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Dynamic Monte Carlo simulations of long chains confined to a cubic lattice system at a
polymer volume fraction of ¢ = 0.5 were employed to investigate the dynamics of polymer
melts. It is shown that in the range of chain lengths n, from # = 64 to n = 800 there is a
crossover from a weaker dependence of the diffusion coefficient on chain length to a much
stronger one, consistent with D ~n 2. Since the n~? scaling relation signals the onset of highly
constrained dynamics, an analysis of the character of the chain contour motion was performed.
We found no evidence for the well-defined tube required by the reptation model of polymer
melt dynamics. The lateral motions of the chain contour are still large even in the case when

n = 800, and the motion of the chain is essentially isotropic in the local coordinates. Hence, the
crossover to the D ~n~2 regime with increasing chain length of this monodisperse model melt
is not accompanied by the onset of reptation dynamics.

I. INTRODUCTION

The mechanism of polymer motion in a concentrated
solution or in a melt has long been an active area of investiga-
tion. By far the most widely accepted model of polymer dy-
namics is the reptation model of de Gennes,'~ with the sub-
sequent refinements of Doi and Edwards.* This model
asserts that the matrix of chains surrounding the test chain
can be treated as fixed with the net result that the dominant
long wavelength motion of the test chain is longitudinal; that
is, the chain “‘slithers” out the tube formed by its neighbors.
This model predicts that the self-diffusion coefficient D and
shear viscosity 77 depends on degree of polymerization » as
n~? and n?, respectively. Experimentally, the scaling of D
with 7 has been confirmed®'* but 7 appears to vary as the
3.4 power of the molecular weight.'®!” Moreover, some ex-
periments in concentrated solutions seem to call into ques-
tion the validity of a simple reptation explanation of self-
diffusion.'>"'® However, as both D and % average over very
long wavelength motions, the experiments may be unable to
distinguish between reptation and some other motion which
provides the same scaling behavior. What in fact is required
is a direct examination of the character of the motion itself;
unfortunately, direct experimental measurements of this
sort are not possible. Thus, we have embarked on a series of
computer simulations designed to elucidate the qualitative
nature of polymer motion in a melt.'%2°

Multichain lattice systems are frequently used as a mod-
el of polymer solutions or melts.>! Both the statics and dy-
namics of these simple systems seem to exhibit many of the
essential features of real polymeric systems.?? The utility of
the lattice approach is that it allows one to study, by comput-
er simulation methods, longer polymers at higher concentra-
tions than are feasible employing more sophisticated models.
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It is now well established that the basic equilibrium proper-
ties of long lattice chains are the same regardless of lattice
details, and change only with dimensionality of the system.”?
However, it is less clear to what extent the same universality
holds in the case of time-dependent properties simulated by
means of Monte Carlo (MC) lattice dynamics. Having a
discrete set of elementary motions is an intrinsic disadvan-
tage of MC lattice dynamics. Thus, in what follows, there is
some ambiguity in mapping the polymer volume fraction of
the model system onto the density of a real system. However,
in spite of these limitations, it is believed that the discrete
character of the local motions in a correctly defined MC
model should wash out over relatively short distances and
that the excluded volume effect and topological constraints
emerging from chain entanglements are qualitatively well
accounted for.

Recently, we reported the results of dynamic MC stud-
ies of multichain diamond lattice systems that covered a
wide range of volume fraction ¢ (up to ¢ = 0.75 for the long
time dynamics,?® and up to ¢ ~0.86 in the case of short time
dynamics'®) and chain length (upton = 216at¢ = 0.5). It
was shown that there exist a range of densities where the self-
diffusion coefficient D and the terminal relaxation time 7, of
the end-to-end vector are consistent with the experimentally
observed D~n~2*%! and p~n** (with the assumption
that 75 is proportional to the viscosity of the melt over the
range of # and ¢ studied). Although the number of entangle-
ments per chain estimated for these model systems seemed to
satisfy every theoretical requirement for the onset of repta-
tion,?*?7 detailed analysis of the motion of the equivalent
path of the chain (where small distance fluctuations are
averaged out and which should be identical to the primitive
path of Edwards?®), showed the complete absence of a tube.
In other words, the dominant long wavelength motion was
not longitudinal motion down the primitive path defined at
zero time. Rather, the dynamics of the system was closer to a
strongly slowed down Rouse-like motion.?>° Therefore, it
appears that in these model systems the onset of reptation is
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not a necessary condition for the scaling D ~n~? and 5 ~n**.
On the contrary, at the very least there is a wide crossover
regon where reptation-like motions contribute very little to
the melt dynamics.

While it is difficult to answer definitively the question of
to what extent the lattice restrictions influence the long time
dynamics of the system, one can at least clarify the effect of
lattice details and the effect of particular models of the lattice
dynamics. It has been shown for the case of a diamond lattice
that a particular choice of the intrinsic jump parameters for
the local dynamics (as far as the set of elementary motions is
capable of reproducing every conformational transition on a
local scale) has no influence on the long time dynamic evolu-
tion of sufficiently long polymers below the glass transition
density.'®?° On the other hand, the effect of the particular
lattice itself can be to some extent examined by comparison
of MC dynamic results from different lattice models.

In the present paper, we report on the results of dynamic
MC studies of systems of long polymers confined to a simple
cubic lattice. Since this lattice has a smaller persistence
length than a diamond lattice, it should presumably also ex-
hibit more dynamic flexibility. Thus, lattice chains com-
posed of n = 800 segments on a five choice, cubic lattice
should be equivalent to a considerably larger degree of poly-
merization in real polymers. Furthermore, the higher co-
ordination number of a cubic, as compared to a diamond,
lattice modifies the local interchain interactions and requires
a different set of elementary motions, and thus another mod-
el of local dynamics. Unlike our previous work,!*?° we elect-
ed to study a wider range of chain lengths, thus, the present
studies are limited to a single choice of polymer density,
namely, ¢ = 0.5. The largest system under consideration
consists of N =40 chains each of length n = 800. The
n = 800 system is well above the largest chain length systems
studied previously.?-**3! The two main questions addressed
in the present simulations are the following: First, is the dy-
namic behavior of the various lattice systems similar? Sec-
ond, can we find a crossover to reptation dynamics when one
considers a relatively long polymer? ‘

In Sec. II we discuss the model of the dynamics em-
ployed. In Sec. III the equilibrium dimensions of model
chains in the melt are briefly described and the excluded
volume screening length is estimated. The major results of
the present series of computational experiments are de-
scribed in Sec. 1V, where diffusion coefficients and terminal
relaxation times are estimated and in Sec. V, where we show
that the character of the polymer chain motion is quite dif-
ferent from the picture presented in reptation theory. Final-
ly, a discussion of the results and some qualitative conclu-
sions concerning the dynamics of polymer melts are given in
Sec. VL

Il. MODEL OF THE DYNAMICS

The present model consists of a collection of monodis-
perse, nonintersecting chains confined to a five-choice cubic
lattice. Since each of the NV chains occupies # lattice vertices
(connected by n — 1 “bonds”, each of length |/| = 1) the
volume fraction of the polymer is ¢ = N-n/L *®, where L is
the size of MC box, with superimposed periodic boundary
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conditions. The details of the method used to generate a high
density system of long, self-avoiding polymers at thermal
equilibrium can be found in our previous paper.'®

It is well known for lattice chains with excluded volume
that the set of elementary motions must be chosen to ensure
that every possible conformational transition of a given part
of the chain can be generated by a certain succession of these
elementary motions.>?-* That is, there must be the local pos-
sibility of creating a new random conformation within the
middle part of each chain. Otherwise, one may build in a n*
relaxation scale into the model due to the fact that a new
orientation of chain segments somewhere in the middle of
the polymer can only be created by a “diffusion” of orienta-
tion from the ends.*?*? The following set of elementary mo-
tions seems to be effective (in that they have a large fraction
of accepted jumps) and satisfies the abovementioned re-
quirements for lattice dynamics. A superscript prime de-
notes a new orientation introduced by random selection
among the possible outcomes.

(i) As schematically depicted in Fig. 1(A), we include
“normal” bead motion, where [, I, , -/, __,, [;, and chain
end reorientations where L/, 1511 (or 1, _,1,_,-1.,_,,
1! _, atthe opposite end).*® Also shown is chain end motion
where two end bonds are replaced by a new pair of randomly
generated chain ends. There is also a small contribution from
single bead modification of the chain ends when [, =/} (or
L _,=1,_5).

(ii) Three-bond (two-bead) permutations when [,
Lol =14, 1, 1 are schematically depicted in Fig.
1(B).*” There exist several conformations which could be
affected by this motion. Two of these involve diagonal mo-
tion of the bonds across a rectangle or a cube and the third
produces a 180° flip of U-shaped structures.

(iii) The 90°-crankshaft motion effective only for a U-
shaped fragment of the chain /,, /;, \, L, , =1], 1, 1,1}, >
is depicted in Fig. 1(C).? These introduce new out-of-plane

c I /__l_,

o 41V 28

FIG. 1. (A) The normal bead motion and an example of chain end motion.
(B) Examples of three-bond permutations. (C) The 90°-crankshaft motion
of a U-shaped fragment of the chain.
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orientations into the chain. The new orientation with /;
= — 1}, , is selected from the two existing possibilities.

For every attempt at a particular kind of move (i)-(iii),
the chain and the bond index (i) are selected by a random
number generator. The time unit is defined as the time re-
quired for (n — 2)N attempts at a normal bead cycle, step
(i), plus (n — 3)N attempts at a three-bond permutation
cycle, step (ii), plus (n — 3)N attempts at a 90° crankshift
cycle, step (iii), and finally 25, chain end cycles. Therefore,
evey polymer bead is subject to 1 + 2 + 2 = 5 attempted
motions, on average, per unit time. In practice, the sequence
of the elementary motions are randomly mixed. Of course,
any attempted elementary motion can be rejected for either
(orboth) of two reasons. First, the local conformation is not
suitable; second, excluded volume restrictions prohibit the
move. In Table I, the acceptance ratio for the various kinds
of motions have been listed for systems of different chain
lengths at the density under consideration (¢ = 0.5). The
relatively low acceptance ratio for conformation changing,
90° flips (about 0.030) is quite sufficient to achieve locally,
nonrestricted dynamics. Bond relaxation of any part of the
chain (even in the case when n = 64) is a few orders of mag-
nitude faster than the longest relaxation time of the chain.
Therefore, the n* relaxation time scale due to nonphysical
restricted dynamics®>> is not artificially built into the mod-
el. The slight change of acceptance ratio with chain length is
probably related to the changing relative contribution of the
motion of the very end segments which are less restricted by
chain conformation (or intrachain excluded volume); this
effect anneals out with increasing ».

lll. EQUILIBRIUM DIMENSIONS OF THE CHAIN

During the course of the dynamic MC simulations, the
equilibrium properties of the system have been recorded.
The values of various moments of the distribution function
of the end-to-end vector R, as well as of the radius-of-gyra-
tion vector, S, are listed in Table II. First of all, one can note
that the mean value of the magnitude of the radius-of-gyra-
tion (|S|) of the polymer coil is always 3-5 times smaller
than the size of the periodic MC box. Actually, even the
average magnitude of the end-to-end vector (|R|) is smaller
than the box size, L by a factor of about 1.5. This allows us to
reasonably assume that finite size effects on the measured
equilibrium and dynamic properties are negligible. A brief
inspection of the data in Table II shows that the chain length
dependence of the coil dimensions are similar to those for an
ideal chain. However, based on the ratio of the (R 2) to the
value for a five choice nonreversing random walk (NRRW)

TABLE 1. Fraction of accepted motions for cubic lattice chains at ¢ = 0.5.*

on a cubic lattice (R Zzrw ),>® these chains are more expand-
ed by a factor of 1.2-1.3. Similar behavior was seen in dia-
mond lattice models.>"***° For instance, Kremer®! found
even at the lower density, ¢~0.34, that (R 2)/(R *) xnrrw
~1.1 for a diamond lattice system of » = 200 polymers.
Thus, the local geometry may affect the interplay between
the persistence length of the chain and the density of the
system. Consequently, the quantitative dependence of the
screening length on polymer density may be modified when
one changes the particular lattice realization.

Other measured moments of the coil size (and the den-
sity within the coil) distribution exhibit a similar deviation
from ideal chain behavior; however, the quasi-ideal scaling
(R*)~(S?)~(n—1) is satisfied with good accuracy.
Since the equilibrium data for the case of n = 800 are less
accurate than those for shorter chains (for the » = 800 case
the sampling time in units of the terminal relaxation time is
much shorter than for the n = 216 case) it is difficult to
make definitive statements on the limiting (n — oo ) values of
the equilibrium properties of the chain in melt. However, the
data for n = 216 (which are significantly more accurate)
should be very close to that expected for very long polymers.

An approximate estimate of the screening length can be
obtained by comparing the dimensions of the coil in the
model melt with the dimensions of five-choice, cubic lattice,
self-avoiding random walks (SAW’s)—the model of a single
polymer in good solvent. The scaling of the SAW data ob-
tained from MC sampling by Rapaport*' give, respectively,

(RBygaw = 1.134(n — 1)118 .
and
<S2>SAW =0.1772(n — 1) 1¥7, 2

This is to be compared with the least-square fit of the present
results (Table I1):

{R?) = 1.984(n — 1)°°¥ (3)
and
(S2) =0.2759(n — 1)19% (4)

Equating (R 2) = (R ?)s,w one obtains n, =17, and on set-
ting (S2) = (S 2)saw,»np = 15, respectively. These estimates
are consistent with the screening length found by the same
method for a diamond lattice model at the same density.2°
Note that other approaches used in the estimation of the
mesh size in an entangled polymer system lead to even lower
values of n,. Thus taking into account the upper value, 7,
=17 of the screening length, one obtains the blob diameter
&z =4.5 from the NRRW formula®® for the mean-square,

Type of motion n=264 n =100 n=216 n =800

Two-bond permutations 0.3879(2) 0.3880(2) 0.3880(1) 0.3883(1)
Chain-end motions 0.2696(2) 0.2704(2) 0.2712(2) 0.2715(3)
Three-bond permutations 0.2387(1) 0.2391(2) 0.2392(3) 0.2395(2)
Three-bond, 90°, flips 0.0305(1) 0.0304(1) 0.0302(0) 0.0300(0)

*The number of parentheses indicates the uncertainty (90% confidence limit) of the last displayed digit.
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TABLE II. Equilibrium dimensions of polymer chains at ¢ = 0.5 (mono-
disperse system).

n==64 n =100 n=216 n =800

N=32 N=40 N=32 N=40
Property L=16 L=20 L=24 L=40
{IR|} 9.91® 12.71 18.86 35.15
{(R? 115.1 187.2 413.4 1425
(RY/{R?)? 1.572 1.573 1.593 1.542
(S 4.26 542 8.01 15.69
(5% 19.06 30.77 67.48 258.4
(SH/(s%)? 1.190 1.203 1.224 1.210
{R*{(R%paw)® 1.227 1.266 1.284 1.190

“ The statistical error (90% confidence limit) for {|R|) and ([S|) is below
+ 1%, except for n = 800, where the error generally is about twice as
large ( + 2%). For (R %) and (S2), the error is on the level of + 1%, and
for the fourth reduced moment, it is not greater than + 3% ( + 6% for
n = 800).

® (R 4w is the mean-square end-to-end distance for a nonreversing ran-
dom walk on a five-choice, cubic lattice and is given by (R Zzpw)
=3(n—1) —§[1— (1/5"~")] (Ref. 38).

end-to-end vector of the blob, (R 2),,B, with the abovemen-
tioned prefactor of 1.2. When one compares &, with (R 2)!/2
of the longer polymers studied here, it appears that every
requirement of reptation theory concerning the range of ra-
tios of n/ny where reptation should dominate are satis-
fied.>*?” In particular for the n = 800 case, the ratio n/n,
=47 if in fact n, corresponds to the number of “static”
blobs between entanglements.

IV. CENTER-OF-MASS MOTION AND RELAXATION OF
THE END-TO-END VECTOR

The motion of the center-of-mass (CM) of the polymer
chain is most simply discussed in the terms of the autocorre-
lation function g\ (¢), which is the mean-square displace-
ment of the center-of-mass obtained as an average over the
trajectories of all the chains in the model system. The time
course of g\ (2) vs ¢ is plotted in Fig. 2 on a log-log scale.
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FIG. 2. Log-log plots of the center-of-mass autocorrelation function
8cm (1) vstime ¢ for n = 64, 100, 216, and 800 reading from left to right (or
top to bottom). ¢ = 0.5 in all cases. The shorter time ¢ regime is to be
distinguished from the long time diffusion regime. Values of the exponent a
are listed in row one of Table III.
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There are clearly two time regimes of polymer motion. In the
range 12 <gep (1) <2(S?), the autocorrelation function
gcm (t) obeys the simple scaling relation gy (¢2) ~2° The
value of a for the various cases studied are exhibited in row
one of Table III. This scaling is exact in the range of statisti-
cal accuracy, and there are no systematic deviations except
very close to the vicinity of 2(S?) where the ¢ regime
crosses over into the free diffusion limit, namely where
8cm (2) ~t. Note that 2(5?)!/? is precisely the distance
over which the internal modes of a Rouse chain relax to their
equilibrium values.?® As the chain length increases, the ex-
ponent a decreases, presumably reflecting more and more
constrained motion. The apparent (time-dependent) self-

TABLE III. Diffusion coefficients and terminal relaxation times for monodisperse systems and exponents for

the autocorrelation functions in the intermediate time regime.

n =64 n=100 n=216 n =800
a* 0.909 + 0.006 0.890 + 0.001 0.839 + 0.001 0.705 + 0.006
1.66 %1073 9.03 x107* 2.64 10~ (2.8 %1079
D (upper bound)
+ (0.02 x10%) + (0.21 X10™%) + (0.05 X107%) (1.2 X107%)
(lower bound
1.95 x10° 6.05 x10* 474 x10*
TR ( . .)
+ (0.02 x10%) + (0.29 X10°%) + (0.08 x10%
ﬁ 2.80 X102 292 x10°? 3.03 x10-2 )
(R?
b° 0.540 + 0.004 0.522 + 0.004 0.481 + 0.001 0.360 + 0.008

* Exponent in the g¢,, () ~ ¢ ° relation; for n = 800, the upper limit of the displacement is slightly below {§?2).
*Exponent of g(#) =~ * in the range £ 3/3 < g(#) < (S?). For n = 800, the upper limit is slightly below (S ?),
and the lower limit is the point [ g(¢) =~25] when the slope of log[ g(#)] vs log(¢) initially decreases, and is
approximately the value of the smallest slope. The average is taken over the entire chain for all the cases

displayed here.
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diffusion coefficient D(¢) obtained from the ratio g\, () /6¢
decreases with time over the ¢ ® regime. This suggests that the
center-of-mass motion couples into the internal modes of the
various chains.

In our simulations up to n =216, we observed the
8cm (2) ~1° regime up to displacements in the range of
2{S?). Since these cubic lattice chains are presumably e-
quivalent to longer chains on a diamond lattice, we observe a
stronger chain length dependence of a than was previously
seen in the latter case. In particular, the n = 800 chain exhib-
its quite a significant decrease of @ in comparison with the
n = 216 case. The exponent a = 0.839 for the n = 216 poly-
mers on a cubic lattice is less than that for the » = 216 chains
on a diamond lattice case where a = 0.90%° (the diamond
lattice case appears to be essentially equivalent toan n = 100
chain on a cubic lattice).

The long time limits of the self-diffusion coefficients D
compiled in Table III were estimated from the relation*?:

8cm (8) = 6Dt + constant , (5)

where the constant has a small positive value and reflects the
faster motion over the initial 7 ° regime. The least-square fit
was applied to the data for gy, (£) > 2(S?). The upper limit
of the value of gy (¢) is dictated by the requirements of
good statistics (due to averaging over the trajectory) and
was taken to be in the range of 10 (S?). For that value of
8o (1), at least 2 X 10° “chains” contributed to the average
for the cases of n = 64 up to n = 216.

Unfortunately the above procedure cannot be directly
applied to the data for » = 800 because we have not covered
the equivalent time scale due to the extreme length of these
computations. However, it is possible to make some predic-
tions of the value of the diffusion coefficient even in this case.
The upper bound for the self-diffusion coeflicient is just the
apparent time dependent diffusion coefficient estimated
from the ratio g\, (¢)/6¢ for times over the range of displa-
cements studied. Since D(¢) decreases with time, the calcu-
lated value is always larger than those expected for times
much longer than 7. Note that over the time window al-
ready studied (n = 800) the dynamic evolution of the sys-
tem extends up to the time when the autocorrelation of the
end-to-end vector (R(¢)-R(0)) decays to 2/3 of its initial
value and is in the terminal relaxation time regime, and
therefore one would not expect any dramatic change in the
character of the polymer motion at longer times [see, for
example, Fig. 3(B) ]. The lower bound for the diffusion coef-
ficient in the case of » = 800 can be obtained from the as-
sumption that the ¢ “ regime extends up to g (£) = 2{S'?),
by analogy to the shorter chain systems. The data for the
n = 800 case obtained by the aforementioned considerations
are listed in parentheses in row two of Table III in order to
distinguish between values obtained from exact and approxi-
mate methods. This analysis, however, is probably not com-
plete, due to some qualitative changes in the course of the
single bead autocorrelation function which will be discussed
in the next section.

Table III also contains the terminal relaxation times,
Tg, for the end-to-end vector autocorrelation function, as
well as the ratio D7, /{R ?) for the system of interest. The
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FIG. 3. (A) Plots of In g (#) vstime £ [ gx (£) = (R(£)*R(0))/(R *)] for
n = 100 and n = 2186, respectively. The horizontal bars indicate the region
used for the least-square fit used for estimation of 7. (B) The plot of
In gg (2) vs time for n = 800. In all cases ¢ = 0.5.

relaxation times are obtained from least-square fits to the
linear portion of the semilog plot of g (1) = (R(2)R(0))/
(R ?) vst. Since there is a short period of very fast relaxation,
awell defined window — 0.4 <In[ gz (#)] < — 1.4 hasbeen
chosen for the fitting procedure; the range of g, (¢) fit to
extract 7 is similar to those used by other workers.>**> Rep-
resentative plots of In g, (¢) vs ¢ are given in Figs. 3(A) and
3(B).

The self-diffusion coefficient and longest relaxation
time 7, are well described by the following scaling (over the
range n = 64 ton = 216):

Dy — 1-520£006) (6)
and

x o p263(£004) (7

However, there is a systematic deviation in the direction of a
stronger dependence of D on # with increasing chain length,
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with the deviations on the border of the statistical accuracy.
Using the two points at # =100 and n =216, gives
D~n="% and 75 ~n>%% This trend in the exponents of D
and 7, is consistent with previous multichain cubic lattice
simulations of chains up to n = 48 that have found a weaker
dependence on #.** Note that the comparison of the diffu-
sion coefficient for n = 216 with the very qualitative esti-
mate for n = 800 case leads to D~n ~ 204032,

The chain length effect on the scaling of D with # can be
very qualitatively accounted for by a simple form of the type

D=c(n+n*/n)"", (8)

where the ¢ and #, are adjustable parameters. Physically ¢
corresponds to the effective diffusion constant per bead in
the absence of chain connectivity, and #, is the mean dis-
tance between entanglements.** The above functional form
gives D~n""' in the range of relatively short chains and
crosses over to D ~n 2 in the limit of very long chains. The
fit of the data in the window from n = 64 ton = 216 gives n,
in the range of 125, and an extrapolation to n = 800 gives
Dygyo = 2.73 1073, which is essentially the “experimental”
upper bound (see Table III) for this quantity. Since the
“true” diffusion coefficient for the n = 800 polymer is likely
to be somewhat lower, one might expect to find a somewhat
lower value of n, when the data for longer chains become
available. This consideration, however qualitative, indicates
that the static and dynamic entanglement lengths may differ
by at least an order of magnitude, as has been suggested by
other workers.?'!

As implied by the data in row four of Table III, the
product D7, from the present simulation scales vs » with an
exponent of about 1.1. This appears to be a real effect (note
that (R 2) and (S ?) scale essentially as n, see Table II); how-
ever, the exponent of D7y found here is smaller than the
value 1.2 found for the diamond lattice in Ref. 20. We should
note that all the scaling behaviors found here for the cubic
lattice model are very close (within essentially the same
range of uncertainties) to those seen in the diamond lattice
model simulations at the same density ¢ = 0.5 and over the
same range of chain lengths.?® Therefore, it is important to
examine if the qualitative character of the long-distance mo-
tion of the polymer (especially for the n = 800 chain) is
consistent with the picture presented in previous work. We
might again point out that although the time scale covered
by the simulation for n = 800 is below the diffusion time for
entire chain, it is sufficient to examine whether or not these
chains are reptating.

V. ANALYSIS OF SINGLE BEAD MOTION AND THE
PRIMITIVE PATH

The average mean-square displacement of the single
beads of the model chains, g(?), is plotted in a log-log scale
in Fig. 4 against time. The averaging of g(¢) is performed
over the entire chain length. There is simple Rouse-like be-
havior of the system up to n = 216. The slope of log g(#) vs
log(t) in the well defined regime ¢ which extends up to
(§'3), changes gradually from 0.54 for n = 64 to 0.48 for
n = 216. The values of b are compiled in row five of Table
III. If one considers only the middle part of the chain, the

y
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FIG. 4. Log-log plots of the single bead autocorrelation function g(¢) vs
time ¢ for n = 64, 100, 216, and 800 reading from top to bottom. The g(¢)
are averaged over all the beads in the system. The shorter time ¢ regime
exponents (the plateau exponent for n = 800) are listed in row five of Table
III. In all cases ¢ = 0.5.

case of n = 100 seems to exhibit the behavior equivalent to
chains of length » = 216 on a diamond lattice examined in
previous work.?’

The n = 800 case exhibits some qualitative changes in
behavior. There is clearly a decreased slope, with a minimum
value of 0.36. This presumably reflects the more constrained
dynamics of these very long chains. Phenomenologically,
this might appear to be similar to the ¢ !/* regime predicted by
reptation theory.'™ However, the microscopic picture that
emerges is rather different.

The analysis of the primitive path motion of the chain
contour has been performed in a similar manner as in pre-
vious work.?® First, we constructed the equivalent primitive
path for every chain at a given time taken here to be zero
time. Every bead of the original chain has been replaced by a
virtual point on the equivalent path which is the center-of-
mass of the blob composed of ny = 17 beads [see Fig.
5(A)]. Thus we obtained a relatively smooth path com-
posed of partially overlapping blobs. Second, we then com-
pute the average displacement down the primitive path. The
basic idea is schematically presented in Fig. 5(B). The aver-
age value of the mean number of steps (i —j) down the
primitive path after a time 7 was computed over the central
one quarter of the path. The reptation component is then
estimated as

g||(t)=l%<(iTj)2), &)
where the bar denotes that the vaue of i — jis averaged over a
given chain, the { ) indicates that a further averaging is
performed over the entire collection of chains, and /% is the
mean-square-length of the segment of the primitive path
(about 0.103 in the present model). The remaining, trans-
verse component of the motion of the primitive path is esti-
mated after elimination of the curvilinear component as
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(b) i

_‘
1 n=800 .
0 : 1 . i
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(c) t+10~3 ( 2110~4)

FIG. 5. (A) Snapshot of the original chain (open symbols) and the equiva-
lent path (heavy solid line) of a chain with n = 800, n; = 17. (B) The pro-
jection of the equivalent chain coordinates at time ¢, r*(¢) onto the initial
state of the equivalent chain at zero time, r?(0). (C) The plot of the ratio
8. (¢)/gy (2) vs time for n = 216 (upper curve) and n = 800 (lower curve).
See the text for more details.

g (8) = {(r}(0) —r¥(1)?), (10)

where r*(0) and r¥(¢) are the coordinates of the jth and ith

bead of the equivalent chain at the relevant times. The aver-

aging involves all the paths and includes the middle segment

of the chain twice the length of that used to calculate the

(i — j) shift [the net displacement (i —j) can be either posi-
tive or negative]. Therefore, the procedure is valid for |i — j|

<n/4, and has been applied only to the equivalent range of
times. In Fig. 5(C), the ratio g, (¢)/g; (¢) is plotted against
time for n = 216 and n = 800 chains in the solid and open
diamonds, respectively. The essential features are the same
as observed previously.?® At very short times, there is signifi-
cant preference for transverse motion due to the interplay of
chain connectivity and the excluded volume effect. Then
there is a short period of time when the motion down the
chain becomes relatively more important (the minimum on
the curves) at distances on the order of the blob size (or
equivalently, the estimated tube diameter). Finally, the lon-
gitudinal component increasingly becomes less and less im-
portant, with the transverse component increasing much
faster with time. As a result, the ratio g, /g, again increases.
Therefore, one may conclude that reptation-like fluctuations
down the tube are strongly damped. Apparently, the fast
contribution of the reptation mode dies on a distance com-
parable to the mesh size. As a result, the motion of the points
on the equivalent chain is essentially isotropic. Note that the
times considered are below the tube renewal time of the rep-
tation theory; therefore, if these model polymers indeed rep-
tated, the ratio g, /g, (¢) should have monotonically de-
creased with time.

It is most instructive to examine the character of the
motion (especially in the case of n = 800) of the chain in the
melt. Snapshot pictures of the chain conformation at various
times may be very useful for that purpose. Since the » = 800
polymer is very long, the primitive path based on the 2

= 17 approximation is generally a very complicated, entan-
gled three-dimensional structure. Therefore, the two-dimen-
sional projections are hardly readable. Thus, for clarity of
graphical presentation we generated much smoother equiva-
lent paths where the averaging of the original chain was per-
formed over n, = 101 neighboring (down the chain) beads.
This approach may also meet the postulate that the dynamic
entanglement length is larger than the static one. In Figs.
6(A)-6(C), the dynamic evolution of a single n = 800
chain in the melt is presented. The thinner lines represent the
configuration of the equivalent path at the initial time and
the solid circles the equivalent path at a time ¢ later. After a
time 7 of 6 X 10, 1.2 X 10°, and 2 X 10° as clearly depicted in
Figs. 6(A)-6(C), significant transverse fluctuations are evi-
dent even when the definition of the equivalent chain (n B

= 101) is very conservative. Again, the motion down the
original path is hardly noticeable, an effect partially due to
the long subchain used to generate the average conforma-
tion. As was mentioned above, the fast longitudinal motion
has a rather local character. In other words, there is a short
distance motion of the “defects’” down the chain, however, it
is not accompanied by substantial sliding of the entire chain
down the primitive path. In Figs. 7(A)-7(C) we display
snapshot projections of some other chains at a single time
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t = 1.2 X 10° (somewhat below one-half the time of the en-
tire run for the n = 800 system). The choice of chains is
representative. Again, the motion of the chain seems to be
isotropic, with an apparent local preference for transverse
motion. Equivalent chains were generated in the same way
as in Fig. 6.

VI. DISCUSSION

The present work shows that there is no qualitative dif-
ference between the dynamics of multichain systems con-
fined to various lattices. Since there are some quantitative
differences at the same 7 in the static properties of the dia-
mond lattice system we formerly studied and the present
simple or cubic lattice system, we conclude that cubic lattice
chains at a given n correspond to somewhat longer real poly-
mers. Comparison of the persistence length and the screen-
ing length of excluded volume suggests a factor of about 2 in
n between the cubic and diamond lattices. Therefore, the
present simulations of » = 216 and n = 800 significantly ex-

FIG. 6. Snapshot projections of the primitive path of a chain with » == 800
in the melt, with ¢ = 0.5. The thinner line corresponds to the conformation
at the initial time. Triangles indicate one of the chain ends. (A) The dis-
placement after 6X 10* steps; (B) after 1.2X 10° steps; (C) after 2 10°
steps. The equivalent chain has been constructed as described in the text
with n; = 101. Every bead in the plot corresponds to the center-of-mass of
such a blob, and for clarity only every fourth bead is plotted. The density of
the beads reflects the density of the chain beads (in addition to the effect of
the projection from three onto two dimensions).

tend all the previous computer experiments on multichain
polymer systems®*-2231:4345.46 1o 3 far more entangled re-
gime. Indeed, we have observed for the first time at fixed ¢
the indication of the crossover in D~n~¢ from a smaller
exponent & equal to unity to the larger value of two typical
for a polymer melt of long chains. A previous study of the
cubic lattice system up to n = 48 by Crabb and Kovac** sug-
gested an exponent of @ = 1.2-1.25 at ¢ = 0.5 (interpolat-
ed). Our system for n = 64-100 gives a=1.4, for n = 100~
216 @ = 1.6, and finally a rather conservative estimate for the
range n = 216800 gives a = 2.04 4 0.32. The above com-
parison shows that the crossover is relatively smooth, occur-
ring over quite a broad range of chain length.

It is difficult to answer the question of to what extent the
exponent in the smaller # regime is consistent with experi-
ment.?* Certainly, there has to be this kind of crossover in
real systems. However, there is a paucity of experimental
data in the crossover regime. Moreover, the effect of a partic-
ular lattice in the short chain limit and the absence of hydro-
dynamic interactions in our simulations may cause a sub-
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stantial difference between the real physical system and the
model ones treated here. We further note that the excluded
volume effect (static) is screened out at chain lengths much
lower than those where the crossover to D ~n~2 behavior
occurs. Therefore, the dynamic properties of the meit satu-
rate in the limit of long chains at much higher valuesof nata
given density than do the static properties. Based on the fact
that the longer chain lengths studied apparently crossover to
the n ™2 regime at intermediate densities these systems may
be closer to the case of a concentrated solution than a melt,
and therefore, the role of solvent quality may be of some
importance.

With the above caveats in mind, nevertheless, the pres-
ent simulations are qualitatively consistent with the cross-
over observed in real polymer melts from Rouse-like diffu-
sion behavior to a more dynamically constrained regime
where D~n~2 The n~? scaling has commonly been as-
cribed to the onset of reptation dynamics. However, the
analysis of the dynamic evolution of the chain contour (the
equivalent primitive path) shows that there is no well-de-

FIG. 7. (A)~(C) Snapshot projections of the equivalent path of various
chains viewed from the same perspective at # = 1.2 X 10° steps. In all cases,
np = 101. The three chains displayed here as well as the chain depicted in
Figs. 6{A)-6(C) are the first four out of five chains as numbered in the MC
algorithm. The chain shown in the thinner line of Fig. 7(B) is the same as
that displayed in Fig. 5{A) with ng = 17. The effect of smoothing of the
chain contour should be noted.

fined tube; rather, the motion of the system is essentially
isotropic. The strong coupling of the motion of the various
chains leads to the stronger chain length dependence of the
self-diffusion coefficient and terminal relaxation times of the
chain conformation. In other words, the separation of time
scales for the motion of a single chain and for the motion of
the surrounding media (composed of identical chains) cru-
cial to the validity of reptation is not effective. When com-
bined with previous simulations of diamond lattice systems
at higher concentrations,?’ the present results show that the
crossover to D~n~2 with increasing concentration or with
increasing chain length is not accompanied by a transition to
the reptation mechanism of chain motion, Furthermore, it is
worth noting that our lattice simulations exhibit qualitative
agreement with previous MC experiments on off-lattice sys-
tems.*>*° In this context, it would be very interesting to see if
those systems also show a similar character in the chain con-
tour motion. Finally, let us note that the exponent & may not
necessarily be equal to two over the entire entangled chain
regime. Our simulations suggest that the particular numeri-
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cal value of @ may be dependent on various characteristics of
the polymer system (e.g., the density, and perhaps the dis-
tance from the glass transition temperature, etc.).

We hope to get some additional insight into the mecha-
nism of polymer diffusion in a melt from model studies of
probe polymer motion in a matrix of chains having a differ-
ent degree of polymerization. This forms the subject of the
second part of this work (see following paper). An analytic
theory which does not invoke the existence of reptation as
the dominant mode of melt motion will also be presented in
the near future.
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