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Why Predictive modeling is important? It helps us to identify people at high risk

* About 6.5 million (1 in 8 deaths) American adults have heart failure [1,2]. * A nested case-control design was applied to the primary care population d orioritize them f v ) ,
* Electronic Health Records (EHRS) consist of patient information such as from Sutter Clinics. and prioritize them for early intervention strategies.
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* The large electronic data on health records in the past 15 years opens new . _ P in imbalance.
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* Time-invariant Factors: these are factors that are not evolving with time or * Phenotyping: Identifying patient sub-groups sharing common clinically
changing very slowly. meaningful Characteristics. i i i . .. i
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Phenotype *  Blood Pressure: High . The predictive performance of our model is comparable with state-of-
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