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SUMMARY

Narrowband very low frequency (VLF) remote sensing has proven to be a useful tool

for characterizing the ionosphere’s D region (60 to 90 km altitude) electron density profile.

VLF remote sensing experiments typically use a single narrowband VLF transmitter and

receiver pair to determine a widely used two parameter exponential electron density profile,

first introduced by Wait and Spies [1964] as waveguide parameters. Electron density profile

inference with a single transmitter and receiver pair reveals temporal characteristics of the

D region, however, more than one transmitter and receiver pair are needed to deduce spatial

D region properties.

This work expands upon single transmitter and receiver electron density profile inference

methods to create a more generalized narrowband VLF remote sensing method that con-

currently resolves the two-parameter electron density profile along an arbitrary number of

transmitter and receiver paths. A target function is constructed to take in a single time step

of narrowband amplitude and phase observations from an arbitrary number of transmitter

and receiver combinations and return the inferred waveguide parameters along all paths.

The target function is approximated using an artificial neural network (ANN). Synthetic

training data is generated using the US Navy’s Long-Wavelength Propagation Capability

(LWPC) program, which is then used to train the ANN. Real-world performance of the

ANN is measured in two ways. First, ANN inferred waveguide parameters are compared

to a variety of previously published narrowband VLF remote sensing experiments. Sec-

ond, ANN inferred waveguide parameters are used in LWPC to predict narrowband VLF

amplitude and carrier phase at a receiver that was withheld when performing the waveg-

uide parameter inference. Results show the approximated target function performs well in

capturing temporal and spatial characteristics of the D region.

xii



CHAPTER 1

INTRODUCTION

1.1 Research Purpose

On the Earth’s surface, the atmosphere is a neutral gas, but in the space environment near

the Earth, where satellites and astronauts orbit, the environment instead consists mainly of

charged electrons and ion species, which is known as a plasma. In between Earth’s ground

and near-Earth space exists a region where the neutral gas transitions to a plasma, and this

transition region is called the ionosphere (60−500 km in altitude). For some technologies,

like communications between ground stations and satellites, the ionosphere is a nuisance and

degrades system performance. Other technologies, such as over-the-horizon (OTH) radar

and submerged submarine communication, fundamentally rely on the ionosphere to serve as

an electrically conductive boundary. Regardless of the ionosphere being an inconvenience

or a necessity for system operation, systems that are affected by the ionosphere can improve

their performance by better understanding the dynamics of this weakly to strongly ionized

transition region. This thesis focuses on a specific type of radio wave communication, known

as very low frequency (VLF 3−30 kHz) communication, and the interaction between VLF

waves and the lowest portion of Earth’s ionosphere, known as the D region (60−90 km

altitude).

Electrical properties of the D region are challenging to measure. The altitude range

of the D region is inaccessible for conventional in situ measurement techniques, such as

aircrafts, balloons, and spacecraft. Sounding rocket measurements are a useful tool for

directly measuring the ionosphere [Seddon, 1958; Aikin et al., 1964; Kane and Troim, 1967],

however these types of measurements are costly and cannot be maintained continuously

nor over a large area. Ionospheric diagnostic methods, such as ionosondes, incoherent

scatter radar, or monitoring total electron count from GPS signals, work well when inferring

ionospheric properties above ∼90 km, where the density of charged particles is much higher,

but are often unreliable when examining the D region [Rowe et al., 1974; Sechrist , 1974;
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Mathews et al., 1982].

VLF radio waves have proven to be a useful diagnostic tool for remote sensing the D

region. A VLF wave reflects nearly completely from the D region, unlike higher frequencies

which pass through the D region. Upon reflection, the amplitude and/or phase of the VLF

wave changes depending on the current physical state of the D region. Observations of

these amplitude and phase changes can then be compared to a theoretical model to infer

electrical properties of the D region; this technique is known as VLF remote sensing. The

goal of this thesis is to develop a VLF remote sensing method, with an array of transmitters

and receivers, to gain a deeper understanding of the complex dynamics of the D region and

improve predictions for narrowband VLF propagation.

1.2 VLF Radiation Sources

VLF, and to a lesser extent Low Frequency (LF 30−300 kHz), radio waves efficiently reflect

from the D region ionosphere and Earth’s surface. Within the D region, the electron

density, which dominates the electrical properties, is rapidly increasing with altitude. As

a VLF wave propagates upward into the D region, it rapidly refracts due to this sharp

gradient [Budden, 1985, p. 307]. In practice this refraction occurs over a narrow altitude

range. Once an upward propagating VLF wave reflects from the D region, it begins to

propagate downward towards Earth’s surface, which is also a good conductor for VLF

waves. These two concentric conducting sphere-like shells form what is commonly referred

to as the Earth-ionosphere waveguide (EIWG), and allow VLF waves to efficiently propagate

to global distances.

A simplified (not to scale) cartoon of VLF waveguide propagation is shown in Figure 1.1.

The red arrow represents a single ray emanating from the transmitter and then reflecting

between the surfaces of the D region ionosphere and Earth’s surface. Note that the ray has

a curve to it during its reflection with the ionosphere. This is done to emphasize that the

wave does not abruptly reflect as if the D region is a perfect conductor, but instead the wave

refracts and eventually heads back towards Earth. The reflection at Earth is dependent on

the conductivity and permittivity at the point of reflection. Here, the ray reflects where

2



Figure 1.1: Simple EIWG propagation cartoon. The arrow shows a single ray reflecting
off the D region and Earth’s ground. The arcs represent a more realistic picture of the
transmitter filling up the waveguide with VLF energy which then propagates towards a
receiver.

there is water. If the water is salt water, which is a good conductor (σ = 4), then the wave

would refract much quicker than it does in the ionosphere. A single ray isn’t the complete

picture, however, in practice a transmitter will illuminate the entire waveguide with VLF

energy, and a portion of that energy will propagate within the EIWG, as depicted by black

arcs propagating towards a receiver.

VLF radiation is ubiquitous throughout the world. The three most common VLF ra-

diating sources are VLF transmitters, lightning, and electromagnetic noise generated from

human-made devices and infrastructure, which will be referred to as electromagnetic inter-

ference (EMI) [Chrissan and Fraser-Smith, 1996]. Some examples of EMI are electromag-

netic emissions from 50 and 60 Hz power lines (whose higher harmonics often reach into the

VLF band), motors for heating ventilation and air conditioning (HVAC), and DC-to-AC

converters often found in solar panels. For those who use sensitive instruments to measure

VLF, it is almost always the case that a device that uses some form of alternating current

will produce an appreciable amount of EMI in the VLF spectrum. With the exception of

power line radiation, EMI typically does not efficiently couple into the Earth-ionosphere

waveguide and is seen only when close to the EMI source (usually 10s of meters). VLF

3



transmitters and lightning, however, produce VLF energy that efficiently couples into the

Earth-ionosphere waveguide and are the two most common sources for VLF EIWG propa-

gation. Power line radiation can also be detected at long range [Cohen et al., 2010b] and

have also been detected in space [Němec et al., 2015].

1.2.1 Narrowband VLF Transmitters

From 1971 to 1997, a global network of terrestrial VLF transmitters were operated by the US

and six other nations, forming the Omega global navigation system [McRae and Thomson,

2000]. These transmitters were phase stable navigation beacons. VLF receiver operators

would be able to discern their location by comparing the measured phase from multiple

VLF transmitters. Since VLF waves propagate to global distances within the EIWG, only

8 VLF transmitters operating in the 10−14 kHz frequency range were required to maintain

global navigation coverage [Swanson, 1983]. Profound advancements in VLF transmitter

design and VLF propagation modeling occurred in the 1950’s and 1960’s in preparation

for the deployment of the Omega system, and VLF research from this time period laid the

foundation for much of the VLF propagation theory used today. Advancements in global

navigation satellite systems (GNSS) eventually led to the decommissioning of the Omega

system.

Today, the US Navy and other countries operates VLF transmitters across the world to

facilitate communication to submerged submarines. Some of these submarine transmitters

are repurposed Omega transmitters. VLF transmitters are an obvious choice for submarine

communication because global coverage can be obtained with a small number of transmit-

ters, and VLF waves penetrate salt water much deeper than high frequency waves. Saltwater

has a skin depth (a metric for measuring how well a wave penetrates a medium) of 1.6 m

at 25 kHz and a skin depth of 0.0063 m at 1.575 GHz (L1 frequency for GPS), where skin

depth is δ = 1/
√
ωµσ/2 for σ/(ωǫ)≫ 1, relative permittivity (ǫr) is 81, and conductivity

(σ) is 4 S/m [Inan and Inan, 2000, p. 56]. So, a 25 kHz wave has a skin depth that is three

orders of magnitude larger than a 1.575 GHz GPS signal, which is an appreciable difference

for a submarine that is trying to stay submerged and maintain covert operation.

There are two fundamental barriers to using VLF as a means for communication. First,
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the bandwidth for VLF is limited; the entire VLF range is only 27 kHz wide, which is

not much considering normal human speech uses ∼3 kHz bandwidth. Nothing can be

done about this innate bandwidth problem, and so the communication capacity of VLF is

fundamentally limited to slow data transfer speeds. Second, VLF wavelengths are extremely

long. A conventional quarter-wave monopole at a frequency of 10 kHz (∼30 km wavelength)

would need to stand 7.5 km in the air. Creating such a large antenna via conventional

means is a challenging task, although some multi-kilometer antenna projects have proven

successful [e.g., Raghuram et al., 1974; Carpenter et al., 1988; Smith and Hanselman, 1978].

With careful engineering, the antenna size problem can be mitigated, but at the cost of

operational bandwidth [Watt , 1967].

Earth’s ground is a good conductor in the VLF range, and so it follows from Maxwell’s

boundary conditions that a ground-based VLF antenna would excite VLF waves that have

a vertically polarized electric field. A quarter-wave monopole would be a great antenna

choice, except the physical height of the antenna is limited since towers usually extend to

only 100’s of meters tall. Instead, an antenna that is physically short but appears to be

electrically tall is needed.

Consider a quarter-wave long transmission line that is terminated with a high impedance.

Transmission line theory shows that the current through the load will be small but the

voltage across the load will be large, which means the current and voltage are close to 90◦

out of phase with each other at the load, but at the source the current and voltage are

exactly in phase with each other. A measurement of the current phase and voltage phase

at some point towards the middle of the transmission line reveals that the phase of the

current is leading the phase of the voltage. The idea is to physically reduce the length

of the transmission line while still maintaining the electrical appearance of the original

quarter-wave transmission line. If the length of the transmission line were reduced, then

adding extra capacitance to the load will maintain the relationship of the current phase

leading the voltage phase. Another way of saying this is that a shorter transmission line

with the correct capacitance added to the load will have the same the input impedance as

a quarter-wave transmission line.

Many VLF antennas use a method that is similar to this transmission line exercise,
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known as top-loading [Watt , 1967]. A top-loaded VLF antenna will have a wire that runs

vertically upward, using towers or mountains for support, and will add extra capacitance to

the top of the antenna by stringing wires, which are connected to the cable at the top of the

tower or mountain, horizontally above the ground. The collective series of horizontal wires

at the top of the antenna is typically hundreds of acres in size and referred to as a top-hat.

The top-hat and Earth’s ground form the capacitance needed to make a physically short

antenna appear electrically long. In practice, a top-loaded VLF antenna is complemented

with a large series inductor (which usually has its own dedicated building) at the base of

the feed wire. Together, the capacitance from the top-loading and the large inductor at the

base create a high Q condition (quality factor, the ratio of the stored and dissipated energy)

[Swanson, 1974]. This high Q condition limits the bandwidth of the antenna because the

antenna becomes appreciably inductive with a small increase in frequency and appreciably

capacitive with a small decrease in frequency, and so the operating frequency range is limited

to a range of a few hundreds of Hz at best.

Power, voltage, and current are also problems for VLF antenna systems [Gobbel , 1967].

VLF antennas are inefficient and much of the input power goes into ground and copper

losses, therefore VLF antennas operate with a high input power that sometimes exceeds 1

MW. Corona formation is usually the limiting factor for a VLF antenna’s maximum power.

High voltage regions on the antenna that are near ground potential and physically sharp

points, such as bends or frays in a wire, are common places for corona formation. The

radiation resistance of the antenna is small, on the order of 1 Ω, and thus a large amount

of power being injected into the antenna results in large currents traveling along the cables.

The antenna and electrical systems need to be engineered to handle these high power,

voltage, and current conditions which makes the antennas more expensive and difficult to

design.

1.2.2 Radio Atmospherics

Lightning strokes are excellent VLF radiators and complement narrowband VLF transmit-

ters in different ways. Lightning is distributed all over Earth, whereas there are a small

number of narrowband VLF transmitters permanently stationed throughout the world.

6



Lightning also generates broadband emissions that permeate the entire VLF band, whereas

narrowband VLF transmitters have a very small bandwidth. The drawback for using light-

ning as a VLF source for ionospheric remote sensing is that the distribution of lightning

is highly variable, and the VLF emissions are unique from one lightning flash to the next.

About three quarters of lightning flashes are characterized as intracloud, meaning they oc-

cur entirely within a thundercloud. Most of the remaining flashes are called cloud-to-ground

since they establish a conducting path to some location on the ground. Within cloud-to-

ground lightning, there are positive and negative flashes, which refer to the region within

the cloud from which the lightning discharge originated. Intracloud flashes are poor VLF

radiators for two reasons. First, they tend to have lower peak currents [Boccippio et al.,

2001]. Second, the current travels mostly in a horizontal sense and much of the electric-field

is canceled out by Earth’s ground due to Maxwell’s boundary conditions (an E-field hori-

zontal to a perfect electric conductor will become zero at the boundary of the conductor)

[Smith et al., 2004].

A lightning flash is the entire cumulative discharge for a lightning event, and during a

flash there are typically multiple unique discharges, known as strokes. It is each individual

stroke that produces a sferic, and so a single flash can produce multiple sferics that are

separated 10’s of milliseconds apart.

A simple explanation for VLF radiation from a cloud-to-ground lightning stroke is that it

is a quick movement of charge in a downward/upward direction over a distance that is on the

same order of magnitude as VLF wavelengths. This vertical current channel, which can have

peak currents of several hundred kA, is roughly analogous to a vertical monopole attached

to a ground plane (Earth), although the horizontal currents within the thundercloud may

also contribute to the VLF radiation. Hence, lightning radiates VLF energy efficiently and

much of the energy couples into the Earth-ionosphere waveguide [Taylor , 1960].

Radio energy emitted from a lighting stroke is commonly referred to as a radio at-

mospheric, or sferic, and the exact radiation pattern and spectral energy of the sferic is

usually not well known, due to the chaotic nature of lightning. Radiated sferic energy

typically peaks at a frequency between 5 to 10 kHz and the power spectrum falls off in-

versely with frequency [Le Vine, 1987]. Christian et al. [2003] used the Optical Transient
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Detector instrument aboard the MicroLab-1 satellite to estimate an average of ∼45 lighting

flashes/sec (includes intracloud and cloud-to-ground flashes) over the entire world. A high

occurrence rate of lightning flashes produced around the world joined with the fact that

sferics efficiently propagate in the Earth-ionosphere waveguide means that the natural VLF

radio band is constantly filled with and dominated by energy originating from lightning

[Chrissan and Fraser-Smith, 1996].

Source locations for sferic emissions can be accurately found using a lightning detection

network. The National Lightning Detection Network (NLDN) is an excellent lightning de-

tection network that operates in the US and can detect both cloud-to-ground and intracloud

strokes with high stroke location accuracy [Holle et al., 2016]. Detection of lightning on a

global scale is done using the Vaisala Inc. GLD360 network [Said et al., 2010, 2013], the

World Wide Lightning Location Network (WWLLN) [Rodger et al., 2009], or the Earth

Networks Total Lightning Network (ENTLN) [Liu and Heckman, 2011]. These systems

measure VLF/LF sferic emissions from the stroke and use time of arrival and magnetic

direction-finding methods to determine the location of the stroke. Since the sensor coverage

of these three systems is global and the density of network receivers is sparser than NLDN,

the global networks have poorer location accuracy than NLDN.

1.3 Data Acquisition

The Georgia Tech LF Radio Lab has designed a VLF/LF/MF radio receiver, known as the

LF AWESOME (Atmospheric Weather Electromagnetic System for Observation, Modeling,

and Education) receiver [Cohen et al., 2018a]. This receiver is an evolutionary design of

the Cohen et al. [2010a] VLF AWESOME receiver. While the old version is named a VLF

receiver and the new version is named an LF receiver, the LF AWESOME receiver functions

just as well at VLF frequencies. Notable differences between the receivers are the LF version

has a bandwidth of 0.5−470 kHz, compared to the VLF receiver’s 0.3−47 kHz bandwidth,

and the LF receiver has an (optional) integrated GPS module and analog-to-digital converter

(ADC).
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Figure 1.2: Block diagram of the LF AWESOME receiver.

1.3.1 Receiver Performance

Each LF AWESOME receiver is typically equipped with two magnetic field loop antennas

(although a third can be used if desired), one aligned north and south (N/S) and the

other east and west (E/W). A N/S aligned antenna is sensitive to transverse-magnetic

(TM) waves propagating in the N/S direction, while an E/W antenna is sensitive to E/W

traveling TM waves. Another common antenna type used in VLF receivers is a single

vertical electric field monopole. The major advantage of using two loop antennas with the

LF AWESOME receiver is the ability to perform direction finding (determining angle of

arrival) and decompose the horizontal magnetic flux density into its azimuthal Bφ (magnetic

flux density for TM waves) and radial Br (magnetic flux density for transverse-electric (TE)

waves is the superposition of Br and Bz) components [Krider et al., 1976].

Figure 1.2 shows a block diagram of the signal’s path through the system. Directly next

to the antenna is a low-noise amplifier (LNA) system that impedance matches to the loop

antennas. A calibration circuit is embedded inside the pre-amplifier box and calibrates the

system. Away from the antennas, inside a building or weather protected environment, are

a line receiver and a computer. The pre-amplifier connects to the line receiver through a

special audio cable that can be as long as 1,000s of feet. Having such a long cable allows

for the loop antennas to be placed far away from buildings and sources of EMI, like 60 Hz

power lines. At the line-receiver, the analog signal is converted to a digital signal and then

sent to a computer.

Acquisition of the radio signal inside the line-receiver is accomplished using a 12th order

elliptical low pass filter (LPF) with a cutoff frequency of 470 kHz and a 16-bit analog-
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to-digital converter (ADC) with a 1 MHz sampling rate. Data from the analog-to-digital

converter is sent to the computer, where it is saved to disk and processed in real time.

The MSK demodulation algorithm from Gross et al. [2018] (explained in Chapter 3) is

used to extract the amplitude, carrier phase, and clock phase of each narrowband VLF

transmitter on both the N/S and E/W channels. This real time information gathered from

the demodulation algorithm is then sent to a server, named Geniza, operated by the LF

Radio Lab on Georgia Tech’s campus.

Precisely sampling the radio signal with a Universal Time (UT) aligned clock is of the

utmost importance. Accurate comparison of VLF measurements between sites is dependent

on each receiver, even those thousands of miles away, sampling the radio signal at the same

moment. If each receiver samples the radio signal at a different time, then determining

radio propagation characteristics through site comparison will not be possible. The LF

AWESOME receiver uses the algorithm developed by Cohen et al. [2018a] to synchronize

the sampling clock with GPS, and achieves a root-mean-square error (RMSE) of ∼15 ns

when compared to other reliable timing sources.

1.3.2 Transmitter and Receiver Array

Ten continuously operating LF AWESOME receivers are currently deployed within the US.

Eight of the receiver locations are shown in Figure 1.3, and the final two reside in Alaska.

Three VLF transmitters are located along the northern border of the continental US. These

transmitters are constantly operating, except for a short time window every week where they

go offline for maintenance, otherwise these three transmitters are used to communicate with

submerged submarines. Long curves are shown that connect the transmitters and receivers,

which are known as great circle paths (GCPs). A GCP is the shortest path between two

points along the surface of a sphere. For a radio wave emanating from a transmitter, it is

assumed that the radio wave will travel along its GCP. However, scattering objects, such

as mountains or ionospheric perturbations, do cause multi-path VLF propagation and the

assumption that a VLF wave strictly follows a GCP is not always a valid assumption.

The cumulative use of the transmitters and receivers in Figure 1.3 forms an array with

an interesting geometry. Some GCPs intersect with other GCPs, while others have no
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Figure 1.3: Map of narrowband VLF transmitters and Georgia Tech LF Radio Lab receivers.

intersections. The PA, BW, and BX receivers are located close to each other, and if the

ground and ionosphere are considered to be slowly varying, then the electrical properties

of Earth and the ionosphere along these close GCPs should be similar. Also, the frequency

of the three northward transmitters are conveniently close to ∼25 kHz. Therefore, the

difference in transmitter frequency (and therefore, in the ionospheric response) is a minimal

concern when comparing observations between these three transmitters.

1.4 VLF Waves in the Ionosphere

Earth’s ionosphere is a plasma medium that efficiently reflects upward traveling VLF waves

back towards Earth. A plasma is a mixture of three types of particles: neutrals, electrons,

and ions. The approach taken here is to derive the complex valued index of refraction within

the plasma medium, which largely defines the response of the ionosphere to a certain radio

wave. This response allows us to derive how the wave will attenuate, shift in phase, or

rotate polarization with each ionospheric reflection.
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1.4.1 D Region Plasma Physics

During the daytime, radiation from the Sun dominates ionization in the D region, where

major ionized constituents include: nitric oxide (NO) from Lyman-α (1216 Å) radiation,

oxygen molecules (O2) from X-ray and and Extreme UltraViolet (EUV) radiation, and

nitrogen molecules (N2) from EUV radiation [Nicolet and Aikin, 1960]. Lower levels of ion-

ization are maintained during the nighttime by galactic cosmic ray radiation which ionizes

NO, O2, and N2 [Francey , 1970].

Neutral particle densities are much larger than charged particle densities within the D

region ionosphere. This means the D region ionosphere is a weakly ionized plasma. With

the number of neutrals far exceeding the number of electrons and ions, it follows that most

particle collisions will be between neutrals and either electrons or ions. The rate at which

these collisions occur are known as electron-neutral collision frequency νen and ion-neutral

collision frequency νin.

A VLF wave in Earth’s lower atmosphere, near the ground, is for the most part un-

affected by the neutral gas, and at this altitude a free space propagation assumption is a

good approximation. We can therefore characterize the free space propagation of the VLF

wave using the time-harmonic Ampere’s law

k×B = −ωµ0ǫ0E (1.1)

and Faraday’s law

k×E = ωB, (1.2)
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where

j

ω

ǫ0

µ0

k

E

B

is the imaginary unit (j =
√
−1),

is the VLF wave radial frequency,

is the permittivity of free space,

is the permeability of free space,

is the wave vector at frequency ω,

is the electric field phasor vector at frequency ω,

is the magnetic flux density phasor vector at frequency ω,

for low altitude propagation. This free space propagation assumption is not valid when the

VLF wave is propagating within the ionosphere. Therefore, we seek to couple Maxwell’s

free space equations with plasma physics theory to understand VLF propagation outside

and inside the ionosphere.

A common approach to solving plasma physics problems is to avoid the intractable

method of accounting for each individual particle, and instead use macroscopic equations

to simplify the analysis. This is done using a statistical mathematical statement, known as

the Boltzmann equation, that accounts for forces, diffusion, and collisions for all particle

species in the plasma. Macroscopic plasma equations are found by taking moments of the

Boltzmann equation [Inan and Golkowski , 2011, Ch. 4]. The time-domain zeroth-order

moment, known as the continuity equation, is

∂Nα(t)

∂t
+∇ · [Nα(t) uα(t)] = 0, (1.3)

where

α

Nα

uα

is an arbitrary charged particle species,

is the background particle density,

is the mean plasma fluid velocity vector.

The continuity equation is an expression that accounts for all particles within some differ-

ential volume. The change in particle population within the differential volume (left term)

must be equal to the total number of particles that exited the volume (right term). This
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equation assumes no particles are created or destroyed within the volume, but an additional

term can be added to the continuity equation to account for this process if needed.

Taking the first-order moment of the Boltzmann equation gives the momentum transport

equation

mαNα(t)
duα(t)

d t
= qαNα(t) [E(t) + uα(t)×B0]−∇ ·ψα(t) + Sαγ(t), (1.4)

where

mα

qα

B0

ψα

Sαγ

is the mass,

is the charge of the particle,

is the Earth’s static background magnetic flux density,

is the pressure tensor,

is the rate of change of momentum from collisions between two species.

Note that the amplitude of a radio wave in the plasma is assumed to be small; the implication

of this assumption is that the electric field E(t) of the radio wave will be the dominant driver

in perturbing the plasma medium and the magnetic flux density is negligible (uα(t)×[B(t)+

B0] ≈ uα(t)×B0). Therefore, the only magnetic flux density in the momentum transport

equation is Earth’s static background magnetic flux density.

The momentum transport equation represents the balancing of forces within a differ-

ential volume. This equation states that Newton’s second law of motion is balanced by

three other force terms: Lorentz, pressure, and collision. The equation’s left term comes

from Newton’s second law of motion (the product of mass and acceleration). The term

qα[E(t) + uα(t) × B0] is the Lorentz force and it accounts for forces associated with the

electric and magnetic fields. Pressure within the differential volume comes from random

thermal particle motion and this pressure force is part of the term ∇ · ψα. Species α may

collide with another species γ and this collisional force is part of the term Sαγ .

Working with derivatives can be a tedious task. Often times it is useful to transform

an equation from the time domain to the frequency domain to avoid time and spatial
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derivatives. We have been using the (t) notation to represent a time varying variable,

to represent these variables as phasors (a time-invariant complex value that represents a

sinusoidal function) we will simply drop the (t) argument. The time-harmonic continuity

equation is

jωNα − jNα k · uα = 0, (1.5)

where the spatial and temporal partial derivatives have been evaluated. The momentum

transport equation has the one time derivative and becomes

mαNαjωuα = qαNα(E + uα ×B0)−∇ ·ψα −mαNαναuα (1.6)

when written as a time-harmonic equation. Note the approximation Sαγ ≈ −mαNαναuα

is used on the momentum transport equation. The term Sαγ accounts for all collisions

over the entire particle velocity distribution, but this distribution is difficult to empirically

determine. Instead we approximate Sαγ as a frictional damping term (mαNαναuα), where

να is referred to as the effective collision frequency [Inan and Golkowski , 2011, p. 210].

Between equations (1.5) and (1.6), there is one term that is not accounted for, the

pressure tensor. This problem arises from the moments of the Boltzmann equation, where

taking the next moment introduce a new higher-order parameter. No matter how many

moments of the Boltzmann equation are taken a new higher-order term is always introduced

and a closed system of equations is never found. The approach here is to make some

assumption that removes the highest-order term, the pressure tensor ψα. The pressure

tensor is a function of the thermal velocity of a particle species, and an assumption is

now made that the phase velocities of the VLF wave will be much larger than the random

thermal motions of the particles, given that the amplitude of the wave is small [Bittencourt ,

2004, p. 211]. Making this assumption means that the particles are relatively motionless

compared to the phase velocity of the wave, thus the thermal velocity of the particles can

be ignored. This has been found to be a good assumption for radio wave propagation in the

D region [Budden, 1985, p. 4], but if it was not, higher-order moments of the Boltzmann

equation could be included until a justifiable approximation is found. Using these higher-
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order moments would result in the manifestation of plasma waves like Langmuir waves and

ion-acoustic waves. By setting the ψα term to zero we have effectively ignored particle

temperature. This type of plasma is aptly named a cold plasma since the temperature is

set to zero, and it is the foundation for magnetoionic theory (see Ratcliffe [1959] for an

in-depth discussion).

It is useful to introduce two important parameters that help describe the plasma. Plasma

frequency

ωpα =

√
Nαq2α
mαǫ0

(1.7)

is the natural resonant frequency of the particle species in the plasma, and gives an idea as

to how quickly a plasma can react to a perturbation. As expected, the larger the mass of

the particle the slower its response to a perturbation will be. Gyrofrequency, or cyclotron

frequency,

ωcα =
−qα|B0|
mα

(1.8)

comes directly from the Lorentz force and is the frequency in which a species will gyrate

around the background magnetic flux density B0. Depending on the species’ charge qα

the gyrofrequency can be positive or negative and gives a sense of rotation (right-hand or

left-hand) around B0. Using the fact that the current density vector Jα of the species is

the aggregate movement of charge in some direction

Jα = qαNαuα, (1.9)

and the cold plasma assumption (ψα = 0) on (1.6) gives an equation that relates the

time-harmonic current density and electric field

jωJα = ω2
pαǫ0E− ωcα(Jα × b̂0) + ναJα , (1.10)

where b̂0 is the unit vector pointing in the B0 direction.

Rearranging the terms in (1.10) and assuming, without loss of generality, b̂0 points in

the ẑ direction produces an interesting relationship between the current density and the
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electric field

Jα = σαE

=




σPα −σHα 0

σHα σPα 0

0 0 σ||α



E, (1.11)

where

σ||α =
ǫ0 ω

2
pα

(να + jω)
,

σPα =
ǫ0 ω

2
pα(να + jω)

(να + jω)2 + ω2
cα

,

σHα =
ǫ0 ωcα ω

2
pα

(να + jω)2 + ω2
cα

,

(1.12)

and the total current density is

J =
∑

α

σαE (1.13)

[Inan and Golkowski , 2011, p. 164]. This relationship is also found in the simplified form of

Ohm’s law [Chen, 1984, p. 186]. From σα it is apparent that the background magnetic field

(recall that the background magnetic flux density B0 is assumed to be in the ẑ direction)

causes anisotropy in the relationship between Jα and E. Electric fields perpendicular to

B0 will produce currents both parallel and perpendicular to Eα while still remaining per-

pendicular to B0, but electric fields parallel to B0 will produce currents also parallel to B0

that are proportional to Jα by σ||α. As expected, setting B0 to zero (ωcα = 0) forces σHα

to be zero and σPα to become σ||α, which is the typical isotropic behavior of Ohm’s law.

The conductivity tensor reveals multiple insights into the behavior of radio waves in a

collisional, magnetized, cold plasma. First, the conductivity tensor is not isotropic (it is

not a diagonal tensor and not all of its diagonal elements are equal), and thus the magne-

tized plasma exhibits anisotropic behavior. Second, all three conductivity parameters are

complex, which means a radio wave will undergo attenuation as it propagates through the
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medium if the complex value has a real component. This attenuation is due to charged par-

ticles colliding with neutral particles and is the primary mechanism for radio wave damping

in the ionosphere. It is known that the ionosphere has a high neutral particle density [Whit-

ten and Poppoff , 1971, p. 253], but if the neutral density goes to zero, causing the collision

frequency να to become zero, then the conductivity tensor’s diagonal terms become purely

imaginary, and attenuation along the diagonal of the matrix does not occur. Third, and

perhaps less apparent, is the effect different species have on the total conductivity tensor

(σ =
∑

α σα). Electrons have a mass much smaller than ions, and so a radio wave with a

frequency much larger than the electron cyclotron frequency is dominated by electron effects

(the ions moves so slow that it is as if they are motionless) [Budden, 1985, p. 55]. Under

this circumstance, using only electrons for conductivity is a good approximation. However,

radio waves lower in frequency, closer to the ion-plasma frequency and ion-gyrofrequency,

are affected by both electrons and ions. Thus, multiple species must be accounted for in the

tensor at lower frequencies (in the D region VLF waves below ∼10 kHz may be noticeably

affected by ions [Cummer , 1997]).

Ampere’s law for free space is written in (1.1), but the conductivity tensor in (1.11) shows

that the D region ionosphere cannot be treated as free space for VLF waves. Therefore, a

unitless tensor

ǫp = I− jσ

ǫ0 ω
, (1.14)

where I is the identity matrix, is added to Ampere’s law to account for the complicated

permittivity of the plasma medium

k×B = −ωµ0 ǫ0 ǫp ·E. (1.15)

Combining (1.2) and (1.15) gives a wave equation

k (k ·E)− (k · k)E + ω2µ0 ǫ0 ǫp ·E = 0, (1.16)
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which can also be written in a form that is reminiscent of an eigenvalue equation

[(
c2

ω2
kkT + ǫp

)
− n2I

]
· E = 0, (1.17)

where c = 1/
√
µ0 ǫ0 is the speed of light in free space and n = kc/ω is the index of

refraction. If n2 is treated as an eigenvalue, then the index of refraction is found by solving

the characteristic equation

det

[(
c2

ω2
kkT + ǫp

)
− n2I

]
= 0. (1.18)

Solving the determinant, and assuming the radio wave frequency is sufficiently large so ion

effects can be ignored, leads to the well-known Appleton-Hartree equation

n2 = 1− X

1− jZ − Y 2 sin2 θ
2(1−X−jZ) ±

√[
Y 2 sin2 θ

2(1−X−jZ)

]2
+ Y 2 cos2 θ

, (1.19)

where

X =
ω2
pe

ω2
, Y =

ωce
ω
, Z =

νe
ω
, (1.20)

and θ is the spatial angle between the wavevector k and Earth’s background magnetic flux

density B0 [Ratcliffe, 1959, p. 19].

The Appleton-Hartree equation is rich with insights for radio wave propagation in a

cold, collisional, and magnetized plasma. Many of these insights are not even applicable to

D region VLF radio propagation and are more important for higher frequencies in higher

regions of Earth’s ionosphere. A few obvious relationships present themselves, though.

First, the index of refraction, a key parameter for studying VLF radio wave propagation,

is found if three things are known about the D region: magnetic flux density, electron-

neutral collision frequency, and electron density. Notice that all these parameters vary as

a function of altitude. Magnetic flux density is fairly simple to retrieve given the great

magnetic models available for Earth (e.g., the World Magnetic Model [Chulliat et al., 2014]

and the International Geomagnetic Reference Field [Thébault et al., 2015]). Finding the

collision frequency and electron density is more difficult because existing models do not
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predict the highly dynamic nature of these two parameters well. In fact, this thesis is

mainly concerned with inferring the difficult to measure D region electron density profile

through the use of VLF reflections. Second, the index of refraction is generally complex

(the imaginary part of the refraction is associated with wave attenuation) and has some

damping, but index of refraction becomes entirely real when the collision frequency goes to

zero. This is exactly what is seen with the conductivity tensor in (1.11). Third, the angle of

the background magnetic flux density, relative to the wave vector, plays a dominant role in

controlling the index of refraction. This is why VLF wave propagation near Earth’s equator

(where B0 is close to parallel to Earth’s ground) is very different than propagation near

Earth’s poles (where B0 is close to perpendicular to Earth’s ground). Fourth, a ± sign exists

in the equation, and it gives interesting polarization dependence for radio wave propagation.

When the wave is propagating parallel to the background magnetic field (k ‖ B0, θ = 0) the

‘+’ and ‘−’ signs define left-hand and right-hand mode propagation, respectively. Waves

propagating perpendicular to the background magnetic field (k ⊥ B0, θ = ±90◦) propagate

in either the ordinary mode (‘+’) or extraordinary mode (‘−’). Inan and Golkowski [2011,

Ch. 11] gives a good discussion on ordinary and extraordinary modes. One well known

consequence of this polarization dependence is Faraday rotation for transionospheric radio

waves at higher frequencies.

One final note about D region approximations. In a series of papers, Wait and Walters

[1963a,b,c] showed the ναJ term from (1.6) dominates over the jωJα term and can be set

to zero when νe ≫ ω (Z ≫ 1). Furthermore, the ωce(Je × b̂0) term can be neglected if

νe ≫ ωce (Z ≫ Y ), making the plasma isotropic. If both of these assumptions are made

then the complexity of the index of refraction in (1.19) greatly reduces to

n2 = 1−
∑

α

j ω2
pα

ω να
. (1.21)

1.4.2 Wait and Spies Two-Parameter Model

Determining a high-fidelity D region electron density profile and electron-neutral collision

frequency profile as a function of altitude is difficult. A simpler approach is to approximate
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the two profiles using parameterized functions. Wait and Spies [1964] used laboratory

measurements, ionospheric sounding rocket measurements, and VLF propagation measure-

ments to empirically derive exponential profiles for the electron density and electron-neutral

collision frequency. The exponential electron density profile

Ne(h) = 1.43 · 1013e−0.15heβ(h−h
′) m−3 (1.22)

uses two parameters, h′ km and β km−1, to approximate the electron density of the D

region. These two parameters are often referred to as waveguide parameters. An increase

in h′ may be thought of as the D region electron density moving upward (although not

physically moving) in altitude (often associated with a reduction in D region ionization),

while an increase in β implies that the gradient of the electron density profile has increased.

Collision frequency is an important property to understand because electron-neutral

collisions are the principal effect in damping of VLF waves in the D region [Bittencourt ,

2004, p. 410]. A simple exponential profile is used for the electron collision frequency

νe(h) = ν0e
−αh collisions/sec, (1.23)

where ν0 is the amplitude and α is the gradient for the collision frequency. A set of collisions

frequency parameters, ν0 = 1.82 · 1011 collisions/sec and α = 0.15 km−1, were empirically

determined by Wait and Spies [1964] and are typically used in modeling VLF propagation

[Cummer et al., 1998; McRae and Thomson, 2000; Thomson et al., 2007; Han and Cummer ,

2010a,b]. These Wait and Spies [1964] collision parameters are often not varied because

changes in electron density affect VLF propagation much more dramatically than changes

in collision frequency [Budden, 1985, p.12]. Instead, focus will be placed on inferring the

waveguide parameters, h′ and β.

Wait and Spies [1964] combined the electron density profile in (1.22) and the collision
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Summer Winter

High Latitude β = 0.3, h′ = 72 β = 0.3, h′ = 72
Middle Latitude β = 0.5, h′ = 70 β = 0.3, h′ = 72

Table 1.1: Recommended profiles for h′ and β during the daytime. Adapted from CCIR
[1990].

Winter profiles
Magnetic dip

range (degrees)
h′ β

f=10-30 kHz f=30-60 kHz f=10-30 kHz f=30-60 kHz
High latitudes 90 to 75 76 76 0.035f − 0.025 1.2

Transition region 75 to 70 80 80 0.035f − 0.025 1.2
Middle latitude < 70 87 88 0.0077f + 0.31 0.0077f + 0.31

Summer profiles

All latitudes h′ = 87 β = 0.0077f + 0.31

Table 1.2: Recommended profiles for h′ and β during the nighttime. Adapted from CCIR [1990].

frequency profile in (1.23) to create an effective conductivity parameter

ωr =
ω2
pe(z)

νe(z)

= 2.5 · 1013eβ(z−h
′). (1.24)

This conductivity parameter represents the height dependent terms in the simplified index

of refraction in (1.21).

Morfitt [1977] and Ferguson [1980] performed extensive research into estimating general

h′ and β values for daytime and nighttime conditions at different latitudes. CCIR [1990]

then simplified the estimated h′ and β values from Morfitt [1977] and Ferguson [1980], and

summarized them into two tables, Table 1.1 and Table 1.2. Note that these two tables are

general estimates for h′ and β and should be used only as a crude estimate or initial guess

for the waveguide parameters. These tables do not take into account phenomenon such

as the day-to-night and night-to-day terminator [Crombie, 1964], the solar cycle [Thomson

and Clilverd , 2000], and transient D region perturbations [Barr et al., 2000]. Interestingly,

some frequency dependence for h′ and β is seen in Table 1.2. This frequency dependence is

discussed by Morfitt [1977] and Ferguson [1980] and is seen most often during winter nights.

Although, a frequency dependence of the waveguide parameters does exist year-round and
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Figure 1.4: Example for estimating the effective reflection height for a 10 kHz and 30 kHz
wave in an isotropic ionosphere. The h′ and β values can be approximated by fitting a line
to the reflection region of the IRI profile.

during the daytime but is usually less noticeable.

To conclude this section, an example VLF reflection that uses the Appleton-Hartree

equation and waveguide parameters is given. Consider an isotropic ionosphere with no

background magnetic field. If we take a daytime electron density profile from the Interna-

tional Reference Ionosphere (IRI) 2007 [Bilitza and Reinisch, 2008] and assume the Wait

and Spies [1964] collision frequency, then we can estimate the effective reflection height for

a VLF wave at a given frequency and infer the h′ and β parameters. Figure 1.4 shows Z

and X for a 10 kHz and 30 kHz VLF wave. Since a isotropic ionosphere is assumed, the

intersection of the Z and X curves is a good approximation for the effective reflection height

for each frequency [Ratcliffe, 1959, p. 92]. Once the effective reflection height is known, a

line is fit to the IRI electron density profile reflecting region and the corresponding h′ and

β values are inferred. From the Z and X crossing, it is seen that the 10 kHz wave reflects

at ∼65.5 km and the 30 kHz wave reflects at ∼69.0 km. The 10 kHz wave reflecting at a

lower altitude than the 30 kHz wave follows a general rule: the lower in frequency a VLF

or LF wave is, the lower in altitude it will reflect. An appreciable difference is seen between

the inferred h′ and β values for the two frequencies, where ∆h′ = 0.6 km and ∆β = −0.8

km−1.
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1.5 Contributions

The following contributions to the field of VLF remote sensing are reported in this thesis:

• The utility of polarization ellipse analysis in narrowband VLF remote sensing ap-

plications is presented. It is shown that ellipse parameters, such as tilt angle and

eccentricity, are important to consider when using VLF remote sensing techniques to

infer properties of the D region ionosphere.

• A study involving radio wave scattering from conductive objects near VLF antennas

is performed. It is found that conductive objects within 100s of meters of a VLF

receiver’s antenna can influence the phase observed at the antenna, and these phase

deflections can exceed 10◦. If not accounted for, this unexpected deflection in phase

can have a non-negligible impact on VLF remote sensing techniques.

• A new method to concurrently solve for the average Wait and Spies [1964] two-

parameter exponential profile (h̄′ and β̄) over multiple transmitter to receiver paths

is developed. The method involves the approximation of a target function using an

artificial neural network (ANN) and synthetically generated training data.

• A technique for evaluating the performance of the approximated target function (the

ANN) is presented. Inferred h̄′ and β̄ values, from the ANN, are used to predict

the amplitude and phase of a narrowband signal at a specific receiver. A ground

truth error is then found by comparing this predicted amplitude and phase against

the receiver’s observed amplitude and phase. The advantage of this technique is the

performance of the approximated target function is evaluated using ground truth

measurements, whereas other h̄′ and β̄ inference methods use historical information

to evaluate their performance, which can be less accurate because the ionosphere is

highly dynamic and does not always follow historical trends.
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CHAPTER 2

VLF PROPAGATION MODELING

The Earth-Ionosphere Waveguide (EIWG), the structure that allows VLF waves to prop-

agate over the horizon to global distances, is a complicated and dynamic structure. It is

bounded by the Earth’s ground on the bottom side, and the ionosphere on the top side.

Earth’s ground has spatially diverse electrical properties but is for the most part static.

Chemical properties of the ground, such as the salinity of the water or the elements in the

soil, define these electrical properties and are accounted for with some degree of accuracy

[Wait and Spies, 1965]. On the other hand, the Earth’s ionosphere varies by location and

is constantly changing, hence the electrical properties of this upper atmospheric region are

difficult to account for. Some of the changes are repeatable and systematically predictable,

like diurnal, seasonal, and solar cycle variations. Disturbances to the ionosphere, from a

variety of transient geophysical events, can add shifts in the ionospheric characteristics that

may be focused in one small area or spread over half the globe. Superimposed on top of

that is a set of quasi-random variation in space in time that are difficult if not impossible

to characterize.

Many different approaches have been used to model VLF waveguide propagation. Lehti-

nen and Inan [2008] present a model using the full-wave finite element method; Cheva-

lier and Inan [2006] and Marshall and Inan [2010] use finite difference frequency domain

(FDFD) methods; and Thiel and Mittra [1997], Thevenot et al. [1999], and Hu and Cum-

mer [2006] each developed finite difference time fomain (FDTD) based models. A popular

EIWG modeling method is to find the dominant resonant modes in the waveguide and then

relate them to the total propagated signal. One of the most common VLF mode-finding

programs is called Long-Wavelength Propagation Capability (LWPC) [Ferguson, 1998], and

it will be the focus of this chapter and utilized heavily in subsequent chapters.

Much of the theory used in LWPC was developed between the 1950’s and 1980’s.

Throughout the years, LWPC has undergone many iterations and changes in name. With
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so many different versions and changes made to LWPC, it is difficult to pin down what

theory is being used in the program and what is not. The emphasis of this chapter is to

connect the literature that spans over these four decades and give high-level insight towards

the inner workings of the LWPC program.

This chapter begins with a basic discussion of parallel-plate waveguide propagation

theory, which is an idealized version of the EIWG. Afterwards, the main components to

the LWPC program are discussed: reflection coefficients (1950’s and 1960’s), mode finding

(1950’s to 1970’s), and mode conversion (1960’s to 1980’s). The chapter is concluded with

some example LWPC runs and a discussion of past works and their use of propagation

models to infer ionospheric characteristics from VLF observations.

2.1 Ideal Waveguide Theory

Consider the ideal parallel-plate waveguide shown in Figure 2.1. The bold arrows represent

a single ray (electromagnetic plane-wave) reflecting back and forth within the waveguide.

Dashed lines are drawn to represent the phase fronts of the wave (i.e., everywhere the phase

of the wave is 0◦ (red) or 180◦ (blue) at a specific point in time). The wave is propagating

in mode m with a wave vector k and is bounded by two perfect electric conducting plates,

with infinite area in the ŷ direction, separated by distance a. When the wave reaches a

conducting boundary, it reflects by angle θm ∈ C and the ẑ component of k changes polarity.

From the figure, it is seen that the wave varies by ∂
∂x = −jk sin θm in the x̂ direction and

has no variation in the ŷ direction ( ∂∂y = 0). This is the coordinate system that will be

used for the rest of this thesis, it will always be assumed that the radiating source exists at

x = 0 and the propagating wave will travel along the waveguide in the x̂ direction.

Discrete mode (resonant) solutions exists for the propagation of a wave in this ideal

parallel-plate waveguide. The waveguide can be thought of as a resonator in the ẑ direction,

and resonance will occur when the propagating wave produces a standing wave. A standing

wave exists in ẑ direction when the distance between reflections in the k̂ direction is exactly
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Figure 2.1: Ideal parallel-plate waveguide showing a single ray reflecting off of perfect
conducting boundaries. The red and blue dashed lines represent phase fronts that are 180◦

out of phase from each other.

an integer multiple of λ/2, where λ is the free space wavelength, giving the relationship

a cos θm =
mλ

2
for m = 1, 2, 3, . . . (2.1)

[Johnk , 1988, p. 421]. Another way to think of this is as follows: the phase of the wave

at any location must be equal to phase of the wave after it has reflected once from each

boundary and then returned to the original altitude. Note that the θm solutions for (2.1)

are all real valued, but θm is generally complex valued when the waveguide has lossy reflec-

tion boundaries, as is the case for the EIWG. Equation (2.1) is bounded to solutions that

satisfy
mλ

2a
≤ 1, implying the waveguide is able to support less modes as the wavelength

becomes longer. Waveguide cutoff occurs when mλ/2 = a, and waves with frequencies be-

low the waveguide cutoff are unable to propagate within the waveguide. As the frequency

approaches waveguide cutoff, the angle of reflection also decreases, which in turn means the

wave will reflect more often and take a longer amount of time to propagate some distance

down the waveguide in direction x̂. This excess propagation time, or delay, is equivalent to

a decrease in group velocity

vg =
ωλ

2π
sin θm (2.2)

and an increase in phase velocity

vp =
ωλ

2π sin θm
(2.3)
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for the x̂ direction. Therefore, dispersion becomes readily apparent within the waveguide

as the frequency approaches cutoff.

Examination of a single propagating ray simplifies the analysis for parallel-plate waveg-

uide theory, but in practice instruments measure the superposition of a large number of rays

and multiple modes. Consider a hypothetical isotropically radiating (or omnidirectional)

antenna placed inside the waveguide which transmits at a frequency well above cutoff. This

transmitter will illuminate the waveguide with many modes in all directions. Instead of de-

scribing the infinite number of modes individually, a compact expression for the propagating

modes may be derived, such as the magnetic flux density B in the ŷ direction

B · ŷ = C cos
(mπ
a
z
)
e−j(kx·x̂)x, (2.4)

where C is a constant [Johnk , 1988, p. 422]. Note that this equation and all subsequent

equations in this in chapter are written in time-harmonic (phasor) form. Modes within a

parallel-plate waveguide are decomposed into two types: transverse electric (TE) modes

and transverse magnetic (TM) modes. There is also a transverse electromagnetic (TEM)

mode, though this can also be thought of as a special case of TM where the mode number m

is 0. An electromagnetic wave with an electric field that is parallel to the ŷ axis, in Figure

2.1, is called a TE wave. Conversely, a wave with the magnetic field that is parallel to the ŷ

axis, such as (2.4), is considered to be a TM wave. A TEM wave is equivalent to a uniform

plane wave that does not reflect off either boundary in the parallel-plate waveguide.

An ideal parallel-plate waveguide is a good starting point for understanding VLF wave

propagation. The previously discussed topics, such as waveguide cutoff, dispersion, and

angle of reflection are relevant when discussing EIWG propagation. However, the theory

quickly becomes more complicated when non-ideal behaviors are considered: imperfect

reflecting boundaries, anisotropic behavior caused by Earth’s background magnetic field,

curvature of the Earth, multipath, variations in distance between the reflecting boundaries,

etc. The next sections will expand upon the ideal waveguide theory and introduce some of

these non-ideal behaviors.
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2.2 Waveguide Reflections

In the previous section, the angle of reflection from (2.1) is found using simple geometry

and the fact that the waveguide resonates in the ẑ direction, but this assumed that the

boundaries were perfect reflecting conductors. Now consider the case were the boundaries

are general conductive media and have complex valued upper Ru(θ) and lower Rℓ(θ) reflec-

tion coefficients, that change according to the angle of incidence θ ∈ C. From the Fresnel

equations, we generally expect some of the wave’s power to penetrate the boundary and

the rest of the power to internally reflect in the waveguide. The amount of power that

penetrates and reflects is dependent on the media and the angle of incidence. The fact that

the waveguide resonates in the ẑ direction still holds, and so the relationship

Ru(θm)e−jak cos θm Rℓ(θm) e−jak cos θm = 1, (2.5)

where k = 2π/λ is the free space wave number, must be true [Galejs, 1972, p. 10]. This

equation is a mathematical statement about the definition of a mode. The term Ru(θm)

includes what happens to the wave phasor upon reflection from the ionosphere, similarly

the term Rℓ(θm) describes the change to the phasor with respect to the ground reflection.

The a cos θm term in the two identical exponential terms e−jak cos θm account for free space

propagation in the upward and downward directions.

Rearranging terms in (2.5) and using the identity 1 = ej2πm gives

Ru(θm)Rℓ(θm)e−j2ak cos θm = ej2πm, (2.6)

which is similar to the ak cos θm = πm from (2.1). Note that the reflecting boundaries

may be lossy in which case the real part of the reflection coefficient will be less than unity

ℜ{R(θ)} ≤ 1, but the magnitude of the complex reflection coefficient by definition remains

unity. Thus there is some reduction in wave amplitude from the reflection, but this is com-

pensated by the imaginary component of the reflection coefficient and |R(θ)| = 1 remains

true [Budden, 1961, p. 125].
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2.2.1 Ionospheric Reflection Coefficient Matrix

In simpler waveguides, the reflection coefficient is a scalar (complex) value. However, Earth’s

magnetic field adds anisotropy to ionospheric reflections of VLF radio waves, which in turn

causes coupling between TE and TM modes. Since the two modes are coupled together and

can no longer be treated as two separable equations, it is typically said that these waves

propagate in quasi-transverse magnetic (QTM) and quasi-transverse electric (QTE) modes.

A complex valued reflection matrix, instead of a single scalar value, must be used to account

for the coupling between these two distinct polarization types

R(θ) =


‖R‖(θ) ⊥R‖(θ)

‖R⊥(θ) ⊥R⊥(θ)


 , (2.7)

where the ‖ and ⊥ specify whether it is parallel or perpendicular to the plane of incidence

(the plane perpendicular to ẑ), the prescript denotes the polarization for the incident wave,

and the subscript is for the polarization of the reflected wave. The relationship between the

incident Ei and reflected Er electric field is then



ER‖

ER⊥


 =


‖R‖(θ) ⊥R‖(θ)

‖R⊥(θ) ⊥R⊥(θ)






EI‖

EI⊥


 . (2.8)

A relationship between the incident and reflected electric field is not enough to determine

the reflection coefficient. Two polarized waves, orthogonal to each other, are required to

solve for all four reflection matrix coefficients. Using the same coordinate system from

Figure 2.1, it is found that

‖R‖ =
HR
y

HI
y

, ‖R⊥ =
ERy
η0HI

y

(2.9)

when EIy = HI
x = 0, and

⊥R‖ =
η0H

R
y

EIy
, ⊥R⊥ =

ERy
EIy

(2.10)

when EIx = HI
y = 0, where H is the magnetic field and η0 is the intrinsic impedance of free
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space [Budden, 1985, p. 298]. It is also important to recognize that incident and reflected

fields change the closer or further away they are from the boundary. Therefore, a reflection

coefficient will take on different values depending on the distance from the boundary the

electric and magnetic fields are observed at, and thus the reflection coefficients must be

referenced to some distance from the boundary.

2.2.2 Ground Reflection Matrix

Earth’s ground is the simpler of the two reflection matrices to solve for. We assume that

the ground is isotropic and homogeneous over a region much larger than a wavelength.

Therefore, no coupling between the TE and TM modes occurs during ground reflections

and the downward looking (−ẑ) reflection matrix simplifies to a diagonal matrix

Rg(θ) =


‖R

g
‖(θ) 0

0 ⊥R
g
⊥(θ)


 , (2.11)

where the g means the altitude of the reflection matrix is taken to be at the ground. It has

been shown that anisotropy does exist in the ground and is non-negligible for some regions

[Galejs, 1972, p. 222], but it is often ignored anyway. It can be included via this formulation

by simply expanding Rg(θ) to be non-diagonal.

A homogeneous ground means there is no ẑ dependence in the ground, and the reflection

is simply a two media boundary problem, with the top media being free space. The classic

Fresnel equations are used to solve this boundary problem

‖R
g
‖(θ) =

n2g cos θ −
√
n2g − sin2 θ

n2g cos θ +
√
n2g − sin2 θ

⊥R
g
⊥(θ) =

cos θ −
√
n2g − sin2 θ

cos θ +
√
n2g − sin2 θ

,

(2.12)

where the square ground index of refraction is

n2g = ǫr −
jσ

ω
, (2.13)
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Figure 2.2: Map of Earth’s conductivity (left) and relative permittivity (right).

ǫr is the relative permittivity of the ground, and σ is the conductivity of the ground.

Regions with old crystalline rocks, significant permafrost, and ice caps have some of the

lowest conductivities and the most profound effects on VLF waveguide propagation. Greater

depths of the ground’s profile must be considered for lower conductivities, and these depths

can exceed more than 50 meters for conductivities less than 10−2 S/m [Morgan, 1968].

Conductivity and relative permittivity profiles are extracted from the LWPC program and

shown in Figure 2.2. It is seen that regions with deep permafrost and icecaps have the lowest

conductivity and relative permittivity, and the oceans have the highest and are the best

reflectors. Other interesting features are seen in the maps, such as the high conductivity

along the Appalachian Mountains with an abrupt decrease in conductivity around the state

of Georgia. These maps are used to determine reflection matrices (2.11) along a great-circle

path from the transmitter to receiver.

2.2.3 The Booker Quartic

To find the ground reflection matrix, we simplified the problem by assuming an isotropic and

homogeneous ground, but these assumptions do not hold for general ionospheric reflections.

Recalling our discussion of the Appleton-Hartree equation (1.19), we assume the ionosphere

is anisotropic and horizontally stratified (varies in the ẑ direction). Our goal is to determine

the relationship between an obliquely upward traveling wave and its reflected downward

traveling counterpart.
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One way to simplify the reflection problem is to assume the ionosphere is a sharp re-

flecting boundary, with free space on one side and a dense homogeneous ionosphere on the

other. This simplification has been used in multiple works to simplify the mathematics and

computational burden [e.g., Crombie, 1961; Johler and Walters , 1960; de Lisle, 1967].

Sheddy [1968] formulated a closed general reflection matrix solution for a sharp transition

between free space and a homogeneous ionosphere, and that solution is considered here

because it has special application to the LWPC program. An upward traveling plane wave

in free space that is incident upon a sharp ionospheric boundary will generally refract into

two plasma modes, the ordinary mode and extraordinary mode. The method from Sheddy

[1968] starts by solving for these two upward traveling plasma waves in the ionosphere and

then uses boundary conditions to determine the initial upward traveling wave in free space.

With the waves solved for in both medias, the reflection matrix is then found using a method

similar to that in (2.9) and (2.10).

The susceptibility matrix M is useful for relating the electric displacement D and the

electric field E through

D = ǫ0(I + M)E, (2.14)

where I+M is the same as the permittivity matrix from (1.14), except here the background

magnetic field is not assumed to be in a particular direction. Using a similar approach as

before, a susceptibility matrix that accounts for the cold, collisional, anisotropic plasma

properties of the ionosphere is found to be

M =
−X

U(U2 − Y 2)




U2 − Y 2
x −jUYz − YxYy jUYy − YxYz

jUYz − YxYy U2 − Y 2
y −jUYx − YyYz

−jUYy − YxYz jUYx − YyYz U2 − Y 2
z



, (2.15)

where U = 1 − jZ and [Yx, Yy, Yz] = −µ0qα/mα[B0 · x̂, B0 · ŷ, B0 · ẑ]. Multiple charged

species in the ionosphere are accounted for in this susceptibility matrix by taking the sum

of the species dependent susceptibility matrices, M =
∑

αMα. From Ampere’s Law (1.1)
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and Faraday’s Law (1.2), it is known that

Γ(η0H) = −(1 + M)E

ΓE = η0H,

(2.16)

where

Γ =




0 −q 0

q 0 − sin θ

0 sin θ 0



, (2.17)

q is a solution to a quartic equation for wave propagation in the ionospheric region (note

that q here is different than the electric charge of a species), and the free space plane

wave normal is assumed to be in the xz-plane [Budden, 1985, p. 145]. Combining the two

equations in (2.16) and setting H = J = 0, results in a relationship between the dispersion

matrix A and the electric field

0 = (Γ2 + I + M) E

= A E (2.18)

[Sheddy , 1968]. For E to have more than just the trivial solution, the determinant of the

dispersion matrix must zero. Solving for the determinant

det[A] = 0, (2.19)

leads to a fourth-order equation known as the Booker quartic,

q4 + a3q
3 + a2q

2 + a1q + a0 = 0, (2.20)

where q is the unknown, and the coefficients ai are defined by M and θ [Booker , 1936].

This fourth-order equation has four wave solutions {q1, q2, q3, q4}, describing ordinary and

extraordinary modes traveling upwards and downwards. Upward traveling waves from the

Booker quartic solution are used with the known boundary conditions to determine the
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original free space incident wave; the other two downward traveling waves are not needed and

ignored. Each field component of the four plasma waves will have a factor exp[−jk(x sin θ+

qz)]. Sheddy [1968] gives the final details for finding the reflection matrix Rh(θ), at the

boundary altitude h.

A reflection matrix from a sharply bounded ionosphere may be a good approximation

for some cases, but we are also concerned with electron density distribution as a function

of altitude. Thus, we want to find a method that determines the ionospheric reflection of a

VLF wave that also accounts for horizontal stratification of the ionosphere.

Consider an ionosphere that is layered with discrete homogeneous slabs of thickness δz,

and each successive layer is labeled with the next consecutive integer i = 1, 2, 3, . . . For each

slab, solutions to the Booker quartic are found. This is equivalent to finding the discrete

wave solutions every δz step in altitude. It is also known that fields of each of the four

waves (solutions to the Booker quartic) will have a field component in the form of

Fi(z) = Fie
−jk(x sin θ+q[i]z), (2.21)

where Fi is field and wave dependent at slab i [Budden, 1961, p. 103]. We wish to generalize

Fi(z) into a continuous function that bridges across all slabs F (z), and we next consider

techniques to do that.

2.2.4 The WKB Approximation

A common approach to handling the height variation in electron density is to apply the

Wentzel-Kramers-Brillouin (WKB) approximation, which presumes that q[i] slowly changes

across successive slabs (slab i to slab i±1). For slowly varying q[i], the WKB approximation

states that the change in phase across consecutive slabs is cumulative and the phase retains

memory from the previous slabs the wave propagated through.

Use of the WKB approximation requires the ionosphere to be a slowly varying stratified

medium over the range of the phase integral, and this requirement makes the WKB method

a good tool for a class of physical models known as ray tracing, in which a medium is divided

into small slabs and Snell’s law is solved at each boundary to track the evolving direction
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of a wave. The required WKB conditions breaks down, however, for VLF reflections at D

region altitudes, because the region within which the VLF wave reflects is now substantially

greater than a wavelength. At higher altitudes in the ionosphere or in the magnetosphere,

starting around 150 km for VLF waves [Pappert and Hitney , 1982] or when X is on the

order of 103 or 104 [Budden, 1955a], the WKB method can be used because the electron

density is slowly varying compared to VLF wave lengths. The WKB method is also valid

for higher frequency propagation. Although the WKB approximation is not valid in the

cases we focus on, we describe it nonetheless for completeness.

Using the WKB approximation gives first-term power series accuracy when dq/dz is

small [Wait , 1970, p. 90]. Taking the cumulative phase into account, the more general field

expression up to altitude h is

Fh(z) = F0 exp

[
−jk

(
x sin θ +

∫ h

0
q(z)dz

)]
, (2.22)

where F0 is some constant. In an isotropic ionosphere, the reflection coefficient becomes

the ratio of the upward and downward traveling waves

R = j exp

[
−2jk

∫ h

0
q(z)dz

]
, (2.23)

and the more complicated anisotropic case has reflection coefficients that are proportional

to a factor

R ∝ j exp

{
−2jk

∫ h

0
[q1(z)− q2(z)] dz

}
, (2.24)

where q1(z) refers to the upward traveling wave and q2(z) is the downward traveling coun-

terpart [Budden, 1985, p. 195].

We next turn to a more general method to solve the coupled Ampere’s law and Faraday’s

law equations, known as the full wave method. Unlike the WKB method, the full wave

method is valid even when the permittivity has appreciable change over lengths comparable

to or less than a wavelength. Thus, the full wave method is a good approach for finding the

reflection matrix for VLF waves in the D region. In the WKB method, we used the fact that

the ionosphere is horizontally stratified with slabs that have a width of δz. These successive
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slabs will be used again to find a full wave solution. We will first find an initial reflection

matrix by solving the Booker quartic at some height well above the effective ionospheric

reflection height. The waves from the great height are then followed downward toward the

ground, while also integrating the change in reflection matrix for each slab. Eventually,

an altitude is reached that is approximately free space, and at this point the ionospheric

reflection matrix is obtained.

2.2.5 Accounting for Earth’s Curvature

Earth’s curvature needs to be accounted for in long-distant EIWG propagation. A direct

approach, to account for Earth’s curvature, is to build off the mathematics for parallel-

plate waveguide theory and develop the mathematics for a waveguide that consists of two

concentric conducting cylinders of different radiuses. This approach has been used before,

but the mathematics become complicated when using a cylindrical coordinate system [Wait ,

1970, Ch. 14]. A somewhat simpler approach is to assume the Earth is flat and introduce

a correction term in the parallel-plate waveguide mathematics.

Figure 2.3 shows a ray (red line) referenced to a spherical surface (left panel) that is then

transformed to reference a flat surface (right panel). Earth’s curvature causes the distance

d between the ray and the spherical boundary to change non-linearly, and the ray for the

flat boundary case perfectly mimics this non-linear change in distance. An observer who

is standing on either boundary, and is oblivious to whether the surface is spherical or flat,

would perceive the ray to curve upward away from the boundary in the exact same way for

both boundaries.

Budden and Martin [1962] use this spherical to flat boundary transformation to devise

an elegant solution that accounts for Earth’s curvature by supposing the Earth is flat and

the free space between the Earth and ionosphere is an isotropic medium that approximately

satisfies

dn

dz
=

1

Re
, (2.25)

where Re is the radius of Earth. Since the radius of the Earth is much larger than the

height of the ionosphere, there is some freedom in choosing the height z0 where the index
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Figure 2.3: Depiction of a ray (red line) propagating in a straight line away from a spherical
boundary (left panel) transformed into a curved ray propagating away from a flat boundary
(right panel).

of refraction will be unity.

This technique is analogous (but in reverse) to a technique called effective Earth radius

often used to trace propagation of GHz frequencies through free space. Because the index

of refraction of air (at GHz frequencies) is slightly more than 1 at sea level and decreasing

with altitude, there is some refraction of any transmitted wave. The most common way to

correct this is to presume the Earth’s radius is actually some multiple of its true radius,

commonly 4/3. This then unbends the ray by just the right amount so as to straighten it.

In our application, we are doing the opposite, we are flattening the Earth, but then adding

artificial refraction to bend each wave in just the right way as to account for the Earth’s

curvature. In particular, Budden and Martin [1962] found that

n2 = 1− 2(z0 − z)

Re
(2.26)

gives a good approximation to (2.25) (see Richter [1966] for additional details).

Solving the Booker quartic required the use of the susceptibility matrix M (2.15). To

adjust for Earth’s curvature, we simply include the additional index of refraction term into

the susceptibility matrix
∼
M= M− 2(z0 − z)

Re
I (2.27)

[Morfitt and Shellman, 1976]. With this adjustment, curvature errors from integration over

the susceptibility matrix as a function of altitude will be reduced.
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2.2.6 Ionospheric Reflection Matrix

The full wave method requires the coupling of Ampere’s Law (1.1) and Faraday’s Law (1.2),

and we wish to find a relation between the changing fields as a function of height. Clemmow

and Heading [1954] formulated a method to solve the differential equation with respect to

height

e′ = −jTe, (2.28)

where the ′ is the ∂/∂(kz) derivative, the field vector is

e =




Ex

−Ey
η0Hx

η0Hy




, (2.29)

and

T =




−
∼

M31sin θ

1+
∼

M33

∼

M32sin θ

1+
∼

M33

0 cos2 θ+
∼

M33

1+
∼

M33

0 0 1 0
∼

M23

∼

M31

1+
∼

M33

− ∼
M21 cos2 θ+

∼
M22 −

∼

M23

∼

M32

1+
∼

M33

0
∼

M23sin θ

1+
∼

M33

1+
∼
M11 −

∼

M13

∼

M31

1+
∼

M33

∼

M32

∼

M13

1+
∼

M33

− ∼
M12 0 −

∼

M13sin θ

1+
∼

M33




. (2.30)

Notice that variable
∼
M in matrix T contains the charged species profiles Nα and collision

frequency profiles να, which is the exact altitude variation we are concerned with. The field

vectors are related to the four solutions to the Booker quartic

upward ordinary wave: Ex = η0Hy cos θ, η0Hx = Ey = 0,

upward extraordinary wave: η0Hx = −Ey cos θ, η0Hy = Ex = 0,

downward ordinary wave: Ex = −η0Hy cos θ, η0Hx = Ey = 0,

downward extraordinary wave: η0Hx = Ey cos θ, η0Hy = Ex = 0.

(2.31)
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At any altitude, the total field is the sum of the upward traveling wave field with its

downward traveling counterpart field, this gives the matrix relation

e =




cos θ 0 − cos θ 0

0 −1 0 −1

0 − cos θ 0 cos θ

1 0 1 0







a

b

c

d




, (2.32)

or more compactly

e = Lq, (2.33)

where the elements of q are the complex amplitudes of the fields [Barron and Budden, 1959].

Note that a and b are for upward traveling fields and c and d are for downward traveling

fields, so

u =



a

b


 , d =



c

d


 , (2.34)

and these vectors are related to the reflection matrix through

d = Ru, (2.35)

which is the same as (2.8).

A solution for R is found by integrating over the small changes in the reflection matrix

R′ as a function of altitude, which is related to (2.28). Rearranging (2.33) gives q = L−1e,

and the derivative is found using (2.28)

q′ = −jL−1TLq

=
−j
2
Sq. (2.36)

The solution to S = 2L−1TL ∈ C
4×4 is given by Budden [1955a], and is written in a way
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that sections the matrix into four distinct C
2×2 sub-matrices

S =



S11 S12

S21 S22


 . (2.37)

Recognizing that q contains the upward and downward wave coefficients, the derivative of

(2.34) is

u′ =
−j
2

[
S11u + S12d

]

d′ =
−j
2

[
S21u + S22d

]
.

(2.38)

Taking the derivative of (2.35) gives the derivative of the reflection matrix we seek

d′ = Ru′ + R′u. (2.39)

Arranging terms and using (2.38) gives the final differential reflection matrix

R′ =
−j
2

[
S21 + S22R−RS11 −RS12R

]
. (2.40)

It should be noted that LWPC integrates over a modified reflection matrix X′, where X =

(R + I)/ cos θ, for numerical convenience, but we limit our discussion to just R′.

Budden [1955a] uses Runge-Kutta to solve the ordinary differential equation (2.40).

Runge-Kutta is an iterative method for numerically integrating ordinary differential equa-

tions. When beginning the Runge-Kutta integration, some initial condition must be known.

At a high enough altitude, much higher than the effective reflection height, the reflection be-

tween two slabs is approximated to be a sharp boundary between two homogeneous plasma

mediums. Thus, the method from Sheddy [1968], which uses the Booker quartic, is a valid

approach for finding the initial conditions of the reflection matrix at this great altitude. The

Runge-Kutta method then iterates over (2.40) in small downward δz steps. It is important

to choose an integration step size that is small enough to avoid a loss in numerical accuracy,

but not too small or else the computation time will be unnecessarily long. A good starting

point in choosing the integration step size is δz = λ/100 [Budden, 1985, p. 570]. Integration
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will continue until an altitude b, that is approximately free space and has plasma effects

that are so weak that they are negligible, has been reached. Budden [1955b] estimates this

minimum altitude to be when X ≈ 1. Completion of the integration gives the final reflection

matrix

Rb(θ) =


‖R

b
‖(θ) ⊥R

b
‖(θ)

‖R
b
⊥(θ) ⊥R

b
⊥(θ)


 (2.41)

for the anisotropic and vertically inhomogeneous ionosphere at an altitude of b.

2.3 Mode Finding

In (2.6) resonant modes are found using reflection coefficients that are referenced to their re-

spective boundaries, and the exp [−j2ak cos θm] term is necessary to relate the two reflecting

coefficients together. This exponential term, however, is only valid for parallel boundaries

and does not extend to the more complicated geometry of Earth’s curvature. From (2.11)

the ground reflection matrix Rg(θ) is referenced to an altitude of zero, and from (2.41)

the ionospheric reflection matrix Rb(θ) is referenced to altitude b. It is evident that some

mechanism is needed to relate the two reflection matrices to each other while accounting

for Earth’s curvature.

A modification is applied to the free space index of refraction (2.26) in the susceptibility

matrix (2.27) to account for Earth’s curvature during the integration when finding Rb(θ).

Using this same concept, an adjusted free space susceptibility matrix is found to be
∼
Mf=

[1−2(z0− z)/Re]I. Runge-Kutta integration for free space (using
∼
Mf instead of

∼
M) is now

performed on Rg(θ) and Rb(θ) in an upward manner (towards the ionosphere). Integration

is complete when altitude d is reached, giving reflection matrices Rd(θ) and Rd(θ). Morfitt

and Shellman [1976] modified the integration algorithm in LWPC to a method similar to

that described here but more computationally efficient.

With the reflection matrices referenced to the same altitude, the modal equation from

(2.6) is expanded to the reflection matrix case Rd(θ)Rd(θ) = I, and the modes are found

by solving

det
[
I−Rd(θ)Rd(θ)

]
= 0, (2.42)
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where complex values of θ that solve the equation are resonant modes (complex eigenangles)

for the EIWG. Eigenangle solutions to the determinant reside in a complex plane, and

finding these solutions is a non-trivial task. An algorithm from Shellman [1986] is used in

LWPC to find the dominant resonant modes (eigenangles with the largest real component)

and the ideal reference altitude d.

Qualitative reasoning is used to find the modal function (2.42), but it does not give

insight into the excitation or propagation of radio waves within the waveguide. Budden

[1962] showed a rigorous method for the excitation of fields in the waveguide, and this

method has since been adapted for use in LWPC [Pappert and Ferguson, 1986]. Budden’s

method begins by assuming a vertical line of quadrupole sources, of strength QU , exist on

the ẑ axis centered at the origin. This radiating source is represented by the electric Hertz

vector (the Hertz vector is related to the scalar electric potential through Φ = −∇U and is

also often written as Π)

Uz =
kQ1

4π

∫ π+j∞

−j∞
exp [−jk (x cosφ+ z sinφ)] cosφ dφ, (2.43)

where φ is the angle from the xz-plane relative to the x̂ axis (Budden alternates the use of

θ as the angle relative to the bottom or top of the waveguide, but this is confusing so φ is

used to avoid misunderstandings). A similar expression also exists for the case where the

source is a magnetic line quadrupole, which would result in the magnetic Hertz vector Vz,

which is the counterpart to Uz, with a strength of QV .

Fields from Uz and Vz are polarized in the TM and TE directions, respectively. These

two orthogonal polarizations are written as the vector

h =




Uz

−Vz/η0


 (2.44)

and are related to the magnetic and electric fields in the transverse (ŷ) direction by



η0Hy

Ey


 = −jωη0

∂h

∂x
. (2.45)
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Using a technique similar to (2.35), we can define a set of upward hu and downward hd

traveling waves and relate them through a reflection matrix

hd = Rhu. (2.46)

Budden then shows that the electric and magnetic Hertz vectors are related to the ground

and ionosphere reflection matrices, relative to height d, through

h =
k

4π

∫ π/2+j∞

−π/2−j∞
exp [−jk (x cosφ+ z sinφ)] (I + Rd)W(I + Rd)Q cosφ dφ, (2.47)

with W = [I−RdRd]
−1 and Q = [QU , QV ]T . Notice that the limits of integration for the

contour integral have been distorted from −j∞ through π +∞ in (2.43) to −π/2 − j∞

through π + j∞, doing so makes the integral symmetric about φ = 0. Integration over the

contour reveals the existence of singularities, most importantly poles. These poles reside

at locations where det
[
W−1

]
= 0 is satisfied, which is equivalent to the modal function in

(2.42). Each pole inside the contour represents a single resonant mode, and the total Hertz

vectors are found by adding up the individual residue contributions from each pole (note

that each residue is multiplied by a factor of j2π, this comes from the residue theorem)

h =
jk

2

∑

m

ΛmQe
−jk(x cosφm+z sinφm), (2.48)

where

Λm =
[I + Rd(φm)]Xm[I + Rd(φm)]

∂∆
∂(sinφ)

∣∣∣
φ=φm

(2.49)

is referred to as the height gain function, ∆ = det
[
W−1

]
, and Xm = lim

φ→φm
W∆. Combin-

ing (2.45) with (2.48) gives an expression for the total modal contributions to the transverse

magnetic and electric fields in the waveguide.

Pappert and Shockey [1971] extended the quadrupole source method from Budden [1962]

to a more general line source that may be oriented in any direction and at any altitude

(within the waveguide). Likewise, a receiver may not always be located on the ground and

fields other than Hy and Ey may be desired. Morfitt and Shellman [1976] and Pappert and
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Ferguson [1986] give an equation for an arbitrary field (electric or magnetic field in any

direction), with lookup tables for different sources and fields, in the functional form

F (x) = QF

[
sin

(
x

Re

)]−1/2 ∑

m

Λtm(zt)Λrm(zr)e
−jkx sin θm , (2.50)

where QF is a field dependent constant, Λtn and Λrn are the transmitter and receiver

height gain functions, and zt and zr are the transmitter and receiver heights. Budden’s

method assumes a flat waveguide for mathematical convenience, therefore the correction

term 1/
√

sin (x/Re) is included to account for Earth’s curvature [Wait , 1970, p. 161].

In practice, waves traveling along the opposite side of Earth produce significant modal

interference near the antipode, but this method does not account for these opposite side

traveling waves and does not hold well for distances close to half the circumference of Earth.

Equation (2.50) reveals an important, but not so obvious, property about the cou-

pling of the QTM and QTE polarizations. The only term in (2.50) that depends on x is

exp(−jkx sin θm), which is the term that dictates the attenuation

αm = −kℑ{sin θm}, (2.51)

and phase velocity

vpm =
c

ℜ{sin θm}
(2.52)

of the field [Pappert et al., 1967]. Eigenangles for lower order modes have larger real values

and smaller imaginary values, so smaller mode numbers have lower attenuation and slower

phase velocity. Therefore, for a given mode number, the electric and magnetic fields both

have the same attenuation rate and phase velocity, which is not generally true for isotropic

waveguide propagation. This interesting effect occurs in the anisotropic case because the off

diagonal terms in the ionospheric reflection matrix Rd are the result of coupling between the

TM and TE polarizations, shown in (2.9) and (2.10). Thus, the coupling of the polarizations

forces the QTM and QTE to attenuate at the same rate and travel with the same phase

velocity.

The work in this thesis is concerned with VLF antenna sources that have a vertical
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electric dipole momentMe and receivers that measure magnetic flux density in the horizontal

plane. Cummer et al. [1998] gives the field expression for the QTM flux density at height

zr as

By(x) = −µ0Mee
jπ/4

√
2k

πRe sin (x/Re)

∑

m

Λtm(zt)Λrm(zr)e
−jkx sin θm . (2.53)

2.4 Mode Conversion

LWPC also has the capability to connect two different waveguide segments, with different

ionospheric and ground parameters through the method known as mode conversion. Figure

2.4 gives an example for these different segments, where each segment has its own unique h′,

β, background magnetic field vector, ground conductivity, and ground relative permittivity.

Parameters in the first segment, where the transmitter is, are marked with a subscript 1.

If we apply the parameters in segment 1 to the mode finding method previously discussed,

then we know By along the ground through the first segment. Our knowledge of By ends at

the first segment because the mode finding method assumes horizontal homogeneity, which

segment 2 violates.

We know how to use the mode finding method to find the modes in each segment,

but we do not know the conversion mechanism for transferring radio wave power between

segment 1 and segment 2. Mode conversion solves this transfer problem by using the known

fields at the boundary point of the first segment to determine how much power from each

mode in segment 1 is transferred into each individual mode in segment 2. The process is

then repeated for the transfer of power between segments 2 and 3, and we then find By in

segment 3 at the location of our receiver.

Mode conversion was first postulated by Crombie [1964] to explain quick phase steps and

amplitude fading of recorded VLF signals during day-to-night and night-to-day transitions,

known as the day/night terminator. His theory focused on a simplified case where two modes

existed in the night side of the waveguide and a single mode existed in the day side. Mode

conversion at the night-to-day terminator converts some power from the two nighttime waves

into the single daytime wave, and the rest of the unconverted power is lost in the waveguide
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Figure 2.4: LWPC partitions the waveguide into multiple homogeneous segments defined
by the user. Each segment is defined by: h′, β, conductivity σ, relative permittivity ǫr,
segment length, and the three-dimensional vector for Earth’s background magnetic field.

as evanescent waves. Crombie’s theory was then validated by Walker [1965]. Wait [1968a,b],

along with Galejs [1971], created a more general mode conversion method where an arbitrary

number of modes from one segment would then excite an arbitrary number of modes in the

next segment. Contributions to LWPC’s mode conversion algorithm comes from Pappert

and Snyder [1972], Pappert and Morfitt [1975], and Ferguson and Snyder [1980]. Two mode

conversion options exist for LWPC, Full MC and Fast MC. Much of the details for the mode

conversion method involve mathematical endeavors that do not give significant insight into

the physics of waveguide propagation. Here, we will briefly discuss some of the fundamental

concepts for mode conversion. Pappert and Snyder [1972], Pappert and Morfitt [1975], and

Ferguson and Snyder [1980] are suggested readings for more details.

A limitation of LWPC’s mode conversion method is that it does not account for back-

wards scattering from horizontal inhomogeneities. Consider two waveguide regions, regions

I and II, that are connected by some scattering discontinuity. The forward traveling modes

in region I are related to the forward traveling modes in region II through matrix A. There

will also be some scattering from the discontinuity that will produce backwards traveling

modes in region I, these backwards traveling modes are related through matrix B. Finally,

there may exist some backwards propagating modes in region II, related through matrix
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C, that were produced by some scattering event further down the waveguide. The forward

mode m propagating fields −→α I
m, in region I, are related to the other fields by

−→α I
m(z) +

∑

i

Bmi
←−α I
i(z) =

∑

ℓ

Amℓ
−→α II
ℓ (z) +

∑

n

Cmn
←−α II
n (z). (2.54)

LWPC does not account for these backward propagating modes, so the matrices B and C

become zero. Thus, only the forward propagating modes are left

−→α I
m(z) =

∑

ℓ

Amℓ
−→α II
ℓ (z). (2.55)

This is important to recognize since some D region perturbations produce appreciable

backscattering [Dowden et al., 1996; Marshall et al., 2006; Mika and Haldoupis , 2008].

LWPC’s field calculation for a homogeneous waveguide (horizontally homogeneous for

the ionosphere), given in functional form in (2.50), is done by summing the fields for each

mode. In the multi-segmented case, the expected field expression for a single mode m in

segment p is

Fm(x) =
QF√

sin
(
x
Re

)
∑

i

apimΛtm(zt)Λrm(zr)Φ
p
im exp

{
−jk

[
x2 sin θ1m + (x− xp) sin θpi

]}
,

(2.56)

where apim ∈ C is a conversion coefficient for the ith mode in segment p − 1 to the mth

mode in segment p, xp is the distance from the transmitter to the beginning of segment p,

and Φp
im = sin θpi / sin θ1m when F is By or Ez and is unity otherwise [Pappert and Ferguson,

1986]. Equation (2.56) is expressed in a form similar to (2.50) by simply summing the

modes

F (x) =
∑

m

Fm(x). (2.57)

The major difference between (2.50) and (2.57) is the use of the mode conversion coefficient

apimto relate all modes from segment p−1 to mode m in segment p; it is this set of coefficients

that the mode conversion method determines.

Fields in the boundary plane (yz-plane) of segment number p, for mode i, are written
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as

g
p
i (z) =




Epyi(z)

Epzi(z)

η0H
p
yi(z)

η0H
p
zi(z)




, (2.58)

where the fields are a function of altitude and are invariant in the ŷ direction. These fields

are often referred to as height gain functions. In general, it is possible to define another set

of height gain functions f
p
i (z) orthogonal to g

p
m(z), except when i = m,

δim =

∫ ∞

−∞
[fpi (z)]

†
gpm(z) dz, δim =





1 i = m

0 i 6= m

, (2.59)

where † is the adjoint (conjugate transpose) operator. This orthogonality is used to relate

mode m in segment p− 1 and mode i in segment p

Ip,p−1
im =

∫ ∞

−∞
[fpi (z)]

†
gp−1
m (z) dz. (2.60)

Pappert and Snyder [1972] show that conversion coefficients in segment p are related to the

conversion coefficients in segment p− 1 through

apim =
∑

i

apiℓ I
p,p
mℓ

=
∑

ℓ

ap−1
ℓm Ip,p−1

iℓ exp[−jk(xp − xp−1) sin θp−1
ℓ ], (2.61)

where a1im = exp
(
jkx2 sin θ1i

)
for the special case when p = 1. This relation for the current

segment’s coefficient to rely on the previous segment’s coefficient is similar to the simple

scattering example in (2.55).

The Full MC method from Pappert and Snyder [1972] uses a full wave solution to find

f
p
i (z) and g

p
i (z). Alternatively, the Fast MC method from Pappert and Morfitt [1975], which

was later modified by [Ferguson, 1980], does not use a full wave solution and does not require

the orthogonality between f
p
i (z) and g

p
i (z) in (2.59). Instead, the Fast MC method restricts
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the integral of the height gain functions

Ip,p−1
im =

(
sin θpi + sin θp−1

m

) ∫ b

0

[
Epyi E

p−1
ym + η20 H

p
yi H

p−1
ym

]
dz (2.62)

to be from the ground to the bottom of the ionosphere, and the fields are solved for using a

variation of the non-orthogonal basis expansion from Wait [1968a]. Pappert and Ferguson

[1986] reported good agreement between the Full MC and Fast MC methods, therefore

similar results should be expected with LWPC regardless of the mode conversion method

used.

2.5 LWPC Examples

As the diversity of references throughout this chapter suggests, numerous researchers and

organizations have contributed to the development of LWPC. The version of LWPC used in

this work is known as version 3.0 and is a slight modification of version 2.0 from Ferguson

[1998] at the US Space and Naval Warfare Systems Command (SPAWAR). The code is

almost exclusively written in FORTRAN, and even has some comments that are reminiscent

of the code’s early development with punch cards. The following are a few examples for the

output of LWPC V3.0.

The first example, shown in Figure 2.5, is a simple homogeneous LWPC run with no

mode conversion, meaning all parameters are constant throughout the waveguide except

for the vertical electron density profile. NAA’s transmitter profile, a vertical electric field

antenna at 24 kHz with a power of 1.2 MW, is used. Earth’s ground is set to have electrical

properties similar to salt water, which is a good radio reflector, with σ = 4 and ǫr = 81, and

a background magnetic field 45◦ to zenith and the plane of propagation, with a strength

of 35 µT (note the input to LWPC is in Gauss and not µT), is used. The electron density

profile is defined using the Wait and Spies [1964] two-parameter model (1.22) with the

values β = 0.4 and h′ = 70. Amplitude of the TM signal is shown in the top panel and an

adjusted phase of the signal is shown in the bottom panel. The speed of light phase (kx)

has been removed from the TM signal to add clarity in the display of phase changes as a

function of distance.
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Figure 2.5: Total amplitude and phase from example LWPC run with β = 0.4 and h′ = 70.
The two strongest modes, TM1 and TM3, are also shown.

Mode vp/c α [rad/Mm] |Υ| [pT] ∠Υ [deg]

TM1 0.9976 0.221 13.152 -78.413
TM2 0.9992 0.483 0.070 3.180
TM3 1.0060 0.709 28.396 -87.365
TM4 1.0134 1.313 0.090 19.983
TM5 1.0251 1.796 24.544 -87.484
TM6 1.0374 2.761 0.197 23.051

Table 2.1: Example daytime QTM mode values for LWPC run with β = 0.4 and h′ = 70.

A few noticeable features are the peaks and nulls in the amplitude signal along with

sharp phase changes associated with amplitude nulls. Nulls in the amplitude curve are

caused by modal interference (modes with similar amplitudes are close to 180◦ out of phase

and closely cancel with each other). The most noticeable null occurs around 2.2 Mm, where

the TM1 and TM3 modes have similar amplitudes and are 180◦ out of phase, relative to

each other. The two TM modes shown in the figure also exhibit a non-linear decay when x

is small and then approach a linear decay as x becomes larger. This non-linear decay comes

from the [sin (x/Re)]
−1/2 curvature adjustment term in (2.50).

The total field in Figure 2.5 comes from the superposition of individual modes in (2.50).
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Mode vp/c α [rad/Mm] |Υ| [pT] ∠Υ [deg]

TM1 0.9959 0.106 4.279 -82.689
TM2 0.9964 0.302 1.356 -67.380
TM3 1.0022 0.246 25.214 -88.324
TM4 1.0065 0.563 0.739 -14.835
TM5 1.0150 0.619 22.289 -90.705
TM6 1.0226 1.122 1.194 -12.328

Table 2.2: Example nighttime QTM mode values for LWPC run with β = 0.5 and h′ = 80.

Table 2.1 gives the necessary components needed to define each individual mode. Phase

velocity vp (2.52), normalized by the free space speed of light, and attenuation α (2.51)

are direct results of the eigenvalues found from solving the determinant in (2.42). A field

strength parameter Υ = QTMΛtm(zt)Λrm(zt) is used to account for the excitation of each

mode m in waveguide and the mode dependent height gain function of the receiver.

A few general trends are exhibited within the table; phase velocity and attenuation

both increase for higher order modes, and magnitude of the field strength parameter is

much stronger for odd order modes. From the simple parallel-plate waveguide example in

Figure 2.1, it is expected that attenuation increases for higher order modes, since higher

order mode numbers have smaller reflection angle, and thus reflect a larger number of time

off the lossy ionosphere boundary. Likewise, smaller reflection angles mean the wavelength

in the x̂ direction λx becomes larger, and so the phase velocity in the x̂ direction increases.

Different modes couple more efficiently into the EIWG depending on the geometry of the

transmitting antenna and the electrical properties of the waveguide. For this particular

daytime example, with a transmitter that a has a vertical electric dipole moment, it happens

to be that the odd numbered modes couple into the waveguide much more efficiently than

the even number modes. In Figure 2.5, the TM3 mode is dominate up until ∼1.6 Mm and

then the TM1 mode dominates. Strength in the TM3 mode is seen for short distances

because it has a strong Υ value, but the TM3 mode then attenuates more quickly than the

TM1 mode because it has a larger α value.

A similar LWPC example is given in Table 2.2, except now the ionospheric electron

density is adjusted to a nighttime profile, with β = 0.5 and h′ = 80. The nighttime

ionosphere is at a greater altitude than the daytime ionosphere and has a sharper electron
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β = 0.38, h′ = 72

β = 0.40, h′ = 68

β = 0.40, h′ = 70

β = 0.40, h′ = 72

β = 0.42, h′ = 72

Figure 2.6: Example LWPC runs with various values for h′ and β.

density profile. Therefore, the reflection angles are larger in the nighttime, giving slower

phase velocities, and the attenuation of the modes is less, since the wave reflects more

efficiently off the steep electron density profile. It is also seen that the even number modes

have greater |Υ| values in the nighttime than in the daytime. This leads to stronger modal

interference patterns during nighttime propagation.

A final example, shown in Figure 2.6, is given to compare small changes in daytime

waveguide parameters. The same values used in Figure 2.5 are used here, except the waveg-

uide parameters are varied. The interesting feature in this example is the deep null between

the 2 Mm to 2.4 Mm range. By adjusting the waveguide parameters, the intensity of the

null is increased or decreased, and the change in phase is made smoother or sharper.

2.6 VLF Remote Sensing History

Narrowband VLF transmitters and lightning are the two most common VLF sources used

in D region remote sensing applications. Using narrowband transmitters for remote sensing

is advantageous because the transmitted frequency and power is well known, making it easy
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to characterize the excitation of a VLF wave in the waveguide. However, these transmitters

are sparsely populated around the world and operate over a small bandwidth (often 100 Hz)

giving low spectral and spatial resolution. Interestingly, lightning complements the sparse

population of narrowband transmitters quite well. Lightning strokes occur over much of the

world and give a spatially dense set of VLF emissions. Unfortunately, individual lightning

strokes are not well characterized, so the expected received signal from an individual sferic

is not well known [Said et al., 2010].

Inferring the h′ and β waveguide parameters through VLF remote sensing has tradition-

ally involved an inverse modeling approach. Typical VLF waveguide propagation models

use input parameters that define the electrical properties of Earth’s ground and the D re-

gion along the path of propagation, and the output of the model is often the amplitude

and phase of the electric or magnetic field at some point along the waveguide. The inverse

modeling approach uses a VLF propagation model and the known amplitude and/or phase

of the observed signal to determine h′ and β along the path.

Two common methods exist for inverse modeling with narrowband transmitters. The

first method consists of a stationary transmitter and a mobile receiver, often mounted to

an aircraft [Wait and Spies, 1964; Bickel et al., 1970; Ferguson, 1980; Pappert and Hitney ,

1988]. The mobile receiver records the amplitude and phase of the signal while moving

along the GCP towards or away from the transmitter. This type of transmitter observation

records spatial variations (peaks and nulls) in amplitude and phase due to multi-mode

interference. Various combinations of h′ and β are then used in a propagation model, and

the set of waveguide parameters that gives the best fit to the observed data, with special

attention placed towards the peaks and nulls, is then determined. Care must be taken when

using the mobile receiver method because variations in the D region may occur during the

recording period.

The second, and most common method consists of one or more stationary receivers

recording transmissions from stationary transmitters [Thomson, 1993; Clilverd et al., 1999;

McRae and Thomson, 2000, 2004; Thomson and Clilverd , 2001; Bainbridge and Inan, 2003;

Thomson et al., 2011, 2017; Hayes et al., 2017]. Similar to the first method, various com-

binations of h′ and β are used in a propagation model, often LWPC, and the output is
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compared with the observed data. Stationary receivers are advantageous for long recording

campaigns and observing temporal variations in the D region. Past works have focused on

using only one or two receivers due to the high cost of operating a receiver and the increased

computational burden every time another receiver is added to the inverse model method.

Broadband VLF radiation from lightning is also used to infer the h′ and β waveguide

parameters. Cummer et al. [1998] and Han and Cummer [2010a,b] recorded sferic amplitude

with VLF receivers and used an inverse modeling method to infer aggregate h′ and β

values over the entire sferic spectra. McCormick et al. [2018] recently developed an inverse

modeling technique with LWPC and used both sferic amplitude and sferic phase to show

some frequency dependence in the waveguide parameters.
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CHAPTER 3

NARROWBAND VLF FUNDAMENTALS

The terms broadband and narrowband are somewhat ambiguous in general engineering

practice. Broadband data means that the data contains a wide spectrum of information,

while narrowband data contains a small spectrum of information. The VLF community

has adopted a more specific definition for these two terms. In VLF literature, broadband

data is the raw, or unaltered, data from a wideband VLF receiver, sampled at baseband.

Broadband data from the Stanford AWESOME receiver in Cohen et al. [2010a] is defined

by the limitations of the receiver, where the bandwidth is 0.3−47 kHz and the sampling

rate is 100 kHz. Broadband data from the Georgia Tech LF receiver is again defined by

the limitations of the receiver, which has a larger bandwidth (0.5−470 kHz) and a higher

sampling rate (1 MHz) [Cohen et al., 2018a]. Storing and working with continuous 1 MHz

broadband data is often unwieldy because of the memory requirements (one week of 1 MHz

sampled data is ∼1.2 TB). When performing pure VLF research, most of the spectrum

in 1 MHz broadband data is irrelevant, and the use of 100 kHz broadband data is better

suited for analysis to ease the memory and computational burden. While the Georgia Tech

LF receiver does sample at 1 MHz, it also has the capability to downsample the 1 MHz

broadband data to a more manageable 100 kHz broadband data set with a bandwidth of

0.5−47 kHz (similar to that in the Stanford receiver) and save the 100 kHz broadband

data to memory. This thesis is concerned with signals below the 47 kHz range, so 100 kHz

broadband data is sufficient for all the work presented here.

The VLF community loosely uses the term narrowband data to mean small spectrum

transmissions in the VLF/LF range. Any small spectrum type of signal may be considered a

narrowband signal, but most VLF literature focuses on continuous-wave (CW) or minimum-

shift keying (MSK) types of transmissions. CW transmissions are monochromatic so the

bandwidth, in theory, is infinitely small. MSK signals generated in the VLF range often,

but not always, consist of two tones spaced 100 Hz apart and have side bands that are
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contained well within 500 Hz of either side of the center frequency. Therefore, we define

a narrowband signal in this thesis as a VLF/LF transmitted signal with a bandwidth less

than 1 kHz.

There are two methods for extracting narrowband data with a VLF receiver. The first

method requires dedicated hardware that is specifically designed to extract narrowband

information for the given type of narrowband transmission. This type of method is often

used in industry and commercial products. For example, radio-controlled clocks in the

US use dedicated hardware to monitor a 60 kHz CW amplitude modulated signal from

the WWVB transmitter, operated by the National Institute of Standards and Technology

(NIST), in Fort Collins, Colorado. The second method, and most often used for VLF

research, is the extraction of narrowband data from broadband data in either real-time or

post-processing. This method is preferred for VLF research because broadband data gives

more versatility to the researcher, where a single broadband data set contains broadband

events, such as whistlers and sferics, and multiple narrowband signals.

Even though narrowband data has been used for decades in VLF remote sensing appli-

cations, little has been published on methods for extracting macroscopic features, such as

amplitude and carrier phase, from narrowband VLF signals. Thomson [1975, 1981] used a

cross-correlation method to estimate MSK signal group delay for whistler mode wave stud-

ies. Shafer [1994] developed an MSK demodulation method as a means to remote sense

transient ionospheric disturbances. Said [2009] used a coherent MSK removal technique

to reduce MSK transmitter noise in sferic observations. Mitchell [2015] created a spread

spectrum technique to better estimate the transmitted signal and its response to the EIWG

in a multimode environment. Gross et al. [2018] extended the coherent MSK demodulation

technique to synchronize the demodulation between two co-located antennas for polarization

ellipse analysis. This chapter aims to give a clear and detailed discussion of the Gross et al.

[2018] MSK feature extraction method and discuss how these features may be interpreted

with regard to VLF remote sensing.
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3.1 Minimum-Shift Keying

3.1.1 MSK Definition

MSK is a modulation scheme that is a special case of Continuous Phase Frequency-Shift

Keying (CPFSK), in which the transmitter alternates between two frequencies and has

continuous phase (no sharp phase changes between symbol transitions). See Pasupathy

[1979] for a good introduction on MSK signals. By design, MSK uses two frequencies that

are close to the center frequency while still maintaining continuous phase and orthogonality

between the upper and lower frequencies. This means that MSK modulation is spectrally

efficient because the tones are close together and the sidebands will be small since no sharp

phase changes occur.

An ideal MSK signal s(t) with a radial center frequency of wc contains a stream of bits

bk with values ±1. For most MSK VLF transmitters, this stream of bits is independent and

identically distributed (IID), meaning that each bit is independent of the bits preceding

(and following) it. The MSK modulation scheme creates a time-varying signal defined as

s(t) =
∞∑

k=0

cos

[
wct+

bkπt

2T
+ θk

]
pT (t− kT ), (3.1)

where T is the symbol period, θk is a phase adjustment to maintain phase continuity, defined

by

θk =





−bkπk
2 + π

2

∑k−1
j=0 bj , k > 0

0, k = 0
, (3.2)

and pT (t) is a function used to isolate each symbol and minimize inter-symbol interference

(ISI) [Carlson et al., 2002, p. 622]. For this work a simple rectangle function will be used

as the pulse function

pT (t) = u(t)− u(t− kT ), (3.3)

where u(t) is the unit step function. Other types of pulse functions exist for MSK, such

as the classic Gaussian pulse function which is given the special name Gaussian minimum

shift-keying (GMSK) [Morelli and Mengali , 1999].
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Figure 3.1: In-phase and quadrature symbol mapping.

Inspection of (3.1) combined with (3.2) reveals that s(t) can take on four unique states

(tones), which consists of either an upper and lower frequency ωc ± π/(2T ) and a phase

of either 0 or π. Whether s(t) takes on an upper or lower frequency is determined by the

value of bk, meaning the communicated bit stream of 1’s and 0’s is simply determined by

the frequency shift, or lack of a shift, of s(t) every T seconds. The four states have been

mapped onto a symbol mapping chart, shown in Figure 3.1, where aI and aQ can take on a

value of ±1. A symbol change will occur when bk 6= bk+1, which means s(t) will transition

from its current symbol state to an adjacent symbol on the chart, but no symbol change

will occur when bk = bk+1. Two choices exist when transitioning to an adjacent symbol,

but only one of the choices will allow the signal s(t) to maintain phase continuity during

the transition. Equation (3.2) shows that θk = θk+1 when k+ 1 is an even value, regardless

the values of bk and bk+1, which implies aI does not change (aI [k] = aI [k + 1] when k + 1

is even). Conversely, aQ does not change when k+ 1 is odd because s(t) must have a phase

adjustment of π to maintain phase continuity (aQ[k] = aQ[k + 1] when k + 1 is odd).

Each of the four states for s(t) are encoded using aI and aQ, meaning the time series
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in-phase and quadrature encoding is

aI(t) =
∑

k

aI [k] p2T (t− T − 2Tk)

aQ(t) =
∑

k

aQ[k] p2T (t− 2Tk),

(3.4)

where aI [k] and aQ[k] are gated by

p2T = u(t)− u(t− 2kT ), (3.5)

which is a rectangle function similar to pT but with a period of 2T . Combining equations

(3.4) and (3.1) gives the easier to interpret MSK time series function

s(t) = cos

[
ωct+ b(t)

πt

2T
+ θ(t)

]
, (3.6)

given

b(t) =





+1, aI(t) 6= aQ(t)

−1, aI(t) = aQ(t)

θ(t) =





0, aI(t) = 1

π, aI(t) = −1
.

(3.7)

Equation (3.6) shows that two time series variables, b(t) and θ(t), are superimposed with the

carrier frequency. These two variables are combined into a single time series term known,

as a phase trellis

φMSK(t) ≡ b(t) πt
2T

+ θ(t), (3.8)

that encapsulates the modulated information.

Equation (3.6) is useful when discussing a simple MSK signal, but it is obviously incom-

plete because it does not account for time delay of the carrier signal or the phase trellis.

We now introduce the term τ0(t) (a proxy for phase velocity) to account for any delay of

the carrier signal and the term τ1(t) (a proxy for group velocity) to adjust the delay of the
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symbol transition time

x(t) = cos [ωc(t− τ0(t)) + φMSK(t− τ1(t))] . (3.9)

Any change in τ0 will phase shift the carrier signal, so we define carrier phase as

φ0(t) ≡ −ωcτ0(t). (3.10)

The MSK signal has a clock (symbol) frequency of 1/T , and any delay or advancement of

the bit transition time can be thought of as a phase adjustment to the clock frequency.

Using (3.8) to expand φMSK(t− τ1) shows that clock phase is defined as

φ1(t) ≡
−πτ1(t)

2T
. (3.11)

Now that the carrier phase and clock phase have been defined, the final form of the MSK

signal is found by substituting (3.10) and (3.11) into (3.9)

x(t) = cos [ωct+ φ0(t) + φMSK(t− τ1(t))]

= cos

[
ωct+ φ0(t) + b(t− τ1(t))

(
πt

2T
+ φ1(t)

)
+ θ(t− τ1(t))

]
. (3.12)

3.1.2 MSK Demodulation

The first step in demodulating an MSK signal is to isolate the narrowband signal A(t)x(t)

from the broadband data X(t). Variable A(t) represents the amplitude of the narrowband

signal (A(t) was left out of the previous discussion for clarity but is now being introduced).

Isolation is performed by mixing down the narrowband signal to baseband and applying a

lowpass filter

z(t) = LPF{2X(t)e−jωct}

= A(t)exp

[
jφ0(t) + jb(t− τ1)

(
πt

2T
+ φ1(t)

)
+ jθ(t− τ1)

]
. (3.13)
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Figure 3.2: Example of NLK’s (24.8 kHz) upper sideband and NML’s (25.2 kHz) lower
sideband interfering with each other.

A factor of 2 is included inside the argument of the lowpass filter to account for half of

the signal’s energy being placed outside the lowpass filter due to the complex mixing. The

amplitude of the MSK is then found by taking the magnitude of the baseband signal

A(t) = |z(t)| . (3.14)

Lowpass filtering is sometimes tricky when two transmitters operate at frequencies close

to each other. Figure 3.2 is an example of NLK’s (24.8 kHz) upper sideband and NML’s

(25.2 kHz) lower side band interfering with each other. For MSK demodulation we want

to isolate the desired MSK signal from all other signals while retaining as much spectral

energy of the MSK signal as possible. Hence, care must be taken when designing a lowpass

filter. This work uses a 1001-tap Hanning window filter with a 3-dB cutoff at ∼155 Hz,

shown in Figure 3.3, which gives a good trade-off between computational burden and band

rejection.

As shown before, an MSK signal will alternate between an upper and lower frequency

through the use of b(t), and θ(t) will alternate between 0 and π to maintain phase continuity.
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Figure 3.3: Response of lowpass filter used to isolate 100 Hz bandwidth narrowband signals
from broadband data.

The θ(t) term is removed by squaring the baseband signal

[z(t)]2 = [A(t)]2 exp

[
j2φ0(t) + jb(t− τ1)

(
πt

T
+ 2φ1(t)

)
+ j2θ(t− τ1)

]
(3.15)

where 2θ(t) is now 0 or 2π. With the baseband signal squared, b(t) will give either a positive

frequency of 1/2T or a negative frequency of −1/2T (i.e., b(t) will take on the value ±1),

and the respective phase 2φ± is found by mixing down the ±1/2T frequency to baseband

and integrating over some period t0 ≤ t ≤ t1, where b(t) is constant,

2φ± = ∠

{
1

t1 − t0

∫ t1

t0

[z(t)]2

[A(t)]2
e∓jπt/T dt

}
. (3.16)

Note that the normalization of [z(t)]2 by [A(t)]2 helps de-emphasize impulsive energy (such

as sferics) that is not filtered out by the lowpass filter but is not part of the MSK signal.

In practice (3.16) is calculated over many bits (usually one seconds worth) to acquire an

average value for φ±, which also mitigates effects from impulsive noise.

Now that the phase for the upper and lower frequency for the squared baseband signal
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has been found, a relationship between φ±, the carrier phase, and the clock phase is formed

∠[z±(t)]2 = 2φ0(t)± 2φ1(t)±
πt

T

= 2φ±(t)± πt

T
, (3.17)

giving

φ+(t) = φ0(t) + φ1(t) +mπ

φ−(t) = φ0(t)− φ1(t) + nπ,

(3.18)

where m,n ∈ Z and have been included to account for the unknown phase wrapping of

φ±. It is not uncommon for φ± to experience phase wrapping when tracking phase changes

for long periods. An instantaneous phase jump in φ± that is close to a multiple of π is

most likely caused by this phase wrapping, and m or n can be adjusted to compensate for

the phase jump so that phase continuity is maintained. Rearranging (3.18) shows that the

carrier phase is proportional to the sum of the upper and lower phase

φ̂0 =
(φ+ −mπ) + (φ− − nπ)

2
, (3.19)

where the ̂ symbol is used to denote an estimated value. This result is not surprising,

considering carrier phase is a proxy for phase velocity, and (3.19) is really just finding

the average phase between the upper and lower frequencies. Clock phase is found to be

proportional to the difference of the upper and lower phase

φ̂1 =
(φ+ −mπ)− (φ− − nπ)

2
, (3.20)

and using (3.11) the bit transition delay is

τ̂1 =
−2T φ̂1
π

. (3.21)

Again this result is expected because clock phase is a proxy for group velocity, and (3.20)
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is half the difference of the upper and lower phase.

The final piece in demodulating the MSK signal involves finding the in-phase and quadra-

ture symbol sequence, which is straight forward now that we have the symbol transition

delay and know exactly when each symbol occurs. Using (3.13) and (3.7), the baseband

signal is written into its in-phase and quadrature form

z(t) = A(t)

[
aI(t− τ1(t)) cos

(
πt

2T
+ φ1(t) + φ0(t)

)
−

jaQ(t− τ1(t)) sin

(
πt

2T
+ φ1(t) + φ0(t)

)]
.

(3.22)

The in-phase signal aI(t) has transition boundaries at t = τ1+T +2Tk for k ∈ Z. Similarly,

the quadrature signal aQ(t) symbol transitions occur at t = τ1 + 2Tk. A matched filter

method is used to estimate the in-phase and quadrature symbols for each index k,

ãI [k] =
1

T

∫ τ̂1+T+2T (k+1)

τ̂1+T+2Tk
ℜ
{
z(t)

A(t)
e−jφ̂0

}
cos

(
πt

2T
+ φ̂1

)
dt

ãQ[k] =
1

T

∫ τ̂1+2T (k+1)

τ̂1+2Tk
ℑ
{
z(t)

A(t)
e−jφ̂0

}
sin

(
πt

2T
+ φ̂1

)
dt .

(3.23)

The bit stream of an MSK signal bk is defined as a discrete uniform distribution of ±1, and

each element in the sequence is independent from all other elements. It then follows that

the in-phase and quadrature symbol streams are independent and identically distributed

discrete random variables. Therefore, the digital in-phase and quadrature symbol streams

are found by using the signum function on each discrete analog symbol estimate

âI(t− τ̂1) =
∑

k

sgn (ãI [k]) p2T (t− τ̂1 − T − 2Tk)

âQ(t− τ̂1) =
∑

k

sgn (ãQ[k]) p2T (t− τ̂1 − 2Tk),

(3.24)

and the ambiguous value of sgn(0) is chosen to be either ±1.

At this point, all the necessary information about the MSK signal has been extracted

67



23950

24000

24050

F
re
qu
en
cy

[H
z]

−200

0

200

A
ng
le
[d
eg
]

z(t)
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Figure 3.4: Comparison of a reconstructed MSK signal from the NAA (24 kHz) transmitter
to the originally recorded MSK signal.

and the phase trellis is reconstructed as

φ̂MSK(t− τ̂1) = b̂(t− τ̂1)
πt

2T
+ φ̂1 + θ̂(t− τ̂1), (3.25)

and the estimate for the MSK signal is

ẑ(t) = A(t) ejφ̂MSK(t−τ̂1)+jφ̂0 . (3.26)

Figure 3.4 is an example MSK signal recording of the NAA (24 kHz) transmitter. The

recorded signal z(t) is extracted using (3.13) and the reconstructed signal ẑ(t) is found using

(3.26). The top panel shows the instantaneous frequency

f(t) =
1

2π

d [∠z(t)]

dt
(3.27)
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of the recorded and reconstructed signals, which are alternating between the frequencies

24.05 kHz and 23.95 kHz (ωc ± π/(2T )). Notice that the reconstructed signal has an in-

stantaneous frequency change between the upper and lower frequencies, while the recorded

signal has a noticeable transition period between the two frequencies. There are two impor-

tant reasons for the slow transition in the observed signal. First, a lowpass filter is applied

in (3.13) so the signal is band-limited and cannot be a perfect square signal, using a wider

lowpass filter reveals that the recorded MSK signal does have a shorter bit transition pe-

riod than shown in the figure, but increasing the filter passband also introduces a significant

amount of unwanted noise. Second, the transmitter itself has bandwidth limitations which

arise from the transmitter’s electronics and the fact that the transmitter is electrically small.

Non-linear filtering from EIWG propagation does have a small effect [Koh et al., 2018], but

the problem here is based on limited bandwidth and not the very small dispersion between

two frequencies separated 100 Hz apart.

Performance of the MSK signal reconstruction is visually seen in the bottom two panels

of Figure 3.4, where the middle shows the angle of the recorded ∠z(t) and reconstructed

∠ẑ(t) signals, and the bottom panel shows the difference between the two angles. It is seen

in the middle panel that the angle of the recorded and reconstructed signals overlap each

other very well, which shows that φ̂0 and φ̂1 were estimated well. Any error in estimating

φ̂0 would add an offset to the angle of the reconstructed signal, but would not affect the

instantaneous frequency. An error in estimating φ̂1 would result in a time shift of the

reconstructed signal and would be seen in both the instantaneous frequency and the angle

of the signal.

An estimate for the carrier phase and clock phase is found using (3.19) and (3.20),

respectively, but these estimates are often taken over a relatively long period (usually one

second) which may be too long of an integration period when using carrier phase as a

means to remote sense fast temporal changes in the ionosphere. A higher fidelity time

series estimate of the carrier phase is found by removing the modulated portion of the

observed MSK signal

A(t)ejφ̂0(t) = z(t)e−jφ̂MSK(t−τ̂1). (3.28)
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Bit transition errors shown in Figure 3.4 will become more apparent as the resolution of

φ̂0(t) becomes more fine, say 100,000 samples per second. These errors can be mitigated by

filtering (3.28). Historically, φ̂0(t) has been lowpass filtered and resampled to a sampling

period of 0.02 ms for high resolution narrowband data and the one second carrier phase

estimate from (3.19) has been used for low resolution narrowband data. Using a 0.02 ms

sampling period gives a good trade-off between mitigating bit transition problems while still

giving high enough resolution to capture fast ionospheric disturbances such as Early/fast

events.

3.1.3 Coherent MSK Removal

Another reason to estimate the phase trellis of an MSK signal is to coherently remove an

MSK signal from broadband data. Said [2009] and McCormick et al. [2018] demonstrate

the utility of coherently removing MSK signals from broadband data for sferic analysis, and

show that the coherent removal of MSK signals, presented here, outperforms the removal

of MSK signals through notch-filtering. Equation (3.13) is used to isolate the MSK signal

A(t)x(t) from broadband data X(t), but we now want to estimate a broadband signal X̂(t)

that does not contain the reconstructed MSK signal

A(t)x̂(t) = A(t) cos
[
ωct+ φ̂MSK(t− τ̂1) + φ̂0(t)

]
(3.29)

but still retains transient sferic information in the same frequency band as the MSK signal

X̂(t) = X(t)−A(t)x̂(t). (3.30)

Figure 3.5 is an example of coherent MSK removal from broadband data. The top left

panel (a) shows the amplitude of the broadband data in the frequency domain. The curve

labeled Original represents the unaltered broadband data that is recorded at a receiver

and shows the prominent peaks that are due to the NLK and NML transmitters. Using

the technique from (3.30), the NML MSK signal is removed from the broadband data and

plotted with the label NML Removed. We can measure the spectral correlation between the
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Figure 3.5: Coherent MSK removal example. (a) Broadband data in the frequency domain
showing the NLK (24.8 kHz) and NML (25.2 kHz) transmitters together (blue) and the
removal of the NML (orange). (b) Coherence of the raw broadband data and broadband
data with NML removed. (c) Comparison of a recorded sferic before (blue) and after
(orange) the NLK, NML, and NAA (24 kHz) were subtracted from the broadband data.

original and modified broadband data using the coherence function

Cgh(f) =
|Sgh(f)|2

Sgg(f)Shh(f)
, (3.31)

where

Sgh(f) =

∫ ∞

−∞

[∫ ∞

−∞
g(τ)y(τ + t)dτ

]
e−j2πftdt (3.32)

is the cross-spectral density between the arbitrary time series functions g(t) and h(t), and

Sgg(f) and Shh(f) are the autospectral densities. The coherence function shows that the

two broadband data sets are well correlated outside ±300 Hz of NML’s center frequency,
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which is good because we want to isolate the removal of NML without interfering with

NLK’s signal. The right panel (c) shows a relatively weak sferic before (Original) and after

(All Transmitters Removed) the removal of NLK, NML, and NAA. The sferic is visible

without the removal of the transmitters, but some of the sferic features, especially the tail

end, are hidden by the high energy of the transmitters. Removal of the MSK signals reveals

a more complete picture of the fast transient sferic details that were hidden by the high

energy MSK signals.

3.2 2-Channel MSK Demodulation

Electromagnetic boundary conditions dictate that the signal strength of VLF waves prop-

agating in the EIWG at Earth’s ground are strongest in the vertical direction for E-fields

and strongest in the horizontal direction for B-fields, hence most ground-based antennas

used in VLF remote sensing are vertical E-field antennas and horizontal B-field antennas.

Orientation of a vertical E-field antenna, such as monopole antenna, is simple because it is

omnidirectional in the horizontal sense. Orientation of a horizontal B-field loop antenna is a

little more complicated, because its beam pattern will have two peaks and two nulls located

in the horizontal plane. Therefore, a single loop antenna can be orientated to point towards

a particular bearing, but the performance of the antenna will be significantly degraded for

received signals that are close to the nulls of the antenna. To get around the null problem,

two co-located orthogonal loop antennas are used so that the beam pattern peak of one

antenna coincides with the null of the other orthogonal antenna.

A problem arises when most of an MSK signal’s energy exists on one antenna channel and

the other channel is left with a poor MSK signal to noise ratio (SNR). MSK demodulation

on the high SNR channel will perform well, while demodulation on the low SNR channel

will perform poorly. From (3.16) it is seen that a low SNR condition will affect the phase

estimation of φ± and the accuracy of the carrier and clock phase estimates will be reduced.

The problem is further compounded in (3.23), where poor accuracy of the carrier and clock

phase will misalign the matched filter integration, causing incorrect symbol estimates (bit-

flips) to occur. The following is a method to maximize MSK demodulation performance on
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both antenna channels, even when one channel has poor SNR.

The carrier phase φ0 of an MSK signal is estimated by subtracting the phase trellis

φ̂MSK(t− τ̂) from the phase of the baseband MSK signal ∠z(t), shown in (3.28). We extend

the single-channel mathematics, from the previous section, to a two-channel synchronized

demodulation method by estimating the symbol streams, âI,M(t) and âQ,M(t), and clock

phase φ̂1,M on a single channel with maximum SNR (subscript M denotes the digitally

rotated channel that maximizes the SNR of the MSK signal), and use these estimates to

find φ0(t) on the two original channels.

The first step in 2-channel MSK demodulation is to digitally rotate the antennas so that

one channel has maximum SNR over the spectral band of interest (it should be that the

maximum SNR channel is pointing very close to the bearing of the transmitter). Then the

phase trellis φ̂MSK,M is estimated using the single-channel method on the maximum SNR

channel. From here we want to estimate the carrier phase for two orthogonal channels,

both with good SNR. To do this we rotate the baseband signal z±45(t) to be ±45◦ off the

direction of maximum SNR, which closely distributes the energy of the MSK signal and

noise equally across both channels.

Carrier phase estimates are then found by subtracting the maximum SNR phase trellis

from the two baseband MSK signals

φ̂0,±45(t) ≈ ∠[z±45(t)]− φ̂MSK,M(t− τ̂1). (3.33)

Similar to (3.16), we also want to find an average carrier phase over some interval t0 ≤ t ≤ t1

φ̂0,±45 ≈ ∠

{
1

t1 − t0

∫ t1

t0

z(t)

|z(t)|e
−jφ̂MSK,M(t−τ̂)dt

}
, (3.34)

so that an estimate of the baseband signal, similar to (3.26), can be made

ẑ±45(t) = A±45(t) e
jφ̂MSK,M(t−τ̂1)+jφ̂0,±45 . (3.35)

With the two orthogonal channels synchronized, ẑ±45(t) may be rotated to any desired

direction without the consequence of low SNR on one channel causing poor demodulation
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Figure 3.6: Synchronized MSK demodulation of the broadband data measured at Briar-
wood, tuned to NML’s center frequency of 25.2 kHz. The amplitude, carrier phase, and
clock phase are shown over a full day for both the N/S and E/W channels. These diurnal
curves are typical during quiet ionospheric conditions.

performance.

Figure 3.6 is an example of the 2-channel demodulation algorithm for the NML trans-

mitter being received at Briarwood. In this example, the ẑ±45(t) channels have been rotated

back to receiver’s original N/S and E/W facing channels. The top panel shows the classic

and well-known diurnal curves for amplitude data on the N/S and E/W channels. Night-

to-day and day-to-night transition periods, known as the day/night terminators, form dis-

tinctive nulls and peaks in the diurnal curves and are easily seen. Duration of the observed

day/night terminator in the VLF signal is about the time it takes for the sunrise or sunset

terminator to traverse the entire transmitter-receiver path. Since the change in longitude

along this path is relatively small, the terminator effects are only seen for a short amount

of time. The middle panel shows the carrier phase, for both channels, advance and regress

from the diurnal variations of the D region ionosphere. During the daytime, the carrier

74



0

20

A
m
pl
it
ud
e

[d
B
-p
T
]

Night Day

NPM to Baxley at 21.4 kHz - 4 August 2016

N/S Channel

E/W Channel

0

200

U
ns
yn
ch
ro
ni
ze
d

D
em

od
ul
at
io
n
[d
eg
]

09:00 10:00 11:00 12:00 13:00 14:00
Time [HH:MM]

0

200

S
yn
ch
ro
ni
ze
d

D
em

od
ul
at
io
n
[d
eg
]

Figure 3.7: Comparison of the unsynchronized and synchronized MSK demodulation algo-
rithm over a long west-to-east path (Hawaii to Georgia). Amplitude is shown in the top
panel and has multiple peaks and nulls due to the night-to-day terminator. The unsyn-
chronized carrier phase and synchronized carrier phase is drawn in the bottom two panels,
respectively. The nighttime to daytime transition is defined as the point in time where the
terminator is directly above the receiver.

phase is smooth, and a small offset is maintained between the two channels. Nighttime

carrier phase is less smooth and the offset between the two channels varies more, due to

the turbulent nature of the nighttime ionosphere. The bottom panel shows the clock phase

from the maximum SNR channel. Like carrier phase, the clock phase is smooth during the

daytime and more chaotic during the nighttime.

Figure 3.7, shows the NPM VLF transmitter, in Hawaii, recorded at Baxley, and demon-

strates the synchronized demodulation algorithm’s utility. Amplitude on both channels is

displayed in the top panel. The path from NPM to Baxley has a large longitudinal span,

meaning the night-to-day terminator takes several hours to traverse westward along the

transmitter-to-receiver path, and this transition is apparent in the received signal between

∼10:30−13:45 UT. Three nulls are seen in the amplitude data on both channels and are the
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result of modal interference that is commonly observed in long east-to-west or west-to-east

paths [Pappert and Morfitt , 1975]. During these nulls, the SNR of the MSK signal drops

which makes estimation of the MSK parameters more difficult. In the middle panel, the

carrier phase has been extracted from each channel individually, using the original single-

channel algorithm. Before the first null occurs, the phase difference between channels is

typically within ∼5◦ of each other. During the first null, the N/S channel carrier phase

begins to sporadically move, showing that the carrier phase is being improperly estimated

due to the low SNR condition. Once the first null has passed, a 90◦ offset between the two

channels appears. This offset is the result of the 90◦ phase ambiguity that arises from (3.19),

meaning the N/S channel SNR is too low for the single-channel demodulation algorithm

to determine the correct m and n values necessary for proper phase unwrapping. During

the second and third nulls, the carrier phase is again uncertain and more 90◦ phase shifts

occur, compounding the 90◦ phase ambiguity problem. Carrier phase in the bottom panel

is calculated using the 2-channel demodulation algorithm with the symbols and clock phase

synchronized. During the first two nulls, the carrier phase is estimated well, and during the

third null, nearly all points in time are cleanly tracked. Furthermore, erroneous 90◦ phase

offsets are not induced in the N/S channel after each null, showing that the transmitter

carrier phase is phase locked between the two channels, and the same symbol estimates and

clock phase are being used on both channels. Interestingly, the offset between the N/S and

E/W phase is relatively steady except at the first null, where they deviate from each other.

This deviation is the result of the terminator and is discussed with more detail later in this

chapter.

3.3 Polarization Ellipses

3.3.1 Polarization Definition and Utility

The use of polarization ellipses is a common technique in electromagnetic remote sensing

and communications applications, but it is much less common in the field of VLF remote

sensing. Many VLF recordings are made with two loop antennas and simple analog or dig-

ital filters that isolate the amplitude of a particular VLF transmitter frequency but do not
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calculate the phase via MSK demodulation. These recordings allow some direction-finding

capability but cannot distinguish between, for example, a linear polarization and a highly

elliptical polarization. Furthermore, an accurate measurement of the transverse magnetic

flux density amplitude cannot be made unless one of the two co-located loop antennas is

deliberately oriented to observe a given transmitter. Often, the co-located loop antennas

are oriented in the N/S and E/W directions, so amplitude and phase are required to dig-

itally rotate the antenna towards a given transmitter. Here, we detail the mathematical

description of polarization ellipses and apply it to narrowband VLF transmitter signals after

demodulation.

At any given time, the horizontal magnetic flux density of a narrowband beacon can be

represented by four quantities: amplitude and carrier phase of each of the N/S and E/W

antennas (N/S and E/W antennas are used here, but this discussion is easily extended to

any pair of orthogonal antennas). The amplitude A and phase ψ of the two antennas will

be denoted as ANS , ψNS , AEW , ψEW . These four components are written as two separate

complex phasors, which define an ellipse centered at the origin of the complex plane. The

polarization ellipse technique has previously been applied to broadband signals to locate the

arrival direction of chorus signals re-entering the atmosphere from the space environment

at high latitudes [Go lkowski and Inan, 2008; Hosseini et al., 2017], as well for direction

finding of broadband sferics [Said et al., 2010]. Maxworth et al. [2015] also applied aspects

of the polarization ellipse to coherent signals emitted by ionospheric ELF/VLF modulated

HF heating. A portion of the magnetic flux density also exists in the vertical direction

and is not always negligible [Silber et al., 2015]. This work only considers the horizontal

magnetic flux density, but the proposed polarization ellipse technique may be extended to

include the vertical magnetic flux density, which would then give an ellipsoid.

Figure 3.8 shows the geometry and coordinate system involved in polarization measure-

ments. Let x̂ and ŷ refer to the east and north directions, respectively. The plane of the

N/S loop antenna is parallel to the ŷ axis and has a surface vector pointing in the x̂ direc-

tion. Likewise, the plane of the E/W antenna is parallel to the x̂ axis and has a surface

vector pointing in the −ŷ direction. The polarity of each loop antenna (i.e., which direction

the surface vector points) is determined by the direction the wire is wound. When standing
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Figure 3.8: Geometric setup for a VLF receiver’s antenna orientation (black axes), wave
propagation axes (red axes), and polarization ellipse (blue ellipse) of the magnetic flux
density. The angle θaz gives the nominal arrival direction from the source. The green
markings show the major axis and minor axis of the ellipse, τ is the tilt angle of the ellipse
from φ̂, and χ is the ellipticity angle. The red vector on the ellipse shows the start phase
and rotation sense of the ellipse.

east of the N/S antenna and facing west, the positive lead of the wire is traced back to the

negative lead in a clockwise rotation. The same clockwise wrapping is true when standing

south of the E/W antenna and facing north. Amplitude and phase of the received magnetic

flux densities are combined to find the total horizontal magnetic flux density

B(t) = ANS cos(ωt+ ψNS)x̂−AEW cos(ωt+ ψEW)ŷ. (3.36)

Note that ψNS and ψEW must be correct relative to each other (no 90◦ ambiguity), so we

assume that the 2-channel phase synchronizing demodulation technique, described in the

previous section, is used to extract the phase from each channel. Also, the sign of ψ is

positive to be consistent with (3.28).

Red axes in Figure 3.8 are shown to align with a hypothetical source located, in this

example, northeast from the receiver. The radial direction, r̂, which points radially away

from the source, is therefore toward the southwest. Adhering to the definition of a right-

hand coordinate system, the azimuthal direction φ̂ is 90◦ counterclockwise from r̂. The

receiver rotation angle θaz is defined as the angle, with clockwise rotation sense, from the
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northward direction ŷ to the direction of the transmitter −r̂. A clockwise rotation matrix

is used to rotate the magnetic flux density from the x̂ and ŷ coordinate system to the r̂ and

φ̂ coordinate system,



Br

Bφ


 =




cos(θaz + π
2 ) sin(θaz + π

2 )

− sin(θaz + π
2 ) cos(θaz + π

2 )







ANSe
jψNS

−AEW ejψEW


 , (3.37)

where Br and Bφ are the phasor form of the magnetic flux density.

The blue trace in Figure 3.8 shows an example polarization ellipse, it is equivalent

to the time domain magnetic flux density B(t) being drawn on the xy-plane over a full

period. There are four properties that together specify the ellipse: the major axis (which

is double the semi-major), the tilt angle τ , the ellipticity χ, and the start phase ρ. The

polarization ellipse, in general, is not aligned perfectly with the azimuthal direction, but for

TM-dominated signals it is often reasonably close. Tilt angle

τ =
1

2
tan−1

[
2γ

1− γ2 cos(ψ0)

]
, (3.38)

where

γ =
| −Br|
|Bφ|

(3.39)

and

ψ0 = ∠

[−Br
Bφ

]
, (3.40)

is defined as the counterclockwise angle from φ̂ to the major axis direction, with a range

of −90◦ ≤ τ ≤ 90◦. Tilt angle can also be thought of as the error in angle of arrival when

using classic magnetic direction finding.

The ellipticity angle

χ =
1

2
sin−1

[
2γ

1 + γ2
sin(ψ0)

]
(3.41)

of an ellipse encapsulates two parameters: how linear (or circular) the ellipse is and the

rotational sense of the ellipse. Since the minor axis is by definition smaller than the major

axis, the ellipticity angle exists over the interval −45◦ ≤ χ ≤ 45◦. The rotational sense
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of the ellipse is defined by the sign of χ, a positive value (χ > 0) indicates the ellipse is

right-hand polarized (or rotating counterclockwise) and a negative value (χ < 0) means

the ellipse is left-hand polarized (or rotating clockwise). For the example in Figure 3.8

the Rotation Direction vector is showing a right-hand polarization, so χ is positive. The

ellipticity angle also describes how linear the ellipse is. When χ is close to zero, the ellipse

is highly linear. Conversely, the ellipse is highly circular when the absolute value of the

ellipticity (|χ|) is near 45◦.

Start phase is the phase difference between the vector parallel to the semi-major axis

closest to φ̂, written as B(t=tMaj), and the initial point of the magnetic flux density vector

B(t=0), which gives

ρ = ω tMaj. (3.42)

Using a counterclockwise rotation matrix, the magnetic flux density phasors along the minor

axis and major axis, BMin and BMaj, respectively, can be solved for



BMin

BMaj


 =




cos(τ) − sin(τ)

sin(τ) cos(τ)






Br

Bφ


 . (3.43)

By definition, BMaj = |BMaj| e−jω tMaj , which yields −∠BMaj = ω tMaj, and allows the start

angle to be written as

ρ = −∠BMaj. (3.44)

Start phase is an important metric because it captures transmitter phase changes but is

independent of the geometric shape of the ellipse. If the carrier phase changes equally on

both the azimuthal and radial channels, then Br and Bφ experience equal phase changes.

On the other hand, the shape of the ellipse, whether it is highly linear or circular, is closely

connected to the phase difference between the two components. This is useful when dealing

with transmitters that have drifting or unstable phase at the source. The phase instabilities

are captured in the start phase, but they do not contaminate the geometric properties of

the ellipse. Note that since B(t) forms an ellipse, the start phase is not the same as the

geometric angle between B(t=tMaj) and B(t=0), unless B(t) is circularly polarized.
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3.3.2 Angle of Arrival

In Figure 3.8 we define the angle of arrival, for a transmitter signal observed at a receiver,

to be θaz. There are two sources of error for the angle of arrival, site errors and receiver

errors, both of which can be mitigated through careful post-processing techniques. Site

errors are caused by local site anomalies which may include nearby buildings, power lines,

cables, and various surrounding terrain [Mach et al., 1986]. Receiver errors come from

imperfections in receiver construction and calibration, and can be mitigated during the

receiver manufacturing and installation process [Wood and Inan, 2004]. Removal of these

errors may be accomplished by finding a calibration function f that relates the measured

angle of arrival θcalc to the true geometric angle of arrival θtruth,

θtruth = f(θcalc). (3.45)

Site errors are due to re-radiated signals from conductive materials within the vicinity

of the receiver. An incoming VLF wave will produce currents on the conductive material,

which will then create secondary waves (re-radiate) that are received by the receiver but at

some angle that is different than the incoming VLF wave. Angle of arrival errors from the

secondary wave have been shown to be quadrantal errors, which are two-cycle sinusoidal

curves with even and odd harmonics [Miyake et al., 1995]. Hiscox et al. [1984] shows the

effects from the secondary wave scattering can often be approximated to a simple two-

parameter function

fquadrantal(A, φ, θcalc) = θcalc −A sin(2θ + φ), (3.46)

which is just the fundamental frequency of the quadrantal error, but also noted that a more

complex equation is needed when quadrantal harmonics are not negligible (see Passi and

López [1989]). In practice, multiple re-radiating sources exist, and a receiver’s site error is

the superposition of all quadrantal errors. The sum of these quadrantal errors still produces

an error function with a two-cycle fundamental frequency, as shown in (3.46), because the

sum of two sinusoids with equal frequencies gives a sinusoid at the same frequency.
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Receiver errors, with regard to angle of arrival, are symptoms of imperfect tolerances

in the electronics of the receiver and imperfect construction and deployment of the an-

tenna. Wood and Inan [2004] developed a three-parameter model motivated by antenna

imperfections to correct for receiver errors,

fantenna(α, ξ, ρ, θcalc) = arctan

[
α

tan(θcalc)

cos(ξ)
− tan(ξ)

]
+ ρ, (3.47)

which accounts for the deviation of the N/S antenna from due north ρ, the skew of the two

antennas relative to orthogonal ξ, and the ratio of the two antenna surface areas α. Gain

differences between the two channels in the electronics of the receiver are removed using an

internal calibration method [Cohen et al., 2018a], but any residual gain errors between the

electronics of the two channels will also be captured in the α term.

Measured angle of arrival errors are the combination of site errors and receiver errors.

Decoupling the two types of errors is challenging, and the choice of using either the quad-

rantal correction function (3.46) or the antenna correction function (3.47), or both, is a

matter of preference and understanding of the driving mechanism for angle of arrival errors

at a given site. We continue with our discussion using the Wood and Inan [2004] method

only, but note that this discussion may be adapted to use the quadrantal method, or both.

Estimation of the three parameters in (3.47) is done by minimizing a cost function

related to (3.45),

arg min
α,ξ,ρ

N∑

i=1

[θi,truth − fantenna(α, ξ, ρ, θi,calc)]2 , (3.48)

over a set of N angle of arrival measurements. Ideally, the set of angle of arrival mea-

surements would be uniformly spaced from 0◦ to 360◦, but too few VLF transmitters exist

to give a good spatial distribution for angle of arrival measurements. Instead, lightning

generated radio sferics are used to generate the spatial distribution required to solve (3.48).

A few considerations must be made when using sferics to correct for angle of arrival

errors. First, the ground truth angles θtruth are found by assuming the radio wave source is

the location of a lightning stroke, which is reported by some lightning detection network.

Any error in the detection network will ultimately result in θtruth errors. We use the Vaisala
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Inc. GLD360 network, which has a median cloud-to-ground stroke location accuracy of

∼2.5 km [Said et al., 2010, 2013]. Second, the measured angle of arrival is found using the

polarization ellipse tilt angle technique in (3.38), which works best when Bφ ≫ Br (the

dominant TM mode is much larger than all TE modes combined). Tilt angle measurements

are most reliable for angle of arrival calibration when sferics have propagated over long

daytime paths [Horner , 1954], so we filter our selected sferics to be those that originate

from 1,000 to 3,000 km away from the receiver and those that have propagated along a total

daytime path. Third, anisotropy in the EIWG causes frequency dependent tilt angle changes

[Yamashita and Sao, 1974a,b]. We calculate the measured angle of arrival by averaging the

measured polarization tilt angle τi(ω) over a small frequency range (ω0 ≤ ω ≤ ω1)

θi,calc = θi,truth −
1

ω1 − ω0

∫ ω1

ω0

τi(ω) dω (3.49)

to minimize the tilt angle frequency dependence while also using a large enough frequency

band to reduce tilt angle jitter induced from noise in the measurements.

Angle of arrival error correction for the Briarwood receiver is shown in Figure 3.9 with

frequency integration over the intervals 8 to 12 kHz and 20 to 23 kHz. Cloud-to-ground

sferics were filtered to be within the days 11 July 2017 to 8 August 2017, between the times

of 16:00 to 20:00 UT, and within the distance range of 1,000 to 3,000 km from the receiver,

which resulted in over one million sferic waveforms. An advantage for filtering over a large

number of days with a small time window each day is that any ionospheric anomalies that

persist for only a day or two, say from high solar activity, will be statistically de-emphasized

since a large number of days are used. Two different frequency ranges were used to contrast

the trade-offs between the use of a lower and higher frequency integration window. Sferic

energy typically peaks at frequencies between 5 to 10 kHz [Le Vine, 1987], so a frequency

range of 8 to 12 kHz is chosen. A range of 20 to 23 kHz is also considered because we are

interested in correcting measured VLF transmitter polarization ellipse tilt angles, which are

close to 25 kHz. It is important to consider the possibility of site errors and receiver errors

having a frequency dependence, which would imply the frequency integration range should

be centered around the transmitters’ frequencies, but if the range includes the transmitters’
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Figure 3.9: Angle of arrival error correction for the Briarwood receiver with frequency
integration over 8 to 12 kHz and 20 to 23 kHz. The shaded region represents one standard
deviation from the mean error. Measured angle of arrival error with no correction is shown
in the top row. The correction method from (3.47) is shown in the middle row. The bottom
row is the mean error removal method.

frequencies, then the transmitters themselves may induce errors in the angle of arrival error

corrections. Therefore, a frequency range that has no noticeable transmitter energy, but is

still close to the VLF transmitters’ frequencies, is chosen: 20 to 23 kHz.

The top row in Figure 3.9 shows the measured angle of arrival error with no correction,

and the shaded region (in all the panels) represents one standard deviation from the mean

error. A two-cycle sinusoid is seen for both frequency ranges, and whether this sinusoid is

due to site errors or receiver errors is unknown, but it is obvious that the two-parameter

equation (3.46) resembles the angle of arrival error seen here.

84



There are a few noticeable differences between the no correction error curves for the

lower and upper frequency integration ranges. The error curve for the lower frequency

range has a higher offset than the upper frequency range, and the two-cycle sinusoid phase

of the upper frequency range appears to slightly lag the lower frequency range. These two

differences are likely caused by frequency dependence in site errors and receiver errors. Also

notice that the standard deviation in the lower frequency range is generally smaller than

the upper frequency range, this difference is expected since the lower frequency range has

a better sferic SNR.

Error correction using the three-parameter antenna correction method from (3.47) is

shown in the second row of Figure 3.9. Best fit parameters are solved for using (3.48), giving

lower frequency range parameters of (α, ξ, ρ) = (0.90,−6.0◦,−3.3◦) and upper frequency

range parameters of (α, ξ, ρ) = (0.94,−6.8◦,−4.6◦). The results show the three-parameter

method performs well in correcting the site and receiver errors. Performance for the lower

frequency range appears to be better and is most likely due to the smaller standard deviation

for the lower frequency range. Although, there is the possibility that the higher frequency

range contains stronger high order quadrantal errors, which are not well accounted for in

(3.47).

A final method using fmean(θcalc), which was not discussed previously, is shown in the

bottom row. This method is the subtraction of the uncalibrated mean angle of arrival error,

shown in the first row, from θcalc. Hence, the average error for θtruth − fmean(θcalc) is zero

for all angles, but still has the same standard deviation as before. The use of fantenna(θcalc)

and fmean(θcalc) show similar results, and it is difficult to say which method is the best to

use. On one hand, fantenna(θcalc) is a parametric equation that is derived using antenna

geometry and has a physical meaning. On the other hand, fmean(θcalc) may capture some

physical anomalies, like higher order quadrantal errors, that fantenna(θcalc) is not designed

to account for. For the remainder of this work, the fmean(θcalc) method will be used, but

note that switching to fantenna(θcalc) would produce almost identical results.
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3.3.3 Ellipse Analysis Example

Now that the mathematics for polarization ellipse analysis have been established, we want

to see if any interesting ellipse features present themselves that are not easily seen when

looking at raw amplitude and phase data. Figure 3.10 is the same 24-hour VLF transmitter

dataset from Figure 3.6 reformulated into the polarization ellipse parameters. The top panel

shows the semimajor and semiminor lengths. We see that the semimajor is much larger

than the semiminor, meaning the ellipse is close to linearly polarized, and is because the

TM mode of VLF wave propagation dominates at longer distances. Also, the major axis is

relatively steady with time, but the minor axis fluctuates greatly, and at times disappears

almost entirely as the signal becomes linearly polarized.

An ellipse can also be decomposed into two counter-rotating circles

BRHCP =
Bφ − jBr

2

BLHCP =
Bφ + jBr

2
,

(3.50)

commonly referred to as right-hand circular polarization (RHCP) and left-hand circular

polarization (LHCP), and these are shown in the second panel. The LHCP signal is slightly

stronger for the entire day, except for a short amount of time during the night-to-day

terminator. The change in rotation direction can also be seen in the ellipticity data. The

ellipticity angle is greater than zero for a short time during the night-to-day terminator,

indicating that the rotation direction briefly changed to a counterclockwise rotation. Also,

the ellipticity angle shows the ellipse is quite linear during the day but slightly more circular

during the night. This result is not surprising since nighttime conditions likely support a

higher number of propagating modes.

The bottom panel of Figure 3.10 shows the last two parameters, the tilt angle and start

phase. The tilt angle has been calibrated using the fmean(θcalc) angle of arrival calibration

method and is roughly +1.5◦ during the daytime, which is reasonable for angle of arrival

measurements. The final parameter, start phase, is related to the phase velocity of the

signal (along with the transmitter source phase variations), and therefore provides some
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Figure 3.10: Data from Figure 3.6 transformed into ellipse parameters. The first panel
shows the semimajor axis and semiminor axis lengths of the time varying ellipse, while
the second panel shows the decomposed LHCP and RHCP ellipse components. Ellipticity,
shown in panel three, is the rotation sense and how linear (or circular) the ellipse is. The
fourth panel shows the ellipse tilt angle and the ellipse start phase.

information on both. If we assume the magnetic flux density is dominated by a single

mode and the phase of the transmitter is stable, then the start phase in Figure 3.10 implies

the phase velocity is ∼0.003c m/s faster during the day. However, these assumptions are

not generally true. The quick change in tilt angle and start phase during the terminator

periods are most likely the result of mode conversion during the day/night terminators

[Kaiser , 1968].

Every parameter in Figure 3.10 shows steady and smooth trends during the daytime.

Conversely, the night time ellipse parameters are variable and reflect the more chaotic

nature of the night time D region ionosphere. As expected, the ellipse parameters are
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highly variable during the day/night terminator, showing that the sharp transition region

between the daytime ionosphere and nighttime ionosphere greatly affects the propagation

of VLF waves traversing the terminator and can significantly increase or decrease the power

received from a transmitter.

3.3.4 Phase Stability of VLF Transmitters

Even though VLF transmitters have been used in decades of remote sensing studies, Figure

3.11 shows clear evidence that the phase of at least some VLF transmitters is not always

stable. The figure shows the carrier phase and the polarization parameters for the NAA

transmitter recorded at Baxley, Georgia. Note that the time period is during the day and no

significant solar activity is present. The left column presents the carrier phase measured on

the N/S (top) and E/W (bottom) channels, both of which exhibit sharp phase transitions.

Though not shown, these phase changes are also seen at other receivers at the exact same

time, but only on the NAA transmitter. These sharp phase transitions are certainly a

result of an unstable carrier phase at the transmitter and not from transient ionospheric

effects. Although these phase transitions are sharp and plainly obvious when looking at

phase measurements from multiple sites, it may be easy to mistake one of these transitions

as an actual ionospheric disturbance, particularly if only one such sharp transition occurs

and if data from only one receiver is considered. It is worth noting that at least some

ionospheric disturbances have been known to affect only the phase, and not the amplitude

[Cotts and Inan, 2007]. This example underscores the importance of considering transmitter

source phase transitions in identifying ionospheric events. More importantly, these sharp

transitions are likely accompanied by much more gradual drifts in the transmitter source

phase that cannot be inferred at the receiver, because it is difficult to decouple phase changes

due to slow variations of the ionosphere and phase changes due to slow transmitter phase

drifts.

As a consequence, carrier phase measurements are not invariant to transmitter source

phase wanderings, whereas amplitude measurements can be more carefully calibrated [Co-

hen et al., 2010a]. Instead, carrier phase measurements are useful in a relative sense and on

short timescales. That is, if we assume the transmitter source phase variations are relatively
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Figure 3.11: Evidence of unstable carrier phase in a VLF transmitter. The carrier phase on
both the N/S and E/W channels (left column) has strong step-like changes that are caused
by phase instabilities at the transmitter. The ellipse analysis (three right columns) isolates
the transmitter phase instability to the start phase, and the other ellipse parameters are
uncontaminated by the instability.

slow compared to the time scale of ionospheric changes under investigation, then changes

in carrier phase are a reliable measurement to use. However, if studying hours-long trends

or day-to-day variations in ionospheric conditions, measured phase changes may be unreli-

able. Thomson et al. [2014] uses a direct approach to the mitigate source phase problem

by placing a receiver near the transmitter and measuring the phase, they then use the ob-

served phase from the short path to calibrate the received transmitter phase on the longer

paths. Unfortunately, this requires significant effort to maintain sites next to every VLF

transmitter. Instead, the polarization ellipse technique can be applied to the narrowband

data and the ellipses from each site can be directly compared, even though each site still

has an ambiguous phase offset.

The right three columns of Figure 3.11 contain the polarization ellipse parameters. As

seen, only the start phase measurement contains sharp phase transitions that are correlated

with the carrier phase measurements on the N/S and E/W channels. This shows that

the polarization ellipse technique is a useful way to characterize magnetic flux density

measurements on two channels even when the source phase is unstable.
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3.4 Ionospheric Remote Sensing

We now apply the polarization ellipse technique to narrowband data associated with D

region ionospheric disturbances in order to demonstrate features of the received VLF signal

that may not be apparent in the single-channel amplitude and phase data. The first ex-

ample is modal changes of VLF propagation due to the day/night terminator, a somewhat

predictable and repeatable phenomenon. Three other observation examples are shown with

different types of ionospheric perturbations and different ionospheric modification mecha-

nisms: Early/fast, LEP, and solar flare. Each type of perturbation produces a distinctly

different set of polarization parameters. Ellipse analysis was also recently used by Cohen

et al. [2018b] to observe ionospheric perturbations from the 2017 Great American Solar

Eclipse. Note that these results should not be generalized since only an example case study

of each type of disturbance is presented. Since these phenomena are all dependent on,

for example, path geometry of the transmitter-disturbance-receiver, an in-depth statistical

study is required to understand how the changes in polarization ellipses link to causative

physical mechanisms. At the same time, the markedly different responses of the polariza-

tion ellipses for these examples are representative of the value of utilizing the polarization

ellipse method.

3.4.1 Modal Changes Due to Terminator Effects

Understanding the day/night terminator and its effect on VLF wave propagation is, in

general, a difficult problem. The strong inhomogeneity of the D region along with the

sharp change in electron density has made modeling propagation across the terminator

challenging. Figure 3.7, which is the signal from the NPM transmitter in Hawaii recorded

at Baxley, Georgia, is an example of the complex changes in VLF wave propagation as the

terminator traverses the ionosphere. In particular, the first null in Figure 3.7, which occurs

at about 10:48 UT and is referred to as the first null for the rest of this section, shows a

peculiar deviation between the synchronized N/S and E/W phases. The first null occurs

about 43 minutes after the terminator passes over the receiver and is well over the great-

circle path. It is difficult to tell what this deviation means when analyzing the amplitude
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Figure 3.12: Data from Figure 3.7 transformed into ellipse parameters. The phase synchro-
nized E/W channel in Figure 3.7 shows an interesting artifact during the first null, which
is also seen in the semimajor curve, shown in panel one. Using ellipse analysis, the artifact
is determined to be caused by a separation between the LHCP and RHCP nulls (about 2
minutes before and 2 minutes after the first null, respectively), shown in panel two. A strong
change in ellipticity (panel three) and tilt angle (panel four) is also seen during the first
null, but the severity in change is not seen during the other two semimajor nulls. Changes
in start phase (panel four) are strongest around each semimajor null.

and phase. However, when looking at the first null in terms of ellipse parameters, shown in

Figure 3.12, it is obvious that the first null is undergoing a change in elliptical polarization.

The LHCP and RHCP components, in the second panel of Figure 3.12, have nulls at

different times. The LHCP component of the ellipse reaches its minimum about 2 minutes

before the major axis null, but the RHCP portion reaches a null about 2 minutes after the

major axis null. Hence, the RHCP component dominates over the LHCP component for a
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brief period just before the major axis null, whereas the LHCP component dominates for

a brief period after the major axis null. The signal then returns to being almost linearly

polarized. This transition can also be seen in the ellipticity curve. Before the first null,

the ellipticity is much greater than zero, meaning that it is highly circular and right-hand

polarized. Then, as the first null passes, the ellipticity quickly becomes much less than

zero, which indicates the ellipse is again highly circular, but this time left-hand polarized.

Note that the quick change, during the first null, in ellipticity angle and start phase is not

instantaneous and is not caused by phase wrapping, instead, the change from one extreme

to the other is quick, smooth, and continuous.

The cause for the VLF wave to transition from LHCP to RHCP during the first null is not

fully understood. Mode conversion from the night to day transition does affect the RHCP

and LHCP components differently, due to ionospheric anisotropy from Earth’s background

magnetic field, which may also explain why the LHCP component is significantly stronger

in the second and third nulls. Also, given that the terminator forms a sharp gradient in the

D region electron density profile, the receiver may be measuring signals that are obliquely

forward scattered from the terminator (i.e., reflecting off the terminator at a region which

is not on the great-circle path, causing multipath propagation). It’s worth noting that this

flip in the rotational sense only occurs for the first null, when the day/night terminator has

drifted a few hundred km past the receiver toward the transmitter. We will show in the

next subsection an Early/fast event, which is generally caused by ionospheric scattering,

that also produces an increase in circular polarization and a strong change in tilt angle.

The changes for the case study Early/fast event are similar, but smaller in scale to what is

seen here during the first null.

3.4.2 Early/Fast Event

Early events are VLF perturbations caused by powerful or intense lightning near the

transmitter-receiver path. Early events result from the coupling of a lightning stroke to

the bottom D region ionosphere which in turn creates localized heating and ionization of

the lower ionosphere [Inan et al., 1996]. Proposed physical mechanisms include scattering

from a sprite halo [Moore et al., 2003], scattering off a sprite body [Dowden et al., 1997],
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ionization from the electromagnetic pulse or elve [Mika et al., 2006; Haldoupis et al., 2013],

quasi-electrostatic quiescent heating [Pasko et al., 1996; Kabirzadeh et al., 2017], and heat-

ing from intracloud pulses [Marshall et al., 2008]. Recovery for Early events is typically

10−100 seconds but sometimes much longer [Cotts and Inan, 2007], and may occur as far

away as 300 km from the path [Salut et al., 2013]. Early events are seen in narrowband

data because the perturbed region of the ionosphere scatters a signal that is not on the

great-circle path towards the receiver [Dowden et al., 1996]. The receiver measures the

superposition of the ambient signal that propagates directly along the great-circle path and

a scattered signal from the perturbed region. The recorded amplitude and phase either

increases or decreases depending on how the two signals interfere with each other [Moore

et al., 2003].

Figure 3.13 shows a typical Early/fast event, with a rapid (< 20 ms) onset duration. The

National Lightning Detection Network (NLDN) [Cummins and Murphy , 2009] measured the

peak current of the stroke to be +156 kA and located the stroke at 43.05◦N and 86.03◦W.

Each column shows the measured narrowband data at Delaware from the NLK and NML

transmitters, respectively. This particular event occurred along two transmitter-to-receiver

paths which almost exactly overlap.

The top two rows of Figure 3.13 show the amplitude and phase on each channel. The

data are recorded at both 1-second and 20 ms time resolutions, but our plots here show

only the low-resolution since they are less noisy. We observe the typical response for an

Early/fast event: a quick (< 20ms) onset duration followed by a slower recovery. The third

row shows the start phase at both receivers. The curve of the start phase closely follows

the phase on the N/S and E/W channels, but with opposite polarity. This strong change

in start phase is the result of carrier phase changes with respect to the sum of all modes

from the direct path and the scattered path.

Narrowband data is inherently susceptible to impulsive noise from, in particular, light-

ning generated sferics. This impulsive noise is reduced by applying a 3-point median filter

to the narrowband data before using the ellipse analysis. The polarization ellipse results

are shown in the fourth row. The green ellipse represents the narrowband signal before the

causative stroke, and the red ellipse is after the onset of the Early/fast event. The panels in
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Figure 3.13: Polarization ellipse technique used on an Early/fast event, recorded at a single
receiver from two different transmitters. Amplitude, carrier phase, and start phase is shown
in the first three rows, respectively. The bottom panels show the ellipses before (green) and
after (red) the event occurs, along with the scatter field ellipses (black). Vertical green
and red bars in the top three rows show the time periods that the pre-onset ellipses and
post-onset ellipses are windowed over.

the top three rows show red and green vertical bars to indicate the time period over which

the ellipse parameters were determined. By subtracting the ambient signal (green) from the

disturbed signal (red), we can obtain a scattered field polarization ellipse which is shown in

black on the bottom two panels. The scattered field ellipse captures the change in major

axis, minor axis, and tilt angle, as a result of the ionospheric disturbance.

For the NLK to Delaware path, the Early/fast event causes a rotation of the ellipse and

a significant increase of the semi-major axis. Likewise, the NML to Delaware path also has

a change in tilt angle but opposite in direction, and an increase on both the semi-major
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and semi-minor components. These changes can also be seen in the scattered ellipses. The

increase in the semi-major component means that an increase of VLF power is received

at the antenna close to the semi-major direction. This power increase may be due to the

scattering effect (i.e., multipath) that Early/fast perturbations produce, since this particular

event is relatively close (25.7 km) to the great-circle path.

The observed rotation and ellipticity change of the polarization ellipse are worth high-

lighting. This effect implies that the Early/fast event has different characteristics if ob-

served independently on each of the two channels, both in terms of the amplitude and

phase changes, as well as the recovery event. Past works have observed, for instance, that

some Early/fast events are only observed on one channel, or that the recovery time dif-

fers on the two antennas. Polarization observations indicate at least observationally why

this occurs, and observation of a rotating ellipse may be useful in identifying properties

of the scattering region, as well as new scattered modes that are created at the disturbed

ionosphere.

3.4.3 LEP Event

Lightning-induced electron precipitation (LEP) events are also driven by lightning strokes,

but the ionospheric disturbance is triggered in a different way: lightning produces VLF

energy that leaks into the magnetosphere and interacts with geomagnetically trapped par-

ticles, causing some electrons to precipitate into the lower ionosphere, ultimately increasing

the electron density of the D region [Voss et al., 1984]. Compared to Early events, LEP

events typically impact much larger regions of the ionosphere (sometimes >1000 km [Peter

and Inan, 2004]). Since the increased ionization occurs over a larger region, two types of

VLF perturbations, or a combination of both, is seen at the receiver [Cotts, 2011]. First,

the disturbed ionospheric region may scatter some VLF energy towards the receiver, sim-

ilar to Early event scattering. Secondly, if the ionosphere is significantly disturbed over a

large (much greater than a wavelength) portion of the great-circle path, then the modal

properties of the VLF wave change.

Figure 3.14 shows an LEP event measured by two separate receivers, Briarwood and

Baxley, from a single transmitter, NLK. The causative stroke has a peak current of +204
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Figure 3.14: Polarization ellipse technique used on an LEP event, measured at two different
receivers from a single transmitter. See the caption in Figure 3.13 for details on this figure
layout.

kA and is located at 43.32◦N and 101.17◦W. The onset delay (the time difference from when

the stroke occurs to when the perturbation is seen in the receiver data) is ∼0.7 seconds, and

the onset duration (period from when the perturbation occurs until the recovery begins)

persists for over one second. Noise from other lightning strokes is particularly high during

this event, so a 9-point median filter is applied to the low-resolution (1-Hz) data for visual

clarity. The before and after ellipses from the NLK to Burden path show almost no change,

and yet, a strong jump in the start phase occurred. This produced a very small scatter

field ellipse shown at the origin as a small dot. For the other path, NLK to Baxley, a slight

change in tilt angle and modification along the semi-minor axis occurred. Compared to the

ellipse changes in the Early/fast event, the LEP event produced almost no change to the
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shape of the polarization ellipse, just a change in start phase. The difference between this

observation and the Early/fast event shown earlier may be due to the fact that Early/fast

events result from scattering, whereas the LEP is caused by modal changes. In particular,

the fact that the start phase changed whereas the shape did not may indicate that the

phase velocity of the dominant propagating modes are impacted by the LEP event in a

roughly equal way, but that the attenuation rate is not much affected. However, the effect

of geometry of the transmitter, disturbance, and receiver, is also important and should not

be discounted [NaitAmor et al., 2010, 2013].

3.4.4 Solar Flare Event

The Sun is the chief driving force for the diurnal variations of the ionosphere. During the

daytime, the Sun increases the electron density of the D region by orders of magnitude

and creates a relatively stable and predictable ionosphere as the Sun traverses across the

sky. LEP and Early/fast events are rarely, if ever, observed during the daytime. However,

abnormally strong X-ray emissions from the Sun, known as solar flares, can perturb the

daytime ionosphere an appreciable amount [Thomson and Clilverd , 2001]. Solar flares affect

at least the entire daytime side of the ionosphere and enhance the electron density through

the entire D region.

Figure 3.15 shows VLF perturbations from a C-class solar flare event over the continental

US which is measured along the paths NLK to Burden and NLK to Baxley. The ellipses

are median filtered over 4-minute windows. This example is interesting because the NLK

to Burden narrowband clearly shows the solar flare in the amplitude data, but no change is

visible in the phase data. In contrast, the NLK to Baxley path shows a disturbance plainly

obvious in the phase, but barely detectable in the amplitude. This fact reinforces the

idea that analyzing amplitude and narrowband data individually may not give a sufficiently

comprehensive picture of the underlying phenomena and could either miss or mischaracterize

ionospheric disturbances. Techniques such as scattered field method [Dowden et al., 1996;

Go lkowski et al., 2014] and polarization ellipse method may provide crucial information in

the analysis of these types of events.

The polarization ellipse shape before and after the solar flare ellipses are quite similar for
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Figure 3.15: Polarization ellipse technique used on a C-class solar flare ionospheric distur-
bance, measured at two different receivers from a single transmitter. See the caption in
Figure 3.13 for details on this figure layout.

both paths. Both experience minimal minor-axis change and no tilt angle change, but both

present strong increases in the major-axis component. Likewise, the scattered field ellipses

are almost linear and are close to parallel to the major axis of the before and after ellipses.

The start phase on the NLK to Burden path shows almost no change from the solar flare,

but the NLK to Baxley start phase has a strong change that is similar to the phase data

but with opposite polarity. Since this event is during the daytime and over a long path,

the transverse magnetic field dominates over the strongly attenuated radial magnetic field,

which is why the ellipses are highly linear and almost no change occurs on the semi-minor

component.
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CHAPTER 4

COMPARISON OF VLF OBSERVATIONS TO LWPC

In this chapter, we examine the joint use of the LWPC program (from Chapter 2) and

narrowband VLF processing tools (from Chapter 3) to infer the D region’s electron density

profile along a path of propagation. The methods used in this chapter are drawn from past

works, and it is found that site dependent phase errors severely limit the flexibility of these

methods.

4.1 LWPC Inverse Function Estimation

Most of the input parameters to the LWPC program are predefined by the chosen transmit-

ter and receiver pair. Electrical properties of Earth’s ground and the Earth’s background

magnetic field are considered static, and these values are simply found by querying a look up

table, or some accurate model, for different points along the GCP. Likewise, the properties

of the transmitter and receiver are also well established. The only variables we consider

adjustable in the LWPC program are the waveguide parameters, h′ and β. Waveguide pa-

rameters may be partitioned into discrete segments along the GCP, shown in Figure 2.4.

Therefore, the GCP between a transmitter and receiver has a vector of waveguide parame-

ters h′
n = [h′1, h

′
2, . . . h

′
ℓ]
T
n ∈ R

ℓ and βn = [β1, β2, . . . , βℓ]
T
n ∈ R

ℓ, where there are ℓ segments

along path n. Note that the length of vectors h′
n and βn are path dependent and different

paths may have different values for ℓ.

Modeling the azimuthal magnetic flux density Bφn ∈ C is done by inputting the waveg-

uide parameter vectors into the LWPC program

Ln(h′
n,βn) = Bφn, (4.1)

where the function Ln represents the LWPC program with all the predefined parameters

for path n. This function is backwards from the remote sensing problem – the magnetic
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flux density is already known from radio receiver measurements, and the waveguide pa-

rameters are unknown because of the extreme difficulty in performing empirical D region

measurements.

One thought for estimating the waveguide parameters is to use the inverse of Ln. An

ideal inverse function will resolve the complete h′
n and βn vectors. Unfortunately, neither

Ln nor its inverse are one-to-one functions, so finding a unique inverse solution for Ln is

not possible.

It has been shown by Ferguson and Snyder [1980] that the scalar mean, h̄′n, β̄n ∈ R, of

h′
n and βn may be used as an approximation in LWPC to obtain similar results, meaning

that the waveguide parameters can be assumed to be a constant value along the path, equal

to the path-averaged waveguide parameters. This mathematically means

Ln(h′
n,βn) ≈ Ln(h̄′n, β̄n), (4.2)

and it is valid under the condition that changes in electron density profile are small and

slowly varying along the path. This approximation reduces the complexity of the inverse

problem

L−1
n (Bφn) ≈

[
h̄′n, β̄n

]
(4.3)

by assuming the ionosphere is horizontally homogeneous along the entire path of propaga-

tion, and only the scalar values h̄′n and β̄ are solved for, instead of 2ℓ values (all elements

of h′
n and βn).

4.2 Relating VLF Observations to Waveguide Properties

A complex magnetic field value is the output of the LWPC function Ln, but the amplitude

of this value is found by assuming the power of the transmitter (this is one of the prede-

fined values in the LWPC program), and the phase is referenced to some arbitrary time.

In practice, the power of the transmitter is not precisely known. Transmitter power values

are available in some of the VLF literature, but these values are usually presented with no

citation, or the publication they cite has no citation. Watt [1967, p. 124] gives a comprehen-
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sive table of 1960’s VLF transmitter characteristics, but strongly cautions that some values

may be incorrect due to changes in transmitter operation, upgrades, and inaccuracies from

undisclosed sources used to produce the table. Operation of the NLK transmitter from 20

July 2017 to 28 August 2017 is one example of unexpected transmitter operation. During

this period, the transmitter operated at a power level ∼ 10 dB lower than normal. This

operation was not reported to the public and only a careful observer with historical data

would have recognized a change in power. It is therefore advised to use published trans-

mitter power values cautiously and to not rely on precise transmitter power for ionospheric

remote sensing applications (unless a credible source with knowledge of the transmitter’s

current power is available).

Some methods do not require knowledge of the VLF source’s power. Han and Cummer

[2010a,b] used broadband radio sferics to infer waveguide parameters with a single receiver.

Their approach involved spectral analysis of each sferic, and they used frequency dependent

features to infer waveguide properties, all without needing to know the radiated VLF power

from the lightning stroke. Narrowband VLF transmitters have a very small bandwidth

(usually 100 kHz) making the spectral analysis method difficult to perform (results from

Koh et al. [2018] underscore this difficulty). Spatial and temporal comparisons, rather than

spectral, are well suited solutions to the transmitter power problem.

In the case of narrowband VLF transmitters, where transmissions are continuous at

constant power for many hours, temporal comparisons are often performed with a single

VLF receiver. The receiver will measure the complex magnetic or electric field over a large

period of time, producing some variation in the measured field. This variation is the key to

inferring the waveguide parameters. When using the temporal comparison method, VLF

propagation is modeled with the LWPC program over a wide range of h′ and β combinations,

and the resulting normalized curve of the measured fields is compared with the modeled

fields. Values for h′ and β that give the best fit, when comparing LWPC to the observations,

are chosen as the solution. McRae and Thomson [2000] present an excellent example of this

method. One drawback of the temporal comparison method is it assumes constant power

and phase of the transmitter. In Figure 3.11 it is shown that a VLF transmitter’s phase

is not guaranteed to be stable, likewise the level of radiated power from a transmitter is

101



not always constant. Thus, a change in transmitter operation may be misinterpreted as an

ionospheric change, and incorrect for values for h′ and β may be inferred.

Spatial comparison requires simultaneous operation of two or more VLF receivers spaced

some distance apart. For just two receivers, the ratio of one receiver measurement to

the other receiver measurement, taken at the same time, is compared with the LWPC

program over a wide range of h′ and β combinations. The advantage to this method is its

independence of transmitter operation, meaning it is acceptable for the power or phase of the

transmitter to change over time because the comparison is between receiver measurements

taken at the same time. Geometry of the receivers is a concern when employing this method.

Having the receivers too far apart may result in widely varying h′ and β values between the

two paths, which complicates the problem. It is best to have the two receivers close enough

to each other so that the h′ and β values are similar along both paths, but far enough apart

so a reasonable change in the strength and phase of the field is measured. An ideal geometry

would have two receivers with GCPs that lay on top of each other, but one receiver placed

just a little closer to the transmitter. This would mean that h′ and β, and all the other

waveguide properties, are the same for both transmitter to receiver paths, except for the

short offset between receivers. Thomson [2010] and Thomson et al. [2012] are examples of

the spatial comparison method. Although, their methods rely on the assumption that the

NWC transmitter has a radiated power of 1 MW.

4.2.1 Narrowband Phase Ambiguity Removal

Comparison of a narrowband signal’s carrier phase, recorded at two receivers, requires

the data acquisition system of each receiver to be synchronized with each other. The LF

AWESOME receivers use GPS as a master clock to accomplish the timing synchronization.

Demodulation of the MSK narrowband signal inherently includes a 90◦ ambiguity of the

carrier phase φ0 and clock phase φ1, and this ambiguity must first be removed before carrier

phase is compared between sites.

The mathematics for MSK demodulation (from equation (3.18)) reveal that the upper

tone (φ+(t) = φ0 + φ1 +mπ) and lower tone (φ−(t) = φ0− φ1 + nπ) have a 180◦ ambiguity

(m,n ∈ Z). The carrier phase equation φ0 = [(φ+ −mπ) − (φ− − nπ)] / 2, from equation
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(3.19), shows that any choice for m and n will adjust φ0 by some multiple of 90◦, and the

same logic is also true for φ1. Therefore, determining the values for m and n is the same as

solving the 90◦ ambiguity problem.

A clock phase of 90◦ is equivalent to a time delay of 5 ms (for an MSK baud rate of 200

symbols per second), and 5 ms is the amount of time it takes a radio wave to travel ∼1.5

Mm in free space. This means that if each receiver’s distance from the transmitter is well

known (much less than 1.5 Mm error range) then the 90◦ clock phase ambiguity is solved

for by adjust the clock phase by multiples of 90◦ until the bit transition closely matches

how long it would take a radio wave to propagate from the transmitter to the receiver.

This process is equivalent to subtracting the time it took for the communicated signal to

propagate from the transmitter to each receiver (group velocity) and then adjusting one of

the signals by 5 ms increments until the two MSK signals closely match.

Removing the clock phase ambiguity constrains the carrier phase to a simpler 180◦

ambiguity. This is because the clock phase has an offset of (m − n)π/2, and the carrier

phase has an offset of (m+n)π/2. If m−n is an even number, then m+n must also be even.

It similarly follows for odd values of m − n. The 180◦ carrier phase ambiguity is removed

by subtracting the synchronized clock phase and unsynchronized carrier phase from both

trellises, and then comparing the phase trellises of the two signals and incrementing the

offset of one phase trellis until the two signals match.

It is sometimes easier to understand how a problem is solved when real values are given.

Consider two concurrent phase measurements of the NAA transmitter at the Briarwood

and Baxley receivers, in Georgia, on 4 October 2017 at 19:00 UT. Briarwood is ∼1.812 Mm

from the transmitter, and Baxley has a distance of ∼1.930 Mm, giving a differential distance

of ∆dNAA = −118.0 km. Briarwood measured a carrier phase of φ0,BW = −5.6◦ and a clock

phase of φ1,BW = −78.8◦, and Baxley measured a carrier phase of φ0,BX = −68.0◦ and a

clock phase of φ1,BX = 4.4◦. Clock phase is adjusted by finding the value of m − n that

makes −∆dNAA / [(φ1,BW − φ1,BX − (m− n) 90◦) 4T / 360◦] close to the speed of light (T

is the symbol period). A value of m − n = 1 gives a value of 1.03c m/s, which is close to

the speed of light, and is equivalent to a 5 ms adjustment to the symbol transition time

τ1. Any other choice for m − n gives physically unreasonable results. Note that 1.03c is
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Figure 4.1: Phase trellis comparison between Briarwood and Baxley on 4 October 2017 at
19:00 UT. Baxley needs a 5 ms clock phase adjustment and 270◦ carrier phase adjustment
to remove the 90◦ MSK demodulation ambiguity between Briarwood and Baxley.

not the group velocity since the wave is traveling along two different paths. However, if

the two receivers were located on the same GCP and the signal consisted of just one mode,

this would be an appropriate method for calculating group velocity along the GCP between

the two receivers. In general signals are multi-modal so this result is an effective/aggregate

group velocity.

In this example, m− n is found to be an odd value, so a 90◦ adjustment must be made

to the Baxley carrier phase, plus some multiple of 180◦. The final piece of the problem is

solved by looking at the in-phase and quadrature values (equivalent to looking at the phase

trellis). In Figure 3.1, it is shown that the upper tone can have a phase of 0◦ or 180◦, and

similarly for the lower tone. By comparing the IQ data of both receivers, the phase of the

tone is determined and adjusted if needed. In this example Briarwood has IQ values of

−1 and 1, respectively, and Baxley has values of 1 and −1. Therefore, Baxley needs to be

adjusted by 180◦ plus 90◦ (to account for the odd value of m − n), or m + n = 3, and m

and n are found to be 2 and 1, respectively.

Carrier phase and clock phase corrections are also found through graphical means. Fig-

ure 4.1 shows the observed (not reconstructed) Briarwood and Baxley phase trellises φMSK.

If the carrier and clock phase need no adjustment, then the phase trellis observed at the
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Phase Wrapping p Apparent Phase Velocity va [m/s]

8 1.27c
9 1.12c
10 1.00c
11 0.91c
12 0.83c

Table 4.1: Calculated phase velocity of the NAA signal given the number of spatial phase
wrappings that occur when synchronizing the Briarwood and Baxley receivers.

two receivers should closely match when the uncorrected clock delay τ1 is subtracted from

time t, and the uncorrected carrier phase is subtracted from the observed phase trellis. The

figure shows that Baxley lags Briarwood by 5 ms after the clock phase is subtracted from

both signals. This 5 ms lag is equivalent to determining m − n = 1. Likewise, the Baxley

phase trellis is offset from the Briarwood phase trellis by 270◦, and this translates into

m+ n = 3.

At this point the phase demodulation ambiguity is removed, but the spatial phase

wrapping, the number of 360◦ cycles p the wave makes along the path, still exists. It

is known that the phase velocity of a VLF wave in the EIWG is close to the speed of light

c, but the exact phase velocity is dependent on current EIWG properties. Phase velocity

is not applicable in this case because Briarwood and Baxley have different GCPs to the

NAA transmitter. The goal is to find the phase difference between the two receivers given

the differential distance ∆dNAA. An apparent velocity value is determined from the phase

difference and differential distance, but this velocity is not the same as phase velocity in

the traditional sense; the term apparent phase velocity va is used to avoid confusion with

the traditional phase velocity definition.

The NAA transmitter (24.0 kHz) has a free space wavelength λ of ∼12.5 km, and de-

termining the spatial phase wrapping for this example is not difficult, since ∆dNAA ≈ 9.5λ.

Table 4.1 gives the calculated apparent phase velocity for different 360° phase wrapping val-

ues. LWPC reveals that the only reasonable value for p is 10 (the modeled apparent phase

velocity from LWPC is roughly between 1.00c and 1.02c, but results are highly dependent

on waveguide parameters and GCP geometry). This gives a final carrier phase differential

of ∆φ0 = φ0,BX + 270◦ − φ0,BW − 360◦ p = −3392.4◦.
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Phase Wrapping p Apparent Phase Velocity va [m/s]

99 1.02c
100 1.01c
101 1.00c
102 0.99c
103 0.98c

Table 4.2: Calculated phase velocity of the NAA signal given the number of spatial phase
wrappings that occur when synchronizing Briarwood and Lost Pines receivers.

The relatively small differential distance between the Briarwood and Baxley receivers

makes finding the apparent phase velocity simple, but the task becomes more difficult when

the two receivers are far apart. Consider the same differential phase problem but replace

the Baxley receiver with the Lost Pines receiver in Texas. This gives a differential distance

of ∆dNAA = −1.26 Mm. Table 4.2 presents a list of apparent phase velocities, which range

from 0.98c to 1.02c, all of which are similar to what LWPC predicts. The problem is further

complicated because h′ and β may be quite different over the two paths, and it can no longer

be assumed that the apparent phase velocity is close to the speed of light. It is therefore

not possible to solve the phase wrapping problem between the Briarwood and Lost Pines

receivers, unless more information is included, such as using more receivers that are located

between the Briarwood and Lost Pines receivers.

4.2.2 A Simple Approach to Inferring Waveguide Parameters

Now that the spatial and demodulation ambiguities have been removed from the Briar-

wood and Baxley phase differential measurement, the spatial comparison method is used

to determine the average h̄′ and β̄ values along the two similar GCPs. The fundamental

assumption for this method is that h̄′ and β̄ are the same for both paths. This assumption

is valid since the paths are close together and the time being considered is near minimum

solar zenith (mid-day), but this assumption is most likely not valid during the nighttime,

when the terminator is near the GCPs, or when the paths are far apart.

Finding h̄′ and β̄ through the spatial comparison method requires a modification of

the LWPC inverse function, L−1(Bφn) =
[
h̄′, β̄

]
, but how to find the inverse function has

not been discussed. The simplest implementation of the spatial comparison method is the
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Figure 4.2: Differential measurement between Briarwood and Baxley compared with LWPC.

brute force approach – run LWPC over a range of h′ and β values and choose the h′ and β

combination that minimizes

[
h̄′, β̄

]
= arg min

h′,β

{∣∣∣∣
LBW(h′, β)

LBX(h′, β)
− BφBW

BφBX

∣∣∣∣
}
. (4.4)

Note that the complex ratio BφBW / BφBX is independent of any change in transmitter

power and any transmitter phase instabilities, and the determined h̄′ and β̄ values are

indifferent to transmitter operation.

Figure 4.2 shows the error between the modeled and observed complex magnetic flux

density for a range of h′ (67 − 77 km) and β (0.25 − 0.56 km−1) values. The panel on the

left is the difference between the modeled ratio amplitude AL = |LBW(h̄′, β̄) / LBX(h̄′, β̄)|

and observed ratio amplitude AO = |BφBW / BφBX|, and the panel on the right is the

difference between the modeled ratio angle ∆φL = ∠
[
LBW(h̄′, β̄) / LBX(h̄′, β̄)

]
and observed

ratio angle ∆φO = ∠ [BφBW / BφBX]. The solution to (4.4) is h̄′ = 76.8 km and β̄ = 0.5

km−1. This solution does not match well with past findings [Morfitt , 1977; Ferguson, 1992;
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McRae and Thomson, 2004; Thomson, 2010; Thomson et al., 2012]. The β̄ value is not

unreasonable, but the h̄′ value is much too large.

Interpretation of the results from Thomson et al. [2012] shows AL−A0 and ∆φL−∆φ0

will transition from negative to positive (or vice versa) as the correct set of h̄′ and β̄ is

approached. This transition is not seen in Figure 4.2. Instead AL − A0 is almost always

negative and ∆φL −∆φ0 always positive, and this gives little confidence that the estimate

of h̄′ = 76.8 km and β̄ = 0.5 km−1 is correct.

4.3 Radio Wave Scattering

4.3.1 Briarwood Differential Phase Experiment

Unexpected results of the spatial comparison method (Figure 4.2) prompted an investiga-

tion into the Briarwood receiver’s performance. A series of differential phase measurements

were taken near the Briarwood receiver with an identical LF AWESOME receiver. These

differential measurements reveal that near field scattering, from nearby conductive objects,

has a non-negligible impact on narrowband VLF phase measurements, which can exceed

10◦ under certain receiver and scattering object geometries. Chapter 3 presents a quad-

rantal error correction method, which is intended to mitigate the impact of angle of arrival

errors from nearby scatters. While this angle of arrival correction does affect measured

phase slightly, its impact is generally much less than what is measured during this investi-

gation, and it is concluded that nearby radio wave scattering is not completely mitigated

by quadrantal error corrections.

Results for the differential phase measurements near the Briarwood receiver are shown

in Table 4.3, and the location for each differential measurement is shown in Figure 4.3.

Carrier phase measurements of the NAA transmitter are taken at the stationary Briarwood

receiver and portable receiver, and the difference between these two measurements is ∆φ.

The portable receiver is positioned in different locations along the NAA GCP, defined by

the NAA transmitter and Briarwood receiver. Differential distance ∆dNAA is calculated

as the distance from NAA to the Briarwood receiver less the distance from NAA to the

portable receiver. A free space differential phase ∆θ is also calculated to give a reference
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Figure 4.3: Map for the Briarwood differential phase measurements. The Briarwood receiver
is kept stationary (yellow star) and a mobile receiver (blue points 1−6) is moved to different
locations near the NAA GCP (purple line).

as to what the approximate differential phase measurement should be.

For the first measurement, the antenna of the portable receiver is positioned at the same

location as the Briarwood antenna. This measurement is used to calibrate the differences

between the receivers, most notably, cable length. The exact cable length of the Briarwood

receiver is unknown, but it is estimated (this estimation is based on the recollection of those

involved in the installation of the Briarwood receiver) to be about 244 m to 305 m (800 ft

to 1000 ft), and the portable receiver has a cable length of 8 m. With the two antennas

in the same location, the differential distance is zero and a differential carrier phase of

−14.6◦ is measured. This −14.6◦ phase difference is mostly attributed to the Briarwood

receiver’s extra cable, and it is used to calibrate the differential phase measurements between

the two receivers (i.e., −14.6◦ is subtracted from all ∆φ measurements to account for the

difference in cable length). Imperfect tolerances of a receiver’s electronics also cause small

phase discrepancies between receivers, but in this case signal cable length is the dominant

mechanism for carrier phase disparity.

All LF AWESOME receivers operated by the Georgia Tech LF Radio Lab use a Belden
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Number ∆dNAA [m] ∆θ [deg] ∆φ [deg] ∆θ −∆φ [deg] vp [m/s]

1 0 0.0 0.0 0.0 0.00c
2 65 -1.9 1.0 -2.9 -1.87c
3 71 -2.0 1.6 -3.6 -1.28c
4 163 -4.7 -4.5 -0.2 1.04c
5 222 -6.4 -16.3 9.9 0.39c
6 -748 21.6 37.0 -15.4 0.58c
7 0 0.0 0.4 -0.4 0.00c

Table 4.3: Results for the Briarwood differential phase test on 5 June 2018. The difference
in GCP path length for the two receivers is ∆dNAA, the difference in measured NAA car-
rier phase is ∆φ, and the inferred phase velocity is vp. A phase difference for free space
propagation over distance ∆dNAA is given as ∆θ.

1217B 22AWG 4 pair low-capacitance cable with a capacitance of C ′ = 62.339 pF/m and

an inductance of L′ = 0.6562 µH/m. From transmission line theory, the phase velocity of

the signal cable is found to be vp = 1/
√
L′C ′ = 1.56 · 108 m/s, or 0.52c m/s. Using the

cable’s phase velocity and the measured −14.6◦ differential carrier phase, a length of ∼ 271

m is calculated for the Briarwood signal cable, which agrees with the estimated cable length

of 244 m to 305 m. A final measurement, number 7 in the table, is performed to ensure

the receivers are still calibrated after all other measurements have been taken. With the

mobile antenna placed next to the Briarwood antenna, in an identical position as the first

measurement, a ∆φ = 0.4◦ is measured. This gives confidence in the alignment of the GPS

synchronized sampling clocks, and that the relative phase calibration of −14.6◦ is correct.

Measurements 2 through 6 are located along the NAA to Briarwood GCP. This is

done to indirectly measure phase velocity vp, which is only possible when the two receivers

reside on the same GCP. Results for the inferred phase velocity reveal an issue with this

method; measurement 3 has a phase velocity of −1.28c and then measurement 4, just a 92

m difference, has a phase velocity of +1.04c. Having the mobile receiver so close to the

stationary receiver is one reason for the large discrepancies in phase velocity. The smaller

∆dNAA is, the more sensitive the phase velocity calculation becomes to noise in the ∆φ

estimate. Imperfect carrier phase estimates may be a small piece of the problem, but the

errors in the inferred phase velocity are much too large to be caused by this alone.

Briarwood is located in a rural and sparsely populated region of Georgia, but still,

human infrastructure in this area may be an issue. Nearby the Briarwood receiver are

110



power lines, underground pipes and cables, playground equipment, and a football field with

a fence and tall towers for flood lights. All of these objects are conductive, and scattering of

radio waves from these conductive objectives may be the major culprit for the discrepancies

between the differential phase measurements and what waveguide theory predicts. Given

the number of potential scattering objects nearby, it is difficult to determine if any or all

the objects are causing the differential phase errors. Thus, a more controlled environment

is needed to isolate the radio wave scattering impact on differential phase measurements.

Past works have touched on the nearby radio wave scattering problem, but their mention

of the issue is often brief and in passing. The most common discussion for site errors

involves angle of arrival errors for lightning location systems [e.g., Mach et al., 1986; Wood

and Inan, 2004; Zoghzoghy , 2015]. Angle of arrival errors are mitigated using the angle of

arrival correction method in Chapter 3, but this method does not totally correct carrier

phase errors of narrowband signals. Bainbridge and Inan [2003] present differential phase

measurements, for an array of receivers, and indirectly discuss the radio wave scattering

problem. Their goal is to remove any phase bias from radio wave scattering so that they

can decompose the properties of individual waveguide modes. Bainbridge and Inan [2003],

however, stop short of giving an in-depth discussion on the causative mechanism for the

phase biases, and they only state that the biases need to be removed for the analysis.

Thomson [2010] reports that one receiver suffered from radio wave scattering interference

from buried conductors. Unfortunately, they never discuss how the buried conductor is

determined to be the culprit, or how they concluded there is an interference problem at all.

Füllekrug et al. [2014] uses 10 radio receivers within a 1 km × 1 km area to determine the

slowness and azimuth arrival of the wave number vectors associated with narrowband VLF

radio waves. Füllekrug et al. [2014] does not report on any site error effects or calibration,

but the array does have the potential to be a useful tool in studying radio wave scattering

and its effects on carrier phase.

4.3.2 Scherer Differential Phase Experiment

Topological features like mountains, changes in ground conductivity, and human infras-

tructure make finding an environment suitable for controlled VLF measurements difficult
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Number ∆dNAA [m] dTL [m] ∆θ [deg] ∆φ [deg] ∆θ −∆φ [deg]

1 0 942 0.0 0.0 0.0
2 -33 908 1.0 2.3 -1.3
3 -79 856 2.3 1.8 0.5
4 -130 790 3.7 5.2 -1.5
5 -198 699 5.7 7.6 -1.9
6 -369 516 10.6 8.6 2.0
7 -604 417 17.4 14.2 3.2
8 -747 211 21.5 21.6 -0.1
9 -749 76 21.6 28.4 -6.8
10 -731 0 21.1 20.1 1.0
11 -738 -50 21.3 9.7 11.6
12 -799 -131 23.0 15.2 7.8
13 -953 -322 27.5 33.7 -6.2

Table 4.4: Results for the Scherer differential phase test on 19 June 2018. The difference in
GCP path length for the two receivers is ∆dNAA, the difference in measured NAA carrier
phase is ∆φ, and the distance of the portable receiver to the nearest point of the transmission
lines is dTL. A phase difference for free space propagation over distance ∆dNAA is given as
∆θ.

[Rakov , 2016, p. 165]. The ideal location for studying the impact of radio wave scattering

should have a single conductive object for scattering radio waves and no other conductive

objects within the vicinity.

A location (33.071◦N, 83.834◦W) near the Scherer Power Plant, operated by Georgia

Power, is found to have the desired qualities for a radio wave scattering investigation.

This site is close enough to Georgia Tech for a day-trip, and it is isolated from human

infrastructure. The only identifiable conductive objects are a single row of high voltage

transmission lines coming from the power plant. No buildings, buried conductive material,

or other transmission lines are found or known near the site. These transmission lines

are considered to be the sole scattering object in this controlled environment, and it is

hypothesized that this scattering object will induce anomalous results in the differential

phase measurement when a receiver is placed near the object.

Results for the Scherer differential phase experiment are shown in Table 4.4. The same

notation from the Briarwood scattering experiment is used here, and one extra term is

included, transmission line distance dTL, which is the distance of the portable receiver to

the closest point of the transmission lines. The two receivers have signal cables with similar
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Figure 4.4: Differential phase ∆φ, of the NAA transmitter (purple line is NAA’s GCP),
between the stationary receiver (yellow star) and a mobile receiver (blue points 1 − 13).
∆dNAA is the GCP distance from NAA to the stationary receiver less the GCP distance
from NAA to the mobile receiver. The transmission lines (green line) and towers (green
circles) are the near field radio wave scattering objects.

lengths, and a calibration differential phase value of −2.4◦ is found. While moving the re-

ceiver from location number 7 to location number 8, the NS lowpass filter card disconnected

from the motherboard. Therefore, measurement numbers 8 through 13 consist of only EW

antenna measurements. Loss of the NS channel slightly affects the differential phase mea-

surement by adding a small bias, but this small bias has little impact on the analysis used

here.

Figure 4.4 shows the results of the differential phase measurements in the left panel and

the location of receiver measurements in the right panel. A stationary receiver, marked

with a yellow star, is placed far from the transmission lines, and a second mobile receiver

is moved to thirteen different locations, marked with blue circles. When the receiver is far

from the transmission lines, shown as a green line (green circles on the line are where the
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Figure 4.5: Differential phase error ∆θ−∆φ, of the NAA transmitter (purple line is NAA’s
GCP), between the stationary receiver (yellow star) and a mobile receiver (blue points
1 − 13). dTL is the shortest distance of the mobile receiver to the transmission lines.
The transmission lines (green line) and towers (green circles) are the near field radio wave
scattering objects.

towers that support the cables are located), the differential phase ∆φ seems to be relatively

stable and close to the free space differential phase ∆θ. The differential phase measurements

become more erratic as the portable receiver approaches the transmission lines, but it is

difficult to see a pattern in the ∆φ measurements.

A differential phase error ∆θ −∆φ is found by assuming ∆φ should be the free space

differential phase ∆θ. This assumption is not exactly true and contains about a 2% error

(according to LWPC modeling), but it is a good assumption for this analysis. Figure 4.5

shows the differential phase error, and the distance from the transmission lines dTL is used

instead of ∆dNAA. Displaying the measurements in this manner reveals a clear oscillation

that is strongest when the mobile receiver is near the transmission lines. An interesting

point is that the measurement directly under the transmission lines, number 10, has a small
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differential phase error, but measurement numbers 9 and 11 have the largest errors with

opposite polarity.

Radio wave scattering is a problem for both spatial comparison (comparing observa-

tions between two receivers taken at the same time) and temporal comparison (comparing

observations from the same receiver at different times). When everything is stationary,

radio wave scattering off nearby objects imposes a constant bias on the observed phase and

amplitude. If the transmitter were to then change its phase or amplitude by some amount,

that change in phase or amplitude would be the same with or without the radio wave scat-

tering effect (i.e., the change is independent of the bias for stationary systems). But if the

waveguide were to change, meaning a change in h′ and β, the bias from the radio wave

scattering will not generally remain constant. Changes in the waveguide cause changes in

the propagating modes, and a change in the modes (amplitude or phase) will influence the

bias induced by the radio wave scattering. The radio scattering bias is more sensitive to

ionospheric changes when one of the dominant modes is near a null or when there are many

dominant modes in the waveguide.

It is unfortunate the NS channel was lost after measurement number 7. Scatter ellipse

analysis from Chapter 3 may give deeper insight towards this radio scattering problem.

Nevertheless, this experiment, in a controlled VLF environment, shows radio scattering is a

concern when conductive objectives are within the vicinity of the receiver, and it can have

a profound effect on carrier phase estimates.

To conclude this chapter, we want consider effects nearby radio wave scattering may

have on h′ and β inference methods. Recall the ∆φL − ∆φO error in Figure 4.2. From

the results of the Scherer phase experiment, it is not unreasonable to say a 10◦ error may

exist in the ∆φO estimate. If we apply a 10◦ site error adjustment to the ∆φO estimate

(∆φL−∆φO−10◦), then the results would closely match those from Thomson et al. [2012].

This does not mean 10◦ is the correct calibration value, or that site errors are definitively

the problem with the ∆φL−∆φO error, but it does suggest radio wave scattering is a logical

and plausible culprit for the discrepancy between VLF observations and LWPC.

115



CHAPTER 5

CONCURRENT ELECTRON DENSITY INFERENCE

Under normal daytime conditions, GCPs that are very similar to each other typically have

similar electron density profiles. In chapter 4, we present a method that solves for the

waveguide parameters along two similar paths, but the method is limited because it assumes

both paths have the same h̄′ and β̄ values. Since our goal is to eventually infer waveguide

parameters across a network of paths that are very different from each other, this assumption

cannot be maintained. In this chapter, we will relax this constraint and allow different

GCPs to have different waveguide parameters. We develop a scalable inverse function using

machine learning that uses a general number of transmitter to receiver observations to

concurrently solve for the waveguide properties along all paths.

5.1 Artificial Neural Network

5.1.1 A LWPC Based Inverse Function for Multiple Paths

Modeling the magnetic flux density Bφ is done with LWPC when h̄′ and β̄ are known. For

N transmitter to receiver paths, the waveguide parameter vectors are h̄
′
, β̄ ∈ R

N and the

magnetic flux density vector is Bφ ∈ C
N . A function for these N LWPC runs is compactly

written as

F (h̄
′
, β̄) =




L1(h̄
′
1, β̄1)

...

LN (h̄′N , β̄N )




=




Bφ1
...

BφN




= Bφ, (5.1)

and the inverse of F is thus

F−1(Bφ) =




h̄′1 β̄1
...

...

h̄′N β̄N




=
[
h̄
′
, β̄

]
. (5.2)
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It is important to note that finding the magnetic flux density Bφn on path n is only de-

pendent on the waveguide parameters for that path, h̄′n and β̄n, and all other elements in

h̄
′

and β̄ have no impact on determining Bφn. Conversely, finding h̄′n and β̄n, with func-

tion F−1, does not solely depend on Bφn, but it instead generally depends on all elements

of Bφ. This property for F−1 satisfies the conditions for the new inverse function being

sought: the elements of h̄
′
and β̄ are not required to be the same, and magnetic flux density

observations Bφ along all paths are used to concurrently infer h̄
′

and β̄.

To help constrain the estimation of F−1, the GCPs are assumed to be close enough to

each other so that h̄′ and β̄ values are partially correlated between paths. This assumption

is valid when the ionosphere is smooth and undisturbed under all paths, or when only large-

scale perturbations exists in the ionosphere. A large-scale perturbation is defined as a region

that is smoothly perturbed and covers all, or close to all, the paths. During the daytime,

ionization of the ionosphere is stable and varies slowly both spatially and temporally. For

example, solar flares, which perturb the entire daytime ionosphere, satisfy this large-scale

assumption.

In practice, function F is easy to calculate because it consists of multiple runs of the

forward model, LWPC. Finding F−1, on the other hand, is not easy. One approach to

finding F−1 is to derive an inverse model, but this would be much more of a challenge than

developing the LWPC forward model. Another approach would be to somehow estimate

F−1 while still using LWPC as the backbone for the propagation physics. Estimation of F−1

would require some assumption about the function itself, such as assuming F−1 is a linear

system, but a linear system assumption would be a poor choice for this type of problem.

There is no question that the LWPC function L is a non-linear function, and its inverse

L−1 does not generally have a unique solution. Thus, some non-linear function estimation

method should be used to find F−1.

Artificial neural networks (ANNs) have been shown to be good approximators for non-

linear functions [Haykin, 1999, p. 230]. ANNs are a common subset of machine learning

methods, and their incredible flexibility has made them useful for all sorts of industrial and

research applications, such as image recognition, forecasting, and feedback controllers. In

the simplest sense, an ANN may be thought of as a function with inputs and outputs that
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take on numeric values.

One reason for the popularity of ANNs is their ability to estimate complicated non-linear

functions. In fact, ANNs with just one single hidden layer (what a hidden layer is will soon

be discussed) have been shown to be universal approximators [Hornik et al., 1989], which

means an ANN can approximate a continuous function given the appropriate construction

of the ANN. Even though ANNs have this approximation power, it does not mean an ANN

is always the optimal choice for estimating a function given the complexity required, the

training time, and its generalization.

5.1.2 ANN Basics

There are many uses for ANNs, but the three common categories are classification, clus-

tering, and regression. Classification is the task of predicting categorical variables. An

example of classification is to classify what type of fruit is in a image (e.g., apple, orange,

banana). Clustering is the act of forming natural groupings between observations. Clus-

tering is great for grouping together multidimensional observations in ways that are foreign

to human intuition. The final category, and the one we are interested in, is regression.

Regression is the method of inputting some information into an ANN and then receiving

continuous numerical outputs. Regression is the obvious choice for this work because the

inputs and outputs to function F−1 are numeric values.

Many flavors of neural networks have been formulated to solve different machine learning

problems. Here we utilize one of the simplest forms of ANNs, a feed-forward artificial neural

network (which is referred to plainly as an ANN from here on). The following will emphasize

how an ANN can be used to estimate our inverse function F−1, and only a brief background

of ANN fundamentals will be given. Some suggested books for ANN and general machine

learning theory: Haykin [1999] gives a full overview of ANNs, Harrington [2012] is a nice

beginner’s introduction to machine learning concepts, and Hastie et al. [2001] covers more

advanced machine learning theory.

Figure 5.1 is a graph for a simple ANN. An input vector x ∈ R
2 is shown on the left

side and an output vector y ∈ R is shown on the right. Arrows connect the input and

output vectors to nodes (the circles in the graph), and each column of nodes is referred to
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Input Layer Hidden Layer Output Layer

Figure 5.1: A simple ANN graph with input, hidden, and output layers.

as a layer. Each node in a layer is connected to all nodes in the previous layer (one layer

to the left), excluding the input layer. An ANN may have multiple hidden layers, but for

simplicity the graph is shown to only have one. This design is motivated somewhat by the

layout of an animal’s brain; neurons in the ANN are inspired by a brain’s neurons, and

the arrows connecting the ANN’s neurons mimic a brain’s synapses. In the graph, all the

arrows point from left to right, which is why this neural network version is referred to as a

feed forward neural network; information only flows in the forward direction during normal

operation.

Mathematically, the neural network is defined by two main components: the activation

functions g(·) and the weights w, b ∈ R. It is easiest to see the relationship between vectors

x and y by working backwards through the ANN. The output value y1 is the output of

activation function g3(z3), and the argument z3 of the activation function is the sum of the

three values pointing to the node in the output layer

z3 = b3 +
2∑

i=1

wi3 gi(zi) . (5.3)

Input values to activation functions g1(z1) and g2(z2) are found in a similar way

zk = bk +
2∑

i=1

wikxi , k = 1, 2. (5.4)

Non-linear behavior of the ANN comes from the activation functions. There are many

different activation functions to choose from, and the choice of which one to use is problem

dependent. A widely used activation functions is the sigmoid function g(z) = 1/ (1 + e−z).

This function is non-linear and has a somewhat similar shape to the Heaviside step function,
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except that the step function has an abrupt transition at z = 0 whereas the sigmoid function

has a smooth transition in its output near z = 0. Another non-linear activation function

that is gaining popularity is the rectified linear unit (ReLU) g(z) = max(0, z). Both the

sigmoid function and the ReLU have a lower bound of zero, but the ReLU upper bound is

infinite. Activation functions can also be linear g(z) = αz, where α is usually unity. It is

standard practice for ANN regression problems to use linear activation functions with unity

slope for the output nodes. If all the activation functions in the ANN are linear functions,

then the ANN reduces to a linear system. This work uses ReLU activation functions for the

hidden layer nodes (it is found through ANN tuning that ReLU’s give good performance

for the problem presented in this thesis), and linear activation functions with unity slope

are used for the output nodes.

Layers, nodes, and activation functions form the mathematical framework for the ANN.

Once these are chosen, the statistical performance of the ANN resides in the determination

of the weights. A set of x and y vectors, known as training data, are used in a supervised

learning method to statistically find weights that give the best ANN performance. How

large this set of training data needs to be depends on the problem at hand. If the ANN is

expected to perform a complicated task (the target function) then it will most likely have a

larger number of neurons and possibly layers. Adding more neurons or layers increases the

number of weights in the network, which gives the ANN more flexibility in approximating

the target function. Choosing enough neurons and layers reduces the bias error (how much

of an assumption is made about the target function). Having enough unique samples in

the training data that spans the scope of the problem is also important. A high level of

variance (changes in the estimate of the target function when different training data sets

are used) will ensue if the training data does not properly represent the entire domain and

range of the problem. Thus, to minimize variance and bias, the ANN must be constructed

with enough complexity (layers, nodes, and activation functions), and training data must

give good coverage of the problem at hand.

Training the neural network (adjusting the weights) is done through a method known

as backpropagation. How well the neural network estimates the target function is found by

applying a single training data sample x to the ANN and comparing the output of the ANN
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y to the target (truth) vector from the training data y′ through a loss function E(y,y′).

The loss function we use in this work is the squared error

E(y,y′) =
1

2
||y − y′||22. (5.5)

For M training data observations, the loss function is extended to a cost function that

utilizes a mean squared error

C =
1

M

M∑

i=1

E(yi,y
′
i). (5.6)

Change of the loss function with respect to a specific weight is defined by the partial

derivative ∂E
∂w (and ∂E

∂b ). Applying the chain rule to the partial derivative is the key to

the backpropagation method. For instance, the change in the loss function with respect to

weight w13, in Figure 5.1, is

∂E

∂w13
=
∂E

∂y1
· ∂y1
∂z3
· ∂z3
∂w13

= (y1 − y′1) · 1 · g1(z1), (5.7)

where g3 is assumed to be a unity slope linear activation function. Finding the partial

derivative with respect to the weights b1, w11, w21 in the input layer is simply done by fur-

ther extending (5.7) with the chain rule. In this way, the loss function is referenced to all

weights in the ANN, and the cost function is minimized through systematic adjustment of

the weights according to an optimization algorithm [Haykin, 1999, p. 224]. Variants of the

gradient descent method, such as batch gradient descent or stochastic gradient descent, are

common choices for minimizing the cost function. This work uses a relatively new opti-

mization algorithm, called a method for stochastic optimization (ADAM) [Kingma and Ba,

2015], that has become an extremely popular optimization choice in the ANN community.

5.1.3 High-noon Assumption

Any optimization algorithm for determining the weights of an ANN requires a set of input

and output data (training data) to guide the optimization. The Georgia Tech LF Radio Lab
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has multiple receivers continuously running, so there is no shortage of magnetic flux density

measurements, but the only high-time-resolution measurements of the D region’s electron

density profile are the highly infrequent and sparse set of sounding rocket measurements.

To train the ANN, a large and diverse set of magnetic flux density measurements and the

complementary h′ and β values must be known.

Performing hundreds of thousands of D region sounding rocket measurements is not

practical; it is too costly. Modeling the magnetic flux density at a receiver, given some

ionospheric profile, is a feasible task for hundreds of thousands of transmitter to receiver

paths and ionospheric electron density profile combinations. This is called synthetic data

generation. It is accomplished by first choosing a transmitter to receiver path and a synthetic

(fictitious) electron density profile over the path. LWPC is then used to determine Bφ at

the receiver. This synthesizes the needed training data to train the ANN; Bφ is the input

to F−1, while h̄
′

and β̄ are the outputs.

But this method is not without challenges, essentially because the synthetic data must

match the practically-realizable data, it cannot be idealized in any way, or else the ANN

will have been trained with something different than how it is applied. The transmitter

power, for example, is not precisely known, as discussed in Chapter 4. Although power

levels of certain transmitters do have generally accepted values in the literature, empirically

it is clear that the transmitter power varies, likely to the operational needs and capabilities.

This presents an obstacle when working with synthetic data. LWPC requires the user to

input some transmitter power so that the strength of the field can be calculated. Without

knowledge of the radiated power at a given time, the field strength output from LWPC

may not correctly align with observations. A similar problem exists with phase, as the

transmitter phase is known to not always be steady, as observed in Chapter 3. One possible

solution to this is to place a receiver very close to each transmitter, close enough to pick

up only the ground wave and not any ionospherically reflected component. Changes in the

amplitude or phase of the transmitter is directly observed in the ground wave, and these

changes can then be removed from the long distance signal. This is certainly tenuous as

it requires a more extensive network of receivers, but even so it is still not foolproof. For

example, the phase center of the transmitter, which covers 1000s of acres, may be moving
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physically by 10s of meters, which therefore affects the phase differently as a function of

direction. The only way to measure and infer that is to have a set of receivers surrounding

each transmitter. Furthermore, near field radio wave scattering at the receivers, as discussed

in Chapter 4, can impose large biases on measured phase which LWPC is unable to model.

These obstacles must be accounted for so that real-world observations can be related to the

LWPC model.

McRae and Thomson [2000] present a method to circumvent uncertainties in transmitter

phase and power through the use of temporal comparison, where the change in observed

and modeled magnetic flux density over some period of time are compared, as opposed

to the absolute value. If waveguide parameters h̄′0 and β̄0 are known at time t0, and the

observed magnetic flux density is B0
φ, then these measurements can be related to another

observation B1
φ at time t1. The ratio of the two observations should be equal to the ratio

of the modeled field values
B1
φ

B0
φ

=
L(h̄′1, β̄1)

L(h̄′0, β̄0)
, (5.8)

which is the same as saying the ratio of the amplitudes and the change in phase should be

equivalent for the observations and model output, given the correct values for h̄′1 and β̄1 are

used. Using ratios insulates us from many of these errors, since an unknown multiplier that

would scale both the measured values by the same quantity would be removed. Finding

these waveguide parameters is done in a similar way to that in (4.4),

[
h̄′1, β̄1

]
= arg min

h′,β

{∣∣∣∣∣
L(h′, β)

L(h̄′0, β̄0)
−
B1
φ

B0
φ

∣∣∣∣∣

}
, (5.9)

except now the observations are over the same path and the waveguide parameters at times

t0 and t1 can take on different values.

Equation (5.8) requires knowledge of the B0
φ observation’s waveguide counterparts h̄′0

and β̄0. In other words, for each transmitter to receiver path, we need a single reliable

connection between the amplitude/phase measurement, and a value of h̄′ and β̄, to ‘seed’

the rest of the analysis. A good choice for time t0 is when the Sun is at minimum solar

zenith (t0 = tH), which we refer to as high-noon, and the high-noon waveguide parameters
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h̄′H and β̄H are referred to as seeds. Empirical measurements of the seeds do not generally

exist, but through a minimization technique called seeding (described later in chapter) these

values can be estimated. This assumption

Bφ

BH
φ

=
L(h̄′, β̄)

L(h̄′H , β̄H)
, (5.10)

is referred to herein as the high-noon assumption, and it is the key to relating observations

Bφ to the LWPC model L(h̄′, β̄).

Inverse function F−1 from (5.2) needs to be modified to allow for the high-noon assump-

tion, giving the new function

G−1(Bφ,B
H
φ ) = [h̄

′
, β̄], (5.11)

with the extra input vector BH
φ =

[
BH
φ1, . . . , B

H
φN

]T
. The ANN is not an exact represen-

tation of G−1. Instead, the ANN is an estimate of G−1 (referred to as Ĝ−1 : CN × C
N →

R
N×2), and it is only valid for the range of the training data used to train the ANN. Once

the seed values are defined and the weights for the ANN are found, the magnetic flux density

observations from a single time step Bφ and the high-noon magnetic flux densities from each

path BH
φ are input into the estimated inverse function Ĝ−1, which determines the inferred

waveguide parameters h̄
′

and β̄.

A graph of the ANN’s topology is shown in Figure 5.2. Notice that the inputs for Ĝ−1

are defined as complex valued vectors, but each node in the first layer of the ANN only

accepts a real value. In most cases, ANNs are constructed with a single real valued input

vector and a single real valued output vector, although there are some instances where the

vectors may be complex [Zimmermann et al., 2011]. This is why the ANN is designed with

a 2N real valued input vector (note that ordering of the input and outputs nodes does not

matter in this type of topology as long as the ordering is consistent). Inputs to the ANN

are the real and imaginary components of the ratio Bφn/B
H
φn (this ratio comes from the

high-noon assumption), and outputs of the ANN are the average h̄′n and β̄n values. The

figure shown here has a single hidden layer with P nodes, but more layers may be added to
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Input Layer

Hidden Layer

Output Layer

Figure 5.2: Function Ĝ−1 is an ANN that approximate function G−1 in (5.11). Inputs to
Ĝ−1 are observed complex narrowband VLF signals and the complex high-noon coefficients,
and the output of the function are the average waveguide parameters.

the network if needed.

There are other advantages to using the high-noon assumption, namely that it intrinsi-

cally corrects for imperfect receiver calibration, and also for terrain artifacts that alter the

observed amplitude and phase by measurable amounts.

5.2 Synthetic Training Data

The crux for training the ANN is the training data itself. Performance of the ANN will

only be as good as the training data used to find the weights of the ANN, so creating a rich

and diverse set of synthetic training data is paramount.

5.2.1 Synthetic Data Generation

The purpose of the ANN is to recognize correlations in the waveguide parameters between

different paths and to use these correlations to concurrently infer the waveguide parameters

for a set of N paths. One approach is to generate a set of random h′ and β values for

each individual path, but this would produce waveguide parameters that are not correlated
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Figure 5.3: Ideal h′ and β variations on a global scale. The shape of the deterministic
waveguide parameter distribution (top row) comes from IRI on 1 August 2017 at 18:00
UT. Perturbations (middle row) are randomly generated. Deterministic distribution and
randomly generated perturbations are combined (bottom row).

between sites. This would defeat the purpose of using the ANN altogether, since we are

trying to leverage the fact that different GCPs have at least some correlation in the values

between them. Therefore, a single training data step of magnetic flux density measurements

and waveguide parameters (the set of {Bφ, h̄
′
, β̄} for all N paths at a single point in time)

must have some correlation between paths. To achieve this, we generate synthetic h′ and β

values over the entire world. This strategy is referred to here as a random ionosphere.

Figure 5.3 shows a random ionosphere example for a single training data step. The ran-

dom ionosphere is decomposed into two features: the smooth and deterministic ionosphere
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(h′0 and β0) is shown in the top panels. The middle panels show the random perturbations

distributed over the world (∆h′ and ∆β). Together h′0 + ∆h′ and β0 + ∆β form a random

ionosphere for a single time step, shown in the bottom panels. Adding perturbations to the

unperturbed ionosphere is necessary so that training data for the ANN is rich with diversity.

Having this diversity in the training data teaches the ANN how to respond under non-ideal

ionospheric conditions. By extracting the waveguide parameters, for all N paths, from a

single random ionosphere, the criteria that waveguide parameters have some dependence

between paths is maintained.

The International Reference Ionosphere (IRI) 2007 model [Bilitza and Reinisch, 2008] is

used to find the deterministic ionosphere in Figure 5.3. There are many different parameters

to adjust within IRI, but this work is concerned with using IRI to form a coarse outline

for the shape of h′0 and β0 over the world. IRI produces an electron density profile, as a

function of altitude, for a given latitude, longitude, date, and time. Determination of the

waveguide parameters from the electron density profile is not well defined – what altitude

range of the profile to consider is subjective. We define the altitude range of interest to

be ±5 km from the effective reflection height (calculated the same way as that in Figure

1.4), and we use a linear least squares fitting technique to determine h′ and β. In the h′0

panel, it is seen that it is daytime in the western hemisphere and nighttime in the eastern

hemisphere. Time and date are adjusted within IRI to change the daytime and nighttime

locations, along with seasonal variations. Extracting β0 from IRI does not always produce

reasonable results (daytime β0 values are usually more reasonable than nighttime β0 values

in IRI), so the profile from the h′0 plot is copied and manually adjusted to give reasonable

β0 values.

The IRI model is known to be generally inaccurate for the D region, due mostly to

the lack of available direct measurements. Friedrich et al. [2018] augments the IRI model

with a sparse set of rocket measurements to improve D region accuracy. What IRI does

capture is the rough correlations between different paths that are built into diurnal and

seasonal variations. On the other hand, training the ANN with IRI-based synthetic data

will bias results from the ANN towards those key features in IRI, which is bad if there is

disagreement between the ionosphere’s true electron density and these key features in IRI.
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An alternative method for random ionosphere generation is to not use IRI and instead

use a horizontally homogeneous ionosphere with randomly generated perturbations superim-

posed on top of it. Waveguide parameters h′0 and β0 take on a single random, but physically

reasonable, value over the entire world (the top panels in Figure 5.3 would be a constant

value/color), and randomly generated perturbations ∆h′ and ∆β are superimposed on top

of the homogeneous h′0 and β0 values. Essentially, a physically reasonable offset is added to

∆h′ and ∆β. This random ionosphere method removes any bias towards assumed diurnal

changes, the day/night terminators, the solar cycle, or seasonal variations. This method

also removes the ambiguity of inferring h′ and β from the IRI electron density profile, and

it avoids the problem that IRI sometimes produces unrealistic β values. For this work, we

do not use IRI for synthetic random ionosphere generation and instead use this simpler

horizontally homogeneous ionosphere with superimposed perturbations method. A diurnal

trend analysis of ANN generated waveguide parameters is presented later in this chapter,

where it is shown that the ANN infers diurnal trends exceptionally well, even though no

diurnal features are included in the synthetic training data.

Creation of the randomized perturbations, ∆h and ∆β, begins with defining multiple

geographic perturbations points and assigning each point a perturbation value that is ran-

domly selected within the range of −8.0 ≤ ∆h′ ≤ 8.0 and −0.12 ≤ ∆β ≤ 0.12. A random

number of perturbation points (between 10 and 20) close to evenly distributed around the

Earth (a randomly oriented Fibonacci sphere is a good place to start for near even distribu-

tion, and then add small random spatial offsets to those points of the Fibonacci sphere) is

found to give a good tradeoff between ionospheric diversity and large-scale smoothness. The

two homogeneous h0 and β0 values (random offsets to ∆h′ and ∆β) are randomly selected

within the range 68.0 ≤ h′0 ≤ 76.0 and 0.36 ≤ β0 ≤ 0.44, and they are then added to ∆h

and ∆β, respectively. Gaps between the points are filled using the spherical interpolation

method from Wessel and Becker [2008] (the middle panels in Figure 5.3 were produced

using this interpolation method).

Ranges for the random values h′0, β0, ∆h′, and ∆β are chosen to correspond with those

reported in the literature for unperturbed and perturbed daytime ionospheric conditions.

The number of perturbation points is limited to the small number of 10 to 20 points because
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Figure 5.4: Block diagram for synthetic ANN training data generation.

the daytime ionosphere normally does not experience spatially small perturbations. These

daytime random value ranges and random number of perturbation points do induce some

bias into the synthetic training data, but this bias is less than the bias the IRI model would

induce.

There are many parameters to adjust for the random ionosphere generation, and much

of it has not been explored. It is suggested that other variations of synthetic data generation

be investigated. For example, the random value ranges can also be adjusted for nighttime

conditions, where h′0 and β0 would need to shift upward and the range of ∆β would need

to be expanded. Nighttime conditions would also require an increase in the number of

perturbation points to account for the spatially small nighttime perturbations.

Figure 5.4 is a block diagram for the generation of synthetic training data. A random

ionosphere is generated to give h′
n and βn vectors for each path for a single training data

step (H = {h′
1, . . . ,h

′
N} and B = {β1, . . . ,βN}). The magnetic flux density Bφn, given

the associated waveguide parameter vectors h′
n and βn, is then calculated for each path

using LWPC. Magnetic flux density calculations and average waveguide parameters are then

stored into memory as the set {Bφ, h̄
′
, β̄} . This process is repeated M times (M = 200, 000

for this work). Once the M th iteration is complete, M random ionosphere sets of {Bφ, h̄
′
, β̄}

are retained in memory (and can be written to file for repeat use). Magnetic flux density

values BH
φ , for all N paths, are also calculated with LWPC given the chosen seed values

(h̄′H and β̄H). With M sets of {Bφ, h̄
′
, β̄} and BH

φ calculated, the ANN is ready to be

trained (i.e., find the set of weights W that optimize the ANN to approximate the target

function G−1). Computing this training data takes about 12 to 24 hours using the Georgia

Tech LF Radio Lab’s server Kilaboltz, which has 64 CPUs and 256 GB of memory.
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5.2.2 ANN Performance

There are numerous resources available for training ANNs, and some are better suited for

specialized tasks over others, but generally all ANN development packages can handle the

simple feed-forward ANN presented here. Most of the code used to generate the synthetic

data is written in Python 2.7, so it makes sense to use a python-based ANN package. The

Keras API [Chollet , 2015] is a useful high-level tool for fast ANN development with the

Python language, and it is used in this work for training the ANN. Keras is designed to run

on top of a backend engine (low-level optimized tensor manipulation libraries for ANNs),

and its purpose is to abstract away from the tediousness of low-level calculations that are

of concern only to advance ANN researchers. The backend used in this work is Google’s

open source TensorFlow library [Martin et al., 2015].

Training an ANN is a slick way of saying that an optimum set of weights W, that

minimize the cost function in (5.6), are being determined. Using the Keras API and the

synthetic training data, the estimated inverse function Ĝ−1 is determined by optimizing

the weights of the ANN. For this work, it is found that the ANN performs well when it

is designed with a single hidden layer of ∼300 nodes with ReLU activation function, linear

activation functions for the output nodes, and a squared error loss function. Determin-

ing how many nodes and layers, and what type of cost and activation functions to use, is

known as hyperparameter tuning. There are numerous approaches to hyperparameter tun-

ing [Bergstra et al., 2011], but intuition and thoughtful guessing and checking to minimize

the cost function can usually give decent if not good results.

Training and testing of the ANN is done using a 60/20/20 split (60% of the generated

data is used for training, 20% for validation, and 20% for testing) of M = 200, 000 random

ionospheres with N = 18 transmitter to receiver paths (these paths are shown in Figure

5.6). Training and validation data are used on different neural network topologies for

hyperparameter tuning (each ANN topology has a unique set of hyperparameters). All

ANN topologies are then tested against a test set that is dedicated for use in the final testing

phase (i.e., the test data was not used in any way to train the ANNs). The ANN topology

that gives the best testing results is considered to have the optimal hyperparameters for
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Figure 5.5: ANN performance with synthetic data. The histograms show the aggregate
error for 40,000 random ionospheres, each with 18 paths.

estimating inverse function G−1.

Figure 5.5 shows the test data results for the optimal ANN. Seed values of h̄′H = 71.0

km and βH = 0.4 km−1 are used to perform this test – these are common values for a

quiet daytime ionosphere (see Table 1.1). Only synthetic data is used here, and so similar

ANN performance for any reasonable seed values is expected. The two histograms in the

figure show the aggregate root-mean-square error (RMSE) for all paths: a mean RMSE

of 0.03 km for h̄′ and a mean RMSE of 0.0008 km−1 for β̄. Performance of the ANN

compares exceptionally well to techniques used in literature. However, this exercise was

performed with synthetic data only, and many of the non-ideal characteristics that are

measured in observations (e.g., antenna alignment, transmitter source phase uncertainty,

changes in transmitted power, and multipath propagation) are not represented within the

model. Performance of the ANN is expected to degrade when used with observational data.

5.3 Quiet Day Analysis

Performance testing of the ANN with synthetic data is done merely to tune the ANN and

verify the ANN functions properly under ideal conditions. The true performance of the
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Figure 5.6: Map of narrowband VLF transmitters and Georgia Tech LF Radio Lab receivers.
Observations of the three transmitters are made at the six receivers. These observations
are used in the ANN to infer the average waveguide parameters along each GCP.

ANN can only be tested with real data. An array of transmitters and receivers are shown in

Figure 5.6. This array is a subset of the larger transmitter and receiver array in Figure 1.3

(NAU is removed because of its high-frequency, NPM is removed since it is located far away

from the receivers, and PA has strong site errors that make it unsuitable for this work).

The ANN framework will be used to infer the average waveguide parameters along N = 18

GCPs, formed by the three transmitters and the six receivers.

The daytime ionosphere on 4 October 2017 is found to be extremely quiet, from a

solar radiation standpoint, and satellite reports show temperate daytime solar X-ray flux

emissions over the continental US. The following analysis uses radio measurements of the

three narrowband VLF transmitters starting from 14:00 UT and ending at 22:00 UT, the

hours in which all 18 GCPs are 100% daytime. Magnetic flux density Bφnk is observed every

second k for each transmitter to receiver path n. For each second (there are K = 28, 800

total seconds) all N field measurements are input into the ANN and the inferred h̄′nk and

β̄nk waveguide parameters, for all paths, are concurrently determined.

5.3.1 Optimal Seed Values

Finding the correct seed values h̄′H and β̄H is critical for optimal ANN performance. Seed

values are the link that connects real-world observations to synthetic data. When working
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with synthetic data only, no connection is required between real-world observations and

synthetic data, so it makes sense that any arbitrary seed values (within reason) would

give similar results when testing the ANN performance with synthetic data. This is not

the case when the ANN is used on real-world observational data. Incorrect seed values

will improperly associate the synthetically trained ANN with real-world observations. The

method for choosing the optimal seed values with observational data is to train many ANNs

with different seed values and see which performs the best on the observational data.

Using the high-noon assumption and equation (5.10), we can calculate the ANN’s RMSE

over the eight hours of observational data for a given set of seed values,

εseed(h̄′H , β̄H) =

√√√√ 1

NK

N∑

n=1

K∑

k=1

∣∣∣∣∣
Bφnk

BH
φn

− L(h̄′nk, β̄nk)

L(h̄′H , β̄H)

∣∣∣∣∣

2

. (5.12)

Recall that BH
φn is the observed magnetic flux density when the Sun is at minimum solar

zenith angle at the center point of GCP n, and the h̄′nk and β̄nk values come from evaluating

Ĝ−1(Bφk,B
H
φ ) = [h̄

′
k, β̄k].

A minimization method is needed to find the best seed values. The minimization tech-

nique used here is to train the ANN for a wide range of reasonable seed values and choose

the seed values that give the smallest εseed. Figure 5.7 shows εseed(h̄′H , β̄H) calculated with

many different variations of h̄′H and β̄H . A global minimum for εseed is found at h̄′H = 70.9

km and β̄H = 0.36 km−1. The seed values at this global minimum are the optimal seed

values for the ANN. There is also an interesting low error swath that starts with a low h̄′H

and a high β̄H and then transitions to a middle h̄′H and a low β̄H . The complex value

1/L(h̄′H , β̄H) can be thought of as a tuning coefficient, and adjustment of this coefficient

will improve or reduce how well the Bφn and L(h̄
′
n, β̄n) temporal curves track each other

(this is akin to the temporal comparison method). This swath shows seed values that give

good temporal tracking between the Bφn and L(h̄
′
n, β̄n) curves, and the swath ultimately

converges to the optimal seed values.

Solving for the smallest εseed value is a computationally intensive task. It takes Kilaboltz

about 48 hours to train the 3,232 ANNs used to make Figure 5.7. For future work, it would

be interesting to give each path its own unique set of seed values, allowing for more flexibility
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Figure 5.7: Seed error for different seed value combinations. The seed error is calculated
using (5.12) and the N = 18 observational data sets from 4 October 2017. The optimal
(minimum εseed) seed values are found to be h̄′H = 70.9 km and β̄H = 0.36 km−1.

in the estimate of Ĝ−1. Having N sets of seed values (one set for each path) would drastically

increase the computational burden of finding all N optimal seeding value sets, which is why

it is not performed in this work.

Note that the optimal seed values do not define a GCP’s h̄′ and β̄ values at high-noon.

Even though Bφn is equivalent to BH
φn when path n is at high-noon, all other paths are

generally not at high-noon, and Bφk 6= BH
φ for k = 1, . . . ,K is generally a true statement.

This implies that at no single point in time will all observations be equal to their respective

high-noon observations, and the ANN will have the flexibility to predict the waveguide

parameters for path n that are not necessarily h̄′H and β̄H . If the unlikely event Bφk = BH
φ

does occur, the ANN will predict the waveguide parameters to be the seed values for all

paths in the array, but this does not mean the ANN’s prediction is wrong.

The optimal seed values are a mechanism to circumvent problems with transmitter

amplitude and relative phase, but transmitter amplitude and phase can drift with time.

Generally, each day, or even smaller time periods, will have different optimal seed values.
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The seed values found here are unique to this day and even to this specific ANN. If the

ANN were to be changed through the addition of more nodes, a different number of paths,

or even different training data, then the optimal seed values will generally be different.

5.3.2 Inferred Waveguide Parameters

Under daytime conditions with quiet solar activity, the general trends of the waveguide

parameters are fairly predictable. As the Sun decreases in solar zenith angle from morning

to noon, more solar energy illuminates the overhead D region ionosphere. This causes h′ to

decrease (a lowering of the effective VLF reflection height) and β to increase (an increase

in the gradient of the electron density profile). The opposite occurs when the Sun increases

in solar zenith angle from noon to evening; less solar energy is reaching the overhead D

region, causing the effective VLF reflection height to increase and sharpness of the electron

density profile to decrease.

These general h′ and β trends are seen when observational data from 4 October 2017 are

used with the Ĝ−1 function, shown in Figure 5.8. The amplitude and phase observations

(shown in the left two columns) are input into the ANN, seeded with h̄′H = 70.9 km and

β̄H = 0.36 km−1, and the inferred waveguide parameters h̄′ and β̄ (right two columns) are

the output of the ANN. Orange vertical bars show the high-noon time (when the Sun is

at minimum solar zenith angle at the midpoint of the path) for each GCP. Each panel has

a shaded region which represents the period when the Sun’s minimum solar zenith angle

was somewhere over the transmitter to receiver path. Most of the amplitude curves have

a peak at or near their respective high-noon times, but this is not the case for most of the

phase curves, which seem to have more complex curves that do not track well with solar

zenith angle. The waveguide parameters all show the general trend that is predicted for

daytime conditions with quiet solar activity, and the h̄′ nulls and β̄ peaks are all near their

respective high-noon times.
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Figure 5.8: Observed amplitude and phase from 4 October 2017 and the inferred h̄′ and β̄
waveguide values found using Ĝ−1. The vertical orange line is when high-noon occurs, and
the shaded region shows how long the Sun was over the path.
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The inferred h̄′ and β̄ curves compare well with previous works. The nulls for h̄′ are all

near the seed value h̄′H = 70.9 km, and the peaks for β̄ are all near the seed value β̄H = 0.36

km−1. This is not a coincidence. The inferred waveguide parameters at high-noon will not

necessarily be the seeding values, but the chosen seeding values do have a significant impact

on the inferred waveguide parameters.

Peaks and nulls of the h̄′ and β̄ curves align well with their respective high-noon times.

The ANN itself has no knowledge of the ionosphere’s diurnal trends and treats every ob-

servation time step independent of all other time steps. This is also true for the synthetic

training data. IRI is not used in the generation of synthetic training because it may incor-

rectly bias how the ANN predicts diurnal trends. Instead, the synthetic training data is

generated with a homogeneous random ionosphere with added random perturbations. This

means the ANN is not trained to expect any specific type of diurnal trend. Yet, the ANN

produces h̄′ and β̄ curves that closely track solar zenith angle.

A second-order polynomial is fit to each of the h̄′ and β̄ curves, and the time associated

with the inflection point for each of these parabolic curves is plotted against the longitude

of the GCP’s midpoint in Figure 5.9. The orange line shows when the Sun is at minimum
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solar zenith angle. The ionosphere’s chemical response to a change in received solar energy

is a non-negligible delay [Mitra, 1974], often referred to as sluggishness [Appleton, 1953].

Thus, the blue dots should lag the orange line just slightly to allow for the ionosphere to

reach its maximum ionization level. The blue dots follow the orange line remarkably close,

given that the peak/null time is the inflection point of the second-order polynomial fit and

the ANN assumes nothing about the temporal variations of daytime ionosphere. Alignment

of the second order polynomials’ inflection points with the Sun’s high-noon position gives

confidence that Ĝ−1 is a good approximation of G−1.

5.3.3 Comparison to Past Works

The general trend of the waveguide parameters in Figure 5.8 appear to be correct, but it

is difficult to say how correct they are. One way to verify if the waveguide parameters

from Ĝ−1 are inferred correctly is to compare them to previous works. There are many

pitfalls to this approach, and comparison of different works should be done with care.

Almost all published works in VLF remote sensing use different geometries of transmitters

and receivers. Some GCPs are along dry ground paths, others are almost all sea paths,

and many are a mixture of the two. More importantly, the ionosphere is highly dynamic

and can exhibit disparate characteristics from one day to the next. These differences are

caused by, but not limited to, Earth’s seasonal changes and temporal variations in the Sun’s

behavior. Finally, Earth’s background magnetic field, and hence ionosphere, have unique

characteristics depending on latitude and longitude. VLF remote sensing literature spans

from experiments near the poles down to the equator, and each region has its own unique

ionospheric characteristics. Each of these concerns underscore the need for caution when

comparing inferred waveguide values between different experimental setups, whether it be

later in the day, a different day, a different transmitter and receiver geometry, or different

geographic locations.

Figure 5.10 presents inferred waveguide values from many different sources, which in-

clude published VLF remote sensing experiments, sounding rocket measurements, and the

IRI model. These waveguide parameter curves from different sources are compared against

the inferred h̄′ and β̄ curves for the NAA-LP, NML-OX, and NLK-DA GCPs in Figure 5.8.
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Figure 5.10: Comparison of the inferred waveguide parameters along the NAA-LP, NML-
OX, and NLK-DA paths in Figure 5.8 to published experiments, sounding rocket measure-
ments, and the IRI model.

Note that solar zenith angle is the dependent variable here, and a negative solar zenith

angle is used for morning, while a positive angle is for afternoon. Solar zenith angle is much

simpler to use than time when comparing measurements from different locations or times

of the year.

Thomson [1993] inferred h̄′ and β using a GCP from the French transmitter FRA to a

receiver in Britain and an Australian transmitter NWC to a receiver in Japan. McRae and

Thomson [2000] used four narrowband VLF transmitters (Omega transmitter in Hawaii,

Omega transmitter in Japan, NPM in Hawaii, and NLK in Seattle) and one receiver in

Dunedin, New Zealand to infer a single h̄′ and β curve for all four GCPs. Han et al. [2011]

measured sferics emanating from small geographic regions with a receiver in North Carolina

during three different days to infer an h̄′ and β̄ curve. h̄′ and β̄ are fit to multiple sounding

rocket measurements from Friedrich et al. [2018, and references therein] at various solar

zenith angles and different locations on Earth. The IRI h̄′ and β̄ curves are determined at
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the GCP midpoint location for NML-OX on 4 October.

Overall, the curves in Figure 5.10 have similar trends to those in past works. Some of

the sounding rocket measurements do not match with the curves as well, but this mostly

occurs at high solar zenith angles where the h̄′ and β̄ assumption begins to break down

due to the terminator. The three h̄′ curves from this work are lower than the curves from

past works, which is surprising because h̄′ is typically higher in the winter and lower in

the summer. h̄′ is lowest along the NLK-DA path and increases slowly as solar zenith

angle moves away from zero. This slow increase in h̄′ on NLK-DA is expected because

the longitudinal distance of the NLK-DA GCP is larger than other paths in Figure 5.6,

meaning the Sun is over the path for a longer period of time (the shaded region in Figure

5.8 shows how long the Sun was over each path). This is a drawback to using solar zenith

angle, referenced to the center point of the transmitter to receiver path, as an independent

variable when comparing different paths – paths with large longitudinal distance will have

flatter h̄′ and β̄ curves than those with small longitudinal distance.

β̄ curves in Figure 5.10 show a little more disagreement than curves for h̄′. Han et al.

[2011] notes that the inference of β̄ values with sferics produces different results than nar-

rowband VLF remote sensing inferred β̄ values – namely β̄ shows little to no daytime solar

zenith angle trend when inferring β̄ with sferics. The β̄ curves from this work match well

with results from Thomson [1993] and McRae and Thomson [2000] during the morning, but

the curve only matches well with McRae and Thomson [2000] during the afternoon.

5.3.4 Indirect Error Measurements

Past works have suffered from an inability to quantify the error of waveguide parameter es-

timation techniques. Measuring the error of these estimation techniques requires waveguide

parameter ground truth data, which is almost always unavailable.

Most waveguide parameter estimation experiments contain only one or a couple GCPs.

With so few paths, their approach has been to infer the waveguide parameters over a single

path, then model the magnetic flux density over the same path using the inferred waveguide

parameters, and finally calculate the error between the two fields. Doing so does give an

indirect error of the inferred waveguide parameters for this specific path, but this error is
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somewhat biased because the inferred waveguide parameters are found by minimizing the

modeled and observed error along the same path. A more robust approach is to infer the

waveguide parameters along one path and then use the inferred parameters to calculate

the indirect error along a second path that was never used to infer the initial waveguide

parameters. This second path must be similar enough to the initial path so that both paths

can be assumed to have the same ionospheric properties. Reserving a second GCP for error

calculations only, and not for initial waveguide parameters inference, is not done in most

of the literature due to the limited number of available transmitters and receivers. In this

work there are multiple transmitters and receivers, and holding one receiver out of the ANN

analysis (so that there are only 15 paths used in Ĝ−1) will not significantly degrade the

inference of the waveguide parameters.

The map of transmitters and receivers in Figure 5.6 show that BW and BX have similar

GCPs. During quiet daytime conditions it is valid to approximate the waveguide parameters

along the three transmitter to BW paths and the three transmitter to BX paths as equal. A

new ANN is formed for N = 15 paths, and all three transmitter to BX paths are withheld

from the waveguide parameter estimation (Ĝ−1 : C15×C
15 → R

15×2). Figure 5.7 shows the

optimal seed values for an ANN with N = 18, but this new ANN is intended to be formed

independent of any BW information. A new set of optimal seed values, that do not use BW

paths for calculating εseed, are found to be h̄′H = 70.3 km and β̄H = 0.33 km−1. These

values are close to the ones found for the N = 18 ANN.

Once the ANN is trained, observational data is input into Ĝ−1 to infer h̄′ and β̄ along

the three transmitter to BX GCPs. The inferred BX waveguide parameters are then used

in LWPC along the three BW paths and the estimated amplitude and phase at BW is

determined for all three GCPs. Figure 5.11 shows the observed and estimated amplitude

and phase. Problems arise when directly comparing LWPC’s amplitude and phase to ob-

servations, due to unknown transmitter power and the lack of relative phase. To avoid this

problem, the estimated amplitude and phase, for each GCP, is adjusted so it is equal to the

observed amplitude and phase at high-noon. Overall, the predicted amplitudes and phases

match very well with the observations. Amplitude RMSEs are below 1 pT and phase RM-

SEs are all less than 3◦. These RMSEs could be reduced even more if some other time than
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Figure 5.11: Observed and estimated amplitude and phase for the NAA-BW, NML-BW,
and NLK-BW paths on 4 October 2017. Estimated amplitudes and phases are found using
Ĝ−1 inferred waveguide parameters from NAA-BX, NML-BX, and NLK-BX paths. Errors
between the observed and estimated amplitudes and phase are shown along with the RMSE
over the entire 8-hour period.

high-noon is used to adjust the offset of the estimated amplitude and phase but choosing

another time would detract from the high-noon assumption used here.

Results for the estimated amplitudes and phases at BW are not too surprising since

BX is geographically close to BW. We also want to explore how well we can predict the

amplitude and phase at a receiver that is far from other receivers. For this we choose the OX

receiver. Looking at the map in Figure 5.6, the closest GCPs for the three transmitters to
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Figure 5.12: Observed and estimated amplitude and phase for the NAA-OX, NML-OX,
and NLK-OX paths on 4 October 2017. Estimated amplitudes and phases are found using
Ĝ−1 inferred waveguide parameters from NAA-LP, NML-BX, and NLK-BX paths. Errors
between the observed and estimated amplitudes and phase are shown along with the RMSE
over the entire 8-hour period.

OX are: NAA-OX is near NAA-LP, NML-OX is near NML-BX, and NLK-OX is near NLK-

BX. The LP and BX receivers are quite a far distance from the OX receiver which reduces

the confidence that the waveguide parameters are the same between their respective paths.

Nevertheless, these pairs of paths will be assumed to have the same waveguide values, and

the same approach used to predict the received amplitudes and phases at the BW receiver

is again used to predict the received amplitudes and phases at the OX receiver.
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Optimal seed values of h̄′H = 69.8 km and β̄H = 0.33 km−1 are found for an ANN with

the OX receiver removed. The inferred waveguide parameters from Ĝ−1 along the respective

nearby GCPs are used in LWPC to estimate the amplitudes and phases along the three

GCPs to OX. Figure 5.12 shows the observed and estimated amplitudes and phases along

with the calculated errors. Surprisingly, the amplitude RMSE seems to perform better for

the OX predictions than the BW predictions. One reason for this is the OX amplitude error

curves have smaller mean offsets than the BW amplitude curves. Overall the amplitude

and phase estimates still perform well given that LP and BX are 100s of kilometers away

from OX.

5.4 Solar Flare Analysis

The previous section purposefully analyzed a day that had quiet solar activity in an effort to

avoid the extra complexity that solar radiation perturbations induce in waveguide parameter

inference. Now that it has been shown that Ĝ−1 performs well in the inference of waveguide

parameters during quiet solar day conditions, it is time to explore the effects a solar flare has

on the D region and how well Ĝ−1 handles the extreme change in ionospheric characteristics.

Solar flares produce strong extreme ultraviolet (EUV) radiation, X-ray emissions, and

sometimes excess Lyman-α radiation that penetrates the D region ionosphere and causes

enhanced ionization [Tsurutani et al., 2009; Raulin et al., 2013]. A C-class solar flare

occurred on 15 July 2017 during the daytime over the continental US. X-ray emissions

from this flare were measured by the Geostationary Operational Environment Satellite 13

(GOES−13) operated by the National Oceanic and Atmospheric Administration (NOAA)

and are shown in the top row of Figure 5.13. GOES−13 has two types of X-ray flux detectors

on board, one for short wavelengths (0.5−4 Å) and one for long wavelengths (1−8 Å). Solar

X-ray emissions below 8 Å penetrate the furthest into the ionosphere; the shorter the X-ray

wavelength, the deeper it will penetrate the ionosphere. Under quiet daytime conditions,

solar X-ray flux levels are too low for X-rays to be a dominant D region ionization source.

X-ray flux dramatically increases during solar flare events and becomes a dominant driver

for enhanced D region ionization [Mitra, 1974, p. 60].
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Figure 5.13: GOES−13 X-ray flux measurements (top row) showing a strong C-class solar
flare. Ellipse analysis (bottom five rows) is used to show 2-channel narrowband VLF from
before (blue), during (orange), and recovery (green) of the solar flare. Ellipses are normal-
ized by the magnetic flux density major axis at 19:28 UT (before event time). Small circles
are placed on the ellipses to show start phase.

The X-ray flux curves in Figure 5.13 show that the flare begins at about 19:30 UT and

subsides around 19:55 UT. It reaches its peak close to 19:38 UT, which corresponds to

the Sun being at minimum solar zenith angle at approximately the geographic longitude

line that runs through Salt Lake City, Utah. Recordings of the NLK, NML, and NAA

transmitters are made at five different VLF receivers (OX was not operating on this day).

The polarization ellipse analysis from Chapter 3 is used to show how the narrowband signals

are affected by enhanced ionization of the D region. Narrowband observations just before
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the solar flare are shown as blue ellipses, orange ellipses represent narrowband observations

when the GOES−13 X-ray flux observation is near maximum, and green ellipses are when

the X-ray flux strength is approaching its ambient level prior to the solar flare event. A

circle is drawn on each ellipse to represent the start phase, and the magnitude of the ellipses

are normalized by the narrowband ellipse major axis values at 19:28 UT (B0,Maj).

Effects of the solar flare widely vary for each transmitter to receiver path. Some of the

ellipses change in tilt angle, others change in ellipticity, and some have minimal change. It

is clear that the solar flare has a profound impact on the EIWG and the change in observed

amplitude and phase is unique to each transmitter and receiver GCP.

5.4.1 Inferred Waveguide Parameters

The same procedure used to determine the 4 October 2017 quiet daytime waveguide param-

eters in Figure 5.8 is used here for the solar flare event. The seeding method requires the

training of many ANNs with different seeding values so that a wide breadth of h̄′H and β̄H

combinations can be considered when searching for the optimal seed values. These ANNs

are purely trained with synthetic data and can be recycled for use on different days, pro-

vided the transmitter to receiver paths do not change. The OX receiver was unavailable this

day, so the ANN used to make Figure 5.8 cannot be used here. However, a whole different

set of ANNs, with the OX receiver removed, have already been trained to do the indirect

error measurements on the OX receiver in the previous section (Figure 5.12). These ANNs

(used to create Figure 5.12) are reused here to calculate the seed errors and give the opti-

mal seed values of h̄′H = 70.7 km and β̄H = 0.39 km−1. Conveniently, the last high-noon

time is 19:19 UT on the NLK-BD path, which is just before the solar flare. The high-noon

assumption would no longer be valid if the event occurred slightly earlier and one or more

of the paths had a high-noon time that coincided with the event.

Observed narrowband VLF amplitude and phase and inferred h̄′ and β̄ values are shown

in Figure 5.14. The amplitude and phase curves mirror the ellipse analysis in Figure 5.13;

the change in amplitude and phase for the solar flare event is unique to each individual

GCP. Some amplitudes increase during the flare, some decrease, and some change very

little. Even the NAA-BX and NAA-BW paths, which are spatially close to each other, have
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Figure 5.14: Observed amplitude and phase from 15 July 2017 and the inferred h̄′ and β̄
waveguide values found using Ĝ−1.
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different amplitude responses. NAA-BX decreases in amplitude and NAA-BW increases

in amplitude. Narrowband phase increases on all paths during the flare, except for NML-

BD and NLK-BD, and the amount of phase change is also highly path dependent. The

uniqueness to how each narrowband signal responds to the solar flare highlights the complex

changes taking place in the EIWG during the event.

Thomson and Clilverd [2001] give a good qualitative discussion on waveguide parameter

response to solar flares with excessive X-ray flux levels. Their reasoning is as follows.

An increase in D region ionization from increased X-ray flux levels leads to an increase

in electron density and lowering of the effective VLF reflection height. This decrease in

reflection height is akin to a decrease in h′. During a solar flare, ionization from X-rays

typically overshadow ionization levels from Lyman-α and galactic cosmic ray radiation, and

the electron density gradient becomes highly dependent on the X-ray energy absorption

profile. This ionization profile is generally smooth and sharper than that during quiet

daytime conditions. Therefore, β will typically increase during a solar flare. Multiple VLF

remote sensing works have shown the general response of the waveguide parameters is for

h′ to decrease and β to increase in response to a daytime solar flare [e.g., Thomson and

Clilverd , 2001; McRae and Thomson, 2004; Han and Cummer , 2010b; Nina et al., 2012;

Singh et al., 2014; Hayes et al., 2017].

h̄′ and β̄ curves in Figure 5.14 agree with this qualitative reasoning; all paths show that

h̄′ decrease and β increases during the event. A median filter is used on the h̄′ and β̄ to

clearly show the response of Ĝ−1 to the event. The amount of change in h̄′ and β̄ is not the

same for all paths, but a trend does present itself: change in h̄′ and β̄ tends to be larger for

paths that have a GCP midpoint that is further west. This makes sense because the Sun is

over the west coast of the US during the solar flare, and paths with the lowest solar zenith

angle will generally receive the largest portion of energy from the flare.

5.4.2 Indirect Error Measurements

It is comforting to see in Figure 5.14 that nearby paths with different amplitude and phase

curves, such as NAA-BX and NAA-BW, still have similar h̄′ and β̄ curves. The simi-

lar change in waveguide parameters for nearby paths comes from the previously stated
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Figure 5.15: Observed and estimated amplitude and phase for the NAA-BW, NML-BW,
and NLK-BW paths on 15 July 2017. Estimated amplitudes and phases are found using
Ĝ−1 inferred waveguide parameters from NAA-BX, NML-BX, and NLK-BX paths. Errors
between the observed and estimated amplitudes and phase are shown along with the RMSE
over the entire 8-hour period.

assumption that the ionosphere will be assumed to have smooth spatial variations. This

smooth ionosphere assumption is why large-scale perturbations are used in the generation of

synthetic random ionospheres. Thus, the ANN was trained to recognize that nearby paths

should have similar waveguide parameters when smooth large-scale perturbations occur. If

much smaller perturbations are used in the creation of synthetic data and training of the

ANN, then the response of Ĝ−1 to the solar flare event may be quite different than that
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shown here.

An indirect error measurement is made with the BW receiver for the solar flare event,

shown in Figure 5.15. This is done in the same manner as the error measurements in

Figures 5.11 and 5.12. The OX receiver was not operating on this day, 15 July 2017, and

the BW receiver is removed from any analysis involving Ĝ−1, so the ANN’s number of paths

is N = 12. The seeding method is used to find optimal seed values of h̄′H = 71.1 km and

β̄H = 0.36 km−1.

Phase estimates perform remarkably well on all three paths, even during the event.

Estimated amplitude on the NML-BW and NLK-BW paths track the observations well.

Estimated amplitude for NLK-BW shows almost no response to the event, and estimated

NAA-BW amplitude is attenuated during the event even though the observation shows an

increase in amplitude. Estimated NML-BW amplitude does show a strong response to the

event, in the correct direction, but the amplitude attenuates by about 2 pT more than it

should, which is perhaps worse than no response at all.

Three reasons can be given for the poor amplitude RMSE results. First, it may be that

the ANN is more focused on phase than amplitude, or at least for solar flare perturbations.

This is one of the strongest criticisms of ANNs. ANNs are akin to a black box, and it

is near impossible to give a qualitative interpretation as to what the weights at each node

mean. Second, the effects of the solar flare on the modal structure of the EIWG are complex.

Removing the BW receiver from the ANN has a profound impact with how Ĝ−1 will respond.

Even though the BW and BX receivers are geographically close, it may not be true that h̄′

and β̄ are the same along the two paths under perturbed daytime conditions, which would

mean the indirect error method is invalid under perturbed daytime conditions. Third, data

from the OX receiver is not available for this day. Having OX data would most certainly

improve the ANN’s estimates of the waveguide parameters, and the indirect estimates of

amplitude and phase at BW would probably improve too.
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CHAPTER 6

SUMMARY AND SUGGESTIONS FOR FUTURE WORK

6.1 Summary

VLF remote sensing is one of the primary tools for inferring properties of the D region

ionosphere. Yet, D region inference experiments have historically been limited to one or

a small number of transmitter to receiver paths. This thesis has expanded upon existing

narrowband VLF remote sensing techniques to build the tools needed for a generalized

method that concurrently infers the average two-parameter electron density profile along

an arbitrary number of transmitter and receiver paths.

In Chapter 1, we introduced VLF radio wave transmission, propagation, and recep-

tion. Challenges with the design and construction of narrowband VLF transmitters were

examined. We discussed details about the Georgia Tech LF AWESOME receiver and the

formation of an array of VLF transmitters and receivers over the continental US. The inter-

esting property that VLF waves propagate to global distances within the Earth-ionosphere

waveguide (EIWG) was presented. A review of D region plasma physics and the Appleton-

Hartree equation was given. At the end of the chapter we introduce the Wait and Spies

[1964] two-parameter exponential profile approximation.

In Chapter 2, the theory behind the US Navy’s Long-Wavelength Propagation Capabil-

ity (LWPC) program was introduced. We discussed a mode finding method that considers

Earth’s ground to be homogeneous and assumes the D region is horizontally homogeneous.

Great-circle paths (GCPs) that are inhomogeneous are segmented into smaller homogeneous

paths, and mode conversion is used to connect the adjoining segments. This chapter con-

cluded by introducing some VLF remote sensing methods that use waveguide propagation

models.

In Chapter 3, we presented some fundamentals for processing narrowband VLF data.

We began by detailing the mathematics for minimum-shift keying (MSK) demodulation and

the extraction of the narrowband signal’s carrier phase and clock phase. A synchronized
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demodulation method was introduced to improve signal demodulation on channels that

have low SNR. Synchronized demodulation also allows for one-dimensional scattered field

analysis [Dowden et al., 1996] to be expanded to a two-dimensional polarization ellipse

analysis. Examples of polarization ellipse analysis were given, and it was shown that the

ellipse analysis reveals important properties of wave polarization that the one-dimensional

scattered field analysis would miss.

In Chapter 4, the EIWG propagation theory in Chapter 2 and narrowband VLF pro-

cessing techniques in Chapter 3 were joined to define a method for inferring waveguide

parameters along a single transmitter to receiver GCP. A method for removing the carrier

phase ambiguity between receiver sites was presented, but this method was found to be

valid only when the receivers are close to each other. Radio wave scattering from overhead

transmission lines was investigated, and it was concluded that nearby scattering objects

can induce a bias in the measured carrier phase that exceeds 10◦. Radio wave scattering

from nearby objects and the carrier phase ambiguity dilemma were found to be problematic

when using conventional waveguide parameter inference techniques.

In Chapter 5, a target function was constructed to take in a single time step of nar-

rowband amplitude and phase observations from an arbitrary number of transmitter and

receiver combinations and return the inferred waveguide parameters along all paths. The

target function was approximated using an artificial neural network (ANN). Synthetic train-

ing data was generated using LWPC, which was then used to train the ANN. Real-world

performance of the ANN was measured in two ways. First, ANN inferred waveguide param-

eters were compared to a variety of previously published narrowband VLF remote sensing

experiments. Second, ANN inferred waveguide parameters were used in LWPC to predict

narrowband VLF amplitude and carrier phase at a receiver that was withheld during waveg-

uide parameter inference. Results showed the approximated target function performs well

in capturing temporal and spatial characteristics of the daytime D region.
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6.2 Suggestions for Future Work

6.2.1 Polarization Ellipses

Four examples were given for polarization ellipse remote sensing: modal changes due to

terminator effects, an Early/fast event, a lightning-induced electron precipitation event,

and a solar flare event. Since each of these examples were studied without any statistical

information, it is difficult to say if the presented ellipse responses are typical or atypical for

each event. A statistical study of each of these event categories, with regard to changes in

their polarization ellipse, would be of value to the VLF scientific community.

6.2.2 Polarization Ellipsoids

Under normal circumstances, the magnetic flux density of a VLF wave propagating in the

EIWG is strongest in the horizontal plane, but still, the vertical magnetic flux density is not

always negligible [Silber et al., 2015]. Working with this vertical field is often quite difficult

because of its low SNR. It was shown that the synchronized narrowband demodulation

technique is useful when one channel has a low SNR, and this technique can be extended

to the vertical magnetic flux density to improve its carrier phase estimate. Addition of

the vertical component would extend the polarization ellipse technique to a polarization

ellipsoid technique. The utility of polarization ellipsoid analysis would further extend our

understanding of VLF EIWG propagation.

6.2.3 Carrier Phase Ambiguity

The easiest way, from a processing standpoint, to remove the carrier phase ambiguity is to

simply decrease the transmitter’s frequency (make the wavelength longer). This, of course,

is not possible. The analogous approach to increasing the wavelength would be to reduce

the distance between receivers. This could be done by moving the currently deployed LF

AWESOME receivers closer together or by filling in the gaps in the receiver array with new

receivers.
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6.2.4 Radio Wave Scattering

Unfortunately, radio wave scattering from nearby objects is a challenge that the VLF radio

community will always face. Little information about VLF radio wave scattering is avail-

able in the literature, and a deeper investigation is needed to understand the impact this

scattering effect has on VLF measurements.

6.2.5 Improvements to the ANN Method

In Chapter 5, an ANN was used to approximate the target function G−1. The ANN approx-

imation method has an enormous amount of flexibility and further experimentation with

this method is suggested. The following are some suggested ANN changes to explore:

• This thesis has limited all waveguide parameter inference to be the average waveguide

parameters along the transmitter to receiver path. This assumption is typically valid

for total daytime paths, but it breaks down when the terminator is over the path

or during nighttime. If the ANN method is to be extended to morning, evening, or

nighttime periods, then some polynomial or possibly piece-wise fit for the waveguide

parameters is needed. Extending beyond the average waveguide parameter assumption

will increase the complexity of the ANN, and it will possibly require more transmitter

to receiver paths since more unknown variables are being solved for.

• Performance of the ANN is limited to the quality of the training data. There may

be some value to using IRI [Bilitza and Reinisch, 2008] or FIRI [Friedrich et al.,

2018] for synthetic data generation. Doing so is tricky because it is difficult to tell if

adding these deterministic biases in the synthetic data are improving or diminishing

the performance of the ANN. It is also worth looking into adjustment of the shape,

distribution, and intensity of the synthetic data perturbations (∆h′ and ∆β).

• The high-noon assumption was needed to connect the synthetically trained ANN to

real-world observations. This assumption restricts the seed values to be the same for

all paths. There may be some performance improvement with the ANN if the seed

values were given the freedom to take on different values along each path. Doing so,
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however, will greatly increase the computational burden for finding the optimized seed

values.

• Analysis of nighttime observations is a logical next step for the work presented in

this thesis. A few considerations must be made to account for nighttime conditions.

First, the synthetic training data will need to be adjusted. This most likely means

more small scale perturbations need to be added to the random ionosphere generation,

which in turn may require additional neurons and layers in the ANN. Second, radio

wave scattering from small scale ionospheric perturbations, like Early/fast events,

occur during the nighttime. LWPC models propagation along a two-dimensional path

and is unable to account for three-dimensional radio wave scattering. Finally, it does

not make sense to use the high-noon assumption during the nighttime, since the sun

never reaches its minimum solar zenith angle during this period. It may be possible

to use the high-noon seed values from the previous and/or next day. If not, then a

new method for relating synthetic and observational data must be developed.

• This work has presented a method for combining current VLF observations to im-

prove the inference of ionospheric properties. But the type of data used does not

have to be limited to VLF observations. Other data types, such as total electron

content (TEC), electron density profiles from ionosondes, sounding rocket electron

density profiles, solar X-ray flux, and sunspot number, are also useful when inferring

ionospheric properties. Scherliess et al. [2017] uses an ensemble Kalman filter to com-

bine physical models and numerous data observation types for ionospheric parameter

estimation in their Global Assimilation on Ionospheric Measurements Full Physics

(GAIM-FP) model. A similar ensemble Kalman filter method could be used with the

ANN method presented here along with other types of observations to improve the in-

ference of ionospheric parameters. An added advantage to the ensemble Kalman filter

method is it adds a temporal component to the inference of ionospheric parameters,

something the ANN method does not currently do.

• The azimuthal and radial components of the magnetic flux density are both useful

measurements for VLF remote sensing, as seen in the polarization ellipse analysis. It
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is suggested that the azimuthal and radial components both be used within the ANN.

• An array of three transmitters and six receivers were used in Chapter 5. Adding more

transmitters and receivers to the array would most certainly improve the performance

of the ANN. The NPM (Hawaii) and NAU (Puerto Rico) transmitters are the two

closest VLF transmitters to the continental US. Adding NPM would greatly reduce the

period for when it is daytime over all GCPs in the array. NAU operates at a frequency

much higher (40.8 kHz) than NAA, NML, and NLK, which is not necessarily a bad

thing, but the impact of using such a different frequency is unknown. Adding receivers

around the OX region and closer to the DA would give more uniform GCP coverage

which would likely improve performance of the ANN, and this denser set of receivers

would allow for more combinations of indirect error measurements.
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