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ABSTRACT
RGB-D data obtained from affordable depth-sensors, like the XBox

Kinect has allowed for remarkable progress in the field of human

activity recognition (HAR). Depth information has been found to

significantly increase performance in HAR tasks, especially when

it’s fused with other modalities like RGB and Optical flow. Unfortu-

nately, the use of depth sensors limits where these models can be

used since these sensors are often difficult to use in outdoor settings.

Additionally, most videos available today are shot on traditional

video cameras, which don’t provide depth information needed to

run RGB-D based HAR models. Fortunately, deep learning has al-

lowed us to estimate this depth data with high accuracy from just

RGB video. This paper investigates the viability of directly using

this estimated depth information in RGB-D models for HAR-related

tasks.
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1 INTRODUCTION
The goal of video activity recognition is to identify specific actions

happening in a video or a part of a video. These actions can be

high-level, such as “playing soccer” or “cooking”, to more low-level

actions like “kicking” or “standing up”. Developing good models

for this task has a wide range of applications including automated

surveillance in videos, behavior/activity tracking, and improved

video summarization. This is not an easy problem to solve since

people can perform activities in slightly different ways, and more

importantly, videos can have hidden body parts making it difficult

for a model to accurately identify an action. The introduction of

affordable sensors, like the Xbox Kinect, has sparked further re-

search into activity recognition [17]. These sensors can collect data

in more modalities like depth, skeletal data, infrared, in addition to

traditional RGB-based video. Activity recognition models can take

advantage of this additional context to make more accurate predic-

tions. In this work, we focus on Red Green Blue Depth (RGB-D)

video based activity recognition techniques. RGB-D data contains

both traditional video and depth information. Depth data provides

pixel-level information representing the distance from the camera

to objects in the scene. RGB-D video provides models with more

dense data that can help them perform well even when parts of the

scene are occluded. As a result, depth information can also help in

situations where a subject is in a position that is hard to resolve

from just RGB information. However, using a depth camera heavily

restricts where these models can be used since most videos are

recorded on traditional cameras [24] . Requiring depth information

for activity recognition places a huge burden on researchers since

they have to set up specialized lab experiments with depth cameras.

Additionally, these researchers can’t take advantage of many large

benchmark activity recognition datasets like Kinetics, ActivityNet,

and THUMOS-14 [[11], [6], [8], which don’t provide depth data.

Fortunately, in recent years, the field of monocular depth estima-

tion has made incredible progress. Monocular depth estimation is a

method for estimating depth information from a single RGB camera.

Several methods have emerged that can recover dense depth maps

from just RGB video frames. Many of these models have found

success in-depth estimation using end-to-end deep learning tech-

niques with models like convolutional neural networks (CNNs) [5],

Generative Adversarial Networks (GANs) [12], and Transformers

[4].

Although depth estimation has found a lot of success, there’s

currently very little research into whether using estimated depth

can potentially replace real depth information in RGB-D based ac-

tivity recognition models. This work serves as an initial look into

whether estimated depth information can serve as a viable replace-

ment for depth-sensors. To conduct this study, we use a current

state-of-the-art depth estimation model and train a baseline activity

recognition model with estimated depth frames, and evaluate on a

large benchmark RGB-D activity recognition dataset.

2 LITERATURE REVIEW
2.1 Convolutional Neural Networks
Using convolutional neural networks (CNNs) for vision related

tafsks is not a new concept. 2D CNN architectures, such as Im-

ageNet, have been used very successfully in image classification

tasks for several years, and more recent research has found ways to

modify CNNs to support the temporal dimension provided in video

data. The most important advance was the introduction of 3D CNNs

in videos by Ji [10]. 3D CNNs are different from traditional CNNs

in that their kernels have both spatial and temporal dimensions.

Early 3D CNN research found success in activity recognition, but

they were not able to obtain state-of-the-art results on benchmark

datasets.

Another key development in using CNNs for video tasks was

Simonyan and Zisserman’s work in two-stream 3D CNN networks

[19]. Their model consists of 2 3D CNNs- the first 3D CNN is trained

on normal RGB frames. The second model is trained on optical flow

frames extracted from the video to help the model better understand

motion information across frames. The group found that combining

the RGB and Optical flow model’s predictions resulted in high

performance on video activity recognition benchmarks. The I3D

network, proposed in [1], builds on previous work on two-stream

CNN’s and 3D CNNs [21] [19] [3]. The I3D architecture works by

adding a temporal dimension to the kernels of the highly successful

image recognition model architecture, ImageNet [2]. The work also

proposes employing a two-stream model by having I3D networks

for both RGB and Flow frames to help the model extract motion and



spatial information from the video frames. Today, I3D still serves as

a key benchmark model for video activity recognition tasks, making

them a good candidate to use for our research.

2.2 Depth Estimation
The goal of depth estimation is to calculate a depth map, the dis-

tance of every point or pixel in a video from the camera. Obtaining

accurate depth maps can help models understand the geometry of

the scene in the video. This is very important in activity recognition

tasks because knowing the location and orientation of a subject

relative to other objects in the scene can provide helpful context

when differentiating between similar action categories. Addition-

ally, depthmaps can helpmodels process partially occluded features,

like objects and body parts. Although depth cameras can provide

precise depth maps because they use depth sensors, they are not

widespread and more expensive than traditional video cameras. As

a result, research has shifted to predicting depth maps directly from

a normal video. Traditional video only contains RGB information,

making it difficult to recover depth data [15]. Fortunately, deep

learning has emerged as a solution and has obtained state-of-the-

art results on several depth estimation benchmarks. Two of the

primary datasets that were studied for this research were KITTI

[14] and NYU-Depth [18].

The KITTI dataset consists of over 93,000 images of outdoor

sceneswith their corresponding depthmaps. The dataset is captured

through a car equipped with two color cameras, 2 gray-scale cam-

eras, a laser scanner, and a global positioning system. For monocular

estimation, only the data from the cameras and the laser scanner

are used. Although performance on this dataset is important in

evaluating depth estimation models, it is not the ideal dataset for

our use case, since we primarily focus on indoor activities.

The NYU-Depth-v2 dataset contains over 400,000 RGB-Depth

Map image pairs for depth estimation tasks. Scenes are all captured

indoors with a video camera and a Microsoft Kinect simultaneously

collecting data. Each image captured has a size of 640x480 and

depth ranges from 0.5 meters to 10 meters. Furthermore, the dataset

includes 464 different scene setups, providing plenty of variation

for evaluating depth estimation models.

Modern depth estimation models tend to rely on an encoder-

decoder convolutional neural network that takes in an input RGB

frame and output a new depth image [15]. The encoder tradition-

ally consists of several convolutional and pooling layers that are

designed to extract depth-associated features. The decoder, on the

other hand, consists of deconvolutional and pooling layers that take

in the encoder embedding and generate the depth map. Using a

deep encoder-decoder architecture allows the model to still recover

depth information even if the input image has small occlusions. One

of the current state of the art models, Adabins [4] uses a baseline

encoder-decoder architecture, EfficientNet B5 [20], and attempts to

process global information using a vision transformer. The trans-

former is used to predict depth bins, which discretizes the overall

depth range of the scene. The centers of these bins are then used

as the final depth values for each pixel in the image.

2.3 RGB-D Activity Recognition
There are several methods for performing action recognition from

RGB-D sensors. Early work in depth-based methods relied on con-

structing hand-crafted features that are then processed to identify

the activity class. Li et al. extracted bags of 3D points sampled from

the silhouette of depth maps and performed clustering on these

features for classification [13]. Yang et al. calculated differences

between adjacent depth maps and then extracted features using

Histogram of Gradients (HOG) [23] . However, these methods rely

on constructing specialized features, which can be computation-

ally expensive and not generalizable to multiple datasets/domains.

Research has shown that these depth-based methods can perform

better than those that only use RGB-based video. As a result, recent

work has focused on using deep learning to fuse multiple modalities

(i.e. RGB and Depth) to get more accurate predictions in activity

recognition tasks. Xu et al. preprocesses RGB-D frames by extract-

ing frames that contain obvious motion and passes these frames

into a two-stream I3D network that takes in RGB and Depth frames

[22]. Hu et al. trained a CNN with bilinear pooling to fuse temporal

information from RGB and Depth data [7]. Imran trained CNNs

on motion history information (MHI) from RGB and rotated depth

maps (front, side, and top view), and averaged their predictions for

activity classification [9].

There are several benchmark datasets used to evaluate RGB-D

based HARmodels. The most popular is NTU RGB-D. The dataset is

a large-scale indoor activity recognition dataset that contains 56,660

action samples [16]. Each sample consists of an action type/class,

an RGB video, depth maps for each video frame, and skeletal pose

data. The depth and pose data are recorded using Microsoft Kinect

cameras. The dataset consists of 40 subjects performing 60 different

actions (i.e. "drink water", "put on jacket", etc.). Each video is also

recorded at different angles using 3 Kinect v2 cameras placed at

different angles in the scene. As a result, the dataset provides 2

splits that are used for training evaluation. The first split is the

cross-subject split where videos of 20 subjects are used for training

and the remaining subjects are used for evaluation. The second split

is a cross-view split where 2 camera views are used for training

and the remaining 1 camera view is used for testing.

3 METHODOLOGY
The goal of our experiments was to first understand the perfor-

mance of estimated modality data and also the effect of combining

multiple modalities has on classification performance. Our work

focuses on 2 modalities: RGB and Depth. Since depth can’t be ex-

tracted directly from raw RGB frames, we rely on off-the-shelf esti-

mation models. We then use the NTU RGB+D dataset that contains

ground-truth data for each modality and obtain estimated data from

the RGB frames. Next, we pass both ground-truth and estimated

modality data into a classification model and compare performance.

After conducting per-modality analysis, we conducted experiments

on combining modality data to understand which modality combi-

nations are the best for activity recognition tasks.
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3.1 Modality Estimation
Since RGB frames can be extracted without an estimation model,

we focus on obtaining estimated depth data. For obtaining esti-

mated depth sequences, we use the current state-of-the-art depth

estimation model: Adabins [4]. Adabins outputs high-density depth

maps from single RGB frames. To obtain depth sequences, we run

the model on every frame in a given video. For our experiments, we

used an Adabins model pre-trained on the NYU-Depth-v2 dataset.

NYU-Depth contains over 1400 depth annotated images focusing

on indoor scenarios. We believe using this dataset is sufficient since

we run our experiments on the action recognition dataset, NTU

RGB-D, which also contains similar indoor scenes. Figure 1 shows a

comparison between the real and estimated depth information from

NTU RGB-D. It is important to note that even though the edges in

the estimated depth frame are not as defined, Adabins was still able

to recover similar depth features compared to the real depth frame.

Figure 1: Comparison of Real Depth Image (left) vs. the Pre-
dicted Depth Image (right)

3.2 Activity Classification
To evaluate modality estimation data, we need ground-truth RGB

and DepthMap data. To obtain this, we use the NTU RGB+D dataset

[16], which provides activity labels for videos with per-frame depth

annotations. The dataset contains over 56,000 annotated videos

across 60 activity classes. To test each modality, we use a baseline

I3D architecture for RGB and Depth since these modalities are

represented as images. We train our model on the subject split of

the NTU RGB+D dataset for each modality. We then evaluate the

model on both the ground truth and our estimated modality data

for accuracy and F1-score.

3.3 Implementation Details
Individual RGB and depth frames from the NTU Dataset are resized

to 300x300 and normalized between -1 and 1 before being passed

into the I3D network. Estimated depth is obtained at a frame level

from the pre-trained Adabins model and preprocessed in a similar

fashion. We then pass in the first 32 frames from each video and

apply random horizontal flipping during the training process. Each

I3D model is trained for 64,000 iterations with a batch size of 24

across 2 NVIDIA Titan Xp’s.

RGB Pred. Depth RGB+Pred.Depth

Accuracy 0.53 0.41 0.54

F-1 Score 0.55 0.43 0.56

Table 1: Final Accuracy and Average Weighted F-1 Scores

3.4 Multimodal Learning
After obtaining trained models on each individual modality, we per-

form late fusion by averaging the final logits from the I3D network

for different combinations of modalities. In our experiments, we

tested fusing RGB and Depth.

Figure 2: Fusion Architecture for Multimodal Learning

4 RESULTS

Figure 3: RGB vs Depth data for Clapping Activity

Due to technical issues, we were unable to obtain results using

ground truth depth data in time. However, we present results from

the RGB and Predicted depth models.

Table 1 shows the performance results after 64,000 training iter-

ations. Although we were unable to get results with the real depth,

the metrics for predicted depth shows that the model is able to

learn activity classes from just estimated depth frames.

4.1 Classification Performance
Although the predicted depth model performed worse than the

RGB model, it performed better for certain classes where body
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parts or objects are occluded ("Clapping", "play with phone/tablet",

and "Wipe face"). The most notable example was in the "Clapping"

activity class. The predicted depth model obtained an F-1 score of

0.26, while the RGB model obtained an F-1 score of 0.21. Figure 7

shows a comparison between RGB and depth frames from a sample

clapping video. When the subject’s hands are together during a clap,

one arm is mostly occluded. However, we found that in the depth

frames, the subject’s arms have different depth values. We also

found a similar pattern with the "Wipe Face" class where some of

the predicted depth frames showed clear depth differences between

the subjects’ arm/hand and their face. This indicates that predicted

depth information provides features that can improve classification

performance for certain activities.

4.2 Fusion Performance
In addition to single modality results, we also reported performance

from late fusion with RGB and predicted depth. We found a slightly

improved F-1 score and accuracy when averaging the RGB and

depth model predictions, with an increase of 0.1 for both. Although

this is not a huge improvement, it provides further indication that

estimated depth can improve classification.

Figure 4: Confusion Matrix for RGB

4.3 Misclassifications
Figures 4 and 5 plot the confusion matrices for RGB and predicted

depth, respectively. Lighter colors signify a higher frequency, while

the darker colors signify a lower frequency of samples. When com-

paring our baseline RGB model’s confusion matrix with the pre-

dicted depth model’s, there are a couple of differences. The most

significant difference is the brighter point between classes 58 (two

people walking towards each other) and 41 (staggered walking). The

Figure 5: Confusion Matrix for Predicted Depth

Figure 6: Confusion Matrix for RGB+Predicted Depth

predicted depth model had a higher rate of classifying staggered

walking when the actual video is two people walking towards each

other. This is likely due to depth data lacking information required

to distinguish two subjects. Since walking and staggered walking

are similar activities, it’s possible the predicted depth model was
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unable to classify them accurately. That being said, this is not a prob-

lem with using estimated depth data since real depth information

would lack the same features. Additionally, the confusion matrix

for the fused RGB+Predicted Depth results (Figure 7) shows that

combining the modalities resulted in the misclassification going

away.

Similarly, there are also cases where the estimated depth model

had a lower misclassification rate between certain classes compared

to the RGBmodel. One example is between the true class 36 (wiping

face) and predicted class 43 (having a headache) in Figure 4. Since

we’ve found that estimated depth has performed better when there

are occluded objects/limbs, it’s possible that the depth model was

able to decipher between the two actions more accurately. Addi-

tionally, Figure 6 shows that fusing the two modalities lowered the

number of misclassifications for this pair of activities.

5 DISCUSSION/FUTUREWORK
Our results serve as an initial look into the feasibility of using esti-

mated depth data in activity recognition models. We found that our

estimated depth model was to take achieve adequate performance

on the NTU dataset. We believe we achieved good benchmark re-

sults since we used a baseline activity recognition model without

any special preprocessing of depth data or video frames. Further-

more, there is currently very limited results on using a vanilla I3D

model with depth data, making it difficult to compare results.That

being said, we found evidence indicating that the estimated depth

model was using depth related information to achieve better classi-

fication performance in key activity categories. Our fusion results

also show that the RGB and estimated depth modality complement

each other well by reducing misclassificions in certain activity

classes. Thus, we see promising results indicating that activity

classification models can enjoy benefits of 3D information from

monocular depth estimation.

Due to the time and resources needed to train these models,

we’re unable to report results on using real depth information.

However, future research should continue this work by comparing

classification performance with real depth data and identifying

activity classes that are not easily learned when using estimated

information. Additionally, further study is required to identify the

best way to fuse RGB and estimated depth information together.

Research should also look into other estimated modalities, such

as skeletal data, that can be extracted from just RGB video and

whether they can replace ground truth information in activity

recognition tasks. Additionally, modality estimation models should

be fine-tuned on datasets with people to improve segmentation

between body parts.

Overall, our work shows that it is feasible to learn depth features

relevant for activity classification from just a traditional RGB video.

We believe that this serves as a first step towards eliminating the

need for depth cameras for HAR tasks and improving the versatility

of models that depend on depth data.

REFERENCES
[1] Carreira, J., and Zisserman, A. Quo vadis, action recognition? a new model

and the kinetics dataset, 2018.

[2] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. Imagenet: A

large-scale hierarchical image database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition (2009), pp. 248–255.

[3] Donahue, J., Hendricks, L. A., Rohrbach, M., Venugopalan, S., Guadarrama,

S., Saenko, K., and Darrell, T. Long-term recurrent convolutional networks

for visual recognition and description. IEEE Transactions on Pattern Analysis and
Machine Intelligence 39, 4 (2017), 677–691.

[4] Farooq Bhat, S., Alhashim, I., and Wonka, P. Adabins: Depth estimation

using adaptive bins. In 2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (2021), pp. 4008–4017.

[5] Garg, R., B.G., V. K., Carneiro, G., and Reid, I. Unsupervised cnn for single

view depth estimation: Geometry to the rescue. In Computer Vision – ECCV
2016 (Cham, 2016), B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds., Springer

International Publishing, pp. 740–756.

[6] Heilbron, F. C., Escorcia, V., Ghanem, B., and Niebles, J. C. Activitynet: A

large-scale video benchmark for human activity understanding. In 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2015), pp. 961–970.

[7] Hu, J.-F., Zheng, W.-S., Pan, J., Lai, J., and Zhang, J. Deep bilinear learning for

rgb-d action recognition. In Proceedings of the European Conference on Computer
Vision (ECCV) (September 2018).

[8] Idrees, H., Zamir, A. R., Jiang, Y.-G., Gorban, A., Laptev, I., Sukthankar, R.,

and Shah, M. The thumos challenge on action recognition for videos “in the

wild”. Computer Vision and Image Understanding 155 (Feb 2017), 1–23.
[9] Imran, J., and Kumar, P. Human action recognition using rgb-d sensor and deep

convolutional neural networks. In 2016 International Conference on Advances in
Computing, Communications and Informatics (ICACCI) (2016), pp. 144–148.

[10] Ji, S., Xu, W., Yang, M., and Yu, K. 3d convolutional neural networks for human

action recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence
35, 1 (2013), 221–231.

[11] Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijayanarasimhan,

S., Viola, F., Green, T., Back, T., Natsev, P., Suleyman, M., and Zisserman, A.

The kinetics human action video dataset, 2017.

[12] Kumar, A. C., Bhandarkar, S. M., and Prasad, M. Monocular depth prediction

using generative adversarial networks. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW) (2018), pp. 413–4138.

[13] Li, W., Zhang, Z., and Liu, Z. Action recognition based on a bag of 3d points. In

2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
- Workshops (2010), pp. 9–14.

[14] Liao, Y., Xie, J., and Geiger, A. KITTI-360: A novel dataset and benchmarks for

urban scene understanding in 2d and 3d. arXiv.org 2109.13410 (2021).
[15] Ming, Y., Meng, X., Fan, C., and Yu, H. Deep learning for monocular depth

estimation: A review. Neurocomputing 438 (2021), 14–33.
[16] Shahroudy, A., Liu, J., Ng, T.-T., and Wang, G. Ntu rgb+d: A large scale dataset

for 3d human activity analysis, 2016.

[17] Shaikh, M. B., and Chai, D. Rgb-d data-based action recognition: A review.

Sensors 21, 12 (2021).
[18] Silberman, N., Hoiem, D., Kohli, P., and Fergus, R. Indoor segmentation and

support inference from rgbd images. In Computer Vision – ECCV 2012 (Berlin,
Heidelberg, 2012), A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, and C. Schmid,

Eds., Springer Berlin Heidelberg, pp. 746–760.

[19] Simonyan, K., and Zisserman, A. Two-stream convolutional networks for action

recognition in videos. InAdvances in Neural Information Processing Systems (2014),
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q. Weinberger, Eds.,

vol. 27, Curran Associates, Inc.

[20] Tan, M., and Le, Q. V. Efficientnet: Rethinking model scaling for convolutional

neural networks, 2020.

[21] Tran, D., Bourdev, L., Fergus, R., Torresani, L., and Paluri, M. Learning

spatiotemporal features with 3d convolutional networks, 2015.

[22] Xu, Z., Vilaplana, V., and Morros, J. R. Action tube extraction based 3d-cnn

for rgb-d action recognition. In 2018 International Conference on Content-Based
Multimedia Indexing (CBMI) (2018), pp. 1–6.

[23] Yang, X., Zhang, C., and Tian, Y. Recognizing actions using depth motion

maps-based histograms of oriented gradients. pp. 1057–1060.

[24] Zhao, C., Sun, Q., Zhang, C., Tang, Y., and Qian, F. Monocular depth estimation

based on deep learning: An overview. Science China Technological Sciences 63, 9
(Jun 2020), 1612–1627.

5


	Abstract
	1 Introduction
	2 Literature Review
	2.1 Convolutional Neural Networks
	2.2 Depth Estimation
	2.3 RGB-D Activity Recognition

	3 Methodology
	3.1 Modality Estimation
	3.2 Activity Classification
	3.3 Implementation Details
	3.4 Multimodal Learning

	4 Results
	4.1 Classification Performance
	4.2 Fusion Performance
	4.3 Misclassifications

	5 Discussion/Future Work
	References

