queries

For better understanding of the followir.g discussion, let us take up an example query. Let the four
components of the query be,

(Prototype Battery) (Property Voltage) (Value 10) (Relation ==).

As there can be various tables with different schema, we need to run this query with only those tables
that might give meaningful results for the query. We can easily observe that any of “Prototype”,
“Battery”, “Property” and “Voltage” can be a table or a column of a table. The “Battery” and



“Voltage™ can also be values in the columns (e.g. those labeled as “"Prototype™ and “Property” re-
spectively). Of course there are a lot of dependencies amongst these components - e.g.. if “Prototype”
1s a table. then “Batrery” has to be a column of this rable. On rhe other hand. if rthere is a table
called the “Battery™. then we are looking for values in the column “voltage™ or “volts™ - <o rhat the
query would generate meaningful results with the table. Now we take up an example query for each
of the five types listed above. For every query we list the possible tables according to our scheme.

L.

(Prototvpe Battery). The user typically means that he wants all the batteries with their
properties and their corresponding values. Hence we will have to run this query against all the
tables which,
e are equivalent to “Prototype Table™ and have a column equivalent to “Battery” or
e are equivalent to “Battery Table”
e have a column equivalent to “Prototype” (and only the tuples with Prototype as "Battery”
would be considered).

if and only if these tables have columns equivalent to “Property” and “Value” each.

. (Property Voltage). The user is interested in listing all the Prototypes having ~Voltage” as one

of their Properties. The Values of these Properties would also be significant from his standpoint.
Hence we consider all the tables which.
e are equivalent to “Property Table” and have a column equivalent to “Voltage” or
e are equivalent to “Voltage Table”
e have a column equivalent to “Property” (and only the tuples with Property as “Voltage”
would be considered).

if and only if they have “Prototype” equivalent column.

. (Prototype Battery) (Property Voltage). The user wants all the batteries with special interest

in their voltages. Hence we will run the query against all the tables which,

e are equivalent to “Prototype Table” and have “Battery”, “Property” and “Value” equiva-
lent columns and we would be interested only in the tuples having an entry of “Voltage”
in the “Property” equivalent column or

e are equivalent to “Prototype Table” and have “Battery”, “Voltage” equivalent columns or

e are equivalent to “Battery Table” and have “Property” and “Value” equivalent columns.
We would be interested only :n those tuples having Property “Voltage” or

e are equivalent to “Battery Table” and have a column equivalent to “Voltage” Or

e are equivalent to “Property Table” and have columns equivalent to “Voltage”, “Prototype”
and “Value”. We would be interested in tuples with Prototype as “Battery”.

e are equivalent to “Property Table” and have “Voltage” and “Battery” equivalent columns.

e are equivalent to “Voltage Tables” and have “Prototype” and “Value” equivalent columns.
We would look for only tuples with Prototype as “Battery”.

e are equivalent to “Voltage Table” with “Battery” and “Value” equivalent columns.

e have “Prototype” and “Property” equivalent columns as far as they have “Value” equiv-
alent column. Only the tuples with Prototype as “Battery” and Property as “Voltage”
would be considered.

4. (Prototype Battery) (Property Voltage) (Value 10) (Relation ==). Here the interest is indicated

in all the batteries having Voltage as “10”. The query can be run with all the tables as indicated
as above with an added constraint that only those tuples which have an entry of “10” in the
“Voltage” or “Value” column - whichever is applicable - (Note the table can have only one of
these columns at a time) will be considered.

. (Property Voltage) (Value 10) (Relation ==). All the Prototypes having voltage of “10” are

being considered. Thus all the tables that,



e are equivalent to “Property Table” and have a column equivalent to ~Voltage”

e are equivalent to "Voltage Table™ and have a column equivalent to ~Value”

e have "Property” and ~Value™ equivalent columns along with “Prototype™ colum:. {only
tuples with Property “Voltage™ and Value "10” would be taken into consideratic i)

would be considered if and only if theyv have a column equivalent to “Prototype™. All “he tuples
with “Voltage™ or ~Value” being 10 would be taken into account.

4 Effective Use of CORAL for the Integration

The metadata is stored in the form of CORAL [5] [6] facts and rules. CORAL is a dedurrive database
syvstem which stores data as facts and rules. and allows for that data to be queried. By ising CORAL
the mediator can decide which database(s) and table(s) are useful in answering any ¢:ven query. In
particular, CORAL 1s used in deriving relationships like equivalence; between attributes. tables and
databases. Any creation, deletion or modification of a table results in a change iu the metadata
repository. This dynamic behavior can be easily captured by CORAL. In essence, CORAL provides
us with the facility for database integration through the facts and rules specified ibout tables and
databases. However, this integration can be considered implicit rather than explicit since no global
conceptual schema is explicitly formed. Also the C++ interface provided by CORAL makes writing
general purpose programs easy. We explain the implementation by taking help of an example. The
integration of CORAL deductive engine with the C++ interface makes CORAL++ rich and well-
suited for our system.

4.1 A Simple Example
Consider a query,
(Prototype Battery) (Property Voltage).

This query is asking for information in all the databases that has somethiag do with battery as a
prototype and voltage as a property.

Let us assume a system (as illustrated in figure 2) that has two data';ases - dbl and db2. Let
dbl have the populated tables as shown in Table 1 and Table 2.

EompNo [ Prototype LProperty—| Value
B101 Battery Voltage 10
M101 Motor Voltage 10
B110 Battery Voltage 100
B11l Battery Current 10f;

Table 1: “Components” Table in 1bl

and let db2 have populated tables as shown in Table 3 and Table 4.
We observe that according to the discussion in section 3 oniy the tables in dbl would produce
meaningful results with the query under consideration.

4.2 Representation of the Metadata Repository

It 1s stored as CORAL facts and rules. The advantage of such a storage is that we can utilize the
strong deductive power of CORAL (e.g. deducing equivaler:ce of attributes, equivalence of tables
etc.). The various components of the repository are described below.



dbl

[ Components Table

CompNo Prototype ~ Property {L Value
Battery Table
[ m
bNo Voltage
db2

Supplier Table Battery Table

[ [ T

i BatteryNo SupplierNo W I bNo B Current

Figure 2: An Example Database System

LBatteryN'o ‘ Voltage—|
B101 15
B102 30

Table 2: “Battery” Table in dbl

’ BatteryNﬂ Current—l

[ BI01 15 |
B102 30 |

|

Table 3: “Battery” Table in db2

IﬁatteryNo | Supplier No |
B101 4567
B102 4568

Table 4: “Supplier” Table in db2



o First we list all the tables in all the databases as CORAL facts like,

%, For the first database, dbl.
belongsTo(component, dbil).
belongsTo(battery, dbl).

%, For the second database, db2.
belongsTo(battery, db2).
belongsTo(supplier, db2).

o Then we list attributes of individual tables as CORAL facts. The first argument of these
predicates is the database name. [t is so because the same table may have different attributes
in different databases. e.g. the “battery” table in the two databases “db1" and “db2" as shown
below.

% for dbi
hasAttribs(dbl, component, [compName, prototype, property, valuel).
hasAttribs(dbl, battery, [bName, voltage]).

% for db2
hasAttribs(db2, battery, [bName, current]).
hasAttribs(db2, supplier, [bName, sName]).

o We also need facts to list what attributes are equivalent. The equivalence of tables can be either
given by facts or can be deduced by the rules (e.g. two tables with equivalent attributes are
equivalent). But we do not need them in this particular example.

e To find whether a table has a particular attribute in a given database we define a CORAL rule
as,

module isAttrib.

export isAttrib(bff).

isAttrib (Db, Table, Attri) :- hasAttribs(Db, Table, Attribs),
iselem (Attri, Attribs).

end_module.

% Module ‘‘iselem’’ is defined for the sake of completeness.
module iselem.

export iselem(bb).

Qpipelining+. % Solve in a top-down fashion

iselem(X, [X]_]).
iselem(X, [_12]) :- iselem(X,Z).
end_module.

4.3 Deducing the Appropriate Tables

It is done according to the scheme suggested in section 3. We use the C++ interface of CORAL for
this matter. In fact, an imperative interface (e.g. in C) would have been enough for the purpose.
We check for the various conditions given in the scheme and generate the appropriate SQL queries
for the existing tables. We run through the algorithm for the example query under consideration,

begin



«

For every ‘‘table’’ equivalent to ‘‘prototype table’’
for every attribute equivalent to ‘‘battery’’, say attribl
for every attribute equivalent to ‘‘property’’, say attrib2
if ‘‘table’’ has ‘‘attribl’’ as well as ‘‘attrib2’’
for every attribute equivalent to ‘‘value’’, say attrib3
if ‘‘table’’ has attrib3
select the corresponding database and fire SQL query,
SELECT * FROM table
WHERE attrib2 == voltage equivalent value.
goto next table
for every attribute equivalent to
if ‘‘table’’ has attrib4
select the corresponding database and fire SQL query,
SELECT * FROM table

«

‘voltage’’, say attrib4

For every ‘‘table’’ equivalent to ‘‘battery table’’
for every attribute equivalent to ‘‘voltage’’, attribl
if ‘‘table’’ has attribi
select the corresponding database and fire SQL query,
SELECT * FROM table
goto next table
for every attribute equivalent to ‘‘property’’, attrib2
for every attribute equivalent to ‘‘value’’, attrib3
if ‘‘table’’ has attrib2 and attrib3
select the corresponding database and fire SQL query,
SELECT * FROM table
WHERE attrib2 == voltage equivalent value.

¢

«

For every table equivalent to ‘‘property table’’
for every attribute equivalent to ‘‘voltage’’, say attribl
for every attribute equivalent to ‘‘prototype’’, say attrib2
if ‘‘table’’ has ‘‘attribl’’ as well as ‘‘attrib2’’
for every attribute equivalent to ‘‘value’’, say attrib3
if ‘‘table’’ has attrib3d
select the corresponding database and fire SQL query,
SELECT * FROM table
WHERE attrib2 == battery equivalent value.
goto next table
for every attribute equivalent to ‘‘battery’’, say attrib4
if ‘‘table’’ has attrib4
select the corresponding database and fire SQL query,
SELECT * FROM table

For every table equivalent to ‘‘voltage table’’
for every attribute equivalent to ‘‘battery’’, attribil
if ‘‘table’’ has attribi
select the corresponding database and fire SQL query,
SELECT * FROM table
goto next table
for every attribute equivalent to ‘‘prototype’’, attrib2
for every attribute equivalent to ‘‘value’’, attrib3
if ‘‘table’’ has attrib2 and attrib3



select the corresponding database and fire SQL query,
SELECT * FROM table
WHERE attrib2 == battery ecuivalent value.

For every table having columns equivalent to each of
prototype, property and value
select the corresponding database and fire SQL query
SELECT * FROM table
WHERE prototype equivalent column) == battery equivalent value
AND property equivalent column == voltage eqv. value
end

4.4 The Result of Sample Queries

Let us say that the wrapper of dbl can handle SQL queries. In that case we first select that database
and then simply run a query,

SELECT =
FROM component
WHERE prototype = ‘‘battery’’ AND property = ‘‘voltage’’

against the first (“component”) table in the database. We take similar actions for the other table in
(possibly various) databases. The other query in this case would be,

SELECT =
FROM battery

again with the same database viz. dbl. The result is presented to the user as displayed by the
corresponding “wrapper”. The task of Result Composer is trivial in this case. It needs to simply
display the two tables with appropriate header information (e.g. table names etc.). In general it
might be required to merge tables coming from multiple databases. It might also be required to take
into consideration the interrelationships amongst various various tables, attributes and values in tue
same database.

5 Exploiting the Deductive Power of CORAL

The equivalence relationships amongst the various attributes are stored as CORAL facts. The de-
duced equivalences between tables can be added (and modified as and when required) dynamically
for performance benefits. Additional relationships, including semantic ones, between attributes and
tables can also be easily captured under this scheme. Sometimes it might be necessary to account
for these relationships. They might improve the efficiency of arriving at the result in other cases. A
sample system with definition of some additional relationships is given in Appendix A. This example
is given for illustrative purposes only. It does not address completeness or efficiency. It means that
neither all the facts and rules required are given nor the rules are written to ensure optimal search
results.

6 Conclusions and Future Work.

Integration of heterogeneous databases is achieved with respect to an Engineering Data Processing
Application. The effective use of deductive database engine integrated with the C++ like interface
is illustrated with the help of CORAL++ implementation. CORAL++ makes it easy to represent
the information and deduce the outcomes in a natural way.



The svstem makes an assumption that all the databases involved provide an SQL interface This

conditicn can be relaxed. In this case we need to jenerate different queries. as understood by ecach
of the databases involved. Currently only the u.dividual tables are checked to see whether thev
provide satisfactory data to answer a particular juery. But it s possible that two or more tables
taken separately do not have enough informatior. to answer a query. At the same time. when taken
together {(e.g. their join), they provide data to : aswer the query. Consider that there are two tables
- which might be in the same database or in ifferent databases - one with columns “Component
Number” and “Prototype”. The other with ¢ {umns “Component Number™ and ~Voltage”. Then
neither of them provides enough information ' >r the query
(Prototype Battery) (Property Voltage)
But their equijoin with the additional condition of “Prototype == Battery” for the tuples is of
interest to us. The extended solution can exaaustively take care of all such cases. The five types of
queries, given in section 2.1, were decided in uitively. They can be modified and / or extended based
on a svstematic treatment of the user need-.

References

[1] C. Batini. S. Ceri, and S.B. Navathe. Conceptual Database Design: An Entity Relation-
ship Approach, Benjamin Cummings, August 1991, 470 pp.

[2] R. Elmasri, S Navathe, Fundamentals of Database Systems, 2nd Edition, 1994.

(3] J. Larson, S. B. Navathe, and R. Elmasri A Theory of Attribute Equivalence in Databases with
Application to Schema Integraticn, [EEE Transactions on Software Engineering, Vol. 13, No.
4, April 1989.

[4] S.B. Navathe, R. Elmasri and J.A. Larson, Integrating User Views in Database Design, [EFEE
Computer, Vol. 19, No. 1, January 1986, pp. 50-62.

[5] R. Ramakrishnan, D. Srivastava and S. Sudarshan, CORAL: Control, Relations and Logic,
Proceedings of the International Coaference on Very Large Databases, 1992.

[6] R. Ramakrishnan, D. Srivast~va, S. Sudarshan and P. Seshadri, Implementation of the CORAL
deductive database system, Proceedings of the ACM SIGMOD Conference on Management of
Data, 1993.

10



Appendix A

db(db2) .
db(db1).

%

 Attributes in LDB 1 (University Registration)
YA

attrib(dbl, professor, profname).

attrib(dbl, professor, desc).

attrib(dbi, student, name).
attrib(dbil, student, id).

attrib(dbl, project, id).
attrib(dbi, project, projname).
attrib(dbl, project, desc).

attrib(dbil, course, coursename).
attrib(db1l, course, desc).

attrib(db1l, manage, id).
attrib(dbl, manage, profname).
attrib(dbi, manage, projname).

attrib(dbl, participate, id).
attrib(dbl, participate, projname).
attrib(dbi, participate, stdid).

attrib(dbl, assigned, id).
attrib(db1l, assigned, coursename).
attrib(dbil, assigned, profname).

attrib(dbi, enroll, id).
attrib(dbi, enroll, coursename).
attrib(dbi, enroll, stdid).

A

% Attributes in LDB 2 (University Payroll)
%

attrib(db2, project, id).

attrib(db2, project, fund).

attrib(db2, professor, id).
attrib(db2, professor, name).

attrib(db2, student, name).
attrib(db2, student, id).

attrib(db2, department, id).
attrib(db2, department, name).

11



attrib(db2, grapay, ccde).
attrib(db2, grapay, stdid).
attrib(db2, grapay, projid).

attrib(db2, gtapay, code).
attrib(db2, gtapay, stdid).
attrib(db2, gtapay, deptid).

attrib(db2, deptpay, code).
attrib(db2, deptpay, profname).
attrib(db2, deptpay, deptid).

attrib(db2, projpay, code).

attrib(db2, projpay, profname).

attrib(db2, projpay, projid).

%

% Entities (classes) in Two Databases

YA

% Entities in LDB 1 (University Registration)

class(dbl, professor).
class(db1l, student).
class(dbl, project).
class(dbl, course).
class(dbl, manage).
class(dbl, participate).
class(dbl, assigned).
class(dbl, enroll).

% Entities in LDB 2 (University Payroll)

class(db2, professor).
class(db2, student).
class(db2, project).
class(db2, department).
class(db2, grapay).
class(db2, gtapay).
class(db2, projpay).
class(db2, deptpay).

%
% Attributes of an individual class listed

h

has_attribs(db2, professor, [id, name, address, officeno]).
has_attribs(dbil, student, [id, name, address]).
has_attribs(dbil, project, [id, courseno, descl).
has_attribs(dbi, course, [no, name, desc]).
has_attribs(db1l, manage, [id, projid, profnol).
has_attribs(dbl, participate, [id, stdid, projidl).
has_attribs(dbl, assigned, [id, courseno, profno]).

12



has_attribs(dbi, enroll, [id, stdid, courseno]).

has_attribs(db2, professor, [id, name]).
has_attribs(db2, student, [id namel).
has_attribs(db2, project, [id, fund]).
has_attribs(db2, department, [id, name]).
has_attribs(db2, grapay, [code, projid, stdid]l).
has_attribs(db2, gtapay, [code, deptid, stdid]).
has_attribs(db2, projpay, [code, projid, profid]).
has_attribs(db2, deptpay, [code, deptid, profid]).

% Information from Schema Analysis
%
YA 1. Attributes Relationship

keqv(dbl, project, id, db2, project, id).
keqv(dbl, student, id, db2, student, id).
keqv(dbl, student, name, db2, student, name).
keqv(dbl, professor, name, db2, professor, name).

kcontain(db2, student, id, db2, grapay, stdid).
kcontain(db2, student, id, db2, gtapay, stdid).

kcontain(dbl, student, id, dbi, participate, stdid).

kcontain(db2, professor, name, db2, project, name).
kcontain(db2, professor, name, db2, department, name).

kcontain(dbl, professor, name, dbi, assigned, name).
kcontain(dbl, professor, name, dbl, manage, name).

kcontain(dbl, course, name, dbi, assigned, name).
kcontain(dbl, course, name, dbl, enroll, coursename).

% Information from Schema Analysis

A

% 1. Class Relatiomnship

% The following relationships would be added dynamically as they are
% deduced by the system.

ksubsume(dbl, professor, db2, professor).
ksubsume(dbl, project, db2, project).
ksubsume(dbl, student, db2, student).

)
/A
% equivalent attributes

YA

equ(X, X) :- attrib(Db, T, X).

eqv(X, Y) :- keqv(Dbi, T1, X, Db2, T2, Y).
eqv(X, Y) :- keqv(Dbi, T1, Y, Db2, T2, X).
eqv(X, Z) :- eqv(X, Y), equ(Y, 2Z).

13



YA
% Attribute Containment Relationship
.
A

contain(X, Z) :- eqv(X, Z).

contain(X, Y) :- kcontain(Dbi, T1, X, Db2, T2, Y).
contain(X, Z) :- contain(X, Y), contain(Y, Z).
contain(X, Z) :- eqv(X, Y), contain(Y, Z).

%
% Qverlapping Attributes
A

overlap(X, Y) :- contain(X, Y).
overlap(X, Y) :- contain(Y, X).
overlap(X, Y) :- eqv(X, Y).

yA
% Disjoint Attributes
YA

disjoint(X, Y) :- attrib(Dbi, T1, X), attrib(Db2, T2, Y), not overlap(X, Y).

YA
% equivalent classes

A

eqclass(X, Y) :- keqclass(Dbi, X, Db2, Y).

eqclass(X, X) :- class(Db, X).

eqclass(X, Y) :- eqclass(Y, X).

% class equivalence derived from attributes.

eqclass(X, Y) :- has_attribs(X, Z), has_attribs(Y, W), eqlist(Z,W).
eqclass(X, Z) :- eqclass(X, Y), egclass(Y, Z).

%

% Equivalent Lists of Attributes

%

eqlist([],[]).

eqlist([X|Y],[W[Z2]) :- equ(X,W), !, eqlist(Y,Z).
eqlist ([XI1Y],[WIZ]) :- iseqv(X,Z),eqlist(Y,[W|Z]).

%

% Testing for being a member of a list.
YA

iseqv(X,[]) :- !, fail.

iseqv(X,[Y[_]) :- eqv(X,Y).
iseqv(X,[_1Y]) :- iseqv(X,Y).

A

% class X subsumes class Y

%

14



subsume(X, Y) :- ksubsume(Db1l, X, Db2, Y).

subsume(X, Z) :- class(Dbl, X), class(Db2, Y), class(Db3, Z),
subsume(X, Y), subsume(Y, Z).

subsume(X, Z) :- eqclass(X, Z).

subsume(X, Z) :- eqclass(X, Y), subsume(Y, Z).

%

s overlapping classes

%

overclass(X, Y) :- subsume(X, Y).
overclass(X, Y) :- subsume(Y, X).

overclass(X, Y) :- eqclass(X, Y).
YA
% disjoint classes

Y2

disclass(X, Y) :- class(Dbil, X), class(Db2, Y), not overclass(X, Y).

15



PART 2

VISUALIZATION AND USER
INTERFACE TECHNIQUES FOR
INFORMATION RETRIEVAL



[2.1].

[2.2].

[2.3].°

[2.4]. °

[2.5].

PUBLICATIONS (PART?2):

Visual Interface for Textual Information Retrieval Systems",
Aravindan Veerasamy, Scott Hudson, Shamkant Navathe. In
Proceedings of IFIP 2.6 3rd Working Conference on Visual
Database Systems 1995, Elsevier, North Holland, pp. 333-345.

“Querying, Navigating and Visualizing a Digital Library Catalog",

Aravindan Veerasamy, Shamkant Navathe.
In Second International Conference on the Theory and
Practice of Digital Libraries ,June 11-13, 1995, Austin, TX

‘Interactive TREC-4 at Georgia Tech", '
Aravindan Veerasamy. In Fourth Text REtrieval Conference,
Oct, 1995, Gaithersberg, MD

"Evaluation of a tool for visualization of information retrieval
results”, Aravindan Veerasamy, Nick Belkin. In Proceedings of
the SIGIR 1996, the 19th Annual International Conference on
Research and Development in Information Retrieval., ACM, New
York.

"Effectiveness of a graphical display of retrieval results",
Aravindan Veerasamy and Russell Heikes. In

Proceedings of the SIGIR 1996, the 19th Annual
International Conference on Research and Development in
Information Retrieval.. ACM, New York.



Visual Interface for Textual Information Retrieval
Systems” '

A. Veerasamy, S. Hudson and S. Navathe
("ollege of Computing. S01. Atlantic Drive. Georgia [nstitute of Technology. Atlanta.
Georgia 30332-0230. USA.

Email: {veerasam. hudson. sham} @cc.gatech.edu

Abstract

A prototype user interface implementation for text information retrieval system is de-
scribed. Using a visualization scheme, the interface provides visual feedback to the user
about how the query words influence the ranking of retrieved documents. The interface
also helps the user in constructing complex structured queries by simple drag-and-drop op-
erations. An intuitive model where the user classifies the information provided to him/her
as being positive and negative aids him/her in supplying rich relevance feedback informa-
tion to the system. Our prototype interface has been built on top of INQUERY [CCH92].
Preliminary experience with the interface shows it to be a valuable tool in aiding the
interactive search process between the user and the system. To test the effectiveness of
the interface. we plan to conduct studies on users with real information need searching a
large corpus of articles.

Keywords

Visualization of results, visual query languages, query processing, information retrieval

1 User Interface issues for Information Retrieval
systems

User Interface issues and interaction techniques for full text information retrieval systems
have in general received much less attention than system issues like document representa-
tion and retrieval algorithms. We have developed an interface that facilitates the user in
visually constructing powerful queries for ranked output retrieval systems. The interface

*This work was supported in part by ARPA Grant No. F33615-93-1-1338 under the Intelligent Inte-
gration of Information Program

T Appeared in the Proceedings of the Third IFIP 2.6 Working Conference on Visual Database Systems,
1995



includes a scheme for visualizing the query results in a form that enables rhe nser 1o see
the relationships between the query results and the querv. While a majority of online
library catalog systems use a boolean model of retrieval. a vast majority of existing ex-
perimental information retrieval systems retrieve a ranked set of documents in decreasing
order of relevance in response to a free-form textual query. In ranked output ~vstems.
the documents and the queries are modeled by a set of weighted index terms. The index

term weighting function for the documents primarily takes into consideration

e the frequency of occurrence of the index term in the document,

e the number of documents in the corpus containing that index term.

The effectiveness of a retrieval system is measured by two metrics: recall (the ratio of
the number of relevant documents retrieved to the total number of relevant documents
in the corpus) and precision (the ratio of the number of relevant documents retrieved to
the total number of documents retrieved). The reader is referred to [BCS7. Rij79. SM33|
for a comprehensive description of evaluation metrics of information retrieval svstems.
document representation and retrieval techniques.

While processing a free-form textual query, most ranked output Information Retrieval
systems automatically extract index terms from the query and weight them. The weighted
query index terms are then matched against the weighted index terms of documents to
retrieve a ranked set of documents in decreasing order of relevance. Each document is
weighted, the higher the weight of a document, the more likely it is to be relevant to the
query. Most of the existing library information systems (On-line Public Access Catalogs.
OPAC) follow a boolean retrieval model. In this model, the documents retrieved in
response to a boolean query are not ranked. If a document satisfies the boolean query
specification. it is retrieved. Compared to boolean systems. ranked output systems are
a significant improvement since the query can be in a free-form text as opposed to a
strict boolean syntax. Also, the retrieved documents are ranked, thereby placing the
more useful documents at the top of the list. This is a particularly useful feature since it
has been shown that users of boolean systems spend a considerable effort in reducing the
size of the result set [Spi93]. On the other hand, ranked output systems introduce a new
problem: For a naive user, the logic behind the ranking of documents in response to a
query is not as apparent and straightforward as a boolean system. The interface we have
developed is aimed at alleviating this problem. It helps the user in understanding how
the svstem computed the ranking of retrieved documents by visualizing the relationship
between query terms and the results of the query.

The interface also aids the user in formulating complex structured queries by graph-
ically manipulating objects on the screen. A simple mechanism of classifying any infor-
mation on the screen into positive and negative instances lends itself to easy formulation
of structured queries. The interface is built using Tcl/Tk [Ous94] on top of INQUERY
[CCH92], a ranked output retrieval system based on Bayesian inference networks. The
interface supports two types of feedback:

o feedback from the user to the system and



o feedback from the syvstem to the user.

[t is interesting to note that the term “feedback™ in the field of Information Retrieval
tvpically refers to user’s feedback to the svstem. while in the field of Human Compurer
Interfaces. “feedback™ usuallv refers to the system’s feedback to the user. The user's
feedback to the system and the different levels of granularity at which the feedback can be
provided is discussed in section 4. The system’s feedback to the user and the visualization
technique is discussed in section 3.

2 Related Work

Numerous studies on user interaction with online library access catalog systems with a
boolean retrieval model have been conducted [Spi93, SS92. Dal90, Fid9la. Fid91lb. Fid91c .
Spink [Spi93] studies the different forms of user feedback during a retrieval session. Of the
total number of feedback actions by the user, 45% were aimed at adjusting the size of the
retrieved set of documents, and about 40% were related to relevancy of documents. Fidel
[Fid9la, Fid91b. Fid9lc| discusses the issue of user interaction by studying the process
of search term selection and searching styles in online library access catalogs. Dalrymple
[Dal90] looks at the feedback process from a user-centered perspective. Bates [Bat90]
describes a boolean retrieval system which integrates an online thesaurus. None of the
above studies involve a ranked output system supporting free-form textual queries. All of
the systems deal with boolean retrieval model only. We believe that there is a significant
difference in the way users interact with a boolean system and a ranked output system.
The reader is referred to [Har92] and [HB92| for a comparative discussion of boolean
systems and ranked output systems. While building our interface we have borrowed
valuable ideas from the studies mentioned above. In particular, the need to integrate
an on-line thesaurus with the search interface in an easy-to-use fashion and a simple
interaction scheme to include words from documents into the query have been influenced
by the results of above-mentioned studies.

Walker and Beaulieu [Wal87, HB92] describe their OKAPI system which is a ranked
output retrieval system for library catalogs. Similarly, Fox [FFS*93] describes their MAR-
IAN sysem which is also a ranked output system for library catalogs based on the vector-
space model. While OKAPI has facilities for relevance feedback and query expansion
using a thesaurus, it largely lacks any means of providing system feedback to the user
about how the ranking was computed. The interface we have developed integrates rele-
vance feedback information from the user as well as feedback from the system illustrating
the relationship between query results and query words.

A number of visualization schemes for information retrieval systems have also been
proposed. The perspective wall [CRM91]| describes a visualization scheme which supports
browsing of documents. While such a system will not handle qualitative document classi-
fications such as library subject catalogs, it is very useful for visualizing documents based
on data which is linear in nature (like date of publication). Other visualization schemes



sich as "Kord1. Spod4. HKW94] have facilities for viewing a large document space. Bnt
visualizing the document space along more than 3 - 4 dimensions simultaneously becomes
very cumbersome using the above systems. Also. most of them do not provide snpport for
querving with relevance feedback and none of them provide support for query expansion
using a thesaurus. The visualization scheme in our interface can gracefully handle much
higher number of query word dimensicns.

2.1 Novelty of our approach

The novelty of our svstem is in integrating a diverse set of interaction features in a seamless
fashion into a single system thereby facilitating the interactive and iterative nature of the
information seeking process. The following features are integrated in our system:

e Using a visualization scheme, the interface provides visual feedback to the user about
how the query words influence the ranking of retrieved documents.

e By simple drag-and-drop operations of objects on the screen, the interface facili-
tates a naive end-user in constructing complex structured queries and in providing
relevance feedback. This feedback is utilized by the system in a manner described
later.

e The interface integrates an online thesaurus which provides words related to the
query that can be used by the user to expand the original query.

Belkin and his group’s work [BMC93, BMA*91, HB94] on user interfaces for informa-
tion retrieval systems elucidates the issues in user interface and interaction techniques for
full text retrieval systems. Belkin [BMA*91] mentions that “This type of analysis led to
another important conclusion, namely that information systems for end users must sup-
port a variety of goals and tasks, but through some common interface or seamless access
mechanism to a variety of relevant information sources and system functionalities™. Our
interface takes a step in that direction by integrating different pieces of information with
a visualization scheme and simple interaction techniques.

3 Interactive Construction of Queries

Searching a database for information is a highly interactive process with the user con-
stantly refining the query after examining the results of previous iteration until he/she is
either satisfied with the results or is frustrated with the process and gives up. In existing
information retrieval systems, the interaction proceeds by the user providing feedback on
which of the retrieved documents are relevant to his/her information need. The system
uses this information to modify the original query resulting in an improved ranking of
retrieved documents. It has also been shown by Spink [SS92] that during iterative query
reformulation, users tend to expand the query using search terms from various sources



such as a thesaurus. previously retrieved documents and user's background knuwledae.
Expanding the query with terms from such sources can contribute to retrieval of more
relevant documents in the next iteration.

Our interface encourages the interaction between the user and the system by providing
the user with simple interaction technique to let him/her supply relevance feedback at
different levels of granularitv: whole documents, document portions. phrases and individ-
ual words. Almost any information appearing on the screen can be used for feedback.
This is achieved by simple “drag-and-drop” ping the feedback object into either a ~Pos-
itive Objects™ window colored green or a “Negative Objects™ window colored rec. This
scheme provides a simple abstraction to the user for classifving any type of information
without having to worry about what action to take for what type of information. A tvpi-
cal user session along with the response of the interface for every user action is described
below using an example (please refer to Figure 1). The database being queried contains
a collection of titles. authors and abstracts of thousands of CACM articles.

e The user types in his free form textual query in the query window. In the example
shown in figure 1. the query is “image audio and text data compression”.

e As every query word is typed in, the system consults an on-line thesaurus and
displays words and phrases related to the query word in an adjacent window.

e At any point during the session the user can drag-and-drop any of the related
words/phrases into the positive and negative windows. Internally the system ex-
pands the query by treating the positive words/phrases as synonyms of the corre-
sponding query word. The negative words/phrases are included in the querv with
a NOT operator. For example, if for a query word “bank”. the phrase “financial
institution” is classified as positive and “river bed” is classified as negative, the
corresponding internal query would be “4SYNONYM( bank #2*( financial institu-
tion )) #NOT( #2( river bed))”. The end-result of this classification is a possible
improvement in the precision measure since documents containing the phrase “river
bed” will be weighted lower than other documents, and a possible improvement in
the recall measure since documents containing the phrase “financial institution” are
also retrieved. The interface facilitates construction of such structured queries by
simple drag-and-drop operations. In the example in figure 1, three words related
to the query word “compression”, namely, “compaction, “shortening” and “conden-
sation” have been classified as positive. Internally the systems treats these three
words as synonyms of “compression”.

o After the user types in the query, the system evaluates the query and displays the
titles of top-ranked documents in the “Query Results” window.

o The user examines the query result. Double-clicking any title with the mouse will
bring up the full document.

Y42 is the proximity operator in INQUERY specifying that the words should appear within a distance
of 2 within each other



trope text compaction u
figure of speec texthook compression
5 ) ) figure text edition concretion
mmage school text densification
> rhetorical de > hook > concentratic
prototype text consolidation
Automa D& epitome textual matter compression
. mage > writing condensation
> model wrilings contraction
ompactio example written mate shartening
priendn A » ; 2L
N \ [
Que {image andio and text data compression

/.

0.551946 Experiments in Text Fle Compression

0.530134 A New Technique for Compression and Storage of Data

0.433358 Binary Pattem Reconstruction from Projections [Z] (Algorithm A445)

0.499358 Binary Pattern Reconstruction from Projections [Z] (Algorithm R445)

0.496841 Prefiminary investigation of Techniques for Automated Reading of Unformatted
0.496249 Algorithmic Seiection of the Best Method for Compressing Map Data Strings
0.406482 The Reconstruction of Binary Patterns from Their Projections

0.486112 Automatic Data Compression

0.484416 Rsconstruction of Pictures from Their Projections

0.483078 An Algorithm for Extracting Alwases in a Space- Optimal Fashion [Z] (Aigorithm

Figure 1: Sample querying session. The window titled “Positive object” is colored green
and the window title “Negative Objects” is colored red. When a document is classified
as positive/negative, the title of that document in the “Query results” window is also
colored green/red.



e The user can classify any document as being relevant or non-relevant by drag-and-
drop’'ing the document into positive and negative windows. In the example in figure
L. the user has classified three documents titled "Experiments in text file compres-
sion™. A new technique for compression and storage of data™ and ~Automatic data
compression” as positive. The document titled “Preliminary investigation of tech-
niques for automated reading of unformatted text™ has been classified as negative.
[nternally. the svstems extracts 4 - 6 high frequency words from the positive doc-
uments and adds it to the query thereby expanding the querv. This results in the
retrieval of documents similar to the positive documents.

e The user can also highlight a portion of a document and drag-and-drop it into the
positive and negative windows. The words in the highlighted document portion are
used to expand the query in the next iteration.

e During the next iteration. the reformulated query with the relevance feedback infor-
mation is processed by the svstem resulting in an improved ranking of documents.

The positive and negative windows for feedback are aimed at mimicking the user’s
view that some information is in line with the information need and some not. After an
object has been classified as positive (or negative), the system always colors the object
green (or red) whenever the object is displayed, thereby reinforcing the user with the fact
that the object is being used for relevance feedback. While arguing for the use of direct
manipulation techniques for Information Retrieval, Mitev [Mit89] mentions that

"Parts of document(s), individual word(s), sentences or groups of word(s)
displayed could be used directly as something to be input for another search.
This could be done, for example, by pointing and 'picking’ them on the screen
and carrying them across another area of the screen. The user would not have
to input them again.”

This is precisely what has been accomplished in our interface. In their retrieval system,
Campbell [CS] uses a cut-and-paste mechanism for relevance feedback by letting the user
add portions of retrieved documents back into the query window.

This section dealt with the interaction technique to let the user provide relevance
feedback information to the system. The next section deals with visual feedback from the
svstem on how the query results were computed.

4 Visualization of query results

While systems with a boolean retrieval model retrieve an unordered set of documents in
response to a query, ranked output information retrieval systems retrieve a ranked set of
documents. While the reason for retrieving a document is fairly clear in the case of a
boolean system, the reason why a document is assigned a specific rank is not apparent



wage LI TIL00 10 o

audio H

text b vt b o1 I

data b oo 0 Bt OO 000000000

Wi

compression

Total sum: [l

Figure 2: Visualization of results for the base query.

in the case of a ranked output system. Without knowing how the system computed the
ranking of documents, the user will have to treat the retrieval mechanism as a black box.
We stand to gain a lot by keeping the user more informed about the retrieval process
of the svstem. If the user has more information about how the ranking was computed.
he/she will be in a better position to reformulate the query for the next iteration. He/she
can take into account the deficiencies of the system in adjusting his/her query. It will
also help in reinforcing the right mental model.

In our interface, we keep the user informed about the retrieval mechanism by providing
visual feedback about how the query results are related to the query words. This is done
by a visualization scheme as shown in the figure 2. The visualization reveals the extent
to which each query word was responsible for retrieving the set of documents. The
visualization consists of a set of histograms, one for every query word (except stop words)
typed in by the user, and one histogram for the total query (labeled “Total sum”). All the
histograms are placed one below the other with the “Total sum” histogram appearing at
the bottom and the query-word-histograms appearing in the order in which query words
were typed in. Each histogram consists of a set of vertical bars, one bar for each retrieved
document. For the top ranked document, a vertical bar is drawn in the leftmost position
(1.e, lowest X coordinate position) in the “Total sum” histogram. The height of the bar is
proportional to the weight of the document. (Note that each document is given a weight.
The higher the document weight, the more likely it is to be relevant to the query.) For
the same document, vertical bars in the same X-coordinate position are also drawn in the
query-word-histograms. The height of the vertical bar in any given query-word-histogram
is proportional to the weight of the query word in that document. It represents the
contribution of the query word in retrieving that document. If the query word does not



mage ol |

audio ”

text Fovanr Wl 1 1 W 0o

data [T TRELT ot ol O N O 0 OO O A
BU— T —

Total sum: [

Figure 3: Visualization of results for query with feedback information.

appear in the document, thereby getting a weight of zero, a bar of zero height is drawn
which shows up as an empty space in that X-coordinate position. The second ranked
document occupies the next higher X-coordinate to the right and so on upto a maximum
of top 200 documents.

The visualization shown in Figure 2 corresponds to the base query with no feedback
information from the user. We can see that all but two of the top 200 documents have
nothing to do with audio. Almost all of the second half of the 200 documents were
retrieved because they contained the query word “data”. More significantly, only about
10% of the documents have anything to do with compression — which is the crux of the
query. This illustrates that the query should be expanded with more words related to
“compression”. In fact, the decision to classify the three synonyms of “compression” (as
shown in figure 1) was made after examining the distribution of “compression” in the
visualization. Figure 3 shows the distribution of query terms in the query result for the
revised query in the second iteration with all the feedback information. We can see that
almost all the documents about “compression” have been ranked at the very top. Also
there are more documents retrieved due to “compression” because of the synonyms and
the positively classified documents. Our experience with this visualization scheme has
shown it to be very useful in identifying differents facets of the query.

5 Conclusion & Future work

A prototype interface for a ranked output information retrieval system has been imple-
mented. The interface facilitates the inherently interactive nature of the information



seeking process. Drag-and-drop operations form the basis of interaction encouraging the
user to provide feedback information to the svstem and helps in the dialog between rhe
user and the system. Almost any information on the screen can be nsed by the user to
provide feedback information. An online thesaurus. WordNet [MBF*90]. is integrated
with the interface to form a single system.

The interface also supports a visualization scheme which illustrates how the querv
results are related to the query words. Visualizing the results of the query keeps rhe
user more informed on how the system computed the ranking of documents. With this
information. the user is better equipped to reformulate the query for the next iteration.
[t is our opinion that integrating all of the above features in a seamless interface leads
to an interplay between different items that is much more beneficial than the sum of the
individual items in isolation.

In demonstrating the system to the reference librarians at Georgia Tech and in observ-
ing casual users of the system. we believe that the features we have implemented in this
system contributes to enhancing the end-user’s interaction with the system. As a result.
the system is better able to access the user’s need and the user has a better understanding
of the system’s inference. However we cannot categorically conclude the effectiveness and
the utility of the interface without conducting formal user-studies.

[n future, we plan to test the effectiveness of the interface by conducting two studies:
One with users having real information needs searching a traditional library database and
another with volunteers searching the TREC [Har94] document collection with supplied
search statements. Since all the relevant documents for the supplied search statements
in the TREC collection are known, recall and precision of searches performed with our
interface can be compared against other systems.

6 Acknowledgments

We are thankful to Dr. Bruce Croft for letting us use the INQUERY retrieval system.
Many thanks to Dr. Marti Hearst whose Tcl/ Tk code for the SMART system was helpful

as a spring board for us to write the interface.

References

[Bat90] Marcia J. Bates. Design for a subject search interface and online thesaurus for
a very large records management database. In Proceedings of the 53rd Annual
Meeting of the American Society for Information Science, pages 20-28, 1990.

[BC87] Nick Belkin and W.B. Croft. Retrieval techniques. In E. Martha, editor,
Annual Review of Information Science Technology, pages 110-145. Elsevier
Science Publishers, 1987.



(BMA*9L]

[BMCO3]

CCH92

[CRMI1]

[CS]

' Dal90)

[FFS*93]

[Fid91a]

[Fid91b]

([Fid91c¢|

(Har92]

(Har94]

[HB92]

[HBY4]

N.J. Belkin. P.G. Marchetti. M. Albrecht. L. Fusco. S. Skogvold. H. Stokke.
and G. Troina. User interfaces for information svstems. Journal of Information
Science. 17:327-344. 1991.

N.J. Belkin. P.G. Marchetti. and C. Cool. BRAQUE: Design of an interface
to support user interaction in information retrieval. [nformation Processing
and Management. 29(3):325-344. 1993.

J.P. Callan. W.B. Croft. and S.M. Harding. The INQUERY retrieval svsrem.
In Third International Conference on Database and Erpert Systems Applica-
tions, September 1992,

S. Card. G. Robertson, and J. Mackinlay. The information visualizer. an
information workspace. In Proceedings of CHI 91 Human Factors in Computer
Systems., 1991.

[. Campbell and M. Sanderson. Personal communication. University of Glas-
gOVV.

P.W. Dalrymple. Retrieval by reformulation in two library catalogs: toward
a cognitive model of searching behaviour. JASIS. 41(4):272-281, 1990.

Edward A. Fox, Robert K. France, Eskinder Sahle, Amjad Daoud, and Ben E.
Cline. Development of a rmodern OPAC: From REVTOLC to MARIAN. In
Robert Khorfhage, Edie Rasmussen, and Peter Willett, editors, Proceedings
of sirteenth ACM SIGIR Conference, pages 248-259. ACM SIGIR. June-July
1993.

Rava Fidel. Searcher’s selection of search keys: [. the selection routine. .J4SIS.
42(7):490-500, 1991.

Raya Fidel. Searcher’s selection of search keys: II. controlled vocabulary or

free-text searching. JASIS, 42(7):501-514, 1991.

Raya Fidel. Searcher’s selection of search keys: III. searching styles. JASIS,
42(7):515-527, 1991.

Donna Harman. User-friendly systems instead of user-friendly front-ends. .JA-
SIS, 43(2):164-174, 1992.

D.K. Harman, editor. The Second Tezt REtrieval Conference (TREC-2). NIST
Special Publication, March 1994.

Micheline Hancock-Beaulieu. User friendliness and human-computer interac-
tion in online library catalogues. Program, 26(1):29-37, January 1992.

Scott Henninger and Nick Belkin. Tutorial on interface issues and interaction
strategies for information retrieval systems. In Human Factors in Computing

Systems CHI 94 Conference Companion, pages 387-388, 1994.



THRWO L

{Kord1!

[MBF+90]

[Mit39]

[Ous94]
Rij79]

[SMS3]

Spi93]

[Spo94]

$592]

[Wal87]

Matthias Hemmje. Clemens Kunkel. and Alexander Willet. LyberWorld A\
visualization user interface supporting full text retrieval. In Proccedings of
the 17th Annual International Conference on Research and Development i
Information Retrieval. pages 249-259. 1994.

Robert Korfhage. To see. or not to see - is that the query? In Procecdings
of the [{th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 134-141. 1991.

George A. Miller. Richard Beckwith, Christiane Fellbaum. Derek Gross. and
Katherine J. Miller. Introduction to WordNet: An on-line lexical database.
Journal of Lexicography, 3(4):235-244. 1990.

Nathalie N. Mitev. Ease of interaction and retrieval in online catalogues:
contributions of human-computer interaction research. In Charles R. Hildreth.
editor, The online catalogue, chapter 8, pages 142-176. Library Association

Publishing, London, 1989.
John K. Ousterhout. Tel and the Tk Toolkit. Addison-Weslev, 1994.

Keith Van Rijsbergen. [nformation Retrieval. Butterworths, London, second
edition. 1979.

Gerard Salton and Michael J. McGill. Introduction to Modern Information
Retrieval. McGraw-Hill Book Company, New York, 1983.

Amanda Spink. Interaction with information retrieval systems: Reflections of
feedback. In Proceedings of the Annual Meeting of the American Society for
[nformation Science, pages 115-121, 1993.

Anslem Spoerri. InfoCrystal: A visual tool for information retrieval and man-
agement. In Human Factors in Computing Systems CHI 9 Conference Com-
panion, pages 11-12, 1994.

Amanda Spink and Tefko Saracevic. Sources and use of search terms in online
searching. In Proceedings of the 55th Annual Meeting of the American Society
for Information Science, pages 249-255, 1992.

Stephen Walker. OKAPI: Evaluating and enhancing an experimental online
catalog. Library Trends, Spring:631-645, 1987.



himalaya:veerasam
dl.ps

Tue Apr 29 17:11:24 1997
hobbes / Hobbes

hobbes himalaya:veerasam Job: dl.ps Date: Tue Apr 29 17:11:24 1997
hobbes himalaya:veerasam Job: dl.ps Date: Tue Apr 29 17:11:24 1997
hobbes himalaya:veerasam Job: dl.ps Date: Tue Apr 29 17:11:24 1997

hobbes himalaya:veerasam Job: dl.ps Date: Tue Apr 29 17:11:24 1997



Querying, Navigating and Visualizing a Digital Library
Catalog

Aravindan Veerasamy, Shamkant Navathe
College of Computing
801, Atlantic Drive
Georgia Institute of Technology
Atlanta, Georgia 30332-0280, USA.
Phone: 1-404-894-8791
E-mail: {veerasam, sham} @cc.gatech.edu

ABSTRACT

We describe the design of an User Interface for a ranked out-
put Information Retrieval system that integrates querying, nav-
igation and visualization in a seamless fashion. Highlights of
the system include the following:

Using a visualization scheme, the interface provides visual
feedback to the user about how the query words influence the
ranking of retrieved documents.

By simple drag-and-drop operations of objects on the screen,
the interface facilitates a naive end-user in constructing com-
plex structured queries and in providing relevance feedback.

To suit the evolving information needs of the user, the inter-
face supports navigational features such as browsing docu-
ments by specific authors and browsing the Table of Contents
of publications.

The interface integrates an online thesaurus which provides
words related to the query that can be used by the user to ex-
pand the original query.

By providing a rich set of features, the interface coherently
supports a wide spectrum of information gathering tactics for
different classes of users.

KEYWORDS: Visualizationof results, visual query languages,

query processing, information retrieval

WALK-THROUGH OF A TYPICAL USER SESSION

A typical user session along with the response of the interface
for every user action is described below using an example (re-
fer to Figure 1).

e The user types in his/her free form textual query in the query

window. In the example shown in figure 1, the query is “ozone
depletion and melanoma”

As every query word is typed in, the system consults an on-
line thesaurus and displays words and phrases related to the
query word in an adjacent window.

At any point during the session the user can ““drag-and-drop”
(using the mouse) any of the related words/phrases into the
positive and negative windows. Internally the system expands
the query by treating the positive words/phrases as synonyms
of the corresponding query word. The negative words/phrases
are included in the query with a NOT operator. For exam-
ple, if for a query word “bank”, the phrase “financial institu-
tion” is classified as positive and “river bed” is classified as
negative, the corresponding internal query would be “#SYN-
ONYM( bank #2( financial institution )) #NOT( #2( river
bed))”. The interface facilitates construction of such struc-
tured queries by simple “‘drag-and-drop™ operations of the mouse.
In the example in figure 1, a phrase, namely “‘skin cancer™ that
is related to the query word “melanoma’” has been classified
as positive. Internally the systems treats the phrase as a syn-
onym of “melanoma”.

After the user types in the query, the system evaluates the query
and displays the titles of top-ranked documents in the “Query
Results” window.

The user examines the query result. Clicking any title with
the mouse will bring up the full document.

Figure 2 is a visualization of the query results for the base
query “ozone depletion and melanoma”. The leftmost col-
umn of bars corresponds to the top-ranked document, with the
columns progressing to the right representing progressively
lesser ranked documents. We can see that almost all of the
150 documents were retrieved because they contained the query
words “ozone” and “depletion”. Only 15 of the top 150 docu-
ments have anything to do with melanoma. Further, of those

142() is the proximity operator in INQUERY specifying that the words
inside braces should appear within a distance of 2 of each other in the
document.



|5 documents, only one discusses ozone (the top-ranked doc-
ument — leftmost column in Figure 2.) Thus we can clearly

and the system. Almost any information on the screen can
be used by the user to provide teedback information. An on-

see thateither there are not many documents dealing with melanomaline thesaurus. WordNet [2]. is integrated with the intertace

and ozone or the ozone-layer concept drowns out melanoma
during retrieval.

The user can classity any document as being relevant or non-
relevant by ““drag-and-drop”ping the document into positive
and negative windows. In the example in figure |. the user
has classified two documents titled “CFC-free integral skin
toams for steering wheels.” and "Video comparator system
forearly detection of cutaneous malignant melanoma’ as pos-
itive. The document titled “Symposium on chemistry of the
Atmosphere™ has been classified as negative.

The user can also highlighta portion of adocument and “‘drag-
and-drop" that portion into the positive and negative windows.
The words in the highlighted document portion are used to ex-
pand the query in the next iteration.

During the next iteration, the reformulated query with the feed-
back information is processed by the system resulting in an
improved ranking of documents.

Figure 3 is a visualization of the results of the revised query
(i.e., thequery withrelevance feedback information). The fig-

ure shows that there are four documents dealing with melanoma
and ozone. (Note that the documents which deal with melanoma

and it's synonym skin cancer are displayed in the same his-
togram titled “melanoma”, since melanoma and skin cancer
represent the same query concept). Thus there are three addi-
tional documents retrieved due to the effect of classifying the
phrase “‘skin cancer’ as a synonym of “melanoma’. But still
there are not many documents about melanoma compared to

ozone depletion. Our experience with this visualization scheme

has shown it to be a useful tool for identifying different facets
of the query, as in this case, the facets are melanoma and ozone.

Using any document as a starting point, the user can browse
through the list of other articles in the same journal issue or

conference proceedings witha help of a Table-of-Contents which

is generated automatically. This is useful in many cases such
as when the user comes across a special-issue of a journal de-
voted to the search topic.

The user can also browse through the list of articles written by
the same author. For example, an author who has written an
article about the effects of ozone layer depletion on skin can-
cer has probably authored more articles along the same lines,
and the user might want to see them.

CONCLUSION & FUTURE WORK

A prototype interface [4] written in Tcl/Tk [3] using a ranked
output information retrieval system, INQUERY [1] for a li-
brary catalog, Compendex containing about 300,000 docu-
ments has been implemented. The interface facilitates the in-
herently interactive nature of the information seeking process.
“Drag-and-drop’ operations (using the mouse) form the basis
of interaction encouraging the user to provide feedback infor-
mation to the system and helps in the dialog between the user

to form a single system.

The interface also supports a visualization scheme which il-
lustrates how the query results are related to the query words,
Visualizing the results of the query keeps the user more in-
formed on how the system computed the ranking of documents.
With this information, the user is better equipped to reformu-
late the query for the next iteration. The interface also has ta-
cilities to browse the Table of Contents of publications and to
browse the list of articles written by a specific author. [tis our
opinion that integrating all of the above features in a seamless
interface leads to an interplay between different items that is
much more beneficial than the sum of the individual items in
isolation.

We are in the final stages of implementation, and in future,
we intend to test the effectiveness of the interface by conduct-
ing studies on how library users, experts looking for detailed
information as well as naive users, interact with the intertace
and how they react to ranked output systems as opposed to ex-
isting boolean systems. We plan to include a domain-specific
thesaurus for the engineering domain from Compendex and a
collection-specific word-association thesaurus if possible.

ACKNOWLEDGEMENTS

We are thankful to Dr. Bruce Croft for letting us use the IN-
QUERY retrieval system. We are indebted to the Dean of Geor-
gia Tech Library Ms. Miriam Drake and Engineering Infor-
mation Inc without whom it would have been impossible to
use Compendex data for the experiment. Many thanks to Dr.
Marti Hearst whose Tcl/Tk code for the SMART system was
helpful as a spring board for us to write the interface. Sup-
port in part by ARPA contract No. F33615-93-1-1338 s also
appreciated.

REFERENCES
1. J.P. Callan, W.B. Croft, and S.M. Harding. The inquery
retrieval system. In Third International Conference on
Database and Expert Systems Applications, September
1992.

2. George A. Miller, Richard Beckwith, Christiane Fell-
baum, Derek Gross, and Katherine J. Miller. Introduc-

tion to WordNet: An on-line lexical database. Journal of
Lexicography, 3(4):235-244, 1990.

3. John K. Ousterhout. Tcl and the Tk Toolkit. Addison-
Wesley, 1994.

4. A. Veerasamy, S. Navathe, and S. Hudson. Visual in-
terface for textual information retrieval systems. In 7o
appear in Proceedings of the Third Conference on Visual
Database Systems. IFIP 2.6, 1995.



[@ Positive Instancef]] (0] Tking ‘ v (6] Megative instanceZ]
Positive Objects ) Hegative Objecis

skan cancer k -y = I
CFC-free mt ozone melanoma mpos!
D compound mahgnant metas ]
D Videa compa

chenucal con skin cancer |
gas

(M8l ozone depletion and welanoma

depletion
decrease
step- down

! Resst TextDB | He | How ; Exat Tang

Query Results

CFC-frea Integral skin foams for steering wheeis.

Polar ozone depiation. Qurent status.

Video comparator system for early detection of cutaneous malignant melanoma

Evaluation of aiternatives ta orone - depiating chioroflucrocarbons.

Perturbation of the ciimate system due to stratospheric czone depletion.

Ozons depistion over Greecs as deduced from Nimbus-7 TOMS measurements

Status updata on the ozone depletion issue.

Ozone dapletion potantials of halocarbons: their dependence on model assumptions.
,1,1,4,4,4 Hexafluorobutane, a new non-ozone-depleting biowing agent for rigid PUR foams.
Fnvim Tha wanrid nznma dilemma.

Figure 1: Sample querying session. The window fitled “Positive Objects” is colored green and the window titled “Negative
Objects” is colored red. All “incantations” of an object in the display are colored green/red whenever it is classified as
positive/negative.



T e e
ceptetion |t MO o i - O O

SR g

Total sum: |||||||||||||||||||||l|l||ll||IlIIIIIIII|I||IIIIIIIIIIIIIIIIIIIIIIIIIIIIllmlllllull|||||||||||||||||||||||||||||||||u|||||||||||||||m|||||||m|||||||||||||||||||||||||||||||||||mmmuummmmnummmuuumumummmm

melanoma

Figure 2: Visualization of results for the base query.

ozone A oo ool

aeptetion AN s W

melanoma l‘ || | |

T otal s 0

Figure 3: Visualization of results for query with feedback information.



himalaya:veerasam
trec4.ps
Tue Apr 29 17:12:37 1997

hobbes / Hobbes

hobbes himalaya:veerasam Job: trecd.ps Date: Tue Apr 29 17:12:37 1997
hobbes himalaya:veerasam Job: trecd.ps Date: Tue Apr 29 17:12:37 1997
hobbes himalaya:veerasam Job: trecd.ps Date: Tue Apr 29 17:12:37 1997

hobbes himalaya:veerasam Job: trecd.ps Date: Tue Apr 29 17:12:37 1997



Querying, Navigating and Visualizing an Online
Library Catalog

Aravindan Veerasamy
Scott Hudson
Shamkant Navathe
{veerasam, hudson, sham}Qcc.gatech.edu

College of Computing

801, Atlantic Drive

Georgia Institute of Technology
Atlanta, Georgia 30332-0280

Phone: 104-894-8791

Fax: 404-894-9442

Abstract

We describe the design of an User Interface for a ranked output Information Retrieval
svstem that integrates querying, navigation and visualization in a seamless fashion.
Highlights of the system include the following:

e Using a visualization scheme, the interface provides visual feedback to the user

about how the query words influence the ranking of retrieved documents.

e By simple drag-and-drop operations of objects on the screen, the interface fa-
cilitates a naive end-user in constructing complex structured queries and in
providing relevance feedback.

e To suit the evolving information needs of the user, the interface supports navi-
gational features such as browsing documents by specific authors and browsing
the Table of Contents of publications.

e The interface integrates an online thesaurus which provides words related to
the query that can be used by the user to expand the original query.

By providing a rich set of features, the interface coherently supports a wide spec-
trum of information gathering tactics for different classes of users.

1 User Interface issues for ranked Information
Retrieval systems

User interface issues and interaction techniques for information retrieval have in gen-
eral received much less attention than system issues like document representation



and retrieval algorithms. [t is our belief that the interface should portray a svstem
that is in line with the user’s needs and information seeking strategies as opposed to
one that only supports querying. We have attempted a holistic approach to building
an interface that integrates querying, browsing and visualization all in one svstem

[VNHO3).

We present an interaction technique for relevance feedback that can gracefully han-
dle feedback at multiple levels of granularity - whole documents, document portions.
phrases and words. The interaction technique tries to mimic the user’'s view that
some of the information displayed by the system is in line with the query and wishes
to see more of it, while some information is definitely not what the user intended and
should be avoided in future. The user can classify almost any piece of information on
the screen as positive or negative by dragging and dropping the information object
into either a positive area or a nega:ive area on the screen.

Current experimental ranked output IR systems tend to automate the whole
gamut of query processing with tools like natural language processing of queries to
identifv svntactic constructs and thesaurus to automatically expand query terms with
related terms. While such approaches may be successful in future, we believe that
the system can be more effective by letting the user provide high quality input such
as user selection of thesaurus terms. Voorhees [Voo94] mentions that automatic ex-
pansion of query terms using thesaurus words has not been very successful. Spink
[SS92] however mentions in her study of source of search terms of real users with
intermediaries, that about 20% of the search terms in the final query were from a
thesaurus. In an effort to maintain the quality of thesaurus terms used to expand the
query, we involve the user in the process of selecting thesaurus terms. This is done
by integrating an online thesaurus from which the user picks related words to expand
his/her query.

Also, in order to provide high quality feedback information to the system and
reformulate the query during subsequent iterations, the user would be in a better
position if he/she understands the system and has some idea of how the search results
were computed. Seeing a demo of the current interface, reference librarians at our
university (who are probably among those most willing and able to formulate the
best possible search), were perplexed with the ranking of query result documents
and were quite concerned about dealing with a system whose retrieval mechanism
for the ranking process is not known. This must be contrasted against the ease with
which they can figure out why a set of documents were retrieved in response to a
boolean query. So that there is no confusion, we are not implying that the reference
librarians prefer boolean queries over free-form queries. On the contrary, they feel
that a majority of the users would be more comfortable with free-form queries than
with boolean queries. But at the same time, they seem concerned about not knowing



the ranking process “behind the scene”. To portray the system as much less of a
black box, and to keep the user more informed about how the query result ranking
was computed, we use a visualization scheme that shows how the query results are
related to the query words.

In order to shape it into a well-rounded IR system. Bates [Bat89] recommends
some browsing features that need to be supported. These features include searching
the list of references cited by a particular article, searching the list of articles which
cite a particular article. browsing the list of articles written by a particular author.
browsing all the articles in a particular journal (issue), browsing physically collocated
books in an area. Along these lines, we believe that the system should support a rich
set of browsing features to enable users with diverse information needs and searching
strategies and to help the user through different stages of knowledge acquisition as
highlighted by Belkin's notion of ASK [BOB82]. To this end, the interface facilitates
browsing articles by authors and browsing the table of contents of journal issues and
conference proceedings.

As mentioned above. we address three interface aspects in our system - interac-
tion techniques for relevance feedback which is discussed in section 2, explaining the
ranking of documents by means of visualization which is discussed in section 3 and
support for browsing in addition to querying which is discussed in section 4.

2 Interactive Construction of Queries and Rele-
vance Feedback

Searching a text database for information is a highly interactive process with the user
constantly refining the query after examining the results of previous iteration until
he/she is either satisfied with the results or is completely unsuccessful with the process
and gives up. In existing information retrieval systems, the interaction proceeds by
the user providing feedback on which of the retrieved documents are relevant to
his/her information need. The system uses this information to modify the original
query resulting in an improved ranking of retrieved documents. It has also been
shown by Spink [SS92] that during izerative query reformulation, users tend to expand
the query using search terms from various sources such as a thesaurus, previously
retrieved documents and user’s background knowledge. Expanding the query with
terms from such sources can contribute to retrieval of more relevant documents in the
next iteration.

Our interface encourages the interaction between the user and the system by
providing the user with a simple interaction techniques to let him/her supply rele-



vance feedback at different levels of granularity: whole documents, document portions.
phrases and individual words. Almost any information appearing on the screen can
be used for feedback. This is achieved by “drag-and-drop”ping of the feedback object
into either a “Positive Objects” window colored green or a *“Negative Objects™ win-
dow colored red. This scheme provid s a simple abstraction to the user for classifving
any tvpe of information without ha' ing to worry about what action to take for whar
tvpe of informartion. A typical use' session along with the response of the interface
for every user action is described F=low using an example (refer to Figure 1).

e The user types in his free ‘orm textual query in the query window. In the
example shown in figure 1. -he query is “ozone depletion and melanoma”

e As everv query word is tyed in, the system consults an on-line thesaurus and
displays words and phrases related to the query word in an adjacent window.

e At any point during the session the user can “drag-and-drop” any of the related
words/phrases into the positive and negative windows. Internally the svstem
expands the query by treating the positive words/phrases as synonyms of the
corresponding query word. The negative words/phrases are included in the
query with a NOT operator. For example, if for a query word “bank”, the
phrase “financial institution” is classified as positive and “river bed” is classified
as negative, the corr=sponding internal query would be “#SYNONYM( bank
#2'( financial instit:ition )) #NOT( #2( river bed))”. The interface facilitates
construction of such structured queries by simple “drag-and-drop” operations.
[n the example in ngure 1, one word related to the query word “melanoma.
namely, “skin cancer’ has been classified as positive. Internally the systems
treats the phrase as a synonym of “melanoma”.

o After the user types in the query, the system evaluates the query and displays
the titles of top-ranked documents in the “Query Results” window.

e The user examines the query result. Double-clicking any title with the mouse
will bring up the full document.

e The user can :lassify any document as being relevant or non-relevant by “drag-
and-drop”pir.g the document into positive and negative windows. In the exam-
ple in figure 1, the user has classified two documents titled “CFC-free integral
skin foams .or steering wheels.” and “Video comparator system for early de-
tection of ~utaneous malignant melanoma” as positive. The document titled
“Sympositm on chemistry of the Atmosphere” has been classified as negative.

'#2() is the proximity operator in INQUERY specifying that the words inside braces should
appear within a cistance of 2 of each other in the document.



‘i Pusitive Instance:” @ Thing 1 E] [®] Megative Instancs

Pracatives 1itipe 8, 'IY""-”‘I Hinjative Glipec b

skin cancer . ‘ ) y . — Symposuan
—_ ? 1 g ; meLaponie | ; H H
CFC -free mt ; 3 .
; ) convagusnd g watignant nid i ‘ i
i < 4 ]

v it ol con RLUTRIIRS 4

[] Video Cumpa i ' l
’ i

1 \

U7 (ozone deplstian and melmoma

e

depletion
Hecrease
step dovn

Howve : Exit Tking
Query Aesults

CFC-free integral skin foams for steering wheeis.
Polar ozone depietion. Qerent status.
Video comparator system for sarly detection of cutaneous mafignant melanoma
Evaluation of alternatives to azone-depisting chiorofluorocarbons.
Pertrbation of the cliimats system due to stratospheric azone deplation.
Ozone deplation over Groecs as deduced from Mimbuz-7 TOMS measurements
Status updais on the ozone depletion issue.
Ozone depistion polsntieis of halocariions: their dependence on model asswumptions.
- ,1,1.4,4,/4 Hexafluorobutans, & new nor-ozons-depieting biowing agent for rigid PUR foams.
Frvierrsnantal stratanias. The wield noons diiserens.

Figure 1: Sample querying session. The window titled “Positive Objects” is colored
green and the window titled “Negative Objects” is colored red. When a document
is classified as positive/negative, the title of that document in the “Query Results”
window is also colored green/red.



e The user can also highlight a portion of a document and “drag-and-drop” that
portion into the positive and negative windows. The words in the highlighted
document portion are used to expand the query in the next iteration.

o During the next iteration, the reformulated query with the feedback information
is processed by the system resulting in an improved ranking of documents.

The positive and negative windows for feedback are aimed at mimicking the user’s
view that some information is in line with the information need and some not. After
an object has been classified as positive (or negative), the system always colors the
object green (or red) whenever the object is displayed, thereby reinforcing the user
with the fact that the object is being used for relevance feedback. While arguing for
the use of direct manipulation techniques for Information Retrieval, Mitev [Mit39]
mentions that

“Parts of document(s), individual word(s), sentences or groups of word(s)
displayed could be used directly as something to be input for another
search. This could be done, for example, by pointing and 'picking’ them
on the screen and carrying them across another area of the screen. The
user would not have to input them again.”

This is precisely what has been accomplished in our interface. In their retrieval
system, Campbell [CS] uses a cut-and-paste mechanism for relevance feedback by
letting the user add portions of retrieved documents back into the query window.

This section dealt with the interaction technique to let the user provide relevance
feedback information to the system. The next section deals with visual feedback from
the system on how the query results were computed.

3 Visualization of query results

While systems with a boolean retrieval model retrieve an unordered set of documents
in response to a query, ranked output information retrieval systems retrieve a ranked
set of documents. While the reason for retrieving a document is fairly clear in the
case of a boolean system, the reason why a document is assigned a specific rank
is not apparent in the case of a ranked output system. Without knowing how the
system computed the ranking of documents, the user will have to treat the retrieval
mechanism as a black box. The system stands to gain a lot by keeping the user more
informed about the retrieval process of the system. If the user has more information



about how the ranking was computed. he/she will be in a better position to reformu-
late the query for the next iteration. He/she can take into account the deficiencies of
the system in adjusting his/her query. It will also help in reinforcing the right mental
model.

In our interface. we keep the user informed about the retrieval mechanism by
providing visual feedback about how the query results are related to the query words.
This is done by a visualization scheme as shown in the figure 2. The visualization
reveals the extent to which each query word was responsible for retrieving the set
of documents. The visualization consists of a set of histograms. one for everv queryv
word (except stop words) typed in by the user, and one histogram for the total
query (labeled ~“Total sum™). All the histograms are placed one below the other with
the “Total sum” histogram appearing at the bottom and the query-word-histograms
appearing in the order in which query words were typed in. Each histogram consists
of a set of vertical bars, one bar for each retrieved document. For the top ranked
document. a vertical bar is drawn in the leftmost position (i.e, lowest X coordinate
position) in the “Total sum” histogram. The height of the bar is proportional to the
weight of the document. (Note that each document is given a weight. The higher
the document weight, the more likely it is to be relevant to the query.) For the same
document, vertical bars in the same X-coordinate position are also drawn in the query-
word-histograms. The height of the vertical bar in any given query-word-histogram
is proportional to the weight of the query word in that document. It represents the
contribution of the query word in retrieving that document. If the query word does
not appear in the document, thereby getting a weight of zero, a bar of zero height is
drawn which shows up as an empty space in that X-coordinate position. The second
ranked document occupies the next higher X-coordinate to the right and so on upto
a maximum of top 200 documents.

The visualization shown in Figure 2 corresponds to the base query with no feed-
back information from the user. We can see that only fifteen of the top 200 documents
have anything to do with melanoma. Almost all of the 200 documents were retrieved
because they contained the query words “ozone” and “depletion”. Further, of those
fifteen documents, only one discusses ozone (the top ranked document - leftmost
bar in Figure 2.) Thus we can see clearly that there are not many documents that
discuss the the base query about the effects of ozone layer depletion on melanoma.
Either there are not many documents about the effects of ozone layer on melanoma
or the concept of ozone layer drowns out melanoma. The visualization scenario after
providing feedback (that “skin cancer” is a synonym of “melanoma”) and computing
the results is shown is shown in Figure 3. The figure shows that there are four docu-
ments dealing with melanoma and ozone. (Note that the documents which deal with
melanoma and it’s synonym skin cancer are displayed in the same histogram titled



ozone VNS oo s TR AR R s bl 00
aepietion AR RN o it i O
mowome || LI N

Total sum: |||||||l|l||l|||l||II|II||||I|IIIIIl||IIIIIIIIIIIIIIIIIIIII|||l||||||||||||||u|||mm|||||||mumlmmuummu||uumm||||uunnunmuumnnmlmlmmuuumm|||mmmummuummmmummmmuumm

Figure 2: Visualization of results for the base query.

"melanoma”. since melanoma and skin cancer represent the same query concept).
Thus there are three additional documents retrieved due to the effect of classifving
the phrase “skin cancer” as a synonym of "melanoma”. But still there are not many
documents about melanoma compared to ozone depletion. Our experience with this
visualization scheme has shown it to be a useful tool for identifying different facets of
the query, as in this case, the facets are melanoma and ozone. The visualization also
illustrates which of the query words play a dominant part in retrieving the results
and the user has a better idea of what type of query modification is necessary during
the next iteration.

4 Browsing

The motivation to integrate browsing features in a querying system has been strongly
influenced by [Bat39], [Hil89] and [BOB82|. While it has been argued by all of them
that browsing is a central information seeking strategy commonly employed by users,
we do not know of any existing online library catalog that integrates browsing and
querying. Some examples of browsing activity performed by researchers are:

e While coming across a special issue of a journal or a conference publication
devoted to the researcher’s are of interest, he/she browses through the table of
contents and some articles in the publication.

e On identifying a journal specific to the researcher’s are of interest, he/she would
want to browse through the publication to keep up-to-date on the developments
in the field [Bat89].



N —

ateptetion |10 i W
melanoma H I| [ |
T ot e O

Figure 3: Visualization of results for query with feedback information.

e On discovering that a particular author is working in the same or closely related
area. one might want to browse through articles written by that author [Bat89].

[n all these cases, the user need not necessarily have a specific information need in
mind and may not be able to formulate a query. Conversely, the user might want
to browse through the documents as mentioned above while perusing the results of
a previously constructed query. While it is true that a user can get the articles
written by an author with an “author search” or the articles in a journal with a
“journal search”, the user may not necessarily want to abandon the results of the
current search to initiate a new search author or journal search. The context switch
need to initiate a new search can be distracting and disorienting. Browsing can
accomplish the “author search” or “journal search” while maintaining the context.
Browsing in our system is illustrated in figures 4 and 5. As shown in figure 4. a
document display consists of the title of the documents, its authors, pages, name of
the journal/conference proceedings, volume, number, part of the publication and the
abstract. The portion of the document which can be clicked upon to browse through
related information is underlined. As shown in Figure 4, the journal name and the
authors are underlined, and hence browsable. Double-clicking an author or journal
name from the document display would initiate an internal search in the system, but
externally appears as navigation to the user. In our example, double-clicking the



journal citation *Wave motion VOL 13 NUM 2" displays the table of contents of the
that journal issue. The table of contents is shown in Figure 5. Double-clicking any
article from the table of contents would display the whole article. Author browsing
is supported in a similar way.

5 Related Work

Numerous studies on user interaction with online library access catalog svstems with
a boolean retrieval model have been conducted [Spi93, SS92, Dal90, Fid9la, Fid91b.
Fid91c]. Spink [Spi93] studies the different forms of user feedback during a re-
trieval session. In her study, Spink [Spi93] mentions that of the total number of
feedback actions by the user, 145% were aimed at adjusting the size of the retrieved
set of documents. and about 10% were related to relevancy of documents. Fidel
Fid91la, Fid91b, Fid91c] discusses the issue of user interaction by studying the process
of search term selection and searching styles in online library access catalogs. Dal-
rvmple [Dal90] looks at the feedback process from a user-centered perspective. Bates
Bat90] describes a boolean retrieval system which integrates an online thesaurus.
None of the above studies involve a ranked output system supporting free-form tex-
tual queries. All of the above systems deal with boolean systems only. We believe
that there is a significant difference in the way users interact with a boolean system
and a ranked output system. The reader is referred to [Har92] and [HB92] for a com-
parative discussion of boolean systems and ranked output systems. While building
our interface we have borrowed valuable ideas from the studies mentioned above. In
particular. the need to integrate an on-line thesaurus with the search interface in an
easv-to-use fashion and a simple interaction scheme to include words from documents
into the query have been influenced by the results of above-mentioned studies. We
expect that the studies we plan to conduct with library users using our interface will
provide important insights into the ways users react to ranked output systems. It is
also expected to give us an idea of the set of the most useful features to be supported
by a ranked output information retrieval system.

Walker [Wal87, HB92] describes their OKAPI system which is a ranked output
retrieval system for library catalogs. Similarly, Fox [FFS*93] describes their MARIAN
system which is also a ranked output system for library catalogs based on vector-space
model. While OKAPI and MARIAN have facilities for relevance feedback and query
expansion using a thesaurus, they largely lack any means of providing system feedback
to the user about how the ranking was computed. The interface we have developed
integrates relevance feedback information from the user as well as feedback from the
system illustrating the relationship between query results and query words.

10.



[®] Transonic states of type 5in

Transonic states of type S in monoclinic elastic materials.

Wave Motion VOL 13 NUM 2 PAGES 147-154
Chadwick, P, Vdison, N, J,

The section of the siowness surface of a monochinic elastic material
in the plane of symmetry consists of an eflipse and a quartic curve
with two nested branches, the inner of which is convex. The efastic
moduli governing the size and orientation of the ellipse have no
influence on the other branches and whenever the cuter member of
the nestad pair is non-convex (as is usually the case) a
one-parameter family of these modull can be found for which there
appear on the section a transonic state of type 5 and its
centrosymmetric equivalent. Tha consfruction of these states
compietes the proof that all six types of ransonic states can
occur in physically realizable anisotropic elastic materials.

(Author abstract) 11 Refs.

Remove Window Hext Dacument

Figure 4: Sample document display. The browsable portions are underlined.

11



[®] Tabie of Contents
Wave Motion VOL 13 NHUM 2 PAGES 147 15}

Approximate method for the study of transverse discontinuities in

Kriggsmann, G. A. , Petropoulos, P, G.

Reductive perturbation method for quasi one-dimensional nonlinear

wave propagation li. Applications to magnetosonic waves.
Hasegawa, A.

Transonic states of type S in monociinic elastic materials.
Chadwick, P. , Wison, N. J.

Blow-up in non-conservative second-harmonic resonance.
McDougall, S. R., Crak, A. D. D.

Response In harbour due to incidence of second-order low-frequency

Zhou, C. P., Cheung, Y. K. , Lee, J. H. W.
Identification of irregular frequencies in simple direct
integrai-equation methods for scattering by homogeneous inciusions.

Raylelgh resonator.

Hemave Window

Figure 5: Sample display of table of contents.

123-131

133-146

147-154

155-165

167-184

183-192

193-200




A number of visualization schemes for information retrieval systems have also been
proposed. The perspective wall [CRM91] describes a visualization scheme which sup-
ports browsing of documents. While such a system can not handle qualitative doc-
ument classifications such as library subject catalogs, it is very useful for visualizing
documents based on data which is linear in nature (like date of publication). Other
visualization schemes such as [Kor9l. Spo94, HKW94] have facilities for viewing a
large document space. But visualizing the document space along more than 3 - 4 di-
mensions simultaneously becomes very cumbersome using their systems. Also, most
of them do not support querving with relevance feedback and none of them support
query expansion using a thesaurus. The visualization scheme in our interface can
gracefully handle much higher number of query word dimensions.

The TileBars work by Marti Heart [Hea95] visually shows the query term ditri-
bution and overlap in retrieved documents. The term distribution in retrieved docu-
ments is shown right besides the title of the document. In a number of respects. the
reasons and motivations for her work are similar to those of our visualization work
[VNH95. VN95]. That both of us seem to have similar motivations behind our work
independently of each other reflects on the need for such work. It would be a very
interesting exercise to evaluate both TileBars and our visualization work and study
their effectiveness in end-user experiments. We are currently undertaking end-user
evaluation of our work as part of the interactive track of TREC-4 [TRE95].

Belkin and his group’s work [BMC93, BMA*91, HB94] on user interfaces for
information retrieval systems elucidates the issues in user interface and interaction
techniques for full text retrieval systems. Belkin [BMA*91] mentions that

. analysis led to another important conclusion, namely that information
systems for end users must support a variety of goals and tasks, but
through some common interface or seamless access mechanism to a variety
of relevant information sources and system functionalities.

Our interface is a step in that direction by integrating different pieces of information
with a visualization scheme and simple interaction techniques.

6 Conclusion & Future work

A prototype interface written in Tcl/Tk [Ous94] using a ranked output informa-
tion retrieval system, INQUERY [CCH92] for a library catalog, Compendex contain-
ing about 300,000 documents has been implemented. The interface facilitates the
inherently interactive nature of the information seeking process. “Drag-and-drop”

13



operations form the basis of interaction encouraging the user to provide feedback in-
formation to the system and helps in the dialog between the user and the system.
Almost any information on the screen can be used by the user to provide feedback in-
formation. An online thesaurus, WordNet [MBF*90]. is integrated with the interface
to form a single system.

The interface also supports a visualization scheme which illustrates how the query
results are related to the query words. Visualizing the results of the query keeps
the user more informed on how the system computed the ranking of documents.
With this information. the user is better equipped to reformulate the querv for rhe
next iteration. The interface also has facilities to browse the Table of Contents of
publications and to browse the list of articles written by a specific author. It is our
opinion that integrating all of the above features in a seamless interface leads to an
interplay between different items that is much more beneficial than the sum of the
individual items in isolation.

We are in the final stages of implementation, and in future, we intend to test the
effectiveness of the interface by conducting studies on how library users interact with
the interface and how they react to ranked output systems as opposed to existing
boolean systems. We plan to include a domain-specific thesaurus from Compendex
and a collection-specific word-association thesaurus if possible.

7 Acknowledgments

We deeply appreciate the help of Dr. Scott Hudson who was instrumental in his
suidance at every stage of the interface development. We are thankful to Dr. Bruce
Croft for letting us use the INQUERY retrieval system. We are indebted to the Dean
of Georgia Tech Library Ms. Miriam Drake and Engineering Information Inc without
whom it would have been impossible to use Compendex data for the experiment.
Many thanks to Dr. Marti Hearst whose Tcl/Tk code for SMART was a jumping
board to build our system. Support from the ARPA contract No. F33615-93-1-1338

is appreciated.

References

(Bat39] Marcia J. Bates. The design of browsing and berrypicking techniques for
the online search interface. Online Review, 13(5):407, 1989.

14



(Bat90]

[BMA*+91]

[BMC93]

(BOBS?]

[CCHY2

[CRMY1]

[CS]

[Dal90)]

[FFSt+93]

[Fid91a]

[Fid91b)

[Fid91c]

[Har92]

Marcia J. Bates. Design for a subject search interface and online thesaurus
for a very large records management database. In Proceedings of the 53rd
Annual Meeting of the American Society for Information Science, pages

20-28, 1990.
N.J. Belkin, P.G. Marchetti, M. Albrecht, L. Fusco, S. Skogvold.

H. Stokke. and G. Troina. User interfaces for information systems. .Journal
of Information Science, 17:327-344, 1991.

N.J. Belkin, P.G. Marchetti. and C. Cool. Braque: Design of an interface
to support user interaction in information retrieval. Information Process-
ing and Management, 29(3):325-344, 1993.

N.J. Belkin, R.N. Oddy, and H.M. Brooks. Ask for information retrieval:
Parts [ and II. Journal of Documentation. 38(2,3), 1982.

J.P. Callan, W.B. Croft, and S.M. Harding. The inquery retrieval sys-
tem. In Third International Conference on Database and Ezrpert Systems
Applications, September 1992.

S. Card. G. Robertson. and J. Mackinlay. The information visualizer.
an information workspace. In Proceedings of CHI 91 Human Factors in
Computer Systems., 1991.

[. Campbell and M. Sanderson. Personal communication. University of
Glasgow.

P.W. Dalrymple. Retrieval by reformulation in two library catalogs: to-
ward a cognitive model of searching behaviour. Journal of the American
Society for Information Science, 41(4):272-281, 1990.

Edward A. Fox, Robert K. France, Eskinder Sahle, Amjad Daoud, and
Ben E. Cline. Development of a modern OPAC: From REVTOLC to
MARIAN. In Robert Khorfhage, Edie Rasmussen, and Peter Willett.
editors, Proceedings of sizteenth ACM SIGIR conference, pages 243-259.
ACM SIGIR, June-July 1993.

Raya Fidel. Searcher’s selection of search keys: 1. the selection routine.
Journal of the American Society for Information Science, 42(7):490-500,
1991.

Raya Fidel. Searcher’s selection of search keys: II. controlled vocabulary
or free-text searching. Journal of the American Society for Information
Science, 42(7):5301-514, 1991.

Raya Fidel. Searcher’s selection of search keys: III. searching styles. Jour-
nal of the American Society for Information Science, 42(7):515-527, 1991.

Donna Harman. User-friendly systems instead of user-friendly front-

ends. Journal of American Society for Information Science, 43(2):164-
174, 1992.

15.



"HB92]

[HBY4]

‘Hea95]

Hil39)
(HKW94]

[Kor91]

[MBF*90]

[Mit89)]

[Ous94]
[Spi93]

[Spo94]

S592]

[TRE95]

[VN93]

Micheline Hancock-Beaulieu. User friendliness and human-computer in-
teraction in online library catalogues. Program, 26(1):29-37. January

1992.

Scott Henninger and Nick Belkin. Tutorial on interface issues and inter-
action strategies for information retrieval systems. In Human Factors in
Computing Systems CHI 94 Conference Companion. pages 387-333. 1994,

Marti A. Hearst. Tilebars: Visualization of term distribution informa-
tion in full text information access. In Proceedings of CHI 95. Denver.

Colarado.. 1995.
Charles R. Hildreth. The online catalogue. The library association, 1939.

Matthias Hemmyje. Clemens Kunkel, and Alexander Willet. Lyberworld -
a visualization user interface supporting full text retrieval. In Proceedings
of the 17th Annual International Conference on Research and Develop-
ment in Information Retrieval, pages 249-259, 1994.

Robert Korfhage. To see, or not to see - is that the query? In Proceedings
of the 14th Annual International ACM/SIGIR conference on Research and
Development in Information Retrieval, pages 134-141, 1991.

George A. Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross.
and Katherine J. Miller. Introduction to WordNet: An on-line lexical
database. Journal of Lericography, 3(4):235-244, 1990.

Nathalie N. Mitev. Ease of interaction and retrieval in online catalogues:
contributions of human-computer interaction research. In Charles R. Hil-
dreth. editor, The online catalogue, chapter 8, pages 142-176. Library
Association Publishing, London, 1989.

John K. Ousterhout. Tel and the Tk Toolkit. Addison-Wesley, 1994.

Amanda Spink. Interaction with information retrieval systems: Reflec-
tions of feedback. In Proceedings of the Annual Meeting of the American
Society for Information Science, pages 115-121, 1993.

Anslem Spoerri. Infocrystal: A visual tool for information retrieval and
management. In Human Factors in Computing Systems CHI 94 Confer-
ence Companion, pages 11-12, 1994.

Amanda Spink and Tefko Saracevic. Sources and use of search terms
in online searching. In Proceedings of the 55th Annual Meeting of the
American Society for Information Science, pages 249-255, 1992.

In D.K. Harman, editor, The Third Text REtrieval Conference (TREC-3).
NIST Special Publication, March 1995.

A. Veerasamy and S. Navathe. Querying, navigating and visualizing a

digital library catalog. In Proceedings of the Second International Confer
ence on the Theory and Practice of Digital Libraries, 1995.

16



(VNH95] A. Veerasamy, S. Navathe, and S. Hudson. Visual interface for textual
information retrieval systems. In Proceedings of the Third Conference on
Visual Database Systems. [FIP 2.6, 1995.

(Vo094 Ellen M. Voorhees. On expanding query vectors with lexically related
words. In Donna K. Harman, editor, The second Text REtrieval Confer-
ence. pages 223-231, 1994.

[Wal87] Stephen Walker. Okapi: Evaluating and enhancing an experimental online
catalog. Library Trends. Spring:631-645, 1987.

17



Interactive TREC-4 at Georgia Tech

Aravindan Veerasamy
veerasam @cc.gatech.edu
College of Computing
801. Atlantic Drive
Georgia Institute of Technology
Atlanta. Georgia 30332-0280
Phone: 404-894-8791
Fax: 404-894-9442

Abstract

At Georgia Tech, we investigated the effectiveness of a visualization scheme for [n-
formation Retrieval systems. Displaved like a bar-graph, the visualization tool shows
the distribution of query words in the set of documents retrieved in response to a
query. We found that end-users use the visualization for two purposes:

e to gain specific information about individual documents - such as the distribu-
tion of different query words in that document.

e to gain aggregate information about the query result in general - such as getting
a sense of the direction of the query results.

In general they used the visualization tool as much as the title and full text in the
process of deciding if a document addresses the given search topic. In structured
post-session interviews with searchers, we also obtained information about what the
searcher liked. what was frustrating to them, and what they wanted in the system.

1 Introduction

At the TREC-4 interactive experiments at Georgia Tech, we were interested in in-
vestigating the effectiveness of a visualization scheme for IR systems that we have
developed. The visualization scheme, as given in Figure 2, is intended to provide more
information to the user about the query results in addition to just the title and full
text. In ranked output systems, the naive end-user has little knowledge about why the
system retrieved and ranked the documents in a given way in response to a free-form
text query. This problem does not arise in boolean systems since there is no element
of surprise in why a particular document was retrieved. The above-mentioned lack of
knowledge in ranked output systems can be quite disturbing when a user is not able
to get the set of documents he/she needs and does not know enough about the system



to modify the query to get the documents he/she needs. It is with this in mind rhat
we have developed a visualization scheme that shows the distribution of query words
in the retrieved documents. This visual display of distribution information provides
a good overview of the retrieved set of documents with respect to the free-form user
query.

For TREC-4 we were interested in investigating how end-users used the visual-
ization scheme. We were also interested in finding what aspects of the svitem were
frustrating, what aspects they liked and what they wanted in the system. We have
vet to do a thorough statistical analysis of the trace data to quantitatively determine
the wavs in which users with visualization tool acted different from the users without
the visualization tool. What we report here is our observations of user interactions.
information from structured interviews, and questionnaires.

In the next section we give a brief description of our system. Then we describe
our experimental design followed by our observations as it relates to the visualization
tool. Then we discuss user’s frustrations, likes and wants.

2 System Description

For our study, we used the INQUERY retrieval engine from University of Mas-
sachusetts, Amherst [CCH92]. We built a simple graphical user interface on top
of INQUERY using Tcl/Tk [Ous94]. There are two versions of our system - one with
the visualization, and one without. In our base system, as shown in Figure 1, there
are three windows: the top left window is for entering and editing the query. The
titles of retrieved documents are displaved immediately below that window. Thirty
titles can be displayed in one screen. One can scroll down to a maximum of 150
document titles. Mouse-clicking a title brings up the full text of that document in
the window at the bottom right. By clicking the “Next Query Word” button in the
full text window, one can position the full text display such that the next occurrence
of query word in the document is at the top of the window.

One can save documents and mark documents for relevance feedback by clicking
the “Save?” and “Rel?” buttons immediately to the left of the title in the title display
window. The only operator that is allowed is the adjacency operator: A hyphen
between two words specifies that the two words must appear right next to each other
in the same order in a document in order for the word-combination to contribute to
the retrieval of that document. There is no negation operator. Automatic stemming
and stopping are performed.

The visualization tool is displayed in another window as shown in Figure 2. It



consists of a series of vertical column of bars. There is one column of bars for each
document. The leftmost vertical column of bars corresponds to the document rankerl
L and the rightmost vertical column corresponds to the document ranked 150 with all
the intermediate ranks lving in between. In each vertical column there are multiple
bars - one each for each query word. The height of the bar at the intersection of
query word row and a document column corresponds to the weight of that query
word in that document. Thus if there are a handful of query words that convev
the crux of the query and is very important for a document to contain these query
words. one can quickly see from the visualization which retrieved documents have
those important words. One can also see how many of the retrieved documents have
those words in combination to get a feel for the overall goodness of query resuits. The
effects of modifving the query, like adding a query word. would clearly be shown in
the visualization. One can quickly take stock of how useful the query modificarion
turned out. Moving the mouse cursor over the vertical columns would highlight
the column directly beneath the mouse cursor and simultaneously highlight the title
corresponding to that document in the title display window.

Apart from the query words typed in by the user, the visualization also shows the
distribution information for words added by the system due to relevance feedback. In
summary, all the words internally used by the system in computing the query results
are shown in the visualization. The words in the visualization are also stopped and
stemmed.

3 Experimental Setup

The searchers for our study were undergraduate student volunteers from a course on
library searching at Georgia Tech. All the searchers had prior computer experience - a
majority of them more than 4 years. All the students were majoring in an engineering
discipline. They had differing levels of experience with the Georgia Tech Electronic
Library catalog — a boolean online public access catalog.

All the users were asked to fill out a background questionnaire. They were given
a tutorial on how to use the system. They were then asked to do a practice search on
topic 224 for 15 minutes. Following that they were asked to find as many documents
as they can that address the given information problem without too much rubbish
(as specified by the interactive track guidelines). This was followed by another inter-
mediate tutorial and then a search for a second topic. Immediately after each of the
two real searches, they filled out a search evaluation questionnaire. Finally, there was
a structured interview.



S0 jo suoioy 155 W Awovo3 yea srodey po gga.ﬂ vl s

.igi!sa.zi.c.n
e .f.os.aa.e oW thyemiogos  81oelel LMD A1 P IS M l
01 102 iyse) -pooB @ opews 1503 TE SBY 1 SRTID SMRAUED 0 W) o e 1O onssy seap mas swonans Buot oy :r s -2z [ B

$¥) 1) J) 13RAU00 GU) 950) ABUI JOPPI MO| YL YILRUED B UM
01 Al ) Auedwiod 121 *syeob TITES YIS s, Auneo au wn| MeN Sued) LD awesdng se RoA A3 PEY KEN

1ous sey [EEIIY © vo pg moy 3 w.lzﬁ«.n.-hbio.‘:ﬂ pggggiigsaggﬁ

UOWIOM pue Sanuoul Aq 15U sopedwed dn poug sARY BYM SINJIRRIND
sésﬁus.»._sséﬂu..s:os.ﬁ&i!p
pue $x7e1 Apsunal ‘SonLIOU pue UM Ag BOUMS SeSSauRSAY iggiz!!gs}
0} $15e.4400 S lenue e JO brea oW 10 Jueand
¢z Bupmme Jo peob & 125 ay) "By ‘A yiindiogsem .
An vog) W pordope seam wesboad ..g.ﬁ
"W BYM

gs%%sgg-!ﬂ;i
1o sopetuno Ag podde Ue poyIoal YUBURIGT PIBKIMA “LIN0D BY),
“UGUIOM PUR SOOI Ay UN! SeSSaUSHY 8] S1JeAued T
EITIE avow Bugpeae e pouse eppoy W webosd TITET BTV
e I} ©) posnt Aepo) 1) BuaN !.F

2o SE8y POfEIOOSSY NIBNY 'H SINVI
(dv) NOLONHHEVM ‘¥
uresbo.o ([TTTELY; ELYICITNNY, epuiof 4 By 03 Sashjay ¥no)

Juawnaop Jo jxa) iy [0

Figure 1: Sample querying session. The window in the top-left corner is the query
entry window. Immediately below that is another window where the titles of retrieved

documents are displayed. To the bottom right is another window where the full text

of documents are displayed.

4



[®] Hows is that &

affimm®*-action™
affect”
construct” -indu:

tr'

construct”

project”

public*

Total sum:

TR T.gnmmuimuuuanmnauamnsEmmnaEiIime
suasufBEEUnnn wolsnfullalnen suvalwullanalal Eoace.s

L e M

T S T

Figure 2: Visualization of results. The highlighted vertical column corresponds to
document ranked 14. The title of document ranked 14 document will also be high-
lighted in the title display window. Clicking the highlighted vertical column brings
up the full text of that document.



The searchers were divided into three groups. In each group there were 12
searchers. In the first group (hereafter named “w:w". since both first and search
topics are searched WITH visualization). the searchers used the visualization tool for
all the searches and the tutorial. In the second group (hereafter named “wo:w". since
the first search topic is searched WITHOUT and second topic WITH visualization.
the initial tutorial. the practice search and the first search was done without the vi-
sualization tool. The intermediate tutorial introduced the visualization tool and the
search for the second topic was done with the visualization tool. In the third group
(hereafter named “wo:wo”, since both the search topics are searched WITHOUT the
visualization), all the tutorials and searches were done without the visualization tool.
The intermediate tutorial for the w:w and wo:wo groups was a dummy tutorial to
compensate for the intermediate tutorial of the wo:w group.

Since each searcher searched for two topics and there were 12 searchers in each
group, all the 24 topics were covered by each of the three groups. The 24 topics were
randomly divided into 12 pairs and each pair was searched by 3 searchers, one each
from the w:w, wo:w and wo:wo groups. The idea was to compare the performance
among the three groups to find out the effects of the visualization scheme. Only 24
of the 25 topics for the interactive track were given to end-users in the study. The
remaining one topic (topic 223) was searched by the author using the visualization
tool.

The searchers were asked to think aloud as they used the system. For the most
part, there was an observer in the same room using a different computer and simulta-
neously observing the searcher. Based on such observations while the user session was
in progress, we felt that huge searcher differences in interpreting the query combined
with huge differences in the nature of the search topics will greatly confound the ef-
fects of the visualization tool. As a result, we decided to run a second study. In the
second study, we picked topic 242 for the practice search and the practice search was
extended to 30 minutes. The intermediate tutorial was removed. We picked topics
203 and 236 for all the searchers. There were two groups of searchers for the second
study - the first group had the visualization tool and second group did not have the
visualization tool. There were 18 searchers in each group. By keeping the two search
topics constant for all these searchers, we expected to eliminate the effects of search
topic difference. It turns out that the searcher variability in interpreting the search
topic is so huge among searchers that it is not fair to compare different searchers
using different systems unless the search topic is extremely clear and specific.



4  End-users view of the visualization tool

A vast majority of the users mentioned visualization as one of the aspects of the
svstem that they liked. They mentioned using the visualization tools in the following
ways.

e Some searchers mentioned using it to see the importance of query words in the
retrieved documents - as given by the height of the bar. They mentioned that
they were more likely to look at the full text of a document if it has a higher
concentration of the important query words.

e Most of the searchers mentioned using it most frequently to see the co-occurrence
of important query words in the retrieved documents. They mentioned it being
easier to use the visualization tool to look for the co-occurrence information
than going through the full text of documents in search of occurrences of the
important query words.

e Many searchers felt that the visualization in conjunction with the document
title gives a fairly good idea of what the document is about. If the title looks
promising and the visualization shows that the document has the right combi-
nation of query words, one is tempted to look at the full text of the document.

e They mentioned using it to get a quick overview of the number of retrieved
documents a query words appears in. They mentioned using it as a checkpoint
to see if a query has turned out the way they had expected it to. If not. they
were tempted to readjust the query to get a better result. This happens often
when some of the crucial query words are not well represented in the retrieved
documents. In that case, one is tempted to add synonyms or words related to
those crucial query concepts.

e Some of the searchers mentioned that the visual nature of the distribution infor-
mation was much easier to identify things than reading text information. This
suggests that the mental effort of reading textual information as being much
higher than interpreting a simpler visual pattern, and given a choice, the users
are more likely to choose the latter.

e Disadvantages: A few searchers mentioned that relying heavily on the visu-
alization can also hurt as follows: They mentioned that using the bar-graph to
pick out a document containing certain query words may not be indicative of
the content of the document - just as the title may not be a good indicator of
content. An exemplar case is searcher 35 on the topic of “status of nuclear pro-
liferation treaties”. Since almost all of the retrieved documents had something



to do with ~nuclear proliferation™. the searcher mentioned using the visualiza-
tion tool to pick those documents containing the querv word “status”™ - onlv to
see that the usage of “status”™ in the document was not in the context of nuclear
proliferation treaties. Then the searcher started paving little emphasis on the
presence of “status” in documents. Although relying on that information was
initiallv detrimental, one tends to learn when and how to rely on the visualiza-
tion. We believe that the presence in retrieved documents of adjectives. adverbs
and verbs from the query may not be good content indicators especially when
they have a high collection frequency. And relying on the visualization to select
documents that have these adjectives, adverbs and verbs from the query mayv
not help.

In summary. the visualization tool seems to help in the following ways:

e to gain more information about specific documents in addition to the title before

looking at the full text. Higher concentration of important query words in a
document suggests a closer look at the document.

e to gain aggregate information about the query result. The absence of impor-

5

tant query words in a vast majority of the retrieved documents suggests query
reformulation by adding synonyms and other related concepts.

Likes, Frustrations and Wants of users

Apart from the visualization, we were also interested in finding if there are any specific
facilities that the users wanted, what features they liked, and what aspects were frus-

trating. While interpreting the following, we wish to reiterate that all the searchers
had some amount of experience with the Georgia Tech Electronic Library catalog
which is a character-based-command-driven interface to a boolean system. Some of
the features they liked may arise out of the fact that they have had little experience
with ranked output systems and the only other major information retrieval system
they know is a character based interface to a boolean system.

5.1

Likes

e A vast majority of the searchers with the visualization mentioned that the

visualization tool and relevance feedback as the two major aspects of the system
they liked. Searchers without the visualization mentioned relevance feedback
as the most important feature they liked.



e A number of searchers found the fact that all the information (like the user

5.2

query, titles of documents and the document full text) is displaved simultane-
ously in one screen to be very useful. In the Georgia Tech library svstem. one
has to switch between screens to get different types of information. There seems
to be a significant mental overload in the context switch between screens. Hav-
ing simultaneous access to all information seems to bring about a rich interplay
between the different sources of information.

many searchers mentioned that the mouse-based graphical nature of the inrer-
face is a significant improvement over a command line based interface.

many searchers also mentioned that the free-form textual queries without having
to worry about any syntax leads to a free flow of thought. “I like the fact that
[ can type in whatever comes to my mind ... knowing that it will ignore all the
junk words like a, an, the, etc...”.

The “Next Query Word” feature was also liked by many searchers. They liked
it because they did not have to scroll through a long document looking for
occurrences of query words. (All the occurrences of query words in a document
are highlighted by the system).

Frustrations

A number of searchers mentioned that it was frustrating when the system takes
a long time to get the full text of a large document. Similarly, they were also
frustrated when it takes a long time to evaluate a query with a large number
of relevance feedback documents. The longest delay for evaluating a query was
about 2 minutes (when there are about 30 relevant documents). Most of the
query evaluations took less than 20 seconds. They said that they understand
that the system has to process a lot information (when there a number of
relevant documents), but it was frustrating nevertheless.

Some searchers said that it was frustrating to spend some time reading through
the full text of a document and when they are halfway, realizing that they had
already seen the same/similar document.

While some searchers seemed to like having access to 150 retrieved documents,
some others mentioned that 150 documents is too much especially when most of
the 150 are not relevant. They seem to have the opinion that if some documents
are definitely not relevant to the query, then they should not be shown. Thus,
this problem is not alleviated even if one reduces the number of documents



displayed. They seem to be quite sensitive about precision. They are not as
sensitive about recall - since theyv are usually satisfied if theyv get a few docu-
ments concerning the topic. Based on our observations, we believe that when
the non-relevant documents consistently come from a pacticular subject area.
and when the user is not in a position to remove those locuments, theyv tend
to get more frustrated. Using subject classification sch ‘mes {where available)
to negate disinteresting subject areas would help in thi regard.

e [n our system, when the title for a document is not av ilable. the message “No
title for this document™ is displayed instead of the ritle in the title display
window. Many of the federal register documents do not have a title and this
is quite annoying to some searchers since they do nct have any idea about the
document content. This makes it difficult to decide whether to request the full
text or not. In cases where the full text is requested, the document happens
to be large and hence takes a lot of time to retrieve, thereby adding to the
frustration.

e Some federal register documents do not have anyt'iing worthwhile - they consist
of a listing of subject areas or table of contents. Some searchers wondered why
these documents were in the database in the first place.

e Some searchers mentioned a general dislike tot ards federal register documents
partly because they felt that many of them did not have any important piece
of information, partly because in general thev have no title, partly because it
took too long to retrieve them.

e Some searchers were frustrated when a docur.1ent that they know as non-relevant
keeps coming up in the query result. The f ct that they were not able to delete
the document from the display seemed to add to the frustration.

5.3 Wants

Many of the frustrations mentioned above seemed to directly translate into wants
for removing the causes of frustration. In addition to those wants, we observed the
following:

e Many searchers expressed a desire to remove certain query words that were
added by the system from relevance feedback documents — especially when they
are proper names and when they are not necessarily what they are looking for.

10



e A number of searchers wanted a keyvboard equivalent of mouse actions. This is
not to say that they did not want mouse actions. [t seems to be a significant
effort for these searchers to move the right hand out of the kevboard. reach over
to the mouse. look at the screen to position the mouse cursor. click the monse
button and move back to the keybhoard.

e When asked if they felt a need to have access to an online thesaurus. some
searchers expressed a desire for it and some did not. Some of those who did
not want a thesaurus mentioned that relevance feedback seemed to alleviate the
need for a thesaurus.

e \Many searchers wanted to be able to specify that the system should definitelv
avoid retrieving certain documents in subsequent query iterations. They wanted
to have a negative relevance feedback where the system avoids all documents
like a particular nonrelevant document.

6 Acknowledgments

The tremendous help from Prof. Nick Belkin regarding the experimental setup and
questionnaire design is highly appreciated. Many thanks to Prof. Scott Hudson
and Prof. Shamkant Navathe who were instrumental at every stage of the interface
development. We appreciate the help of Prof. Jan Crowe who was very cooperative
in letting the students of her class participate in the experiments. Special thanks to
Prof. Bruce Croft for letting us use the INQUERY retrieval system. Support from
the ARPA contract No. F33615-93-:-1338 is appreciated.

References

[CCH92] J.P. Callan, W.B. Croft, and S.M. Harding. The inquery retrieval system.
In Third International Conference on Database and Ezpert Systems Appli-
cations, September 1992.

[Ous94] John K. Ousterhout. Tc¢l and the Tk Toolkit. Addison-Wesley, 1994.

11



Evaluation of a Tool for Visualization of Information Retrieval Results

Aravindan Veerasamy
veerasam’@ himalava.cc.gatech edu
College of Computing
Georgia Tech
Atlanta. GA, USA

Abstract

we report on the design and evaluation of a visualization tool

for [nformation Retrieval (IR) svstems that aims to help the

end user in the following respects:

+ As an indicator of document relevance, the tool graphi-
callv provides specific query related information about in-
dividual documents

. As.a diagnosis tool, 1t graphically provides aggregate 1n-
formation about the query results that could help in 1denti-
tving how the ditferent query terms influence the retrieval
and ranking ot documents.

Two different experiments using TREC-4 data were conducted
to evaluate the effectiveness of this tool. Results, while mixed,
indicate that visualization of this sort may provide usetul sup-
port for judging the relevance of documents, in particular by
enabling users to make more accurate decisions about which
documents to inspect in detail. Problems in evaluation of such
tools In interactive environments are discussed.

1 Introduction

The disadvantages of Boolean IR systems are well known.
Best-match (1e. ranked output) systems address several of
these problems by allowing users to submit unstructured que-
nes, and by ranking the retrieved documents in (presumed)
order of relevance. However, such systems also iniroduce new
problems, or exacerbate problems that are not so severe in
Boolean systems.

For instance, understanding why a document (or set of
documents) was retrieved is relatively straightforward in
exact-match systems, since all members of the set are required
to contain exactly the query specification. Furthermore, the or-
dering within the set of retnieved documents 1s typically based
on relatively well-understood formal characteristics of the
documents, such as date of publication or alphabetical order
bv title or author. In best-match systems, on the other hand,
neither the matching rule nor the ranking rule is easily
understandable. The former 1s usually based on charactenstics
and algorithms which don't have simple relationships with the
unstructured query; the latter 1s intended to reflect complex
conceptual relationships between the query and the individual
documents, and between the documents themselves.

Permission to make digital/hard copy of all part of this work for per-
sonal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, the copy-

right notice. the title of the publication and its date appear, and notice -

is given that copying is by permission of ACM, Inc. To copy otherwi-
se. to republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or fee.
SIGIR'96, Zurich. Switzerland©1996 ACM  0-89791-792-

8/96/08.33.50

Nicholas J. Belkin
belkin‘ascils rutgers edu
School of Communication, Information & Library
Studies '
Rutgers University
New Brunswick, NJ, USA

Furthermore, query reformulation may be more ditficult in
Boolean than in best-match systems. Obtaining a manageable
output set size in Boolean systems (the most tv pical re-tonmu-
lation task) may be less demanding than attempting to
rearrange the list of retrieved documents in a best-match
system by manipulating an unstructured querv. This 1s
especially difficult when the rules for ordering and matching
are not well understood.

Current best-match [R svstems take relatively little account
of these i1ssues. [n response to a user's query, most s\ stems
display surrogates (title, source, author ...) ot the top 'n’ re-
trieved documents, in a list, with some number(s) indicating
the rank, or reason for being in that rank, 1.e. a retneval status
value (RSV). Some systems displav by detault more
information about the first retrieved document, most require
the user to request such information (e g. the full text of the
document) explicitly. The only explanation of why the
documents are ranked the way they are is typicallv the RSV,
about which there 1s no further information than the number
itself. More explanation may not be necessarv in situations
where the top retrieved documents are all clearly relevant. But
when the user needs to modify the query in order to get berter
results, understanding the causal relationship between query
and document ranking becomes very important. Having an
accurate idea of why a list of documents was retrieved, of how
they were ranked, and of what is sub-optimal about the ranking
could be useful 1n effective query reformulation.

Knowledge about the relationships between query and
ranking of retrieved documents is not in itself sufficient for
effective query reformulation. It is also necessary that the user
be able to manipulate the query effectively after the problem
has been identified. For instance, knowing that an important
query concept 1s missing in most of the retrieved documents 1s
not sufficient for effective query reformulation. One must then
be able to find the right words (or other techniques) for in-
creasing the importance of the concept in the query. Without
the ability to take corrective action once the problem is diag-
nosed, the diagnostic information is ot little value.

A possible means for addressing problems of this sort 1s to
display to the user something about the documents which
relates them directly to charactenistics of the query, and which
relates them to one-another. Highlighting query terms in the
text display of retrieved documents attempts to accomplish the
former, and the indication of RSV is an attempt to accomplish
the latter. However, neither of these techniques appears to give
sufficient information to guide effective query reformulation.
Graphical displays of the characteristics of retrieved
documents (visualizations) which are relevant to their retrnieval
and ranking is one obvious approach to this problem.

A further problem in IR systems in general has to do with
the multi-stage nature of presentation of results. The initially-
presented surrogates are meant to provide a concise picture of
what a document is about. Based on these swrrogates, the user



mav request more detailed wtormation about particular dO?u-
ments which look promusing (or for which the surrogate ‘LnIo!"-
mation is equivocal). [n some cases, this might be the * full
bibliographic information about the item, in others an abstract,
and in many svstems now, the full text of the item. Thus, as
the user progresses through the stages of display, that which is
displaved 1s more complete and informative, allowing
increasingly accurate relevance judgments. But, the
intormation in the later stages of display is also more time-
consuming to peruse Therefore, it 1s important for the
searcher to be reasonably certain that it 1s worthwhile doing
this inspection. The intormation displayed in the earlier stages
thus serves as a filter which supports the user in deciding
which documents do not need turther inspection (either
because they are obviously good or obviously bad), and which
documents do jusuty the turther effort.

Thus, displaving a great deal of information at the
surrogate stage of display could be a useful device for judging
the relevance or usetulness ot the document. The advantage is
that when the user requests the second-stage display, it is more
likely that that document will be relevant to the user than if
there were less information in the first stage. The disadvan-
tages to this strategy are that since there is more text to display
in the first stage, fewer items can be presented, and more time
must be spent in perusing the first-stage display. Thus, the
total number ot documents seen by the user may well be fewer,
although the quality of the decision-making may be higher.

[t, on the other hand, one chooses to display less informa-
tion at the initial surrogate stage, then the decision about
whether to look at the more complete display is less secure.
Hence, the proportion of second-stage documents which tum
out to be relevant is likely to be low. The advantage of seeing
more documents, more quickly, in the first stage 1s thus offset
by the additional time that is spent perusing non-relevant
documents in the second stage.

A possible means to addressing this problem is to display
information about the document in the first stage in some form
that does not require as much perusal time and screen space as
text. Graphical displays of the charactenstics of documents
which are significant in supporting the decision to peruse or
not (visualizations), could support set-at-a-time perusal of
documents, rather than document-at-a-time perusal of text
displays.

It will not escape the reader that the suggested solutions to
the two classes of problems that we have raised here are rather
similar, and could, indeed, be instantiated by the same sort of
display. We present a visualization tool which is intended to
address these problems in IR systems, and a preliminary
evaluation of this tool. The remainder of this paper is
organized as follows. We first present a description of the
visualization tool, and a rationale for the features of this tool
with respect to the problems in IR interaction that we have
discussed. We then discuss some related work in IR
visualization that addresses this type of problem, and draw
some comparisons between that work and ours. We follow
with a description of the experiments we conducted to evaluate
the visualization tool, and the results of those experiments. We
conclude with some comments on the implications of our
results, on future work, and on the implications of our
evaluation experience for evaluation of interactive IR in
general.

2 Visualization tool

2.1 Description

The visualization tool 1s an adjunct to a basic wntertace tor [R

This interface 1s structured as a indicated in Figure 1, with a
query window, a display of titles retnieved, and the full text of
a document. This serves as the baseline interface interaction
which 1s compared to the visualization tool. A screen snapshot
of the visualization tool 1s shown wn Figure 2 The
visualization corresponds to the querv “how has affirmatve-
action affected the construction-industry construction projects
and public works™

The visualization consists of a senes ot vertical columns of
bars. There 1s one column of bars for each document. The lelt-
most vertical column of bars corresponds to the document
ranked | and the nghtmost vertical column corresponds to the
document ranked 150. In each vertical column there are multi-
ple bars -- one each for each query word. The height ot the bar
at the intersection of query word row and a document column
corresponds to the weight of that query word in that document.

Moving the mouse cursor over the vertical columns highlights
the column directly beneath the mouse cursor and simultane-
ously highlights the title corresponding to that document wn a
utle display window.

Apart from the query words tvped in by the user, the visu-
alization also shows the distribution information for words
added by the system due to relevance feedback. Thus, all the
words internally used by the system in computing the query
results are shown in the visualization. This window is
scrollable, in case the number of words in the query exceeds
the vertical space. The words in the visualization are also
stopped and stemmed. The basic interface, and the
visualization tool, utilize the INQUERY retrieval engine,
versic ~ 2.1p3 [Callan, Croft, Harding, 1992]. We use all of the
default features of that system, including their relevance feed-
back, stemming and stoplist algonithms, but do not use any of
the structured query facilities.

2.2 Response to problems of IR interaction

In support of query reformulation, the visualization makes the
connection between the query and retrieved documents explicit
by graphically displaying the contribution of each query word
to the retrieval of each document. The higher the contribution
of a particular query word to the retrieval of a document, the
taller the bar at the intersection of the corresponding query
word and document. The absence of a bar at the intersection
Ulustrates the absence of the term in the document. Absence of
an important query concept in a number of retrieved
documents points to a problem situation which the user needs
to work on. The visualization makes relations between the
documents themselves explicit, since the characteristics which
have led to their rank (the number and contribution of
matching terms) are explicitly displayed.

In support of informative first-stage display, the visualiza-
tion provides a great deal of information useful for deciding
whether to view the full text of a document in a highly con-
densed way, and allows many document surrogates to be dis-
played at one time. The presence or absence of specific
significant words in any document can be quickly seen, and it
is possible to identify sequences of documents which do, or do
not have important contributions from specific query words.

;



IC] GAT - INGUERY

2. AP Court To Ducite AFRrmalive Acten Rawe Fram Veginia
3. A Tenmesess Foumlion Cuieging GoSate’ ToaSeskit Less Ampsal

4. 3n Js: TOO FEW WOMEN SUCCEED W CORSTRUCTION MOUSTRY

| 3. Fed Rogister: 1o T for thin decmment.

€. AP Officisis Exgross Regret Over Asjsctisn OF Japen- U.8. Constc liam
7. W St 2 Laber Latte: A Bpeciel Mows Sepert on Foapis  An Thatr Jabe |
. Fod Rogisior: Mo Ulia fer Whis ncwamnt. :

3. AP Court Rafumes (o Kl Rarida Awaltive Acten Program

1. Fod Regioter: Mo SN for Bis sacment. '

11.W St itarmelional: UG, Jagen Set  Pact on Opsning  Bullding Maers
12. @ 8t & mdwavy Facws:  U.5. ontraciers Trad Jupes: | Rbasp: S - --
| 13. Fed Rogstar: Ma ¥Gs for Wi decument.

14, AP. High Cowrt Uphalds Limits ou Local Catie TV Roguintion

1S. Fod Roglster: Mo YUs far s Secument.

16. Fast Rogister: No ViR Qv this decument.

17. Fad Registor: No Wiiu far is decument.

10. Foud Rogislar. Mo WIS far Wis dacument.

19, Fod Rugiotar: Ns s for Sis ocuwvamt.

29. AP: Suproms Churt Examines AfWative Action Case

Z1. Fed Rogater: Mn W6e for Bt dormmont.

Z2. AP: Delay Urged In Action Aimad At Opening Japanees Csnstruction hiarke
3. AP Gevarament Halls Constrectes Access; Sustises Wy

26 AP Complruction £recuives Call For Liftng Of Ban

25. AP: Kamnody Codidt 99 Koy Voie on Majsr Suprenss Cuurt Docimiane This T
28. AP: Kansedy May Helil Decisive Vaio s Suprems Qrt Opens Now TYerm
27. W St X Hung Kewg Friclions Grow Over ews  Of Wuparintion of Fersign
20.W L Low: CowtRemcts Ochelirship Nd  Fur Tlacks Ouly  ~---
78. Fod Rugpstar: Na Wie for Bus decmant,

3. W St ;: Ecommwy: Fod Rmparis Weak Cconmmvy i Mot Rugens of U.3

Figure 1. Sample querying session. The window in the top-lett comner is the query entry window. [mmediately below that s
another window where the titles of retrieved documents are displayed. To the bottom right is another window where the full texts
of documents are displayed.



For the example search topic ("How has afﬁrmaqve action
Affected the construction industry ™). there are two tacets that
are central’ “alfirmative action” and “construction indusuy
Erom the visualization tool, we can immediately see that most
of the documents are concemed with the “construction indus-
i and onlv a portion of the documents have the term

“alfirmative acuon” We can also see that the “atfumative ac-
uon” concept is spread sparsely throughout the top "0 Jocu-
ments. The graphical tormat ot presentation has some
important advantages itn that it 1s more condensed than an
equivalent text display.

" :,,., ,.Vi,/, -

i
. armeme-actions  [lI1 i

affect®

construct” - ndiux

w il 1l

construct® R LT
project® stastBrantlt
i public” cetrerenaite
Total sum: AT )

‘steSostunnutsedcnlololon alie sefulvesss slafles ssene

GESCCSCHRRURTCECEOCOOORNNNNTRCannuUsIsRERRRRRUERERESS

/
~J

ZL )

M

e

Figure 2. Visualization of results. The highlighted vertical column corresponds to document ranked 14. The title of document
ranked 14 document will also be highlighted in the utle display window. Clicking the highlighted vertical column brings up the full

text ot that document

From the visualization, one gets an immediate idea of how
the different query words intluence the document ranking (as
given by the height of the bars). One can see that the concept
“alfirmative action” 1s not well represented 1n the retrieved
documents. This suggests that synonyms and words related to
that concept must be added to the query to rewnforce that query
concept In subsequent search iterations. From the visualizaton
tool, one can infer that the system interprets “public” and
“project” as two separate words and that the contribution of
those two words to the retrieval of almost all documents 1s uni-
tormly low (as given by the height of the bars). One can proba-
bly improve the situation by making “public projects” a phrase,
thereby retrieving documents that have these two words in
close proximity. Gaining such overall information about the
query results by reading the document text is at best cumber-
some if at all possible.

3 Related visualization work

A number ot visualization schemes for information retneval
systems have been proposed. The, Perspective Wall [Card,
Robertson & Mackinlay, 1991] is a visualization scheme which
supports browsing of documents. While such a system can not
handle qualitative document classifications such as library
subject catalogs, it is very useful for visualizing documents
based on data which are linear in nature (like date of
publication). A nice way of integrating different visualization
schemes for etficient navigation through the hypermedia space
has been proposed by [Mukherjea (1995)]. These schemes are
primanly useful for navigational tasks. Other visualization
schemes such as those of [Korthage (1991)], [Spoern (1994)],
[Hemmje, Kunkel & Willett (1994)] have facilities for viewing

. a large document space. But visualizing the document space

along more than 3 - 4 dimensions simultaneously becomes

-, e



very cumbersome using their syvstems The visualization
5chémc m our tool can gracetully handle more query word
Jimensions.  Many svstems are tailored towards easy
construction ot queries [Spoerm (1994)] [Aboud, et al. (1994)]
[Arents & Bogaerts (1993)] but do not pay much attention to
the displav ot query results
TileBars [Hearst (1993)] visuallv shows the query term
distribution and overlap in retrieved documents. The term
Jdistonbution i retrieved documents 1s shown nght beside the
utle of the document [n a number ot respects, the reasons and
motivations tor flearst’s work are similar to those of our
visualization [ Veerasamy. Navathe & Hudson (1993)]
[Veerasamy & Navathe (1993)| [Veerasamy (1996)|. There are
some important ways in which TileBars ditfers trom the
visualization that we propose
. TileBars provides information on how ditferent query tac-
cts overlap in different sections of a long document. Our
visualization scheme does not provide information at that
tine level of granulanty
. TileBars presents the document surrogates in a list, mak-
g 1t more difticult than n our tool to gain an overall
picture ot the query word distnbution for a whole set of
Jocuments 1n one glance.
«  TileBars seems best suited tor long documents, while our
visualization scheme does not seem to be constrained by
length.

4 Experiments to test the effectiveness of visualization
4.1 General conditions

We discuss two expenments for testing the etfectiveness,
usability and acceptability ot the visualization tool by compar-
ing searching with an interface using the visualization, versus
searchung with the same ntertace, but without the visualization
tool.  The underlving retrieval engine used in these
expenments was INQUERY version 2.1p3, trom the
University ot Massachusetts, Amherst, generously made
available to us by Prot. Bruce Croft [Callan, Crott & Harding
(1992)]. We developed the graphical user interface using
TcU/Tk on top of INQUERY

The expenments were conducted as part of the TREC-4 1n-
teractive track (Harman, 1996). Thus, the task for the search-
ers in the experiment was the TREC-4 interactive track task:

Find as manv documents as you can which address the
given intormation problem, but without too much rubbish.
You should complete the task in about 30 minutes or less.

The “information problems™ were chosen from the 25 adhoc
topics used tor the TREC4 interactive track, and the database
was the TREC Disks 1 and 2 database ot the full texts of about
350,000 documents.

Both expeniments were designed to test the usefulness of
the visualization tool for addressing the two problems that we
have discussed and that motivated the design of the tool:

* efficiency and effectiveness in discovering relevant docu-
ments. and.
*  etfectiveness in supporting query reformulation.

In order to test the former, we predict that searchers using
the visualization tool will make better decisions about which
documents to look at (or not look at) than those without
visualization. We operationalize this difference with the
following dependent vanables:

*  the number ot documents saved per search I5-p-s). Since
search times are more-or-less constant (about 30 minutes)
across searchers, this measure retlects ctticiency in being
able to see more documents.

+  the proportion of documents whose tull text was viewed
that were judged relevant by TREC evaluators ( interactive
trec precision or i-t-p). This measure indicates the quality
of the documents which were chosen for viewing '

*  the proportion of documents whose full text was viewed
that were saved by the searcher (interactive user precision
or i-u-p) This measure also indicates quality of
documents which were chosen tor viewing, but s
indicative of the relationship of the Jlsplz;y to the
searcher’s own concept of relevance to the problem. rather
than being dependent upon the external relevance
Jjudgments.

To test the latter, we use:

+  precision of the search, measured in the required manner
for the TREC4 interacuve track; that is, as the proportion
of documents saved by the searcher that were judged rele-
vant by the external judges. This measure is indicative of
the effectiveness of retrieval performance.

For all of these measures, higher numbers mean better

performance.

The subjects for both experiments were undergraduate stu-
dent volunteers who were registered 1n a one-credit hour
course on library searching in the College of Computer Science
at Georgia Tech. All subjects had prior computer expernence,
the majonity with more than four vears. All subjects were
majoring in an engineering discipline, and had varving levels
of experience with the Georgia Tech Electronic Librarv
Catalog. They had no other IR experience than that offered by
the class. Two different groups of subjects were used in the
two ditferent expenments.

All the subjects in both expenments followed the same
general introductory and tutonal procedure. They were asked
to fill out a background questionnaire about their computer and
IR expenence, major, and so on. They then had a hands-on -
torial (about 1 hour) on how to use the version of the svstem
they would be using tor the first experimental search. They
were then asked to do a practice search on TREC topic 224
("What can be done to lower blood pressure for people diag-
nosed with high blood pressure? Include benefits and side ef-
fects.”) for 15 minutes. They then did the assigned searching
tasks (details ditfer between the two experiments), during
which they were instructed to “think aloud”, which was re-
corded on audio tape. All the user interaction with the system
was logged. After each search, they completed a search evalua-
tion questionnaire. At the end of the session, a structured inter-
view on their use of the system was administered. All subjects
did three runs of the system: one practice run and two test runs.

4.2 Experiment 1

Thirty-six subjects were randomly divided into three groups of
twelve each. Twenty-four of the 25 TREC4 interactive track
topics were randomly divided into twelve pairs. Each of the
twelve pairs of search topics was randomly assigned to one of
the searchers in each group, one to be searched in the “first”
condition, the other to be searched in the “second” condition
for the group of which the searcher was a member. The topic
pairs were searched in the same order in all groups. Thus, the
same twelve of the 24 topics were searched in the first condi-



tion tor all three groups. and the other twelve were searched in
the second condition tor all ol L_hcm. _

The three groups were defined according to the combina-
tion of conditions or treatments. Group wo:w (for With-
Out With) did the initial tutonial, the practice search and the
first search without the visualization tool. An intermediate
rutonal after the tirst search introduced the visualization tool
and the search for the second topic was done with the
visualization tool Group “w'w’ (for With:With) used the
visualization tool tor all the searches and the introductorv
tutorial. Group “wo.wo™ tor WithOutWithOut) did all the
searches and the introductory tutorial without the visualization
tool. [n both the w'w and wo.wo groups, an intermediate
tutorial on the intertace with which they were working was
introduced between the two searches to match the intermediate
tutonal ot the wo:w group

This ~within subjects™ design was used 1n order to control
tor user ditferences, and to account tor any possible learning
etfects from search | to search 2. [t was predicted that pertorm-
ance on the vanous measures would improve {rom first search
to second search in the wo'w group, more than in either the
WO.WO OF WW groups.

4.3 Experiment 2

[n this experiment. 36 subjects were randomly divided into two
groups, one with the visualization tool (“viz™), the other with-
out ("noviz”). Three search topics were chosen for searching
by all eighteen searchers in each ot the two groups, always in
the same order. The searchers in the two different groups
tollowed the same pattern of participation as those in
experiment |, but without any intermediate tutorial, and with
the practice search ume extended to 30 minutes. We picked
topic 242 ("How has affirmative action affected the
construction industry?”) tor the practice search. The first
“expenimental” search was on topic 236 (“Are current laws of
the sea uniform? If not, what are some ol the areas of

disagreement?”), and the second was topic 203 ("What 1s the
economic umpact of recycling tres?™).

This “between-subjects” design was used to control for the
effects of search topic difteérence, and to have larger numbers
of subjects in the two conditions. [t was predicted that
performance in the viz group would be better than pertormance
in the noviz group for each topic.

S Results

[n this paper, we report only on results with respect to the per-
formance measures we have detined. Results trom the ques-
tionnaires with respect to use and usabdity ot the two systems,
and with respect to Interaction measures and “thinking aloud™
will be reported in subsequent publications.

S.1 Experiment 1

The results of expenment 1, displayed in Table 1. are some-
thing of a disappointment. There are no significant
differences (using the Wilcoxon Matched-Pairs Signed-Ranks
Test, one-tailed at p< .05) between any of our four measures
between the without- and with-visualization treatments in the
wo:w group. Furthermore, there are no significant differences
between any of the matched without-visualization/visualization
groups (1.e. between the second searches of wo:w and wo wo
groups, the first searches of wo:w and w:w groups, and both
searches of the wo:wo and w:w groups). There 1s no consistent
pattern on any of these measures from first to second search
(1.e. there appears to be no learning effect, nor does it appear
that one of the sets of twelve topics is in general more difficult
than the other, nor is it the case that any of the groups does
consistently better or worse for either search). These very
mixed results lead us to think that our experimental design in
this case sutfers from two significant problems. The first is
great inter-subject and inter-topic variability, the second is that
we have too few subjects for each condition to adequately test
significance of any differences that may exist.

Condition Precision $-p-s 1-t-p 1-u-p
Mean | Median SD Mean | Median SD Mean | Median SD Mean | Median SD

wo'w. | 0.712 0.750 0257 | 2.193 1.630 2.671 0.491 0.505 0.296 | 0.459 0.435 0210
wWo'w.2 0.531 0635 0.402 2.686 1.915 2.848 0419 0.405 0.270 0.454 0.445 0.204
Wwo:wo. | 0.366 0.530 0.286 4.039 1.250 7.289 0.385 0415 0.187 0429 0.420 0.163
WO W0 2 0513 0670 0.342 | 3.500 1.500 5437 | 0.344 0.315 0.302 | 0.379 0.425 0.201
ww | 0.386 0.515 0.284 2.319 2.170 1.301 0.402 0.285 0.251 0.443 0.450 0.164
wow.2 0.496 0415 03356 | 2.480 1.360 3.096 [ 0433 0.385 0.299 | 0407 0.390 0241

Table 1. Summary results for experiment 1. w = with visualization, wo = without visualization. The order of w and wo in the
condition column indicates the order of application of conditions for that group, the number following the two indicates for which of
the two conditions, tirst or second, the value is given. s-p-s = documents saved per search; i-t-p = interactive trec precision; i-u-p =
interactive user precision.

the significance of these results, it is necessary to compare
them topic-by-topic, without cumulation, to maintain the

5.2 Experiment 2
assumption of independence, since each searcher did three

The results of experiment | led to the design of experiment 2,
whose results are displayed in Table 2. The rows in Table 2
are in the order that the topics were searched. In order to test

searches (including the practice search, 242) in the same
condition. To test for significance of results, we used the
Mann-Whitney U test with p < .05, one-tailed. For precision,



there 1s no significant ditference between nonviz and viz tor
anv o the three topics fFor s-p-s. the trend 1s in tavour ot viz
in all three cases. but sigmiticantly so at the chosen level only
jor topic 242 (although tor topic 236 it only just musses). For
1-t-p. again the trend 1s nomunally 1n tavor of viz, but 1s again
sigruficant only for topic 242, For 1-u-p. the same trend holds,
and again viz 1s significantly better than noviz only for topic

242

For three of the tour measures we can see that there are ob-
vious topic differences which cannot be uccounted tor b a
learning etfect, since the direction 1s wrong  Two poimnts are
important to note here. First, it appears that topic 242 was
“easter  than the other two topics, and that topic 242 benetited
most from visuahzation. Second, 1t is clear that difterences in
topics are likelyv to affect results averaged over topics. unless
there are also quite large numbers ol searchers for each topic

MCondition/ Precision s-p-3 1--p ip
Topic
— Mean | Median SD Mean | Median SD Mean | Median sD Mean | Median <D
Moviz 242 0912 1 000 0.140 1 084 1.000 0.706 [ 0371 0365 0132 [ 0344 033 [ o
viz 242 0 898 1 880 0.113 1 899 1.750 0.888 0.545 0.53 0143 1434 0410 0T
noviz 236 0.227 0 145 0.232 1 347 1.210 0.939 0085 0.045 0 101 0.376 0 390 043
h;’.% 0215 0.140 0.244 2249 1.670 1.701 0.105 0.080 0.080 0472 0 440 0174
Moviz 203 0424 | 0470 [ 0178 [ 1326 | 1085 [ 0936 [ 0217 [ 0215 | 009 | 0347 | 0330 | 016
12 203 U392 0.330 0226 1.676 1.500 1 205 0239 0.280 0.070 0357 0370 0137
Table 2. Summary results for expenment 2. viz = with visualization, noviz = without visualization. The numbers tollowing the

condition designation indicate the topic searched. s-p-s = documents saved per search; i-t-p = interactive trec precision. t-u-p =

interactive User precision.

Interpreting these results 15 somewhat ditficult, although
thev are a bit more promising than those ol experiment 1. Itis
of some interest that only topic 242 showed signiticant differ-
ences between the noviz and viz groups. This might be ex-
plained by that topic's being tor some reason more suited to
visualization than the other two. Although the numbers of
relevant documents for the three queries are rather similar
(242 38. 236: 43, 203: 33), on the basis of median precision
reported by all ot the TREC-4 interactive track participants,
topic 242 1s “easlter  than topics 203 and 236 (0.2368 vs 0.1515
vs 0.0463, respectively). This of course follows the pattemn of
precision results by the searchers in experiment 2, but it 1s not
clear how this would explain the apparently beneficial etfect of
visualization tor this topic. An altermative explanation might
be that visualization ot this sort 1s helpful for naive searchers,
but loses its etfect as thev become more experienced with the
[R svstem. On the basis of the data we have available, there 1s
no wav to decide between these altematives.

In any event, it seems reasonable to accept, on the basis of
the results of experiment 2, that there could indeed be some
value to visualization ot the sort we have tested here. However,
this statement certainly must be very tentative, and subject to
much more testing. The results of experiment 1 do not lead to
anv such conclusion. It must be said, however, that the very
mixed nature of these results may well be an effect of the ex-
perimental design, and in particular of the inability to take
proper account of what may be very large topic differences and
searcher ditferences. Of course, another possible reason for
the seeming lack of effect of visualization is the
implementation that we chose. This i1ssue needs further
investigation.

6 Conclusions

The study reported here intended to demonstrate the potential
of visualization to support particular kinds of interactions in
IR, and to test one implementation of such visualization. Al-
though the results of our experiments are mixed, it appears that
some of them are positive enough to justify further such ex-

periments. But there are some other serious implications ot our
results.

We are not aware of other work reporting compansons ot
visualization tools for [R with equivalent non-visualization
interfaces. Our experience suggests that it i1s important to
conduct more such studies, in particular to move bevond
assuming the efficacy of visualization to demonstrating it in
experimental environments. Our studv also demonstrates the
severe problems that anse in conducting interactive [R
experiments. These include the problems of finding enough
subjects to account for inter-subject ditferences, and of being
able to account for inter-topic differences. Balancing these two
demands 1s an exceedingly ditficult problem, which 1s
currently severely exercising the TREC-3 interactive track
participants.

Another evaluation problem raised by our study is how to
measure the effectiveness of visualization tools. The problems
with using precision as a measure for evaluating interactive [R
are now well-known, especially if precision is decided
according to relevance judgments from experts, rather than the
searchers. [t is also the case that for certain functions of
visualization, precision is an inappropriate measure. But we do
not have available a suite of accepted alternative measures for
evaluating the effectiveness of systems with respect to these
functions. So it was necessary for us to invent some new
measures which appear appropnate to the IR tasks that we
wished to support. Whether these were good choices also needs
to be further investigated.

In conclusion, we find that this study has given some
support for the general idea of visualization as a tool for
enhancing user interaction with search results, and for the
specific tool with which we implemented this idea. We also.
find that the level of support for these statements from this
study is not high, and that it 1s necessary to conduct further
studies, with better designs, before we can become confident in
the value of visualization for these purposes, as opposed to
other tools for interaction. Finally, we find that our study has
shown, again, the necessity of developing better measures and
methods for the evaluation of interactive IR systems, and the



necessity of ngorous comparative evaluauon of visualization in
(R

Acknowledgments

Support from the ARPA contract No. F33615-93-1-1338 to the
first author is appreciated. The work of the second author was
in part supported bv NIST Cooperative Agreement No
TONANB3IHO0030

References

[Aboud, et al.,, 1993] Aboud. M, Chnisment, C , Razouk, R.
and Sedes, F. (1993) Querving a hvpertext intormation
retrieval svstem by the use of classification. /nformation
Processing MManagement, v. 29, 387-396.

[Arents & Bogaerts, 1993] Arents, H.C. and Bogaerts, W F L.
(1993) Concept-based retrieval ot hypermedia information —
from term indexing to semantic hyperindexing.} [nformation
Processing Management, v. 29, 387-396.

[Callan, et al.,, 1992] Callan, J.. Croft, W B. and Harding, S.
(1992) The INQUERY retneval svstem. In: DEXA-3: Third
International Conference on Database and Expert Systems
Applications

[Card, et al,, 1991] Card, S., Robertson, G. and Mackinlay, J.
(1991) The information visualizer, an information workspace} .
In: CHI '91: Proceedings of CHI 91 Human Factors in
Computer Systems.. New York: ACM.

[Harman, 1996] Harman, D. (1996) TREC-4, Proceedings of
the fourth Text REtrneval Conference. Washington, DC: GPO.

[Hearst, 1995] Hearst, M.A. (1995) TileBars: Visualization of
Term Distnibution Information in Full Text Information
Access} In: Proceedings of CHI 95. New York, ACM.

[Hemmye, et al., 1994] Hemmje, M., Kunkel, C. & Willett, A.
(1994) LvberWorld -- A visualization user interface supporting
full text retrieval, In: SIGIR ‘94, Proceedings of the 17th
Annual International Conference on Research and
Development in [nformation Retrieval. London: Springer
Verlag, 249-259.

[Korthage, 1991] Korthage, R (1991) To see, or not to see --
[s that the query” In: SIGIR '91: Proceedings of the I4th
Annual International ACM.SIGIR Conference on Research and
Development in Information Retrieval. New York: ACM, 134-
141

[Mukherjea, et al., 1995] Mukherjea, S., Foley, J. and Hudson,
S. (1995) Visualizing Complex Hypermedia Networks through
Multiple Hierarchical Views. In CHI 95. Proceedings of the

Conference on Human Factors in Computing Systems. New
York: ACM.

[Spoem, 1994] Spoern, A. (1994) InfoCrystal: A visual tool
for information retrieval and management.. In. CHI ‘94:
Human Factors in Computing Systems  Conference
Companion. New York: ACM, 11-12.

[Veerasamy, 1996] Veerasamy, A. (1996) [nteracuve TREC
at Georgia Tech [n: Harman, D., ed. The Fourth Text
REtrieval Conference (TREC-4). Washington, DC GPO, in
press.

[Veerasamy & Navathe, 1995] Veerasamy, A & Navathe, S
(1995) Querying, Navigating and Visualizing a Digital Library
Catalog. In: Proceedings of the Second [nternational
Conference on the Theory and Practice of Digital Libraries

[Veerasamy, et al, 1995] Veerasamv, A., Navathe, S and
Hudson, S. (1995). Visual Intertace tor Textual [ntormation
Retneval Systems. In: Proceedings of the Third Conference on
Visual Database Systems. [FIP 2.6




Effectiveness of a graphical display of retrieval
results

Aravindan Veerasamy!
veerasam Qcc.gatech.edu
College of Computing
801, Atlantic Drive
Georgia Institute of Technology
Atlanta. Georgia 30332-0280
Phone: 404-894-3791
Fax: 404-894-9442

Russell Heikes
russell.heikes@isye.gatech.edu
Statistics Center
School of Industrial Systems and Engineering
Georgia Institute of Technology

Atlanta, Georgia 30332

We wish to have this paper considered for the Best Student Paper Award. Veerasamy
is a full-time PhD student at Georgia Tech.

'To whom correspondence about this paper should be addressed



Effectiveness of a graphical display of retrieval
results

Abstract

We present the design of a visualization tool that graphically displays the strength of
query concepts in the retrieved documents. Graphically displaving document surro-
gate information enables set-at-a-time perusal of documents, rather than document-
at-a-time perusal of textual displays. By providing additional relevance information
about the retrieved documents, the tool aids the user in accurately identifying rele-
vant documents. Results of an experiment evaluating the tool shows that when users
have the tool they are able to identify relevant documents in a shorter period of time
than without the tool, and with increased accuracy. We have evidence to believe that
appropriately designed graphical displays can enable users to better interact with the

system.

1 Introduction

The overall concern of all components of an IR system is to present the user as much
relevant information as possible. While there has been a lot of work on effective
algorithms for retrieving and ranking relevant documents, not much attention has
been paid to study the effectiveness of user intevrface components of IR systems. Apart
from retrieval mechanisms, interactive IR systems must also be concerned with the
design of appropriate display mechanisms that present the retrieved information in
the “best possible manner”. We discuss what constitutes “best possible” display by

examining a typical user interaction with an IR system. A typical interaction with



current [R systems proceeds as follows:

User in an Anomalous State of Knowledge [BOBS2] expresses his information

need as a query that is interpretable by the system.

The system matches the query with the stored documents and retrieves a set
of documents. In the case of ranked output systems, the result is ranked in the
decreasing order of relevance. Boolean systems may rank the documents in a

chronological order.

At the first stage of display, a set of document surrogates for the retrieved
documents are displayed to the user. These surrogates typically consist of a

combination of titles, author, source, date of publication, etc.

The user inspects the document surrogates and requests more information (such
as the full text if available) about those that look relevant. This leads to a
second stage of display that provides as much information about the document

(in many cases, the complete document itself) as is available in the system.

After going through a sufficient number of documents, the user quits the session

or reformulates the query to retrieve a better set of documents.

In this scheme, the first stage display of document surrogates is meant to provide

a concise and accurate indication of document content. The second stage display

of documents provides more information about the document. In cases where the

document full text may not be available for the second stage (such as a typical online

library catalog), users proceed to a third stage where they examine a paper-copy in

library bookshelves where the complete document may be available.



Thus as the user progresses from the initial to the later stages of display. that
which is displayed is more complete and informative, allowing increasingly accurate
relevance judgments. However, since more information is displayed about a document
in later stages of display. they are also more time-consuming to peruse. Furthermore.
requesting second stage of display may be more costly since some systems charge a
certain fee to deliver the full text of documents. Apart from human frustration of
waiting for the delivery of full text, one may have to pay for it since certain svstems
charge the user based on connect-time. Therefore, it is important for the searcher to

be reasonably certain that it is worthwhile requesting this second stage of display.

For the user to make accurate relevance judgments based on the first stage display,
the form and content of first stage of display should provide good indication of what
document is about. The nature of the first stage display should be such that it can
be perused in the shortest possible time - the purpose of the first stage display (of

providing a quick and concise indication of document content) is lost otherwise.

Displaying a great deal of information at the first stage of display could be a
useful device for judging the relevance or usefulness of the document. The advantage
in displaying more document information in the first stage is that when the user
requests the second stage display, it is more likely that the document will be relevant
to the user. The disadvantage is that since there is more information (and hence more
text) to display in the first stage, only fewer items can be presented due to limitations
of screen real-estate, and more time must be spent perusing the first stage display.
Thus, the total number of documents seen by the user may well be fewer, although

the quality of decision-making may be higher.



[f, on the other hand, one chooses to display less information in the first stage.
then the decision about requesting second stage display is less secure. Hence. the
proportion of second-stage documents which turn out to be relevant is likely to be
low. The advantage of seeing more documents. more quickly, in the first stage is thus
offset by the additional time that is spent perusing non-relevant documents in the

second stage.

A possible means to addressing this problem of displaying more information in
the first stage without increasing perusal effort and perusal time is to display infor-
mation in some form that does not require as much perusal time and screen space
as text. Graphical displays (visualizations) of the characteristics of documents which
are significant in supporting the decision to peruse or not, could enable set-at-a-time

perusal of documents, rather than document-at-a-time perusal of text displays.

In the remainder of this paper, we describe a visualization tool meant to address
this issue; describe and present the results of an experiment evaluating the tool; and

draw some conclusions about its effectiveness as a first stage display.

2 Visualization tool

The visualization tool is an add-on to a basic interface for an IR system. There is a
query window. The titles and ranks of retrieved documents (first stage of display) is
shown below the query window. Figure 1 shows the visualization tool corresponding
to the query “How has affirmative-action affected the construction-industry, construc-

tion projects and public works”.

The visualization consists of a series of vertical columns of bars. There is one



@] How s that BEHBIHHIDHHBHIBNHHH BB BN
=

armmm=-acuon- [l |1 e b o e L Lo |
affect” s EpmEsn & j-lu s TTT] s [T sels @ B Eaim ']

construct™ - du: : ; "

- et EEEE b o kel theineEl ot 1o 1 1

construct™ st EEEEORERQ e bnen kB hunnan bbb abnnnalullbalantnd olached Bheuls
project” stesibanniln wsennkiltbvee sshinnfololoet wiunlocilennbul Bsnveas
public*™ salusscesfonliatatceisNssewatabliadindns win Eoislscess skelss sesum
Total sum:

llll:-lll‘:;oli :II!IZLIIll:lll-;llll:lll;i:!?ll:illlsLtc-l:lti;l;ln-llLll- !

Figure 1: Visualization of results. The highlighted vertical column corresponds to
document ranked 14. The title of document ranked 14 document will also be high-
lighted in the title display window. Clicking the highlighted vertical column brings
up the full text of that document.



column of bars for each document. The left-most vertical column corresponds to the
document ranked 1 and the right-most vertical column corresponds to the document
ranked 150. In each vertical column there are multiple bars — one each for each queryv
word. The height of the bar at the intersection of a query-word-row and a document-
column corresponds to the weight of that query word in that document. Moving the
mouse cursor over the vertical columns highlights the column directly beneath the
mouse cursor and simultaneously highlights the title corresponding to that document
in the title-display window. The visualization window is scrollable, in case the number
of query words exceeds the available vertical space. The words in the visualization are
also stopped and stemmed. Thus the combination of the visualization tool and the
title display forms the first stage of display in our system. The basic interface. and

the visualization tool utilize the INQUERY retrieval engine, version 2.1p3 [CCH92].

2.1 Response to the need for a concise display of document
content

In the Introduction, we discussed the need for a concise first stage display which can
also be perused quickly. We believe this visualization scheme to qualify for such a first
stage display. [t provides information valuable in deciding the relevance of document
such as the weight of query concepts in the retrieved documents. The information is
also displayed in a highly condensed way, and allows many document surrogates to be
perused at one time. While textual display of document surrogates force the user to
peruse them a document-at-a-time, this visualization lets the user peruse document
surrogates a set-at-a-time. The presence or absence of specific significant words can be

quickly seen, and it is possible, in one glance, to identify sequences of documents which



do. or do not have important contributions from specific query words. For the example
search topic ("How has affirmative action affected the construction industry™?7). there
are two facets that are central: “effirmative action” and “construction industrv™,
From the visualization tool, we can immediately see that most of the documents are
concerned with the “construction industry”™ and only a portion of them have the term
“affirmative action™. We can also see that the “affirmative action™ concept is spread
sparsely throughout the top 70 documents. The graphical format of presentation has
some important advantages in that it is more condensed and can be more easily and

quickly perused than an equivalent text display.

3 Related work

A number of visualization schemes for information retrieval have been proposed
(CRM91, MFH95, Kor91, Spo94, HKW94, ACRS93, AB93] But most of these do
not address either the display of query results or the problem of support of relevance
assessment. An exception is TileBars [Hea95], but there are some important ways in

which TileBars differs from the visualization proposed here.

e TileBars provide information on how the different query facets overlap in dif-
ferent sections of a long document. Our visualization scheme does not provide

information at that fine levels of granularity.

e To make the best use of such additional information in TileBars, the user has to
decompose the information need into more-or-less orthogonal facets of a query.
However, in our visualization, the user can type in the information need as a

free-form textual query.



o TileBars presents the document surrogates in a list. making it more difficult
than in our tool to gain an overall picture of the query word distribution for a

whole set of documents in one glance.

o TileBars seems best suited for long documents, while our visualization scheme

does not seem to be constrained by length.

There are a handful of studies that have investigated the effectiveness of document
surrogates as content-indicators to enable human relevance judgments [Jan91, Sar69,
RRS61, Tho73. MKB78]. None of them studied the effectiveness of graphical displays
(visualizations) of document surrogates as content indicators. A result common to all
of these studies is that “accuracy” in relevance judgments increases with increasing
information (e.g. Title < Abstract < Full text). On the whole, we find that there
has been a lack of studies to evaluate the effectiveness of graphical displays of docu-
ment surrogates as indicators of relevance. This is mainly due to the fact that only
recently has it been technologically feasible to render such displays in real-time by

the computer. Our study is an attempt to fill that gap.

4 Experimental Setup

In this section, we discuss an experiment to test the effectiveness of the visualization
tool as a first stage display, and as a tool to aid effective query reformulation. The part
on query reformulation will be discussed in a subsequent paper. We used a portion of
the TREC database consisting of ali of diskl and disk2 except the “Federal Register”
documents. We used INQUERY 2.1p3 as the search engine [CCH92|. The retrieval

mechanism of the search engine is based on bayesian inference networks using the



work occurrence statistics in documents. All of the TREC information topics that
we used were very detailed in their description of information need. We picked ten

information topics for this study.

The criterion used to pick the topics will be discussed below. A slightly modi-
fied version of the Description field (mainly removing the introductory words such as
“Document will report™) was submitted to the retrieval system. 120 documents from
the top 130 retrieved documents were obtained and split into two groups as follows:
High precision group consisting of 60 documents ranked 1 through 60 and a low pre-
cision group consisting of 60 documents ranked 91 through 150. We controlled for
precision as a factor in the experiment since we felt that precision might impact the
perusal time: Users might more quickly identify non-relevant documents, than the rel-
evant documents. Also, earlier studies [Sar69, RRS61, MKB78] indicate that precision
also influences the ability to judge non-relevance. Each of the two precision groups
were further split into two groups: documents with odd ranks and the documents with
even ranks. Thus, there were 4 groups of 30 documents for each information topic:
High_precision_even _ranks, High_precision.odd_ranks, Low_precision_even_ranks and
Low_precision_odd_ranks. The criterion used to pick the information topics for this
study was that the “description” field when used as the query statement must retrieve
a set of documents that had a distinct split in the precision values between the high
precision group (ranks 1 through 60) and the low precision group (ranks 90 through
150). The precision values in the high precision group for all the chosen topics ranged

from 0.43 to 0.6 while those of the low precision group ranged from 0.03 to 0.23.

The experiment we describe was aimed at investigating the effect of visualization

on two problems for users:

10



o accurately identifving relevant documents

o effectively reformulating queries

In this paper. we report on results relevant to only the first of these. but because
both problems were addressed in the same experimental design, we describe the entire

experiment.

In the experiment, users were set two different types of tasks:

e Task of judging relevance: The users were given the information topic and the
search statement used to retrieve documents. They were asked to judge the

relevance of each of the 30 documents that were displayed to them as one of

— relevant to the information topic.
— non-relevant to the information topic.

— Unsure.

For the purposes of the current experiment. clicking the left mouse-button over
a document title in the title-display window or over a vertical column in the
visualization window marks the document as relevant. Clicking the right mouse
button over the title (or the column in the visualization window) marks the
document as non-relevant. Middle-clicking it marks the document as “Unsure”.
Also, left-clicking a query word in the visualization window marks all documents
containing that query word as relevant. Right-clicking a query word marks all
documents that do not contain that word as non-relevant. Full text or any other

information about the documents was not made available to users.

11



o Query reformulation task: Here the users were asked to “modifv the precon-
structed query into a form that will retrieve more relevant documents™. For half
of the topics. users had the visualization tool and for the other half users did
not have the visualization tool - making it a within-subjects, between-topics

study.

For the “relevance judgment” task, precision (two levels: high and low) and visu-
alization (two levels: with or without) were controlled in this within-subjects, within-
topics study. The even ranked document group was shown with the visualization tool
and the odd ranked document group was shown without the visualization tool. The
users were told that the query was issued against 4 different databases and the top 30
documents from each database was presented to them as 4 separate tasks - two with
and the other two without visualization. For a given topic, the first task was always
a “relevance judgment” task with a high-precision group. The next task was a query
reformulation task. The third, fourth and fifth tasks were relevance judgment tasks
for the other three groups of 30 documents. The first task was always a relevance
judgment task because we wanted the users to have a good feel for the retrieved set
of documents before they embarked on the query reformulation task. The first task
of relevance judgment was always done with a high-precision document group be-
cause, in the real-world the users almost always inspect the top-ranked high-precision
document range before they go down the ranks to inspect the low-precision range.
Each user did the 5 tasks (4 relevance judgment tasks for the 4 document groups,
and one query reformulation task) for 6 information topics, and finally did the search
reformulation task for 4 more topics. The 6 topics for which the users did both the

relevance judgment and query reformulation were:

12



Topic 77: Document will report a poaching method used against a certain tyvpe

of wildlife.

Topic 115: Document will report specific consequence(s) of the U.S."s Immigra-

tion Reform and Control Act of 1986.

Topic 134: Document will report on the objectives, processes. and organization

of the human genome project.

Topic 136: Document will report on attempts by Pacific Telesis to diversifv

beyond its basic business of providing local telephone service.

Topic 145: Document will describe how, and how effectively, the so-called ~pro-

[srael lobby™ operates in the United States.

Topic 197: Document will discuss legal tort reform (a civil wrong for which the
injured party seeks a judgment) with regard to placing limitations on monetary

compensation to plaintiffs.

The order in which the six topics were presented were balanced across the 37

subjects. The order in which the two visualization conditions appeared for a given

topic were also balanced. The order in which the two precision groups appeared in

a given topic was not balanced due to the constraint that a high precision group is

always the first condition.

The human subjects in this experiment were Georgia Tech undergraduate students

enrolled in a one-credit hour class on library searching. Students who participated in

the study got full scores in two homework assignments. The complete experiment was

split over two days. Subjects were asked to sign a consent form upon arrival. They

13



were then given a demo of the system by the experimenter. They then had a hands-
on tutorial where they practiced both the “relevance judgment™ task and the “querv
reformulation” task. Then, they did the 5 tasks for each of the three information
topics marking the end of the experiment for the first day. On the second day. they
did the 5 tasks for each of the other 3 topics, followed by the “query reformulation”

task for 4 other topics.

The subjects were given monetary incentive to do well in the experiment. Theyv
were evaluated as follows: We knew a-priori, the relevance of all the documents as
given by the TREC assessors. For the relevance judgment task, for each document the
user obtained a +1 point if their relevance judgment matches the TREC assessor’s
judgment, a -1 point if their judgment does not match, and 0 points if thev are
“Unsure”. The user has to judge all of the 30 displayed documents. Thus, for the 4

groups of 30 documents, for the 6 topics, each subject made a total of 4x30x6 = 720

judgments.
TREC
Rel Not_rel
Rel | RR RN

User Notrel | NR NN
Unsure | UR UN
The time taken by the subject to complete a task was also noted down. The top

10 quickest subjects with the most points were given monetary awards as follows:
All participants were ranked on increasing order of time and decreasing order of
points scored. Each participant’s rank on both the categories (time and points) were
added to get the sum-rank. The participant with the lowest sum rank was considered
the best performer. Hence, to do well, one must be both accurate and quick. The
top performer was given $50, the second and third performers were given $30 each,

the fourth through sixth performers were given $20 each and the seventh through

14



the tenth performers were given 510 each. The participants were told of the rating

scheme. so they optimized for time and accuracy equally.

Since we claim that graphical display of additional document surrogates does not
increase perusal time significantly (cue to the set-at-a-time perusal of documents). we
predict that the time taken to complete the task for the visualization group will not
be significantly higher than the non-visualization group. We also predict an increase
in accuracy of relevance judgments for the visualization group, because we claim that
very pertinent document surrogate information (i.e.. the weight of query words in the
retrieved documents) is being displayed in addition to the standard text surrogates

such as title and source.

Effectiveness of the visualization tool was measured by what the subjects opti-
mized upon: time, accuracy and the combined time_accuracy rank, where accuracy
is the number of correct judgments minus the number of incorrect judgments after
discarding the Unsure judgments, i.e., Accuracy = RR+NN-RN-NR. However, since
the accuracy measure includes the correct judgments, Type [ errors and Type II er-
rors all in one score, we split the accuracy measure into distinct components. We
define “Interactive Recall” as the ratio of the truly relevant documents that were
judged as relevant by the user (i.e., Interactive Recall = RR/(RR + NR + UR)). We
define “Interactive Precision” as the ratio of the documents judged as relevant by the
user that are truly relevant (Interactive precision = RR/(RR + RN)). Here, a “truly
relevant” document is a document that was judged relevant by the TREC assessor.
Thus, if are trying to build an effective first stage display mechanism, we would strive
for a display mechanism which would enable a user to pick (and read the full-text

of) all of the relevant documents and only the relevant documents displayed. Picking

15



a non-relevant document as relevant would be time and money wasted perusing a
non-relevant document. And. not being able to pick a relevant document. would be

a missing out on relevant information.

However. “Unsure™ documents pose a problem. It can be handled in two wavs: [f
we assume that a user always reads the full text of an Unsure document, we should
treat the Unsure documents as being judged relevant by the user. Converselv. if a
user always skips over an Unsure document, we should treat the Unsure document
as being judged non-relevant by the user. Below, we present the analysis with both
the interpretations. Thus, if we assume the user to inspect the Unsure documents.
we treat the Unsure documents as relevant.

Interactive Recall = (RR + UR) / (RR + NR + UR)

[nteractive Precision = (RR + UR) / (RR + UR + RN + UN)

[f we assume the user to not inspect the Unsure documents, we treat the Unsure
documents as not-relevant,

Interactive Recall = RR / (RR + NR + UR)

Interactive Precision = RR / (RR + RN)

5 Results

Since there were 37 subjects, and all subjects did 6 topics with 4 tasks (for each
of the 4 groups within the topic) per topic, there were a total of 37 x 6 x 4 = 888
observations. The approach used :n all analyses was to construct a least squares,

linear additive model of each performance measure as a function of the main effects

16



and interactions of the manipulated experimental variables.

The need for consideration of possible learning/ordering effects. due to the same
subjects providing multiple responses at various experimental conditions, is minimized
by the balancing of the order in which different experimental conditions are presented
to the subjects. However, due to the requirement that within a topic. the high pre-
cision condition always be presented first, this balance could not be achieved for this
factor. To account for this, the model included a term representing the observation
order within subject/topic combination. The design thus allows for independent es-
timation of all effects except precision and observation order. The analysis presented
will focus on the statistical significance of each term assuming the presence of the
the other term in the model (i.e on the adjusted sums of squares in the Analysis of

Variance (ANOVA) tables, as this provides evaluation of the marginal effect.

The residuals of the models constructed were analyzed to assure reasonable com-

pliance with the normality, independence and constant variance assumptions required

for validity of ANOVA,

The ANOVA tables for log)o(time), accuracy and final score are shown in Tables
X, XX and XXX. The means and standard errors are shown in table Z. As can be seen
from the tables, viz is significantly better than noviz for logtime, accuracy and final
score. It is also clear that low precision condition does significantly better than high
precision for logtime, accuracy and final score. The interaction effects of precision and
visualization are shown in figures 2, 3 and 4 with a 95% confidence interval around
the means. When precision is high, visualization does not significantly affect logtime,
but there is a decrease in logtime of 0.08 when precision is low. This corresponds to

a reduction of 17.2 seconds, nearly a 20% decrease in average time required. Thus we

17



can conclude that the visualization tool helps users in identifying document relevance

more quickly.

However. for the accuracy measure, there is no significant interaction between pre-
cision and visualization as shown by the almost-parallel lines in figure 3. Precision has
a huge impact on accuracy, again consistent with previous studies [Sar69. MKB73].
While the effect of visualization on accuracy is significant, it is not as huge as the
effect of precision. Users can identify document relevance more accurately with the vi-
sualization tool than without. The ability of users to identify non-relevant documents
as non-relevant is much higher than their ability to identify relevant documents as rel-
evant. This is reflected in the significantly very high accuracy value for low precision

than for high precision.

Final score is a rank measure, which reflects the users ability to accurately and
quickly identify document relevance. It is plotted in figure 4. Lower values are better
for final score. As with accuracy, precision has a much higher impact than visual-
ization, but both variables have a significant effect. Visualization tool helps and so
does low precision. The improvement in final score averages 40.8 when using the

visualization tool.

Table X. Analysis of Variance for logtime
Source DF Seq SS AdjSS Adj MS F p
precis 1 0.91889 0.45954 0.45954 30.56 0.000
viz 1 0.36761 0.36761 0.36761 24.44 0.000
precis*viz 1 0.29215 0.29215 0.29215 19.43 0.000

Table XX Analysis of Variance for Accuracy

Source DF  SeqSS AdjSS Adj MS F P
precis 1 16782.27 11842.00 11842.00 532.55 0.000
viz 1 490.54 490.54 490.54  22.06 0.000

precis*viz 1 24.67 24.67 24.67 1.11 0.293

18



Log(base 10) of time in seconds

2.06 T —
Logtime for Low precision -+--
Logtime for High qrecismn x
204 + o . PR . . . E . . ® 4
L -
2.02 + ’ .
&\\\

2 4
198 | |
1.96 i

T
1.94 - e l §
1.92 l -
1.9 . |
No Viz Viz

Figure 2: Interaction effects of precision and visualization on logtime.

Table XXX. Analysis of Variance for Final Score

Source. | DF SeqSS AdjSS Adj MS F P
precis 1 9901156 6789177 6789177 429.68 0.000
viz 1 362841 362841 362841  22.96 0.000

precis™viz 1 133133 133133 133133 8.43 0.004

TABLE Z. Least Square Means and Standard errors for Logtime, Accuracy and Final
score (independent variables: precision 0-High, 1-Low and visualization O-present,
1-absent):

PRECIS VIZ LOGTIME ACCUR FINSCOR
0 0 2.01 15.72 353.2
0 1 1.93 17.54 288.4
1 0 2.04 5.72 576.1
1 1 2.04 6.87 560.2
STD ERR OF EST 0.009 0.35 9.4

As discussed before, accuracy combines the following four items into one: ability

to judge relevant and non-relevant documents (RR + NN), type I error, i.e., wrongly

19



20

600

550

500

450

400

350

300

250

Accuracy = RR + NN - RN - NR

T T

Accuracy for Low precision -+ -
Accuracy for High precision % J

%,A e ——— -

L 1

No Viz Viz

Figure 3: Interaction effects of precision and visualization on accuracy.

Final score (Lower values are better) = Time rank + Accuracy rank

Final score for Low precision -+--
Final score for High ?recision X

| L

No Viz Viz

Figure 4: Interaction effects of precision and visualization on Final Score.

20



rejecting relevant documents. and tvpe [l error, 1.e., wrongly accepting non-relevant
documents. We feel that identifying non-relevant documents (NN) in and of itself is

not as important as the other 3 items. For. it is important

e to minimize Tvpe [ errors, or else one runs the risk of missing out too manv

relevant documents.

e to minimize type Il errors, or else one runs the risk of wasting too much moneyv

and effort in examining non-relevant documents.

We can capture all the interesting data with interactive recall and interactive preci-
sion as described in the previous section. In our tables, the interactive precision and
interactive recall are denoted by “iprecwu” and “irecwu” respectively when users are
assumed to treat unsure documents as relevant. Correspondingly, when unsure docu-
ments are assumed to be treated as non-relevant, interactive precision and interactive

recall are denoted by the mnemonics “iprecwou” and “irecwou” respectively.

In considering the interactive precision measure there are a large number of cases
where the values result in responses of zero divided by zero when users did not pick
any of the displayed documents as relevant. Rather than eliminate these cases, the
raw data (i.e., RR, RN, NR, NN, UR, UN) was aggregated over high and low pre-
cision levels for the same viz condition and the interactive precision measures then
computed. Thus, for example, for topic 77, the RR values for the high_precision_viz
case for subject 1 was added to the RR value of the low_precision_viz case of the
same subject 1 and same topic 77. Now we end up with 444 observations instead of
the original 888 observations. This eliminated the need for the “precision” term in

the model, although the variability due to this factor is included in the error term.

21



However for iprecwou, there remain 2 cases where the response variable is still zero
divided by zero. The result is a design where estimated effects are minimally depen-
dent. Also. there are some quantization errors introduced in the interactive precision
measure due to the denominator value being too close to zero?. The statistical signif-
icance of visualization for iprecwou, iprecwu. irecwou and irecwu are shown in table

X1. and table Z2 shows the estimated means.

Visualization had no significant effect on interactive precision when Unsure doc-
uments were treated as non-relevant (iprecwou) at the 0.05 level, however, it was
significant when Unsure documents were treated as relevant (iprecwu) (See figure 3).
Although statistically significant, the absolute increase in interactive precision is very
minimal (about 0.015). However, visualization had a significant effect on interactive
recall (both irecwou and irecwu). Also, in the absolute sense, the improvement in
interactive recall due to visualization is approximately 0.07 4/- 0.02. Clearly this is

of sufficient magnitude to be of practical importance.

TABLE X1 ANOVA for iprecwou, iprecwu, irecwou and irecwu showing the effect of
visualization

Metric DF SeqSS AdjSS Adj MS F P
iprecwou 1 0.03245 0.03065 0.03065 3.08 0.081
iprecwu 1 0.04364 0.04166 0.04166 5.45 0.021
irecwou 1 0.62496 0.62601 0.62601 35.89 0.000

1 0.42259 0.42787 0.42787 27.46 0.000

irecwu

TABLE Z2. Least squares means of iprecwou, iprecwu, irecwou, irecwu for visualiza-
tion:

viz ‘ iprecwou iprecwu irecwou irecwu

0 0.6117  0.5753  0.4454  .5484

1 0.6284  0.5947  0.5209  .6108

Std error .007 .006 .009 .008

2For iprecwou, there were 2 cases where the denominator had a value of 1, 5 cases of value 2, 6
cases of value 3. For iprecwu, there were 0 cases of denominator values 0 and 3, 1 case of values 1
and 2. Given that there were 444 observation points, these quantization errors are not expected to
distort the results much.

22



Interactive precision
0.65 T !
With unsure as nonrel: RR/(RR + RN) -+-
With unsure as rel: (RR + UR)/(RR + UR + RN + UN) -
064 B

0.63 4

o2¢ | T .

0.61 -

0.6 | | T

0.57 | 4

0.56 - !
No Viz Viz

Figure 5: Effect of visualization on interactive precision (when Unsure documents are
treated as relevant and non-relevant documents).

23



0.64

0.62

0.6

0.58

0.56

0.54

0.52

0.5

0.48

0.46

0.42

Interactive recall
T L
With unsure as nonrel: RR/(RR + NR + UR) -+-
With unsure as rel: (RR + UR)/(RR + NF +UR)

Il 1

No Viz Viz

Figure 6: Effect of visualization on interactive recall (when Unsure documents are
treated as relevant and non-relevant documents).

24



6 Conclusions

We have presented a visualization tool designed to be an effective first stage displav
of retrieved documents. User experiments empirically show that when precision is
low. the visualization tool helps users in identifving document relevance quicker by
about 20%. This is made possible due to the set-at-a-time perusal of graphical dis-
plays rather than document-at-a-time perusal of textual displays. The experiment
also shows that users with the visualization tool did significantly better in accurate
identification of document relevance. We broke down the accuracy measure into two
components: interactive precision and interactive recall to gain a better understand-
ing of the relevance judgment process. While the effect of visualization tool was
marginally significant for interactive precision, it was highly significant for interactive
recall. Thus, we can safely say that the visualization tool helps users in identify-
ing more relevant documents out of the displayed documents. It also helps users in

identifying them more quickly.

In an earlier paper [VB96], we discussed the difficulty of conducting interactive
user experiments in [R. We mentioned the difficulty of huge inter-topic differences,
inter-subject differences, the large number of subjects needed to account for these
differences and how these factors severely affect the interactive track of TREC par-
ticipants. There was also the problem of using appropriate measures to evaluate
different user interface components and the lack of established metrics for these pur-
poses. It is worthwhile noting how we approached these problems in the experiment
described in this paper. At the outset, we had to be extremely specific in our claims

about where the visualization tool would be of help. Having narrowed the scope

25



of the experiment to these claims. we had to devise a scheme where inter-subject
and inter-topic variability could be kept to a minimum. By restricting the task to
relevance judgment of documents. we could safely construct a within-topic. within-
subject experiment that would not threaten the extensibility of our inferences to the

real world.

In addition, in the absence of established interactive metrics, we had to come
up with our own measures of effectiveness of graphical displays (such as interactive
precision and interactive recall). [t remains to be seen if such choice of metrics are
appropriate and if they are of real impact in terms of the quality of interaction of
end-users. The lack of convincing answers to the above questions points to the acute
need for more interactive experiments to study human interaction with ranked output
IR systems and to study the effectiveness of emerging display mechanisms such as

visualizations.

Acknowledgements

We deeply appreciate the help of Neff Walker who helped us in the design of the
experiment. Many thanks to Nick Belkin who has been constantly supportive of the
work and providing valuable feedback to revisions of this paper. Support from ARPA

contract No. F33615-93-1-1338 to the first author is appreciated.

References

[AB93] H.C. Arents and W.F.L. Bogaerts. Concept-based retrieval of hypermedia
information - from term indexing to semantic hyperindexing. Information

Processing Management, 29:387-396, 1993.
[ACRS93] M. Aboud, C. Chrisment, R. Razouk, and F. Sedes. Querying a hyper-

text information retrieval system by the use of classification. Information

Processing Management, 29:387-396, 1993.

26



[CRM91]

[Hea95]

[HKW94]

[Jan91]

[Kor91]

[MFH95]

[MKB7S]

[RRS61]

[Sar69]

[Spo94|

[Tho73]

[VB96)

N.J. Belkin, R.N. Oddy. and H.M. Brooks. Ask for information retrieval:
Parts [ and II. Journal of Documentation. 38(2,3). 1932.

J.P. Callan. W.B. Croft. and S.M. Harding. The inquery retrieval svs-
tem. In Third International Conference on Database and FErpert Systems
Applications. September 1992.

S. Card. G. Robertson, and J. Mackinlay. The information visualizer.
an information workspace. In Proceedings of CHI 91 Human Factors in
Computer Systems., 1991.

Marti A. Hearst. Tilebars: Visualization of term distribution informa-
tion in full text information access. In Proceedings of CHI 95, Denver.
Colarado., 1995.

Matthias Hemmje, Clemens Kunkel, and Alexander Willet. Lyberworld -
a visualization user interface supporting full text retrieval. In Proceedings

of the 17th Annual International Conference on Research and Development
in Information Retrieval, pages 249-259, 1994.

Joseph W. Janes. Relevance judgements and the incremental presentation
of document representations. [PM, 27(6):629-646, 1991.

Robert Korfhage. To see, or not to see - is that the query? In Proceedings
of the 14th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 134-141, 1991.

Sougata Mukherjea, James. Foley, and Scott Hudson. Visualizing com-
plex hypermedia networks through multiple hierarchical views. In ACW

SIGCHI, 1995.

Richard S. Marcus, Peter Kugel, and Alan R. Benenfeld. Catalog infor-
mation and text as indicators of relevance. JASIS, pages 15-30, Jan 1978.

G.J. Rath, A. Resnick, and T.R. Savage. Comparisons of four types of
lexical indicators of content. American Documentation, pages 126-130,

April 1961.

Tefko Saracevic. Comparative effects of titles, abstracts and full texts on
relevance judgements. In Proceedings of the ASIS, pages 293-299, 1969.

Anslem Spoerri. Infocrystal: A visual tool for information retrieval and
management. In Human Factors in Computing Systems CHI 94 Confer-
ence Companion, pages 11-12, 1994.

C.W.N. Thompson. The functions of abstracts in the initial screening of
technical documents by the user. JASIS, 24:270-276, 1973.

Aravindan Veerasamy and Nick Belkin. Evaluation of a tool for visual-
ization of information retrieval results. In Proceedings of the 19th Annual
International ACM SIGIR Conference on Research and Development in
Information Retrieval, 1996.

27



PART 3

Metadata Management for
Intelligent Query Processing



PUBLICATIONS (PARTS3):

[2.1]. Jeff Pittges. " Maintaining Instance-Based Constraints for
Semantic Query Optimization,"” In Proceedings of the Sixth IFIP TC-2
Working Conference on Data Semantics (DS-6) , Stone Mountain,
Georgia, May 1995

[2.2]. " Maintaining Semantic and Structural Metadata in

the Metadata View Graph," J. Pittges, L. Mark, and S. Navathe. In
Proceedings of the Seventh International Conference On
Management of Data, Pune, India, December 1995.



Maintaining Instance-Based Constraints
for Semantic Query Optimization

Jeff Pittges

College of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332-0280
(404) 853-9381
pittges@cc.gatech.edu
http://www.cc.gatech.edu/grads/p/Jeff.Pittges/pittges.html

May 3, 1995

Abstract

Semantic Query Optimization has traditionally relied upon scheme-based integrity
constraints that are valid for all instances of a database. Instance-based constraints.
which are only valid for certain states of a database, contain more information than
scheme-based constraints because they are specific to the current contents of the
database. This makes instance-based constraints more useful to semantic query op-
timization. However, instance-based constraints are highly sensitive to any changes
made to the database and must therefore be updated and validated before they can be
applied.

A Metadata View Graph (MVG) is a metadatabase that stores instance-based
constraints, along with statistical and structural metadata, for logical views of the
database. Constraints at this level are even more useful to semantic query optimiza-
tion because they are specifically tailored to the intermediate results of a query. This
paper reviews existing methods for constraint discovery, describes how constraints are
stored in the Metadata View Graph at compile-time, and describes how the MVG
Framework retrieves and maintains instance-based constraints at run-time. The paper
then analyzes how to apply updates to instance-based constraints in order to refresh
them.

Keywords: Metadata View Graph, Instance-Based Constraints, Semantic Query
Optimization, Constraint Discovery, Metadata Maintenance.



1 Introduction

Semantic query optimization [HZ30, Kin81. SO89, CGM90. SSD92. HK93' uses transforma-
tion rules to reformulate a query into a semantically equivalent query that is more efficient
to execute. Traditionally. transformation rules have been derived exclusivelv from scheme-
based integrity constraints that are valid for all instances of a database. Transformation
rules based on this tvpe of constraint are desirable because the rules remain valid when
changes are made to the database since changes cannot violate the integrity constraints.
Unfortunately. scheme-based constraints are typically so general that they are of little use.
For example. an integrity constraint may require an employee’s salary to be greater than
zero.

Recently. a number of researchers [YS89, S5592, SHKC93, HK94] have proposed methods for
discovering instance-based constraints (also referred to as dynamic constraints in [YS89] and
derived constraints in [SSS92|) which are only valid for particular instances of the database.
[nstance-based constraints contain more information than scheme-based constraints because
they represent the actual contents of the database. For example, an instance-based constraint
may assert that the salary of all employees is greater than or equal to $22,000 and less than
or equal to $85,000. Although this constraint is more useful than the integrity constraint
given above, instance-based constraints are sensitive to changes made to the database, so
they must be maintained whenever the database is updated.

A Metadata View Graph is a metadatabase that maintains instance-based constraints for
logical views of the database. Constraints at this level are even more useful to semantic
query optimization because they are specifically tailored to the intermediate results of a
query. For example, one view might represent graduate students and another view might
represent faculty. Both views would maintain an instance-based constraint on salarv, but
the salary range for graduate students would be much less than the salary range for faculty
members. Therefore, when given a query involving graduate students, the semantic query
optimizer could use the salary constraint for graduate students to reformulate the query.

In addition, capturing instance-based constraints for views of the database allows the query
context to influence the optimization process during semantic query optimization. The
profitability [SO87] of a rule can be adjusted for each view. Therefore, although the same rule
may appear in several views, the rule can be applied differently based on the query context
represented by each view. The rules for a particular view can be ordered by associating
a context-sensitive salience (priority) with each rule. In this way, the views partition the
semantic constraints which allows the constraints to be precisely tailored to particular data
sets. Partitioning reduces the number of rules which must be searched during semantic query
optimization and improves rule selection by prioritizing rules according to the query context.

The rest of this paper is organized as follows. Section 2 describes the Metadata View
Graph Framework. This section provides a structural description of the Metadata View
Graph, reviews existing methods for discovering instance-based constraints, and describes
how instance-based constraints are stored in the Metadata View Graph. The section also



describes how instance-based constraints are retrieved at run-time and used to select the
best query execution plan. Section 3 presents the general problem of maintaining instance-
based constraints. presents various representations that allow instance-based constraints to
he maintained, and analyzes the problem of applyving updates to instance-based constraints
in order to refresh them. The last section summarizes the contributions of this paper and
describes future tasks for this research.

2 The MVG Framework

The Metadata View Graph Framework [PMN95] supports the integration of various ap-
proaches to query optimization. As shown in Figure 1, the framework consists of an opti-
mizer and a metadatabase. The MVG Framework has been developed with two objectives
in mind: (1) improve query optimization. and (2) provide for a highly extensible query opti-
mizer. Query optimization is improved by maintaining metadata, especially instance-based
constraints which improve semantic query optimization, multiple query optimization, incre-
mental query computation, and dynamic plans. Three types of knowledge are required by the
query optimizer: (1) procedural knowledge specific to each type of querv optimization, (2)
control knowledge which integrates the various types of query optimization together, and (3)
domain knowledge (metadata about the database). The MVG Framework maintains these
three types of knowledge separately in order to facilitate a highly extensible architecture.
The optimizer and metadatabase can be extended incrementally as new approaches to query
optimization are developed.

This research focuses primarily on the metadatabase (the Metadata View Graph) which
was inspired by considering six types of query optimization: syntactic, physical, semantic,
dynamic, multiple, and caching and incremental query computation. Therefore, we treat
the query optimizer as a black box that is capable of performing these six types of query
optimization. Within that black box, the optimizers can be developed independently and
loosely coupled, which requires less integration effort but reduces run-time efficiency, or the
optimizers can be tightly coupled, which requires greater integration effort (each optimizer
may have to be rewritten) but improves run-time efficiency. Although we envision a set of
rule-based optimizers [Fre87, GD87, GM93], the actual implementation is irrelevant to our
work on Metadata View Graphs.

2.1 Metadata View Graphs

A Metadata View Graph (MVG) is a collection of networks, as shown in Figure 2, for
organizing and storing metadata (i.e., a metadatabase). The Metadata View Graph consists
of four components: (1) a lexicon, (2) a semantic network, (3) a view network, and (4) a
QEP Network of query execution plans.



Query

\

r Control Logic
Syntactic Physical Semantic Multiple Incremental
Query Query Query Query Query eeoe ?
Optimization Optimization Optimization Optimization Computation
Ouery Metadata and
Execution .
Query Execution Plans
Plans

Metadata View Graph
(Metadatabase)

Figure 1: The MVG Framework.

The lexicon contains an entry for each term (word or phrase) recognized by the system (i.e..
the system’s vocabulary). A lexical entry provides information about the term. including a
set of pointers to the semantic nodes that represent the term. In general, a lexicon will store
any information about a term that is useful to the system.

Semantic networks represent domain knowledge about the concepts “understood” by the
system. Each concept is represented as a node. Two nodes are linked together to represent
their relationship to each other. In Figure 2, the semantic network is represented by nodes a,
through ag and Sy through S4. Nodes a) through ag represent the attributes that participate
in one or more of the base relations (nodes Ry through R3). The attribute nodes are linked
directly to their corresponding base relations.

The attribute names and types are specified in the data definition of the database. These
nodes form the foundation of the semantic network. The network can be extended by
defining nodes and links for application specific concepts and relationships. For example,
two nodes representing STUDENT and ADVISOR could be connected by the links ADVISED-
BY and ADVISOR-OF. The lexicon and semantic network are not relevant to the research
presented in this paper.



LEXICON

4
< v~
Query Execution Packect
1 i -] — ] —
Semantic
- v Dypxla:vuc elan
Vi 4 Va Vg an Index
Query
Query Execution Packe:
VS VLO T T ] Semantic
Index
L ]
.
Ve Vi1 e
Query
Query Execution Packet
—~——— s ti
emantic
lan iy
Vg Index

Figure 2: Conceptual Representation of a Metadata View Graph.

The View Network is an extension of Roussopoulos’ Logical Access Path schema [Rou82].
The View Network stores semantic, statistical, and structural metadata that is useful to
the query optimizer. The view nodes in the network, v; through v,4, represent logical views
(intermediate results) and store metadata specific to the particular data set. A view is a
projection of attributes which can be defined recursively as follows. All base relations are
views. Additional views are the result of applying an operation (e.g., selection, projection,
join) to a view or to a pair of views. The views represented by these nodes may or may
not be materialized. The links represent logical operations and semantic relationships. The
View Network, nodes R, through Rz and v, through v,4, is essentially a collection of query
graphs overlaid on top of each other where R, through Rj represent base relations and v,
through v4 represent the results of performing the operations specified by the links.

The View Network is a unified structure that applies to all of the application queries being
served by the Metadata View Graph. The top level of the hierarchy consists of base relation
nodes which anchor the Metadata View Graph and serve to connect the semantic network



to the View Network. The remaining nodes represent logical views. A view node is defined
by the links connecting the node to the base relations. Figure 3 illustrates an example \iew
Network along with a semantic network and lexicon.

The QEP Network stores two types of query execution plans. dynamic plans [GWS9. (CGY4;
and semantic plans. A semantic plan is a query execution plan that is semantically equivalent
to the original query. Semantic plans are generated during semantic query optimization and
depend on integrity constraints and instance-based semantic constraints.

A dynamic plan links several queryv execution plans together with choose-plan operators. An
example of a dynamic plan is shown in Figure 4. Choose-plan operators allow a decision to
be postponed until run-time when the run-time conditions are known. In order to select the
best plan from the dynamic plan, the dynamic plan is traversed and the best path is chosen
at each choose-plan operator. The statistics stored at the view nodes can guide the decision
process. Therefore, the dynamic plan contains pointers to the view nodes with relevant
metadata. If the statistics at a view node are out of date, the statistics must be updated
before a decision can accurately be made.

The QEP Network maintains a separate query ezrecution packet (i.e., a dynamic plan and
semantic plan index) for each application query. Figure 4 illustrates how the query execution
plans are linked to the logical access paths of the View Network so that the relevant view
nodes can be retrieved for each plan. When a query is received at run-time, the query’s
execution packet is retrieved from the QEP Network and the metadata at the view nodes is
used to select the best plan. When a semantic plan is selected as a candidate, the constraints
it depends on must be updated and verified against the current state of the database before
the plan can be executed. If one of the dependencies has been violated, then the plan is no
longer guaranteed to be correct.

2.2 Using Metadata View Graphs

Metadata View Graphs are used at compile-time and run-time. Metadata is collected at
compile-time and stored in the View Network. Metadata is retrieved at run-time and used
to select the best query execution plan.

2.2.1 Compile-Time

The following high-level algorithm describes how the View Network and the QEP Network
are constructed incrementally when a query is compiled.

1. When a query is received at compile-time, the query is optimized with conventional
optimization techniques in order to generate a set of logical access paths.



2. The logical access paths are used to construct a separate View Network for the uery
being compiled. The existing MV'G View Network is searched for {partial) matching
view nodes.

3. The logical access paths are translated into query execution plans. The cost of each
plan is estimated and the plans are filtered to remove any non-competitive plans.

4. Constraints and statistics are collected for the view nodes in the querv's View Network.
[f a node already exists in the MVG View Network, metadata mayv not have to be
collected for that node if the node’s metadata is up to date.

In order to collect metadata, each logical access path will have to be executed. If the
query being compiled contains variables, the query history will be used to substitute
values for the variables. These are the variable bindings most likely to occur in future
queries.

5. The constraints collected in step 4 are used by the optimizer to generate additional
query execution plans. Semantic query optimization, multiple query optimization. and
incremental query computation can apply the instance-based constraints that were
collected.

6. If a new set of query execution plans are produced in step 3, the plans are evaluated
using the statistics that were collected. The non-competitive plans are discarded and
the query’s View Network is modified to include any additional view nodes. Steps 4
and 5 are repeated until no new query execution plans are generated.

. A query execution packet is created for the query. A dynamic plan is constructed for the
non-semantic query execution plans, and an index is created for the semantic plans.
The dynamic plan and the semantic plan index are stored in the query’s execution
packet.

8. The query’s View Network is unified with the MVG’s View Network (i.e., if a view
node in the query’s View Network does not already exist in the MVG’s View Network,
the node is added to the MVG’s View Network at the correct location and the MVG
View Network is reorganized).

Constraint Discovery

Our research does not address constraint discovery. This section describes existing methods
for constraint discovery and discusses the advantages provided by the Metadata View Graph
Framework.

Two primary problems hinder constraint discovery: (1) determining where to search, and (2)
determining what to search for. Focusing on views of the database reduces the search space
and produces more useful constraints. Searching smaller data sets, as opposed to searching
the entire database, improves the performance of the discovery methods. Therefore, the view
nodes of the Metadata View Graph determine where to search.



Two basic methods are used to determine what to search for: (1) querv-driven methods.
and (2) data-driven methods. Query-driven methods use a top-down process to search for
constraints that would have been useful for previous queries. Data-driven methods use «
bottom-up process to search (random) data sets for constraints. Metadata View Graphs
provide a framework for integrating the top-down and bottom-up processes.

Query Driven Methods

[SSS92] presents a query-driven method for discovering constraints. Given a query. the
semantic query optimizer identifies the template transformation rules that would have heen
useful to the optimizer, and the system discovers constraints that fit the rule templates. This
strategy reduces the search space by only considering data sets that are relevant to queries
that have been received. The disadvantage of this strategy is that a query will onlv benefit
from the constraints that have been discovered if the query is similar to a previous query.

Reverse Engineering Method

After a query has been executed, [YS89, HK94] inspect the query result and attempt to
discover relationships with other queries. For example, if the (intermediate) results of two
queries are identical, then there must be some constraints relating the two queries. This is
a type of query-driven approach that requires two similar queries before any constraints are
discovered. In addition, this method requires that the results of previous queries be stored
and matched against future queries.

Data Driven Methods

[SHK(C93] has proposed a data-driven approach that uses grid files to inspect combinations
of attribute values for a given data set. The zeros in the grid file indicate constraints. The
advantage of this approach is that constraints can be found regardless of the query nistory.
However, since it is impractical to search the entire database, there is no guarantee that the
discovered constraints will apply to a query.

MVG Guidelines

The View Network is constructed for the application queries that have been compiled by
the system, thus providing queries for the query-driven methods. In addition, the View
Network identifies relevant data sets for the data-driven methods. Therefore, the View Net-
work provides a foundation for integrating the top-down and bottom-up constraint discovery
processes.

The semantic query optimization transformation types should be used to guide the discovery
process. This guideline will focus the data-driven methods on constraints that are useful
given the current structure of the database.

For example, one transition type attempts to introduce an index into the query condition.
Therefore, the indexed attributes of each base relation should be explored since constraints
involving these attributes could lead to rules that introduce indexes. Another transformation



attempts to eliminate operations such as a join between two views. [n some cases. range
constraints for the join attributes of each view can determine that the result of a join ix
empty in which case the operation can be eliminated.

The structure of the View Network. which consists of chains of nodes organized in a sub-
sumption hierarchy. can also be used to guide the data-driven techniques. The constraints
that exist at higher level nodes can be propagated to the nodes below. provided thev apply
to the nodes below. and then tightened to reflect the contents of the more restricted view.
At the top level. the scheme-based integrity constraints that already exist for a database can
be restricted to reflect the actual contents of the base relations.

Run-Time

When a query is received at run-time, the query’s execution packet (i.e., the query’s dvnamic
plan and its semantic plan index) is retrieved from the QEP Network along with anyv relevant
view nodes from the View Network. The semantic plans are indexed so that the run-time
bindings of the query can be used to select the semantic plans that match the conditions
of the query. A semantic plan contains a set of pointers to the instance-based constraints
it depends on (i.e., the constraints used to generate the plan). These dependencies must
be verified for the current state of the database before a semantic plan can be executed. If
any of the constraints that a plan depends on are no longer valid, the semantic plan is not
guaranteed to be correct.

Each intermediate result in a query execution plan indexes a (possibly empty) set of view
nodes with relevant metadata (i.e., metadata that is useful for predicting statistics about
the intermediate result). When plans are being compared, the statistics at the view nodes
are used to estimate the cost of each plan. However, before the plans can be evaluated. the
metadata must be refreshed to reflect any updates made to the database.

The query optimizer selects the best non-semantic plan from the query’s dynamic plan. If it
is cost effective to update the instance-based constraints, then the constraints are updated
and the semantic plans are evaluated. The best query execution plan is selected for execution.
The Metadata View Graph adds the query to its query log along with a time-stamp and any
other data which may have been collected during execution of the query.

Although this scheme moves most of the optimization effort to the compile phase, it does
not preclude run-time optimization. For example, if several queries are received within a
reasonable time frame, multiple query optimization can be performed.

2.3 Selecting a Query Execution Plan at Run-Time

Consider the two base relations and the template query, @)1, shown below. A template query
contains one or more variables. Instantiations of a template query are received at run-time
with all of the variables bound.



Relation

Students

Employvees

Attributes
snum, class, GPA. advisor
enum. salary. dept. pos

Qu:

Select
From

\Where

GPA
Employees. Students

pos = student AND dept = var,
AND enum = snum

Query Q) requests the grade point averages of the students in the var, department who are
employveed. Figure 3 illustrates part of a view network that supports this query. lu this
example, there are four departments (Psvchology, Math, Computer Science. and Business).
The View Network is not required to contain a view node for every department. Onlyv the
most frequently accessed views. based on the query history, will be represented in the view
network. For example, only three class views {vg — vy,) are represented for the Student hase
relation.

Lexicon
— — — @ | Pos Advisor | @
e | Dept Class o
- @ | Salary GPA (=
@ | Enum Snum °

0 dept

bus

Employees (Enum, Salary. Dept, Pos)
(15,200)
O pos O pcs O pos = O pos =
fac dean staff student
Y i A A
\% \ \" \
5! 6 7 8
(2330) (10) (7000 (5000)
0 dept = J dept = 0 dept =
psy mach cs
\ J Y /
\% \% \ \
1 2 3 4
(20000 (2500) (73C0) (3000)
C,__:dept = CS ->
35 class = grad

(8000)

(3000

(4509)

Figure 3: Example Lexicon, Semantic Network, and View Network.

Semantic Network

View Network

Figure 4 shows the Query Execution Packet for query @),. The packet contains the dynamic
plan and the semantic plan index. There is one choice to be made in the dynamic plan. The

10



two selections can be performed in either order. The first two filter operations point ro rhe
view nodes that contain statistics to determine which path to take. Once var, is bound at
run-time. the choice is obvious. If DEPT = CS. then POS = STUDENT produces a smaller
intermediate result (3000 tuples) than DEPT = €S (7500). For the other three departments.
however. selecting the department first produces the smaller intermediate result.

9 % Sec Set ’
View Network 785, R 1
- \ -
Vv - - psy math = File Scan
8
- FIERN v v .
S - s > T 24
SRy ) SPy 5Py ™ Filter Studencs
pos = student
i \J ) \J \J v
7 F a1 12 197 (C3 Cs9) 35 \ Flizer
Filter B-Trae Scan
dept = cs siass jrad
Semantic Plan Index

v E Project GPAs

Semantic Plan SP

v “d — .
4 ]
Get Set
Employees
\
- — — g
3 File Scan
Choose-Plan
V V. v v
v S | "y 3 T4
2 A ’, A
—— Filter Filter
dept = var1 pos= student Hek: Sei
Students
Vi T Filter |
B liter dept = var |
pos = student 1. File Scan
M Join &
Enum = Snum
Project GPA
Dynamic Plan

Figure 4: A global persepctive of selecting a query execution plan at run-time.

Semantic plans are indexed by the bindings of the variables. The packet contains four
semantic plans, SP, S P, SP;, and S Py, corresponding to the variable bindings var, = psy,
var; = MATH, and var, = CS respectively. There are two semantic plans for the PSY binding.
Each plan points to the set of constraints that the plan depends on.

Assume an instantiation of query @, is received at run-time with var; bound to c¢s. The
semantic plan index would return plan S P; which depends on constraint C3s which is stored
at view node v3. The semantic plan SPy is shown in Figure 4. Constraint Css, shown in
Figure 3, states that if the department is CS then the class must be GRAD. In other words,
only graduate students from the computer science department are employed.

11



Assuming there is an index on the CLASS attribute of the Student base relation. the semantic
plan S P, can use that index to reduce the size of the join between the Student base relation
and the view of emploved computer science students. Furthermore. because the semantic
plan was designed for a specific binding of var,. the choose-plan operator can he omitted
since a drastic change in the database would be required before the number of students would
be greater than the number of computer science emplovees.

Note that constraint (33 is not an integrity constraint. Undergraduate computer science
students can be employed. Therefore. if the database were updated to include an emploved
undergraduate from the computer science department, the semantic plan SP; would no
longer be valid. Consequently, the constraint ('35 must be updated and verified against the
current state of the database before the semantic plan can be selected for execution. If an
update invalidates a constraint, then none of the semantic plans that depend on the invalid
constraint can be executed because the plans are not guaranteed to be correct.

3 Maintaining Instance-Based Constraints

When a semantic plan is selected from the QEP Network, the constraints that the plan
depends on must be refreshed and verified for the current state of the database. Constraints
may be out of date if one or more updates have been received by the system since the last
time the constraints were refreshed. However, only a subset of the updates will apply to
a view node based on the definition of the node (e.g., GPA > 3.5). Therefore, the updates
must be filtered to remove the irrelevant updates (i.e., those updates that do not apply to
the view node being updated) [BLT86]. An example is provided below.

Consider the Student base relation and the view node shown in Figure 5. The view node
shown in this example contains seven constraints, a tuple count, a distribution profile, and
a view cache pointer (since the pointer is nil, there is no view cache for this node). The
view is defined for students with a GPA of 3.0 or greater. The constraints and tuple count at
the view node can be verified by selecting the tuples from the base relation (as shown) that
satisfy the definition of the node (i.e., GPA > 3.0). An update contains a unique time-stamp,
which indicates when the update was received, along with the tuple to be inserted or deleted.
Updates to the database are maintained in a set of logs, one log per base relation. In order
to refresh the metadata at this node, the updates in the base relation update log must be
filtered to select the updates that satisfy the definition of the node. Each update with a GpA
of 3.0 or greater can then be applied to each metadatum at the node.

Before the updates can be filtered and applied to the metadata, the update logs and the
view nodes to be updated must be retrieved from disk. The cost of these disk accesses
dominates the cost of the update process. Therefore, maintaining metadata can be divided
into three subproblems: (1) managing the update logs, (2) managing the view nodes, and
(3) refreshing the metadata at a view node. The rest of this paper analyzes the problem of
refreshing constraints once the updates and the constraints are in main memory.

12



Students .Snum. Jiass GPA, Advisor: Aase Relarion Update Lcg

2 Grad |3.8] Smith 4 |Junior|3. 1] Smich [ T3
3 rrcsh [3.2) Jcnes 22| 3cph |2.8]cres | T4
5 Scph 2.7 Smich 15| 3rad |3.3] Jores | TH
3 | Srad |3.5] Davis L | Grad [4.0)]| Davis | T8
3 | Frosn |2.9] Pavis 14| Frosn [3.3] Smich | T9
11| Grad [4.C| Davis 13 |Senior|3.7] Smith | T11
12 |Senior|3.9] Jores 5 Grad |3.5] Jones |T12
16 |Junior|3.3| Smith 7 Soph |3.2| Davis |T15
21 | Soph |3.7] Jones 18 |Junior|1.8] Smich |T16

20 | Grad |3.6]| pavis |T17

23 | Frosh |2.7| pavis [T19

JGePa >= 3.0
View Node Filtered Log
o 2 <= Sno <= 21 T3 4 |Junior|3.1] smith | T3
~ 10 | Grad |3.9| Jones
=2 Frosh <= Class <= Grad T12 - 15
1 Grad |4.0] pavis | T8
¢ 3.2 <= GPA <= 4.0 ,

3 ® < T3 14 | Frosh |3.3] Smith | TQ
C4 Davis <= Advisor <= Smith T9 13 |Senior|3.7] Smith [T11
CS Class = Grad -> GPA >= 3.6 T2 5 | Grad 3.9 Jones |T12

7 | Soph |3.2] Davis |T15
C6 Advisor = Jones -> GPA >= 3.2 T5
20 | Grad |3.6] bavis |T17
<, Sno = 11 -> GPA = 4.0 T4
Tuple Count: 15 T12
distributions T9

View Cache: nil

Figure 5: The Student base relation, base relation update log, view node, and filtered log.

3.1 Representing Constraints

Constraints are represented in First Order Predicate Logic. However, constraints must main-
tain additional information in order to be maintained efficiently. This section begins by con-
sidering the affects that insertions and deletions have on instance-based constraints, and then
the section considers several representations that improve the maintainability of instance-
based constraints.

3.1.1 Update Affects

The Metadata View Graph stores semantic query execution plans that depend on certain
conditions. Consider a semantic plan, SP;, that requires that all graduate students have a
GPA greater than 3.0. If all of the graduate students in the database have a GPA of 3.2 or

13



greater. then the instance-based constraint, C';: CLASS = GRAD = GPA > 3.2 indicares
that the semantic plan S P is valid.

Assume there is only one graduate student with a 3.2 GPA and assume that the student i-
deleted. The deletion does not have to be applied to '} because no deletion could violate
the required condition, CLASS = GRAD = GPA > 3.0. In general. unless a constraint implies
existence. deletions do not have to be applied to valid constraints because deletions cannot
invalidate the required conditions with respect to the semantic plans that are stored in the
Metadata View Graph.

However, assume a graduate student with a 2.8 GPA is inserted into the database. The
insertion must be applied to (', because the update violates the required condition for 5P,
thus invalidating the plan. Now assume that the graduate student with GPA 2.5 is deleted
and assume that the remaining graduate students all have a GPA greater than 3.0. The
required condition for S P, is now satisfied. Therefore, this deletion should be applied to (',
in order to validate the plan.

When insertions are made to the database, it is easy to modify constraints because all of
the necessary information is contained in the update. However, when deletions occur. the
constraint must represent additional information in order to recompute the correct constraint.

3.1.2 Efficient Representations

Consider a student base relation with four attributes: student number (Snum), class (e.g..
frosh, grad), GPA, and advisor. Consider a view node defined for GPA > 3.9 and assume
that constraint C') is stored at the view node. Assume that student 4 is a graduate student
advised by Smith with a 3.92 GPA. If student 4 is inserted at time T3, constraint ('} can be
modified as shown below. However, if student 4 is deleted at time T3, the constraint cannot
be recomputed.

T,: (C,: Class = Grad = Advisor = Jones

T,: Insert: Snum = 4, Class = Grad, GPA = 3.92, Advisor = Smith
Ty: Cy: Class = Grad = (Advisor = Jones) OR (Advisor = Smith)

T5:  Delete: Snum = 4, Class = Grad, GPA = 3.92, Advisor = Smith

T3:  (C): Class = Grad = Advisor = Jones

When student 4 is deleted, the constraint should be modified as shown at 75. However, with
this representation, the system must materialize the view (GPA > 3.9) in order to discover
that there are no graduate students in the view who are advised by Smith. We will consider
two solutions to this problem.

14



L. Recompute the constraints at run-time during query execution by testing all of the
tuples in the intermediate result. This can be done by saving the intermediate result.
possibly to disk, and recomputing all of the constraints at a node. or by recomputing
a few constraints on the fly while the query is being executed.

2. When the attribute of a term can be enumerated. as in the example above. keep a
counter for each term.

The first solution requires additional processing during run-time to recompute the con-
straints. We can assume that the processing cost is negligible or that the processing is
performed when the system is idle. However, the problem with this solution is that the con-
straints are recomputed during or after query execution. Therefore. the constraints cannot
be used for the given query.

Consider semantic plan SP; which requires that all graduate stiidents have a GPA greater
than 3.0. Assume that SP, is valid at time 7. At time T5,. a graduate student with a 2.8
GPA is inserted which invalidates semantic plan SP,. At T5. however. the graduate student
with GPA 2.8 is deleted. At this point, semantic plan S P, is valid, but the plan cannot be
used because constraint ('} cannot be recomputed until the query is executed.

Therefore, the constraints will have to be recomputed every time a deletion affects the
view node. Consequently, a constraint may thrash between heing valid and invalid and the
semantic plans that depend on the constraint will never be usable even though the required
conditions are met.

The second solution is preferable, but this representation does not apply to attributes with
non-enumerable values. Consider the following representation for constraint C';. This rep-
resentation maintains the number of tuples that apply to each condition. At time 7). there
are 10 graduate students in the view and all 10 are advi-ed by Jones.

Ty:  C): Class = Grad (10) = Advisor = Jones (10}

T,:  Insert: Snum = 4, Class = Grad, GPA = 3.92. Advisor = Smith

Ty:  Cy: Class = Grad (11) = (Advisor = Jones (10)) OR (Advisor = Smith (1))
T5:  Delete: Snum = 5, Class = Grad, GPA = 3.94, Advisor = Jones

Ts: C,: Class = Grad (10) = (Advisor = Jones (9)) OR (Advisor = Smith (1))
Ty:  Delete: Snum = 4, Class = Grad, GPA = 3.92, Advisor = Smith

Ty: Cy: Class = Grad (9) = Advisor = Jones (9)

Student 4 is inserted at 7, and the constraint is modified. There are now 11 graduate students
in the view, 10 are advised by Jones and 1 is advised by Smith. Student 5 is deleted at 75

-

15



and the constraint is modified accordingly. Once again there are [0 graduatre ~tudents in
the view, but now there are 9 students advised by Jones and 1 advised by Smith. Finally.
student 4 is deleted at 7. The constraint is modified to reflect that all 9 graduate stucents
in the view are advised by Jones.

This representation works well for attributes with values that can be enumerated. Some
constraints have attribute values that cannot be enumerated. For example. consicder the
range constraint on GPA shown below.

Tlol Czi GPA >= 3.56
T,,: Insert: Snum = 4: GPA = 3.5
T”I Cy: GPA >= 3.5

Ty2: Delete: Snum = 4: GPA = 3.5

[nitially, the lowest GPA for the given view is 3.56. When student 4 is inserted at time T};.
the lowest GPA becomes 3.5. However, when student 4 is deleted at T, there is no wav
to determine the exact value of the lowest GPA in the view without materializing the view.
However, constraint (' still represents a lower bound on GPA. The constraint asserts that
all of the GPAs are greater than or equal to 3.5, but the constraint does not represent the
exact value of the lowest GPA.

The representation shown below maintains a boundary value list of the lowest GPAs. This
representation can be used to determine the exact lower bound provided the boundary value
list 1s not empty.

Tio: Co: GPA >= (3.56, 3.57, 3.57, 3.58, 3.59)
Ti1: Insert: Snum = 4: GPA = 3.5

Ti,: Cz: GPA >= (3.5, 3.56, 3.57, 3.57, 3.58, 3.59)
Ty5: Delete: Snum = 4: GPA = 3.5

Ty2: Cy: GPA >= (3.56, 3.57, 3.57, 3.58, 3.59)

Initially the boundary value list contains the 5 lowest GPAs in the view. When student 4 is
inserted at 71, student 4’s GPA is the lowest GPA in the view. Therefore, student 4’s GPA is
added to the front of the boundary value list. When student 4 is deleted at T,, one instance
of the value 3.5 (student 4’s GPA) is removed from the boundary value list.

16



[f the boundary value list becomes emptv. because all of the values are deleted and no
insertions replace them, then the view must be materialized in order to determine the exact
lower bound. The last value in the boundary value list can be retained in order to provicle
a lower bound for the constraint. In this case. the retained value must be flagged as invalid
so that it can be removed when the boundary value list is recomputed. If an insertion is
received with a GPA less than or equal to the retained value, then the inserted Gpa will
replace the invalid GPA and the constraint will once again reflect the exact lowest GPA in the
view.

For example. consider constraint C; shown above and assume that the students with ¢pa
3.56, 3.57, 3.57, 3.58, and 3.59 are deleted in that order. C; will become Cy: GPA >= (3.59).
and the value 3.59 will be flagged as invalid. 3 now represents an inexact lower bound.
Now assume that a student with GPA 3.55 is inserted. The value 3.59 will be replaced byv
3.55 and C, will represent the lowest GPA in the view, C;: GPA >= (3.33).

Consider constraints C's and Cy shown below. Each of these constraints involve attributes
that require boundary value lists.

C'3: (GPA > 3.54) AND (GPA < 3.38) = Advisor = Jones (3)
Cy: (SALARY > 12K) AND (SALARY < 15K) = (GPA > 3.2) AND (GPA < 3.8)

The counter (3) associated with C5’s condition (Advisor = Jones) indicates that three stu-
dents satisfy the constraint. Without boundary value lists for GPA, as shown below, the
system cannot determine the middle GPA without materializing the view. Constraint (',
would require four boundary value lists, one list for each term.

C3: (GPA > (3.54, 3.55)) AND (GPA < (3.3, 3.58)) = Advisor = Jones (3)

3.2 Refreshing Constraints

This section presents an algorithm for applying an update to an instance-based constraint
in order to refresh the constraint. Consider constraint Cs, shown below, which asserts that
if a student’s GPA is greater than 3.9, then the student is advised by Jones.

Cs: GPA > 3.9 = ADVISOR = JONES

The left hand side of a constraint is a list of terms. Each term represents a condition. The
right hand side of a constraint is also a list a terms, but the terms on the right hand side
represent assertions. Constraint C; has one condition on the left hand side (GPA > 3.9) and
one assertion on the right hand side (ADVISOR = JONES).

An update applies to a constraint if it satisfies all of the conditions on the left hand side.
As soon as one condition is not satisfied, the update can be disregarded with respect to the
constraint being refreshed. If an update satisfies the conditions of the constraint, then the
assertions on the right hand side must be considered. In this example, if the update’s GpPA

17



is greater than 3.9 and the advisor is Jones then the update does not affect the constraint.
However. if the update satisfied the condition (GPA > 3.9) and the advisor is not Jones. then
there are three options: (1) modify the assertion. (2) modify the condition. or (3) modily
both the assertion and the condition by creating another constraint.

For example. assume a student is added to the database with a GPA of 3.92 and the stucent
is advised by SMITH. The student’s GPA satisfies the condition of the constraint. hut the
assertion no longer holds. The following two constraints can be created.

GPA > 3.92 = ADVISOR = JONES

GPA > 3.9 = (ADVISOR = JONES) OR (ADVISOR = SMITH)

The following algorithm applies one update to an instance-based constraint.

1 If the update satisfies the condition then
2 [f the assertion no longer holds then
3 Modify the constraint

As described above, an update may alter the representation of a constraint without affecting
the validity of the constraint. For example, a deletion may add or remove a value from the

boundary value list. In this case, the constraint would have to be modified. but the assertion

would still hold.
Range Constraints

Specific algorithms can be developed to efficiently process some of the constraint types. For
example, if there are range constraints to be updated, instead of processing each update
individually for each range constraint, a single pass through the updates can collect the high
and low values for each attribute with a range constraint. The high and low values can then
be applied to each constraint. Furthermore, the pass that collects the high and low values
can be performed during the filtering process. As the new updates are filtered, all of the
range constraints at a node can be updated with only a few additional operations.

For example, consider a view node that represents graduate students and assume that the
lowest GPA in the view is 3.1. Constraint Cs represents the lower bound on GPA at the
view, C's: GPA > 3.8. Assume the following six insertions are received by the system: (grad,
3.3), (grad, 3.0), (frosh, 3.6), (soph, 3.4), (senior, 2.7), (grad, 3.8). In order to update the
graduate student view, these updates must be filtered to remove the students that are not
graduates. When the updates are filtered (i.e., tested for CLASS = GRAD), the system can
maintain the lowest GPA for the graduate student updates. When these six updates are
filtered, the three irrelevant updates will be removed and the lowest graduate GPA for the
insertions will be recored as 3.0. The lowest GPA for the updates (3.0) will be compared with
the GPA range constraint at the view node (3.1), and the range constraint will be modified
if the insertions have a lower GPA than the current range constraint. In this example, the
range constraint will be modified to reflect the 3.0 GPA that has been inserted.

18



4 Conclusion

Instance-based constraints are more useful to semantic query optimization because thev
contain more information than scheme-based constraints. This paper presented a framework
for maintaining instance-based constraints. The Metadata View Graph Framework makes
three contributions: (1) the framework maintains instance-based constraints for logical views
of the database. (2) the framework provides a foundation that directs and integrates existing
methods for constraint discovery, and (3) the framework allows instance-based constraints
to be retrieved efficiently at run-time.

The problem of maintaining instance-based constraints in the Metadata View Graph can
be decomposed into three sub-problems: (1) manage the update logs, (2) manage the view
nodes, and (3) refresh the instance-based constraints. This paper analyzed the third sub-
problem and considered various representations that improve maintenance efficiencyv.

Future research will develop efficient strategies for managing update logs and view nodes
(i.e.. the first two subproblems). Future research will also continue to analyze instance-based
constraints in order to develop more efficient update strategies, such as the strategy presented
for range constraints, and further classify the properties of instance-based constraints with
respect to semantic query optimization and maintenance.

5 Acknowledgements

The author wishes to thank Leo Mark and Shamkant Navathe for their many comments
and discussions regarding this research. The author has been generously supported by BNR
Inc., the research and development subsidiary of Northern Telecom, and is especially grateful
to Robert Bloedon and Deborah Stokes. The author also acknowledges the support of the
Advanced Project Research Agency under contract number F33615-93-1-1338. The current
work 1s part of the project entitled: "A Knowledge Based Approach to Integrating and
Querying Distributed Heterogeneous Information Systems.”

References

(BLT86] J. Blakeley, P. Larson, and F. Tompa. Efficiently updating materialized views.
In C. Zaniolo, editor, Proceedings of the 1986 ACM SIGMOD International Con-

ference on the Management of Data, pages 61-71, Washington, D.C., May 1986.

[CGY4] Richard L. Cole and Goetz Graefe. Optimization of dynamic query evaluation
plans. In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, pages 150-160, Minneapolis, Minnesota, May 1994.

19



(CGMIO]

{FreST]

(GDS7)

[GM93]

[GW89)

[HK93]

[HEK94]

[HZ30]

[Kin81]

[PMNO3)]

[Rou82]

[SHKC93]

[S087]

S. Chakravarthy, J. Grant. and J. Minker. Logic based approach to semautic
query optimization. ACVY Transactions on Database Systems. [3(2):162-207.
June 1990.

J.C. Freytag. A rule-base view of query optimization. In Proceedings of the 1( "1l
SIGMOD International  ‘onference on Management of Data. pages 1 73-130. Sau
Francisco. Mayv 1987.

G. Graefe and D. DeW tt. The exodus optimizer generator. In Proceedings of the
ACM SIGMOD Interoational Conference on Management of Data. pages 160-
171. San Francisco. May 1987.

G. Graefe and W.J. Mckenna. The volcano optimizer generator: Extensibility
and efficient search. [n Proceedings of the [EEE Conference on Data Engineering.
pages 209-228, Vienna, April 1993.

G. Graefe and K. Ward. Dynamic query evaluation plans. I[n Proceedings of
the 1989 ACM-SIGMOD International Conference on the VMlanagement of Data.
pages 358-366, Portland, Oregon. 1989.

C. Hsu and C.A. Knoblock. Reformulating query plans for multidatabase sys-
tems. In Procee lings of the Second International Conference on Information and
Knowledge Management, Washington, DC, 1993.

Chun-Nan Hsi and Craig Knoblock. Rule induction for semantic query optimiza-
tion. Machine Learning, pages 1-10, 1994.

M. Hammer and S.B. Zdonik. Knowledge-based query processing. In Proceedings
of the Sizth [nternational Conference on Very Large Data Bases, pages 137-147.
Montreal, October 1980.

J. King. Q ust: A system for semantic query optimization in relational databases.
In Proceedings of the Seventh International Conference on Very Large Data Bases,
pages 510-517, 1981.

J. Pittges, L. Mark, and S. Navathe. Metadata view graphs: A framework for
query optimization and metadata management. ACM Transactions on Informa-
tion Systems, 1995. Unpublished — submitted, Nov. 1994.

N. Roussopoulos. The logical access path scheme of a database. I[FEE Transac-
tions on Software Engineering, SE-8(6):563-573, November 1982.

S. Shekhar, B. Hamidzadeh, A. Kohli, and M. Coyle. Learning transformation

rules for semantic query optimization: A data-driven approach. IFEE Transac-
tions on Knowledge and Data Engineering, 5(6):950-964, 1993.

S.T. Shenoy and Z.M. Ozsoyoglu. A system for semantic query optimization.
Proceedings of the ACM SIGMOD International Conference on Management of
Data, 16(3):181-195, December 1987.

20



5089]

1SSD92;

S.T. Shenoy and Z.M. Ozsoyoglu. Design and implementation of a semantic querv
optimizer. [EFE Transactions on Knowledge and Data Enginecring. 1(3):344-361.
1989.

Shashi Shekhar, Jaideep Srivastava. and Soumitra Dutta. A formal model of
trade-off between optimization and execution costs in semantic query optimiza-
tion. Data and Knowledge Engineering. S:131-151, 1992,

M. Siegel. E. Sciore. and S. Salveter. A method for automatic rule derivation to

support semantic query optimization. ACMW Transactions on Database Systems.
17(4):563-600, December 1992.

C. Yu and W. Sun. Automatic knowledge acquisition and maintenance for ceman-
tic query optimization. [EEE Transactions on Knowledge and Data Engineering.
1(3):362-375. September 1989.

21



Maintaining Semantic and Structural Metadata
in the Metadata View Graph Framework

Jeft Pittges
Leo Mark
Shamkant B. Navathe

College of Computing
Goorgia [ustitute of Technology
Atlanta. Georgia 30332-0280
{pittges, leomark, sham}@cc.gatech.edu

May 1. 1997

Abstract

[he Metaclata View Graph s a metadatabase capable of maintaining semantic and structural
meradara for views of a darabase. Seimantic metadata provides dynamic rules which are used
during query optimization and structural metadata provides indexes which are used during
query execurion. Since both types of nietaclata represent the current contents of the database,
botit types of metadata must be maintained when the contents of the database change.

\thougl Loth types of inetacata use rhe same update logs, these logs are typically processed
twi-e because the semantic metacata must be maintained before query execution while structural
metadata is usually maintained during query execution. However, when a query execution plan
reqitires both types of metaclata. it 1s 10st efficient to process the update logs once and maintain
both types of metadata at rhe same time. This creates a conflict when the update paths for the
semantic and structural metadata overlap.

This paper presents several methods for efficiently maintaining semantic and structural meta-
dain. The paper analyzes the maintenance cost for both types of metadata and proposes two
straregies for processing ove rlapping update paths.

Kevwords: Metadata Maintenance. View Maintenance, Constraint Maintenance,
Dynamic ~emantic Rules, View Cache, Query Optimization.



1 Introduction

Peonaanic rilos isenvontic metasiatar are ised by seniantic query optimization [HK94, HK93, S+93,
S oo CONL SON Y SN e pelorineate o qiiery into a semantically equivalent query that is

doeflicien oo csecnes Sice dyvionie riles represent the current contents of the database.

Cranie vuales st be uaintained belore the query is executed in order to guarantee that the
vioormulated queryis correct. For exaniple, consider a query that requests the grade point average
oi e stadenrs who work in the compnter science department. Figure 1 illustrates two query
coention plons tor this querve Uhe nov-~crantic planis produced directly from the original query
oression. The scmantic plan s produced by applving transformation rule R3s which states that

oriv o graduate students work i the conputer science department.

Lo non-~enantic plan perforni- the join operation with the entire Student base relation whereas the
<cimantic plaw onlv joins the eraduate stndents. More importantly, the semantic plan may greatly
sovluce the number of pages rerrieved from the Student base relation if the database maintains
2+ index on rhe crass attribete. Note. however. that the dynamic rule (Rss) is only valid for
Socticular insrances of the darebase. Il an nndergraduate student from the CS department i3 later
craploved by the schiool. then the rule is no longer valid and the semantic plan cannot be used to

answer the query. Therefore. thie dvnamic rule must be maintained before the query is executed.

[heremental query computation [Rou91] maintains views in order to answer queries more efficiently.
Auindex (structural metadatai called a riew cache maintains a set of pointers into the base relation
taples that belong to a given view. The view cache is used to materialize the view efficiently during
query execution. For example. consider « view representing a join between two base relations, R;
anc R;. vor each tuple in the view, the view cache will contain a pair of tuple IDs (TID;, TID;)
where T/ D; and T/ Dj are pointers to the tuples in R; and R; that form the tuple in the view. View

caches are maintained incrementally during query execution by propagating relevant updates while

L~ view is being materialized. Updating the view cache is often more efficient than recomputing



R lation Attributes (J1: Select  GPA

S dents Suunt. Class. G A From Employees, Students

Foplove s Ennn. Salary, Dopt. Pos \Where Pos = Student AND Dept = CS
AND Enum = Snum

Emeiy zes Employees
|
Y
T Pos = Stuasnt I Pos = Student Students
T Depi=C3 Stuaents T Dept=CS 0O Class = Grad
Jor Join
Enum = Snum Enum = Snum
Y
T GEA T GPA
Non-Semar: - Plan Semantic Plan

I':5: (Pos = Srudent) AXD (Dept = CS) = Class = Grad

Figure 1: Reformularing a query with semantic query optimization.

cview. For exanple. cousider query () above and assume the system maintains a view cache
veoresenting the eraduate stndents in the S department who are employed. The view cache could
b nsed 1o answer rhe query by materializing the view and projecting the grade point averages.

Note. however. that this view cache can only be used if rule Rss is valid.

Since dyvnaniic rules are used to reformulate the original query, the rules must be maintained
betore the query s executed. Since view caches are more efficient to maintain when the views
a0 materialized. view caches <hould be maintained during query execution. However, dynamic
files and view caches use the same update logs. Therefore, when a query requires both types
of metadata. it is most efficient to process the update logs once and maintain the dynamic rules

aiid view cachies at the same time. This paper presents several methods for efficiently maintaining

~cmantic and structural meradata.



Ioorest of 1o naper 18 ores i

anc do=cribes how et

s he Sraevork s o
S ot ;~}>'1|f1‘ ol
colate s an b oropioses e
cetadate. Tae last <ection cors

' s tollow s Section 2 presents the Metadata View Graph Frame-

ata s ~tored, rerrieved. maintained, and used during query pro-

ntieed o o the reader appreciate the problems addressed by the
dutenancs preblen analvzes the maintenance cost for both types of
~trateeio- nned aleorithins for maintaining semantic and structural

atns onr concluding remarks.

2 The Metadata View Graph Framework

\-llast ated in Fienre 20 loe Metadata View Graph [Pit93] is a metadatabase capable of main-

S ~cmantic, statistical. w

[ structural metadata for views of a database. The Metadata View

Coaphconsists of four components: (1) a lexicon. (2) a semantic network, (3) a view network, and

1 QLP Nerwork. The lexicon maintains the system’s vocabulary and contains information for

coohoword or phrase that i o

Caain cnoy ledge and can o

ognizedl by the system interface. The semantic network captures

used Lo di=aumibiguate queries. The lexicon and semantic network

ased Cor pnery arerpretat o and wifl not be discussed further.

1o View Nerwork is an extension of Roussopoulos” Logical Access Path schema [Rou82]. The view

nodes in the network (V7 = ¥

in Figure 2) represent views of the database and store metadata

~jeecific to the particular data set. The links represent logical operations and semantic relationships.

e View Noetwork s essentially a collection of query graphs overlaid on top of each other with

cochview node representing at

Tae QEP Nerwork maintains «

intermediare result.

separate query erecution packet for each application query. Query

exccution packets store two Tvpes of query execution plans, non-semantic plans and semantic plans.

None-semantic plans are produced by conventional query optimization and do not require mainte-

naiice. Semantic plans are prods

pend on the dvnamic rules s

icecl by =emantic query optimization. Consequently, semantic plans

1twere used to reformulate the original query. These rules must be



LEXICON

Semantic
Network

View
Network

QEP Network

Query 1
Query Execution Packat

Semantic
Plan
Index

Dynamic
Plan

Quary
Query Execution Packet

Semantic
Plan
Index

Dynamic
Plan

Vs Vii

Quaryn

Query Execution Packet

—— — — — ]

|

e Semantic

Plan
Vipso ‘ Plan Index

Ficire 20 Coaeeptual vepresentation of the Metadata View Graph.

tpdated and validared before « semantic plan can be executed. Therefore, semantic plans contain
polnters o the rules that thev depend on in order to efficiently retrieve and maintain those rules

Lilore oo quiery is execured.

2.1 Query Optimization

When a query is processed «t compile-time. several query execution plans are generated and meta-
data is eollected for each query execution plan. We assume that existing methods have been used

to discover the dyvinamic rules that are usec to generate semantic plans. The most efficient query



cuile i

Cocentien pecRet is retrieve

\ \ O o Lhe <enian
e ) o~ e O & D

An Example

[ere 3 ustrates part of

Sreaws scdartie plan S 17

Coloti e T by ntrodin

thmes serantic plan S/

necntenance is cost effectivi

s e ~Tored i

o dan- e

QP Nk, Whew a query is processed at run-time, the query’s
£ the QP Network along with any relevant view nodes from the
s ced sucl rhat the run-time bindings of the query can

it ale

‘b the conditions of the query.

\iew Nerwork that supports our example query Q. The figure also

Lodepeniis o

rule R4s stored at node V3. Rule R3s was used to
o the ~elecion condition C'Lass = GrRAD. When Q) is processed at
v be vervieved from the QEP Network along with view node Va. If

tae metadata at node V5 will be maintained, and if rule Rss is valid,

then S will be executed. 17755 ix nor valid. the non-semantic plan for ¢, will be executed.
Relarion Attributes Q. Select  GPA
Sticlats s, clirs iPA L advisor [rom  Employees, Students
Fompovers crom. sy depr. pos Where pos = student AND dept = var,
AND enum = snum
\
‘ T
Get Set
T o:- T T: T oos = Employees
: 2 szuden .
; \ | Y Pile Scan
| b7 } \) vV ’ \ Get Set
| 5 6 7 b 8 Filter Students
| | ‘ i | pos = student
| 1 ' !
Pilter
0 ecs ‘ T = [ O eee - 0 Zepr = Filter B-Tree Scan
TEY va | £ ous dept = cs class = grad
. | y
| B N
V1 ‘ ‘ V2 v] VA Join
) Enum = Snum
| \—
R S -5 |- 00— e — = .
! 35 yrad Project GPAs
‘ View Network Semantic Plan SP,
L

[icnre 3: Semantic plan S/° depends on dvnamic rule R3s which is stored in the View Network.




3 Maintaining Semantic and Structural Metadata

W a - ars base evolves fron one datiiase state ¢ oto another database state y due to an update

o at pleds dnserted s e eiedds o nodiied s the meradata in the View Network may become

Dol oo s two e o s =t oceny before 1he metadata can be used: (1) the metadata

Uit dsoa feet o ov the aipas te st be wdentified. aud (2) if the metadata is no longer valid, the
Sadate st bhe nodivec o Tnvalidared,

Roohert an consider cach odate as it is received. it is more efficient to process a batch of updates

[ paricn ar set of metioata when rhe metadata is needed. This is referred to as the deferred
wdate socatogy Ron9L. 1 ds approach requires the svstem to maintain an update log for each

Loo-ooreliior . When an upedas is mace to a base relation. the system writes the update to the

e orelelon s npdate foe. Ve the metadata at a view node needs to be maintained, all of the
wondites for he base relations from whicl the view is derived are processed. However, only a subset
of the npdates will applyv 1o a given view node based on the definition of the node (e.g., GPA >

B Theretire, the updates st be filto red to remove the irrelevant updates [BLT86].

| cire U dlusrrares the corents ol o base refation and a view node for two states of an example
ditibases T e figure also it asivates an update log for the base relation which contains a number
ol tuples to e fuserred into the base retarion. State x represents the database before the updates
are received. and state y represents the database after the updates have been processed and the

tieladata ar the view node fras been maintained.

e view node shown in riis exaniple conrains seven rules, a tuple count, a distribution profile,
aril a view cache pointer {~since the pointer is nil. there is no view cache for this node). The view
i~ defined for students with a ciea of 3.0 or greater. The rules and tuple count at the view node
can be verified for states « and y by selecting the tuples from the base relation (as shown) that
satisfv the definition of the node (i.e.. GPA > 3.0). An update contains a unique time-stamp, which

inedicates when the update was received. along with the tuple to be inserted, deleted, or modified.



State X

T3]

T12

T15

T16

T17

T19

T3

TS

T8

T9

T

T12

T15

T

Updates

St.ients (Snum, Class, 32A, Adviscr)

i Jrad [4.0 :avzs;’

% 3 N 1
¢ Grad |3.3] Smizz

2 | Frosn|3.¢| Joras

4 |Junior|3.1] Smizh

3 Grad |3.3] Jones

6 Soph |2.7| Smich

Sopr } 3.2 Cavis

3 | Grad [3.5]) Cav:s

9 | Frosh |2.9] Davis

20 | Grad |3.9] Jones

11 | Grad [4.0] Davis

12 |Senior|3.9| Joues

1] |Senior| 2.7 | Smith

14 | Frosh |3.3| Smith

16 |Junior|3.3| Smith

18 JJunior|i.8| Smith

20 | Grad |3.6]| Davis

21 | Soph |3.7| Jones

22 | Soph }2.8[ Jones

23 | Frosh | 2.7 Davis

fGeA >= 3.0

View Node

1 <= Sno <= 23

T19

Prosh <= Class <= Grad

o]

3.1 <= GPA <= 4.0

™

Davis <= Advisor <= Smith

i

Class = Grad -> GPA >= 3.6 T19
Advisor = Jones -> GPA >z 3.2 | T19
GPA = 4.0 -> Sno = 1 or 11 T19
Tuple Count: 23 T19
distributions T19

View Cache: nil

State Y

['igure -+ The base relation update log contains a set of insertions that are filtered and applied to

the view node as the database evolves from stare v to state y.



Voo

g
2l

v at
R TRETTPA

4 the ew
doaninat st

Allocating

oy con-ide:

ar apdare |

fedividu: g
[ winte l'!gS
<NV o
feone o a

anonpdae |

the number of log pages 1

-

o lower (o

w0k created

rlp(l‘lll', Wi

e is o lonee
(BT

wlates cau

nowde- 1o by

cocost ol the

and Processi .

SR Toominhind,

wate fn\(_”i i
< the updates

2 1‘[1

sery, the maint

are allocated -

Lil(f Vi II'H\(

ove. 1= less 1

tadntenance cvcles,

e cost of atntaiuing the

i
Cat=

s~ Lus maintenance is ai-

g the apdate-

al

ilirongh the View Nerwork. the system can identify which metadata is
pelate s o needes The metadata can be tested to determine
©o <~ =~tens can modify or invalidate the incorrect metadata.
alved ane propagated through the View Network, the update logs
1=t e rerrieved from disk. The cost of these disk accesses

detained n

drrenance DIOCess,

uc

["pdate Logs

tooaveraee maintenance cost per query. This is achieved by creating

-~ view Network. The additional logs form a chain in which each log

S the log above. Once an update is filtered, it is never considered by

neiwork. Althongh this strategy may create additional work for an

navice cost i~ amortized thus reducing the average cost per query.

dcnghont the View Network at compile-time based on the estimated
\< ceseribed Tn [Pir95] when the selectivity at a node, with respect
050 percent it less than half of the updates apply to the node),

the view nocle. These logs store relevant updates in order to reduce

at must be read to maintain the rest of the network during future

view nodes i= dowminated by the cost of reading and writing the update

v« significant factor in the cost of maintaining view caches. Although

the view nodes and view caiclies are separate data structures, they both depend on the same update

loe<. Therefore. maintenat:

tiaintaining “he view nodes

¢ costs can be minimized by efficiently utilizing the update logs (i.e.,

and view caches together when an update log is retrieved).



Running Ecample

Viere e poosent the cost Yormulis Too neiutaining view nodes and view caches, the following

aple oroides some ni wees to hielp ferpret the formulas. This example considers the chain
coonodes Vo and Ve s Blaa 0 We will continue to denote the nodes in the View
Nereorh as b odiies~ dt i cessary o distinenish between the view nodes (V.V;) and view caches
SheTas s Shown o lable oo e assiine that the base relation contains one million tuples. We

c-eate Che tnple cout for vach ol the fonr views by assuming that the selectivity factor at each

Peocbotterrwork =50 peocent [ews exactlv half of riie tuples at a given node apply to the nodes

cecrly Deloo,

B T Loy Log | View Cache | View Cache
liples | Tuples | Pages u’ages (ny) | Partitions (p,)
Gase Relation 1000000 10.000 1000 |
ode 1, 00000 7 5000 [ 500
| Node 1, 230.000 | 2500 | 230 1000 50,000
hodo 1 5000 1250 125
Code v 2,500 | 250 6250

Iobie L Paresierers for the running example.

i orcer to o ~timate the no alor of log pages that will be read and written, we assume that one
porcent of the base relation has changerl. [herefore, the base relation update log contains 10,000
npdates. Assumine L0 updates per page. 1000 pages will be read from the base relation update
foe. The nuriber of updares for each view were estimated assuming a 50 percent selectivity factor
Lotween cach view. [norder ro stimate thie nimber of pages in the view caches (n,), we assume that
cach pointer requires 5 byvre- aud that cach LID in the view cache requires 3 pointers. Therefore,
caclentov i the view caciie requives 15 byvtes. Assuming a page size of 4K, each view cache
page contain- 250 entries. in order to estimate the number of partitions (p,) in the view cache,
we assunte tnat V'('y refereiices half of the base relation pages (50,000) and we assume that each

taple in V'C'y is written on iis own page (6250 partitions). Finally, we assume that each view node

ecpiiires one page i N, = Li.



|
VC14 |

S

N S —— \

Ny | vt | WNg | WCg | WNig || WNyy | VG : WNs

PSR |

Figre 50 Lxatuple vicw Nerwork with view nodes, view caches, and update logs.

Alaintaininz View Nodex

o order to maintain a vie pode. all of the logs along the update path must be retrieved and
processec. Irocessing begio~ ot the top of the network with the base relation update log. The
npdares i1 ie base relatic - nadare loo are filtered and the relevant updates are written to the

wext log. Tlis process conr coes until the last update log in the update path has been processed.

T he updiates in the last loe that have not been applied to the metadata at the view node being

niaintaiied e applied to e metadata. The following formula estimates the cost of maintaining

Qview e,

L.+ L, +2\,

L, vepresent~ the number ol log pages read. L, represents the number of log pages written, and
N, repre-ent~ the number o node pages that are read. In the worst case, each node page will be
modified and wrirren back ro «lisk. The cost formula allows for this by doubling the number of
node paces riat arve read. [+ ony running exaiple. the cost of maintaining V Ny is L.+ Ly, +2N, =

L0000 + X735+ 2(1) = I877.



From the ~e ambers. it is ¢ var to ~ee 1hat the cost of updating a view node is dominated by the
ot oob roadi e and writine Chie updare e CINTS paces to process the update logs versus 2 pages
v cead ad vrite e view oeeis heecrnee s wienever the update logs are processed, all of the

D new s ome e e dhe <l e maintained. The view nodes along the update path

o b b N Y e ataTied by reading (and possibly writing) 3 more pages.
\Maintaininy View Caches

\dew cac ces outain poiute: oo the base selation tuples that participate in a view. When an update
i= made hat affecrs the vic o0 he view cache st be maintained. (i.e., the insertions that apply
toothie view st be addea o lie view cacl e and the deletions must be removed). Maintaining a

P cac o b avoicio iy o o clent iF e vlow s materialized, especially if the view joins two or

atlons.

rore ba- v

With the deterred npdate = -arogv. view caches are updated when the view is materialized during
query exceution. [hree iteris are vetrieved when a view cache is maintained: (1) the view cache,
21 rhe sodare logs alone 1+ o pdare periothat <upport the view cache, and (3) the pages of the
womcorele o that are tndes v the view cache, \ view cache is optimal if it can be materialized
withour eac g the same asc relation page more than the minimum number of times required.
This is achieved by partitioninz the TIDs of the view cache into equivalence classes in which all of

the TIDs access the came base relation page.

[Rou91] rovides a detailed an:lvsis of Theremental update algorithms for view caches. The cost of
these aleorit rms depends o - Towr paramieters: (n,) the number of disk pages in the view cache V
being weetnteined (L) the cuirber of loy pages read. (L,,) the number of log pages written, and
tpo) the nunber of partitic s in V. The following formula estimates the cost of materializing a

nnary view cache (selection or projection).

Lo+ L,+2n, +py



SO VR o e pe2e iy e aoddidied oo written back to disk. The cost formula allows for this

cortde e he nnmber b e cacke Cae- v Lan ave cead. Since the view cache is updated during
Coenv st on the cost ot s oriads o te view oo —p, ) is absorbed by the cost of executing the
ColNL L e ot The A e i e e cost consiat~ of reading and writing the update logs plus
S cost o ine ae e a0 b~ it view cache (Lo 4+ L, + ny). In our running example.

ceost o atannine Lo i L L =20 — 0 = 1000 + 375 + 2(250) + 6250 = 8625.

Coaese o abe esindiosre th b st ol oadating a view cache is dominated by the cost of retrieving
Vi iuplo s e the base rel tie ip i However, o this example we have considered the worst case
Lectheesch raple s steoed s own page). [f we assume that each partition contains two
Dipies. 0o cost ol cetrievii o e raples i cut o half (p, = 3125), and the cost of reading and

rittng e oddate fogs iy hegins tooapproach the cost of materializing the view. As the size

ctrie v ws decreasess the s ol readine o writing the update logs becomes a greater factor.

3.1 MNlainraining Vievw Nodes and View Caches

v g ovic wed the poheads Jor maidaining view nodes and view caches independently, the
sonainds o0 this pap oo siiers how to officienrly maintain them together. Since the cost of
Lraiatali ng view poces ane vew cachies greatly depends on the cost of reading and writing the
npdate [ogsoit s desrable v raintain the metadata at the view nodes and view caches whenever
an upda o log iz ve dleved. For example. in Figure 3. if a query requires the metadata at V¥4
to be niintained. then the bhise velation update log. plus the update logs at V Ny and V Nj,,
st be cetrieved  \When tiest update logs are processed, it would be most efficient to maintain

PNV o N VO and VN 50 However, since the query only requires the metadata at V Ny,

the addimousl v ow nodes ad view cachies can be maintained if time permits,

I lie follevine ¢« qalvais assur o~ that a query Las been received at run-time and the query’s execution

package “ias “-een retrieved. \Vithin this context, this section will consider three maintenance



~ciprarto-. L all thiee seon,
Poe it - onarion the e
Cpeo Lo mmadui e, o
Craain e Dowlen the s
cocticn pronodoes depen

[TAN G A G o
oyl

ver .

iwlale e do 1!-,l'!'|;1;.1 Ll

Scenario 1:

L the fi~t = enario. the qu
Siee the plan does not o
| heretor - e view caclie
npdate gs are retrieved o
Satatan the view sodes al
[ — 2ir. —
Sivee the up-lare logs have

of readinz and writing the

~entantic anc structnral me

[ the <econe

|'hererore, cac

Non-Seman'

Sies the query execntion plan under consideration uses a view cache.

AR B (I

5odoes nob depend on any rules. Therefore. the view
Sogpnera secntion ane e view nodes along the update path may
o dows a pracessed. I the second and third scenarios, the query

ar rules el mnst be updated before the query execution plan can
~conario. the apdare parhs for the view node and the view cache do
nodate pal

can be mainrained separately. In the third scenario, the

rtorestine conflict.

et s aly

ic Plans

rvooptimizer lhas selected a non-semantic plan that uses a view cache.
seqd o anmy rules. none of the view nodes need to be maintained.
~ madntained dnring query execution as described above. When the
il Hrocessed 1o mainrain the view cache, there is an opportunity to

2 he view cache update path. The cost of maintaining the view cache

Already been retrieved. the cost to maintain the view nodes is the cost

iev: node pages 2.V, in the worst case). The total cost to update the

adara alone the view cache npdate path is: Ly + Ly, + 21y + p, + 2N,

Sinee the costoof maintain e rhe view nodes is dominated by the cost of reading and writing

ihe updoe s the view

hieneve  the view cache is

l'ignre o illu~trates a View

ades along the view cache npdate path should always be maintained

naontained.

Network and two query execution plans. The non-semantic plan uses

the view cache V(' showu in bold. Since this plan does not depend on any rules, VC; will be

maintained curing query exccition. When the update logs are processed for VCy, the view nodes

along the update path (1§

vioand VNS can be maintained.  Since the logs have already been



S ooc St
[ m Soacdent~ Froolove e
T Velvi=or 4 e o Uies = Giesed AND Snum = Enum
_ "l TP..yeey Snum Saiary. Cept Pca'
< O depc = ca
X . .
i) VN3
- . - —_ /,/ T sa.acy «
- Joc
N P s I
Y e |
I
—~—
\\ /
—
iy | 1
[ = - i VG |
P a3 | H
[ - — i
i e,
! \ -~ | Piiter
f - Advisor = Jones
| §
VNS Project Snum
1 |
|
S J
B o

[Tienre G

Sotrievec e processed. t

reading .

'iere ar o advantages

[irst. altvonzh there is no i+

will rediice the maintenanc:
i~ matert liz.d when the vie

mintun

[t the view is materialized w!lien: the rule is maintained. the new minimum GPA can be recomputed.

Semantic Plan

rple View Network and Query Execution Plans.

coost ol aintaining the metadata at VN and VN, is the cost of

i eriting VN and VNV,

o malntainit e the view nodes when the view caches are maintained.
St to the current query in this scenario, maintaining the view nodes
cost for fut ire queries. Second, rules can be recomputed if the view
wode s waiutained. For example, consider a rule that maintains the

Gl'a for a view of t idents and assume that the student with the lowest GPA is deleted.



INPU [: [LOGS, C- ol apdare logs to be processed */
NODEN. ‘ -~ ol e croups to be maintained */
VAV O s “ 0 ol view caches to be maintained */

vicw-cache-update €05 NODESONVTEW-CACHES)
o cach boa i [LCa0es
|

il e loe

dier 1he '(JL‘

Torhiere are ape o< to be ebded ta the log
write e |
naintane the &0 ode groan .
“he o serve o dew cacke in VTEW-CACHES
Medatain U Cow cache

\gorithin 1 View Cache Update.

Scenaric 2: Distinet Up lai e Paths

e sece v conario involv - ~etantic ooan that depends on one or more rules stored at a view
sodes Torerores the view © ol st be naintained before the semantic plan can be executed. In
his scer. vic the update . lor the “iew nocle and the view cache are distinct. Consequently,
the npd. e ool for the vie o ode can e processed before the query is executed and the update

path for he view cache car be processed during query execution if the semantic plan is valid.

In Figure 6. the semantic o uses the view cache V(s which contains an index for the graduate
students wvhc are cimploved v he compuier science department. The semantic plan is only valid if
the rule ~torecl at VN5 is vatid. There arc two possible update paths for V N5, one of which will be
chosen a co npile-time. If + o apdate patli for 1".N'5 goes through V Ny and V NV,, then the update
path for 1"\N5 does not oveslap with the npdate path for VCg. This scenario involves two steps:

L) mabiain rhe view node. and {2) maintain the view cache provided the semantic plan is valid.

Step 1 ( Maintain the View Node): [ rhis example, the metadata at V N5 will be maintained
before ti query is executer . <iew node~ V'V, V.V, and the view cache VC, can be maintained

when the update logs ave v vived for V' V5. The total cost to maintain the view nodes and view



[MPU T LOGS. " st ol npdate logs to be processed */
NODES. "ot of node eroups along the update path */
VIFEAVCN TS .= ol view cachies along the update path */

vi o v-rode-updater S0 NOD s AV CAVCHIES)
Ot cach e i "
cod e og
Hrer tie |H~_'
Cthere are pe ar < 1o be wddad ro the loe
't.\'f'ill‘ Hfl‘ l\ .

Hotime pernit-

maintain 10 o2 s piode aronp
Frie oo serve o dew cac oo VWSO ANCHES aND time permits
Maeiptar, i oW cachhe

Alooritton 20 View Node Update.

cachesi-- L.+, =2\ + 2, + 5 where (2n, + p,.) is the additional cost for the view caches.
Step 2 Meaintain the Vi-w Cache): 'he view cache V(g will be maintained during query
cxecitic e view nodes N and VN can be maintained when the update logs are retrieved to
caintai Voo The voreb e o mainta e the view nodes and view caches is: Ly + Ly, + (2N,) +
20 = p o where 2N is tha ditional cost 1o maintain the view nodes.

Scenari>y 3: Overlapping Uondate Paths

The thir sconario is identicsl o the second <cenario except that the update paths overlap (i.e., the
ipdate  ath- for the view odo and view cache contain a common subpath). When the common
sitbparl < processed. it ix nost efficient 1o rerrieve the update logs once and process the view nodes
and vier caches together. 1o ever. since the plan being considered is a semantic plan, the view

cache being maintained ma: not be used it rhe semantic plan is invalid.

I Figure 6.1 the update paili “or 17.V5 wnes through V' N7 and V' Ng, then the update path for V' Ny
overlaps with the updare p.otl for VCC In rhis case. the update logs for V N7 must be retrieved

before t o qaery is executer. \lthough it is most efficient to maintain VCg when the update log



[NPU L LOGS. « - ol update logs to be processed */
NODIS. ' - of tode eroups along the update path */
VAW s © ot ol view caches along the update path */

viow-node-view-cache npdate i OCS NODES, VIEW-CACHES)
fd 753

O el e e
O N TR
Borhiere are uge 1o bhe dided o the loe

§ i i
WThe Thie o

S ntant bhe b Jode 9ria D
“the ]()g ~oryve b
aadntadn 1 awocncln
ke
[Fihe loo = a view cache in VIEW-CACHES AND time permits
Natiial Soview oo he
Moot Combied view node and view cache update.
b N= s processed s the vt ache 1o <hould be maintained during query execution. If the rule

at UUNS e alid, VOl o be nsed o answer the query.
[Her}

fliere o oo solutions for 7 scenario. an optimistic approach and a pessimistic approach. The
aotimista sroach assame e scne e plan will be valid (i.e., the rule holds for the current
state ol e catabasei. The fores VO will e materialized and maintained when the update logs
are prov <sed for VN=0 If ¢ ssarv, the matertalized view will then be stored on disk while the
metadar - ar 1 N5 is maintainesd. [f the riule at VN5 holds, then the semantic plan will be executed
nsing th view cache. Other vi-o, the non-<emantic plan will be executed. The optimistic approach
diatnrtal - the semauntic and -t ictural metadata before the query execution plan is selected. If the
semantico plais invalid, the e optimisric approach pays the price of maintaining a view cache
thar car. ot e used for the 2ivon query. \lrhough this will reduce the maintenance cost for future

queries at gse Vs this o be an expensive price to pay for the current query.



[77evioun
Ve
roget e
cation o
ot dliffer
ceeriap
pealntal
cost for
view cac
\(‘(‘O]ld =

npcate

i he rhi:
approac

qiery n

ca

A0 approactn d-

nodntadned holo:

oo at Vool
Lo sLee e,
e . .
L (W S
el s the Size ol

nclusion

ewarchers have o
0s.

This paper h.

ot NMetadata N

A5G extension o
U mes. a conllhic
Sir e bots 1vnes

the etadara 1o

wl;a»

and analvzed

e npdate path sho

onsrio showed tha

ath when the size s

scenario presents

o5 to resolve this ¢

voincur a heavy

os thiat dhe <ot ic plan will not be valid. Therefore, the metadata

Hery v plan is selecred, If the semantic plan is valid, then
vt [ ~man v e the npdate log for V2V to be retrieved a
oo lias ooy been processed, only the updates that are relevant
o~t ol rcrrieving the update log is only significant if the size of the
oW cach

perl e hiods for discovering dynamic rules and for providing useful
nsideres 1he problem of maintaining these two types of metadata
Grraph Irraamework which can be implemented as a database appli-

DBNIS Kernel. Because rhese two types of metadata are maintained

Cosawhen e apdate paths for the semantic and structural metadata

e

ST
|

il

S

inay be rss officient when 1ie

etadat tepend on rlhie same update logs, it is most efficient to

when e npdate logs are retrieved. This paper presented various

roe scenarios. [he first scenario showed that the view nodes along a

alwavs he maintained whenever the view cache is maintained. The
is only cost effective to maintain a view cache along a view node

e logs apiroaches the size of the view cache.

onllict becin-e the update paths overlap. We have proposed two
ict. The optimistic approach is the most efficient, but the current

Itv when rhe semantic plan is invalid. The pessimistic approach

~emantic plan is valid, but the additional cost is minimized by the

previous maintenance cvele. [0 best approach can be =elected at run-time based on cost estimates

and othe

“ faciors.



Retel

LTS

CGalin

RINIEY

IR

Piras

iiou.()lA

STH2!

~NTY3]

SONY]

RRS)

‘Tees
Jodakeiev PO
o edited, [
B 3 |

) il X
o dl-n oA

(" an-Nan He<n
_\/‘-'I////)l

[earni .

\/l L

A sevine inve il 121

vl oy
JoPiiees

N Ronssopoitios.
Eog  SE-X61:50:

N Rons=oponlos

ar o<t analvais

N Niogel er ol

o] imization. L«

S. Shekhar et al.

dara-driven appre

Cates B oo Rl iv updating materialized views. In C. Zan-
s SO ages 61-T1. Washington. D.C.. May 1986.

T , | U T
i . Ao Ninker.

[Logic based approach to semantic query
GOSC NSTO TS, t3(2;l62—207, June 1990.

Dlcess Retvemnlaring gnery plans for multidatabase systems. In
toCongoon {ufo. and Know. Management, Washington, DC. 1993.

Craie Noetloeks Rule induction for semantic query optimization.
oes - L) TOOL
Vica (o s U Franicwork for Query Optimization and Metadata

|

i

ach,

S. 1. Shenoy and 7.
m'cer. [EFE Troo -

C NYuand W, Sur

\

op-mization. [E] !

esi~. Gieoraia Institnre of Technology, November 1995.

~dogica access path scheme of a database. [EEFE Trans. on Software
T30 November 1982,

inereneal aceess wethod for viewcache: Concept, algorithms,
M Lranss or Database Systems. 16(3):535-563, 1991.

aethod for anromatic rule derivation to support semantic query
rans. on Database Systems, 17(4):563-600, December 1992.

carning translormation rules for semantic query optimization: A

[EEE Trans. on KNnowledge and Data Eng., 5(6):950-964, 1993.

©. Oz=ovoglu. Design and implementation of a semantic query opti-
e Kowledge and Data Eng.. 1(3):344-361, 1989.

tomatic knowledge acquisition and maintenance for semantic query
‘rans. on Nnowledge and Data Eng., 1(3):362-375, September 1989.





