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SUMMARY

The objective of the proposed research is to devise high-performance and low-

complexity signal-detection algorithms for communication systems over fading channels.

They include channel equalization to combat intersymbol interference (ISI) and multiple

input multiple output (MIMO) signal detection to deal with multiple access interference

(MAI) from other transmit antennas. As the demand for higher data-rate and more effi-

ciency wireless communications increases, signal detection becomes more challenging.

We propose novel transmission and iterative signal-detection techniques based on en-

ergy spreading transform (EST). Different from the existing iterative methods based on the

turbo principle, the proposed schemes are independent of channel coding. EST is an or-

thonormal that spreads a symbol energy over the symbol block in time and frequency for

channel equalization; space and time for MIMO signal detection with flat fading channels;

and space, time, and frequency for MIMO signal detection with frequency-selective fading

channels. Due to the spreading, EST obtains diversity in the available domains for the

specific application and increases the reliability of the feedback signal. Moreover, it enables

iterative signal detection that has near interference-free performance only at the complexity

of linear detectors.

Either a hard or soft decision can be fed back to the interference-cancellation stage at

the subsequent iteration. The soft-decision scheme prevents error propagation of the hard-

decision scheme for a low SNR and improves the performance. We analyze the performance

of the proposed techniques. Analytical and simulation results show that these schemes

perform very close to the interference-free systems.

ix



CHAPTER 1

INTRODUCTION

Confronting severe interference is not unusual in modern wireless communication. Consider

data transmission over terrestrial radio channels, which is characterized by multipaths re-

sulting from natural and man-made objects between the transmitter and receiver. When

symbol duration is shorter than multipath spread (or delay spread), channel equalization [1]

is necessary to combat intersymbol interference (ISI). As another example, multiple input

multiple output (MIMO) systems aimed at obtaining maximal efficiency [2, 3] should deal

with multiple access interference (MAI) from other antennas. As the demand for higher

data-rate and efficiency wireless services increases, those signal-detection problems in severe

interference environments become more important.

To obtain optimal performance, maximal likelihood (ML) signal detection needs to be

used; however, its complexity increases exponentially with channel memory for ISI channels

and the number of transmit antennas for MIMO channels. Linear detectors and deci-

sion feedback (DF) detectors have favorable complexities, but their performance is limited

because of noise enhancement or error propagation. Recently, iterative signal-detection

schemes based on the turbo principle [4] have drawn much attention. Those turbo-like

approaches have significantly better performance than linear and non-iterative schemes.

However, these schemes rely on joint signal detection and soft-output channel decoding as

in [5] or its variant [6], whose complexity is desired to be further reduced.

The objective of the proposed research is to devise high-performance and low-complexity

signal-detection algorithms in severe interference environments. We propose novel transmis-

sion and iterative signal-detection techniques based on energy spreading transform (EST).

EST is an orthogonal transform that spreads symbol energy over the symbol block and

thereby increases the reliability of the feedback signal. Also, it enables iterative signal de-

tection without channel coding; therefore, it saves the complexity of soft-output channel
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decoding in turbo-like methods. Theoretical and simulation results show that these schemes

perform very close to the interference-free systems only at the complexity of linear detectors.

In the rest of this introductory chapter, we present some relevant background material

on channel equalization and MIMO signal detection.

1.1 Channel Equalization

Channel equalization is necessary to mitigate the effect of intersymbol interference (ISI). We

review the existing techniques for channel equalization with emphasis on recently devised

turbo equalization. For the ISI channel, we use the following received signal model.

rn =
M−1∑

k=0

hkxn−k + nn, (1)

where rn is the received signal, {hk}M−1
k=0 is the channel, xn is the transmitted symbol with

power σ2
x, and nn is the noise with power σ2

n.

1.1.1 Conventional Methods

Traditional methods for channel equalization are maximal likelihood sequence detection

(MLSD), linear equalization (LE), and decision-feedback equalization (DFE) [1]. The MLSD

uses Viterbi algorithm (VA) to find the most likely transmitted sequence. It is optimal, but

it suffers from high complexity for channels with large memory or large constellation sizes.

The LE and the DFE use linear filters to mitigate ISI. To calculate the filter coeffi-

cients, zero forcing (ZF) criterion tries to remove only ISI, but minimum mean-square-error

(MMSE) criterion minimizes the total power of ISI and noise. They have favorable com-

plexities, but their performances are far from the matched filter bound (MFB), especially

for channels with high frequency selectivity. Noise enhancement and error propagation are

the major causes of their performance loss.

1.1.2 Turbo Equalization

Figure 1 shows the block diagram of turbo equalization, where channel decoding is incor-

porated into a part of channel equalization. It is based on the iterative exchange of soft

2



information between the outer soft-output channel decoder and the inner soft-output symbol

detector. Analogous to turbo codes [4], this scheme has been called turbo equalization.

Soft-
ouput

detector

Soft-
ouput

decoder

1−π

π

�

�

�

�

E
nD,λ E

kD,λ

nλ E
nλ E

kλ kD,λ

Figure 1. Turbo equalization

This technique was first proposed by Douillard [7] in 1995. It consists of a soft-output

ML equalizer and a soft-output channel decoder. The Bahl-Cocke-Jelinek-Raviv (BCJR)

algorithm [5] or its variants can be used in the soft-output ML equalizer and the soft-output

decoder. The BCJR algorithm produces the sequence of the most likely bits along with their

soft values in terms of a posteriori log likelihood ratio (LLR). However, only the extrinsic

LLR (a posteriori LLR minus a priori LLR) is exchanged between the soft-output detector

and decoder. The performance of the original turbo equalizer approaches the MFB. But

its inner detector, which is soft-output MLSD, has prohibitive complexity for channels with

large delay spread or large constellation sizes.

The filter-based turbo equalization [8,9] replaces the soft-output MLSD by a soft-output

linear filter, which significantly reduces the complexity. The soft-output filter produces

yn = cH
n (rn −HE{xn}+ E{xn}s), (2)

where the superscript H is the Hermitian operator, cn = [cn−N2 , ..., cn+N1 ]
T is the filter

with length N = N1 + N2 + 1, rn = [rn−N2 , ..., rn+N1 ]
T is the received signal vector, E{}

denotes the expectation, H is the N × (N + M − 1) convolution matrix defined as

H =




hM−1 hM−2 ... h0 0 ... 0

0 hM−1 hM−2 ... h0 0 ... 0
. . .

0 ... 0 hM−1 hM−2 ... h0




, (3)

and s is the (M + N2)-th column of H. The MMSE filter that minimizes the cost function

3



E{|xn − yn|2} is

cn =
(

σ2
n

σ2
x

I + HVnHH + (1− vn)ssH

)−1

s, (4)

where vn = E{|xn−E{xn}|2} and Vn = diag{vn−M−N2 , ..., vn+N1}. The statistics E{xn} and

vn can be calculated from the extrinsic LLR, λE
D,n, obtained from the soft-output decoder.

For BSPK,

E{xn} = 1 · p{xn = 1}+ (−1) · p{xn = −1} = tanh

(
λE

D,n

2

)
(5)

vn = 1− |E{xn}|2. (6)

At the first iteration, since there is no LLR available from the soft-output decoder, we set

λE
D,n = 0 and this yields E{xn} = 0 and vn = 1. The complexity of the MMSE filter is

rather high because it requires an N ×N matrix inversion for each n.

Low-complexity approximation of the MMSE filter can be obtained by assuming 1)

E{xn} = 0 or 2) E{xn} = xn. Under the former assumption, (4) reduces to the MMSE LE

solution:

cNA = (
σ2

n

σ2
x

I + HHH)−1s (7)

and under the latter assumption, (4) reduces to the matched filter:

cMF = 1/(σ2
n/σ2

x + sHs) · s. (8)

The output of the soft-output filter yn, under the condition that xn = x ∈ {+1,−1} has

been sent at the transmitter, is assumed to be Gaussian with mean µx,n = E{yn|xn = x}
and variance σ2

x,n = E{|yn − µx,n|2|xn = x}. The soft-output detector passes the extrinsic

LLR,

λE
n = log

p{yn|xn = +1}
p{yn|xn = −1} =

2ynµ+1,n

σ2
+1,n

(9)

to the soft-output decoder.

1.2 MIMO signal detection

Multiple input and multiple output (MIMO) technique can achieve high spectral efficiency

[2, 3] and reliability [10]- [13] in wireless environments. We focus on the Bell Labs layered
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space time (BLAST) architecture or the MIMO system aimed at achieving the maximal

efficiency in a flat fading environment and review the existing signal-detection techniques.

With nT transmit antennas and nR receive antennas, the MIMO channel is modeled as

r = Hx + n, (10)

where r = [r1, ..., rnR ] is the channel output, H ∈ CnR×nT is the channel matrix, x =

[x1, ..., xnT ] is the channel input, and n = [n1, ..., nnR ] is the noise.

1.2.1 Conventional Methods

Maximal likelihood (ML) detection chooses the decision vector x̂ that minimizes ‖r−Hx̂‖2.

With an exhaustive search, the complexity is |X |nT , where |X | is the symbol alphabet size.

Since it has an exponentially increasing complexity with the number of channel inputs, it

is often prohibitively complex.

Linear detection and decision-feedback (DF) detection are suboptimal schemes with re-

duced complexity. For those detection methods, both ZF and MMSE criteria can be used.

MMSE criterion minimizes total power of multiple access interference (MAI) and noise,

while ZF criterion removes only MAI. The DF detection can be considered as a modifica-

tion of the DFE for ISI channels. However, in the DF detection, symbol-detection ordering

is possible [14]- [16]. It is shown in [14] that choosing the best SNR at each stage in the de-

tection process leads to optimum ordering. The performance of the linear and DF detection

is limited because of noise enhancement and error-propagation.

1.2.2 Turbo BLAST

Figure 2 shows the block diagram of turbo-BLAST [17]. Similar to turbo equalization,

it has a concatenated structure of an inner soft-output detector and an outer soft-output

decoder separated by an interleaver and a deinterleaver.

The soft-output detector calculates the decision variable for the k-th symbol (1 ≤ k ≤
nR),

yk = wH
k r− uk, (11)

5
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Figure 2. Turbo BLAST

where wk ∈ CnR×1 and uk are a linear filter and estimated interference, respectively. The

optimum ŵk and ûk that minimize the cost function E{|xk − yk|2} are

ŵk =
(
hkhH

k + Hk[I(nT−1) − diag{E{xk}E{xk}H}]HH
k + σ2

n/σ2
xInR

)−1
hk (12)

ûk = wH
k HkE{xk}, (13)

where hk is the k-th column of H, Hk , [h1, ...,hk−1,hk+1, ...,hnT ], xk , [x1, ..., xk−1, xk+1, ..., xnT ]T ,

and diag{} is the operator applied to a L × 1 vector and outputs L × L diagonal matrix

with the vector elements along the main diagonal. For the first iteration, E{xk} = 0 and

(12) reduces to a MMSE receiver

yk = hH
k

(
HHH +

σ2
n

σ2
x

InR

)−1

r. (14)

As the iteration proceeds, we assume E{xk} → xk, and (12) simplifies to a perfect interfer-

ence canceller:

yk = (hH
k hh + σ2

n/σ2
x)−1hH

k (r−Hkxk). (15)

Similar to turbo equalization, E{xk} can be calculated from the extrinsic LLR of the

6



soft decoder. Also, yk is assumed to be Gaussian and the extrinsic LLR of xk calculated by

the soft-output detector is input to the soft-output decoder.
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CHAPTER 2

ITERATIVE EQUALIZATION BASED ON EST

2.1 System Description

The proposed iterative equalization is shown in Figure 3. A symbol block to be transmitted,

{xn}N−1
n=0 with an average power σ2

x is mapped to {x̃n}N−1
n=0 by an EST, where N is the block

size. A cyclic prefix with length ν is inserted between data blocks to prevent interblock

interference.

CPI

FFTCPE IFFT

EST

Decision

CPI: Cyclic Prefix Insertion CPE: Cyclic Prefix Extraction

Transmitter

Receiver

IEST: Inverse Energy Spreading TransformEST: Energy Spreading Transform

      : Time-Domain Filter    : Frequency-Domain Filter

Delay

IEST

EST

)(i
kA

nx nx~

nr
~

kR
~

)(ˆ i
nx

)1(ˆ −i
nx

)(i
nb

)(i
kA )(i

nb

)1(~
ˆ −i

nx)(~ i
nq

Figure 3. Low-complexity equalization

The channel is modeled as an (L − 1)-th order FIR filter with coefficients, {hk}L−1
k=0 ,

and additive white Gaussian noise (AWGN) with zero mean and variance σ2
n. With enough

length of cyclic prefix (ν ≥ L − 1), the received samples can be expressed as the circular

convolution [19] of the channel and the input symbols:

r̃n =
L−1∑

k=0

hkx̃(n−k)N
+ nn, 0 ≤ n ≤ N − 1, (16)

where (k)N is the residue of k modulo N and nn is the AWGN. It is assumed that the

channel is static during a block and perfectly known at the receiver. After applying the fast

Fourier transform (FFT), (16) can be represented by

R̃k = HkX̃k + Nk, 0 ≤ k ≤ N − 1, (17)

8



where the uppercase letters represent the frequency-domain counterparts of their time-

domain notations in lowercase letters.

Without the EST, the structure is just a single-carrier system with frequency-domain

equalization (SC-FDE) [21]. With the EST, channel equalization can be iteratively per-

formed to improve signal-detection performance. After forward frequency-domain equal-

ization, the inverse EST (IEST) is performed for a hard or soft decision. The decided

symbols are transformed by the EST and then fed back through the time-domain filter,

which performs an N -point circular convolution.

At the first iteration, minimum mean-square-error (MMSE) criterion is used to deter-

mine the coefficients of the frequency-domain filter. Therefore, its frequency response will

be

A
(1)
k =

H∗
k

|Hk|2 + σ2
n/σ2

x

, k = 0, 1, ..., N − 1, (18)

where the superscript, ∗, denotes the complex conjugate. The impulse response of the

time-domain filter is set to be zero:

b(1)
n = 0.

From the second iteration (i ≥ 2), the frequency-domain filter is chosen as the matched

filter:

A
(i)
k = H∗

k .

The time-domain filter cancels the residual interference after the frequency-domain (matched)

filter; therefore,

b(i)
n = bn ,





gn (n 6= 0),

0 (n = 0),
(19)

where

gn ,
∑

l

hlh
∗
l−n.

After the second iteration, we only iteratively process the same block of signal obtained

from the inverse FFT (IFFT) at the second iteration.

As indicated in Section 2.2, the EST spreads the energy of each symbol to different

frequencies and times. The purpose of frequency-domain spreading is to utilize the frequency

9



diversity; the symbol decision is based on the total energy transmitted over the whole

bandwidth. By time-domain spreading, the energy of incorrectly decided symbols is spread

to different times, which can be illustrated by Figure 4.

L

0x̂ 1x̂ 2x̂ 3x̂ 4x̂ 1ˆ −Nx
L

L

0

~
x̂ 1

~
x̂ 2

~
x̂ 3

~
x̂ 4

~
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~
ˆ −Nx

1b 1−b

(a)

(b)

L

: Time-domain filter outputnq

21011 ˆˆ xbxbq −+=

21011

~
ˆ

~
ˆ~ xbxbq −+=

: Correctly-decided
symbol energy

: Incorrectly-decided
symbol energy

: Time-domain filter )0( 0 =bnb

nx̂
nx

~
ˆ: Decision for : EST ofnx

nx̂

n =1

01b
1−bn =3

0

Figure 4. Principle of EST.

In Figure 4, we have assumed x2 is incorrectly detected and the time-domain filter

has three taps {b−1, b0, b1}. Note that b0 is always zero from (19). Without time-domain

spreading, the incorrectly detected symbol will affect the detection of x1 and x3 through

the time-domain filter as depicted in Figure 4 (a). If b−1 and b1 are significant, the decision

error of x2 will cause large interference to the detection of x1 and x3. Consequently, the

overall performance improvement will be limited. With time-domain spreading, on the other

hand, the incorrectly detected symbol energy is spread over the whole block. Even though

it affects detection of all the symbols in the block, as depicted in Figure 4 (b), the erroneous

symbol energy captured by the time-domain filter for each symbol detection is reduced by

a factor of the block size, N . Therefore, the probability of symbol decision error will be

reduced compared with the equalizer without the EST if the initial number of incorrectly

decided symbols is less than a certain threshold. Furthermore, the number of errors will

keep on decreasing with iteration until it reaches the MFB.

10



2.2 Energy Spreading Transform

An EST is a normalized orthogonal transform whose role is to spread a symbol energy over

the block in both the time and frequency domains. The “ideal EST” is an EST that has

perfect spreading in both the time and frequency domain, that is,

|(E)l,n| = |(FE)l,n| = 1√
N

(20)

and whose phase ^(E)l,n is pseudo-randomly and even-symmetrically distributed in [−π, π]

for 0 ≤ l, n ≤ N − 1, where E ∈ CN×N is the EST matrix, (W)l,n is the element of

W ∈ CN×N at the l-th row and n-th column, and F ∈ CN×N is the normalized Fourier-

transform matrix, i.e., (F)l,n = 1√
N

e−j2πln/N .

An EST can be constructed by

E = (Pµ)UµPµ−1Uµ−1...P1U1, (21)

where Ul ∈ CN×N is a normalized unitary matrix, Pl ∈ CN×N is a pseudo-random permu-

tation matrix for 1 ≤ l ≤ µ, and µ is the number of unitary matrices.

To quantify the degree of spreading for an EST, we define the time- and frequency-

despreading factors of E, which will be shown to be closely related to the performance in

Section 2.4. The n-th time-despreading factor of E is defined as

sT (EH ; n) ,
N−1∑

l=0

(|(EH)l,n|2 − 1
N

)2 (22)

for 0 ≤ n ≤ N − 1, where the superscript H denotes the Hermitian transpose. Similarly,

the n-th frequency-despreading factor of E is defined as

sF (E;n) , sT (FE;n) =
N−1∑

l=0

(|(FE)l,n|2 − 1
N

)2. (23)

Because of the orthogonality and normality of E, the n-th time- and frequency-despreading

factors of E are bounded by

0 ≤ sT (EH ; n), sF (E;n) ≤ N − 1
N

. (24)

It is obvious that an EST, E has perfect time spreading when sT (EH ; n) = 0 for all 0 ≤
n ≤ N − 1 and perfect frequency spreading when sF (E; n) = 0 for all 0 ≤ n ≤ N − 1.

11



In Table 1, we list six ESTs: E1 ∼ E3 are based on Fourier transform and E4 ∼ E6

are based on Hadamard transform. We use T to denote the normalized Hadamard matrix.

When E1 is used, the system is equivalent to orthogonal frequency-division multiplexing

(OFDM). Apparently, E1, E2, E4, and E5 have perfect time spreading, while E3 and E6

have perfect frequency spreading. It is shown in Appendix A that

sF (E1; 0) = sF (E2; 0) = sT (EH
3 ; 0) =

N − 1
N

, (25)

independent of the permutation matrix P1. Similarly, it can also be shown that

sF (E4; 0) = sF (E5; 0) = sT (EH
6 ; 0) =

N − 1
N

. (26)

Therefore, all the ESTs above have either the maximal time-despreading factor or the

maximal frequency-despreading factor for n = 0. To compare the time- and frequency-

despreading factors of different ESTs for 1 ≤ n ≤ N −1, we have calculated Ed{sT (EH ; n)},
Vd{sT (EH ; n)}, Ed{sF (E; n)}, and Vd{sF (E; n)}, where Ed{} and Vd{} denote average and

variance calculated over the index 1 ≤ n ≤ N − 1 (excluding n = 0), respectively. For the

measurement of those parameters, we set N = 2048 and randomly generated the pseudo-

random permutation matrix. From Table 1, E1 and E4 have a poor frequency spreading

property, therefore, they are not good ESTs. We also see that the ESTs based on Fourier

transform (E2 and E3) have better time- or frequency-spreading property than those based

on Hadamard transform (E5 and E6).

Table 1. Spreading properties of some ESTs, N = 2048.

Ei Ed{sT (EH
i ; n)} Vd{sT (EH

i ;n)} Ed{sF (Ei; n)} Vd{sF (Ei; n)}
E1 = FH 0 0 9.99× 10−1 0

E2 = P1FH 0 0 4.89× 10−4 4.73× 10−10

E3 = FHP1FH 4.89× 10−4 4.59× 10−10 0 0

E4 = T 0 0 5.54× 10−2 3.43× 10−3

E5 = P1T 0 0 4.89× 10−4 9.45× 10−10

E6 = FHP1T 4.89× 10−4 5.81× 10−10 0 0

12



2.3 Complexity

Now, we discuss the complexity of the proposed scheme. In Table 2, listed are the required

operations and the complexity (in number of multiplications) per block for the hard-decision

receiver at each iteration. The block-wise complexity of (I)FFT, (I)EST, frequency-domain

filter and time-domain filter are Nlog2N , µNlog2N , N , and (2L−2)N , respectively, where µ

is the number of the orthogonal matrices comprising the EST as defined in (21). Therefore,

the block-wise complexity of the receiver for the first, the second, and the i-th (i ≥ 3)

iteration are N((2 + µ)log2N + 1), N(2(1 + µ)log2N + 2L − 1), and N(2µlog2N + 2L −
2), respectively. The block-wise complexity of the proposed scheme for each iteration is

comparable to LE or DFE that is MN , where M is the total number of equalizer taps (feed

forward and feedback) of LE or DFE.

Table 2. Computational Complexity. F-filter = frequency-domain filter, T-filter = time-
domain filter, Y = required, N = not required.

Iteration (i) FFT F-filter IFFT IEST EST T-filter Complexity

i = 1 Y Y Y Y N N N((2 + µ)log2N + 1)

i = 2 Y Y Y Y Y Y N(2(1 + µ)log2N + 2L− 1)

i ≥ 3 N N N Y Y Y N(2µlog2N + 2L− 2)

2.4 Performance Analysis

We first summarize the notations and the matrix identities that will be used in our analysis.

For any square matrix W = (xij)N−1
i,j=0, define

tr{W} =
N−1∑

n=0

wnn,

D{W} =




w00 0 · · · 0

0 w11
. . . 0

...
. . . . . .

...

0 0 · · · wN−1N−1




,

13



and

D̄{W} = W −D{W} =




0 w01 · · · w0N−1

w10 0
. . . w1N−1

...
. . . . . .

...

wN−1 0 wN−1 1 · · · 0




.

From the above definitions, we have the following matrix identities,

• For 0 ≤ n ≤ N − 1,

(D{W}D{W}H)n,n = |(W)n,n|2, (27)

and

(D̄{W}D̄{W}H)n,n = (WWH)n,n − |(W)n,n|2 (28)

=
∑

l 6=n

|(W)n,l|2. (29)

• For any orthogonal matrix U,

tr{UHD̄{W}U} = 0. (30)

• For any orthogonal matrix U and any diagonal matrix WD,

D{UHWDU} = m(WD)I + ∆D(WD;U), (31)

where

m(WD) , 1
N

N−1∑

l=0

(WD)l,l (32)

is the average of the diagonal elements of WD and ∆D(WD;U) is a diagonal matrix

whose n-th diagonal element is

(∆D(WD;U))n,n ,
N−1∑

l=0

(WD)l,l(|(U)l,n|2 − 1
N

). (33)

• Using the Cauchy-Schwarz inequality,

| (∆D(WD;U))n,n |2 ≤
(

N−1∑

l=0

|(WD)l,l|2
)

sT (U;n), (34)

where sT (U;n) is the n-th time-despreading factor for UH as defined in (22).
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Figure 5. Equivalent system model

To facilitate our analysis, we use an equivalent model of the system in Figure 3. The

equivalent model is shown in Figure 5. In the figure,

h , [h0, h1, ..., hL−1, 0, ..., 0︸ ︷︷ ︸
N−L zeros

]T (35)

is an N -dimensional vector whose first L elements are {hk}L−1
k=0 and the rest are zero. C(h) ∈

CN×N is the circulant matrix [22] defined as

C(h) ,




h0 0 · · · 0 hL−1 · · · h1

h1 h0
. . . . . . 0

. . .
...

... h1
. . . 0

...
. . . hL−1

hL−1
...

. . . h0 0
. . . 0

0 hL−1
. . . h1 h0

. . .
...

... 0
. . .

...
...

. . . 0

0
...

. . . hL−1 hL−2
. . . h0




. (36)

It is well-known that a circulant matrix can be diagonalized by the DFT matrix. For

example,

C(h) = FHHDF, (37)

where

HD = diag(H),

and H is the DFT of h:

H =
√

NFh.

Also, b, C(b), B, and BD are similarly defined.
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From Figure 5, the decision vector for the i-th iteration is

z(i) = EHFHA(i)
D HDFEx−EHC(b(i))Ex̂(i−1)

+EHFHA(i)
D Fn, (38)

where E is the EST matrix defined in (21), x̂(i−1) is the hard- or soft-decision vector for x

at the (i− 1)-th iteration, and

A(i)
D = diag(A(i)

0 , · · · , A
(i)
N−1).

At each iteration, the n-th decision variable, z
(i)
n , consists of the desired signal, interfer-

ence from other symbols, and noise components, whose powers are denoted as P(i)
si,n, P(i)

in,n,

and P(i)
no,n, respectively. Then, the symbol-error rate (SER) at the i-th iteration, p(i), is the

average of the SERs of each symbol, p
(i)
n :

p(i) =
1
N

N−1∑

n=0

p(i)
n =

1
N

N−1∑

n=0

Ψ(SINR(i)
n ), (39)

where

SINR(i)
n =

P(i)
si,n

P(i)
in,n + P(i)

no,n

(40)

is the signal-to-interference-noise ratio (SINR) at the n-th symbol at the i-th iteration, and

Ψ(·) is a function that maps SINR into SER for a given modulation scheme.

For the convenience of our analysis, we assume that the interference from other symbols

be Gaussian. Consequently, for QPSK modulation [1],

Ψ(x) = 1− [1−Q(
√

x)]2. (41)

2.4.1 MMSE Equalizer

At the first iteration, an MMSE equalizer is used. Therefore, the decision vector can be

written as

z(1) = D{EHFHMDFE}x︸ ︷︷ ︸
signal

+ D̄{EHFHMDFE}x︸ ︷︷ ︸
interference

+ EHFHA(1)
D Fn︸ ︷︷ ︸

noise

, (42)
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where

MD , A(1)
D HD.

From (28) and (42), the desired signal, interference, and noise powers for the n-th decision

variable are

P(1)
si,n = σ2

x{(EHFHMDFE)n,n}2,

P(1)
in,n = σ2

x[(EHFHM2
DFE)n,n − {(EHFHMDFE)n,n}2],

and

P(1)
no,n = σ2

n(EHFH |A(1)
D |2FE)n,n.

As indicated before, E = FH corresponds to an OFDM system. In this case, interference

from other symbols is zero and the SINR for the n-th decision variable is

SINRofdm
n =

σ2
x|(HD)n,n|2

σ2
n

.

On the other hand, if E = I, the system will be SC-FDE with MMSE equalization. In this

case, the SINR for the n-th decision variable is independent of n and can be expressed as

SINRsc−mmse
n =

σ2
xm2

si

σ2
xmin + σ2

nmno
, (43)

where msi, min, and mno are

msi =
1
N

N−1∑

l=0

(MD)l,l, (44)

min =
1
N

N−1∑

l=0

{(MD)l,l}2 − { 1
N

N−1∑

l=0

(MD)l,l}2, (45)

and

mno =
1
N

N−1∑

l=0

|(A(1)
D )l,l|2. (46)

In general, the desired signal, interference, and noise powers for the n-th decision variable

can be written as

P(1)
si,n = σ2

x[msi + αn]2,

P(1)
in,n = σ2

x[min + βn − 2msiαn − α2
n],

and

P(1)
no,n = σ2

n[mno + γn],
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where

αn = (EHD̄{FHMDF}E)n,n,

βn = (EHD̄{FHM2
DF}E)n,n,

and

γn = (EHD̄{FH |A(1)
D |2F}E)n,n.

are perturbations. From (30), the averages of the perturbations are all zero:

1
N

∑
n

αn =
1
N

∑
n

βn =
1
N

∑
n

γn = 0.

Also, using matrix identity (31),

αn = ∆D(MD;FE)n,n, (47)

βn = ∆D(M2
D;FE)n,n, (48)

and

γn = ∆D(|A(1)
D |2;FE)n,n. (49)

From (34) and (47)-(49), when sT (FE;n) or sF (E;n) is sufficiently small, αn, βn, and

γn can be ignored and the SER can be approximated by

p(1) =
1
N

N−1∑

n=0

Ψ(SINR(1)
n ) ' Ψ(SINR(1)), (50)

where SINR(1) is the mean SINR obtained by ignoring the perturbations in SINR(1)
n . For

the EST with perfect frequency spreading, i.e., sF (E; n) = 0 for 0 ≤ n ≤ N − 1, αn, βn,

and γn are all zero and (50) is an exact expression of the SER.

2.4.2 Genie-Aided Equalizer

For the genie-aided equalizer, the interference symbols are assumed to be known when

detecting the desired symbol. Therefore, their effect on the desired symbol can be completely

cancelled. It is derived in Appendix B that the decision vector will be

z(g) = g0x + EHFHHH
DFn, (51)
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where

g0 = (EHD{FH |HD|2F}E)n,n =
1
N

∑

l

(|HD|2)l,l.

Consequently, the desired signal and noise power for the n-th decision variable are

P(g)
si,n = g2

0σ
2
x,

and

P(g)
no,n = σ2

n(g0 + ξn),

respectively, where

ξn = (EHD̄{FH |HD|2F}E)n,n.

As discussed before, the average of ξn is zero, and for the EST with sufficiently small

sF (E;n), ξn can be neglected. Consequently, SER can be approximated as

p(g) =
1
N

N−1∑

n=0

Ψ(SINR(g)
n ) ' Ψ(SINR(g)), (52)

where SINR(g) is the SINR obtained by ignoring the perturbation ξn in SINR(g)
n . Similar

to Subsection 2.4.1, for the EST with perfect frequency spreading, i.e., sF (E; n) = 0 for

0 ≤ n ≤ N − 1, the perturbation ξn = 0 and (52) is an exact expression of the SER.

2.4.3 Iterative Equalizer with Hard Decision

We analyze the performance of the iterative equalizer with a hard decision. In this subsec-

tion, x̂ is used to denote the hard decision for x. We first present a performance analysis

for a finite block size and then describe a simplified analysis for an infinite block size.

It is shown in Appendix B that the decision vector for the iterative equalizer (i ≥ 2) is

z(i) = g0x︸︷︷︸
signal

+EHC(b)Ed(i−1)

︸ ︷︷ ︸
interference

+EHFHHH
DFn︸ ︷︷ ︸

noise

, (53)

where

d(i) = x− x̂(i) (54)

is the hard-decision-error vector at the i-th iteration. Therefore, the desired signal and

noise powers are same as those of the genie-aided receiver:

P(i)
si,n = P(g)

si,n, (55)
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and

P(i)
no,n = P(g)

no,n, (56)

respectively.

The power of interference from other symbols depends on the number and location of

errors at the previous iteration. Denote D(i) to be the set of the indices of incorrectly

detected symbols in a block after the i-th iteration, whose cardinality is N (i). Then, the

power of interference from other symbols in the n-th decision is

P(i)
in,n(D(i−1)) = (EHC(b)EΩ(D(i−1))EHC(b)HE)n,n, (57)

where

Ω(D(i−1)) , E{d(i−1)d(i−1)H |D(i−1)} (58)

is the conditional error covariance matrix. Ω(D(i)) is a diagonal matrix whose main diagonal

consists of N (i) nonzero elements and (N −N (i)) zero elements, and

Ω(D(i))n,n =





κ(N (i)/N)σ2
x if n ∈ D(i)

0 if n /∈ D(i)
, (59)

where

κ(p) , E{|dn|2|n ∈ D(i)}
σ2

x

(60)

is a function of SER that depends on the modulation scheme. It can be shown that for

QPSK,

κ(p) ' 4
2− 1

2p
. (61)

By direct calculation, the power of interference in (57) can be decomposed into

P(i)
in,n(D(i−1)) =

N (i−1)

N
κ(

N (i−1)

N
)σ2

xg2
0(Kn + εn), (62)

where

Kn =
(EHD{C(b)D{EΩ(D(i−1))EH}C(b)H}E)n,n

N(i−1)

N κ(N(i−1)

N )σ2
xg2

0

(63)

and

εn =
(EHD{C(b)D̄{EΩ(D(i−1))EH}C(b)H}E)n,n

N(i−1)

N κ(N(i−1)

N )σ2
xg2

0

+
(EHD̄{C(b)EΩ(D(i−1))EHC(b)H}E)n,n

N(i−1)

N κ(N(i−1)

N )σ2
xg2

0

. (64)
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By matrix identities (31) and (34), if sT (EH ; n) is sufficiently small, Kn can be well

approximated as a constant:

Kh , 2
g2
0

L−1∑

l=1

|gl|2, (65)

which indicates the frequency selectivity of the channel. However, the perturbation term, εn,

is comparable with Kh and it can not be ignored unless N is large enough. The conditional

SINR for the n-th decision variable given D(i−1) is

SINR(i)
n (D(i−1)) =

1
N(i−1)

N κ(N(i−1)

N )(Kn + εn) + g0+ξn

g2
0SNR

. (66)

The probability that the symbol errors occur only at the indices in D(i) at the i-th

iteration is

P{D(i)} =
∏

n∈D(i)

p(i)
n

∏

n/∈D(i)

(1− p(i)
n ). (67)

Thus, the SER for the n-th symbol at the i-th iteration is

p(i)
n =

∑

D(i−1)

Ψ(SINR(i)
n (D(i−1)))P{D(i−1)},

where P{·} stands for probability. From this, the the SER at each iteration can be calculated

recursively.

Previously, we obtained a recursive formula to calculate the exact SER of the iterative

equalizer for a finite block size. Here, we derive a simplified SER expression of the iterative

equalizer for an infinite block size. For simplicity, we assume the EST is ideal. In this case,

sF (E;n) = 0 for all 0 ≤ n ≤ N − 1; therefore, the perturbation terms disappear from the

SINRn expressions for MMSE and genie-aided equalizers:

SINR(1)
n = SINR(1)

, (68)

SINR(g)
n = SINR(g)

, (69)

which are independent of the symbol index n. Consequently, the SINR after MMSE equal-

ization can be expressed as

SINR(1) =
1

1
N

∑N−1
k=0

1
SNR|Hk|2+1

− 1. (70)
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The corresponding SER can be calculated by

p(1) = Ψ(SINR(1)). (71)

Now, we show that the perturbation term that depends on n in the conditional inter-

ference power P(i)
in,n(D(i−1)) in (62) can be ignored for a large N . From the definition of

the ideal EST, we can write (E)n,l = 1√
N

ejθn,l , where {θn,l}N−1
n,l=0 is pseudo-randomly and

even-symmetrically distributed in [−π, π]. Define vn as the interference component in the

n-th decision variable of z(i) in (53) given D(i−1):

vn =
∑

l∈D(i−1)

cn,ld
(i−1)
l , (72)

where

cn,l , (EHC(b)E)n,l

=
1
N

N−1∑

m1=0

N−1∑

m2=0

(C(b))m1,m2e
j(θm2,l−θm1,n). (73)

Considering θm,l as an independent random variable with zero mean, cn,l can be treated as

a Gaussian random variable invoking the central limit theorem [23]. In this case, the mean

and variance of cn,l are

E{cn,l} = 0,

and

V{cn,l} =
1

N2

∑
m1

∑
m2

|(C(b))m1,m2 |2 =
g2
0Kh

N
,

respectively, where E{·} and V{·} denote statistical expectation and variance, respectively.

Also, we see that cn,l1 and cn,l2 are independent for l1 6= l2 since they are Gaussian and

E{cn,l1cn,l2} = E{cn,l1}E{cn,l2} = 0. Therefore, vn in (72) is the sum of N (i−1) independent

complex Gaussian random variables. Consequently, the conditional interference power for

the n-th decision variable,

Yn , P
(i)
in,n(D(i−1)) = E{|vn|2|D(i−1)} (74)
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is a χ2-distributed random variable with 2N (i−1) degrees of freedom, whose probability

density function (PDF) is

fYn(y|D(i−1)) =
1

σ2
χ2N(i−1)Γ(N (i−1))

yN(i−1)−1e−y/2σ2
χ

= fYn(y|N (i−1)), (75)

where

σ2
χ =

κ(N(i−1)

N )σ2
xg2

0Kh

2N
.

In (75) we changed the condition of fYn(y|D(i−1)) to N (i−1) since it depends only on N (i−1)

rather than D(i−1). Hereafter, for this reason, we change the condition from D(i−1) to

N (i−1) in all the related conditional functions, i.e., the power of interference, SINR, and

SER. The mean and variance of Yn are

E{Yn} = 2N (i−1)σ2
χ =

N (i−1)

N
κ(

N (i−1)

N
)σ2

xg2
0Kh, (76)

and

V{Yn} = 4N (i−1)σ4
χ =

N (i−1)

N2
κ(

N (i−1)

N
)2σ4

xg4
0K

2
h, (77)

respectively. Therefore, for a large N , V{Yn} is small and P
(i)
in,n(N (i−1)) can be approximated

to its mean in (76), which is independent of the symbol index n.

From the above discussion, for an iterative equalizer with the ideal EST and a large N ,

the SINR can be simplified to

SINR(i)(N (i−1)) =
1

N(i−1)

N κ(N(i−1)

N )Kh + 1
g0SNR

. (78)

Consequently, the conditional SER is

p(i)(N (i−1)) = Ψ(SINR(i)(N (i−1))). (79)

In this case, SER is independent of n and the probability of having k symbol-errors in an

N -symbol block at the i-th iteration is

P{N (i) = k} =
(

N

k

)
(p(i))k(1− p(i))N−k, (80)
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for k = 0, 1, · · · , N . Consequently, the SER at the i-th (i ≥ 2) iteration is

p(i) =
N∑

n=0

p(i)(N (i−1) = n)P{N (i−1) = n}. (81)

From Equations (70), (71), and (78) - (81), the SER after the i iteration can be calculated.

To study the asymptotic property, we first define the relative frequency of symbol error

in a block after the i-th iteration by

F (i) , N (i)

N
. (82)

Therefore, (81) can be expressed in terms of F (i−1) as

p(i) =
N∑

n=0

p(i)(F (i−1) =
n

N
)P{F (i−1) =

n

N
}. (83)

When N −→∞, (83) can be written as

p(i) =
∫ 1

0
Ψ(SINR(i)(F (i−1) = x))fF (i−1)(x)dx, (84)

where fF (i−1)(x) is the PDF of F (i−1). From the DeMoivre-Laplace Theorem [23], fF (i−1)(x)

can be approximated as Gaussian PDF with mean p(i−1) and variance p(i−1)(1−p(i−1))
N . By

the definition of the Dirac Delta function δ(x) [24],

lim
N→∞

fF (i−1)(x) = δ(x− p(i−1)).

Therefore, the effective SINR is

SINR(i) = SINR(i)(F (i−1) = p(i−1)) (85)

=
1

Khp(i−1)κ(p(i−1)) + 1
g0SNR

. (86)

and

p(i) = Ψ(SINR(i)). (87)

The strong law of large numbers states that the relative frequency F (i−1) approaches

p(i−1) almost everywhere (AE) [23]. Let

r(x) , Ψ(
1

Khxκ(x) + 1
g0SNR

).
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Then r(x) is continuous in the interval [0, 1] and differentiable in (0, 1), and

|r(F (i−1))− r(p(i−1))| ≤ Rmax|F (i−1) − p(i−1)|

where Rmax = maxx∈(0,1) | dr
dx | is a finite number. Therefore, the convergence in (87) is also

AE.

From (86) and (87), the SINR after the i-th iteration is inversely proportional to p(i−1),

and p(i) monotonically decreases with SINR(i). Therefore, if

SINR(1)
< SINR(2)

, (88)

then p̌ = limi→∞ p(i) and ˇSINR = limi→∞ SINR(i) exist and satisfy the following equations

p̌ = Ψ( ˇSINR) (89)

and

ˇSINR =
1

Khp̌α(p̌) + 1
g0SNR

. (90)

In particular, from (41), (86) and (89), for QPSK symbols, p̌ is determined by

1−

1−Q




√(
4

2− 0.5p̌
Khp̌ +

1
g0SNR

)−1






2

= p̌ (91)

It can be seen from (91) that for a sufficiently small p̌, the interference term is negligible

compared with 1/(g0SNR); consequently, ˇSINR is very close to SNR, the MFB.

From the above discussion, the iterative equalization converges above a SNR threshold,

SNRT that satisfies SINR(1) = SINR(2). Equivalently, if SNR > SNRT , the following

inequality holds:

1
1
N

∑N−1
k=0

1
SNR|Hk|2+1

− 1 <
1

α(p(1)
s )Khp(1) + 1

g0SNR
. (92)

Furthermore, we have proved in Appendix D that SNRT exists for all channels. Therefore,

the iterative approach always converges to the MFB as long as SNR is large enough.
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2.4.4 Iterative Equalizer with Soft Decision

By feeding back the soft decision, we can prevent error propagation in the hard-decision

equalizer and further enhance the performance, especially at low SNR. In this subsection,

we denote x̂ as the soft decision for x. Also, for simplicity, we assume that QPSK and the

ideal EST are employed.

We consider the normalized decision vector at the i-th iteration

z(i) = x + e(i), (93)

where e(i) is the pre-decision-error vector that consists of noise and interference. As in

the previous section, each element e
(i)
n of e(i) is assumed to be independent for different

n’s and complex Gaussian with power (σ(i)
e,n)2. For QAM modulation, all the variables in

(93) are complex, they can be decomposed into real (in-phase) and imaginary (quadrature)

components, that is, z
(i)
n , z

(i)
I,n+jz

(i)
Q,n, xn , xI,n+jxQ,n, and e

(i)
n , e

(i)
I,n+je

(i)
Q,n. Hereafter,

to avoid repetition, we will describe only the in-phase component of a complex variable.

The quadrature component can be similarly defined.

Log-likelihood ratio (LLR), which is widely known in the turbo literature [4, 8, 9], is

employed here for the soft decision. The a posteriori LLR of xI,n at the i-th iteration is

λ
(i)
I,n , log

P[xI,n = +1|z(i)
I,n]

P[xI,n = −1|z(i)
I,n]

. (94)

It can be decomposed into

λ
(i)
I,n = λ

E,(i)
I,n + λ

P,(i)
I,n , (95)

where

λ
E,(i)
I,n , log

P[z(i)
I,n|xI,n = +1]

P[z(i)
I,n|xI,n = −1]

=
2z

(i)
I,n

(σ(i)
e,I,n)2

(96)

and

λ
P,(i)
I,n , log

P[xI,n = +1]
P[xI,n = −1]

(97)

are the extrinsic LLR and the a priori LLR, respectively. We use the extrinsic LLR from

the previous iteration as the a priori LLR:

λ
P,(i)
I,n = λ

E,(i−1)
I,n . (98)
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For the first iteration, since there is no a priori LLR available, we set λ
P,(1)
I,n = 0. Also, as

shown in Appendix C, pre-decision-error power after MMSE equalization is

(σ(1)
e,n)2 =


 1

1
N

∑
k

|Hk|2
|Hk|2+1/SNR

− 1


σ2

x (99)

, (σ(1)
e )2, (100)

which is independent of n. Each component has the same pre-detection-error power after

MMSE equalization, that is, (σ(1)
e,I )2 = (σ(1)

e,Q)2 = (σ(1)
e )2/2.

The soft decision for xI,n is the conditional expectation of xI,n given the observation

z
(i)
I,n:

x̂
(i)
I,n , E{xI,n|z(i)

I,n} = P[xI,n = 1|z(i)
I,n]−P[xI,n = −1|z(i)

I,n], (101)

which, in terms of LLR, can be easily shown to be

x̂
(i)
I,n = tanh(

λ
(i)
I,n

2
). (102)

The soft-decision error for the n-th symbol at the i-th iteration is defined as

d̄(i)
n , xn − x̂(i)

n . (103)

The power of its in-phase component is

E{(d̄(i)
I,n)2|z(i)

I,n} = (1− x̂
(i)
I,n)2P{xI,n = 1|z(i)

I,n}+ (1 + x̂
(i)
I,n)2P{xI,n = −1|z(i)

I,n}

= 1− (x̂(i)
I,n)2. (104)

Similar to the hard-decision case in (B.5), the decision variable (after normalization) is

z(i) = x︸︷︷︸
signal

+
1
g0

EHC(b(i))Ed̄(i−1)

︸ ︷︷ ︸
interference

+
1
g0

EHFHHH
DFn

︸ ︷︷ ︸
noise

, (105)

where d̄(i) is the soft-decision error vector at the i-th iteration. The conditional interference

power given z(i−1) is

Pin,n(z(i−1)) =
1
g2
0

(EHC(b)EΩ̄(k)DEHC(b)HE)n,n, (106)

where

Ω̄(k)D , E{d̄(i−1)d̄(i−1)H |z(i−1)} (107)
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is the conditional soft-decision-error covariance matrix. As in the previous section, for a

finite block size, Pin,n(z(i−1)) depends on the index n and the complexity of calculating its

value for each n, 0 ≤ n ≤ N − 1, is high. However, for an infinite block size and employing

the ideal EST, Pin,n(z(i−1)) is equal to its average value,

P
(i)
in =

Kh

N

N−1∑

n=0

E{|d̄(i−1)
n |2|z(i−1)

n },

which does not depend on n. In this case, the pre-decision error power at the i-th iteration

(i ≥ 2) is independent of n and given by

(σ(i)
e,I)

2 = P
(i)
in,I +

σ2
n,I

g0
, (108)

where

P
(i)
in,I =

Kh

N

N−1∑

n=0

E{(d̄(i−1)
I,n )2|z(i−1)

I,n }.

Finally, for an infinite block length, the SER at the i-th iteration (i ≥ 1) is

p(i) = Ψ(
σ2

x

(σ(i)
e )2

), (109)

where (σ(i)
e )2 = (σ(i)

e,I)
2 + (σ(i)

e,Q)2.

2.5 Simulation Results

In this section, we present simulation results using QPSK modulation. Since the perfor-

mance of an equalizer usually depends on the characteristics of a channel, we present our

results for different types of channels.

2.5.1 Performance for Proakis-B channel

In this subsection, we present the performance of the hard- and soft-decision equalizer with

different ESTs and block sizes using the Proakis-B channel [1], whose impulse response and

Kh are

hProakis−B
n = 0.407δn + 0.815δn−1 + 0.407δn−2,

Kh = 0.94,
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respectively. We consider E1, E2, E5 in Table 1 in our simulation. Since each EST in Table

1 has either the maximal time- or the maximal frequency-despreading factor for n = 0,

we send a dummy symbol for x0 and transmit information through the rest of the N − 1

symbols.

Figure 6 (a) compares the analytical and simulation results for the hard-decision equal-

izer. To calculate analytical performance, we used the ideal EST and an infinite block size.

For the simulation results, we used E1, E2, and E5 for the EST and set the block size at

N = 2048. Note that the hard-decision equalizer with E1 corresponds to OFDM. From the
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Figure 6. Performance of the EST-based equalizer for Proakis-B channel.
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figure, the iterative equalizer with E1 as an EST has no performance improvement with

iteration since E1 has poor frequency spreading. The BER of the equalizer based on E2

improves with the number of iterations when SNR is above 7 dB. After the tenth iteration,

the required SNR for a 10−5 BER is about 9.8 dB, which is only 0.2 dB from the MFB.

The equalizer based on E5 shows slightly worse performance than that based on E2. The

analysis for the MMSE equalizer (1st iteration) is very close to the simulation result. There

is a performance gap between the analytical and simulation results for the other iterations,

which is due to finite block length and imperfect energy spreading.

Figure 6 (b) shows the performance of the soft-decision equalizer compared with that

of the MLSD [1] and the DFE assuming perfect feedback [1], which are two conventional

schemes that do not employ the EST. By feeding back the soft decision, the performance is

significantly improved over the hard-decision case, especially at a low SNR. After the tenth

iteration, there is almost a 2 dB gain for the soft decision at BER = 10−2 over the hard

decision. The soft-decision equalizer based on E2, after the third iteration, outperforms the

DFE with perfect feedback by 0.4 dB at BER = 10−4. After the tenth iteration and at BER

= 10−4, its performance is 2.5 dB better than the MLSD and is very close to the MFB.

Figure 7 shows the relationship between the performance of the hard-decision equalizer

at 10 dB and its block size. The performance degrades as block size decreases, which can

1 2 3 4 5 6 7 8 9 10
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Iteration

B
E

R

N=128
N=256
N=512
N=1024
N=2048
N=4096

Figure 7. BER performance verses iteration with different block sizes N at 10 dB for Proakis-B
channel and hard decision.
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be anticipated from the variance of Yn , P
(i)
in,n(D(i−1)) in (77); the block performance,

conditioned on D(i−1), is dominated by the symbol detection with the largest P
(i)
in,n(D(i−1)),

but decreasing block size increases the variance of P
(i)
in,n(D(i−1)).

2.5.2 Performance for other challenging channels

In this subsection, we present the performance of the equalizer for other challenging chan-

nels. In the simulation, we use E2 for the EST and the block size N is assumed to be 2048

if not explicitly stated.

Figure 8 (a) shows the performance of the equalizer for the channel proposed by Porat

and Friedlander [26], whose normalized impulse response and Kh are

hPorat et al
n = (0.485− 0.097j)δn + (0.364 + 0.437j)δn−1 + 0.243δn−2

+ (0.291− 0.315j)δn−3 + (0.194 + 0.388j)δn−4,

Kh = 0.73,

respectively. The SNR threshold for the hard-decision equalizer occurs near 3.1 dB. Also, its

performance after the tenth iteration and above 6 dB is similar to that of the soft-decision

equalizer and very close to the MFB.

Figure 8 (b) shows the performance of the equalizer for the Proakis-C channel, whose

impulse response and Kh are

hProakis−C
n = 0.227δn + 0.460δn−1 + 0.688δn−2 + 0.460δn−3 + 0.227δn−4,

Kh = 2.13,

respectively. This channel has the severest frequency selectivity among the deterministic

channels used for the simulation. With this channel, because of the high Kh, N = 2048 is

not sufficiently large for the hard-decision equalizer to be approximated as the ideal hard-

decision equalizer with an infinite block size. Therefore, we use N = 4096 for the simulation

with this channel. The SNR threshold occurs near 22.6 dB, which is much higher than that

of the previous channels. However, the performance of the equalizer with the soft decision,

after the tenth iteration and at BER = 10−5, has 8.5 dB gain over the hard decision and
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outperforms the MLSD and the DEF with perfect feedback by 1.5 dB and 3 dB, respectively.

From the slope of the BER curves of the equalizer and the MFB, we can estimate that the

proposed equalizer, after the tenth iteration, will reach the MFB at a very low BER (far

below 10−5) near 15 dB and 23.3 dB for a soft decision and a hard decision, respectively.

Figure 8 (c) shows the average performance of the equalizer for reduced bad-urban (BU)

[29] channel. We use reduced BU power delay profile to generate 1000 finite impulse response

(FIR) channel realizations that have, assuming 0.95 µs symbol duration, 11 symbol-spaced

taps. For those channel realizations, the mean and variance of Kh are 0.63 and 0.045,

respectively. Also, the mean and variance of g0 are 1.0 and 0.261, respectively. For the

channel realizations with low g0 and/or high Kh, the SNR threshold will be high. Below

13 dB, as shown in the figure, the performance of the hard-decision equalizer, after the

tenth iteration, is dominated by error propagation of those channels with a high SNR

threshold. However, the soft-decision equalizer prevents error propagation and shows good

performance, which is close to the MFB after the tenth iteration.
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CHAPTER 3

IMPROVED SCHEME FOR ENERGY SPREADING

TRANSFORM BASED EQUALIZATION

3.1 Optimal Equalization Filter Design

In Chapter 2, conventional MMSE equalization [1] is used at the first iteration, and matched

filter (in frequency-domain) and the corresponding interference canceller (in time-domain)

are employed at the remaining iterations. For the improved equalization, however, we

employ optimal frequency- and time-domain filters that maximize SINR at each iteration.

Denote the coefficients of the frequency-domain filter at the ith iteration to be {A(i)
k }N−1

k=0 .

The time-domain filter, {bn}, is to cancel the residual interference after the frequency-

domain filtering; therefore, it is dependant on the frequency-domain filter and channel by

b(i)
n , g(i)

n − g
(i)
0 δn, (110)

where

g(i)
n , 1

N

N−1∑

k=0

A
(i)
k Hke

2πkn
N (111)

is an inverse fast Fourier transform (IFFT) of A
(i)
k Hk, and δn is the Kronecker delta.

Assuming most of the energy of g
(i)
n is concentrated near g0 (in the circular sense with

period N), we truncate gn for L′ ≤ n ≤ N − L′, where L′ ≥ L is chosen to be sufficiently

larger than the channel length L. At the first iteration, the conventional linear MMSE

equalization [1] is used since there is no feedback signal available. In Chapter 2, we used

matched filter and the corresponding interference canceller for the frequency- and time-

domain filter, respectively, after the first iteration.

For the improved equalization, however, we employ optimal frequency- and time-domain

filters that maximize SINR at each iteration. The idea of using the optimal filters maximiz-

ing SINR for block iterative equalization was proposed in [27] and [28]. Here, we rederive
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the optimal filters that fit into our equalization based on EST. Denote

d(i)
n , xn − x̂(i)

n (112)

to be the post-detection error at the ith iteration, where x̂
(i)
n is either a hard or soft decision

of xn at the ith iteration. The symbol decisions are based on the vector after the IEST,

which can be obtained from the equivalent model in Figure 5:

z(i) = g0x︸︷︷︸
signal

+EHC(b(i))Ed(i−1)

︸ ︷︷ ︸
interference

+EHFHA(i)
D Fn︸ ︷︷ ︸

noise

, (113)

where z(i) ∈ CN×1, d(i) ∈ CN×1, b(i) ∈ CN×1 are vectors whose elements are {z(i)
n }, {d(i)

n },
and {b(i)

n }, respectively; A(i)
D ∈ CN×N , diag(A(i)

0 , A
(i)
1 , ..., A

(i)
N−1) is a diagonal matrix; and

C(b) is a circulant matrix similarly defined as in (36). We assume the symbols {xn}N−1
n=0 , the

decisions {x̂(i)
n }N−1

n=0 , and the post-detection errors {d(i)
n }N−1

n=0 are statistically independent

sequences, respectively.

The processed signal at the ith iteration after subtracting the feedback signal is

z̃(i)
n = g

(i)
0 x̃n︸ ︷︷ ︸
signal

+ b(i)
n ~ d̃(i−1)

n︸ ︷︷ ︸
interference

+ a(i)
n ~ nn︸ ︷︷ ︸
noise

, (114)

where d̃
(i−1)
n and a

(i)
n are the EST of d

(i−1)
n and the IFFT of A

(i)
k , respectively. Since an EST

is an orthogonal transform and {d(i)
n }N−1

n=0 are independent, {d̃(i)
n }N−1

n=0 are also independent.

The power of the post-detection error in the EST domain can be expressed as

(σ(i)
d,n)2 , E{|d̃(i)

n |2|z(i)} = (EE{d(i)d(i)H |z(i)}EH)n,n, (115)

where E{·|z(i)} denotes conditional expectation when z(i) is given. Using the ideal EST,

(115) can be written as

(σ(i)
d,n)2 =

1
N

N−1∑

n=0

E{|d(i)
n |2|z(i)}

, (σ(i)
d )2, (116)

where we omitted the symbol index n in the post-detection error power since it does not

depend on n. Since d̃
(i)
n is an independent sequence with power (σ(i)

d )2, as shown above, the
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interference power (conditioned on z(i−1)) in (114) can be shown to be

P̃
(i)
in (z(i−1)) = (g(i)

0 )2K(i)
h (σ(i−1)

d )2, (117)

where

K
(i)
h , 1

(g(i)
0 )2

∑

n 6=0

|g(i)
n |2. (118)

Also, using (110) and (111), (117) can be written in terms of the frequency-domain filter

A
(i)
k , that is,

P̃
(i)
in (z(i−1)) = (σ(i−1)

d )2
∑

n

| 1
N

N−1∑

k=0

A
(i)
k Hke

j 2πkn
N

− (
1
N

N−1∑

k=0

A
(i)
k Hk)δn|2. (119)

Similarly, the signal and noise power in (114) can be easily found to be

P̃
(i)
si = σ2

x|
1
N

N−1∑

k=0

A
(i)
k Hk|2 (120)

and

P̃ (i)
no =

σ2
n

N

N−1∑

k=0

|A(i)
k |2, (121)

respectively. Following the standard maximization procedure, SINR at the ith iteration,

˜SINR
(i)

(z(i−1)) , P̃
(i)
si

P̃
(i)
in (z(i−1)) + P̃

(i)
no

(122)

can be maximized by the frequency-domain filter,

A
(i)
k =

αH∗
k

(σ(i−1)
d )2|Hk|2 + σ2

n

, (123)

where the superscript * denotes complex conjugate and α is a scaling factor. Since α can

be arbitrary, we choose

α =

(
1
N

∑

k

|H|2k
(σ(i−1)

d )2|Hk|2 + σ2
n

)−1

(124)

to normalize the signal power in (114), or to make g
(i)
0 = 1, for convenience. As previously

indicated, the time-domain filter can be obtained by taking IFFT of A
(i)
k Hk. Note that

the frequency-domain filter in (123) is equal (within a scaling factor) to the conventional
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linear MMSE filter [1] at the first iteration (i = 1), when there is no available feedback

and therefore, (σ(0)
d )2 = σ2

x. On the other hand, when (σ(i−1)
d )2 = 0, (123) is equal to the

matched filter.

We consider the decision vector in (113) after the normalization in (124). Since g0 = 1,

signal power is

P(i)
si = σ2

x. (125)

Following the procedure in Section 2.4, assuming the ideal EST and a large N , we can

obtain interference and noise power to be

P(i)
in (z(i−1)) = K

(i)
h (σ(i−1)

d )2 (126)

and

P(i)
no =

σ2
n

N

N−1∑

k=0

|A(i)
k |2, (127)

respectively. Note that since E is unitary, (125), (126), and (127) can be also obtained

directly from (120), (119), and (121), respectively using the Parseval’s theorem and the fact

that g0 = 1 after normalization.

Now, we describe how to calculate the post-detection error power in (116) to use in the

frequency-domain filter in (123) for the hard- and soft-decision equalization, respectively.

3.1.1 Hard Decision

Denote D(i) and N (i) to be the set of indexes of incorrectly decided symbols after hard

decision at the ith iteration and its cardinality, respectively. Given N (i), (116) becomes

(σ(i)
d )2 = κ(

N (i)

N
)σ2

x

N (i)

N
, (128)

where

κ(
N (i)

N
) , E{|dn|2|n ∈ D(i)}

σ2
x

. (129)

From (125), (126), and (127), the SINR at the ith iteration conditioned on N (i−1) is

SINR(i)(N (i−1)) =
P

(i)
si

P
(i)
in (N (i−1)) + P

(i)
no

(130)
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and the corresponding symbol-error-rate (SER) (conditioned on N (i−1)) can be calculated

from the SINR using

p(i)(N (i−1)) = Ψ(SINR(i)(N (i−1))), (131)

where Ψ is a modulation-dependent function that maps SINR to SER.

Then, we invoke the law of large numbers [23]: For an infinite N , each block has the

same number of symbol errors Np(i), or N (i) = Np(i), where p(i) is SER. In this case, as

shown in Subsection 2.4.3, the SER is

p(i) = Ψ(SINR(i)(N (i−1) = Np(i−1))) (132)

and (128) becomes,

(σ(i)
d )2 = κ(p(i))σ2

xp(i). (133)

3.1.2 Soft Decision

In this subsection, x̂n is used for the soft-decision. Also, for simplicity, we assume that

QPSK and the ideal EST are employed. Each element of (113) can be decomposed into

its in-phase and quadrature components, that is, z
(i)
n = z

(i)
I,n + jz

(i)
Q,n, xn = xI,n + jxQ,n,

d
(i)
n = dI,n+jdQ,n, and nn = nI,n+jnQ,n. To avoid repetition, we describe only the in-phase

component of a complex variable. The quadrature component can be similarly defined.

Employing log-likelihood ratio (LLR) [5], the a posteriori LLR of xI,n at the ith iteration

is

λ
(i)
I,n , log

P[xI,n = +1|z(i)
I,n]

P[xI,n = −1|z(i)
I,n]

= λ
E,(i)
I,n + λ

P,(i)
I,n , (134)

where

λ
E,(i)
I,n , log

P[z(i)
I,n|xI,n = +1]

P[z(i)
I,n|xI,n = −1]

=
2z

(i)
I,n

P
(i)
in,I + P

(i)
no,I

(135)

and

λ
P,(i)
I,n , log

P[xI,n = +1]
P[xI,n = −1]

(136)
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are the extrinsic LLR and the a priori LLR, respectively. As the a priori LLR, the extrinsic

LLR from the previous iteration is used, that is,

λ
P,(i)
I,n = λ

E,(i−1)
I,n . (137)

The soft-decision x̂
(i)
I,n to feed the EST and the time-domain filter is the conditional

expectation of xI,n given the observation z
(i)
I,n, that is,

x̂
(i)
I,n = E{xI,n|z(i)

I,n}. (138)

The soft-decision (138) can be written in terms of LLR as

x̂
(i)
I,n = tanh(

λ
E,(i)
I,n

2
), (139)

where we used the extrinsic LLR in the improved equalization while the a posteriori LLR

is used in Subsection 2.4.4. Also, the (in-phase) post-detection error power is

(σ(i)
d,I)

2 =
1
N

N−1∑

n=0

E{(d(i)
I,n)2|z(i)

I,n} (140)

=
1
N

N−1∑

n=0

[1− (x̂(i)
I,n)2]. (141)

Clearly, (σ(i)
d )2 = (σ(i)

d,I)
2 + (σ(i)

d,Q)2, and the decision of the transmitted bit after the final

iteration should be based on the a posteriori LLR in (134).

3.2 Simulation Results

In this section, we present simulation results of the improved equalization using QPSK

modulation. The block size is N = 4096, and the EST is chosen as E = PFH , where P

is a random permutation matrix. As indicated in Section 2.2, the first symbol has poor

spreading property; therefore, a dummy symbol is used for the first symbol x0 in the block.

The bit error rate (BER) performance is compared with the original equalization in Chapter

2 and maximum likelihood sequence detection (MLSD) [1]. The performance of equalization

depends on the frequency selectivity of the channel, defined as

Kh , 1
g2
0

∑

n 6=0

|gn|2, (142)
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where

gn , h∗−n ~ hn.

Note that Kh is equal to K
(i)
h in (118) when the frequency-domain filter is chosen as the

matched filter, that is, A
(i)
k = H∗

k .

Figure 9(a) shows the performance of the hard-decision equalizer using Proakis-B chan-

nel [1], whose impulse response and frequency selectivity are

hB
n = 0.407δn + 0.815δn−1 + 0.407δn−2,

Kh = 0.94,

respectively. The performance of the improved hard-decision equalizer is compared with

that of the original hard-decision equalizer and the asymptotic analysis assuming an infinite

block size. For each iteration from the second, the improved equalization shows better BER

performance than the original equalization. At BER = 10−4 and the second iteration, the

improved equalizer performs about 2 dB better than the original scheme. The difference

between the analysis and the simulation can be accounted for the non-ideal property of

the employed EST and the finite block size. Figure 9(b) shows the simulation results for

the soft-decision equalizer using Proakis-B channel. Similar to the hard-decision case, the

improved soft-decision equalizer performs better than the original soft-decision equalizer.

At BER = 10−4, the improved equalization outperforms the original one by 0.8 dB at the

second and by 0.7 dB at the third iteration.

Figure 10(a) shows the results for the hard-decision equalizer using Proakis-C channel [1],

whose impulse response and Kh are

hC
n = 0.227δn + 0.460δn−1 + 0.688δn−2 + 0.460δn−3

+ 0.227δn−4,

Kh = 2.13,

respectively. The performance of the hard-decision equalizer converges to the MFB above

the SNR threshold near 15 dB while significant error propagation occurs below the SNR

threshold. For Proakis-C channel, the performance enhancement is more significant than

40



0 5 10 15 20
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR per bit, γ
b
 (dB)

B
E

R

(a)

Origianl equalization (Simulation)
Improved equalization (Simulation)
Improved equalization (Analysis)

1st iter. 

2nd iter. 

3rd iter. 

10th iter. 

MFB 

0 5 10 15 20
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR per bit, γ
b
 (dB)

B
E

R

(b)

Origianl equalization
Improved equalization

1st iter. 

2nd iter. 

3rd iter. 

10th iter. 

MFB MLSD 

Figure 9. Performance of the improved scheme with (a) hard decision and (b) soft decision
for Proakis-B channel.
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Figure 10. Performance of the improved scheme with (a) hard decision and (b) soft decision
for Proakis-C channel.
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that for Proakis-B channel. At the 10th iteration and BER = 10−4, the improved hard-

decision equalizer outperforms the original scheme by 7 dB. The gap between the simulation

and the asymptotic analysis assuming an infinite block size and the ideal EST increases with

each iteration. At the 10th iteration and BER = 10−4, there is a 7 dB gap between the

analysis and the simulation. This can be explained by the significant accumulation of the

error in the estimation of SER, the post-detection error power in (133), and the interference

power in (126) for the channels with a large Kh. Finally, Figure 10(b) shows the simulation

results for the soft-decision equalizer using Proakis-C channel. The soft-decision equalizer

can prevent sever error propagation below the SNR threshold of the hard-decision equalizer

and shows significantly better performance in the low SNR region. Also, the performance

enhancement over the original equalization is observed. At the third iteration and BER =

10−4, the improved equalization outperforms the original scheme by 2.5 dB. And, at the

10th iteration and BER = 10−4, the improved equalization outperforms the MLSD by 0.9

dB while the original one performs 0.43 dB worse than the MLSD.
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CHAPTER 4

ITERATIVE MIMO SIGNAL DETECTION BASED ON

EST: FLAT FADING CHANNELS

4.1 System Description

Figure 11 (a) demonstrates an EST-based iterative signal-detection scheme for a flat fading

channel with nT transmit antennas and nR receive antennas. Denote C to be a complex

field. In the figure, x is the transmitted symbol block, defined as [x0, x1, ..., xN−1]T . The

Decision
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Figure 11. (a) Iterative detection for MIMO flat fading channels and (b) its equivalent model.
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N complex symbols in x are assumed to be independent, with zero-mean and variance σ2
x.

The symbol block is first transformed to x̃ = [x̃0, x̃1, ..., x̃N−1]T by an ST-EST, which will

be discussed in Section 4.2.

The transformed symbol block, x̃, is then divided into Nb , N/nT transmit vectors

with nT -elements by

x̃n = [x̃nT n, x̃nT n+1, ..., x̃nT n+nT−1]T ,

for n = 0, 1, · · · , Nb − 1. The q-th element of x̃n is transmitted by the q-th transmit

antenna.

The MIMO channel is assumed to be with flat fading and can be described by a channel

matrix H ∈ CnR×nT . Furthermore, the elements of H, (H)m,n’s are assumed to be inde-

pendent and identically distributed (i.i.d) complex Gaussian, with zero mean and variance

1/nT to normalize the overall transmission power. Consequently, the received signal vector

is

r̃n = Hx̃n + nn,

where nn is a complex additive white Gaussian noise (AWGN) vector with variance σ2
n for

each element. Therefore, the average signal-to-noise ratio (SNR) per receive antenna is

SNR = σ2
x/σ2

n.

The signal detection is iteratively performed by a forward matrix A(i) ∈ CnT×nR , a

feedback matrix B(i) ∈ CnT×nT , and a diagonal matrix D(i) ∈ CnT×nT . At the first iteration,

minimum mean-square-error (MMSE) [35] criterion is used to determine the forward matrix,

while the feedback matrix and the diagonal matrix are set to zero and identity, respectively:

A(1) =
(
G +

σ2
n

σ2
x

InT

)−1

HH , (143)

B(1) = 0, (144)

D(1) = InT , (145)

where the superscript H denotes the Hermitian operator, G , HHH, InT is a nT × nT

identity matrix, and 0 is a nT × nT zero matrix.

From the second iteration (i ≥ 2), the forward matrix is chosen as the matched matrix,
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the feedback matrix and the diagonal matrix are chosen to cancel interference:

A(i) = HH , (146)

B(i) = D̄{G}, (147)

D(i) = D{G}−1, (148)

where D{W} denotes a diagonal matrix that removes all the off-diagonal elements of a

square matrix W and D̄{W} is a matrix that removes all the diagonal elements of the

matrix W. It is obvious that

D̄{W} = W −D{W}.

Either hard or soft decisions can be fed back to the feedback matrix. Since the forward

matrix A(i) and its input are same after the second iteration, the same output vector will

be used in subsequent iterations and only feedback matrix outputs need to be updated.

4.2 ST-EST and Its Impact

Similar to [32], an EST is an orthonormal transform that spreads the energy of each symbol

xn over the entire block. The EST in Figure 11 (a) is called a space-time (ST) EST since it

spreads each symbol energy over space and time. Denote E ∈ CN×N to be an EST matrix

and (E)m,n to be the element of E at the m-th row and n-th column, respectively. The

ideal ST-EST should satisfy

• |(E)m,n| = 1√
N

• ^(E)m,n is pseudo-randomly and uniformly distributed over [−π, π]

Here |x| and ^x denote the magnitude and the angle of a complex number x, respectively.

Similar to [32], an ST-EST can be implemented by

E = PU, (149)

where P is a pseudo-random permutation matrix and U is a unitary matrix. As indicated

in [32], Fourier transform and Hadamard transform are good candidates for U since they can

be implemented by existing fast algorithms. The pseudo-random permutation is necessary
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to ensure random distribution of the phase ^(E)m,n, which is very important for the EST-

based MIMO system to reach good performance.

Figure 12 can further illustrate the importance of the ST-EST in the proposed structure

in Figure 11. Figure 12 (a) illustrates the effect of space-domain spreading. For a MIMO
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Figure 12. Principle of ST-EST.

system with nT = nR = 2, consider the transmission of a specific symbol, x0, in a block.

Without space-domain spreading, it uses only the first column of the channel matrix, i.e.,

h0,0 and h0,1. If the magnitudes of h0,0 and h0,1 are small, the detection of x0 will have a
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large probability of error. The overall performance, averaged over the block, is dominated

by the worst symbol detection. With space-domain spreading, however, x0 uses all the

elements in the channel matrix. Therefore, space-domain spreading effectively provides

spatial diversity and enhances the performance. Figure 12 (b) illustrates the effect of time-

domain spreading. Consider the input of the feedback matrix, which is from the decisions

of the previous iteration. We assume that only one decision, x̂1, is incorrect in the previous

iteration. Without time-domain spreading, the error will be captured by b
(i)
0,1. If b

(i)
0,1 has

a significant magnitude, it will degrade the performance of the symbol detection for x0.

However, with time-domain spreading, the error energy is spread over the entire block.

Even though it can be still captured by b
(i)
0,1 or b

(i)
1,0 and affects all symbol decision, its

power has been reduced by a factor of N due to the spreading. Therefore, the time-domain

spreading increases the reliability of the feedback signal. Moreover, the ST-EST enables

iterative signal detection without employing error-correction coding as we have indicated

before. As will be confirmed in our analysis and simulation, symbol-error rate (SER) of the

signal detection decreases with the increase of the number of iterations if initial SER at

the first iteration is below a threshold. Eventually, SER will be very close to that of the

genie-aided receiver.

4.3 Complexity

Since there are Nb receive signal vectors per block, the block-wise complexity of the forward

matrix, diagonal matrix, and the feedback matrix operation are nRnT Nb, nT Nb, and n2
T Nb,

respectively, when a hard decision is used in the proposed scheme. The complexity of EST

or IEST is N log2N assuming the fast algorithms for Fourier or Hadamard transform used

in constructing the EST. Therefore, we obtain the complexity as shown in the Table 3. The

block-wise complexity of the conventional decision-feedback receiver (without ordering) is

(nRnT + n2
T )Nb. When log2N is comparable to nT or nR, the complexity of the proposed

scheme for each iteration is similar to that of the conventional decision-feedback receiver.
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Table 3. Computational Complexity. Y = required, N = not required.

Iteration (i) A(i) D(i) IEST EST B(i) Complexity

i = 1 Y N Y N N (nT log2N + nRnT )Nb

i = 2 Y Y Y Y Y (2nT log2N + nRnT + n2
T + nT )Nb

i ≥ 3 N Y Y Y Y (2nT log2N + n2
T + nT )Nb

4.4 Performance Analysis

In this section, we analyze the performance of the ST-EST-based iterative scheme described

in the previous section. For simplicity, we assume employing the ideal ST-EST.

Denote W ∈ CN×N and U ∈ CN×N to be a square matrix and a unitary matrix,

respectively. The following matrix identities will be used in our analysis:

ID-1: If |(U)m,n| = 1/
√

N , then

(UHD{W}U)n,n =
1
N

N−1∑

n=0

(W)n,n.

ID-2: Denote tr{W} to be the trace of W, then

tr{UHD̄{W}U} = 0.

ID-3: For the ideal ST-EST, E, and a sufficiently large N , (EHD̄{W}E)n,m can be treated

as a Gaussian random variable with zero mean and variance

1
N2

N−1∑

l1=0

N−1∑

l2=0,l2 6=l1

|(W)l1,l2 |2.

The first two identities ID-1 and ID-2 can be easily checked and ID-3 is proved in Appendix

E.

To facilitate our analysis, we redraw Figure 11 (a) into a mathematically equivalent

model in Figure 11 (b). In the equivalent model, we have used the following definitions,

n ,




n0

...

nNb−1




, x(i) ,




x(i)
0

...

x(i)
Nb−1




, z(i) ,




z(i)
0

...

z(i)
Nb−1




,
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HBD , diag{H, · · · ,H︸ ︷︷ ︸
Nb matrices

} ∈ CNbnR×N ,

A(i)
BD , diag{A(i), · · · ,A(i)

︸ ︷︷ ︸
Nb matrices

} ∈ CN×NbnR ,

B(i)
BD , diag{B(i), · · · ,B(i)

︸ ︷︷ ︸
Nb matrices

} ∈ CN×N ,

and

D(i)
D , diag{D(i), · · · ,D(i)

︸ ︷︷ ︸
Nb matrices

} ∈ CN×N .

The decision vector at the i-th iteration can be expressed as

z(i) = EHD(i)
D A(i)

BDHBDEx−EHD(i)
D B(i)

BDEx̂(i−1)

+EHD(i)
D A(i)

BDn, (150)

where x̂(i−1) is the hard or soft decision for x at the (i− 1)-th iteration.

At each iteration, the n-th decision variable, z
(i)
n consists of signal, interference, and

noise with power P(i)
si,n, P(i)

in,n, and P(i)
no,n, respectively. The SER of the n-th symbol at the

i-th iteration is

p(i)
n = Ψ(SINR(i)

n ), (151)

where

SINR(i)
n =

P(i)
si,n

P(i)
in,n + P(i)

no,n

is the signal-to-interference-noise ratio (SINR) of the n-th symbol at the i-th iteration and

Ψ(·) is a function that maps SINR to SER. Consequently, the SER at the i-th iteration is

the average of the SER’s of each symbol in a symbol block:

p(i) =
1
N

N−1∑

n=0

p(i)
n . (152)

4.4.1 MMSE Receiver

From (143)-(145) and (150), the decision vector at the first iteration can be written as

z(1) = D{EHMBDE}x︸ ︷︷ ︸
signal

+ D̄{EHMBDE}x︸ ︷︷ ︸
interference

+EHA(1)
BDn︸ ︷︷ ︸

noise

, (153)
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where M , A(1)H and MBD is the block diagonal matrix extended from M in the same

way as ABD is extended from A. Signal, interference, and noise powers of the n-th decision

variable are

P(1)
si,n = σ2

x[(EHMBDE)n,n]2,

P(1)
in,n = σ2

x[((EH |MBD|2E)n,n − {(EHMBDE)n,n}2],

and

P(1)
no,n = σ2

n(EH |A(1)
BD|2E)n,n,

respectively, where |MBD|2 , MBDMH
BD and |A(1)

BD|2 , A(1)
BD

(
A(1)

BD

)H
. With the ideal

ST-EST, each component power can be decomposed into its average and perturbation:

P(1)
si,n = σ2

x[msi + αn]2, (154)

P(1)
in,n = σ2

x[min + βn − 2msiαn − α2
n], (155)

and

P(1)
no,n = σ2

n[mno + γn], (156)

where

msi =
1

nT

nT−1∑

l=0

(M)l,l, (157)

min =
1

nT

nT−1∑

l1=0

nT−1∑

l2=0

|(M)l1,l2 |2 −
[

1
nT

nT−1∑

l=0

(M)l,l

]2

, (158)

and

mno =
1

nT

nT−1∑

l=0

(|A(1)|2)l,l, (159)

are the averages derived using ID-1 and

αn = (EHD̄{MBD}E)n,n,

βn = (EHD̄{|MBD|2}E)n,n,

and

γn = (EHD̄{|A(1)
BD|2}E)n,n.
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are the perturbations.

From ID-2, the averages of αn, βn, and γn are zero, respectively:

1
N

∑
n

αn =
1
N

∑
n

βn =
1
N

∑
n

γn = 0.

From ID-3, for a sufficiently large N , we can treat the perturbations as zero-mean Gaussian

random variables with variances

V{αn} =
1

nT N

nT−1∑

l1=0

nT−1∑

l2=0,l2 6=l1

|(M)l1,l2 |2, (160)

V{βn} =
1

nT N

nT−1∑

l1=0

nT−1∑

l2=0,l2 6=l1

|(|M|2)l1,l2 |2, (161)

and

V{γn} =
1

nT N

nT−1∑

l1=0

nT−1∑

l2=0,l2 6=l1

((|A(1)|2)l1,l2)
2, (162)

respectively, where V{·} denotes variance. For a large N , the perturbations are negligible,

and the SER can be well approximated by

p(1) ' Ψ(SINR(1)), (163)

where SINR(1) is the average of SINR(1)
n obtained by ignoring the perturbations.

4.4.2 Genie-Aided Receiver

From the second iteration (i ≥ 2), the matched matrix and interference canceller are used

for the forward and backward matrices, respectively with appropriate normalization by D(i)
D ,

that is, A(i)
BD = HH

BD, BBD = D̄{GBD} and D(i)
D = D{GBD}−1, where GBD is a block

diagonal matrix extended from G. The decision vector is

z(i) = x︸︷︷︸
signal

+EHD{GBD}−1D̄{GBD}E(x− dec{x(i−1)})︸ ︷︷ ︸
interference

+ EHD{GBD}−1HH
BDn︸ ︷︷ ︸

noise

. (164)

For the genie-aided receiver, interference is assumed to be known and can be completely

removed; therefore, signal and interference powers at the n-th decision variable, z
(g)
n , are

P(g)
si,n = σ2

x and P(g)
in,n = 0, respectively. Noise power is

P(g)
no,n = σ2

n(EHLBDE)n,n, (165)
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where LBD , D{GBD}−1GBDD{GBD}−1. The noise power can be decomposed into

P(g)
no,n = σ2

n(QH + δn), (166)

where

QH , (EHD{LBD}E)n,n =
1

nT

nT−1∑

n=0

1
(G)n,n

(167)

and

δn = (EHD̄{LBD}E)n,n. (168)

Similar to the previous subsection, for a sufficiently large N , δn is negligible, and the SER

can be approximated by

p(g) ' Ψ(SINR(g)), (169)

where

SINR(g) =
SNR
QH

(170)

is obtained by ignoring the perturbation.

4.4.3 Iterative Receiver with Hard Decision

We analyze the performance of the iterative receiver with a hard decision. In this subsection,

x̂ is used to denote the hard decision for x. From (164), the decision vector of the iterative

receiver with a hard decision for i ≥ 2 is

z(i) = x︸︷︷︸
signal

+EHJBDEd(i−1)

︸ ︷︷ ︸
interference

+EHD{GBD}−1HH
BDn︸ ︷︷ ︸

noise

, (171)

where JBD , D{GBD}−1D̄{GBD} and d(i) , x − x̂(i) is the post-decision error vector at

the i-th iteration. Signal and noise powers are the same as those of the genie-aided system,

that is, P(i)
si,n = P(g)

si,n, P(i)
no,n = P(g)

no,n.

We consider the interference power under the assumption that there are N (i−1)-symbol

errors in a symbol block at the (i−1)-th iteration. Let D(i) be the set of indices of incorrectly

detected symbols in a block after the i-th iteration, whose cardinality is N (i). Define vn as

the interference component in the n-th decision variable of z(i) given D(i−1):

vn =
∑

l∈D(i−1)

cn,ld
(i−1)
l , (172)
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where

cn,l , (EHJBDE)n,l. (173)

From ID-3, for a sufficiently large N , cn,l can be treated as a zero-mean Gaussian random

variable with variance

V{cn,l} =
KH

N
, (174)

where

KH , 1
nT

nT−1∑

l1=0

nT−1∑

l2=0,l2 6=l1

|(G)l1,l2 |2
(G)2l1,l1

(175)

depends on channel parameters. Moreover, cn,l1 and cn,l2 are independent for l1 6= l2 since

they are Gaussian and E{cn,l1c
∗
n,l2
} = E{cn,l1}E{c∗n,l2

} = 0. Since cn,l is independent of

d
(i−1)
l , vn is a sum of N (i−1) independent complex Gaussian random variables with zero

mean and variance

V{cn,ld
(i−1)
l } = σ2

xκ(
N (i−1)

N
)V{cn,l}, (176)

where κ(p) is a function of SER, p, and depends on the modulation scheme. For QPSK,

κ(p) ' 4/(2 − 1
2p) as shown in [32]. Consequently, P(i)

in,n(D(i−1)) = V{vn}, the conditional

interference power in the n-th decision variable at the i-th iteration given D(i−1), can be

treated as a χ2-distributed random variable with 2N (i−1) degrees of freedom [1]. For a large

N , P(i)
in,n(D(i−1)) can be approximated by its mean:

P(i)
in,n(D(i−1)) ' N (i−1)

N
κ(

N (i−1)

N
)σ2

xKH (177)

for its variance shrinks to zero as N grows to infinity, as shown in [33]. Therefore, using

the procedures in [33], we obtain the following recursive equations for a very large N :

SINR(i) =
1

KHp(i−1)κ(p(i−1)) + QH

SNR
(178)

and the corresponding SER:

p(i) = Ψ(SINR(i)). (179)
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4.4.4 Iterative Receiver with Soft Decision

Using a soft decision, the performance of the iterative receiver can be further improved.

Here, we summarize the algorithm for the soft-decision receiver. For simplicity, we assume

that QPSK and the ideal ST-EST are employed. Also, in this subsection, x̂ is used to

denote the soft decision for x.

The normalized decision vector at the i-th iteration can be written as

z(i) = x + e(i), (180)

where e is the pre-decision error vector consisting of noise and interference. We assume

the n-th element of e(i), e
(i)
n to be independent (for different n) complex Gaussian with

power (σ(i)
e,n)2 for each n = 0, 1, ..., N − 1. Since all the variables in (180) are complex, they

can be decomposed into its real (in-phase) and imaginary (quadrature) components, that is,

z
(i)
n , z

(i)
I,n+z

(i)
Q,n, x

(i)
n , x

(i)
I,n+x

(i)
Q,n, and e

(i)
n , e

(i)
I,n+e

(i)
Q,n. To avoid repetition, hereafter, we

describe only the in-phase component of a complex variable. The quadrature component

can be similarly defined. For a system with a large block size, (σ(i)
e,n)2 is asymptotically

independent of n. Therefore, in this case, we can ignore the dependency of (σ(i)
e,n)2 on n and

obtain a simple algorithm for the soft decision, as shown below.

Similar to Subsection 2.4.4 , the a posteriori log-likelihood ratio (LLR) of xI,n at the i-th

iteration is

λ
(i)
I,n = λ

E,(i)
I,n + λ

P,(i)
I,n , (181)

where

λ
E,(i)
I,n =

2z
(i)
I,n

(σ(i)
e,I,n)2

(182)

and

λ
P,(i)
I,n = λ

E,(i−1)
I,n (183)

are the extrinsic LLR and the a priori LLR, respectively.

For the first iteration and a large N , from (154)-(156) and (180),

(σ(1)
e,n)2 = (σ(1)

e )2 =
σ2

xmin + σ2
nmno

m2
si

, (184)
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where we omitted the subscript n for (184) is independent of n. Since each component of

e
(1)
n has the same power, (σ(1)

e,I )2 = (σ(1)
e,Q)2 = (σ(1)

e )2/2. Note that λ
P,(1)
I,n = 0 for there is no

available a priori LLR at the first iteration.

From the second iteration (i ≥ 2), the soft-decision x̂
(i−1)
n is fed back, whose in-phase

component is

x̂
(i−1)
I,n = tanh(

λ
(i−1)
I,n

2
). (185)

The soft-decision error for the n-th symbol at the i-th iteration is

d̄(i)
n = xn − x̂(i)

n , (186)

whose in-phase component power is

E{(d̄(i)
I,n)2|z(i)

I,n} = 1− (x̂(i)
I,n)2. (187)

The decision vector can be obtained by replacing d(i−1) with d̄(i−1) in (171). For a large

N , similar to the hard-decision case, the conditional interference power can be approximated

by its average value, whose in-phase component power is

P(i)
in,I(z

(i−1)) ' KH

N

N−1∑

n=0

E{(d̄(i−1)
I,n )2|z(i−1)

I,n }. (188)

The (in-phase) pre-decision error power at the i-th iteration (i ≥ 2) is

(σ(i)
e,I)

2 = P(i)
in,I(z

(i−1)) +
σ2

n

2
QH . (189)

Finally, the SER at the i-th iteration (i ≥ 1) is

p(i) = Ψ(
σ2

x

(σ(i)
e )2

), (190)

where (σ(i)
e )2 = (σ(i)

e,I)
2 + (σ(i)

e,Q)2.

4.5 Asymptotic Property of Rayleigh Fading Channels

In this section, we discuss the statistical characteristics of two important parameters, KH

and QH , which are directly related to performance.

From (170), QH is related to the performance of the genie-aided receiver. When QH is

high, the SER of the genie-aided receiver will be high. KH is related to the interference
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power of the iterative receiver. From (178), for a fixed p(1) and QH , the threshold SNR will

be shifted to a higher value as KH is increased. Therefore, for those channel realizations

with high KH and/or high QH , the threshold might occur at a very high SNR above the

range of our interest.

As in [2], [3], [15], and [16], for a MIMO system designed to achieve the maximal efficiency

or multiplexing gain in a Rayleigh fading environment, the configuration of an equal number

of transmit and receive antennas is of particular interest. Therefore, we focus on MIMO

channels when nT = nR even though the results can be easily extended to the case when

nT 6= nR. It can be seen from the definitions of QH and KH in (167) and (175) that they

are functions of the elements of the random matrix G. When nT = nR is small, both KH

and QH vary within a large range. In this case, the probability of encountering the channel

realizations with high KH and/or high QH will be significant, and the performance averaged

over many channel realizations will be dominated by those worst channels. However, we

will show that as nT = nR grows, the distributions of KH and QH will converge to one in

mean square sense (MSS) [23]. In this case, most of the channel realizations are favorable,

and the proposed scheme shows a significant performance.

Since KH and QH are functions of (G)p,q, respectively, we first study the statistical

properties of (G)p,q. Hereafter, for simplicity, we denote hp,q = (H)p,q and gp,q = (G)p,q. A

diagonal element of G is

gq,q =
nR−1∑

l=0

|hl,q|2, (191)

and an off-diagonal element of G is

gp,q =
nR−1∑

l=0

h∗l,phl,q (192)

for p 6= q. Clearly, their means are E{gq,q} = nR/nT and E{gp,q} = 0, respectively. Also,

their variances are shown in Appendix F to be

V{gq,q} = V{gp,q} =
nR

n2
T

. (193)

Furthermore, gp,q has the following properties:
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P-1: For a large nR, gp,p and gp,q (p 6= q) can be treated as Gaussian random variables,

respectively.

P-2: gp,p and gq,q (p 6= q) are independent.

P-3: gr,q and gs,q (or gq,r and gq,s) are independent for r 6= s, r 6= q, s 6= q and a large nR.

P-4: gq,q and gs,q (or gq,q and gq,s) (s 6= q) are independent for a large nR.

P-5: For any positive integer m,

E{ 1
gm
p,p

} −→ 1
(E{gp,p})m

as nT = nR −→∞.

P-1 can be proved by applying the central limit theorem (CLT) to (191) and (192), respec-

tively. P-2 can be easily checked from the definition of gp,p. P-3 can be proved by noting

the fact that for a large nR, gr,q and gs,q (r 6= s, r 6= q, s 6= q) are Gaussian from P-1 and

uncorrelated from E{gr,qg
∗
s,q} = E{gr,q}E{g∗s,q} = 0. P-4 can be similarly proved as P-3. For

the proof of P-5, note that

E{ 1
gm
p,p

} =
∫

1
xm

fg(x)dx,

where fg is the probability density function (PDF) of gp,p. For a large nR, gp,p can be treated

as a Gaussian random variable invoking the CLT; therefore, if V{gp,p} −→ 0, fg(x) −→
δ(x−E{gp,p}) from the definition of the Dirac Delta function δ(x) [24]. But, V{gp,p} −→ 0

from (193) as nT = nR −→∞ and P-5 follows.

Since finding the exact distributions of KH and QH is not an easy task, we study only

the asymptotic property. From the above properties of gp,q, we show in Appendix G that

KH
m.s.s.−−−→ 1 (194)

as nT = nR −→ ∞, where m.s.s.−−−→ denotes the convergence in MSS. Also, it is shown in

Appendix H that

QH
m.s.s.−−−→ 1 (195)

58



as nT = nR −→ ∞. Since KH = 1 and QH = 1 corresponds to a favorable channel

condition, the proposed iterative receiver shows a significant performance when nT = nR is

large.
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Figure 13. Distribution of (a) KH and (b) QH for different numbers of nT = nR.

Figure 13 shows the distributions of KH and QH obtained by computer simulation for

different numbers of nT = nR. As shown in the figure, KH and QH are getting concentrated

near one, respectively, as nT = nR increases.
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4.6 Simulation results

In this section, we study the performance of the proposed iterative signal-detection approach

by computer simulation. In our simulation, QPSK modulation is used with block size

N = 2048. Fourier transform matrix is used for U to construct an ST-EST in (149).

Hadamard transform matrix showed almost the same performance. In a Rayleigh fading

environment, bit-error-rate (BER) performance versus average SNR per bit per receive

antenna is provided.

Figure 14 shows the results when nT = nR = 16. Figure 14 (a) compares the genie-aided

receiver with an ideal ST-EST (EST-genie), the analytical result with hard decision and

an infinite block size, and simulation results of the hard-decision receiver with finite block

size (N = 2048). From the figure, the SNR threshold is at about 9 dB. When SNR is

below the threshold, the performance of the hard-decision receiver degrades with iteration

because of error propagation. However, when SNR is above the threshold, the BER of the

hard-decision receiver is improved as the iteration proceeds. After the fifth iteration, the

hard-decision receiver performs only within 1 dB of the genie-aided receiver with an ideal

ST-EST. Figure 14 (b) compares the performance of the proposed soft-decision receiver

with that of the conventional receivers without an ST-EST, including conventional MMSE

receiver (Conv-MMSE) [35], conventional ordered decision-feedback receiver (Conv-ODF)

[16], [35], and conventional genie-aided receiver (Conv-genie) [35]. With a soft decision,

the performance is significantly improved over the hard-decision receiver, especially at the

low SNR region. After the second iteration, the soft-decision receiver outperforms Conv-

ODF, and after the fifth iteration, it outperforms Conv-genie by about 0.5 dB. From the

figure, it can be also seen that for both the MMSE receivers and genie-aided receivers, the

corresponding systems with the ST-EST outperform those without an ST-EST.

Figure 15 shows similar results for nT = nR = 4. In this case, the performance im-

provement of the iterative signal detection with the hard decision is limited due high QH

and KH , as indicated in Section 4.5. However, as shown in Figure 15 (b), the soft-decision

receiver can prevent severe error propagation of the hard-decision receiver and improves the

SNR performance at BER = 10−4 after the fifth iteration by 13 dB.
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Figure 14. Performance of the proposed iterative signal-detection approach with (a) hard
decision and (b) soft decision for MIMO flat fading channels when nT = nR = 16.
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Figure 15. Performance of the proposed iterative signal-detection approach with (a) hard
decision and (b) soft decision for MIMO flat fading channels when nT = nR = 4.
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Figure 16 shows how the proposed scheme depends on the number of antennas. The
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Figure 16. Required SNR to achieve BER = 10−4 for different number of antennas.

figure shows the required SNR to achieve a BER of 10−4 for the conventional ordered

decision-feedback receiver (Conv-ODF), the hard-decision receiver after the fifth iteration,

the soft-decision receiver after the fifth iteration, and the genie-aided receiver with an ideal

ST-EST (EST-genie). From the figure, when nT = nR ≥ 4, the soft-decision receiver

outperforms Conv-ODF; when nT = nR ≥ 8, both the hard- and soft-decision receivers

show near genie-aided performance; and when nT = nR ≥ 16, both the hard- and soft-

decision receivers perform very close to EST-genie.
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CHAPTER 5

ITERATIVE MIMO SIGNAL DETECTION BASED ON

EST: FREQUENCY SELECTIVE FADING CHANNELS

The iterative approach for flat fading channels can be extended to frequency-selective fading

channels as shown in Figure 17. The channel is modeled as a complex finite impulse response

(FIR) matrix filter of length L whose n-th matrix tap is Hn ∈ CnR×nT for n = 0, 1, ..., L−1.

Each element of Hn is modeled as an i.i.d. complex Gaussian random variable with zero

mean and variance 1/(nT L) to normalize the transmission power. A cyclic prefix (CP) of

length ν (ν ≥ L−1) is inserted at each transmit antenna to prevent interference from other

symbol blocks.

Decision

S/P EST

Receiver

IEST:  Inverse Energy Spreading TransformEST:  Energy Spreading Transform

IESTP/S

S/P:  Serial to Parallel Converter P/S:  Parallel to Serial Converter
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����

����

Transmitter

S/P

1−Tn

EST

nx
nx~
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Figure 17. Iterative detection for MIMO frequency-selective fading channels.

The received signal vector after the CP extraction can be written as

r̃n =
L−1∑

l=0

Hlx̃(n−l)Nb
+ nn (196)
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for n = 0, 1, ..., Nb − 1, where (k)Nb
is the residue of k modulo Nb. In frequency domain,

(196) can be represented as

˙̃rk = Ḣk
˙̃xk + ṅk (197)

for k = 0, 1, ..., Nb − 1, where the matrices or vectors with a dot represent the frequency-

domain counterparts of their time-domain notations. For example,

Ḣk =
Nb−1∑

n=0

Hne
− 2πkn

Nb (198)

for k = 0, 1, ..., Nb − 1. ˙̃rk, ˙̃xk, and ṅk are similarly defined.

The detection is performed by a frequency-domain forward matrix-filter, Ȧ(i)
k , a time-

domain feedback matrix-filter B(i)
n , and a scaling matrix D(i). At the first iteration, mini-

mum mean-square-error (MMSE) scheme is used:

Ȧ(1)
k =

(
Ġk +

σ2
n

σ2
x

InT

)−1

ḢH
k , (199)

B(1)
n = 0, (200)

D(1) = InT (201)

for n, k = 0, 1, ..., Nb − 1, where Ġk , ḢH
k Ḣk. From the second iteration (i ≥ 2), the

interference canceller is used:

Ȧ(i)
k = ḢH

k , (202)

B(i)
n ,




D̄{G0} (n = 0)

Gn (n 6= 0),
(203)

D(i) = D{G0}−1, (204)

where Gn ,
∑

l H
H
l Hl−n.

For the MIMO system in Figure 17, we need a space-time-frequency (STF)-EST that

spreads the energy of a symbol in space, time, and frequency domain. Define FNb
∈ CNb×Nb

to be a normalized Fourier transform matrix, that is, (FNb
)m,n = 1√

Nb
e−j2πmn/Nb and

FB = FNb
⊗ InT , where ⊗ denotes the Kronecker product. The ideal STF-EST should

satisfy

• The conditions required for the ideal ST-EST in Section 4.2
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• |(FBE)m,n| = 1√
N

• ^(FBE)m,n is pseudo-randomly and even-symmetrically distributed over [−π, π]

Employing the ideal STF-EST and following the similar procedures for the analysis in

Section 2.4 and 4.4, we redrive the important parameters related to the performance. For

the MMSE receiver, (157)-(159) are modified to

msi =
1

NbnT

Nb−1∑

k=0

nT−1∑

l=0

(Ṁk)l,l, (205)

min =
1

NbnT

Nb−1∑

k=0

nT−1∑

l1=0

nT−1∑

l2 6=l1

|(Ṁk)l1,l2 |2

+
1
N

N−1∑

l=0

[
(ṀBD)l,l

]2
−

[
1
N

N−1∑

l=0

(ṀBD)l,l

]2

(206)

and

mno =
1

NbnT

Nb−1∑

k=0

nT−1∑

l=0

(|Ȧ(1)
k |2)l,l, (207)

respectively, where Ṁk , Ȧ(1)
k Ḣk and ṀBD is a block diagonal matrix defined as

ṀBD , diag{Ṁ0, Ṁ1, · · · , ṀNb−1︸ ︷︷ ︸
Nb matrices

} ∈ CNbnR×N .

For the genie-aided receiver, (167) is changed to

QH , 1
nT

nT−1∑

n=0

1
(G0)n,n

. (208)

For the iterative detector, (175) becomes

KH , 1
nT

nT−1∑

l1=0

nT−1∑

l2=0,l2 6=l1

|(G0)l1,l2 |2
(G0)2l1,l1

+
1

nT

∑

n 6=0

nT−1∑

l1=0

nT−1∑

l2=0

|(Gn)l1,l2 |2
(G0)2l1,l1

. (209)

Figure 18 shows the performance of the proposed scheme for a frequency-selective MIMO

channel with nT = nR = 4 and L = 4. The elements of each matrix tap, Hn (n = 0, ..., L−1),

are i.i.d. Gaussian with zero mean and variance 0.0847·0.8n, that is, a truncated exponential

delay profile is used here. The STF-EST employed here is the same as the ST-EST used in

Section V, that is, E = PFN . Figure 18 (a) compares the analytical and simulation results
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for the hard-decision receiver. From the figure, when the SNR is above the threshold (8 dB),

BER is improved with each iteration. Due to finite block length and imperfect energy

spreading, there is a gap between the analysis and the simulation results. Figure 18 (b)

shows the performance of the soft-decision receiver compared with that of the conventional

receivers without an EST: conventional MMSE receiver (Conv-MMSE) and conventional

genie-aided receiver (Conv-genie). As shown in the figure, the soft-decision receiver shows

an improved performance over the hard-decision receiver. After the fifth iteration, the

required SNR at BER = 10−4 is 1.7 dB better than that of the hard-decision receiver,

which is very close to that of the conventional genie-aided receiver and only within 0.5 dB

of the genie-aided receiver with an ideal STF-EST (EST-genie).
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Figure 18. Performance of the proposed iterative signal-detection approach with (a) hard
decision and (b) soft decision for MIMO frequency-selective fading channels when nT = nR =
L = 4.
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CHAPTER 6

CONCLUSION

This final chapter summarizes the major contributions of the thesis. In this thesis, we have

proposed EST-based iterative signal-detection schemes for wireless communication. The

specific application areas of our contributions are listed below:

• Channel equalization

• MIMO signal detection for flat fading channels

• MIMO signal detection for frequency-selective fading channels

In Chapter 2, we have proposed an iterative equalization technique based on EST. First,

we have introduced EST, which spreads a symbol energy over the symbol block in time and

frequency domain. Time-domain spreading increases the reliability of the feedback signal,

while frequency-domain spreading obtains frequency diversity. Moreover, these properties

of EST enable iterative equalization even without employing channel coding. As measures

of spreading, time and frequency spreading factors have been defined. The ideal EST has

perfect spreading both in time and frequency domain. In practice, an EST can be imple-

mented by concatenating a random permutation matrix and a unitary matrix. Each element

of the unitary matrix composing the EST should have the same magnitude. Normalized

Fourier and Hadamard matrices are good candidates of this unitary matrix, because they

can be implemented with low complexity using their fast algorithms.

Then, iterative equalization algorithms based on either hard or soft decision have been

described. Above a certain SNR threshold, the performance of the hard-decision equalizer

improves as the iteration proceeds until it approaches very close to the MFB. The frequency

selectivity of a channel can be measured by the parameter Kh. For a larger Kh, the threshold

occurs at a higher SNR. The soft-decision equalizer prevent the severe error propagation of
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the hard-decision equalizer below the SNR threshold and improves the performance. Also,

we have provided an analysis that predicts the performance of the proposed schemes.

In Chapter 3, we have proposed an improved scheme for the EST-based equalization.

In the original scheme in Chapter 2, MMSE equalization is used for the first iteration

and matched filter with interference canceller are used for the rest of the iteration. In the

improved scheme, however, optimal forward and feedback equalization filters that maximize

SINR at each iteration are employed. Another distinction of the improved scheme is that

extrinsic LLR is used for the soft decision to be fed back to the feedback filter, while a

posteriori LLR is used in the original scheme.

In Chapter 4, we have applied the EST-based iterative approach to the MIMO signal-

detection problem for flat fading channels. In this case, a symbol energy is spread in space

and time by EST. Therefore, we call the EST in this configuration as space-time (ST)-EST.

Similar to the EST used in Chapter 2, ST-EST can be implemented by concatenating a

random permutation matrix and a unitary matrix whose elements have the same magnitude.

KH and QH are two important parameters that characterize the channel and directly related

to the performance. KH and QH are related to the strength of interference power and the

desired signal power, respectively. When kH and/or QH is high, MIMO channel has very

severe interference and/or low desired signal power.

For the simulation, we have focused on the MIMO system that has the same number

of transmit and receive antennas, that is, nT = nR. For small nT = nR, the probability

of encountering a severe channel with high KH and/or QH can not be ignored, which

dominates the average performance. However, as nT = nR −→∞, KH −→ 1 and QH −→ 1

in MSS. In this case, the proposed scheme shows a significant average performance (near the

genie-aided performance) because most of the MIMO channel realizations have moderate

vlaues of KH and QH close to 1.

In Chapter 5, we have extended the EST-based MIMO signal-detection scheme to

frequency-selective fading channels. In this scheme, EST spreads a symbol energy over

the block in space, time, and frequency domain.
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The proposed iterative method based on EST is a powerful solution to the signal-

detection problems in severe interference environments. It shows a significant performance

close to that of an interference-free system only at the complexity of linear detectors.
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APPENDIX A

DERIVATION OF (25)

Consider

(FP1FH)m,n =
1
N

∑

l1

∑

l2

(P1)l1,l2e
−j2πml1

N e
j2πnl2

N (A.1)

=
1
N

∑

(l1,l2)∈O(P1)

e
−j2πml1

N e
j2πnl2

N , (A.2)

where O(P1) , {(l1, l2)|(P1)l1,l2 = 1} is the set of the positions in P1 where 1’s are located.

It is evident that (FP1FH)0,0 = 1. For m = 0, n 6= 0,

(FP1FH)m,n =
1
N

∑

(l1,l2)∈O(P1)

e
j2πnl2

N (A.3)

=
1
N

N−1∑

l2=0

e
j2πnl2

N (A.4)

= 0. (A.5)

Similarly, (FE2)m,n = 0 for m 6= 0 and n = 0. Consequently, sF (E2; 0) = sT (FP1FH ; 0) =

(N − 1)/N for any permutation matrix P1. By similar argument, sF (E1; 0) = sT (E3; 0) =

(N − 1)/N .
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APPENDIX B

DERIVATION OF (52)

From the second iteration (i ≥ 2), the forward and feedback matrices are

A(i)
D = HH

D , (B.1)

C(b(i)) = D̄{C(g)}

= D̄{FH |HD|2F}, (B.2)

respectively. Since the matrix multiplied to x in (38) can be decomposed into

EHFH |HD|2FE = EHD{FH |HD|2F}E

+ EHD̄{FH |HD|2F}E, (B.3)

where

EHD{FH |HD|2F}E = goI (B.4)

from the identity (31). The decision vector for the iterative equalizer can be written as

z(i) = g0x︸︷︷︸
signal

+EHC(b(i))Ed(i−1)

︸ ︷︷ ︸
interference

+EHFHHH
DFn︸ ︷︷ ︸

noise

, (B.5)

where

d(i) = x− x̂(i) (B.6)

is the hard-decision-error vector at the i-th iteration. The decision vector for the genie-aided

equalizer is

z(i) = g0x︸︷︷︸
signal

+EHFHHH
DFn︸ ︷︷ ︸

noise

, (B.7)

with perfect cancellation of interference in (B.5).
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APPENDIX C

DERIVATION OF (70) AND (100)

From (44), (45), and (46),

msi =
1
N

∑

k

|Hk|2
|Hk|2 + σ2

n/σ2
x

, (C.1)

min =
1
N

∑

k

( |Hk|2
|Hk|2 + σ2

n/σ2
x

)2

−
(

1
N

∑

k

|Hk|2
|Hk|2 + σ2

n/σ2
x

)2

, (C.2)

mno =
1
N

∑

k

|Hk|2
(|Hk|2 + σ2

n/σ2
x)2

. (C.3)

The mean SINR is

SINR(1) =
σ2

xm2
si

σ2
xmin + σ2

nmno

=
1

1
N

∑
k

1
SNR|Hk|2+1

− 1, (C.4)

where SNR = σ2
x/σ2

n. The normalized pre-decision error power after MMSE equalization is

(σ(1)
e )2 =

(
SINR(1)

)−1
σ2

x, (C.5)

where
(
SINR(1)

)−1
=

1
1
N

∑
k

|Hk|2
|Hk|2+1/SNR

− 1. (C.6)
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APPENDIX D

PROOF OF (92) FOR SUFFICIENTLY HIGH SNR

Assuming high SNR, we ignore −1 on the left hand side (LHS) of (92). After inverting and

multiplying SNR > 1 on both sides of (92) (with −1 ignored), we get

1
N

N−1∑

k=0

1
|Hk|2 + 1

SNR
> SNRα(p(1)

s )Khp(1)
s +

1
g0

. (D.1)

Since p
(1)
s = Ψ(SINR(1)) decays like e−βSNR for sufficiently high SNR, where

β =
1

1
N

∑N−1
k=0

1
|Hk|2+ 1

SNR

(D.2)

from (70), the right hand side (RHS) of (D.1) approaches

RHS −→ 1
g0

(D.3)

as SNR −→∞. But, the LHS of (D.1) approaches

LHS −→ 1
N

N−1∑

k=0

1
|Hk|2 (D.4)

as SNR −→∞ and using Jensen’s inequality [25],

1
N

N−1∑

k=0

1
|Hk|2 ≥

1
1
N

∑N−1
k=0 |Hk|2

1
g0

. (D.5)

The equality in (D.5) holds when |H0|2 = |H1|2 = ... = |HN−1|2, but this corresponds to

the frequency-flat channel for which equalization is not necessary.
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APPENDIX E

PROOF OF ID-3

For the ideal ST-EST, E, we can write (E)l,n = 1√
N

eθl,n and

(EHD̄(X)E)n,m =
1
N

∑

l1

∑

l2 6=l1

(X)l1,l2e
j(θl2,m−θl1,n). (E.1)

Since θl,n is pseud-randomly and symmetrically distributed on [−π, π], we treat θl,n as an

independent random variable with zero-mean. Invoking the central limit theorem (CLT),

(E.1) can be treated as a zero-mean Gaussian random variable with variance equal to the

one in ID-3.
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APPENDIX F

DERIVATION OF (193)

Since hi,j ∼ N (0, 1/nT ), the moment generating function (MGF) [34] of |hi,j |2 is

φ|hi,j |2(t) = E{et|hi,j |2} = (1− t

nT
)−1 (F.1)

and the MGF of gj,j is

φgj,j (t) =
nR−1∏

i=0

φ|hi,j |2(t) = (1− t

nT
)−nR . (F.2)

We can calculate the m-th moment of |hi,j |2 and gj,j from their MGFs, respectively. For

gj,j ,

E{g2
j,j} = φ(2)

gj,j
(0) =

nR(nR + 1)
n2

T

(F.3)

and the variance of gj,j is

V{gj,j} = E{g2
j,j} − (E{gj,j})2 =

nR

n2
T

. (F.4)

For gi,j (i 6= j),

E{|gi,j |2} =
nR−1∑

p=0

E{|hp,i|2}E{|hp,j |2} =
nR

n2
T

, (F.5)

and similarly for i 6= j,

E{|gi,j |4} =
nR−1∑

p=0

E{|hp,i|4}E{|hp,j |4}

+ 2
nR−1∑

p,r=0(p6=r)

E{|hp,i|2}E{|hp,j |2}E{|hr,i|2}E{|hr,j |2}

=
2nR(nR + 1)

n4
T

. (F.6)

The variance of gi,j (i 6= j) is

V{gi,j} = E{|gi,j |2} − |E{gi,j}|2 =
nR

n2
T

. (F.7)
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APPENDIX G

DERIVATION OF (194)

From (175) and P-4 we get, for a large nR,

E{KH} =
1

nT

nT−1∑

l1=0

nT−1∑

l2=0,l2 6=l1

E{|gl1,l2 |2}E{
1

g2
l1,l1

}. (G.1)

From P-5 we have

E{ 1
g2
l1,l1

} −→ 1
(E{gl1,l1})2

=
(

nT

nR

)2

(G.2)

as nT = nR −→∞. Substituting (F.5) and (G.2) into (G.1), we get

E{KH} −→ nT − 1
nR

−→ 1. (G.3)

as nT = nR →∞. Now, consider

E{K2
H} =

1
n2

T

∑
p

∑

q 6=p

∑
r

∑

s6=r

E{|gp,q|2
g2
p,p

|gr,s|2
g2
r,r

}

=
4∑

i=1

NiWi

n2
T

, (G.4)

where Ni and Wi are the parameters corresponding to the i-th case (1 ≤ i ≤ 4) shown

below:

• i = 1 (p = r, q = s):

N1 = nT (nT − 1), W1 = E{|gp,q|4
g4
p,p

}

• i = 2 (p = r, q 6= s):

N2 = nT (nT − 1)(nT − 2), W2 = E{|gp,q|2|gp,s|2
g4
p,p

}

• i = 3 (p 6= r, q = s):

N3 = nT (nT − 1)(nT − 2), W3 = E{|gp,q|2
g2
p,p

|gr,q|2
g2
r,r

}
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• i = 4 (p 6= r, q 6= s):

N4 = nT (nT − 1)(n2
T − 3nT + 3)

W4 = E{|gp,q|2
g2
p,p

|gr,s|2
g2
r,r

}

From P-5 we have

E{ 1
g4
l1,l1

} −→ 1
(E{gl1,l1})4

=
(

nT

nR

)4

(G.5)

as nT = nR −→∞. From (F.3)-(F.6), (G.5), and P-2-P-5 we get

N1W1

n2
T

−→ 2(nT − 1)(nR + 1)
nT n3

R

−→ 0,

N2W2

n2
T

−→ (nT − 1)(nT − 2)
nT n2

R

−→ 0,

N3W3

n2
T

−→ (nT − 1)(nT − 2)
nT n2

R

−→ 0,

and
N4W4

n3
T

−→ (nT − 1)(n2
T − 3nT + 3)

nT n2
R

−→ 1

as nT = nR −→∞. Therefore, E{K2
H} −→ 1 and

V{KH} = E{K2
H} − (E{KH})2 −→ 0 (G.6)

as nT = nR −→∞. From (G.1) and (G.6) (194) follows.
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APPENDIX H

DERIVATION OF (195)

From P-5,

E{QH} = E{ 1
gl,l
} −→ 1

E{gl,l} =
nT

nR
= 1 (H.1)

as nT = nR −→∞. Since gp,p and gq,q (p 6= q) are independent from P-2,

V{QH} =
1

nT
V{ 1

gl,l
} =

1
nT

[E{ 1
g2
l,l

} − (E{ 1
gl,l
})2].

From (G.2) and (H.1),

V{QH} −→ 1
nT

[
n2

T

n2
R

− n2
T

n2
R

] = 0 (H.2)

as nR = nT −→∞. From (H.1) and (H.2) (195) follows.
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[9] M. Tüchler, R. Koetter, and A. Singer, “Turbo equalization: Principles and new results,”
IEEE Trans. Commun., vol. 50, pp. 754-767, May 2002.

[10] S. M. Alamouti, “A simple transmit diversity technique for wireless communications,”
IEEE J. Select. Areas Commun., vol. 16, pp. 1451-1458, Oct. 1998.

[11] J. H. Winters, “The diveristy gain of transmit diversity in wireless systems with
Rayleigh fading,” IEEE Trans. Veh. Technol., vol. 47, pp. 119-123, Feb. 1998.

[12] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for high data rate
wireless communication: performance criterion and code construction,” IEEE Trans.
Inform. Theory, vol. 44, pp. 744-765, Mar. 1998.

[13] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block codes from or-
thogonal designs,” IEEE Trans. Inform. Theory, vol. 45, pp. 1456-1467, July 1999.

[14] P. Wolniansky, G. Foschini, G. Golden, R. Valenzuela, “V-BLAST: an architecture for
realizing very high data rates over rich-scattering wireless channel,” Int. Symp. on Sig.
Sys., and Elec., pp. 295-300, Oct. 1998.

81



[15] W. Zha and S. D. Blostein, “Modified decorrelating decision-feedback detection of
BLAST space-time system,” International Conference on Communications, vol. 1, pp.
335-339, May 2002.

[16] B. Hassibi, “An efficient square-root algorithm for BLAST,” IEEE International Con-
ference on Acoustics, Speech, and Signal Preocessing, vol. 2, pp. 737-740, June 2000.

[17] M. Sellathurai and S. Haykin, “Turbo-Blast for wireless communications: theory and
experiments,” IEEE Trans. Signal Processing, vol. 50, pp. 2538-2546, Oct. 2002.

[18] T. Hwang and Y. (G.) Li, “A bandwidth efficient block transmission with frequency-
domain equalization,” in Proc. IEEE 6th CAS Symp. on Emerging Technologies, pp.
433-436, 2004.

[19] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing: Prentice Hall,
1989.

[20] D. Williamson, R. A. Kennedy, and G. W. Pulford, “Block decision feedback equal-
ization,” IEEE Trans. Commun., vol. 40, pp. 255-264, Feb. 1992.

[21] D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency-
domain equalization for single-carrier broadband wireless systems,” IEEE Commun.
Mag., vol. 40, pp. 58-66, Apr. 2002.

[22] G. Golub and C. Van Loan, Matrix Computations, 3rd ed. Baltimore: Johns-Hopkins,
1996.

[23] A. Papoulis, Probability, Random Variables, and Stocastic Processes, 3rd ed. McGraw-
Hill, 1991.

[24] R. Bracewell, The Fourier Transform and Its Applications, 3rd ed. New York: McGraw-
Hill, 1999.

[25] T. M. Cover and J. A. Thomas, Elements of Information Theory, Newyork: Wiley,
1991.

[26] B. Porat and B. Friedlander, “Blind equalization of digital communications channels
using high-order moments,” IEEE Trans. Signal Processing, vol. 39, pp. 522-526, Feb.
1991.

[27] A. M. Chan and G. W. Wornell, “A class of block-iterative equalizars for intersymbol
interference channels: fixed channel results,” IEEE Trans. Commun., vol. 49, pp. 1966-
1976, Nov. 2001.

[28] N. Benvenuto and S. Tomasin, “Block iterative DFE for single carrier modulation,”
IEE Electronics Letters, vol. 38, pp. 1144-1145, Sep. 2002.
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