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SUMMARY 

This research identifies the correlation between access to urban parks and physical activity 

and obesity outcomes at the neighborhood level. Using data for New York City, we created a new 

measure for access to parks called ‘park choice accessibility.’ Park choice accessibility uses a 

destination choice-derived framework to interact distance to parks and the quality of those parks 

as defined by their size and other potential amenities. A small park very close to a neighborhood 

can have an impact on health outcomes, but a larger park at a similar distance may have an even 

larger impact. Similarly, a large park can be further away and still have an impact on health 

outcomes. We assess whether park choice accessibility is associated with increased physical 

activity or decreased prevalence of obesity at the neighborhood level, controlling for spatially 

correlated and endogenous effects in addition to socioeconomic covariates such as age, marital 

status, income, and educational attainment.  

Our results suggest that there is no statistically significant relationship between park access 

and obesity prevalence. However, better park access is associated with a marginal increase in 

physical activity, suggesting that improving park access throughout cities may serve as a pathway 

toward achieving physical activity benchmarks. Importantly, this study is subject to several 

limitations. Public health data were obtained at the census tract level, which may reveal nuances 

that are not visible at larger spatial scales such as the city or county levels but may obscure 

relationships that are visible at more disaggregated scales. Additionally, distances from census 

tracts to parks were calculated using centroids, which may not represent the true distance people 

would have to travel to access a park from a given census tract. Using network distance and 

population weighted centroids could provide more accurate estimates of the real distance people 



 ix 

would have to travel to get to parks in the network. Moreover, calculating the distance to park 

entrances instead of park centroids would further improve distance estimates.  
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CHAPTER 1. INTRODUCTION 

The United States is currently facing an epidemic of obesity and chronic diseases, which 

are non-communicable diseases of long duration and typically slow development, including 

cardiovascular diseases, chronic respiratory diseases, diabetes, stroke, joint and bone diseases, and 

cancer (World Health Organization 2014). Recent statistics suggest that approximately 300,000 

premature deaths each year can be attributed to chronic diseases (World Health Organization 

2014). According to the Trust for Public Land, “On average, an obese American spends nearly 

$1,500 more per year in health care costs than an American of normal weight, for a national total 

of $147 billion in direct medical expenses” (Harnik & Welle 2011, p.5). As obesity and chronic 

disease have become rampant, it is no surprise that healthcare costs have risen to nearly one-fifth 

of the United States’ gross domestic product (Harnik & Welle 2011).  

While a moderate amount of regular physical activity has been established as an effective 

strategy for reducing and managing obesity and many of the aforementioned chronic diseases 

(Office of Disease Prevention and Health Promotion 2008; Centers for Disease Control and 

Prevention 2009a; Durstine et al. 2013), Wolf notes that “more than 50 percent of U.S. adults do 

not get enough physical activity to provide health benefits; 24 percent are not active at all in their 

leisure time. Activity decreases with age and sufficient activity is less common among women 

than men, and among those with lower incomes and less education” (2008, p. 22). Similarly, the 

United States Department of Health and Human Services notes that less than fifty-percent of 

Americans meet established recommendations for moderate to vigorous physical activity, or 

MVPA (U.S. DHHS 2010). As the epidemiological transition from infectious to chronic diseases 
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is now complete in the developed world, increasing physical activity has become a vital public 

health task in the 21st century. 

Research has shown that the design of the built environment influences a range of 

behaviors, including those related to physical activity. The presence of trees and other vegetation 

in outdoor environments have been shown to be positively associated with physical activity (Pretty 

et al 2005); one finding suggests that after sidewalks and trails have been constructed, the 

introduction of natural elements positively impacts motivation to engage in physical activity 

(Suminski et al. 2005). Additional evidence indicates that commonly vegetated areas, such as parks 

and open space, support outdoor physical activity (Giles-Corti et al. 2005; Wells et al. 2007). 

Perhaps most telling is the finding that “people in large cities perceive themselves to be generally 

healthier if a greater percentage of the living environment is greenspace, are inclined to be more 

active, and claim the ability to relax faster” (Wolf 2008, p. 24). Thus, by providing space for active 

recreation, public parks and greenspaces may increase the likelihood of engaging in more physical 

activity. As such, public investment in parks can be thought of as a public health intervention for 

chronic diseases and conditions, as well as general population health.  

To date, the literature exploring the relationship between parks and health outcomes, 

specifically those related to physical activity and obesity, has yielded mixed results. Importantly, 

there is considerable variation in the design of past studies, including the spatial scale of analysis, 

the population of interest, and the measure of proximity and/or accessibility. While studies of 

neighborhood level health impacts do exist, they typically focus on discrete populations of interest 

within individual parks instead of examining the impacts of larger park networks (Bancroft et al. 

2015; Coutts 2008; Aspinall et al. 2010; Rigolon and Nemeth 2016; Sallis et al. 2016). Other 

studies have used the city and metropolitan statistical area as the spatial scale of analysis, which 
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in some cases has resulted in the discovery of positive associations between increased park space 

and positive health impacts but may conceal more nuanced relationships that exist at smaller 

spatial scales (Larson, Jennings & Cloutier 2016). Evaluating the health impacts of parks and 

greenspaces using a smaller unit of analysis is an important research gap to fill, especially 

considering that park use and physical activity within parks varies considerably according to 

residential proximity to parks and park facilities as well as a number of sociodemographic factors 

(Kaczynski et al. 2014). There are important urban design considerations here; is it better to build 

a single large park with many different amenities, or to build a series of smaller parks nearer 

people’s homes. Similarly, do parks placed near low-income households affect the behavior of 

those households? This study attempts to fill that gap using New York City as a case study 

example. Using a new measure of park access called ‘Park Choice Accessibility,’ we find that that 

there is no statistically significant relationship between park access and obesity prevalence but 

having better access to parks is associated with a modest increase in physical activity participation. 
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CHAPTER 2. RESEARCH BACKGROUND 

2.1 Review of Urbanization & Public Health Outcomes 

Across the world, the population of cities is growing at an unprecedented rate. With a 

current estimated global urban population of over 3.5 billion people, the United Nations Population 

Fund estimates that by 2030, 5 billion people will inhabit cities worldwide.  By 2050, an additional 

3 billion people will live in cities – a sixty percent increase over twenty years – with much of this 

growth expected to take place in the developing world (United Nations Population Fund, 2016). 

Despite the greater expected concentration of urban growth in other parts of the globe, the trend 

of urbanization is highly visible in the United States as well.  According to the U.S. Census Bureau, 

“The nation's urban population increased by 12.1 percent from 2000 to 2010, outpacing the nation's 

overall growth rate of 9.7 percent for the same period” (Ratcliffe 2012, p. 1). Nowak and Walton 

estimate that urban land area as a percentage of total land area in the U.S. will increase from 3.1% 

in 2000 to approximately 8.1% by the year 2050, with urbanized places collectively comprising a 

land area larger than the state of Montana (2005). More than eighty percent of the U.S. population 

now lives in urban areas, compared to sixty-four percent in 1950 (United States Census Bureau 

2007). 

The global trend of urbanization has profound implications for population health, both 

positive and negative. Because urbanization corresponds with an increase in population density 

compared to rural and suburban settlement patterns, residents of dense urban areas throughout the 

world have better access on average to many health services and health-promoting amenities 

simply because of their closer proximity to such resources (Larson, Jennings & Cloutier 2016). 

However, despite this benefit of increased density and the ability of cities to provide many 
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opportunities for innovation, economic growth and social progress, historical and current evidence 

suggests that rapid urban growth often leads to congestion and numerous negative environmental 

and human health outcomes. Interactions between growing urban populations and their 

environment, marked by intensive resource consumption and ecologically harmful patterns of 

development, lead to numerous undesired consequences including pollution and sanitation issues 

as well as racial and socioeconomic disparities (Larson, Jennings & Cloutier 2016).  These 

urbanization-induced stressors can heighten the susceptibility of populations to a wide range of 

health problems (Larson, Jennings & Cloutier 2016).  

Because of the considerable growth of urbanization throughout the world, many city 

planning and public health professionals have begun to pay more attention to the role of the built 

environment in promoting or discouraging healthy behaviors. Until recently, most large-scale 

health promotion efforts focused on individual-level interventions intended to educate people 

about healthy lifestyles and behaviors, touching on topics including diet and exercise. According 

to Coutts (2008) however, this trend is shifting as professionals “have begun adopting an 

ecological paradigm, accepting that both individual and environmental determinants play a role in 

health behavior. This new, arguably revisited, public-health paradigm accounts not only for the 

compositional (who you are) but also for the contextual (where you are) influences on physical 

activity” (p. 552). As professionals begin to operate from the assumption that the design and 

configuration of the built environment can facilitate or inhibit physical activity, they are 

increasingly looking to public spaces like parks and greenways as key elements of the built 

environment that can support exercise (Coutts 2007; Bedimo-Rung, Mowen & Cohen 2005).  
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2.2 Review of the Health Benefits of Parks 

A large body of literature exists documenting the many benefits of urban parks and 

greenspaces to human health and wellbeing. Importantly, these benefits stem from the provision 

of ecosystem services, which occur when the natural environment supplies something that people 

demand, improving quality of life and well-being (Larson, Jennings & Cloutier 2016). These 

services can include the provisioning of goods such as fresh water and agricultural products; 

regulatory functions including protection of drinking water quality, heat mitigation, air 

purification, and stormwater management; and cultural functions, such as improving aesthetics, 

providing opportunities for recreation, tourism, and physical and mental health, and promoting 

biodiversity (McDonald 2015). According to Wolch, Byrne and Newell, parks and greenspaces 

provide “…a wide range of ecosystem services that could help combat many urban ills and 

improve life for city dwellers—especially their health…Ecosystem services provided by urban 

greenspace not only support the ecological integrity of cities, but can also protect the public health 

of urban populations” (2014, p. 234). Table 1 summarizes commonly cited benefits of parks and 

greenspaces. 
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Table 1 - Commonly Cited Benefits of Parks and Greenspaces 

Category Summary of Benefits 

Physical 

Health 

 

 

Provision of clean drinking water, fostering increased physical activity, promoting 

faster healing in hospitals, reduction of heat-related mortality, reduced incidence 

of cardiovascular-related mortality, improved air quality and related reductions in 

respiratory-related mortality, reduced incidence of childhood asthma, and 

improved birth outcomes (Benedict and McMahon 2006; Cotrone 2015; Akbari, 

Pomerantz, and Taha 2001; Beattie, Kollin, and Moll 2000; Nowak 2002; Lovasi 

et al. 2008; Wolf 2008; Mitchell and Popham 2008; Donovan et al. 2013; National 

Urban and Community Forestry Advisory Council 2015; Stone and Norman 2006) 

Mental 

Health 

Reduced stress and mental fatigue, reduced aggression, enhanced emotional and 

cognitive development, improved behavioral outcomes in youth (Benedict and 

McMahon 2006; Wolch, Byrne, and Newell 2014; Kuo and Sullivan 2001a; 

NUFAC 2015; Ernston 2013; Ulrich 1981; Ulrich et al. 1991; Lee and 

Maheswaran 2010) 

Social 

Health 

Enhanced community aesthetics, crime reduction, increased social interaction 

(Benedict and McMahon 2007; Kuo and Sullivan 2001b; Kuo 2003; Wolfe and 

Mennis 2012; Sullivan, Kuo, and DePooter 2004) 

Economic 

Health 

Provision of ecosystem services, increased residential property values and 

municipal property tax revenues, attraction of more shoppers and increased 

economic activity to commercial districts (American Forests 1997; Benedict and 

McMahon 2006; Coder 1996; McDonald 2015; Lerner and Poole 1999; Anderson 

and Cordell 1988; Seila and Anderson 1982, 1984; Donovan and Butry 2010; 

Schwab 2009; Wolf 1999). 

 

Given the general benefits of parks and greenspaces in Table 1, several studies have 

attempted to quantify the impacts of these spaces on different facets of health and wellbeing across 

cities, yielding mixed results. Larson, Jennings and Cloutier (2016) used self-reported scores on 

the Gallup-Healthways Wellbeing Index to evaluate the relationship between different areas of 

wellbeing, including physical health, and park quantity, quality, and accessibility in 44 U.S. cities. 

The authors found that “Park quantity (measured as the percentage of city area covered by public 

parks) was among the strongest predictors of overall wellbeing, and the strength of this relationship 

appeared to be driven by parks’ contributions to physical and community wellbeing” (Larson, 

Jennings & Cloutier 2016, p. 1). While the authors found positive associations between wellbeing 

and park quality and accessibility, these relationships were not statistically significant. 
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Additionally, the authors note that income may be a poor predictor of wellbeing and suggest that 

the relationship between income and wellbeing may be moderated by other factors, including park 

access (Larson, Jennings & Cloutier 2016).  

A study by West, Shores and Mudd (2012) used park data from the Trust for Public Land’s 

2010 City Park Facts and public health data from the Behavioral Risk Factor Surveillance System 

(BRFSS) to examine relationships between the density of parkland, parkland per capita, and levels 

of physical activity and obesity for 67 metropolitan statistical areas in the U.S. The study found a 

significant, positive association between park density and physical activity and a significant, 

negative association between park density and obesity. In a study of New York City, Stark et al. 

(2014) found that the “proportion of neighborhoods that was large or small park space and park 

cleanliness were associated with lower BMI among NYC adults after adjusting for other 

neighborhood features such as homicides and walkability, characteristics that could influence park 

usage” (p. 2).  

Interestingly, in a study by Richardson et al. (2012) that examined the relationship between 

urban greenspace and selected mortality rates, the authors did not find a statistically significant 

relationship between the quantity of urban greenspace and mortality caused by lung cancer, 

diabetes, heart disease or car accidents, but found that all-cause mortality was significantly higher 

in greener cities. The authors speculate that this is because greener cities are often sprawling cities, 

suggesting that the negative health effects of urban sprawl may outweigh the positive health effects 

of having more greenspace (Richardson et al. 2012). In a meta-analysis of 20 peer reviewed journal 

articles exploring the relationship between parks and objectively measured physical activity, 

Bancroft et al. (2015) found that five studies reported a significant positive association between 

the two, six studies produced mixed results, and nine studies found no association at all.  
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While several of the aforementioned studies yielded results consistent with the hypothesis 

that park access and use confer health benefits stemming from increased physical activity and 

attendant decreases in obesity, all of the studies – except some that were included in the meta-

analysis by Bancroft et al. (2015) – were conducted at the level of the city or metropolitan statistical 

area, potentially concealing variation in health outcomes at more fine-grained levels of analysis 

(Larson, Jennings & Cloutier 2016).  

2.3 Review of Measuring Accessibility 

To evaluate the impacts of parks and greenspaces on health outcomes at any scale, one of 

the fundamental tasks involved is the selection of a measure of accessibility. In a comprehensive 

meta-analysis of published studies that measure active accessibility (accessibility using non-

motorized travel modes including walking and cycling), Vale, Saraiva and Pereira (2014) 

identified four broad categories of studies based on the active accessibility metric employed: 

“distance-based, gravity-based or potential, topological or infrastructure-based, and walkability 

and walk score-type measures” (p. 209). Distance-based measures account only for the Euclidean 

distance between origins and destinations, while infrastructure-based measures explicitly 

incorporate relevant transportation networks like roads and sidewalks to more accurately measure 

travel time and distance. Gravity-based measures incorporate cost measures to model accessibility 

as a function of a destination’s attractiveness (i.e., size, commercial activity, etc.) and the cost of 

traveling to that destination from a given origin (i.e., travel time or distance) (Vale, Saraiva & 

Pereira 2014).  

Importantly, Vale, Saraiva and Pereira acknowledge that there is not yet a consensus on 

the most appropriate accessibility metric to use in a given setting, noting that “ways to measure 
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active accessibility are as varied as the number of scholars that measure them” (2014, p. 227). 

However, their meta-analysis highlights some of the limitations associated with each of the types 

of metrics described. For example, in describing distance-based accessibility measures, the authors 

note that such measures are “extremely sensitive to the way in which travel impedance (i.e., 

distance) is measured. Accordingly, four types of distance can be identified: Euclidean distance, 

Manhattan distance, shortest network distance, and shortest network time” (Vale, Saraiva & 

Pereira 2014, p. 216). The appropriateness of one distance-based measure over another can vary 

significantly depending on the topography of the environment and the travel mode that is being 

employed. In describing gravity-based accessibility measures, which “assume that travel is a 

derived demand and there is a tradeoff between the benefit of the opportunity and the cost to reach 

it from a given origin,” the authors note that such measures do not always explicitly account for 

land use characteristics near origins and destinations, which may impact that true accessibility of 

those places (Vale, Saraiva & Pereira 2014, p. 219). 

In evaluating methodologies of measuring access to urban services, including parks and 

greenspaces, Logan et al. (2017) note that existing and commonly used approaches “often simplify 

their measure of proximity by using large areal units and by imposing arbitrary distance 

thresholds,” which often results in access-poor populations being overlooked (p. 1). The authors 

concede that many existing approaches have long been necessary because the computational power 

required to use higher-resolution analytical techniques was unavailable. However, due to recent 

advances in computational power and the advent of municipal open-data policies, Logan et al. 

(2017) recommend that future analyses of accessibility disaggregate population data to the 

building or parcel level and use network distance instead of Euclidean distance to measure 

proximity.  
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CHAPTER 3. METHODOLOGY 

This study makes two important contributions to the study of relationships between park 

access and health outcomes. The first pertains to how access to parks is measured. Whereas past 

studies have used purely distance-based areal population metrics (i.e., buffers) and/or the land area 

devoted to parks to operationalize park access, this study borrows methods from transportation 

engineering and analysis, specifically the modeling of transportation destination choice and trip 

generation and attraction, to develop a new measure of accessibility. This new metric is a highly 

adaptable measure of park access that is capable of incorporating multiple park system attributes 

simultaneously to generate a weighted measure of accessibility across an entire park network. The 

second contribution pertains to the application of spatial econometric methods to estimate the 

impacts of park access on obesity and physical activity outcomes. Past studies have failed to 

account for the presence of spatial dependence in the variables included in regression models used 

to estimate relationships of interest, resulting in estimates that may be biased and/or inconsistent. 

The econometric methods used in this study correct for spatial dependence and produce unbiased 

estimates as a result. A discussion of the methodologies employed to realize these two 

contributions follows, beginning with a description of the data preprocessing that was conducted 

prior to beginning the analysis. 

3.1 Data Preprocessing 

Development of the measure of park accessibility used in this study and subsequent 

regression analysis to evaluate relationships of interest was done using a geographic information 

system (GIS) and two spatial datasets: a shapefile of public parks and greenspaces within New 

York City’s municipal boundaries and a shapefile of census tract boundaries containing several 
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sociodemographic variables of interest. Prior to calculating the park access metric and developing 

regression models, the parks shapefile was checked for data accuracy to ensure that all features 

within the shapefile were, in fact, parks. Upon inspection, several features were identified for 

removal from the data sets, including public sports facilities such as Yankee Stadium and its 

surrounding parking lots. After removing these features, the size, in acres, of all remaining parks 

was calculated using ESRI’s ArcGIS software and appended to the attribute table of the parks 

shapefile. The census tract shapefile was examined visually to identify outlying census tracts that 

might skew subsequent analysis, either because they were considerably isolated from other tracts 

by distance or were significantly different in size compared to other census tracts. All outlying 

census tracts were removed.  

Several sociodemographic variables have been identified in the literature as important 

correlates of health outcomes, including race, income, educational attainment, and others (Larson, 

Jennings & Cloutier 2016). Relevant sociodemographic data were obtained at the census tract level 

from the American Community Survey’s 2011-2015 5-year estimates (ACS). Public health data 

were obtained at the census tract level from the Centers for Disease Control and Prevention’s 500 

Cities Project (CDC), which publishes key public health statistics such as obesity and physical 

activity participation rates for the largest 500 cities in the United States (CDC 2018). After cleaning 

the data and appending public health and sociodemographic variables to the census tracts shapefile, 

the parks and census tracts data sets were imported into the R statistical software package for 

analysis. A total of 2,195 census tracts and 12,491 parks were included in the shapefiles. Due to 

missing data, 2,115 census tracts were used for subsequent regression analysis. Table 2 presents 

the variables that were included in the initial regression models.  



 13 

Table 2 - Public Health and Sociodemographic Variables 

Name Type Description Source 

Obesity Dependent The % of Behavioral Risk Factor 

Surveillance System (BRFSS) 

respondents aged ≥ 18 years with a body 

mass index ≥ 30 kg/m2 based on self-

reported height and weight.   

 

CDC 

Physical 

Inactivity 

The % of Behavioral Risk Factor 

Surveillance System (BRFSS) 

respondents aged ≥ 18 years who reported 

no leisure-time physical activity in the 

preceding two weeks. 

Income Independent 

 

The % of residents within a certain 

income range, segmented into 10 

categories, ranging from ≤ $10,000 to ≥ 

$200,000. 

 

ACS  

2011-2015  

5-Year 

Estimates 

 

Population 

Density 

Logarithm of the number of residents per 

acre 

 

Fulltime 

Work 

The % of residents who worked 50 to 52 

weeks in the preceding 12 months.  

 

College 

Degree 

The % of residents with a bachelor’s 

degree or higher. 

 

Single The % of residents aged 15 years and over 

that is divorced, separated or never 

married. 

 

Age 0-17 The % of residents age 0-17. 

 

Age 18-29 The % of residents age 18-29. 

 

Age 30-64 The % of residents age 30-64. 

 

Age 65+ The % of residents age 65+. 

 

Race White The % of white residents. 

 

Race Black The % of black residents.  

 

Race Native 

American 

The % of Native American residents. 
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Table 2 continued 

Name Type Description Source 

Race Asian Independent The % of Asian residents. 

 

 

Race Pacific 

Islander 

The % of Pacific Islander residents. 

 

 

Race Other The % of residents who identify as a race 

other than those listed above. 

 

Hispanic The % of residents who are Hispanic. 

 

 

3.2 Evaluating Access to Parks  

In a typical park destination choice model, the probability of a person residing in census 

tract 𝑖 choosing park j from the set of all parks P is: 

𝑃(𝑗) =
exp(𝑈𝑖𝑗)

∑ exp𝑝∈𝑃 (𝑈𝑖𝑝)
 

where the empirical utility of each park 𝑈𝑖𝑗 is a function of the travel costs 𝑑 from tract 𝑖 to park 

𝑗, and the amenities 𝐴 at 𝑗  

𝑈𝑖𝑗 = 𝛽 𝐴𝑗 + 𝛽𝑑𝑑𝑖𝑗 

A key purpose in applying this framework is a result from theoretical economics, which 

holds that the logarithm of the denominator in equation 1 – called the log-sum – represents the 

consumer surplus for the choice maker, or the total value of all the choices in the choice set (Train 

2003). 
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𝐶𝑆𝑖 = log(∑ exp

𝑝∈𝑃

(𝑈𝑖𝑝)) 

In other words, 𝐶𝑆𝑖 represents the total accessibility to all the parks in the region, weighted 

for the amenities of the parks and their distance from the residents’ homes. In principle, 𝐴 may be 

any linear-in-parameters function of the attributes of the park,  including its size, the presence of 

sports fields or playgrounds, the access fee, etc. This represents an improvement over classifying 

access in terms of the binary proximity (e.g., a park within ½ mile). The natural logarithm of the 

denominator is a measurement of the weighted total accessibility of the choice set from census 

tract j and is what is used as the measure of park accessibility in this study. Intuitively, census 

tracts with better access to parks will have higher log-sums than census tracts with inferior access.  

For this study, the only attribute of the park we have access to is the parks’ size in acres, 

and the Euclidean distance between the tracts and parks in miles, calculated respectively with GIS 

software in ESRI ArcMap and R (Bivand & Lewin-Koh 2017). In standard practice, the 𝛽 

parameter coefficients on size and distance would be estimated from a survey of park use. As this 

was unavailable, we undertook a manual calibration process. Calibration of the 𝛽 parameters for 

the size and distance terms was done by mapping different specifications of the park access metric 

and visually inspecting the resulting distribution of park access throughout the city to check for 

reasonableness. We assert that the coefficient on distance is negative, and the coefficient on size 

is positive; thus, larger and nearer parks contribute more to accessibility than smaller more distant 

ones.  

Figure 1 shows two iterations of the 𝛽 calibration process for NYC that are clearly not 

reflective of the true distribution of park access throughout the city. The first iteration shown in 
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Figure 1 uses a 𝛽 size parameter of 0.00001 and a 𝛽 distance parameter of -0.04. The second 

iteration uses a 𝛽 size parameter of 0.01 and a 𝛽 distance parameter of -0.02. Figure 2 shows a 

map of the distribution of park access in NYC using the final calibrated size and distance 𝛽 

parameters of 0.00001 and -5, respectively.  
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Figure 1 - Mis-specified Iterations of Size and Distance β Calibration in NYC(Top: Size 

0.00001, Distance -0.4; Bottom: Size 0.01, Distance -0.02) 
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Figure 2 - Map of NYC Park Access Using Final Calibrated Size & Distance β Parameters 

(0.00001, -5) 

 

An advantage of using the log-sum framework described above to calculate park 

accessibility is that this framework is highly flexible and can incorporate many different attributes 

of a park network, with data availability serving as the only limitation. For example, where travel 

time estimates from census tracts to parks are available, these estimates could be substituted for, 

or used in conjunction with, the distance measurements that are already included in the model 

presented here. Additionally, metrics that capture the presence or lack of park amenities that may 

be conducive to physical activity and positive health outcomes could also be included using the 

log-sum framework.  
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In addition to size and distance attributes, we were interested in incorporating some 

measure of park usage into the park access metric. While survey data would have been ideal for 

this purpose, none was available. However, we were able to acquire data for the number of Tweets 

recorded through the Twitter social media platform within each park for the month of September 

2014 and used this data to estimate park usage. After developing the park access log-sum 

framework using size and distance parameters, data became available for the number of Tweets 

recorded through the Twitter social media platform within each park for the month of September 

2014. In theory, parks with more Tweets are the sites of more activity and greater visitation than 

parks with fewer Tweets. Based on this assumption, the natural logarithm of the number of Tweets 

recorded in each park in September 2014 was added to the log-sum framework as a third parameter 

in the calculation of park access, such that 𝑈𝑖 = 𝛽𝑠𝑆𝑖 + 𝛽𝑑𝐷𝑖 + 𝛽𝑡𝑇𝑖, where Ti is the natural 

logarithm of the number of Tweets recorded in each park and 𝛽t is the corresponding coefficient. 

A Tweet 𝛽 parameter of 0.001 was used in the final calibrated models. 

 

3.3 Applying Spatial Econometric Methods to Model Relationships of Interest 

Multivariate regression is a fundamental econometric tool that is used for the purposes of 

identifying causal relationships between phenomena and for prediction and forecasting of future 

trends (Angrist & Pischke 2014). One of the most commonly used multivariate regression tools is 

ordinary least squares (OLS) linear regression, in which “it is assumed that the values of the 

coefficients of the independent (explanatory) variables are constant across the spatial extent of the 

study” (Srinivasan 2016, p. 1). The formula for the standard linear model using OLS is: 

𝑌 =  𝛼 + 𝑋𝛽 + 𝑒,  
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where Y denotes the dependent variable, 𝛼 denotes the intercept, X denotes a matrix of exogenous 

explanatory variables with corresponding coefficients 𝛽, and e is a vector of error terms that are 

assumed to be independent of one another (Elhorst 2010).  

Within the realm of regional science, regression modeling is often done using data that is 

inherently spatial in nature, such as neighborhood demographic characteristics, real estate prices, 

migration flows between regions, and movement between origins and destinations using various 

components of the transportation network (LeSage 2014). Importantly, classic regression 

techniques like OLS make several key assumptions, including normality of the dependent variable, 

a lack of strong correlations between the independent variables, and independence of observations, 

among others. According to LeSage (2014), spatial data “typically violates the assumption that 

each observation is independent of other observations made by ordinary regression methods,” 

making techniques like OLS inappropriate for modeling many spatial data sets (p. 1).  

When working with spatial data, modeling techniques like OLS can sometimes produce 

misleading results because of a phenomenon known as spatial dependence, or spatial 

autocorrelation, “which is a property of data that arises whenever there is a spatial pattern in the 

values, as opposed to a random pattern that indicates no spatial autocorrelation” (Srinivasan 2016, 

p. 1). This phenomenon was most famously described by geographer Waldo Tobler through what 

he called the First Law of Geography: “everything is related to everything else, but near things are 

more related than distant things” (Tobler 1970, p. 236). Tobler famously applied this law to a 

simulation of urban population growth in Detroit, MI (Tolber 1970).  

Several global and local measures of spatial autocorrelation have been developed to test 

for independence of observations across the spatial extent of a study, including Moran’s I, which 
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is perhaps the most commonly used metric of spatial autocorrelation, as well as Geary’s C and 

Anselin’s Local Moran’s I, which reveals local patterns of clustering (Srinivasan 2016). Where 

spatial autocorrelation is indicated by the results of one or more of the aforementioned statistical 

tests, classic regression techniques like OLS, which do not control for the effects of spatial 

dependence, should be discarded in favor of methods that explicitly account for and control spatial 

effects (LeSage 2014, Srinivasan 2016, Elhorst 2010, LeSage and Pace 2009).  

A number of spatial econometric techniques have been developed over time to correct 

and/or control for the presence of spatial dependence, resulting in more reliable estimates of spatial 

relationships of interest. These techniques incorporate a spatial weights matrix, W, into the formula 

of the regression equation being used, which specifies the relationship between neighboring spatial 

units. Two commonly used neighbor relationships are rook contiguity, in which a spatial unit’s 

neighbors are defined as those that are directly above, below or to either side, and queen contiguity, 

in which a spatial unit’s neighbors can lie in any direction, including along diagonals (Golgher & 

Voss 2015; LeSage & Pace 2009).  

Importantly, there are three different kinds of spatial interaction effects that help to explain 

the occurrence of spatial dependence: endogenous interaction effects, exogenous interaction 

effects, and correlated effects (Elhorst 2010, Manski 1993). Each type of interaction effect has 

different implications for the type of spatial econometric technique that should be used to control 

for underlying spatial dependence. In this study, four types of spatial econometric techniques were 

used to model the relationship between park access and obesity and physical activity outcomes: 

the spatial lag model (or spatial autoregressive model), the spatially-lagged error model, the spatial 

Durbin error model, and the spatial Durbin model. The specification of each model is described in 

turn below, as well as the motivation for each and the types of interaction effects that each controls 
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for. This section ends with a discussion of how the most appropriate models for this study were 

selected.    

3.3.1 Spatial Autoregressive Model (SAR) 

The SAR model is motivated by endogenous interaction effects between the value of the 

dependent variable in a target unit of analysis and the average value of the dependent variable in 

neighboring units, generating “a process of ‘global spillover’ indicating that changes in an 

independent variable anywhere in the study domain will affect the value of the dependent variable 

everywhere, even when the declaration of neighborhood influences implicit in the matrix W 

represents simple 1st-order contiguity” (Golgher & Voss 2015,  p. 180). The formula for the SAR 

model is similar to that of the classic OLS model but includes an average of neighboring values of 

the dependent variable, such that: 

𝑌 =  𝛼 +  𝜌𝑊𝑦 + 𝑋𝛽 + 𝑒, 

where 𝜌 is the coefficient of the spatially lagged dependent variable, Wy (Golgher & Voss 

2015, Elhorst 2010, LeSage & Pace 2009).  

3.3.2 Spatial Error Model (SEM) 

The SEM model is motivated by correlated effects, “where similar unobserved 

environmental characteristics result in similar behavior” (Elhorst 2010, p. 11).  To determine 

whether the SEM model is appropriate for a given data set, the residuals of an OLS regression 

must be examined. If there is strong spatial autocorrelation in the residuals (error terms), a SEM 

model may be the correct econometric method to apply.  
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Like the SAR model, the formula for the SEM model is quite similar to that of the classic 

OLS model but differs in its inclusion of a spatially autocorrelated error term, such that: 

𝑌 =  𝛼 + 𝑋𝛽 + 𝑢,     𝑢 =  𝜆𝑊𝑢 + 𝑒, 

where u is the spatially autocorrelated error term, “λ is the coefficient expressing the average 

strength of spatial correlation among the errors (conditional on W) and W is the weight matrix 

representing the spatial structure of neighbor influences among the residuals” (Golgher & Voss 

2015, p. 179).  

3.3.3 Spatial Durbin Error Model (SDEM) 

The SDEM model is motivated by both correlated effects and exogenous interaction effects 

between the values of the independent variables in neighboring spatial units and the value of the 

dependent variable in a target spatial unit (Golgher & Voss 2015). The formula for the SDEM 

model differs from the classic OLS model through inclusion of a spatially autocorrelated error 

term and spatially-lagged independent variables, such that: 

𝑌 =  𝛼 + 𝑋𝛽1 + 𝑊𝑋𝛽2 + 𝑢,     𝑢 =  𝜆𝑊𝑢 + 𝑒, 

where WX is a matrix of spatially lagged independent variables with coefficients 𝛽2 and u is the 

spatially autocorrelated error term containing coefficient λ (LeSage 2014; Elhorst 2010). Elhorst 

(2010) notes that use of the SDEM model is fairly uncommon in the literature.  

3.3.4 Spatial Durbin Model (SDM) 

The SDM model is motivated by endogenous interaction effects between the value of the 

dependent variable in a target spatial unit and the value of the dependent variable in neighboring 
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spatial units as well as exogenous interaction effects between the values of the independent 

variables in neighboring spatial units and the value of the dependent variable in a target spatial 

unit (Elhorst 2010). First introduced by Anselin in 1988, the SDM model features a spatially lagged 

dependent variable and spatially lagged independent variables, such that: 

𝑌 =  𝛼 + 𝜌𝑊𝑦 + 𝑋𝛽1 + 𝑊𝑋𝛽2 + 𝑒, 

where 𝜌 is the coefficient of the spatially lagged dependent variable, Wy, and WX is a matrix of 

spatially lagged independent variables with coefficients 𝛽2 (LeSage & Pace 2009; Elhorst 2010; 

Golgher & Voss 2015). The SDM model does not feature a spatially autocorrelated error term.  

3.3.5 Selecting the Most Appropriate Spatial Model 

The literature reveals a difference in opinion regarding how to compare spatial econometric 

models and select the most appropriate one for a given data set. According to Elhorst (2010), the 

first step in model comparison is to estimate an OLS regression and use the Lagrange multiplier 

(LM) test to evaluate whether the SAR or SEM model is more appropriate to describe the 

observations. If the OLS model is rejected in favor of one or both of the spatial models, the SDM 

model should then be estimated. A likelihood ratio (LR) test can then be used to examine whether 

the SDM model can be simplified to a SAR or SEM model. If simplification is not possible, then 

the SDM model best describes the data. Otherwise, one of the two simplified models should be 

selected according to the results of the LR test.  

In contrast to the process Elhorst (2010) describes, LeSage (2014) argues that in practice, 

the only two spatial econometric models that are ever needed are the SDM and SDEM models. 

Selection between these is dependent on the type of spillover process being modeled. According 
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to LeSage, “A (spatial) spillover arises when a causal relationship between the rth 

characteristic/action of the ith entity/agent located at position i in space exerts a significant 

influence on the outcomes/decisions/actions (yj) of an agent/entity located at position j” (2014, p. 

3). LeSage distinguishes between two kinds of spatial spillovers: local and global. A defining 

feature of local spillovers is that there are no feedback effects or endogenous interactions between 

spatial units. Global spillovers, on the other hand, are characterized by the presence of both. If the 

process being modeled is one whose underlying data generation process consists of local spillover 

effects, then the SDEM model is the more appropriate one to use. However, if the underlying data 

generation process consists of global spillovers, the SDM model is preferred. LeSage notes that 

“Despite the fact that global spillover situations are likely rare, the spatial regression specifications 

most commonly used in applied regional science literature are those associated with global 

spillovers, not local” (2014, p. 5).  

 

 

  



 26 

CHAPTER 4. RESULTS 

Results are presented below for models pertaining to obesity and physical activity in turn. 

For each outcome of interest, model coefficients and goodness-of-fit measures are shown for the 

spatial autoregressive model, the spatial error model, the spatial Durbin error model, and the spatial 

Durbin model discussed in Chapter 3 above. Three models of each type are shown – the first does 

not include park access as an independent variable, while the second includes park access as a 

function of only size and distance parameters and the third adds the natural logarithm of the number 

of Tweets in each park to the calculation of the park access measure.  

Importantly, not all of the independent variables listed in Table 2 are included in the models 

below. Early iterations of each model revealed income to be highly insignificant, resulting in its 

removal from subsequent iterations. Additionally, early model iterations used the raw value of the 

park access measure as an independent variable. However, using the natural logarithm of park 

access instead of the raw value resulted in a considerably better model fit across all model types. 

As such, the natural logarithm of park access is used in the regressions detailed below. The 

following sections present an overview of how the optimal model was selected for each dependent 

variable. Each subsection concludes with a comprehensive presentation of the results for the 

optimal models.  

4.1 Modeling the Impact of Park Access on Obesity Prevalence 

Table 3 below presents the model coefficients for all the aforementioned spatial models 

using obesity prevalence (see Table 2) as the dependent variable. For all model types, the inclusion 

of the park access measure as an independent variable improves goodness-of-fit compared to the 
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models without park access, as evidenced by the lower log likelihood value for Model 2 of each 

model type compared to Model 1. Adding Tweets into the park access measure further improves 

goodness-of-fit for all model types, as evidenced by the even lower log likelihood value for Model 

3 of each type. Including Tweets in the formulation of park access improves goodness-of-fit by a 

much larger margin than simply adding park access as a function of size and distance to a model 

with no park access measure.  

The SAR models were discarded because the most likely SAR model (Obesity SAR 3) did 

not fit the data as well as the most likely SEM, SDM and SDEM models. The SEM models were 

also discarded because the SDM and SDEM models showed superior goodness-of-fit. While the 

most likely SDM and SDEM models (Obesity SDM 3 & SDEM 3) were within approximately 10 

points of one another on the log likelihood scale, Obesity SDM 3 proved superior and was selected 

as the optimal model to describe the data. Table 4 below presents the model coefficients and the 

results of impact simulations that were carried out for Obesity SDM 3, which are required to 

evaluate the effects of the independent variables on the dependent variable in a spatial Durbin 

model.  

According to the impact simulations presented in Table 4, park access does not have a 

statistically significant impact on obesity prevalence, although the impact coefficients all have a 

negative sign, indicating that the direction of the relationship is such that increases in park access 

are expected to correlate with decreases in obesity prevalence. The total impact coefficients show 

that decreases in population density, the percentage of residents with a college degree, and the 

percentage of residents in any age and race category are associated with a statistically significant 

increase in obesity prevalence. Increases in the percentage of single and Hispanic residents are 

also associated with a statistically significant increase in obesity prevalence.  
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Several variables show interesting spatial trends in the significance of their impacts. The 

direct impact coefficients for fulltime employment, the percentage of residents with a college 

degree, and the percentage of Hispanic residents show that changes in the value of these variables 

within a target census tract result in a statistically significant increase in obesity prevalence within 

that same census tract. However, the indirect impact coefficients for these variables are not 

statistically significant, indicating that changes in the average value of these variables in 

neighboring census tracts have no statistically significant impact on obesity prevalence in the target 

census tract. Conversely, the direct impact coefficients for the percentage of white residents and 

the percentage of residents who identify as a race other than white, black, or Asian are insignificant 

while the indirect impact coefficients for these variables are highly significant, indicating that 

changes in the average value of these variables in neighboring census tracts are associated with a 

statistically significant increase in obesity in a target census tract.  

The direct and indirect impact coefficients for the percentage of black residents are 

significant but have opposing signs, revealing a unique pattern that is unobserved in the other 

independent variables. The direct impact coefficient indicates that an increase in the percentage of 

black residents within a target census tract is associated with a statistically significant increase in 

obesity prevalence within that same tract. However, the indirect impact coefficient indicates that 

a decrease in the percentage of black residents in neighboring census tracts is associated with a 

statistically significant increase in obesity prevalence within the target census tract. Essentially, 

majority black census tracts have a greater prevalence of obesity than majority non-black tracts, 

but tracts with neighbors that are majority black have a lower prevalence of obesity.  
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Table 3 - Spatial Models of Obesity Prevalence   

 SAR 1 SAR 2 SAR 3 SEM 1 SEM 2 SEM 3 SDM 1 SDM 2 SDM 3 
SDEM 

1 

SDEM 

2 

SDEM 

3 

(Intercept) 
21.84**

* 

21.96**

* 

30.89**

* 

33.12**

* 

33.38**

* 

32.80**

* 

28.29**

* 

28.54**

* 

32.73**

* 

32.92**

* 

33.64**

* 

34.78**

* 
 (1.82) (1.78) (2.33) (1.68) (1.68) (2.09) (1.71) (1.78) (2.01) (1.94) (2.07) (2.14) 

log(Pop. 

Density) 

-

0.24*** 
-0.09 -0.12 0.18*** 0.19*** 0.11 0.18** 0.19*** 0.17* 0.07 0.10 0.10 

 (0.05) (0.05) (0.07) (0.05) (0.06) (0.07) (0.06) (0.06) (0.07) (0.06) (0.06) (0.07) 

Fulltime 

Employme
nt 

-

0.06*** 

-

0.07*** 

-

0.05*** 

-

0.06*** 

-

0.06*** 

-

0.05*** 

-

0.06*** 

-

0.06*** 

-

0.06*** 

-

0.06*** 

-

0.06*** 

-

0.06*** 

 (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

College 
Degree 

-
0.07*** 

-
0.07*** 

-
0.08*** 

-
0.10*** 

-
0.10*** 

-
0.11*** 

-
0.10*** 

-
0.10*** 

-
0.10*** 

-
0.10*** 

-
0.10*** 

-
0.10*** 

 (0.00) (0.00) (0.01) (0.00) (0.00) (0.01) (0.01) (0.01) (0.01) (0.00) (0.00) (0.01) 

Pct. Single 0.07*** 0.08*** 0.06*** 0.05*** 0.05*** 0.03*** 0.06*** 0.06*** 0.04*** 0.06*** 0.06*** 0.05*** 
 (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

Pct. 18-29 
-

0.15*** 

-

0.16*** 

-

0.16*** 

-

0.13*** 

-

0.14*** 

-

0.14*** 

-

0.13*** 

-

0.14*** 

-

0.14*** 

-

0.15*** 

-

0.16*** 

-

0.15*** 
 (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

Pct. 30-64 
-

0.05*** 

-

0.06*** 

-

0.07*** 

-

0.07*** 

-

0.07*** 

-

0.06*** 

-

0.06*** 

-

0.06*** 

-

0.05*** 

-

0.07*** 

-

0.08*** 

-

0.07*** 
 (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

Pct. 65+ 
-

0.08*** 

-

0.08*** 

-

0.09*** 

-

0.09*** 

-

0.09*** 

-

0.09*** 

-

0.08*** 

-

0.08*** 

-

0.08*** 

-

0.09*** 

-

0.09*** 

-

0.09*** 
 (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

Pct. White 0.01 0.01 -0.03 0.01 0.01 0.01 0.03* 0.03 0.01 0.02 0.01 0.01 
 (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.01) (0.01) (0.02) (0.02) (0.02) (0.02) 

Pct. Black 0.05*** 0.05*** 0.05* 0.09*** 0.09*** 0.11*** 0.10*** 0.09*** 0.09*** 0.09*** 0.08*** 0.08*** 
 (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.01) (0.01) (0.02) (0.02) (0.02) (0.02) 

Pct. Asian -0.05** -0.05** 
-

0.10*** 

-

0.05*** 

-

0.05*** 
-0.06** -0.02 -0.02 -0.05* -0.04** -0.04** -0.06** 

 (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) 

Pct. Other 0.04* 0.04* 0.04 0.03* 0.03* 0.07** 0.05** 0.04** 0.04 0.04* 0.04* 0.04* 
 (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) 

Pct. 

Hispanic 
0.02*** 0.03*** 0.02*** 0.04*** 0.04*** 0.03*** 0.04*** 0.04*** 0.04*** 0.04*** 0.04*** 0.03*** 

 (0.00) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

Rho 0.42*** 0.43*** 0.22***    0.66*** 0.65*** 0.58***    
 (0.01) (0.01) (0.01)    (0.02) (0.02) (0.02)    

log(park 

access w/o 

Tweets) 

 -
1.04*** 

  -0.17   -0.09   -0.23  

  (0.13)   (0.17)   (0.18)   (0.17)  

log(park 

access 
w/Tweets) 

  -0.14*   -0.07   -0.08   -0.08 

   (0.06)   (0.06)   (0.06)   (0.06) 

Lambda    0.79*** 0.79*** 0.69***    0.71*** 0.70*** 0.62*** 
    (0.01) (0.01) (0.02)    (0.02) (0.02) (0.02) 

lag.log(Pop
. Density) 

      -
0.66*** 

-
0.56*** 

-
0.46*** 

-
0.60*** 

-
0.49*** 

-0.34** 

       (0.07) (0.08) (0.08) (0.11) (0.11) (0.12) 

lag.Fulltim
e 

Employme

nt 

      0.05*** 0.04*** 0.04*** 0.02 0.01 0.01 

       (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 
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Table 3 continued 

 SAR 1 SAR 2 SAR 3 SEM 1 SEM 2 SEM 3 SDM 1 SDM 2 SDM 3 
SDEM 

1 

SDEM 

2 

SDEM 

3 

       (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

lag.Colleg

e Degree 
      0.07*** 0.07*** 0.07*** -0.01 -0.01 -0.00 

       (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

lag.Pct. 

Single 
      -0.01 0.00 0.00 0.02 0.03* 0.03 

       (0.01) (0.01) (0.01) (0.01) (0.01) (0.02) 

lag.Pct. 

18-29 
      0.02 0.01 0.02 -0.06** -0.07** -0.04 

       (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) 

lag.Pct. 

30-64 
      -0.01 -0.01 -0.02 -0.03 -0.03 -0.02 

       (0.01) (0.01) (0.02) (0.02) (0.02) (0.02) 

lag.Pct. 

65+ 
      -0.00 -0.00 -0.00 -0.04 -0.03 -0.02 

       (0.01) (0.01) (0.02) (0.02) (0.02) (0.02) 

lag.Pct. 

White 
      -

0.16*** 

-

0.15*** 

-

0.17*** 
0.03 0.03 -0.01 

       (0.01) (0.01) (0.01) (0.02) (0.02) (0.01) 

lag.Pct. 

Black 
      -

0.21*** 

-

0.19*** 

-

0.21*** 
0.05** 0.04* 0.01 

       (0.01) (0.01) (0.01) (0.02) (0.02) (0.01) 

lag.Pct. 

Asian 
      -

0.14*** 

-

0.13*** 

-

0.15*** 
-0.01 -0.02 -0.04** 

       (0.01) (0.01) (0.01) (0.02) (0.02) (0.02) 

lag.Pct. 

Other 
      -

0.15*** 

-

0.14*** 

-

0.15*** 
0.08*** 0.08*** 0.05** 

       (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) 

lag.Pct. 

Hispanic 
      -

0.03*** 
-0.02** -0.02* -0.00 -0.00 -0.00 

       (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

lag.log(par

k access 
w/o 

Tweets) 

       -0.74**   -0.72*  

        (0.25)   (0.32)  

lag.log(par

k access 

w/Tweets) 

        0.04   -0.05 

         (0.09)   (0.11) 

Num. obs. 2115 2107 1435 2115 2107 1435 2115 2107 1435 2115 2107 1435 

Parameters 15 16 16 15 16 16 27 29 29 27 29 29 

Log 

Likelihood 

-
4370.5

1 

-
4307.1

7 

-
3047.4

9 

-
4190.5

8 

-
4170.2

4 

-
2906.7

2 

-
4104.1

3 

-
4074.8

0 

-
2818.8

5 

-
4105.4

2 

-
4083.9

3 

-
2829.1

5 

AIC 

(Linear 
model) 

9558.2

1 

9464.1

5 

6366.5

1 

9558.2

1 

9464.1

5 

6366.5

1 

9291.5

8 

9150.9

6 

6222.6

1 

9291.5

8 

9150.9

6 

6222.6

1 

AIC 
(Spatial 

model) 

8771.0

2 

8646.3

3 

6126.9

8 

8411.1

7 

8372.4

8 

5845.4

3 

8262.2

7 

8207.6

1 

5695.7

0 

8264.8

5 

8225.8

5 

5716.2

9 

LR test: 

statistic 
789.19 819.82 241.52 

1149.0

4 

1093.6

7 
523.08 

1031.3

1 
945.35 528.92 

1028.7

3 
927.11 508.32 

LR test: p-

value 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

***p < 0.001, **p < 0.01, *p < 0.05 
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Table 4 - Optimal Obesity Model Results 

 Coefficient Direct Impact Indirect Impact Total Impact 

Intercept 32.73*** 

(2.01) 

- - - 

Log(Pop. Density) 0.17* 

(0.07) 

0.08104 -0.78295*** -0.70191*** 

Fulltime Employment -0.06*** 

(0.01) 

-0.05357*** 0.02271 -0.03086 

College Degree -0.10*** 

(0.01) 

-0.09704*** 0.02285 -0.07419*** 

Pct. Single 0.04*** 

(0.01) 

0.04916*** 0.05676** 0.10592*** 

Pct. 18-29 -0.14*** 

(0.01) 

-0.15318*** -0.13753*** -0.29071*** 

Pct. 30-64 -0.05*** 

(0.01) 

-0.06445*** -0.10195*** -0.16641*** 

Pct. 65+ -0.08*** 

(0.01) 

-0.09475*** -0.11276*** -0.20752*** 

Pct. White 0.01 

(0.02) 

-0.02605 -0.35764*** -0.38369*** 

Pct. Black 0.09*** 

(0.02) 

0.05125** -0.33482*** -0.28358*** 

Pct. Asian -0.05* 

(0.02) 

-0.08898*** -0.38438*** -0.47336*** 

Pct. Other 0.04 

(0.02) 

0.00570 -0.27950*** -0.27380*** 

Pct. Hispanic 0.04*** 

(0.01) 

0.03748*** 0.00167 0.03915** 

Log(park access w/Tweets) -0.08 

(0.06) 

-0.08098 -0.01640 -0.09738 

Rho 0.58*** 

(0.02) 

- - - 

Lagged Log(Pop. Density) -0.46*** 

(0.08) 

- - - 

Lagged Fulltime Employment 0.04*** 

(0.01) 

- - - 

Lagged College Degree 0.07*** 

(0.01) 

- - - 

Lagged Pct. Single 0.00 

(0.01) 

- - - 

Lagged Pct. 18-29 0.02 

(0.02) 

- - - 

Lagged Pct. 30-64 -0.02 

(0.02) 

- - - 

Lagged Pct. 65+ -0.00 

(0.02) 

- - - 

Lagged Pct. White -0.17*** 

(0.01) 

- - - 

Lagged Pct. Black -0.21*** 

(0.01) 

- - - 

Lagged Pct. Asian -0.15*** 

(0.01) 

- - - 

Lagged Pct. Other -0.15*** 

(0.02) 

- - - 

Lagged Pct. Hispanic -0.02* 

(0.01) 

- - - 

Lagged Log(park access w/Tweets) 0.04 

(0.09) 

- - - 
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4.2 Modeling the Impact of Park Access on Physical Activity Participation 

Table 5 below presents the model coefficients for the spatial models using physical 

activity participation (see Table 2) as the dependent variable. Like the obesity models 

described previously, the inclusion of the park access measure as an independent variable 

improves goodness-of-fit compared to the models without park access, as evidenced by the 

considerably lower log likelihood value for Model 2 of each model type compared to Model 

1. Adding Tweets into the park access measure further improves goodness-of-fit for all model 

types, as evidenced by the even lower log likelihood value for Model 3 of each type.  

The most likely SAR and SEM models (Model 3) were very similar in terms of their 

goodness-of-fit but were discarded because they did not fit the data as well as the most likely 

SDM and SDEM models (also Model 3 of each type). While the most likely SDM and SDEM 

models were within approximately 4 points of one another on the log likelihood scale, Physical 

Activity SDEM 3 exhibited slightly superior goodness-of-fit, suggesting that spatial 

dependence exists only in the error term and not in the dependent variable. However, the results 

of the Local Moran’s I test for spatial dependence and clustering revealed statistically 

significant patterns of spatial dependence in the physical activity variable. Because of this, a 

likelihood ratio test was conducted to test the null hypothesis that the SDEM model is a better 

fit than the SDM model.  The results of the test indicated that we cannot reject the null 

hypothesis, and as such, Physical Activity SDEM Model 3 was selected as the optimal model.  

Because interpretation of SDEM models is not dependent on running impact 

simulations, the model coefficients themselves reveal the impacts of the independent variables 

on physical activity participation. According to the coefficients, decreases in fulltime 
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employment, the percentage of residents with a college degree or higher, the percentage of 

residents aged 18-29 and 65 or greater, and the percentage of Asian residents within a census 

tract are associated with a statistically significant increase in the percentage of BRFSS 

respondents aged ≥ 18 years who reported no leisure-time physical activity in the preceding 

two weeks within the same tract. Park access within a census tract is not statistically significant, 

but the direction of the relationship is such that a decrease in park access within a census tract 

is expected to be associated with a decrease in physical activity participation within that same 

tract. 

The spatially lagged coefficients reveal two interesting patterns. First, a decrease in the 

average value of the percentage of Hispanic residents in neighboring census tracts is associated 

with a statistically significant decrease in physical activity participation in a target census tract. 

Thus, tracts whose neighbors have a higher proportion of Hispanic residents are more 

physically active on average than tracts whose neighbors have a lower proportion of Hispanic 

residents. Additionally, a decrease in the average value of park access in neighboring census 

tracts is associated with a statistically significant decrease in physical activity participation in 

a target census tract. Tracts that are surrounded by tracts with good access to parks are more 

physically active on average than tracts that are surrounded by tracts with inferior park access. 

Again, while the non-lagged park access variable is not statistically significant, the sign on the 

coefficient is negative, suggesting that better park access within a tract may be associated with 

more physical activity within the same tract.  

 

 



 34 

Table 5 - Spatial Models of Physical Activity Participation 

 SAR 1 SAR 2 SAR 3 SEM 1 SEM 2 SEM 3 SDM 1 SDM 2 SDM 3 
SDEM 

1 

SDEM 

2 

SDEM 

3 

(Intercept) 
48.29**

* 

57.24**

* 

61.44**

* 

52.59**

* 

56.76**

* 

61.58**

* 

48.20**

* 

54.63**

* 

54.00**

* 

32.92**

* 

36.34**

* 

41.34**

* 
 (2.36) (3.33) (6.29) (2.30) (3.36) (6.42) (2.42) (3.28) (6.86) (1.94) (2.61) (6.69) 

log(Pop. 

Density) 
0.75*** 0.85*** 0.19 0.61*** 0.87*** 0.27 0.52*** 0.88*** 0.39 0.07 0.13 -0.23 

 (0.07) (0.11) (0.27) (0.07) (0.12) (0.27) (0.08) (0.13) (0.27) (0.06) (0.10) (0.26) 

Fulltime 

Employme

nt 

-
0.15*** 

-
0.16*** 

-
0.12*** 

-
0.15*** 

-
0.16*** 

-
0.12*** 

-
0.14*** 

-
0.16*** 

-
0.13*** 

-
0.06*** 

-
0.06*** 

-0.06** 

 (0.01) (0.01) (0.02) (0.01) (0.01) (0.02) (0.01) (0.01) (0.02) (0.01) (0.01) (0.02) 

College 

Degree 

-

0.19*** 

-

0.24*** 

-

0.28*** 

-

0.22*** 

-

0.24*** 

-

0.28*** 

-

0.22*** 

-

0.24*** 

-

0.28*** 

-

0.10*** 

-

0.10*** 

-

0.12*** 
 (0.01) (0.01) (0.02) (0.01) (0.01) (0.02) (0.01) (0.01) (0.02) (0.00) (0.01) (0.02) 

Pct, Single 0.12*** 0.11*** 0.06* 0.08*** 0.10*** 0.06* 0.08*** 0.09*** 0.06* 0.06*** 0.06*** 0.03 
 (0.01) (0.01) (0.03) (0.01) (0.01) (0.03) (0.01) (0.01) (0.03) (0.01) (0.01) (0.03) 

Pct. 18 to 

29 

-

0.20*** 

-

0.22*** 

-

0.16*** 

-

0.17*** 

-

0.21*** 

-

0.16*** 

-

0.17*** 

-

0.20*** 
-0.13** 

-

0.15*** 

-

0.17*** 
-0.13** 

 (0.01) (0.02) (0.04) (0.01) (0.02) (0.04) (0.01) (0.02) (0.04) (0.01) (0.02) (0.04) 

Pct. 30 to 

64 

-

0.14*** 

-

0.14*** 
-0.09* 

-

0.14*** 

-

0.14*** 
-0.09* 

-

0.13*** 

-

0.13*** 
-0.08* 

-

0.07*** 

-

0.09*** 
-0.04 

 (0.01) (0.02) (0.04) (0.01) (0.02) (0.04) (0.01) (0.02) (0.04) (0.01) (0.02) (0.04) 

Pct. 65+ -0.00 -0.01 0.02 0.01 0.01 0.02 0.02 0.02 0.03 
-

0.09*** 

-

0.10*** 

-

0.15*** 
 (0.01) (0.02) (0.04) (0.01) (0.02) (0.04) (0.01) (0.02) (0.04) (0.01) (0.01) (0.04) 

Pct. White 
-

0.13*** 

-

0.15*** 
-0.16** 

-

0.11*** 

-

0.14*** 
-0.16** 

-

0.08*** 

-

0.12*** 
-0.11 0.02 0.00 -0.04 

 (0.02) (0.03) (0.06) (0.02) (0.03) (0.06) (0.02) (0.03) (0.06) (0.02) (0.02) (0.06) 

Pct. Black 
-

0.12*** 

-

0.14*** 
-0.16** 

-

0.08*** 

-

0.12*** 
-0.16** -0.05* -0.11** -0.09 0.09*** 0.07** 0.04 

 (0.02) (0.03) (0.06) (0.02) (0.03) (0.06) (0.02) (0.03) (0.06) (0.02) (0.02) (0.06) 

Pct. Asian -0.02 -0.04 -0.05 0.01 -0.02 -0.06 0.02 -0.01 -0.02 -0.04** 
-

0.08*** 
-0.13* 

 (0.02) (0.03) (0.06) (0.02) (0.03) (0.06) (0.02) (0.03) (0.06) (0.02) (0.03) (0.06) 

Pct. Other 
-

0.11*** 

-

0.12*** 
-0.08 -0.06** -0.10** -0.08 -0.05* -0.10** -0.02 0.04* 0.04 0.08 

 (0.02) (0.03) (0.07) (0.02) (0.03) (0.07) (0.02) (0.03) (0.07) (0.02) (0.03) (0.07) 

Pct. 

Hispanic 
0.04*** 0.04*** -0.01 0.06*** 0.04*** -0.00 0.07*** 0.05*** 0.00 0.04*** 0.02** -0.00 

 (0.01) (0.01) (0.02) (0.01) (0.01) (0.02) (0.01) (0.01) (0.03) (0.01) (0.01) (0.02) 

Rho 0.18*** 0.04*** 0.00    0.40*** 0.23*** 0.02    
 (0.01) (0.01) (0.01)    (0.02) (0.03) (0.07)    

log(park 
access w/o 

Tweets) 

 -0.08   -0.02   -0.06   -0.09  

  (0.08)   (0.08)   (0.08)   (0.06)  

log(park 

access 

w/Tweets) 

  -0.06   -0.00   0.01   -0.09 

   (0.15)   (0.15)   (0.15)   (0.14) 

Lambda    0.49*** 0.23*** 0.13    0.71*** 0.49*** 0.17* 
    (0.03) (0.04) (0.08)    (0.02) (0.03) (0.08) 

lag.log(Pop

. Density) 
      0.02 -0.26 -0.87 

-

0.60*** 

-

0.61*** 
0.10 

       (0.11) (0.15) (0.45) (0.11) (0.13) (0.45) 

lag.Fulltim

e 
Employme

nt 

      0.07*** 0.04** -0.00 0.02 0.02 -0.01 

       (0.01) (0.02) (0.04) (0.01) (0.01) (0.04) 
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Table 5 continued 

 SAR 1 SAR 2 
SAR 

3 
SEM 1 SEM 2 

SEM 

3 
SDM 1 SDM 2 

SDM 

3 

SDEM 

1 

SDEM 

2 

SDE

M 3 
       (0.01) (0.02) (0.04) (0.01) (0.01) (0.04) 

lag.College 
Degree 

      0.08*** 0.06*** -0.02 -0.01 0.00 -0.00 

       (0.01) (0.01) (0.04) (0.01) (0.01) (0.03) 

lag.Pct. 
Single 

      0.05*** 0.03 0.02 0.02 0.03* 0.03 

       (0.01) (0.02) (0.04) (0.01) (0.02) (0.04) 

lag.Pct. 18 
to 29 

      -0.07** -0.03 0.01 -0.06** -0.08** -0.04 

       (0.02) (0.03) (0.06) (0.02) (0.03) (0.06) 

lag.Pct. 30 
to 64 

      -0.04 -0.00 0.03 -0.03 -0.04 0.01 

       (0.02) (0.03) (0.05) (0.02) (0.02) (0.05) 

lag.Pct. 
65+ 

      -0.11*** -0.09*** 0.09 -0.04 -0.08*** 0.02 

       (0.02) (0.02) (0.06) (0.02) (0.02) (0.06) 

lag.Pct. 
White 

      -0.13*** -0.08*** 0.02 0.03 0.01 -0.01 

       (0.02) (0.02) (0.05) (0.02) (0.02) (0.04) 

lag.Pct. 
Black 

      -0.16*** -0.10*** -0.01 0.05** 0.03* -0.01 

       (0.02) (0.02) (0.05) (0.02) (0.02) (0.04) 

lag.Pct. 

Asian 
      -0.13*** -0.09*** 0.03 -0.01 0.00 -0.07 

       (0.02) (0.03) (0.06) (0.02) (0.02) (0.05) 

lag.Pct. 

Other 
      -0.14*** -0.07* 0.01 0.08*** 0.10*** 0.09 

       (0.02) (0.03) (0.07) (0.02) (0.02) (0.06) 

lag.Pct. 

Hispanic 
      -0.05*** -0.03* -0.03 -0.00 -0.02 -0.10* 

       (0.01) (0.02) (0.04) (0.01) (0.01) (0.04) 

lag.log(par

k access 

w/o 
Tweets) 

       -0.28*   -0.31**  

        (0.12)   (0.10)  

lag.log(par
k access 

w/Tweets) 

        -

0.61** 
  -0.46* 

         (0.23)   (0.22) 

Num. obs. 2115 958 173 2115 958 173 2115 958 173 2115 958 173 

Parameters 15 16 16 15 16 16 27 29 29 27 29 29 

Log 

Likelihood 

-

4864.2
8 

-

2235.4
7 

-

372.9
6 

-

4794.2
1 

-

2219.6
0 

-

372.1
2 

-

4739.8
3 

-

2201.0
7 

-

359.5
6 

-

4105.4
2 

-

1971.1
0 

-

355.37 

AIC 

(Linear 

model) 

9908.7
1 

4514.8
0 

775.9
5 

9908.7
1 

4514.8
0 

775.9
5 

9779.5
7 

4512.1
6 

775.1
8 

9291.5
8 

4233.3
8 

769.27 

AIC 

(Spatial 
model) 

9758.5

6 

4502.9

3 

777.9

2 

9618.4

2 

4471.2

0 

776.2

5 

9533.6

6 

4460.1

4 

777.1

3 

8264.8

5 

4000.2

0 
768.74 

LR test: 

statistic 
152.16 13.87 0.03 292.29 45.61 1.70 247.91 54.03 0.05 

1028.7

3 
235.18 2.53 

LR test: p-

value 
0.00 0.00 0.87 0.00 0.00 0.19 0.00 0.00 0.82 0.00 0.00 0.11 

***p < 0.001, **p < 0.01, *p < 0.05 
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CHAPTER 5. DISCUSSION 

As shown above, park access does not have a statistically significant impact on obesity 

prevalence at the census tract level, but tracts whose neighbors have good access to parks are 

more physically active on average than tracts whose neighbors have inferior park access. This 

may be because physical activity alone is not enough to reduce obesity if minimum physical 

activity benchmarks are not met and supportive changes in dietary behaviors are not made. 

Simply put, parks may encourage physical activity and residents of census tracts located in 

areas with good park access may be more physically active than residents of census tracts with 

poor access, but this alone is not enough to mitigate obesity.  

This finding is corroborated by the maps shown in Figure 3, which depict patterns of 

spatial dependence and clustering in obesity prevalence and physical activity participation 

according to the results of the Local Moran’s I test.  
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Figure 3 - Local Moran’s I Clusters for Obesity Prevalence & Physical Activity 

Participation (Top: Obesity, Bottom: Physical Activity) 

 

As shown in Figure 3, the places where there is clustering in obesity prevalence are not 

necessarily the same places where there is clustering in physical activity participation. For 

example, there are several clusters where physical activity is adequate (Low-Low clusters) but 

there is no statistically significant clustering in the same area for obesity prevalence. 

Additionally, there are clusters where obesity prevalence is low (Low-Low clusters) but there 

is no statistically significant clustering in the same area for physical activity participation. 

Interestingly, there are also clusters where obesity prevalence is high (High-High clusters) but 

no clustering exists in physical activity participation. This highlights the fact that there are 
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likely a host of additional factors impacting obesity that physical activity participation alone 

cannot overcome. Among these factors are the obesity correlates identified in the optimal 

obesity model that were statistically significant predictors of obesity prevalence, including 

population density, fulltime employment, educational attainment, marital status, age, and 

race/ethnicity.  

While there is overlap in the statistically significant correlates of obesity prevalence 

and physical activity participation, obesity prevalence in particular exhibits unique correlations 

that physical activity participation does not. For example, obesity prevalence is correlated with 

population density, marital status, the spatial lag of all three age categories, and the spatial lag 

of all four race categories. Obesity prevalence is also correlated with the non-lagged percentage 

of black and Hispanic residents. The only correlate that is unique to physical activity 

participation is the spatial lag of the percentage of Hispanic residents. This suggests that 

obesity prevalence is impacted by a much greater range of factors than physical activity 

participation and helps to explain why park access might significantly impact physical activity 

but not obesity. 

Importantly, this study is subject to several limitations which may impact the quality 

of the analysis and the conclusions we have drawn about the impact of park access on obesity 

prevalence and physical activity participation. The first pertains to the public health data from 

which the obesity prevalence and physical activity participation measures were drawn. This 

data is derived from an annual telephone health surveillance survey and is based on respondent 

self-reporting, which may introduce nonresponse bias and response bias, respectively (Lim et 

al. 2013; Rosenman et al. 2011). Nonresponse bias is of particular concern in urban areas, 

which have seen a sharp decline in telephone survey response rates over time, leading to 
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concerns of under sampling (Lim et al. 2013). Response bias also poses potential problems 

because respondents are biased toward providing what they view as the ‘correct’ answer to a 

question. In health surveillance surveys, this often results in respondents overstating their 

health and quality of life (e.g., a person may report exercising more frequently than they 

actually do or may understate their weight) (Rosenman et al. 2011). While these problems 

could potentially be mitigated by obtaining objectively measured health data, such data were 

not available to be used for this study. 

Another limitation of this study pertains to the incorporation of the number of Tweets 

recorded within each park in the calculation of the park access metric. Tweets were used as a 

proxy for activity within parks. Considering this, we assumed that people would be more likely 

to be physically active in parks with a greater number of Tweets recorded than in parks with 

less Twitter activity. However, it is possible that the qualities of a park that make it attractive 

for social media activity make it unattractive for physical activity, in which case the 𝛽 

coefficient for the Tweet parameter would be negative to penalize greater numbers of Tweets. 

Our assumption about the relationship between social media activity and physical activity 

within parks could be validated through an objective assessment of physical activity within 

each park in the system, but this data is not presently available and would be very costly to 

obtain.  

A final limitation pertains to the spatial scale of this analysis. The census tract was used 

to approximate a neighborhood-level analysis because health data were not available at smaller 

spatial scales. While evaluating our relationships of interest at the census tract level afforded 

us the ability to detect nuances that are not visible at larger spatial scales like the city or county 

levels, it is possible that further disaggregation could reveal additional details that a census 
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tract analysis may obscure. As Logan et al (2017) suggest, disaggregating the data to the parcel 

or block level could yield even more nuanced results. While this is difficult to do with public 

health data because of the necessity of protecting individual privacy, obtaining this data at a 

smaller scale could potentially prove invaluable to this type of analysis. If further 

disaggregation is not possible, a potential improvement to the methodology employed in this 

study might come from calculating the distance from tracts to parks using population weighted 

centroids in order to more accurately capture the distance from where people actually live to 

the set of parks available to them. Also, using network distance could provide more accurate 

estimates of the real distance people would have to travel to get to parks in the network. 

Moreover, calculating the distance to park entrances instead of park centroids would further 

improve distance estimates. 
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CHAPTER 6. CONCLUSIONS 

City planning and public health professionals are increasingly looking at the 

improvement of access to public parks and greenspaces as an important pathway toward 

increasing physical activity participation and decreasing the incidence of obesity and a number 

of chronic health conditions. Using a new measure of park access called ‘Park Choice 

Accessibility’ and several spatial econometric modeling techniques, this study examined the 

impacts of park access on obesity prevalence and physical activity participation at the census 

tract level in New York City. The findings suggest that there is no statistically significant 

relationship between park access and obesity prevalence but having better access to parks is 

associated with a modest increase in physical activity participation. Importantly, the models 

presented here indicate that obesity prevalence is impacted by a wider range of factors than 

physical activity participation, suggesting that increasing physical activity is by itself not 

enough to mitigate obesity. Future studies would do well to model the relationship between 

park access and health outcomes at a smaller spatial scale if possible to reveal nuances that 

may be obscured at the census tract level. Additionally, using park entrances and population 

weighted centroids or some other measure of residential concentration in the calculation of the 

distance between parks and residential locations may yield more accurate estimates of park 

access.  
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