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SUMMARY

The dynamic responses of alrcraft to random loadings have been
studied in the light of power spectral methods for nearly 15 years by
various researchers. H. Press and B. Mazelsky have applied the method
to gust loads on airplanes in 1953. J. C. Houbolt did some pioneering
work on taxiing using the same method in 1955. Their respective pro-
cedures are widely adepted by the aircraft industry.

It is generally accepted that the input spectra of either
velocity components of a turbulent patch of air mass or roughness of a
given runway are truly nonstationary phenomena. However, no attempt
was made to treat the problems accordingly. The reasons for the lack
of such studies are two-fold:

(i) The nonstationary power spectra are much more complex to
handle than the stationary ones from mathematical and computational
viewpoints., The interpretation of the resulting double frequency
transfer functions are only understood for some simple spring-mass
systems as reported by Y. K. Lin and J. B. Roberts around 1963 and
1965.

(ii) There are many unsettled questions with respect to the
validity of the linear system assumption as applied to a multimodal
elastic airplane which remain to be solved.

The present study presents a universal method of assessing both

nonstationary and stationary roughnesses experienced by a given aircraft
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during its taxiing operations. The generalized roughness spectrum is
shown to be in agreement with the results obtained by Y. K. Lin,

J. B. Roberts, and 8. K. Srinivasan when different assumptions were
made. It also reduces to the similar form for the cne-runway-one-
forward-speed case presently employed by the aircraft industry. The
transfer function for the pitching motion was investigated in detail
and it shows the trends found from the experimental results of G. J.
Morris which were not explainable in the past. A logical explanation

for such deviations is now available.




CHAPTER 1
INTRODUCTION

The dynamic responses of airplanes to random loadings have been
investigated in the light of power spectral density analysis for years.
Liepmann [l]j.Press and Mazelsky [2] have applied the methods to buf-
feting problem and gust loads, respectively, as early as 1952-3, The
latter group cited the merits of power spectral analysis for gust
response studies in the following manner:

(1) Continuocus turbulence can be described in analytical

form by a power spectrum rather than by discrete gusts.

{(2) The load response of airplanes to continuous rough
air can be evaluated.

{3) The desirable response characteristics of an airplane for
minimizing gust effects in continuous rough air will become
amenable to analysis,

Equivalent statements are also applicable to airplanes taxiing

on rough surfaces without reservations.

Fung [3] introduced the power spectral approach teo dynamic loads
problems and later [4] presented the first proven example in the aero-
nautical field to tackle the forcing function as a nonstationary
process.* Bieber [5] and Lin [6] have also contributed to this

relatively scarce branch of random processes through their works in

missle structural loads and panel vibrations, respectively.

TNumbers in brackets refer to items in Literature Citegd sec}ion.

%
There are other nonstationary examples in earthquake problems
by Bogodanoff, etc. [7] and Rosembleuth, ete. [8].




Pioneering works in runway roughness studies by power spectral
methods may be found in the publications of Walls, ete. (9] and
Houbolt, ete, [10]. Much literature on the subject has appeared
gince the late 1950's and early 1960's. Most of it [11-14] was
purely experimental in nature and the collected data therein did not
substantiate the generally accepted assumption that the airplane is
a linear time-invariant system. Other publications.[15-19] concen-
trated on the development of roughness criteria or the quantitative
evaluation of roughness spectra from various sitea. It is al;o
revealed that the increased ground speeds of current airplanes have
extended the long wavelength end of the roughness spectra to approxi-
mately 500 feet and some of the existing roughness spectra are in
error within this range due to the failure of removing the contamination
from the slow varying gradients of the runways [17].

In view of all these unsolved difficulties, some investigators
[20-23] have suggested treating the airplane taxiing problem as a
deterministic process. They haée obtained reliable results for some
particular segments of certain given runways. However, these achieve-
ments cannot be e;trapolated to formulate design criteria for new air-
planes or to predict fatigue life for fleet operatioms owing to the
fact that there is more than one runway to be considered. In order to
account for the chance encounter of different runways with varying
roughnesses, it is only reasonasble to appreach the problem in a
probabilistic sense with power spectral techniques developed from

random processes. The methodology for such a process is presented in

Chapter II.




Since the transfer function is an integral part of the power
gpectral methods, and published experimental results [10-1%] cited
earlier have shown discrepancies with regard to the linear-time invari-
ant system assumption, it is necessary to re—evaluate the analytical
method used in the derivation of the transfer functions. The causes
for the unsuccessful acquisition of a roughness amplitude and taxi speed
insensitive transfer function [10,11,17] are given by:

1. The linear system assumption for the multimodal flexible
structure.

2. The complex nonlinear characteristics of the landing gears.

In order to obtain a sound transfer function, a simplified air-
plane model with the essential degrees of freedom is developed from
its linearized equations of motion. The linearization is deemed con-
venient in view of the fact that nonlinear systems in random vibrations
have been expounded by different researchers [24-29] and standardized
methods are available if needed. The derivation of the transfer func-
tions is presented in Chapter III,

A more imminent need in the airplane taxiing problem, therefore,
seems to be the development of a methodology that will account for the
different levels of measured roughnesses in their existing format
(i.e., power spectral densities or profile elevations together with
a rational probability distribution for the arrival times of taxi
events for the airplanes from past utilization records or prospective

requirements. This information will require the treatment of the

roughness inputs as a piece-wise stationary process with the current




stationary one-runway-one-taxi-speed analysis and any deterministic

roughness approach included as special cases. It will also require

the elimination of the pitfalls attributable to power spectral analysis,
namely, (i) the inability to discern between a few high bumps and many
low bumps of the same wavelength, (ii) the failure to indicate when

the runway needs repair, (iii) no consideration of the juxtaposition

or phasing of the individual bumps or depressions, (iv) the inter-
actions between different roughnesses in a series of taxi events,

(v) the landing roll-out and take-off run phases of airplane ground
operations which are not amenable to constant speed analysis,

Thus, the task of establishing the aforementioned methodology
is two-feld,

1. To find a realistic model that will accommedate the piece-
wise stationary roughnesses.

2. To ensure the direct incorporation of existing roughness
power spectral densities into the model.

Chapter II is devoted to the detailed development of such a
composite roughﬁess input which may be described briefly as a sequence
of nonstationary pulses. It must be pointed out at the beginning that
treating the airplane taxiing problem as a nonstationary process is not
without precedence [4] and the actual response of a vibratory system
under stationary excitation will be nonstationary if one considers the
transient part of the response as shown by Caughey and Stumpf [30],

and Lin [6). Kur'yanov [31] has suggested that it is often necessary,

along with the analysis of stationary random processes, to perform a




frequency analysis of certain nonstationary processes such as might be
termed "pseudostationary."” It is therefore only fitting to treat both
the excitation roughnesses and airplane responses as nonstationary
processes, since the composite roughnesses are only plece-wise sta-
tionary, or pseudostationary. In the light of the above reasoning, it
is logical to anticipate that the composite roughness input is a train
of pulselike power spectral density related quantities, say autocorre-
lation functions, with random strength and shape for each constituent
pulse cbtained from the specific runway where the taxi event took place.
It is interesting to find that Lin [32-34] has published a series of
papers on nonstationary shot noise and the last [34] of which may be
modified to describe exactly the process needed to specify the com-
posite roughness input. The development for Statiomary Strength and
Nonhomogeneous Peoisson Arrival Rate Pulses and Nenstationary Strength
and Time Correlated Pulses of Chapter II follows cleosely Lin's work
[34]. Other sections therein are either explanatory remarks on the
justification of employing that particular random process in view of
its resenblance to the physical phenomenon, or comparisons of the
generalized resulfs with published works and the limiting case of

one-runway-one-speed taxiing.




CHAPTER II

ROUGHNESS INPUTS TREATED AS A SPECIAL CLASS

OF NONSTATIONARY RANDOM PROCESSES

Philosophical Background

The methodology of representing a probable set of runway
and/or taxiway roughnesses ranging from well-maintained airports to
unprepared front-line airstrips as nonstationary random pulses may
be understood by some insights arising from the actual aireraft
operations and their omnipresent environmental disturbances. The
philosophy that allows such a treatment is exemplified by a typical
time history of the wing root bending moment of a conventional airplane
as depicted in Figure 2.1.

Figure 2.1 illustrates all the significant load levels any air-
craft may encounter repeatedly throughout its service life. The time
axis has been extended schematically for the durations of disturbed
motions either in air or on ground to demonstrate the inherent pulse-
like randomness in the response. It is further stipulated that the
atmospheric gust responses contribute to the total fatigue damage of
the airframe only in a fashion described as G-A-G (ground-air-ground)
cycles; hence, it is conveniently permissible to assume all the time

%
periods other than ground operations quiescent.

%
See Houbolt [35] in employing the same argument for gust
response studies.
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Figure 2.1 A Typical Aircraft Wing Bending Moment Record




With the removal of the airborne disturbances and the aero-
dynamic or velocity sensitive phases of ground operations (i.e.,
atmospheric gust response, landing impact, high/low speed take-off
and landing roll-out), the response time history of Figure 2.1 is
reduced to a sequence of time history segments with the elapsed air
times preserved between the neighboring constant speed taxies and
the above cited disturbances replaced by undisturbed time segments of
corresponding lengths. The simplicity of this transformed sequential
constant speed taxi response realization is shown in Fipure 2.2.

The excitation process that generates such a response time
higtory can be deduced from the same argument. If the geographical
elevations of the runway/taxiway sites and their long wavelength
unevenness resultihg from the underlying topological structures of the
subsoils are removed, the roughness profiles that correspond to the
sample response realization of Figure 2.2 may be obtained by substi-
tuting the segmented response time histories by the respective rough-
nesses measured from their individual mean profiles. A pepresentative
sequence of roughnesses corresponding to the response time history of
Figure 2.2 is shown in Figure 2.3. It must be remembered that in con-
verting the runway/taxiway horizontal distaneces used for gach constitu-
ent roughness profile, an arbitrary contracting or expanding scale
factor, which is equivalent to the reciprocal of the particular constant
taxi speed of a given segment, was employed. This linear transformation

can be expressed as




_ t, time
—_ Post-flight taxi on Required{ Post-flight taxi on
8 . fiying .
o Site A _ Site B
-
o
s & -1 f_*qudjmﬂf\
S ®
£
g o
L A Pre-flight Pre-flight
- taxi on taxi on
%~ Site A Site B
=
Time spent at parking
ramp
Figure 2.2 A Sequence of Taxi Events
o Site & Site B
*1 Elevation Profile Elevation Profile
E A taxi speed a, A taxi speed ay
[ ;
o (¥ - W Vi VW

/ _L t, time

Elevation Profile Elevation Profile

A taxi speeduA B taxi speed{AB
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{Di} = {D(ati)} = {ViTi} (2.1)

where Vi is, in a strict sense, a random variable within a given range
(vizo). Di and Ti are respectively random variables depicting the
horizontal distance traveled and the incremental taxi time within a
given time segment for the constant speed taxies (i.e., Tie&ti).

In anticipation of using the random pulses representation, and
with the awareness of the complex, if not unwieldy, notations required,
it will be advantageous to relax the restriction on Vi being random.
From an engineering viewpoint, the range of Vi and Di are fairly limited
for existing airplanes and airports. It is conservative tc say that Vi
is in the interval (10 kts, 100 kts) and Di ig in the interval (2,000
ft., 10,000 ft.). The most adverse combination of these values gives
the segmented taxi time ﬁti in the interval (20 seconds, 600 seconds).
Bearing in mind that the service life of the present generation of air-
planes is in the order of 5,000 hours for a fighter and 50,000 hours
for a commevcial airliner, and allowing the shortest service life
(5,000 hours) to be the total time of a given realization, it is found
that the longest taxi time (600 seconds) per flight is a mere 1/30,000th
of the total time. It is therefore insignificant to consider the con-
tracting or expanding of a particular constant speed taxi segment. It
is also found that the flying time for a short-haul flight and an
intercontinental flight is 35 minutes and 10 hours, respectively. Thus,

the criterion for the spacing of the composite roughness time history

similar to that of Figure 2.3 is established, since the spacing will be
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the flight time., A typical realization experienced by a given aircraft
with the composite roughness of the taxi segments stretched is illus-
trated with the range of the spacings (i.e., the flight times) showm

in Figure 2.4.

Generation of Composite Roughnesses Time Histories

The task of obtaining a complete description of the composite
roughnesses will be materialized, if the vast amount of the existing
power spectral density (PSD) data on runway/taxiway roughnesses
together with the utilization and mission profile of a given aircraft
and/or types of aircraft are furnished by the procuring govermmental
agency or the commercial airline operator to the airframe manufacturers
for the analysis pertaining to the design of a prospective aireraft.
The same information may also be derived from a systematic compilation
of existing fleet operaticns in the manner of monitoring closely the
daily utilization of each aircraft within the fleet of different types
of airplanes for an extensive observation period. The procedure will
be expounded fully with the schematic diagram in Figure 2.5 for an
ensemble of airplanes and/or types of airplanes operating on assorted
roughnesses for a finite time period. Each realization is generated in
the same fashion as that of Figure 2.4 with the exception that each
roughness is contracted to a point on the time axis and the height of
each stroke represents the relative roughness amplitude, and the
superscript (i) demotes a member aircraft in a fleet or a given type

of aircraft in existence which resembles the new aircraft in their

operational characteristics.
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Range of variations for wj, Atj, Tj’ and Tn:

35 min < Wj < 600 min

25 gsec sﬂtj % B00 sec
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Composite of Roughnesses with Flying Time Spacing

Figure 2.4 A Typical
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From the preceding paragraph, it is understood that the power
spectral densities of the roughnesses of the probable taxi sites are
given a pricri. It is further postulated that all the roughness power

spectral densities are exXpressed in spacial frequencies, that is,

= W/ (2.2)
Hence, the Wiener-kKhintchine relations for a given runway/
taxiway become:
_1 ~3eA
o () = = {m R (e TdA (2.3a)
- o
R, (}) = {m ¢ (@)eaa : (2.3b)
where A is the lag distance and may be expressed as
=V . |
A paxt C T (2.4)
with V equal to a given constant o and T being the dunmy variable

TAXI

for the lag time of the temporal power spectral density, or to be more
specific,

- JwT
e J

L
o 2m {m Rzz(T)I dt (2.5a)

b Z(m) v =
TAXI

Vo=
2 TAXT &
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R (1) _w= | e (0 ety (2.5b)
22" Vpayr™ ¢ Le 22 |VTAXI'°‘

A sample roughness spectrum and its autocorrelation function is

shown in Figure 2.6.

(M), linear scale

R
22

¢2 eﬁmhl
44

(dashed line)

(), log scale

22

o ]
2, log scale A, linear scale
(a) Roughness Power (k) Roughness Autocorre-
Spectral Density lation Functicn

Tigure 2.6 A Typical Roughness Power Spectral Density
and Its Autocorrelation Function

Most of the roughness autocorrelations can be approximated by

—B|A|= 52

>
27 0, B>0C (2.6)

_ 2
Rzz(l) = 2t

where B is a givén shaping factor, and ciz is the roughness variance of

the given runway. From Equations (2.%#) and (2.8), it is clear that for

a given runway at a given taxi speed a
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R0 = ol e BIM g2 bl oy (2.7)
! TAXI
At this stage, two quantities will be defined to fulfill the
formulation of the composite roughness description of a given realiza-

tion. Let

_5;i|t_fr§i)| (. vjleT
T =6 (T)e

(i) _ (1)
Sj (t) = o (Tj)e
where

$to,pe 1%1,2,3-0em, 3=1,2,3-wm
Sgl)(t) equals the roughness strength function for a time intervalﬂtj
n(t) equals the arrival rate of taxi events and may be represented

by the following integral

B

n= [ n(odr, t_ <t, <t
o
3

1A

tn+l (2.9)

vwhere n is the number of taxi events in the time interval (tj,tk). It

is nected that tojand T is chosen without any loss of generality as

+1
the first and last taxi time of an ensemble (see Figure 2.5). If zero

roughness strength is permitted for the null event in which no taxi

operation has been encountered, then t0 and tn+l can take on values of

(-=) and (+=), respectively.




Source of Nonstatiomarity in Arrival Rate

With the roughness strength function and the arrival rate of
taxi events thus defined, it is revealed that a given composite rough-
ness record is a truly nonstationary phenomencn. The nonstationarity
arises from the time dependent expressions of Equations (2.8} and
(2.9) for the roughness strength function and the arrival rate of taxi
events, respectively.

A more than curscry understanding of the nonstationary behavior
of the roughness strength function and the arrival rate of taxi events
may be obtained by investigating the underlying probability distribu-
tions of the two quantities. The physical construction of a sample
composite roughness as shown in Figure 2.4 will justify the assumptions
required for the definition of the distributions. It is convenient to
start with the distribution of the arrival rate of taxi events, and it
is assumed that:

(i) The nunber of taxi events occurring in any finite collec-
tion of non-overlapping time intervals Atﬁ, j=0,1,2+++n+1 form a set
of independent random variables {N}, and |w: N{«w) = n| exists where n
has the same meaning as expressed in Equation (2.9).

(ii) For a sufficiently small time interval

L at, = §t., 3=0-++n+l,
.5tj.+s: J J

the probability of one taxi event encountered is given by n(tj) dtj,

where n(tj) is identical to the n{t} of Equation (2.9).
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(iii) If'6tj is sufficiently small, the probability that more
than one taxi event will take place in the interval is small (i.e.,, of
order O(th). This is obvious from the fact that all known flying time
(Wj) is of the order O(min) rather than 0(sec).

If {N} denotes n of Equation (2.9) with tj =t and
tk =t 2 tn+l’ then the probability of having exactly n taxi events in
the interwval (to,t) can be expressed as .

. n { n{t)dr

P{N}(n,t)=;l]=!- [ n(oar| e

%o

° (2.10)

This result is obtained by Laning and Battin [36] with the assumptions
(i) through (iii) cast in the nomenclatures of random electron emission
from the filament of a vacuum tube. It is seen from Equations (2.9)
and (2,10) that the arrival rate of taxi events is a continuous func-
tion of time in the interval (to’tn+l) and for two given times, say t

1
and t, in Figure 2.5, n{t) will take on different values, hence it is

2
nonstationary. #in [34] has applied this nonhomogenecus Poisson dis-
tribution and a stationary.(canstant) strength to study the nonstationary
response of a 1iﬁear gystem subjected to sequences of randolm pulses.
It is the method;presented therein together with the modification of
allowing the stréngth to be simultaneously time dependent as shown by
Equation (2.8) tﬁat leads to the derivation of a rational nonstationary
roughness power ;pectral density.

Before the nonstationarity of the roughness strength funetion is

demonstrated, it is fruitful to gain more insight on the selection of a
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nonhomogeneous arrival rate instead of the homogeneous {constant)
arrival rate. The difference will be clear by observing two sequences

of roughness strength functions presented in Figure 2.7.

+ tn+l
Io
s(t) l l - i ’
I -y ) ) |
t.
3 ‘tk t
to (a) Homogeneous Poisson Arrival Times tn+1

SCt)l N R [ I
1 P L1

T, ‘tk' t." ‘tk"
] J
{(b) Nonhomogeneous Poisson Arrival Times

Figure 2.7 A Comparison of Arrival Rates

Figure 2.7(a} has the followingfprqperfies:

(i) The number of taxi events is uniformly distributed in the

interval (to’tn+l)’ hence
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).

where N is the total number of taxi events in the intevrval (to’tn+l

(ii) The number of taxi events in the interval (tj,tk) is given

by
n(tj’tk) = v £‘ dt = v(t 'tj) =v | dr = n(tj+h,tk+h)
for t_ s tj < tk.s t 40 h 20,

Figure 2.7b has the following properties:

1

k
- t 1 - ? T
(i) n(tj,tk) {' v(t)dr for t, s tj <ty < tn+l
J
and
o
't T = "
n(tj,tk) {" v(r)dt for t_ < st
3

(ii) n(t%,tﬁ) n(t",ti) if and only if t% = tg, ! =t

k k

It can be easily seen that the flying times (Wj) would not
follow such a regular pattern as shown in Figure 2.7(a) even if the
given realization belonged to a scheduled commercial airline operation.
There are always chance delays due to unforeseen weather conditions or
" other human féctors involved in any predetermined flight operations,
and deterministic scheduling may be considered highly improbable if

not impossible. A probabilistically realizable record therefore must

contain the inherent nonhomogeneous pattern as shown in Figure 2.7(b).
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Source of Nonstaticnarity in Rdhgbness Strength Function

The nonstationarity of the rbughness strength function is
studied by different goals of analyses. The approaches to tackle the
individual categories are delineated in the following subparagraphs.

(a) Desgign Criteria Development for New Aircraft

The requirement for this analysis is pertaining to the acquisi-
tion of a representative composite roughness record which may approxi-
mately encompass the totality of all possible taxi site roughnesses
accessible to all types of airplanes whose operaticnal characteristics
are being incorporated in the new design. The method of assessing such
an "averaged" record is equivalent to calculating the instantaneous
engemble average over the finite collection of composite rcoughnesses of
available types of airplanes. Let {Z(i)(t)}, i=1,2,3"*'m be the com-
posite'raughness records of "m" types of existing aircraft as shown in
Figure 2.5. It is now asserted that m is fairly large such that the
mathematical expectation of the roughness strength may be calculated

as:

@ m .
Blstol = %f L Spél)(s’t)ds (2.11a)
me ™o =]
 om o )
=L 2 I Spél)(s,t)ds
me T i=1 0
m L3
= - %' ! s (1)1 for i=1,2++om
Mo i:l

and t st<t
T T n

+1
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(i
S

the magnitude of the roughness strength functions for aircraft type

where p )(s,t) is the time dependent probability density function for

"i". It must be remembered again that the approximation in Equation
(2.11a) is meaningful if, and only if, the zero roughness strength for
a null event of no taxi operation at time t is permitted.

(b) Fatigue Life Evaluation for Fleet Operations

The main feature for this analysis is that the ensemble of com-
posite roughness records is taken from one type of aircraft and the
mathematical expectation can be reduced from Equation (2.11a) in the

following manner:

oo

e[8(t)] = g spg(s,t)ds (2.11b)
where the superscript (i) is dropped from the probability density
function due to the fact that the type is unique.

It is interesting to note that both of the expected roughness
strength functions as expressed in Equations (2.11a) and (2.11b) are
still time dependent. This is expected since the probability density
function for the magnitudes of the roughness strength functions are
time dependent, or honstafibnary. In view of this and observing the
fact that the rcug&pesé strength functions as defined by Equation (2.8)
does contain raﬁdom:variables a,, B, to denote a taxi event on a given
runway at a given speed, it is felt that to assume the magnitudes of

the roughness strength functions to be purely random will not deviate

mich from the physical reality. If this assumption is employed, then
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the,ﬁigﬁef order density functions may be expressed by the product of

first order densities as shown in the following:

n
T

pn(sst3‘ * "tn) : o

for + <t. < t i=1,2,3«++n.
o i

n+l’

Single Record Representation of an Ensemble

With the nonstationarities in both the arrival rate of taxi -
events and the roughness strength functions established, it ié now
possible to replace the ensemble of composite roughness records by a-
single expected composite roughness record for either analysis (a) or
aﬁalysis (b). Figure 2.8 gives the scheme for the collapsing of the
ensemble, ﬁnalysis {(h) consists of averaging over only one type,
say type (i), by using Equation (2.11b}. It is depicted by the
dashed box or sequence AB, whereas analysis (a) requires a further
averaging over all the e[Z(i)(t)]'s by employing Béuation (2.11a), or
sequencé ABC. Figure 2.9 shows a typical expected composite roughness
record for each analysis. The shapes of the roughness strength function
are enlarged in order to introduce detailed explanations on the actual
evaluation of Equations (2.11a) and (2.11b). It is understood from
Equatiou.(z.llaj that to obtain the expected roughne55.strength function
ELZ(t)] at a given time t = tj’ the célculation'involfes a mere averag-
ing over the types. Therefore Equaticn (2.11b) will suffice to serve

as a sample. Equation (2.11b) states that -




e . —— —— — A —

Type (1)

T

| | | |
- | I |
= .
gl ¢ : e ) Wy
ol ) / _
.E é ém(t I / | Note .
l | Sequence A B is for
Rl . - @ Fatigue Life Evalu-
l___‘_-_- — " —— hat l ation of a given type
zlit) - = || I | I | l of aircraft, Sequence
| w A B C is for Design
I 4B - | Criteria Development
= : i | vt of a new aircraft.
‘ & o : ? |
[ ¢ |® | l |
e : I !
y .
l t oo .
e — o I — e —— 1

hZ

Figure 2.8 Schematic Diagram for the Collapsing of Ensembles
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—let-T.

E[S(T.)] = o 3
C (TJ)] UZZ(Tj)e l
|
| E[S(T))] l
I | 922{T5) I
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(a) Design Criteria Development
: el S(T,)Y1=3 Z(Tj)e‘ let‘Titl
| els(T. )3 = :
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_ . i
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(b) Fleet Fatigue Evaluation
Figure 2.9 Typical Expected Composite Roughness Records
m .
elS(t)] = [ spgls,t)ds (2.11b repeat)
0

with the understanding that "s" is thé magnitude of the roughness

strength function at time "¢". If the equation for S(t) is represented

'by Equation (2.8) with the subscript (i) suppressed, it will have the

form as shown below
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oy |t-T.
let Jl

Sj(t) = Uzz(Tj)e (2.8 repeat)

Then it is cbvious that the instantanecus magnitude is composed of two

"Yj‘t“le
parts czz(Tj) and e

. The former is the o value of the
roughne;s of a given runway for the taxi event at time Tj’ the latter
is a taxi speed-sensitive shaping function, if ocne recalls that

Yj = ajﬁj/Z'and mj is the given taxi speed at time Tj' Hence the

abbreviated probability density function ps(s,t) may be expressed in

full as
'ps(s,t) = p(ozz,y,Tj) for t = Tj {2.13)

If this bivariate density function is applied to Equation (2.1lb), the

expected roughness at time Tj will be

=Y !t"le

els(T,)] = {J 5,z(T3)e p(0_,»Y,T;)do_ dy (2.14a)

However, it is noted that czz(Tj) is only the positive square root of

the given roughness at time Tj (i.e., GZZ(Tj) z #RZZT (o) ¥. RzzT (0)

: ] ]
is the area under the roughness power spectral density of the runway to

be traversed at time Tj' R, (0) is a quantity independent of taxi
T.
]

spée& asISEGwn.by setting 1 = 0 in Equation (2.4} to obtain A = 0 for

any taxi apeed, VTAXI' With the taxi speed-independent natyre of

ozz(Tj] or R_, {0) established, Equation (2.13) may be written as

3

T




27

Pglsst) = plo__,v,t) = plo_ ,tIp(v,t) (2.15)

This allows Equation (2.143) to be expressed as

o -y | t-T, |
= ] .1ub)
e[8(T,)] joj 9, (Ty)e plo,,s¥sT5)do, dy (2
) ® -y lt"le
= f UZZ(Tj)p(chZ,Tj)dGZZ | e p(Y,Tj)dY
0 0
gl
= czz(Tj)e

The univariate density functions appearing in Equation (2.14b) may be
cbtained by the claséical frequency representation for the probability
distribution at time Tj from an ensemble of composite voughness records.
A schematic diagram for evaluating p(czz,Tj) is ghown in Figure 2.10.

It must be reminded that Ezz(ij} and ?i as appeared in the last equality
of equation (2.1%b) are merely the expected values of Uzz(Tj) and Y(Tj)

respectively., Their evaluations may easily be obtained by the standard

averaging procedure (i.e. calculating the centreoid of Figure 2.10(b)).
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n(6__ ) = number of

%Zi  amplitude countsf"_r;ﬁcrzz
in the band P(o )= n(oc /N
v g /2 ' 2z, ZZ,
P(Uﬁz) Uzzf— “zz 1
! N =In(c )
; i ZZi
L4 L L ] T ¥ L L L ¥ L4 L] ¥
0~Zz ] UZZ. “ v O-Zz
1 1

{a) Distribution Function

H. -
./ ,t' p( O-zzi)' P( 'Tzzi) L

!
e |
|

F LA + L] ¥ L2 L ¥ LJ ¥
Q.
z2 > [ s
?ZZ 2Z cFZZ

(b) Density Function

Figure 2.1¢ Amplitude Distribution from Frequency Counts

Stationary Strength and Nonhomogeneous Poisson Arrival Rate Pulses

Let e[2(t}] = Xﬁt)_denota the sequence of random pulses that
generates the expected composite roughness input, Ezz(Tj) = Ezz be
: o j

the purely random strength of fhevfaﬁddm pulses, and

-y [t-T I : '
e ] 3. wj(t;Tj) be the deterministie shaping functions. Then the

expected composité roughness input process may be represented in the

form
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N(t) _
X(t) = jzl . wj(t-Tj) (2.16)
N(tIzl+l
= g w.(t-T.)
i=1 j J

where N(t) is a nonhomogeneous Poisson counting process which cbeys (i)
and (ii) of the discussion for Figure 2.7b and may be changed to
N{t_..) if one remembers that t-T.) = 0 for t < T, if w (t-T,

(the g (6-T) 3 1 Ty

belongs to a physically realizable system.azz is purely random in the

sense of Equation (2.12) or E[crzz. Ozzk] = E[Ozzj ]E[czzk] and
;j) = p(azz) for j=1,2,3++'n if p(&zz) is obtained in the following

p(czz

S manner:

- l -
pla_ ) L — p(s,,,t)dt

PAA t -t (2,17)

]
[
= 20 o
Il.M:i
o]
—
Q1
w
[ |
Sl

It must be reminded at this stage that X{(t), the expected composite
roughness input process, is defined iﬁ'thé interval (to’tn+l) and may
be represented b& a single time history, such as either Figure 2.%a or
Figure 2.9b. Th; latter waé.used in deriéiné Equation (2.16) for
sheer convenien-c;e-.. The extension to X(t) = E[Z(t}] is immediately

cbvious if one remembers the relation between E[S(l)(‘t)] and E{s{(t)]

as expressed by the last equality in Equation (2.11a).
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The preliminary quantities are thus totally defined within the
framework of available roughness data in power spectral density form
and existing aircraft operational procedures with no sacrifice in
mathematical rigor. The probabilistic structure of the expected com-
posite roughness input, X(t), which eventually leads to¢ the generalized
roughness input power spectral density may be revealed by the method of
characteristic functional as proposed by Lin [34] Roberts [37] and

Srinivasan, etc. [38]. The characteristic functional is defined as

tn+l

[6(t)] = Efel £ 8(tIX(t)dt, (2.18)
[»}

Mix

Substituting the second equality in Equation (2.16) into Equation

(2.18),
. L N(tn+l)“
Mlo] = et/ e e R LS B R )
o
T’n‘l-l N(tn+l)
seegel [ 00§ 5, wieTdeiNGe )y

=) j=1 3

t n
IS i n+l _ i
nzo P{N}(n’th+1)2[e {o e(t}jzlczzjwj(t Tj)d,-t;:I

where E[+1+] denotes a conditional expectation, and the third equality

is obtained by the relation E{E[X|Y]} = E(X} (see Papoulis [39].

Remembering that N(tn+l) is Poisson (i.e., the pulse arrival times
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Tj's are independent) and the strength azz-fs are independent in the
]
sense of Equation (2.12), then

i f ﬁe(t)

II.M:d

g W -
Uzz. j(t Tj)dt]

Efe 1 %%

(2.20)

t
. nfl -

i W -
i { p(t)ozzj j(t Tj)dt]

t
n+l -
i 8(t)o__ w.(t-T,
i f sz 3 J)dt]

The second equality follows from E[XY] = E[X]E[Y]; since the X's and
Y's are independent. A typical term in the last line of Equation

(2.20) may be expanded as

ftn+L

- . I __ W =

E[el T f(t)azzj_j(t Tj)dt]
o _ 5

(2.21)

@t L _
1+ EL L Z ¢ M enE Y61, a0™
ComEl o o : ..'-sz= 33
R 5 )

-1 +a

Since TjFS obey a nonhiomogeneous Poisson distribution and o, 's are
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mutually independent with a common density function as shown in Equa-

tion (2.17), then

« L % t
= }-—— g m oo o n+l e -y (2022)
@ Z n! f Uzz P(ozz)dczz f f e(tl) B(tm)
m=1 0 +
O
m-fold
1:1'1+.1.
f .W(tl-r)"'w(t -t)n{t)dr
¥ m
[n]
dt. =-+ 4t
tn+l 1 m
f n{r)dr
t
where Uzzj " Y2z “g(t‘Tj) = “(tﬁT) for j,m = 1,2,...,N, where n(t)

is the expected nonstationary arrival rate as shown in Equation (2.9)
and must be obtained from the given record (e.g., Tigure 2.9(a) or
(b)). It is noted from Equation (2.22) that o is independent of Tj’
and by substituting Equation (2.21) into Equation (2.20) and u=ing

the result in the last equality of Equation (2.19), the following is

obtained
- v n
H{X}{e(t)] = nzo P{N}(n,tm_l)(lﬂc) (2.23)
*t
' t n+l
ot n+l \
) i%‘[f n(t)dr]” e-{ n(T)‘;“T(l-&m)“
n=0 ™* to o
t
] f ol n{t)dr
& t
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The log-characteristic functional of X{t) is

tn+l
a f n{t)dr (2.24)

T
=}

n M{X}[B(t)}

2™ Tatl
mgl = E[6,"] £ ree [O0t) 8t )
s}

L]

m—~fold

tn+l

[{ w(ty=1) - w(t -t)n(z)drldt, ««-dt_
Q

If one recalls the log-characteristic expansion in terms of the

cumilant funections of X(t)

t

“° .m T+l )
fn My TOCT = T o3 [reef kale)es k(e DTo( ) ev0(t ) (2.25)
m=1 to
m-fold
dtl"'dtm'
It is cbvious that
k[XCt, )= ex(t )] = Elo, ] { wlt, ~1)eemw(t ~T)  (2.26)

e]

n{t)}dz
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where the upper limit on the integral is changed to the minimum of
timert, in view of the fact that W(tj—T) = 0, j=1,2,...,m, for tj<1.
The mean function and covariance function of X(t) can easily be

obtained by using Equation (2.26) with m=1 and m=2, respectively.

They are
_ t
pxx(t) = E[ozzj { w(t-1)n(t)dr (2.27a)
o
min(tl,tQ)
- =2
Kxx(tl,t2) = E[ozz] { W(tl—T)W(tQ-T)n(T)dT (2.27h)
o

Nongtatiocnary Strength and Correlated Arrival Time Pulses

Before the geheralized roughness power spectral density is
calculated from the double Fourier Transform of the covariance func-
tion or the seconé order correlation function of X(t}, it is pertinent
to review some of the assumptions empleoyved for the derivations of
Equations (2.16) fhrough (2.27) so that some limitations may be
relaxed.

An immediately noticeable restriction, whose removal is much
desired, is that the arrival time of téxi events is Poissoen. It is
realized_that;in_%pite_of]thé varying flying time, two successive
taxi eveﬁts are n;f.truly.independent in_view of the fact that one
taxi event is pfi;r;to the flight and the remaining taxi event belongs
to the post—flighf docking and passenger/carge discharge. The inde-

pendent arrival time is approximately true for military and/or
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unscheduled coperations, but it is not quite acceptable for commercial
airline operations where near deterministic¢ scheduling prevail and

the arrival times of taxi ewents are almost interdependent if one
agrees that the flying time spent in approach, holding and descent is
only a minor portion of the total flying time. Lin [34] has introduced
a general procedure that employs the theory of random points developed

th cumulant function

by Stratonovich. It permits one to evaluate the m
of a random process X{t) in terms of the cumulant functions of a
sequence of random peoints which are governed by the distribution func-
tions (they are not the same as the probability distribution functions)
of various orders: fl(t), f2(tl,t2) *++ . These distribution func-
tions are, in turn, related to a special generating functional. If
such a generating functional can be obtained from the given record or

by a physical approach related to the given record, then the problem

of allowing N(tn

+l) to be a generalized counting process in Equation

€2.16) is solved.
Again, following the procedure of Lin [34] , the distribution
functions of a sequence of random points on a time axis are related to

a genmerating functional by the following expansion:

LLw(t)] = 1 + m§1 L Jooof ey etvtey) ey 2.28)

dtl---dtm

 where the generating functional is defined as




36

N(T)
LT[v(t)] =E{w

f1ev(+.)13 (2.29)
3 3

1
The function v(t) belongs to a class for which the generating func-
tional exists. Expand Equation (2.18) into a series and let T have

the interval (‘to,tn+ ). Then under suitable conditions

1
My [0(E)] = 1+ mzl a;—f-é-f BLX(t))-++X(t )] (2.30)

e(tl)---e(tm)dtl---dtm

A comparison of Equations (2.28) and (2.30) reveals that the distribu-
tion functions are analogous to the moment functions of a random
process X{(t}. Then it is logical also to compare the log-generating

functional which has the form

L

In LT[V(t)] = =

) Jeoof g (toer et V(R Wt ) (2.31)
= T &n "1 m 1 m

dtl‘°‘dtm

with the log-characteristic functional of X(t), which has the expan-

sion

© .M
fo M T0(0)T = T 2 fooef klx(e))e e ox(e )] (2.32)
m=], T

e(tl)"'e(tm)dt1°°'dtm




37

It is noticed that gm(tl---tm) is analogous to the mth- cumilant
function of the random process X(t) and may be conveniently defined as

th

the m™" cumulant function of a sequence of random points. Remebering

that the relations between the cumulant functions and mement functlions
of X{t) may be expressed as
k[X(t)] = ELX(t)}] = ux(t)

€[X(t)IX(,)] = B{IR(E)-w (t) ) ITRCE, ) muy (1) T}

m[X(tl)X(tz)X(ta)] = E{[X(tl)"”X(tl)][X(t2)‘”x(t3)][X(ta)'"x(ts)]}

€DX(E) Do X )T = BUIKCE Doy (2 )] DR e oug (2 00) (2089

it

E[X(tl)"'X(tm)]‘m“x(tl)E[X(tz)"'X(tm)]
Jkim]
+ co0 4+ (1) {#]ux(tl)---ux{tk)

E[xX(t,

k+l)---x(tm)]

m
+ eve 4 (=1) ux(tl)°°'ux(tm)

%
See Cramer [40] for the special case tl = t2 = +rs =t = L,
m
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It is easily deduced that the relations between the cumulant Ffunctions

and distribution functions of a sequence of random points are
g (t) = £, (x)
gz(tl,tQ) = fz(tl,tz) - fl(tl)fl(tz)

- f2(tl’t3)f1(t2) - fz(tQ,ta)fl(tl)

+ 26 ())E (£,)F, (1)
_gm(tl,--',tm) = fm(t;,t-:,tm) - mfl(tl)fm_l(tz,---,tm) 4 oo
* (“1)k{:}f1(t1)"'fl(tk)fm-k(tk+1’""tm)*
¥oeen 4 (—l)mflﬁtl)“'f;(tm) (2.34)

Therefore, if all the cumulant functiomns (gm(tl,-'-,tm), m= 1,2,¢.4)
are known from a sequence of random points, the generalized counting

process will be completely'determined...

k
bining Tty in the sample form ux(tl)...ux(tk)E[X(tk+l)...X(tm)] of

&
The factor [m] accounts for all of the terms cobtained by com-

Equation (2.33) or fl(tl) . fl(tk)fm_k(tk+l...tm) of Equation (2.34).
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With the generalized counting process thus characterized by the

cumalant functions (gm(tl,---,tm), m=1,2,+++} of a sequence of random,

but correlated in time, peints, it is possible to remove the limitation,
that N(t +l) is Poisson, in Equation (2.16). By incorporating N(T),

a genmeralized counting process, into Equation (2.16), it is permitted

to rewrite the first equality of Equation (2.19) as

8 - _ )
M,y [6(6)] = ECe if o ]Xl AN (2.35)

MT) -
(T 4 8(t)0,, ws(t-T,)dt,

= E{nm e
j=1 T ]
N(T)

=E{m [1+v(T,)]}
j=1 )

= LT[v(T)]

Comparing the second equality of Equation (2.35) with Equation (2.29),

it is elear that

M{x}£e(t)i = LT[el% e(t)cizjwj(t‘Tj)dt - 1] (2.36)
o i(Q, _
LT£Z S S [eef Bt ) e 0(t,)

T
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wj(tl—Tj )., ‘wj(tﬂ._Tj )dtl. ..dtR]

If logarithms are taken on both sides of Equation (2.36) and the
expansions from Equation (2.32) and Equation (2.31) for RnM{x}[e(t)]

and ﬂnLT[v(T)l, respectively, are used together with

N T -
E[czzj] = g 5 p(czz,Tj)dozz (2.97)
® 2 _ _ _ .
= £ CrZZj 6(Uzzj‘ozz(Tj))dO‘zz =9, (Tj)
Then
Zlﬁf.é.j C[X(t)). . X(t )16(t )., .00t )dt,...dt_ (2.38)
m=
= E i% fooof gm(tl"..’tm){ f %i.azzg(Tl)j...f é(tl)"'B(tg)
=1 T gz M T
| ot
wy (g =T )+ e vy (£, =T )dt, - --dtz}“'{ggl T %%g )

I-%-I 8(t)eer0(t dw (t,-T Yeoow (t,-T )dt,+«+dt, }dT,++dT_

The cumulant functions of the random process X(t) may be obtained from
Equation (2.38) by'comparing the same number of integrations on the

'tm's, m=1,2,-+*+, on both sides of the equation. In particular, the

mean and covariance functions of X(t) are given by
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t
n+l
Kl[X(t)] = E[X(t)] = ux(t) = f EZZ(T)w(t—T)gl(T)dT (2.39a)
%
and
KoLX(t) IX(t )] = Ky () ,8,) (2.39b)
tn+l _
= [ UZZ(T)Wl(tl*T)Wl(tQ—T)gl(T)dT
%o
tn+l _ -
+ { f ozz(Tl)azz(12)wl(tl—rl)w2(t2—r2)g2(rl,12)d11d12
o

where integration over T of Equation (2.38) is replaced by its interval
(to,tn+l) in both Equations (2.39a) and (2.39b). Substitutions of
t = tl’ T = Tl’ and wl(tl-Tl) = w{t-1) were used in Equation (2.39a).
T = Tl, 7, = T, were used in Equation (2.39b).

At this point, it is interesting to note that the limitation of

Ezzj = Ezz(Tj), j=1,+-+,n being mutually independent and possessing the
same distribution as shown in Equation (2.17) is alsc removed by the
generalized counting process and through Equation (2.37). This becomes
obvious if one allows the generalized counting process to be Poisson,

then

g, (1) = £,(1) = A(1) (2.40)

g, (157 = £,(17,7,) = £1(1E (1) = MrpPMr) A (1)Ax,) = 0
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Equations (2.40) follows from the fact that the distribution functicons
(fl(t),fQ(tl,tg)"°) of a sequence of random points are simply the
product densities of various orders of some point processes (see
Bartlett [41], and Srinivasan, etc. [38])) and when the points are
uncorrelated, fm(tl,o--,tm) = ‘?1 fl(t.) becomes the general expression
for all product densities. Sug;tituting Equation (2.40) into Equations

(2.39a) and (2.39b), the mean and covariance funmctions of X(t) with

a Poisson counting process become

t
ntl
K [X(0)] = EIX(D)T = ny(t) = [ 5 (n)w(t-1)A(r)dr (2.41a)
tO
and
Ko LX(E )X(£,)] = kyp (17 5t,) (2.41b)
tn+l _
= [ S, (T)Wl(tl—T)Wl(tQ-t)l(t)dT
t
o]

Comparing Equations (2.27a), (2.27b) with (2.41a), (2.41b), respec-
tively, it is seen that the strength function GZZ(T) is no longer time
. . . X - — - 2, . _
independent or staFlonary (i.e., ozz(t) # E[czz] = ¢y and L. (1) =
3[5222] = c2). This is not unexpected in the light of Equation (2.17)

where a pseudo-ergodic demsity function was obtained for p(&zz,t) in

anticipation to render o independent of Tj in Equation (2.22). The

reasoning behind such a drastic move will become clear if one remembers
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that, in a strict sense, o of Equation (2.22) must be expressed as

@ .m ® - n - _ tn+l
@ =] ET'I %2z P(czz’Tj)dUzz Ii"f Bt )eeblty) (2.42)
m=1 G o
tn+l
{ wj(tl—T)---wj(tm—T)A(t)dT
o
dt. «++dt_ = o,
tn+1 1 m |
f A(r)dr
t
o

If the substitution of Equation (2.42) into Equations (2.21) and (2.19)

is made, the characteristic function of X(t) will have the expansion

@ iijt“*l 0t) §
nZO P{N}(n’tn+l)E[% % i=1

g .w.(t-T.)dt
2z 3 i

M [6(1)] 1

n

= n
} P a(n,t o) om (lte,) (2.43)
no {N} n+l j=1 3

Any attempt to reduce the last equality of Equation (2.43) into an

expenential form

Itn+l
o A(T)ar
Ce t )
)
n n
is quite impossible from the fact that = (l+aj) = (1+e) if, and only
- =1

1 2

if, o, = a, = *r-- = @ T a,ora must be independent of Tj'
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Physical Significance of the Restrictions

The less general X(t) with.nonhomogeneous Poisson distributed
taxi event arrival time and mutually independent, identically dis-
tributed strength is not totally unacceptable from an engineering
viewpoint. A physical approach toward the understanding of the time
averaging process on the time-dependent density functions as shown in
Equation (2.17) will prove that, for certain fleet operations, the
time-independent stfength density function analysis is more advan-
tageous to use than the stringent time-dependent strength density
function analysis. Tigure 2.11 illustrates the criteria for the choice
of the most suitablé combinations of arrival rate and strength dis-
tribution.

Case (a) is representative of the single record composite
roughnesses for design criteria analysis. Due to the two-time
averaging (see Figure 2.8), it is natural that the strength of the
roughness strength function has been stabilized quite some and the
individual time-independent strength density functions will be close
to that obtainéd ffom Equation. (2.17). The arrival rate will be more
irregular in view ;f the faét.that maﬁy'aircrafts from different types
were involved. It;is therefore reasonable to assume that ergodic
{stationary) strenéth distribution and nonhomogeneous Poisson arrival
rate will suffice.

Case (b) is best demonstrated by the single record composite

roughness for fatigue life evaluation based on fleet operations. The

averaging is done over an ensemble of one type, hence the different
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Figure 2,11 Criteria For Arrival Rate and Strength Distribution
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levels of strength for the roughness strength functions are inherently
present and sensitive to time in the sense that the time-independent
strength density function as derived from Equation (2.17) will not be
a representative strength density function at any given time. Due to
the large number of aircrafts in the ensemble, the arrival rates are
quite irregular. Thus, the realistic choice of strength distribution
and arrival rate will be nonstationary and nonhomogeneous Poisson,
respectively.

Case (c) exemplifies the single time history of a given aircraft
that performs prototype flight testing or a commercial airliner that
flies scheduled revenue flights on predetermined routes. It is under-
gtood that such airplanes do have some built-in periodicity in the taxi
sites and flying time. The levels of strength of the roughness strength
functions are selected, if not deterministic, and the arrival rates are
also correlated and interdependent. A logical choice for the strength
distribution and arrival rate for the present case will unequivocally

be nonstationary and correlated, respectively.

Comparisons of the Generalized Results

Published Special Cases

With the cumulant functions, and therefore mean and variance
functions, for the single recaord composite roughnesses solidly defined
in Equations (2.27), (2.39), and (2.41), it is expedient to compare

the findings contained herein with the results in the publications

cited in page 30. It is understocd that the present model
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represents a sequence of random pulses with either stationary or
nonstationary impulse strength (E[Ezz] or SZZ(T)) and nonstationary
impulse arrival rate which is either nonhomogeneous Poisson distributed
or correlated random points. wj(t—Tj)'s are shaping functions and may
be regarded as imﬁulse response functions h(t,Tj). Only mean and
covariance functions are of the most interest if the goal is to
establish the generalized power spectral density of the composite
roughnesses, it is therefore sufficient to compare these two quantities.

Equations (2.27a) and (2.27b) are the mean and covariance func-
tions of a sequence.of mutually independent, identically distributed
strength pulses with a nonhomogeneous Poisson arrival rate. Lin [34)]
has shown in his Equation (18) that'x[x(tl)-o-x(tm)] =
E[Y"] f h(tl,r)"°i(tm,1)l(t)d1 (18}. For m=1 and 2, the results are
exactlg the same as Equations (2.27a) and (2.27b) if one substitutes
ELY"] = E[5, "], h(t_,7) = Wyt ~1) and A(x) = al).

Equations (2.41a) and (2.41b) are, respectively, the mean and
covariance functions for a sequence of random pulses with nonstationary

strength and nonhomogeneous Poisson arrival rate. Equations (13) and

(24) of Roberts [37] are given by

t,

E[Y(t)}] [ h(t,t)altiv(t)dr (13)

1

and
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t
2
ey (t,t™ = [ h(t',Oh(e",0a%(tv(e)de (24)
! .
1

If E[Y(£)] = E[X(£)7,t; = t s t, = t_ .45 b (£,7) = wlt-1), F(1) =
Ezz(r) and v(t) = M1) are substituted in (13), Equation (2.8la) is
identical to (13). If wYY(t',t“) = xxx(tl,tz), =t by Tt s
ht',T) = Wl(tl,T), h(t'",1) = Wl(t2,T) and v(t) = A(1) are substi-
tuted in (24), then Equation (2.ulb) is the same as (24%).

Equations (2.3%a) and (2.39b) are the mean and covariance
functions for a sequence of random pulses with nonstationary strength
and correlated arrival rate defined by the cumulant functions
(gl(f), g2(11’12)"') of a sequence of random points. Srinivasan,
etc. [38] have demonstrated by using some general methods of point

processes and product densities to obtain the mean and covariance func-

tions in Equations (16) and (24) of [38], respectively. They are

t
e{¥(t)} = [ £ (x)h(t-t)elalr)}ar (18)
¢
ﬁhere
fl_(-r) = g, (1) (20)
and
H %

Cov¥(t,)¥(t,)] = £ g Bty =t Ih(t,=1,)8, (1) ,7,) (o)
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e{R(rl)}e{a(rz)}drléré
min(fl,t2)

+ g h(ty~1h(t,-1)g (Dela’(r)}ar

It is clear that if e{¥Y(t)} = BE[X(t)], 0 = te t =t h(t-t) =

n+l?
w{t-t), then Equation (16) and Equation {2.29a) is the same. If

Cov[Y(tl)Y(tz)] = k[X(t )Xt )1, 0 = t t, F tyy T tos h(ti'ri);;
wo (- ) for i=1, 2, efa(r)} = Gzz(rl), and e{a(t,)} = 332(12),:
then Equatioﬁ {24) is identical to (2.39b), gl(r) and gz(ri,rz) are

the first and second cumulant functions of a sequence of correlated
random points in both sets of Equations (16), (24), and (2;393),
(2.39b). o

Standard One Runway, One Constant Speed Case

In view of the complexity of the mean and covariance funcfions
as shown in Equations (2.3%a) and (2.39b), it is of interest to sub-~
stantiate the validity of the limiting case where only one runway
roughness.is preseht. It is therefore asserted that Equation (2.16)

" now is reduced to

N(tn+l)

.jz Ezz.“j(t'Tj) | L (2.48) |

X(t)
1 3

»

azzjwl(t-Tl) = zitt)

The last line in Equation (2.44) is obtained by setting Ezz = Q0 for

j=2,3,4,- ** .
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The analogous mean and covariance functions for Equation (2.44)
are obtained from Equations {2.3%a) and (2.39b), respectively, by the

following development.

tn+l

J' Ez ” (T)wl(t-T)gl(T) G(T—Tl)dr (2.45a)
t
o

i, [X(t)]
1 141

H

czlzl(Tl)wl(t—Tl)glCTl) = Kl[Zl(tlj

tn+l

e DXCe XCe = [0 8, By (e -t (£,~0)g, (D)6(e-T, )
t 171
Q

jfn+y- - _
+ o (1,0 (T 0w, (o =T dw, (E =T ¥
i zlzl 1 zlzl 277171 1""1rt2 2

o

6{rl-T2)6( TQ—Tl)dTldTQ (2.45b)

-2
= azlzl(Tl)Wl(tl_Tl)wl(tQ-_Tl)[gl(Tl)+g2(Tl’Tl)]

= K 2[zl(tl)zl(t2)]

#The substitution of w2(t2-72) = wl(tQ—Iz) was used. Since

-y, [ti-T, | ~a B /2]t -7 | Y le ot ]
1 %’ 1 e 1l 1 and w2(t2-f2) = e 22 2

wl(tl--rl) = e
o /20t .

e = w;(tz—Tz).Stlll spec;fy two different shaping func-
tions, no inconsistency with Equation (2.39b) has occurred. It is

- S “ay82/2 (%571
physically impossible to have a w,(t,-T,) = e as g, is

the shaping factor of a single given runway. (See page 15, Equation (2.6).)
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Due to the fact that there is only one arrival at Tl’ the counting

process c¢an be considered Poisson, hence
= = = (2,46a)
gl(Tl) fl(Tl) l(Tl) 1

= - 2 = g2 - £ - 2.46b
gy (T »Ty) = £,(T,T) = £1(T,) = £1(T)) - £](T)) = 0 ( )

Substitute Equation (2.46) into Equation (2.45a) and (2.45b); the mean

and covariance functions of Zl(t) are given by

<, [2, ()7 = Ez 5. (T (£=T,) (2.47a)

171

-2
K2[Z1(tl)z(t2)} = ozlzl(Tl)wl(tl—Tl)wl(tQ-Tl) {2.47b)

From the shape of the shaping function (see page 26),
vy les Ty
wl(ti-Tl) = e , 11,2, it is apparent that Equation (2.47b) is

only meaningful when [tg—tl(_is small or t, is close to Tys otherwise

2
wl(tQmTl) will approach zero and K2[Zl(tl)22(t2)] will vanish. To

anticipate the fact that the autocorrelation function of Zl(t) will

resemble that of the standard one runway, one constant taxi speed
approach of Equations (2.5a) and (2.5b), it is assumed that Zl(t) is
also weakly stationary in the sense that

€ 26T =0, (Tow (e,-T) = L ey[%,(¢)] (2.48)

171 t2+tl
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and the autocorrelation function of Zl(t) is allowed to be expressed

as

Rzlzl(tl,tz) = Kg[zl(tl)zl(tz)] + Kl[Zl[Zl(tl)]K 1[Zl(t2)] (2.49)

I

. 2
K2 [Z;(tl)Zl(tz)] + {nl[zl(tl}]}

- 2 " = 2
czlzl(Tl)wl(tl—Fl)wl(thTl) + {czlzl(Tl)wl(tl—Tl)}

and t,

In view of the presence of t 5

1 as separate entities in Equation

(2.49) rather than R t.), it is necessary to use the double

(t,-
lel 2 -1
Fourier transform technique fcr a generalized (nonstationary) power

spectral density and then reduce that to the ordinary (stationary)

power spectral density by limiting w, = w, (see Roberts [42]) in the

1

generalized one. Ths generalized power spectral density is defined

as
w® -jlw. to-w t,)
_ 1 . §R 118 .
@y (0 50,) = 5 [ K [X(t )X (t ) le dt,dt, (2.50a)
(21)7 -
(See Bendat, etc. [437),
or
m Fw. t,~w,t,)
_ 1 i Ml
By (g st8,) = - {mf Ry (T o 0€ at, at, (2.50b)

(See Roberts [421), by different authors, and Equations (2.50a), and
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(2.50b) only differ in a sign peversal and the different quantities to
be transformed (KQEX(tl)X(tQ)] = KXX(tl’tQ)’ if Kl[x(tl)] = K1[X(t2)] =
0). They will render no ambiguity in the following develocpment.
Applying Equation (2.50b)} to Equation (2.49), the generalized power

spectral density for a one runway, one constant taxi speed Zl(t) is

given by
- 2
Uzlzl(Tl) fmf oty -w,ty)
S (W, ,00,) = ——=—7—{ w o (t, =T w. (t,-T, e dt.dt
lel 1°72 (2“)2 -~ 1''1 "171° 72 1 1772
= Jlw t, -w,t,) _
+ [ wi(tl—Tl)e 1712 dt,dt} (2.51)
_ % % Ju, T
= 5, DI )W () + W2 T ew)]  (2.51)
1“1
where

1
W (w,) = 5 Ia W, (t, e dt. ,2 (2.52)

and 6(m2)==wl(m2) for wl(tg) = 1. (See Davenport and Root [u44].) The
ordinary power spectral density of the above may be obtained by sub-
- stituting w, = @, = @ into Equation (2.51), hence

JwT

SZ . (w) = SZ 7 (Q,w) = Ez 22(Tl)[|Wi(m)|2 + Wiz(m}e lﬁ(m)] {(2.53a)

1“1 171 11

It is noticed that the term with the §{w)} is merely the non-zero mean
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of the roughness Zl(t) and the ordinary power spectral density for

w > 0 is expressed by

o, . (w) = d_ _ (TO|W, ()% =5 _ (&), w>0 (2.53b)
lel zlzl 1 1 ZlZl

Equation (2.53b) is exactly the same as Equation (2.5a), if one

recognizes that

-, 2 o]
R, (1) ¢ o g, € (2.7 Repeat)
TAXI
and
Cov, z (0= L w,l2 (1))2,(t,)] (2.54)
171 tg—tl-t+0

- - 2
i = 5 o -
i Uzlz (Tl)wl(tl T2)wl(tl+T T2)

70 1
- 2 '2*'1“1"1‘1|
=0, z_(Tl)
1%
oo, AT
=0 (Tl)e
1%

*If the maintenance of constant speed were impossible and at Y
and t,, the respective taxi speeds would be a, and a, but for t, + t
physically the two constant taxi speeds a ané o, must become ol and
the following development is valid:

1
1l 2 1
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are identical.

Equation (2.54) is the limifing case of the covariance function
of Equation (2.47b) with t, approaching t,. Tl is only a parameter to
indicate the starting point of the (single rumway roughness, Zl(t))
composite roughness record X(t). The validity of comparing RZZ(T)
with Kg[zl(tl)zl(tQ)] without subtracting the square of the mean rough-

ness from RZZ(T) is due to the fact that
RZZ(T) = K2[Z (t)z2(t+1)] + KIEZ(t)]xl[z(t+r)]

and Kl[Z(t)] = Kl[Z(t+T)] = 0 from the assumption stated on page 8 that
the mean roughnesses for all taxi sites were removed.

Generalized and Ordinary Power Spectral Densities of a Composite
Roughness Record

The generalized power spectral density for a composite roughness

record X(t) as shown in Equation (2.16) may be obtained by using either

2 _Ylltl'—'rzl - Y2|tl‘l‘T—Tl‘

L

(T, Je
o %1% 1
_ —Y_lt ~T | -7 |t ~T +r|
™0 11
. =2 (vl T |
e cz 2 (Tl)e
11
.z 2 2 16T
= (T.,)
. zlzl 1
2771

as y; = 0,8 and y, = 3231 (see footnote, page 50).
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Equation (2.50a) or (2.50b) with the following mean and covariance

functions
tn+1 N(tn+l) ~
Kl[X(t)] = { jzl G(T-Tj)UZZ(T)wj(t—T)gl(T)dT (2.55a)
o
N(tn-r-l) ~
Sl TRt )
tn+l N(tn-l-l) -
K EX(E IX(E,)] = [ E G(T-Tj)Gzz(‘l‘)wj(tl--r)wj(t2_-[)
to j=1
gl(T)dt
1'-n+l N(trﬂl) _ )
+ I I . E_ G(Tl-Tj)6(T2_Tk)GZZ(Tl)Uzz(T2) (2.55b)
t0 j.k=1

Wj(tl-Tl)wk(t2-12)g2(rl,12)drld12

- 2
) dzz(Tj)azz(Tk)wj(tl_Tj)wk(tQ—Tk)[gQ(Tj’Tk)]
where gl(r) and g2(11,12) are known functions from the given record.

Substituting Equation (2.55b) into Equation (2.50a), the generalized

power spectral density for a composite roughness record may be

expressed as
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N(t )

Spy(wyo0y) = 1
j=1

nt+l 2
5 2 . W.(w,) (2.56
35,2010, (1, + 8y(T3aT ) Wy () - (2.562)

N(t )
n+l” ~ 2
+ j¢£=1 9587500, (T Lg, (T45T ) Iy () W (wy)

and its ordinary power spectral density is

N(t_,.)
n+l” _ 5 o
Byn0) = & (w,w) = §=1 UZZ(Tj)[gl(Tj) + gz(Tj’Tj)]le(w)l
N(tn+l) i i .
+ j#%:l 552 (T539 5 (T8, (T2, T YW, (w) W, (w) (2.56b)

where Wj(wi) and Wk(mi), i=1,2 is defined by setting k=1,2,... in
Equation (2.52). If the generalized power spectral density of the
composite roughness with the nonzero mean must be required, substi-
tuting Equations (2.55a), (2.55b) into Equation (2.50b), the following

expression is obtained

o) = 2 # (2.57a)
Sy (W) 50,) = j§1 52 (THlEy (T9) + gy(Ty,TH W () W, 0y (2
+ [glﬁTi}]Wj(wl)e 6(m2) + jg%:l czz(Tj)

9,2 (T8 (T8, (T) + 2, (T, T )W () W, ()

and its ordinary power spectral density is given by
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N(tn+l)

Sy(®) = Sylasw) = §=1 5, (TR (1) + g,(T4,TDT  (2,57b)

X jwT,
s |? + gy (1P we” T s

N(":nﬂ.)

' j#Ezl cZZ(Tj)Uzz(Tk)[gl(Tj)gl(Tk)

+

*
gg(TjsTk)I Wj(m)wk(w)

Generalized and Ordinary Output Power Spectral Densities

If the frequency response functions for the aircraft responses
in question are furnished, their output power spectral densities may

be calculated from the relations

)=¢(Ngw

%
wx’¥y 2)H(wl)H (w2) (2.58)

Pyy{uy0,

Dyy(w) = QXX(w)IH(w)|2

Sxx(ml,mz) or;sxxﬁy) may be used in lieu of ¢Xx(wl,w2) or ¢ x(w) in

X
A %

Equations C2.58).3}H0wever, for most response quantities, H(0)H (0) and

[H(0)|_2 are always zero and the evaluation of ¢YY(0) or @YY(O,O) is not

warranted. Nevertheless, the Sxx(wl,wz) and Sxx(w) will furnish com-

paratively more accurate response data for the outputs that are
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sensitive to very low frequencies (e.g., rigid body motions excited by
long wavelength unevenness) and the selections of QXX(wl,wl) and
¢Xx(m) may inadvertently introduce some unconservatism into the analy-

gis., It ig therefore advisable to calculate both ¢YY(wl,m2)(¢YY(w))

and SYY(wl,w2)(SYY(w)).
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CHAPTER III

DERIVATION OF FREQUENCY RESPONSE FUNCTIONS

Equations of Motion

The airplane, as shown schematically in Figure 3.1, consists of
a rigid fuselage and a flexible wing. The wing is assumed to be a
straight beam with a constant rectangular cross-section for the entire
span. The landing gears are attached rigidly to the fuselage. The

main gears have linear springs and viscous dampers in the struts. The

tail gear has an inextensible strut.

Puselage static
Equilibrium Position a

p—

Mean ground level

Agure 3.1 Idealized Airplane

The airplane is considered to taxi along a straight runway with
a constant horizontal velocity and both the main wheels and tail wheel

are assumed to remain in contact with the ground at all times. The

ground profile is assumed to have no varistions in the direction
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perpendicular to the path. The elevations are measured from some
arbitrary mean ground level; thus; the two main landing gears can be
replaced by a single equivalent front gear located in the plane of
symmetry (XY-plane) of the airplane. Together with the tail gear, the
airplane has a bicycle gear arrangement and the dynamic responses are
symmetrical about the longitudinal axis (X-axis) of the airplane.

The body axes OXYZ are embedded at the mass center of the air-
plane. The origin 0 has an instantaneous position vector 50 with
respect to a fixed earth axes oxyz (see Figure 3.2). Denote the unit
vectors in OXYZ coordinates and oxyz ccoordinates by I,J,K and I,3.k,
respectively, then

50 = xl{ + ylf + al + eJ (3.1)

Similarly, the position vector, Ep’ for an arbitrary point P on

the wing elastic axis will become
§P=xli+yl§+ai+e3+U'I'+v3+WR (3.2)

where U, V, and W are the displacement components of the point P in the
X, Y, znd Z directions.
Let the rigid body rotation of the airplane be 8§ as measured from

its static equilibrium position 90; hence, the angular velocity of the

body axes OXYZ beccmes
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R=UT+VI+WK

Fuselage static

X Equi{iégigg_ﬁpsition

--"-‘-"_-

o Horizontal Datum
”’,____,-\'/f\\ S\
|\ — P

Tigure 3.2 Orientations of the Coordinates

In view of the complexities of the airplane geometry, and the
external constraint conditions, a logical approach to the derivation of
the equations of motion will be the Lagrangean method which requires
certain energy expressions. In accord with this trend of thought, the

energy functions are cbtained in the following.

iKineticiEgergy of the Fuselage

Denote the m&ss of the fuselage by'Mf and its mass moment of

inertia about the mass center (point 0) by Im s then the kinetic
: f

energy of the fuselage is

Ll 2 2
Te = 5(MS + I ul) (3.3)
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The vg term can be obtained by performing the dot product of

- ' *
rs the velocity vector of the mass center.

'.' = +« T . T .- = = 'Ll'

o= R oty,]t tkx(al + eJ) (3.4)
= %,I + 9,7 +6GaJ - eD)
= [xlme(e cos(90+6) + a 31n(90+3))]l
+ [yl - 8(e szn(60+6) + a cos(eo+6))]j

then
ve = é . é = %%+ §2 + é2fe2+a2)
o 0 o 1 1

2x19[e cos(80+9) + a 51n(90+6)]

-+

2§lé[a cos(eo+9) - e sin(90+ 8)]

and therefore Equation (3.,3) becomes

_1 L2 .2 22,2 2 .
T. = §—M {xl ¥t 8% (e“+a“) - QXlB[e cos(eo+e) (3.5)

] . - * l - 2
+ a 31n(60+e)] + 2ylﬂ[a cos(30+e) -e sin(eo+6)] + 5 Img®

3
=See Appendix I for the transformation.
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Kinetic Energy of the Wing

The wing is a continuous eiastic beam and to develop its kinetic
energy expression explicitly is comparatively cumbersome. However,
there is a customary procedure for small oscillations [45] in which the
continuous system is treated as a limiting case of some equivalent
discrete system. It is this technique that enables the following
development.

Firstly, the wing span is divided into n equal length segments
of d each (see Figure 3.3), Assign the displacement coordinates of the
individual mass centers to be Ui’ Vi, and Wi; i=1,2,*++,n. Let m,

IXX’ IYY and IZZ be the mass, rotary moments of inertia and twist
moment of inertia per unit length, respectively. Then, with the sub-
script i attached to U, V, and W in Equation (3.2),the general position

vector ;p becomes

rp. = x,1+ yy3 ¢+ (a+Ui)I + (e+Vi)J + WiK (3.8)

1

and the corresponding veloeity vector is

=r = &I+§.3+0.04+V.3+WE+ 6K 3.
v r,, =% + 9§34+ U T ViJ + WK+ 8Kx (3.7)

1

[(a+Ui)I + (e+Vi)J + wikj

1]

[ilcos(go+g) + §1b31n(6°+8) + Ui—e(e+Vi)] I+
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[-xl 31n(eo+e) + 9 cos(80+6) +_Vi + s(a+Ui)JJ + WK

Z

n \m, IXX’IYY’ and

Elastli X% il f
Axis ( —t }I » all constants
I | 'zz
X
b |
||

Y.
| ]
——— — —t — i —.r

Z

Figure 3.3 Front and Top View of the Wing

Secondly, the angular velocities associated with the rotary
effect must be derived. Let p and ¢ dencte the rotations about the
0X and OY axes, respectively. TFrom Figure 3.4, the following approxima-

tion is true for two adjacent wing segments.

X 1 4 = - (3.8)
Py Sin Ch tan p (Vi+ Vi)/d

i 1
and

p. = (vl'l'l_\}i}fd (3.9}

Vi+l

Vc
1 :
—ﬂ. d | ]

Figure 3.4 A Typical Deflection of the Wing Elastic Axis

g B3 ~— 8
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‘Bimilarly,

= —(U.+

¢

i

It ig clear, for Equations (3.10) and (3.11) to hold, the angles
rs and ¢i have to be small. These inevitably lead to a third approxi-

mation that the local twist angle is merely the sum of 8 and Gw where
i
9 is the relative twist angle referenced to the wing root.

W.
1

Thus, the kinetic energy for the entire wing is

02 M - 2
* Iyyd; + Iy, (646 7] (3.11)

Y

2 .2
p. T IxxPs

n * L
md . . . 2
Er-izl {[xl 003(90+e) ty,; sln(eo+e) + Ui - B(e+Vi)]

. - M 2 l2
- i . + W.
+ [ x181n(90+9) + yleos(80+8) + Vi + G(a+Ul)] Wl

- o
+
IZZ(9+9Wi) }

 Potential Erergy of the Fuselage
The potential energy of the fuselage is stored in the linear
spring of the front gear when the airplane is disturbed from its equi-

librium position. The extension or compression exerted on the spring

can be visualized from Figure 3.5,




67

a =\
y PN/ Y A ~

y2=h(x2)

(a) Undisturbed Position (b) Disturbed Position

Figure 3.5 Instantaneous Disposition of the Airplane

In Figure 3,5(a), the airplane rests on a smooth surface and the

stroke of the front gear strut is therefore
S . =e + (atb)tan 60 (3.12)

However, after some time lapse, say at time t, the airplane is
traveling along a rough surface and its instantaneous attitude is

exactly as that depicted in Figure 3.5(b). Thus, the stroke becomes

Yo = ¥y

Cos(80+9) (3.13)

St = e + (a+b)tan(80+8) -

from Equations (3.12) and (3,13), 1t is obvious that the spring dis-

placement is
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Y, - Y
- _ - _ _ 2 1
AS = St S_M (a+b)[tan(eo+e) tan eo] m (3-11})

For small 8, ¥q and Yoo the exact expression of Equation (3.14) can be

reduced to

¢ s (ath)s Y2 "N

A (3.15)%
C0329 Cos 60
o
The potential energy for the fuselage is
V, = x(s)? = —X at)e (o 3]° )
£53 2. |[Cosa. = Y2V (3.16)
2 Cos Bo o

Potential Energy of the Wing

The potential energy of the wing is the total strain energy of

i1
the wing. It is expressed as

2 2 2
L 2 28
1 3%u A% [ w]
V.= x|  [Bl, |=—% + EI + GI|——| |az .
W2 [T g2 KR | 0r2 3z (3.17)

where BIYY’ EL

xx> & denpte the bending rigidities about the OY, OX

axes and torsional;rigidity gbout the OZ-axis, respectively. To be

brief, let EI., = A, EI, = B, and GJ = C. In anticipation of using

Y XX

Ui’ Vi’ and Wi; i=1,2,+++,n as the generalized coordinates for the

* *
See Appendix II for the detailed derivation.

it
(us] pp. 126-127 or [47] pp. 121-127.
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wing, Equation (3.17) is converted to the equivalent discrete system by

the finite difference approximations (48], therefore Equation (3.17)

becomes
U u 2 \Y 2

n . +U. . - W + ¥ -2]

d + - + -

Vw - < z A i+l ; 1 + B i+l 121 i (3.18)
i=2 d d J
2

n O - %

d i+l i

ty 1 ¢ ]

i=1

Dissipation Function

It is further assumed that the only existing dissipative force
is that of the viscous damping in the front gear strut. The internal
friction within the strut gives a negligible Colomb damping. The wing
will contribute no dissipative energy both in fhe sense of structural*

and aerodynamic damping. Hence, the dissipation function is

1 —_—2 c . R . 92
= = D — - 3.18
F, = 5c (48) 3 [(a+b)6/Cos & Yo t 3,3 (3.19)
2 Cos 90

Lagrange 's Equation and the Generalized Coordinates

The generalized coordinates for the airplane consist of the

quantities below:

% :
[46] Indicates that the damping coefficient, g, for metal air-
craft is between .02 and .08 and g is approximately 2¢ where f is the
conventional viscous damping ratio.
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X5 ¥i5 ¥y and ¢ specify the displacements of the fuselage. Ui’ v

i?

Wi and ew designate the linear and angular displacements for the wing.
i

Let qj denote the generalized coordinates then for 3=1,2,3,*-*,4+4n

ql = xls q2 = yl! q3 = Y23 qu = e; (3_20)

Ag = Ups Qg = Uy mov g =0

=V v =V

Uin = "2° YB4n = Y2 77" on T Vn

Uggon = W10 Qg4 = Wo 0 Quuan = W,

= 8 a

’q = cccq -
wl 5+3n w2 b+in Wn

95+3n
Recall the constraint condition requires that the wheels remain
in contact with the rough ground, and denote the abscisas of Yy and Yo

by %, and x,, respectively (see Figure 3.5(b))}, then

a+hbh

Xp 2 X F Cos(8_+8)

" - (yz—yl)tan(eo+6) (3.21)

Again, remenbering the small @, ¥i» ¥y assumption, Equation

(3.21) is reduced to the following:

(a+b)(1+etan9°)

Xy = X ¥ Tos 5, - (y2-yl)tan 6, (3.22)
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The equations of constraints for ¥i1» ¥, and X, are

¥y = h(xl) (3.23a)
Yy = h(xg) (3.23b)
v, = u (3.23¢)

where h(xl) is some known function (deterministic or random) for the
ground profile, and u is the forward velocity of the airplane at point
0.

In view of the situation, the Lagrange equations for this

%
treatise will have the form

L 3 .
é%‘ L ) Mo @ .5 351,200 bin (3.24)
2, dq; g, K 3 x=1,2,3

where L = T - ¥, an@ F iz the dissipation function, and the lk's can

be obtained from Eqﬁation (3.24), together with

) 3549y * 3 dt =0 (3.25)
3
and
of af
Z EE%'dqj + 75?-dt =0 (3.26)
] ]

. .
See [45] pp. 14-22 and pp. 38-42,
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with fk = f(ql,q2,-- ,£t) = 0, some functions to be constructed

"*%y4un

from the constraint equations.
From Equations (3.23a-3.23¢), it is c¢lear that k=1,2,3 for

the A, 's, and Equations (3.25) and (3.26) show that the coefficients

k

have the follewing relations

of of
"y T gy ke T R (8.27)

As an example, Equation (3,23a) is used to illustrate the proce-

dure.

fl =y, - h(xl) =0 (3,28)

substitute Equation (3,28) into Equation (3.26), the vesult becomes

ah
dy, - szz-dxl =0 (3.29)
which clearly identifies
a,, = a = - 2L &, = a = 1, and =90
17 %, Bx, * “12 iy, T T (3.30)

similarly,

£, = 9, - B(xy) =y, = h(x,¥,,¥,,8) =0 (3.31)

2




oh (a+b)

T 3%, Cos 8
(=]

tan 80
2

for f3 = 0 Equation (3.23¢c) specifies that VU from Equation (3.4)

and identify the x component by u then

X - ale 005(eo+a) + a Sln(60+8)3 -u=

defe Cos(80+8) + a Sin(eo+e)] -udt = 0 (3.33b)

which gives

a.. = -[e Cos(90+9) +a Sin(eo+8)]

30
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From Equations (3.5, 3.11, 3.16, 3.18, and 3.19) the kinematic
energy, potential energy, and dissipation functions for the airplane

are, respectively,

T = Tf + TW (3.35)
V= Vf + Vw
F=F

e

%
After some work, the Lagrange equations in the form of Equation

(3.24} are obtained for the x, ¥y yg,e . Uy, V, W, and-sw coordinates.

These equations are shown below.

L L
M[xl - B(e Cos 90 + a Sin 90)] + m[Cos 60 {L Udz - Sin 80 {L.de]
_ . %h 3h
M T Mmot M (3.36)
1 2
- m L = L -
Mly. + 8(2Cos 8 -e Sin 8 )] +mlSin & [ Udz + Cos 8_ [ Vdz)]
1 o) o o I o) L

1 (a+b)e (a+b)é . s
t— kos 8 TY1 " Y *Cleos 6T Yy ~ ¥,
Cos 60 o fa]

% X .
See Appendix III for the differentiations and linearizations.
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) oh
11 - l2 g;;vtan GO (3.37)
1 (atbh)8 (a+b)é . .
T3 kEose *y 'y;l +°Eose Y 'y22| (3.38)
Cos 80 o _ el

sh
Az[—a'x— tan 30 + l]

9 - - .
[Ma“© + (mf-mw)e + Iﬂf + 2LIZZ]8 - H[xl(e Cos Bo + a 8in Bo) (3.39)
L.
- yl(a Cos 8 - e Sin 6 )] + mla { VAT - e j Udz]
-1 -L
+ 1 IL 5 4z + 1 X (a+b)8 a+b)6 7. -3
Z W 2 Cos 6 Cos 9 y2
-L Cos 60
5h {a+b)tan ©
= - kz S Soo D - Ae(e Cos 60 + a Sin Bo)
2 o)
3y 37y u - -
— - —— 3 + - =
A T IYY 55 + m(xl Cos 80 Y, Sin eo U-98e) =0 (3.40)
dz at "l
B 333-- I 2 Fm{-% Sin® +y Cos 6 +V+6a)=0 (3.41)
BT OURX 2.8 1 o N1 o :

92 at"aZ

(3.42)

=
1]
o




76

2%, -
¢ —5 - IZZ(8+BW) =0 (3.43)
3z
where m. = 2Lm = mass of the wing
M = me +om = total mass of the airplane and the i's are

dropped from these egquations as they have been converted back to a
continuous system,

Equations (3.36-43) are the linearized equations of motion of the
airplane. The sole assumption so far employed in their derivations is
that of small oscillations. However, from an engineering viewpoint,
further simplifications are allowed through the dimensions of the wing

section. It is recognized that A >> B(EIL

>>EIXX), C »> B(GJ>>EI,.)},

YY xX

A >> IYY’ B >» IXX’ C >> IZZ and e + 0., Thus Equaticns (3.40, 3.41,

and 3.43) are reduced to

n
_a__% =0 (3.44)
3z
auv ; - .- .- -
B ———-+?m(-xl 8in 8 _+ y, Cos 8 _+0a +V) =0 (3.45)
az'-l- : B o} 1 o]
3%
2” = 0 (3.46)
b YA

From the initial and boundary conditions fer Equations (3.44 and 3.46),
it is found that U and Bw are identically zero. Hence, a significant
reduction in the wing motion results. The only nontrivial equation is

that of V.
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Equations (3.36, 3.37, 3.38, and 3.39) are combined into one

through the aid of the A's and the physical structure of the ground

profiles. It is acceptable to assume that ggl-and ggl-are of the order
1 2

%
of Y0 Yo and 8, so that the quadratic terms are negligible, which

leads to

v 2 2
(a2 Cos? 0+ Im + 2LI. )6 + ¢ &R gy (atb)” o (3.u7)
o 23 ZZ n
Cos © Cos ©
Q 8]
2 IL > ” a+b

+ ma Cos™ 0 VdZ = -Ma Cos 8_ y. - ——— [c(¥,-V.)
° o-1 cOs3so 1-°2

+ k(yl—y2)]

From Equations (3.U5) and (3.47), it is obvious that V and ©
are coupled and they cannot be solved independently. Equation (3.45)

is rearranged below

4 : "
B2l =m(k Sing -y Cos 6 - 6a) (3.48)
azu 1 o 1 )

It is readily identified that the above is the differential equation of
a vibrating beam with a somewhat complicated forcing function., However,
the right-hand side can be simplified by using Equation (3.33a). If

Equation (3.33a) is differentiated with respect to time, the following

JSee [23] for some typical runway roughnesses and also see
Appendix II.
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is obtained

% - fa Sin 80 =0 (3.49)
Thusg, Equation (3.48) becomes
Sy . ) .
B——+ mv = m[8a(Sin“ 8 - 1) - y_. Cos 6 _] (3.48a)
Bzu o 1 o

N

- 2
m[Ba Cos 80 -y Cos Bo]

The sclution of Equation (3.48a) consists of two parts:
(i) The homogeneous (free vibration) solution, and (ii) the particular
(forced vibration) solution. Since Equation (3.48a) is a separable
partial differential equation, the form of the complimentary V will be

-jw_t

v (Z,t) = £ (2)e " (3.50)

It &~ 8

n=1

substitute Equation (3.50) into the left-hand side of Equation (3.49)

and let the right-hand side = 0 yields

oo .-jwnt 5 IV
g [-mwnfn(Z) + Bfn(Z)] = Q (3.51)

n=1
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2 4 Jut
Let mwn/B = An and recognize that e £ 0. Then

v L _
fn (z) - Anfn(z) =0 (3.52)

fn(Z) has the seolution in the form of the following

fn(z) = Al Cos Anz + A_ Sin AnZ + A COSh.XnZ + Au Sinh Anz (3.53)

2 3

The boundary conditions for Equation (3.52) are

fn(o) =0 {3.54a)
1
fn(O) =0 (3.54b)
fH(L) =0 (3.54¢)
'fEWL) =9 (3.5ud)
Equations (3.54a) and (3.54b) give
Al + A, =0 (3.55a)
A2 + A4 =0 (3.55b)

Equations (3.54c) and (3.54d) require
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2Sinh AL =0 (3.550)

2
AnCosh AnL + Aukh

2 2.,
-AlAnCos AnL -~ Azln51n AnL + A3

A.335in A L - A.2%Cos AL + A, 23Sinh A L (3.554)
1'n n 2n n 3 'n n

+ A a3cosh AL =0
4'n n

combine Equations (3.55a - d) yields two equations

Al(Cos AnL + Cosh AnL) + A2(51n lnL + Sinh lnL) =90 (3.56a)
Al(Sln lnL -~ Sinh AnL) - A2(COS lnL + Cosh AnL) =0 {3.56b)
for Al and A2 # 0, the following must hold
(Cos knL + Cosh RnL) (Sin AnL + Sinh lnL) {(3.57)
: - .

(8in AhL ~ Sinh AnLJ - {Cas AL + Cosh AnL)

or

(Cos AL + Cosh A L)%+ 5in° A L - Sinh°r L = 0
Tl T n n

2

2 AL~ Sinh®A L = 0
n n

Cos2l L+ 2Cos AL Cosh AL + Cosh2 A L+ Sin
n n n n




8l

2 Cos AL Cosh AL = =2
n n

or

~1

Cos )\nL = EE)-S-E_I:E (3.58)

Equation (3.58) can be solved graphically for values of 11,1 *+ and

22"
all fn(Z) will be obtainable.

To solve the forced vibration part, it is assumed that the par~

ticular V will have the form

v (5,t) = nzl £ (L% (t) (3.59)

and the foreing funetion is

=]
. 2 . _ ry
-m(8a Cos“e_ +y, Cos 8 ) = nzl £ (A (t) (3.60)

substituting Equations (3.58) and (3.6Q) into Equation (3.49) gives

= . , 13 _ _ o ;
ngl mcn(t)fn(ﬁ) + Bcﬁ(t)knfh(z} = nzl A (D) (2) (3.61)

o

. 2 -
cn(t) + wncn(t) = An(t)/m (3.62)
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L
Remember the orthogeonality condition of fn(Z) (i.e., f fm(Z)fn(Z)dZ = 0,
0
m#n) and let
L
f fi(Z}dZ = El— (3.63)
0 n
An(t) is readily obtained from Equation (2.60) and
v 2 v L
A (t) =-mB_(8(t)a Cos’®_ + y, (t)Cos eo)oj £ (2)az (3.64)
The solution of Equation (3.62) has the form
1 t
cn(t) = ¢ Sin mnt t ¢, Cos mnt + E-g hn(t,T)An(r)dT (3.865)
The initial conditions for V are
V(Z,0) = V(Z,0) = 0, or e (0) = & (0) = 0 (3.66)
Therefore Cp T e, = 0 and
1 t
cn(t) = E-g hn(t,T)An(T)dT (3.87)

where h (t,7) = the impulse response (weighting) functiom
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= L gin w (t-1) # (3.68)
wn T

From Equations (3.67), (3.64), and (3.59), the solution for Vp(z,t)

is
T n “ 2 L
VP(Z,t) Z - Er-f 8in w _(t-1)[y; Cos 6 _ + aCos” 6 ] f fn(z)dZ
n=1 0 0
dr fn(Z)
_ . Bn t 2
= Z - ——-f Sin w (t-T)[yl(T) Cos 6 + B(T)a Cos” 8 ]dT (3.69)
=1 “no
L
g £ (2)dZ £ _(2)

The solution of V is therefore

o et By T
V(z,t) = Z [e ET'I £ (2)dz [ Sin o (t-1) (3.70)
n=l 0 Q

[§1(T) Cos QO + a(r)a Cosgeo]drjfn(z)

V(Zt) can be obtained by applying the Leibnitz rule to Equation
(3.70). After some work, the following is obtained
'Jw T t

V(z,t) = ] {-wle " ;‘lj £ (z)azlo? | Sin o_(t-1) (3.71)
n=1 o 0

* -
See Appendix IV for derivation.




. . 0 .
(yl(r) Cos 0 + 8(t)a Cos Bo)dt - (yl(t) Cos 6_ +

8(t)a Cos” 6_)1}f_(2)

2, 2
Ma“Cos 60 + Imf + 2LIZZ

c(a+b)2/Cosueo

k(a+b)2/Cosqeo

Ma Coz 8 =0Db
: o] 2

c(a+b)/Cos® 6,

k(ath)/Cos 0 = b

0

Then Equation (3.47) becomes

. . L.
8 +ab+a+mCos? [ Vaz
1. o o .

a
2 L

= -byyy = by (F-Fy) - b (¥ y,)
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Since the boundary conditions of V are for symmetric modes. The

£ (2)'s are all symmetric, hence

L L
[ £(z)az =2 [ £ (z)z (3.74)
L 133 0 n

and let

2 2 L
2ma Cos“e w’ [ £ (2)dz = g
©ony 'm n

L
2 2 _
oma Cos ean[£ £ (2)d2]1%%_ = d_

Then Equation (3.73) becomes

8

—jmnt 5 t
g8 - dnEwn { sin wn(t-r) (3.75)

a B +a,8 + aoe =
1 0

2 1

" =~

h

. . 5 .
(Yl(T) Cos eo + 9(1)a Cos Bo)dr - (yl(t)Cos e,

" 2 _ '- . _ _
+ 9(t)a Cos”8 )] ~ by, - by(§,-,) - b (y;-y,)

Rearranging terms, Equation (3.75) becomes

=]
2 L)
(a2 + ) d_a Cos 80)9 + a

g + a8 (3.76)
o)
n=1

1

o
= (n£1 d_ Cos 8 - b,)y, - b (§,-¥,) - b (y;-y,)
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o —jmnt 5t .
) {gne - dnwn[f Sin wn(t—r)(yl(T)Cos o

n=1l 0

+ a(T)a Cos260)d1]}

Equation (3.76) is the integro-differential equation for the
rotation of the airplane. The forcing functions ¥y and y, are speci-
fied by a stochastic process {h(x)} where h(x)'s are deterministic
functions of the ground profiles. To elaborate the point further, ¥,
is chosen to take on the values of h(i)(xl), a4 given ground profile,

hence
_ (D)
y, =nh (xl) (3.77)

where xl is the abscissa of the tail wheel and is obtained from the

solution of Equation (3.33a) and the initial conditions
x,(0) = 0 (3.78a)
and
8(0) = 90 = a random vapiable (3.78b)

Equation (3.78a) implies that the airplane starts to traverse the given

profile at the origin of the profile, and Equation (3.78b) specifies
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the airplane has an arbitrary inclination o, at t = 0.
From Equations (3.33a), (3.78a), and (3.78b), X, is obtained.

It is
: xl(t) = ut + a Sin aO(e(t)-eo) (3.79)

Therefore

= h(i)(x

1) = h(i)[xl(e,eo;ut)]

1

or y, ig a function of the random variables 9, 90.
Thus, Equation (3.76) must be solved by special methods. Since
it is a linear system, the power spectral method will be a convenient

one to use.

Derivation of the Transfer Functien

It is well known that there are three methods [49] to obtain
the output respons; of & ;ineér-System. They are outputs produced by
special types of inputs. The terminology is somewhat confusing as a
result of the fact_that various engineeping disciplines tend to adhere
to their own usageé. In view of this situation, it ig essential to
define the terms that are.fundamental.iﬁ the following passages. The
three modes of description of the system are listed below.

*
(i) The impulse response function (or the weighting function)

&

These terms are mostly used by non-electrical engineering per-
sennel and are comparatively standard to dynamics or vibrations
angineers,
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is the output produced by a unit impulse input and is related to the

output produced by a step input.
{(ii) The mechanical admJ'.*l:‘l:anceg= or the frequency response func-
tion relates a sinuscidal input to the output that it produces,

{(iii} The transfer function* or the system function relates the
complex amplitudes of the output and input. It is a generalization of
{ii). The mathematical formulations of these functions and their
relations to each other are presented without proof** in the following:

the output response of a linear time-invariant

(i) Let y{(t)

system.
#(t) = the input forcing funection to the same system.

h{t-t) = the impulse response function of the same
system.
Then

t t

y(t) = [ x(Oh(t-t)dt = [ x(t-1)h(1)d1 (3.80a)

and

y(t) = h{t) (3.80b)

when x(t-1) = 8t-1).

% ﬂ . - .
This term is mostly used by non-electrical engineering personnel
and is comparatively standard to dynamics or vibrations engineers.

Sk
See [87,50].
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(ii) Let Y(jw)

the output response of a linear time-

invariant system.

X(jw) = the input forcing function to the same system.
H{(jw) = the frequency response function of the same
system.
Then
Y(jw) = HHe)X{Hw)
and
Y(jw) = H{jw)
when
X(jw) = ¥t

also X(Jw)Y(jw) and H(jw) are merely the Fourier transforms of x(t),

v(t) and h(t) of (i), respectively. For example

o

X(juw) = %;-f x(t)e-jwtdt (3.81a)
X(t) = [ xX(jwetI%au (3.81b)

-0

(iii) Let Y(s) = the Laplace transform of the output response

of a linear time-invariant system.
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X(s) = the Laplace transform of the input forcing function
to the same system.
T(s) = the Laplace transform of the impulse response func-

tion of the same system; or more simply

T(s) = Y(s)/X(s)

For example

o

T(s) = [ h(t)eTdt (3.82)
0

and if x(t) = 8(t) then from the definition of Laplace transform

o0

X(s) = [ 8(t)e Stat
0

1

and y(t) = It $(t)h{t-1t)dT = h(t) from the first integral of

Equation (Bj:Oa) from which Y(s) = Im y(t)e“Stdt = fm h(t)e *tat =
T(s)/1. Thus it is shown that tranifer function ang frequency response
are quite similar in nature. In fact, it is well known that the fre-
quency response fu%ction and the transfey function are identical for a
physically realizaéle system (i.e., ausystemswith h(t) = 0 for t<0).
This is obvious frém the.Fourier transform (see Equation (3.81a)) of

h{t) for

© . o . :
H(ju) = [ h(t)e 3%at = [ n(t)e™*Tat if h(t) = 0 for t<0
— 4]
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If jw equals s, the above is exactly the same as Equation (8.82). In
order to obtain the transfer funcfion for &, we apply the Laplace trans-
form to Equation (3.76). However, before this step is carried out, the
initial conditions on yl(t), y2(t) and 6(t) must be defined.

It is understood that yl(t) and yz(t) are the ground profiles
defined in the temporal domain (see Equation (3.79)) and hence for a

particular set of realizations of y.{(t), y,(t) and @(t) the following
1 2 :

time traces are typical.

y o

NNV AVANE

y,(6) (D)

¢ .
20 ;
I v S~ — 4 7 \—/‘f’:

\Jr\\hJf,f—~H\‘\\\___ufgffﬂunfxﬂ\\uﬂ\\}"\‘/””-\;

e(t)(i)

o

Figure 3.6. A Typical Set of Time Histories

Thus, it is permissible to assign

yz(o) = Yzo’ and e(o0) = 8, (3.83)

yl(O) =Y

10*
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“where Y Y Oo are three random variables specifying the position

10° "20°

of the airplane at t = 0. The initial conditions for ﬁl, ?2, and 6

are those for the airplane at rest or

y,(0) = y,(0) = 8(0) = 0 (3.84)

Taking the Laplace transform of Equation (3.76) and denoting
L{e} by ©, L{yl} by Yl and L{yg} by Y2 together with Equations (3.83)

and (3.84), the following is obtained.

+ )} da Cos6)(6%6-80 ) + a,(s6-6 ) + a © {3.85)
a1 P o o] 1 o] 0

(62

- 2
) d Cos 8_-b,)(sY

= - - 8Y - -3
L 178Y0) Dy (YY) ST YLD
n=l
2
o s°Y. -sY
1 2 1710
—-b(Y—Y)+E{g : - dw[Cos 0 [—r=eme—=—=
o "1 2 =1 n sju nn o 32 + S2
n
8 g-s0
+ a Cos™ @ > >
+ w
T

Anticipating to use the frequency response function rather than
the transfer function, the variable "s" 1s changed into jw. The part
that h(t) = 0, t<0 has not rendered any difficulty, since it is clear

that the airplane will have no response of any kind prior to taxiing

on a rough surface.
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Carrying out the substitution and rearranging of the terms,

Equation (3.85) becomes

2 v 2 2,2 2.0 .
{~uw [a2 + nzl dna Cos Bo(l+wn/mn-w 31+ jua, + ao}e

: v 2 2,2 2
{jula, + n§1 dga Cos™0 (1 + w /v ~w)] + a }o_

o
+ {02l ) d Cos 8 (1 - wi/mi—mQ) - b, - juwb

n=1

1 bo}Yl

- 2,2 2
JM[nzl dn Cos Bo(l - wn/wn~m ) - b2] - bl}Ylo

-+

{jwbl + bo}YQ - blYQO + _'{gn/j(m—mn)}l (3.886)
n=1
It is immediately observed that the linear system is not the
ordinary single-input system, but a multiple-input system. Neverthe-
less, the frequency response is still applicable by virtue of the
superposition priﬁciple of linear Systems.* It is asserted that the

output response will have the form

&
8(t) = ] 6 (t)
n=1

where Bl(t) = 69 (t) = output due to 80 input
o

&
See [44], p. 178.




L

Bz(t) = BYl(t) = output due to Y, input

Ss(t) = 0y (t) = output due to Y,, input
10

Bq(t) = BY {t) = output due to Y2 input

2

g_(t) =@ {(t) = output due to Y
5 Y20

20 input, and

Ba(t) 8, {t) = output due to unit input.

1

It is further defined that the nth frequency response function

is
Hn(jw) = On(jw)/Fn(jw) (3.87)

where n = 1,2,*++,6 and

Fi(jw) =0,
E?(jm) = Yl(jm)
Fo(u) = 1Gu) = = 16799 3¢ = §(u)

-0

Hence the six frequency response functions are
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. v 2 2,2 2
jola, + nzl d.a Cos™® (l+w /u’-w®)] + a
H) (Gw) = Hy (Gu) = —
o 2 2 2,2 2 .
) [a2 + Z dna Cos 80(1+wn/wn—m )+ jwa, + a
n=1
) ‘” 2 2,2 2
+ —
]w[a2 ngl dna Cos eo(l+mn/mn w)] + a;
= (3.87a)
D
P9 {(3.87b)
2 2,2 2 .
w [ngl d, Cos 8 (1-w /w -w®) ~b,] - jub, - b_
Hg(jw) = Hy (Ju) =
1
D
D v 2,2 2
]m[nzl d Cos 8 (l-w_/w -6) - b,] + b
Hg(jm) = HY GGw) = (3.87)
10 D
jmbl + b0
Hu(jw) = HY (Ja) = (3.874)
o D
. - _bl
Hs(jw) = Hy (jw) = 5 (3.87e)
20
and
L g /itww )
. _ . _ n=l
Hs(jw) = Hl(Jw) = 5 (3.87f)

With the frequency response functions obtained, the cutput power

spectrum ¢se(m) can be expressed in terms of Equations (3.87a-f) and
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the power and cross spectra of the input forcing functions. If
@mn(m) denoctes the cross spectra when m#n and the power spectra when
=n then
6

%
Pgq(0) = ) Hm(jw)Hn(jm)an(w) (3.88)
m,n=1

If it is assumed that only Yl and Y2 are correlated (see page 7q),

Y., Y Y_ , and eo all have zero means, and Hﬁ(jw) is the tran-

Y1’ 2> "10* "0

sient response {see page 78) that dies out as t increases, Equation

(3.88) is reduced to

o, () = |H, Gu)]%, , () + [H, G)|%, , ()  (3.893)
60 Y, YY, HY2 1.,

* %
+ (Jw)H,, (jw)e (w) + H, (Ju)H, (jw)e (w)
HYl Y2 YlYQ Y? Yl YQYl

Remembering from Equation (3.77) that vy = h(i)(xl) and
Vo, = h(i)(xz) and in view of the complex pelations of % and X, are
expressed by Equations (3.21) and (3.22), some engineering judgement
must be allowed to;reduce the cumbersome dependence of x, on g, Yis ¥,
and GO. It.is reagonable to assume that, for tramsport type aircraft,

80 is small (i.e.,iSin 6, * tan 60 * 0, Cos 60 %> 1) and the product

terms of Equation (3.22) will be much smaller than Xjs O a t+ b, The

fellowing approximation for Equations (3.22) is permitted.
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Xy Toxp ot (atb) (3.90)

The same assumption will reduce Equation (3.79) to
x, (£) = ut (3.91)

and therefore

xg(t) = ut + (a+h) (3.92)

For a given profile vy * h(l)(xl) and Yy = h(l)(x2), both Y1 and ¥y, can

be transformed to

¥y = 28 (1) (3.93)

Yo T Z(l)(t+c) c=a+b/u (3.93b)
by a linear transformation governed by Equations (3.91) and (3.92). At
this stage, it must be reminded that h(l)(x) is enly a member function
of {h(x)} which iaéa stochastic process describing a collection of

runway /taxiway rouéhnesses, at different constant taxi speeds (see page

86, and Chapter II; pages 9, 12). It is therefore expedient to write

Yl = {Z(i)(t)} (3.94a)
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Y, = 1208 (ere)} © (3.9ub)

In order tco avold the distinction between the covariance func-
tions and autocorrelation functions of the given roughnesses, it is
assumed that
- = opyti) N (i) -

ELY,J = EL¥,1 = E[X"77(t)] = E[2"""(t+c)] = O (3.95)
This assumption will not introduce any discrepancies for frequencies
larger than zero and it is a general practice in the aeronautical field
to remove linear and/or lower order trends to reduce contaminations
from long wavelength unevenness. If this is done, the autoccorrelation

functions and covariance functions of Yl and Y, will be given by

RYlYl(?) = ez (02 P (3.96a]

e L2 (02 P (2]

u

Ry 4 (1) = B[z (412 ) (ot ] (3.96b)

KQEZ(i)(t+C)Z(i)(t+C+T)]

if Z(l)(t) is also assumed weakly stationary. From Equations (3.96a)

(1) = R (1) since a stationary

and (3.96b), it is obvious that RY
1

Y.Y

Yl 2°2
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time history is insensitive to a translation in time origin. There is
no problem in vemoving the weakly stationary assumption and it can be
achieved by simply replacing t by tl, t+1 by t2 in Equations (3.96a)

and (3.96b)}, therefore

_ (1) (1)
RYlYl(tl,tz) = E[Z (tl)Z (tg)]
_ (i) (i)
= K2[Z (tl)Z (tg)] (3.97a)
_ ( ) (i)
RYQY (tl,t2) = E[2 (t +c)Z (t2+c)]
R EAR OIS VAL CIRvI% (3.97b)

The ordinary and generalized power spectra of Yl and Y2 are obtalined

by the single and double Fourier transforms, respectively. They are

=]

. 2L “jut L _
P (w) = =— f R (1)e dr = ¢ (w) (3.98a)
YY) TR R Y,
(3.98b)
. . (w t t.,)
! (i) (i) “3ey ) eyt
by y (ge8p) = Tomz | [ e Iz ie )z e )le at.dt,,
“jlw t, —w.t,)
Oy v (o s0,) = I [« EZ(l)(t +C)Z(l)(t ,te)le 1717272 dt,dt,
2 2 (2n) . )
Jlw, -w,)e
s TP ey (upsw) (3.98¢)

1’1
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The cross-correlation functions for Y, and Y2 are expressed as

1

R, o (1) = B0z P ()28 (et ]

12
=R {(T+c) {3.9%9a)
YlYl
R, y (1) = B2 3 (ere)z ) 140y
21
= R (t~c) (3.99b)
YlYl

if Yl and Y2 are assumed weakly stationary, and

RY ¥ (tl,tz) KQEZ(i)(tl)Z(i)(t2+C)] {(3.99¢)

12

|:Z(i)

RY Y (tl,tg) (tl+c)Z(i)(t2)] (3.994)

i
21 2

if Y. and Y, are nonstaticnary. The corresponding cross-spectra for

1 2
Yl and Y2 are
by ¢ (w) = é;-f Ry v (t+c)e T g1 = 3% o ¢ (w) (3.100a)
12 L 11 11
.1 PR [ o oojwe
@Y v (w) = - f RY v (t-c)e dt = e Ty vy {(w) (3.100b)
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w . . 3wt ~w t.)
1 (1) (1) JR B85,
2,y (bysw)) = BRI E AR CIR AR C R EIN at, dt,
172 (21} -=
~jm20
= ¢ (w, ,w_ Je (3.100¢)
5 M Rl
1o (1) (i) ity —e,ty)
¢y ¢ (w,u,) = 5 [ ) 027 (e re)Z "t ) ]e dt,at,
2°1 (2m)° -=
jwlc
= ¢ (w, ,0,)e (3.1004)
0% S e

Substituting Equations (3.98a), (3.100a), and (3.100b) into Equation

(3.89), the output power spectrum for rotation is given by

3 _{(w)

. 2 . 2 . * o j
68 {|HY (Gw)|© + |I-IY (Jw)|* + H (jw)HY (jw)el®® (3.10la)

1 2 1 2

5 s
+ H, (jm)HY (Jwle jwc}QY ¥ (w)

2 1 11

% 1
{11, (Ge)|? + 2HH, GuH. (Gu)e 9]
Yl Y2 Yl

. 2
+ | (jm)| }o {(w)
HYQ YlYl
The generalized output power spectrum for rotation is given by

3 L
b (W, 4,.) = (w, JH,, {w.)d (w,,w.) + H, (w YH, (w.)
86 91°%7 HYl R e A e N L A R

E
(w,,w.) + H, (w, )H, (w )9 (w, ,w,.) +
12 Yl 1 Y2 2 Y1Y2 1772

)
Y
Y2 2
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H, (. )0 (0,00, o (0 ,0.) (3.801)
Y21Y12Y2Y112

Substituting Equations (3.98b)}, (3.98¢c), (3.100c¢) and {(3.100d) into
Equation (3.89k), the generalized output spectrum for rotation may be

expressed as

. s Jlwy-w,)e
{HY (wl)HY (“2) + Hy, (wl)HY (wg)e (3.101b)

1 1 2 2

¢ee(wl,w2)

% "jmgc & jw.c
+ H, (w, ), (w,)e + H, (w )H, (w,)e
Yl 1 Y2 2 Y2 1 Yl 3

< @ (. ,0.)
Y ;]
Yl 1 1° 2

where QYlYl(m) or @YlYl(wl,wz) is the roughness spectrum derived in

Chapter I1I, or Equations (2.56a,b; 2.57a,b).
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CHAPTER IV
SUMMARY AND CONCLUSIONS

This study presents a new method of assessing aircraft dynamic
loads resulting from ground operations based on existing roughness
power spectral densities and given operaticnal characteristics or
mission profiles of the aircraft. A summary of the important aspects
of the findings is given below. It is followed by a discussion of
the conclusions which can be drawn fruitfully from the present investi-

gation.

Summarz

The major advantage of the present method is its universal
adaptability to analyses of different natures. (See pp. 44-355). It
is unified in the sense that the methodology requires no modification
in its formulation to accommodate either stochastic or deterministic
roughness profiles. The basis for this versatility lies in the fact
that the shaping function wj(t—Tj) is completely general. (See page
£ )

For a deter@inistic runway, it is always possible to match the
profile by both bu%ps and dips of known form (e. g., Sin[ﬂ(t—Tj)/aj]
1 - Cos [n(thj)/aS] etc.) with known strength Aj at each uneven

locality. The assessment of arrival times for the bumps and dips is

inconsequential, since they are derived a priori from the known record
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(see page 45) in the form of time history Z(t) or a roughness profile
h(i)(x). The cumulant functions of random points of Equations (2.34)
are always obtainable from combinatorial analysis of the given record
or complexion and its product densities from Equations (14} and (15)

of Srinivasan, etc. [38]. For a one runway constant speed taxi
analysis, Equation {2.53a), (2.53b), or (2.54) may be employed to
calculate the input roughness spectrum which will have exactly the

same result as obtained by Equation (2.3a) or (2.5a). It is interesting
to note that Equations (2.56b) and (2.57b) are also applicable in
obtaining the same result by the mere fact that Eiz(Tj) # 0 for one and
only cone value of Tj .

Finally, 1t must be remembered that quantities appeared in Equa-
tions (2.56b) and (2.57b) are all available either from the existing
roughnesyg power spectral densities or the given record. The method
requires no additional profile measuring or data collecting on the
roughnesses, there might be some slight reprocessing of the power
spectral densities in the event that the autocorrelation functions of
the constituent réughnesses are not furnished together with the power

spectral densities.

Conclugions -
Due to the immense scheme of data compiiaticn {see Figure 2.8),
it is not possible at this phase of the study to present any numerical

results upon which gquantitative comparisons and conclusions can be

drawn. However, some salient features that are not revealed in the
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past are brought to light through this general approach with con-
siderably less restrictions.

The centrai results for the composite roughness input spectrum
is given by Equations (2.56a), (2.56b), (2.57a) and (2.57b). They have
shown that a roughness input spectrum approach employing a narrow-band
stationary Gaussian process yields an acceptable load exceedance curve

expressed as (see Rich, ete. [51])

t, -y2/202. t. n
EJ'N e Y3 10 7 ¢, =t (4.1)

Miy) =
1 T 07 t

it 1

J

where the oyj‘s are obtained from one runway with n discrete taxi speed

segments at tj seconds per segment, or given by Firebaugh [52] as

4 -(y/sRn)
N(y) = z 2N TP e (4.2)
nsy o m

h 's equal to 0.2 in., 0.28 in., ©¢.41 in., and
n n '

%.97 in. for Pn'S;Of ¢.50, 0.32, 0.15, and .03, respectively. Equation
(4.2) employs fouf types of foﬁghnessgs.abtaiﬁed empirically from 64
runways and 115 réughness poweﬁ speetva.ﬁéome of the runways are sur-
veyed along the.céﬁter line as well as lines parallel to the center
line). The reason behind this inadvertent agreement is thét the term

[gl(Tj) + gQ(Tj’Tj)] in the single summation of Equations (2.56a),

(2.56b), (2.57a), and (2.57b) are usually much larger than the terms
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[gQ(Tj,Tk)} or [gl(Tj) - gl(Tk) + gQ(Tj’Tk)] in the double summation
of the respective equations if the Tj's and Tk's are not strongly cor-
related. This statement may be verified easily by assuming the arrival

times being nonhomogeneocus Poisson (see Equation (2.40)), then
T.) + (T.,T., = (T.) = A{(T,

[gZ(TjiTk)] =0

[gl(Tj)gl(Tk) + g2(Tj’Tk)] = A(Tj)A(Tk) (4.3)

It is seen that A(Tj)A(Tk) << A(Tj), for R(Tk) and A(Tj) << 1 so that
the double summatiecn is negligible if the arrival times are uncorrelated
or Tj's and Tk‘s are far apart. This indicates that approximations of
the kind expressed by Equations (4.1) and (4.2) are only valid for
operations with mutually independent taxi events and the expressions
from Equations (2.56a)}, (2.56b), (2.57a) and (2.57b) are the exact
solutions with the interactions between different roughnesses included.
The output épectrum for the rotation & is expressed by Equations

(3.101a) and (J.lﬂib). It is obvious that taxi speed does affect the

transfer function through the terms

& =4
QL{HY (jw)HY (Gw)e 3%
2 1

in Equation (J.10la) and
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~jw, ¢ ~Jw e

[HY (wl)HY (wz)e

FH, (0 )H (0 )e
1 2 Y, 17,2

](wl—wg)c

b3
+ HY (ml)HY (wz)e ]

2 2

in Equation (3.101b) since ¢ = a+b/u where u is the taxi speed. This
exemplifies the reason why the experimental transfer functions of
(10,11,12,13,14] are not taxi speed insensitive. It is interesting to

note that, for the statiomary case of Equation (3.10la), the term

. .
2R[H, (jw)H, (jw)e Juey
2 7

tends to contribute more to the transfer function magnitudes for all
frequencies as the taxi speed increases (i.e., [ e_jmc = 1). This is
exactly the trend shown in Figures 14 and 19 ofc;i3,lu], respectively.
The behavior of the transfer function in the generalized output spectrum
is not clear since there are no existing double frequency transfer func-
tions for aircraft responses. There are published data on single degree
of freedom mass spring system (see [37,38,42]) but their comparisons to
aircraft responses may not be readily seen.

In passing, it is also worth noting that the composite roughness
spectra as represented by Equations (2.56a), (2.56b), (2.57a) and

(2.57h) are the only existing analytical forms deseribing runway

roughnesses by the variances (Ezz's) of the constituent runways (see

[511) as well as the only existing roughness representation including




the interactions between runways (or bumps, etc.). It is therefore
strongly felt that the results of this study are of significant

importance in the advancement of power spectral methods in the aero-

nautical field.
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AFPPENDIX I
TRANSFORMATION OF AXES

The Eulerian angles are used as the parameters of transformation
wla

as proposed by Goldstein, and following his notations, the transforma-

tion matrix [A] has the form given by

MCosytCosd ! -Cosd 'Sing ' Siny! Cos¢'Sind'+Cose ' Cose 'Siny! Sinw‘Sine'—]
[4] = | -Sinp'Cosd’ -Cos8 'Sing 'Cosy’ -Siny'Sing ' +Cos8 'Cos¢ "Cony! Cosp'Sing’ , {(I-1)
Sing'Sing' -Sind'Cos¢!’ Cosf'! J

For the transformation of o-xyz axes to 0-XYZ axes, let ¢' = GO + 6,

8" = ' = 0, then Equation (I-1) becomes

Cos(6 +8) Sin(e +8) 0
Q s
XYZo .
[Axsz = —an(80+e) Cos(eo+9) 0 (I-2)
4] 0 1

Therefore, the rotational transformation of the unit vectors I, J, K

of the 0-XYZ axes-ére obtained from the following multiplication.

3
RYZ

(I-2an

ST Cal )
T ndel e

“See [45], pp. 107-109.
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or

I = cOs(eO+e)i + Sin(eo+e)§ (I-3b)
J = -sin(eo+e)§ + cOs(eo+e)§ (I-3¢c) .
K=k (I-3d)

The transformation frem the local axes 03~X3Y323 of a wing sta-
tion "i” to the body axes 0-XYZ may be obtained by substituting

' = Bw , 0! =3 and ¢' = wi inte the inverse matrix of [A]. If this
: ]
is done, the following result is obtained.

(I-4)
Cossw‘r:osu;i - {!osoiSi.newisinti -SimbiCt:sﬁwi - CosoiSian_COeawi Sinpisinew

1 i
Ccswisinaw + COBOiCDSB“lSJ.nwi -SimpiSinew + CospiCosewiCoswi ‘51“91‘:"59“

1t

i i i
L SlnpiSinili Sinpicos\fai Cospi

i

If 8 , p. and wi are assumed small (i.e., Cos x = 1, Sin x = %, for

w.” Td
= 8 .5 @ .) a uadratic t 9 ., **° ata, '
X Bwi, P nd ¢l) nd the g ic terms w.¢1 etc. are

neglected, (I-4)} can be reduced to
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1 —zpi-ewi 0
XYZ
A = |6+, 1 p. (I-5)
I’{3Y3.?J3 w, 1 1
0 Di 1

O y o | = |99 (I-6)

where F;i’ ei, éw are, respectively, the rotztional velocities about
i
0X(°1X1)’01Y1(02Y2)’ and 0323 axes when Pis ¢'i are small.

The angular velocities with respect to 0-XYZ axes are therefore

' ~ 3 -\ r —_ r. _ Y
GXI H 1
- o= o |WXY2Z kS :
vzl = 1Y) T |Ax vz 1472 (1-72)
IAJ?K ew.KS
J L P, | - —_ A 1 J
or mxI = piIl - f(v.piﬂawi)qyiJ2 |
wgd = (8, 4,06, T, + 4,7, 4 piéiig (I-Tb)
i
and wK = 0.0y 6 Ky J
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If pi, ¢i’ and ewi are all small and their products with Gwi, wi, and Py
are negligible, then Equations (I-7b) are reduced to

= _ o7
MXI 111
wYJ = ¢iJ2 {I-7¢)
w K = 6 Ky

i

To evaluate Uys Bys and g from Equations (I-7c¢), one simply performs

the following dot products:

w, =w, I » T =p.T »T=5p, (I-8a)

gince, Ol—Xllel is only a translation of 0-XYZ to each wing station

l’jl’ﬁl are identically I, J, and K

W, T w,d *+Jd = }_J e J = $i(cos'pi31 + Sin piﬁl) «J = $i (I-8b)

Lt Sin piﬁl results from a rotation CH of the

whetre J2 = Cos.pi{

OleYlZl axes are shown by Figure I-].




Xie

11w

K
1 ¥ -

Z 0,,0

1 P 1*72
_ Fa g
K -
_ LAk

o
/
%2
Figure I-1. Rotation of 02X2Y222 Axes about lel
Wy = W, K« K = ewiKS « K = ewi(Cos ¢iK2 + Sin ¢i12)K (I-8c)

Bwi(Cos ¢iCos piK1 - Cos ¢i81n piJ

, * sin ¢, I 0K

= é (I-82)

where K3 = Cos ¢iK2 + Sin ¢if2 is obtained from a fotation ¢i of the

02X2Y222 axes as shown by Figure I-2,
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Figure I-2. Rotation of 03X3Y323 Axes about 02Y2

Eguations (I-8a), (I-8b), and (I-8c) are reflected in

Equations (3.9), (3.10), and (3.11) of Chapter III (see pp. 65-66).
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APPENDIX II
APPROXIMATION OF SOME TRIGONOMETRIC RELATIONS

Assume 9, Yy and ¥, are all small such that the quadratic and
higher order terms of their products may be neglected. The following

results, then, remain valld,

& + tan 8

. Qo _ vea
tan(80+0) 1 5 %ton eo = (86 + tan Bo)(l + 8 tan BO + )

2

[£3

{8 + tan 6_) + # tan"§ =6(1 + tan26 } + tan 9
o) 3] o o

4

2
(a+b)[tan(90+8) - tan 80] z (a+b)6(l+tan BO)

- {a+b)o

00328
o

(II-1)

1. 1 _ 1
C03(80+6) Cos 8, -9 Sin 60 Cos Go(l—etanso)

1
Cos 8
[n]

[

(1 + & tan ﬁo + vee)

(l+8tan80)

22

Cos B
o
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(YQ-YI) § (yg-yl)(lwtaneo) Yy = Yy

(11-2)

Cos(6 +6) Cos 6 " Cos 6
o O o]
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APPENDIX III

DIFFERENTIATION AND LINEARIZATION OF THE

LAGRANGIANS AND DISSIPATION FUNCTIONS

The Lagrange's equations for q = %) is obtained from the follow-

ing development.

8L _ 2T | mel %, -8(eCosb_+aSing )] +
3. o% © ©
1 1
n - L]
: +y.8in6 +U,- .
md izl{[xlCoseo y,Sin8 +J,-6(e+V }]Cos8
- [—x81neo+leossO+Vl+e(a+Ui)]Slneo}
4 |aL . m_[%. -B(eCost +aSind )] + md E {[x,Cosb
at . =71 o & . 1 o
aql i=1

na

+ 7y Sine_ + U, - §(e+vi)-éﬁi}cOs 6, ~[-x,8in8_

.

+ y Cos8_ + V. + 8(atl,) + 6U,15in 6 }

-_-——--0’ -_=0
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Let [ mf + nmd = m_ + mw = M, then the above equations give

f
1
d->dZ

Ly LA L Ty

M[xl-e(eCoseo+a81nBO)] +n¢00390 {L UdZ - 8in 90 .

L. 5h 5h

[ vazl = 5=~ 1, =t Ay (III-1)

-L X 2

The Lagrange's equation for q, = y. is given by the following
2 1

steps.

al aT . n

—_— = —— = mf[§l+9(aCose -€3iné )] + mad Z {[%.Cos8
. . o Q . 1l o

qu 3yl i=1

+ §lSinﬁo+Ui—é(e+Vi)]Sineo + [-%,5in8 +§,Cos8_

+ Vi+e(a+Ui)]Cos 60}

n
afsn) - oo . .
ey i mf[yl+6(a00590-381n60)] +md } {[x,Cos8
BqQ: i=1

ns

¥ yiginao+ﬂi-é(e+vi)-ééi]sin 0, + [-X,8in8_

leos&bfVi+e(a+Ui}+ﬂUi]Cos 90}

+
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_..B_L....: - _3L= - X (a+b)8 + v -y
q5 Byl CosQBo Cos&0 1 2
o .
9F _ BF _ (ath)9 + ¥y, - ¥ for L m.+ omd = Y
. 2 Cos 0 1 2 £
3q2 Byl Cos GD o e
d-dZ

these gquantities giwve

L L .
UdZ + Cos® [ vazl

M[yl+e(aCoseo—e51neo)} + m[Slneo f .

L

1 (a+h)o [Tatb)e . . .
t——kiaggst V) “ Vol *CSlees s T L - Vot
Cos BO fa] o

) an
= )\1 - )\2 —a'x—Q-ItEln 90 (II—Q)

The Lagrange's equation for 4 = ¥, may be obtained from the

following development.

w4 fan)
3, 33 ¢ lag
3 2 3
533 av k (ath)s
g , 005280 Cos 8, 72 ;}
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aF _ aF _  -c_ [(ath)8 . . .
34, 3y, Cos2e E"S 90*'3'1 yg
43 ¥y o

and these quantities give

1 (atb)o (atb)s . . _ .
- T3 {kEose +3’1'y12| +chse /Y Y:..]}
Cos ea o] o]

219x

« f[ﬂ tan o_ + 1) (111-3)
- |

The Lagrange's equation for q, = 8 is obtained by caleculating

the following quantities.

AL _ 3T _ _ i, 2.2, . .
—_——c = mf[e(e +a“) xl(eCoseo+381nBo)

34, 36

Ll n
+ y,[aCosé_-eSind )] + Ipb + md i-i-:l{# C

xlCoseofylSin90+Ui~3(e+Vi)]e + [-xl

S?neo-‘”_ylc:"?%f“ﬁa(a*”i)]a} +1,.d :‘.Zl
(6+GW.J
1l

d {BLY) _ - rueaZealy o O L |
L [_.._] = mf[e(a +e“) xl(eCosao-l-aSmee_) * yl(aCose-o

- 381n00)] + Imfe + mw[—x(eCoseo+a31neO)
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- L L
+ yl(aCoseo—eSineo)] +mla [ Vdz - e [ (az]

L ~L
e L (1]
+ I,,(2L0 + [ 8 d2)
-L
L _ 3V _ Xk {at+b)e sy -y {(a+b)
Bq4 ¢ COS2eo Cos 80 1 2| Cos eo
3F _ 3 _ _ ¢ (ath)o . . _ . | (ath)

i - ty, -y T
a4 58 Cosze Cos BO 1 2 Cos Bo
b o

Let me + m = M; the above quantities give

2 2 ” "
fMa“ + (mf-mw)e + Imf + 2LIZZ]G - M[xl

L

(eCose0 + a81n90) - yl(aCoseo—eslneo)] + mla {L vdz

L L
) - - 1 [lasb)e
e {L vdz] + I, { 6,42 + 7 {kEo_S.eo +yy - y;_I
o

L Cos

5h {atb)tan GO

2 3x2 Cos eo

- la(eCoseo

+ aSing ) (ITI-4)

The Lagrange's equation for Ly = Ui’ i=1,2,"*",n is obtained

from the following develcepment.
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8L _ T _ .. - <
. - md[xlCosBo+y181n60+Ui B(e+Ui):|
141 *
. d W;-Us4) 1 - ©; ;795 I
d2 Yy d2 YY
d {aL - Y
i " md[xlC0580+y181n90+Ui—Be]
i
d l . - " -
* 5% dIW?[(Ui—Uiﬂ) (U; 470013
= md[xlCoseo+y151neo+Ui—Be]
s W, -V, + U
Yy 2
1 4 (L - RPN
7, == |=—| = md[x Cos8 +y.Sine +U-6el
dao d dt an 1 ¢ -1 o
34U. %
- T —2
YY 3t2322
~ e = g = MW U0 - 24 (U e
Uy i
S U, ) + (UAU, L-2U, 3} A
i+l i7i-2 I-1"7 d”

%
See [48], p. 2u2.
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These quantities give

m[xlCoseo+ylslneo+U~8e] - IYY — 5t A —

= 0 (II1-5)

where "i" is dropped in view of d+0, U becomes continucus

from -L tc L.

The Lagrange's equation for Uty = Vi, i=1,2,***,n is obtained

from the following quantities:

%G emen 3

5L, _ 3T _ s e i s
- — = md[ x181n90+leoseo+Vi+B(a+Ui)]

&
Sae [48]9 P 242,
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“(V. VL) (V.Y )

i+l i 1 i-1
+ dIXX d2
d aL e
T ;T—m——- md{ - x Sind +leoseo+Ui+9a]
Y+un
- + -
+ a1 Vigg * % vi—ll
XX d? J
1l d al Yoo ., o oam
I 75— |——| = m[-%.8in6 +y.Cos8 +V.+8a]
a0 4 dt avi 1 o -1 o 1
auvi
I —
XX 52taz?
aL W
- = = dB{(V, s Am2VLY - 2 4 (V, YV
q.+u+n 3Vi l 1 =2 i i+2
)+ (V +V, -2V, )} 1
i+1 i-2 Ti-1 4

d
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Combining these quantities and suppressing i, the fellowing equation

iz obtained,

- v e T 3 4‘! a'v
mE-x,Sin® +y Cos6 +V+8al - I + B =0 (ITI-6)
1 o 1 Q XX 32t322 BZu

The Lagrange's equatioen for U yson - Y i=1,2,***,n is

obtained from evaluating the quantities

L vy
99 bueoh N3
a (s} _ -
a (| T My
oW,
1
v
. LW, B _ F _ .
it4+2n i qu+q+2n ?wi
or
Ww =0 (III-7)

The Lagrange's equation for U yyran ew s 1=1,2,-+*,h is
: i

obtained from the following quantities.
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b 22 -S4 (eve )
34 Y % i
1+4+3n wi
a 3L _ oo
& |3 = dI, (648, )
9 +y+3n *

e, -ew.) L (Bw . )]
i-1

8L _ v _ ac i+l i i
"~ 3q B 2
i+4+3n wi d J
BQBW
L %‘agv = -
a+0 W, 572
1
aF _ _oF 0,
39 aew
I+4+3n i
therefore
- 2%, -
IZZ(8+6w) -C 5= 0 (III-8)




128

APPENDIX IV

DERIVATION FOR THE IMPULSE RESPONSE

FUNCTION hn(t,r)

Let hn(t,T) be the impulse response function of a given

undamped system, then

Hn(t,r) F wﬁh(t,T) = §(t-1)

ar

. 5 t! t!
[ an (t,0) + oo [ nle,o)ar = [ s(e-mat (Iv-1)
0 0 0

It is further required that

1
(=]

ﬂn(T,T) =1 and h(t,1) (IV-2)

Equations (IV-2) and (IV-1) are always compatible for mﬁ > 0,t'>0,

-Assume

.hn(t,t) = A(T)Coswnt + B(T)Slnwnt (IV-3)

then

En(t,r) = -u_(A(T)Sinw_t - B(t)Cosu_t) (1V-4)
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Substituting Eguation (IV-2) into Equations (IV-3) and (IV-4), the

following has to held

A(T)Coswnr+B(1)SlnmnT =9

(IV-5)
A(T)SlnwnT - B(T)Coswnr = —l/wn
which give
0 Sinw T
n
- JL— Cosw T
© n
A(r) = = - — Sin w T
Cosw T Sinw T n
n n
Sinw T Cosw T
n n
Cosw T 0
n
Sinw T -1
n w
n 1
B(t) = = ;Cosmn'r
: Cosw T Sinw T
n n
Sinw T -Cosw T
n n
therefore
h (t,t) = JL~(~Sinw TCosw_t + Cosw_t8inw_t)
n? @ n n n n
R N
= = Sin w_(t-1) (IV-6)
W, n
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