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SUMMARY 

This investigation treats the problem of scheduling 

M batch-type jobs which have sequence-dependent changeover 

times but which are otherwise independent on N parallel 

processors. In general, it is assumed that the sequence-

dependent changeover times are not identical for each 

processor, each job is available at some arbitrary time zero 

and deadlines or due dates may be imposed on the jobs. Each 

job is to be processed by exactly one of the N available 

parallel processors. The criterion is the minimization of 

total changeover time subject to the constraint that all due 

dates must be met. In the absence of job due dates, the 

criterion is to minimize total changeover time. 

The solution to the parallel processor problem involves 

partitioning the M jobs into N or fewer distinct subsets while 

simultaneously determining the processing sequence within 

each subset. Two possible assumptions are admitted with 

respect to the number of partitions (processors) depending on 

whether this number is specified or is a decision variable. 

Four programming approaches are investigated and only 

combinatorial programming and heuristic programming are 

found to be computationally feasible for problems of realistic 

size. It is shown that the special case where the processors 

are identical and where all job due dates are infinite can 
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be formulated as a traveling salesman problem. However, 

this approach fails to extend to any more generalized cases. 

A branch and bound algorithm which can be extended is 

developed for the identical processor problem where all job 

due dates are infinite and where the number of processors to 

be activated can either be specified or can be a decision 

variable. The algorithm is subsequently extended to admit 

distinct processors and jobs with due dates. 

Computational experience was concentrated on distinct 

processor problems where N* is to be determined and where 

changeover times are discrete uniform [0, 10]. The average 

computing time tj^ in minutes for this class of problems 

increases exponentially with M and N and is adequately 

described by 

t M N - e" 9* 7 7 5 2(1.7480) M(2.4600) N. 

Additional computational experiments included distinct proc

essor problems under two classes of due dates, distinct 

processor problems under certain alternative assumptions and 

some identical processor problems. The computational results 

suggest that many moderately-sized problems are computationally 

infeasible. 

In view of this, several heuristic procedures are 

developed to solve the parallel processor scheduling problem. 

The heuristic procedures were evaluated by comparing their 
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solutions for small problems to the optimal solutions found 

by the optimal algorithm. Larger problems were also solved 

heuristically and these solutions were evaluated by approxi

mating the distributions of total changeover time for selected 

large problems and making comparisons based on these distri

butions . 

Some ideas for extending the above results to include 

certain alternative criteria and assumptions are given. 



CHAPTER I 

INTRODUCTION 

Scheduling research to date has been directed toward 

the solution of many somewhat distinct problems related to 

the order of processing jobs on machines. There exists a 

viable theory of scheduling which allows the determination 

of optimal schedules under various alternative criteria, 

constraints and assumptions. For example, optimal scheduling 

algorithms are known which minimize either mean flow time, 

maximum job lateness or total machine setup costs under 

certain constraints and assumptions [1]. 

However, there exists a well-known lack of practical 

application of these research results [2, 3]. One possible 

reason for this is that existing scheduling algorithms solve 

problems that are rarely found in industrial scheduling 

environments [2], Another possible reason is that existing 

algorithms are too difficult and/or too expensive to apply 

in practice [3]. 

At least two recent surveys of companies throughout 

the United States support these observations [4, 5], The 

survey findings provided the following suggested reasons for 

the lack of application of scheduling research to existing 

scheduling problems. First, the number of jobs scheduled at 
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any time usually exceeds the capability of most scheduling 

algorithms. Only 19% of the survey responses indicated 

problem sizes with no more than 10 jobs and 10 machines. 

Therefore, many scheduling algorithms, while perhaps approach

ing the correct problem, are incapable of handling the 

prevalent problem size. 

Second, almost every company surveyed had both primary 

and secondary criteria while most scheduling criteria attempt 

to optimize a single measure of effectiveness. Most companies 

considered the meeting of due dates to be the most important 

criterion. The most common secondary objective was to mini

mize changeover times for which 48% of the companies said 

were sequence-dependent for more than half of their opera

tions . 

Third, at least 81% of the respondents indicated that 

several machines are available to perform similar work with 

about 60% of the replies indicating that the machines were 

of a different type. Most existing scheduling research 

results relates to single machine scheduling. (See [1] for 

example.) 

The general purpose of the research reported herein 

is to develop solution procedures for several cases of the 

scheduling problem involving parallel processors. The 

criterion is the minimization of total changeover time sub

ject to the constraint that all due dates must be met. 
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Problem Description 

Specifically, the class of scheduling problems treated 

in this investigation involves scheduling the M batch-type 

jobs in job set M on the N parallel processors in machine 

set N. The M jobs have sequence-dependent changeover times, 

but are otherwise independent. This parallel processor prob

lem is the generalization of the problem of sequencing a set 

of jobs with sequence-dependent setup times on a single 

machine. In the absence of due dates the single processor 

problem is the archetypal combinatorial optimization problem 

best known as the traveling salesman problem. The parallel 

processor problem under investigation could best be described 

as a multi-salesman traveling salesman problem where the due 

dates impose latest arrival time constraints. 

Assumptions and Definitions 

Scheduling is used synonymously with sequencing since 

the problem is one of partitioning the jobs into N (or fewer) 

distinct subsets while (simultaneously) determining the 

optimal processing sequence within each subset and insuring 

that the due date of each job is met. The intermediate or 

long-range smoothing of workforce and production levels is 

therefore not a consideration in the scheduling procedures 

developed in this study. 

Independent jobs mean that there exist no precedence 

or technological constraints which require some jobs to be 

completed before others begin. Precedence constraints would 
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exist, for example, when the jobs are actually elements of 

an overall process where some elements are prerequisites 

for others. 

Sequence-dependent changeover (or setup) times refers 

to the case where the time required for the changeover (i,j) 

from job i to job j depends both on i and j. In addition, 

changeover time dependence on processor n is assumed. The 

time required for changeover (i,j) on processor n is denoted 

c.. and is assumed to be given in an array C = {c.. }. ljn ljn 
Each c-. is assumed to be deterministic. The special case ijn 
where c-. - c.. for all i,j e M and all processors ijn I J W —~ ^ 

n,w e N is called the identical processor problem. Since 

the changeover times for identical processors depend only 

on i and j, they can be given in a single changeover time 

matrix C = tc^j}. The general case which exists if some 
c . f c . is called the distinct processor problem, ljn iju * * 

Each job is assumed to be available at some arbitrary 

time zero and is to be processed exactly once by one of the 

N available processors. This implies that c . = 0 0 and that r n n 
no preemption is allowed. 

Associated with each job j is a deadline or due date 

dj measured from arbitrary time zero. The special case 

where no job has a due date is indicated by letting dj m °°, 

V- j e M. Due dates are said to exist if any dj<°°. When the 

dj are so restrictive that all possible schedules involve 

late jobs, there is said to exist no feasible schedule. 
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The processing time required for job j on processor 

n is denoted p. . 

For a given processor, there is typically some initial 

(possibly idle) state and a cost is involved when changing 

from the initial state to the state required for processing 

the first job. Similarly, there is usually some final 

(possibly idle) processor state required after completing 

the schedule, and reaching this final state involves a cost 

which depends on the last job in the schedule. If M jobs 

are to be scheduled on N parallel processors, the work 

required in going from the initial state of processor n to 

the first job on processor n is defined as initial job M + n. 

Similarly, final job M + N + n is defined as the work re

quired in going from the last job on processor n's schedule 

to the final state. 

Notationally the original jobs are numbered 1,2,...,M; 

the initial jobs are numbered M + 1, M + 2,..., M + N ; and 

the final jobs are numbered M + N + l , M + N + 2 , . . . , 

M + 2N. The time c M + n j n required to bring processor n 

from its initial state to the state required for processing 

any job j is assumed to be given and it is assumed that 

w ^ x - „ - 0. It is noted that c,.. . = C w . „ • for M+n,M+N+n,n M+n,i,n M+u,j,u 
any job j e M for any processors n and u if the processors 

are identical. The analogous assumption is made for the 

time c.. M +iyj + n n required in going from any job j to the 

final state on processor n. 
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A schedule S n of M' real jobs on the nth processor 

may be represented by the vector of M' + 1 ordered pairs 

S n = [CM • n, i 1 > n ) , ( i 1 > n , i 2 > n ) , . . . , ( i M , > n , M + N * n ) ] , 

where i.. n denotes the (j + l)st job in processor n's sched

ule. A schedule S = [ (M + n, M + N + n) 1 indicates that 
~n J 

processor n is not activated. A schedule S is admissible 
~n 

if (a) initial job M + n is first, (b) final job M + N + n 

is last, (c) all other jobs precede exactly one other job, 

and (d) each job is processed exactly once. A feasible 
schedule S is an admissible schedule in which all due dates ~n 
are met. 

A parallel processor schedule is a listing of single 

processor schedules 

S ~ [S^ > ^2 ,. . . , S^] 

which includes each real job exactly once. 

There are N (possibly distinct) available processors. 

The most general assumption is that the scheduling algorithm 

is to determine the optimal number of processors, N*<N. When 

the number of processors to be used in the final solution 

is specified in advance, for example by management policy, 

that number will be denoted by N 1 . Obviously N'<N. 

An exact algorithm is defined to be a solution 
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procedure which generates a schedule in a finite number of 

steps which optimizes some measure of scheduling performance. 

A heuristic algorithm is a solution method which generates a 

schedule in a finite number of steps which is in general 

suboptimal, although hopefully near-optimal. 

Problem Statement 

The problem involves finding, over all feasible sched

ules S, that schedule S* for the M jobs on a (possibly given) 

subset of processors N C N which minimizes 

E~ l c. . 
neN (i,j)eS n ^ n 

subject to 

E S p + c | <d 
k-1 ( i ,n (i ) , (i ) , n ) i ; 

k,n k-l,n k,n r,n 

r = 1,..., R ¥ n e N, 
n 

where R is the number of real jobs scheduled on processor 
n 

n and where i • M + n. o ,n 
If all dj = °°, then the constraint is automatically 

satisfied and the problem is a traveling salesman problem 

with N available salesmen. 
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Size of the Solution Space 

The number of possible solutions is frequently an 

indicator of the degree of difficulty encountered in 

solving combinatorial problems. Suppose that M jobs are to 

be sequenced on a single processor, say n, so that an admissi

ble schedule is 

S n -'{(M + n i 1 ) , (i 1, i 2 ) , . . . , ( 1 ^ , i M) , (i M, M + N + n)}. 

There are exactly Ml such admissible single processor sequences 

since the M original jobs can be ordered in M! ways between 

the initial and final jobs. (Note that the initial and final 

jobs do not affect the number of admissible sequences.) If 

each of the M jobs is to be sequenced on exactly one of N 

available processors, the number of admissible solutions 

depends on whether the number of processors to be activated 

is specified and whether the processors are identical or dis

tinct. 

N' Given. Suppose the M jobs are to be sequenced on 

N available processors in such a way that exactly N f proc

essors are activated. First, assume that the processors 

are distinct. Then single processor schedules can be permuted 

to yield different schedules. For example, for M=3, N'=2 

§ = { h ; ? 2 } = { ^ 4 ' 1 ^ CI,6); (5,2), (2,3), (3,7)} 
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and 

§' = § 2 } - ' U 4 , 2 ) , (2,3), (3,6); (5,1), (1,7)} 

are different schedules. 

Talcing this into consideration, consider a given per

mutation i^, i2»..., iĵ  of the M jobs. The initial and 

final jobs on the N processors cannot affect the number of 

admissible solutions. To partition the given permutation 

into N 1 subsets is the same as selecting N' - 1 spaces of 

the M - 1 spaces between jobs in the given permutation. This 
M - 1 

can be done in (̂ , _ ^) ways. Since this partitioning re

sults in a unique parallel processor schedule for each 
M - 1 

permutation of the M jobs, there are (N, _ ^)M! admissible 
solutions, given the N' processors to be activated. There 

N 
are (̂ ,) ways of selecting the processors, so that the total 

number of admissible solutions is 

Note that this always exceeds the total number of single 

processor schedules by a factor of (jji)(jji _ J ) • 

If the processors are identical, any N 1 processors 

are the same as any other N 1 processors. In addition, there 

are exactly N 1I permutations of single processor schedules. 
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Therefore, there are exactly 

M - K M ! 
( N ' - 1' WT 

admissible identical processor schedules which activate 

exactly N 1 processors. This number can either be less than, 

greater than, or equal to M ! depending on whether 

r M * h 1 £ 1 l N ' - 1 J WT > A" 

N * To Be Determined. When the number of processors 

to be activated is unspecified, all but one processor may 

have zero jobs scheduled. Assume that the processors are 

distinct. Under these assumptions, a unique parallel proc

essor schedule can be constructed by taking a given permu

tation i^, i2>..., i^ and placing a slash before i^, a slash 

after i^ and N - 1 slashes in the now M + 1 spaces between 

any combination of slashes and jobs. The number of ways of 
. . . . , . ,N + M - Is partitioning a given permutation in this manner is ( ^ ) , 

the number of ways of selecting M places out of N + M - 1 

places. Since this can be done for each permutation, there 

are + JJ " 1 ) MI admissible distinct processor schedules. 

This number is always larger than M ! 

Consider the case where the processors are identical 

and N * is to be determined. Permutations of single proc

essor schedules do not yield different parallel processor 
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schedules. There are N! permutations of an n-tuple. But 

some permutations result in the same parallel processor 

schedule. Hence there are at most 

rN + M - 1. M! 
L M J FT 

different identical processor schedules when N* is to be 

determined. 

The number of feasible schedules in the solution 

space is a subset of the number of admissible solutions. 

This number depends on the nature of the due dates. 

Programming Approaches 

There are at least four programming approaches to 

solving the problem. These approaches are described as 

follows. 

Integer Programming 

An integer programming formulation exists for the 

most general parallel machine scheduling problem where 

there exists at least one finite due date. Alternative formu

lations are possible for either the case where the number of 

processors in the final solution is not known in advance 

(N* is determined by the solution procedure) or the case 

where the number of processors N 1 < N is specified. 

Consider first the case where N* is unknown and where 

each processor is identical. Define activity A., i = 1,..., 
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I, as an N-dimensional column vector of 0,1 constants a^j 

where 

An activity may be thought of as a potential schedule for 

one of the N available processors which satisfies all feasi

bility (due date) constraints. The index i ranges over the 

set {1,2,...,!} of all feasible single processor schedules. 

the total cost of the changeovers required by the jobs in 

feasible single processor schedule i. However, this cost is 

sequence-dependent and therefore C^* is the optimal solution 

to a traveling salesman problem with constraints on due dates 

and initial-final jobs. An exact algorithm exists for the 

determination of C.*[61. 
I 

1 if job j is to be included in schedule i 
0 otherwise 

Let the cost of activity i be C.*. That is, C i* is 

The integer programming problem is to minimize 

I 

i = l 
(I-l) 

subject to 

I 
Z 

i = l 
x. - 1 j = 1 , . . . , M (1-2) 
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I 
(1-3) 

x± - 0,1. (1-4) 

where M = total number of jobs to be scheduled. 

The first M constraints (1-2) insure that each job 

will be in exactly one single processor schedule. Constraint 

(1-3) insures that N* <_ N. Note that N* is the number of 

activities in the optimal basis. 

Unfortunately, for even small values of M, the total 

number of activities, I, can become very large. A precise 

estimate of I is impossible because its magnitude depends on 

the number of activities which are infeasible because of due 
M M M M dates. An upper bound on I is (̂ ) + ( 2) +...+ (̂ ) - 2 - 1 

which is reached when no due dates are constraining with 

respect to feasible activities. For example, if M = 50 then 

2^ - 1>10^ and even if only a small subset of this maximum 

number of single processor schedules are due date feasible 

the resulting integer program is computationally infeasible 

It is possible to slightly improve the computational 

aspects of the integer programming approach. If constraint 

(1-3) is ignored, the resulting integer program is actually 

the well-known set partitioning problem (a special set cover

ing problem where all constraints are equalities) which has 

[7]. 

I x. < N 
i=l 
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been treated by enumerative algorithms [8, 9 ] , dynamic pro

gramming [10] and combinatorial programming [11]. It appears 

that partitioning problems of up to several hundred integer 

variables may be solved in less than 15 minutes using the 

algorithms in [8, 9, 11]. The solution scheme is as follows. 
M 

Step 1. Generate the set of all 2 - 1 subsets of 

the M jobs. Eliminate those subsets which would be due date 

infeasible regardless of the order of processing. At this 

point I subsets remain. 

Step 2. Solve I single processor sequencing problems 

to determine the C^*, If the jobs have all infinite due 

dates the problems are classical traveling salesman problems. 

If at least one due date is finite the problems are modified 

traveling salesman problems. 

Step 3. Solve the set partitioning problem which 

results by ignoring constraint (1-3) in the integer program. 

If the number of activities N* in the optimal basis is less 

than or equal to N, an optimal feasible solution has been 

determined. Otherwise, go to Step 4. 

Step 4. Find the minimum number of processors N 

which will yield a feasible solution. Solve N - N + 1 

integer programs identical in objective function (I-l) and 

constraints (1-2) but changing constraint (1-3) to 
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The N - N + 1 programs would be solved with N = N, N + 1,..., 

N. The solution with the lowest value for the objective 

function is optimal. 

This scheme slightly extends the computational power 

of the integer programming approach. However, each step in 

the scheme can become computationally infeasible with moder

ate values of M. The simplest step, Step 1, involves a 

significant number of numerical operations since each of the 
M 
2 - 1 subsets must be checked against due date constraints. 

The feasibility of Step 2 depends on the efficiency of algo

rithms of the traveling salesman type. Perhaps the best 

algorithm for jobs with all infinite due dates is the Little, 

et al. [12] procedure which has solved a 40-salesman (job) 

asymmetric problem in less than nine minutes (IBM 7090). If 

at least one job has a finite due date the only existing 

algorithm for Step 2 is that of Pierce and Hatfield [6] which 

has solved problems of 20 jobs in less than eight minutes 

(IBM 7094). The feasibility of Step 4 is obviously limited 

by the present state of the art in integer programming 

algorithms [7]. 

The above integer programming formulation considers 

the case where N* is unknown. If the number of processors 

to be used is specified in advance to be N f _< N, an analogous 

formulation results with original constraint (1-3) being 

replaced by 
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I 
S x. = N' (1-6) 

i=l 1 

to insure that exactly N f activities (processors) will be in 

the final solution. 

If the processors are not identical, the formulation 

is essentially the same except that for each subset of the 
M 
2 - 1 possible subsets a distinct activity must be defined. 

M 
That is, an upper bound on I is now N (2 -1). 

Dynamic Programming 

It is possible to use dynamic programming as the 

solution technique in the development of an exact algorithm 

for at least some cases of the parallel processor scheduling 

problem. The procedure given below is basically a variation 

of an algorithm of Held and Karp [13] which was developed 

to minimize other cost criteria in scheduling parallel proc

essors. The case of identical processors and unknown 

number of final processors N* <_ N will be considered. 

Consider first the problem of optimally scheduling 

m n real jobs with all infinite due dates on a single proc

essor n. This is basically finding an optimal sequence 
which begins at job M + n, executes i.. i and ends & J 9 l , n ' m . n n 
at job M + N + n. Let s be a subset of {1,..., m } and let 

' ' n 
f n(s,g) be the minimum cost of a subsequence on processor n 

which begins with dummy initial job M + n and terminates 

with job g, g ^ M + N + 1. This implies that the subsequence 
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terminates on some real job. Also let n(s) denote the number 

of jobs in s and let s - g denote the set which results from 

deleting job g from s, g e s. 

Then for 

n(s)=l, £ n({g>,g) = c M+n,g,n for any g (1-7) 

n(s)>l, f n(s,g) 55 min [f n(s-g,r) + c ]. (1-8) 
res-g & 

Equation (1-8) follows from the following consider

ations. Suppose that in executing the jobs in s, job r 

immediately precedes job g. Then, assuming that the other 

jobs are optimally sequenced, the cost incurred is f n(s-g,r) + 
crgn* taking the minimum over all choices of r yields (1-8). 

If K n denotes the minimum cost of a complete schedule 

which begins with job M + n, executes m n jobs and ends with 

job M + N + n, then 

K = min 
n

 g e 

in [f nU,...,m n},g) • c M + N ] (1-9) 
U,...,m nJ 6 ' 

A schedule 

S n = [ ( M.n,i 1 ), (i± , i 2 ) Ci m , M +n +n)] 
n 

is optimum if and only if 
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K n = £ ( { i l , n " " » \ , t l } 9 ^ . n 5 + c ( i m n ) , (M+N+n) ,n (1-10) 
n' 

and for 2 < p < m - 1 — — n 

f({ii _>...> i _ > i . I i . I „) = f({ii i „},i ) l,n' 9 p,n p+l,n ' p+l,n v l,n p,n ' p,n 

The optimal single processor schedule is computed as 

follows. The quantities f n(s,g) are computed recursively 

from (1-7) and (1-8). K n is computed from (1-9). Then (1-10) 

and (I-11) are used to compute the optimal schedule where 

i „ is determined first, and the i I ii « succes-m ^ n m n-l,n» l,n 
sively. 

The following parallel processor solution procedure 

uses the single processor formulation. 
M-1 

Step 1. Generate the set of all 2 subsets of the 
M jobs. Call the resulting subsets S ^ , S ^ 2 \ . . . , S ^ l \ 

) 
> 

(i) 
Step 2. Recursively compute ^ n ( S ^ » g) using (1-6) 

and (1-8) and compute K n for each subset S^*-* from equation 

(1-9). 

Step 3. Solve a set-partitioning problem to assign 

the jobs to processors in such a way as to minimize 

N 
E K 

n-1 n 
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Call this minimum cost partition T 

Step 4. For each comp 

C D 
»• • • > 

compute the optimum schedule 

using (1-10) and (1-11). 

The dynamic programming formulation has a structure 

which is similar to the integer programming approach. Step 

1 essentially enumerates all potential schedules, eliminating 

those which are a priori infeasible. Step 2 computes costs 

on these schedules. Step 3 determines which schedules should 

appear in the final solution and Step 4 determines the over

all optimal schedule. 

The dynamic programming formulation therefore has 

many of the same computational disadvantages as the integer 

programming formulation. Additionally, the computer storage 

requirements inherent in any recursive procedure become 

excessive for reasonably-sized problems. 

It is also possible, at least conceptually, to consider 

the case of finite due dates by introducing a method in 

Step 1 to eliminate those schedules which are obviously due 

date infeasible and by introducing due date constraints in 

Step 2 and Step 4. However, the modifications add a signifi

cant number of additional numerical operations and add 

greatly increased computer storage requirements to an already 

computationally infeasible solution procedure. 

Branch and Bound Methods 

One of the most successful exact solution procedures 

for solving combinatorial problems similar to scheduling 
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parallel processors is the branch and bound method. Given 

the problem of minimizing an objective function f(x) sub

ject to x e F, the branch and bound procedure partitions the 

feasible region F into finer and finer subsets while computing 

a lower bound for each subset on the value which f(x) may 

obtain. 

Branch and bound schemes are frequently enhanced by 

imbedding the basic optimization problem in a larger, less 

restrictive problem by introducing a non-empty superset T, 

FCT along with a bounded extension g of the objective function 

f with the requirements that (a) g(x) s f(x) whenever x e F 

and (b) there exists an x e T such that g(x) - f(x*), where 

x* is the optimal solution to the original problem. 

A branch and bound algorithm must include a procedure 

to identify infeasible solutions, a partitioning (branching) 

scheme, bounding rules, and a recursive operation for form

ing new collections of subsets, excluding those elements 

which are known to be either infeasible or suboptimal. 

More specifically, if Y denotes the set of all sub

sets of T, if T denotes the set of all collections of subsets 

t of T and if the union of all subsets in any collection t 

is denoted by U(;t) , then these requirements may be stated 

as follows. 

Feasibility Test. The algorithm must specify a 

collection with the following properties 

(i) The elements of t contain only infeasible 
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solutions. That is U(t )CT-F: 
—o 

(ii) All singleton infeasible subsets {x} are 
included in t . That is, if x e T-F, 
then {x} e t . 

—o 
One procedure for satisfying the requirement of a 

feasibility test is to specify a procedure to identify all 

singleton infeasible subsets {x}. Computation efficiency is 

enhanced by identifying larger infeasible subsets. 

Partitioning Scheme. A partitioning, or branching, 

scheme is a function p: T-*-T such that 

(i) U [p(t)] - (t); 
(ii) T i

f e p(t) only if T i
l C T± e t; and 

(iii) p(t) = t if and only if all T. e t 
are singleton subsets 

Conditions (i) and (ii) state that the partitioning 

scheme cannot add any elements to the partitioned subsets. 

Condition (iii) states that the partitioning scheme must 

divide at least one divisible subset into proper subsets. 

Bounding Rules. The algorithm must specify a lower 

bound on the value of g(x) for any subset T^. . 

The lower bounding rule is a function b: T-*-R 

(i) g(x) > b(T i) for all x e T; 

(ii) b(Tj) > b(T A) if TJC T. C T ; and 

(iii) b({x}) = g(x) 

Condition (ii) states that deleting points from sub

sets does not lead to lower upper bounds. Condition (iii) 

states that the lower bound on the cost of any solution in a 
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singleton subset is in fact the cost of that solution. 

Recursive Operation. The branch and bound recursive 

operation is a function B such that if p(t') • _t, then 

B(t/) • t - t , where t is that subcollection of t̂  whose 

elements are known to be either dominated or infeasible. 

Branch and bound algorithms have been developed to 

optimally schedule a moderate number of jobs with some finite 

due dates on a single processor [6], The development of 

branch and bound algorithms to optimally schedule parallel 

processors is one objective of the present research. 

Heuristic Programming 

Approximate, or heuristic, procedures are useful in 

many scheduling environments. When the feasible set contains 

a number of solutions with insignificant differences in the 

objective function, then exact procedures frequently become 

inefficient in this near-optimal region compared to the 

ultimate payoff of strict optimality. Also, known exact 

procedures require a number of iterations which grows approx

imately exponentially with increasing size for combinatorial 

problems. 

Heuristic algorithms can be classified as being either 

(1) exact algorithms which have been modified so that an 

optimum can no longer be guaranteed, or even expected and (2) 

approximate algorithms which do not depend on any exact 

algorithm. 

A consideration of both classes of heuristic algorithms 
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with respect to parallel processor scheduling and the develop

ment of and experimentation with some heuristic algorithms 

to handle realistically-sized parallel processor problems 

is the basis of some of the present research. 

Purpose and Objectives 

The overall purpose of this study is to develop 

computationally feasible algorithms for scheduling parallel 

processors for a number of cases. The following specific 

objectives are delineated: 

1. To develop exact algorithms for scheduling 

parallel processors under alternative assumptions, each of 

which, when carried to completion, guarantees an optimal 

solution if one exists. 

2. To evaluate these exact algorithms with respect 

to computational limitations. 

3. To develop efficient heuristic algorithms which 

will provide good quality solutions to the class of problems 

for which exact procedures are inefficient. 

4. To evaluate the heuristic algorithms with respect 

to computational efficiency and quality of solution. 

Scope and Limitations 

The scope of this research is that of the short-

term scheduling function relating to parallel processors 

where the single criterion is the minimization of total 

changeover time. Limitations include the consideration of 
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only the static case, where all jobs and their scheduling 

parameters are known at some arbitrary time zero. No 

stochastic elements are admitted in the scheduling parameters. 
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CHAPTER II 

LITERATURE SURVEY 

Results for Scheduling Parallel Processors 

There is a growing literature on the problem of 

scheduling parallel processors. Unfortunately, most of it 

treats special cases whose restrictive assumptions include 

sequence-independent setup times in order to make the 

problem tractable. 

An early paper by Hu [13] considered the case of 

dependent jobs where all setup times are zero (and therefore 

sequence-independent) and where all processing times are 

equal. These assumptions allowed the development of net

work algorithms to either minimize the number of processors 

required to complete all the jobs by a given time or to 

minimize the completion time of all jobs given a prescribed 

number of machines. 

McNaughton [14] treats the problem of scheduling inde

pendent jobs with sequence independent setup times on 

parallel processors in order to minimize the sum of linear 

losses f.(t.) which job i accrues if it exceeds its deadline i i 
by t^ time units. Important results in McNaughton's paper 

are theorems on lot-splitting. He shows that for the objec

tive of minimizing total loss as defined above with a single 
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processor, an optimal solution exists in which no task is 

split. He notes that for the case of parallel processors 

which are not identical in capacity that the general optimal 

solution will contain split jobs. However, he shows that 

under the assumption that all deadlines are zero with losses 

linear in time there always exists a non-split schedule with 

total loss no greater than any given split schedule. His 

results include an algorithm for scheduling parallel proc

essors of unequal capacities but no algorithm could be 

developed for the case of identical processors. 

Noting that McNaughton's [14] paper yielded no iden

tical processor scheduling algorithm, Eastman, Even, and 

Isaacs [15] computed upper and lower bounds on the cost of 

the optimal solution under the same assumptions. 

Lawler [16] treated the problem of scheduling indepen

dent jobs with sequence-independent setup times on identical 

processors to minimize total deferral cost which is the 

sum of nonlinear job deferral costs g^(c^) which is assumed 

to be monotonically nondecreasing with the time of completion 

c^ of job i. Lawler shows that the transportation method of 

linear programming can be used to schedule identical parallel 

processors when the processing times for the jobs are equal. 

For the case of unequal processing times an approximate 

solution is given based on a scheme where each job i is 

divided into a number a. of "unit time" jobs. 
i 

Under the same assumptions, including sequence-
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independent setup times. Root [17] developed an algorithm 

to optimally schedule identical parallel processors when all 

jobs have a common deadline d and have identical loss func

tions f^(c^-d) = max [0, b(c^-d)], b>0, where c^ is the 

completion time for job i. 

Rothkopf [18, 19] treats the problem of scheduling 

identical parallel processors under the same assumptions of 

sequence-independent setup times but allowing job waiting 

(loss) functions g^(c^) to be any function monotonic and non-

decreasing in c^, the completion time for the ith job. A 

dynamic programming algorithm is formulated to minimize the 

sum of discounted waiting costs, use costs B.. if job i is 

processed by processor j, and costs G Q(t^,t 2,...,t^) associ

ated with a schedule in which processor j completes the jobs 

assigned to it at time t., where G_ is a monotonic nonde-
j o 

creasing function of each of its arguments. McNaughton 1s 
[14] multiprocessor splitting theorem is extended to the case 

- rt 
where jobs have waiting cost functions of the form h^e , 

r>0. 

All of the studies referenced make the restrictive 

assumption of sequence-independent setup times. When this 

assumption is relaxed, the approach of minimizing the total 

loss (waiting, deferral) from all jobs becomes invalid. The 

approach of minimizing total loss also implicitly assumes 

that all job requirements remain the same whether or not the 

deadline is met. 
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An equally restrictive approach with respect to 

parallel processors is the variation of the classical economic 

lot size formula to schedule jobs with sequence-independent 

setup times and deadlines. This method was first proposed by 

Cox and Jessop [20] and recently has been revived by Elmaghraby 

[21, 22]. 

The above examination of the literature shows that the 

problem of sequence-dependent setup times has been neglected. 

The reason for this is that the sequence-dependent assumption 

introduces complexities which seem to prohibit the discovery 

of a straight-forward solution such as sequencing on some 

job parameter such as processing time or due date. The paral

lel processor results to date therefore are at present 

unextendable to the sequence-dependent case. 

This conclusion suggests the alternate approaches to 

the literature of investigating single processor results 

which show promise of being significant in developing parallel 

processor algorithms and examining problems conceptually simi

lar to parallel processor scheduling problems. These alter

nate approaches are discussed below. 

Single Processor Results 

Pierce and Hatfield [6] have developed a branch and 

bound algorithm for scheduling jobs on a single processor 

which provides an exact solution. The computational feasi

bility of their single processor algorithm is limited, the 
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largest problem solved being one of scheduling 30 jobs on a 

single processor. They assert that the single processor 

algorithm is computationally feasible up to 20 jobs. How

ever, suggestions for extending the already limited branch 

and bound approach to the case of parallel processors were 

made. Many of the concepts developed in the present research 

evolved from suggestions in [6]. 

Results from Conceptually Similar Problems 

A well-known problem which is similar to the problem 

of scheduling parallel processors is the delivery or routing 

problem. Basically, the delivery problem is concerned with 

the transportation of products from one set of locations to 

another set of locations under vehicle capacity and other 

constraints which govern the nature of the routings. 

There are several assumptions about the delivery prob

lem which affect the structure of the problem. However, two 

assumptions characterize those formulations important to 

parallel scheduling. One is the assumption that the route is 

not fixed and that the total distance traveled is sequence-

dependent. The other is the assumption of several vehicles 

to satisfy known demands of customers at various locations. 

Given the above assumptions, the traditional criterion 

in the delivery problem is to minimize the distance traveled. 

When several trucks are involved, the analogy with the paral

lel processor problem is clear. 
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The principal methods proposed for the solution of 

the delivery problem have been simulation [23, 24, 25, 26], 

integer programming [27], dynamic programming [28], and 

heuristic programming [29, 30, 31]. The only formulations 

significantly different from those discussed in Chapter I 

are the heuristic programming approaches. These formu

lations also attempt to provide solutions to problems of 

realistic size. Nearly all heuristic programs for the delivery 

problem are tour building schemes which sequentially build 

a delivery route for a truck based on "penalties" or costs 

which might occur if a particular link were not incorporated 

into the route. The predominant cost measure is based on 

the symmetrical distance assumption which is highly untenable 

in the parallel processor problem. Furthermore, the heuristic 

schemes incorporate the symmetry assumption in such a 

fundamental way that extension to the asymmetric case is 

impossible. 

Therefore, very few results in the literature are 

applicable directly to the problem of scheduling parallel 

processors. However, many of the ideas and suggestions in 

the literature are important in the development of new pro

cedures . 
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CHAPTER III 

SCHEDULING JOBS WITH ALL INFINITE DUE DATES 

ON IDENTICAL PARALLEL PROCESSORS 

This chapter treats the special case where the 

processors are identical (c^j n - ciju £ o r a n ^ i>J> n> u) and 
where all due dates are infinite. 

There are two cases which arise in scheduling parallel 

processors. 

Case 1. Scheduling M jobs on exactly N 1 of N avail

able processors. 

Case 2. Scheduling M jobs on an optimal number N* 

of N available processors where N* £ N. 

The assumption underlying Case 1 is that each of N' 

processors must have at least one job on its schedule. This 

situation is frequently an operating policy, e.g., to meet 

labor agreements. The more general assumption underlying 

Case 2 is that the number of processors to be activated in 

the schedule is a decision variable. 

As shown below, either case of the identical processor 

problem can be formulated as an augmented traveling salesman 

problem. However, this formulation cannot be extended to 

the general case. An alternative branch and bound solution 

procedure which can be extended is developed. 
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Formulation as an Augmented Traveling Salesman Problem 

Either Case 1 or Case 2 of the identical processor 

problem under consideration can be solved as an augmented 

traveling salesman problem. This approach is inapplicable 

if any of the present assumptions are relaxed. However, the 

approach can be modified so that it is extendable to the 

generalized problem. The augmented traveling salesman for

mulation for each case is given as an introduction to the 

more generalized approach. 

Case 1 Formulation 

Consider an M + 1 city traveling salesman problem 

where the distances between cities i and j are given by the 

generally asymmetric distance matrix D * {d^.}, where d ^ • 0 6. 

Let the cities 1,..., M + 1 be numbered in such a way that 

M + 1 is the home city. The optimal single salesman solution 

is that tour 

t = [(i-^ i 2)» (i2> i3)>--*» (iM> ^ + 1 ^ ' ^M+l' i l ^ 
j 

which includes each city exactly once and for which the total 

distance z(t) « 2 d.. traveled is a minimum. 
(i,j)et 1 3 

Consider the case where N' salesmen are available at 

the home city M + 1, where each salesman must visit at least 

one city and where each city is to be visited exactly once. 

Augment the original problem given by D by adding N ! - 1 

artificial cities so that the new problem has M + N 1 cities. 
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Let D = {d^j} describe the augmented problem where 

1 2 ... M+l M+2 ... M+N' 

D B 

D = M+l 
M+2 (III-l) 

M+N' 

and where the (Nf - 1) x (M + 1) submatrix A is N' - 1 rows 

identical to row M + 1 of D, the (M + 1) x (N' - 1) submatrix 

B is N 1 - 1 columns identical to column M + 1 of D and F is 

an (N' - 1) x (N1 - 1) submatrix with infinite elements. 

The key result to follow is that the optimal N 1 

salesman solution is imbedded in the optimal solution to the 

augmented problem. The ordered pairs (i,j) in any tour 

t f = [(ij> **2^ ' C^2* ̂ 3^»***» Cij^+N' * ̂ "l̂ -J 
! 

include one element from each row and column of D. Tours 

with finite total distance exist if M > N', a condition 

which is assumed. 
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Theorem 3.1. For every tour t' with finite total 

distance to the M + N 1 city problem given by D, there exists 

an N' salesman solution with equal total distance and the 

converse holds. 

Proof. Given any tour 

^' ~ [ (iĵ  > ^2^' ^ 2 * ^3) »• • • > ^M+N'' ^ 1 ^ 

to the augmented problem, the total distance traveled will 

be infinite if any link (i,j) is included such that M + 1 <̂  

i <_ M + N' and M + l £ j £ M + N ' . Therefore, tours with 

finite total distance will not include any links between any 

combination of the original home city M + 1 and the arti

ficial cities M + 2 , . . . , M + N ' . If the artificial cities 

in t f are identified and replaced by the home city M + 1, the 

result is a sequence of N' subtours (an N'-tour) since city 

M + 1 appears N' + 1 times. Furthermore, the N'-tour has 

the same cost as t' since the artificial cities are identical 

to city M + 1. 

The converse follows by beginning with any N' sales

man solution. This consists of N' subtours, each involving 

the home city M + 1. In N' - 1 of the subtours, city M + 1 

can be replaced by one of the N' - 1 artificials, yielding 

Slightly different versions of both Theorem 3.1 and 
Theorem 3.2 have been simultaneously and independently proved 
by Hong [33] using a graph theoretic approach. 
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a single tour of equal cost to the M + N 1 city problem. 

This result can be used to solve the present case of 

the identical processor problem if it is implicitly under

stood that rows M + 1,..., M + N 1 represent initial jobs and 

columns M + 1,..., M + N' represent final jobs. The change

over time matrix C is augmented with N' artificial jobs to 

obtain 

1 2 ... M M+l ... M+N* 

C = i c i . } = M 
M+l 

M+N' 

B 

(III-2) 

where A is an (N' x M) submatrix of identical rows, B is 

an (N1 x M) submatrix of identical columns and F = ». 

The optimal single processor schedule 

s* = [(i^, i 2 ) , (^2' ^3)»• • • > (iĵ +JYJF 9 ^2.)] 
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to the M + N 1 job problem is the solution to a traveling 

salesman problem where s* is presented in such a way that 

i.. - M + 1. Let i v be the jth artificial job in s*, e.g., 1 
i v - i, = M + 1. The optimal parallel processor schedule 

K l 1 

S* can be constructed from s* by letting 

S. - [(i k , i. + 1),...> (i k i k )] (HI-3) ~1 K j K j + 1 Kj+1 1 Kj+i 

where any changeover (i v 1 , i v ) to an artificial job indi-

cates a changeover to final job i, + N f (by Theorem 3.1). 

A minor complication arises because the jth artificial 

job i v is an initial job, say M + n, and i, + N 1 repre-
K j K j + 1 

sents a final job M + N 1 + u, where in general n ^ u. 

According to the original problem assumptions, such a single 

processor schedule is inadmissible since it implies that a 

schedule starts on processor n and ends on processor u. For 

the present special case, the complication is only notational 

since all initial jobs are identical and all final jobs are 

identical. The complication becomes formidable, however, if 

any assumption is relaxed. 

Case 2 Formulation 

An analogous augmented traveling salesman formulation 

exists for the case where determining the optimal number 

N* <_ N is part of the identical processor problem. Let D be 

defined as in equation. (III-l) except that N f = N and 

F = 0 = {0>, an (N - 1) x (N - 1) matrix with zero entries. 
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The following theorem shows that the optimal multi-salesman 

tour (and therefore the optimal number of salesmen) is 

imbedded in the single salesman solution of D. 

Theorem 3.2. For every tour t 1 with finite total 

distance to the M + N city problem given by D, there exists 

an N £ N salesman solution with equal total distance and the 

converse holds. 

Proof. Tours with finite total distance to the M + N 

city problem may now contain links (i,j) between artificial 

cities M + 2 ^ i < M + N , M + 2 ^ j < _ M + N . Given any tour 

t 1 to the augmented problem, the artificial cities M + 2,..., 

M + N may be replaced by the home city M + 1 without changing 

the total distance traveled. Therefore, exactly N subtours 

exist with the same cost as t f. However, some of the sub

tours may be degenerate subtours (M + 1, M + 1) between the 

home city, each indicating an idle salesman. The number of 

salesmen utilized, N, equals the number of nondegenerate 

subtours and N ^ 1 since cL̂ +i M+I = 0 0 in the augmented 

problem. 

The converse follows from the fact that an N-tour 

includes city M + 1 exactly N + 1 times. Then the N - l 

artificial cities may replace all but two of the home cities 

in such a way as to yield an equal cost single tour to the 

augmented problem. 

This result can similarly be used to solve the identi

cal processor problem where the optimal number of processors 
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N* ^ N is to be determined. An augmented single processor 

problem is solved, allowing a maximum of N - 1 changeovers 

between artificial jobs. The optimal parallel processor 

schedule is constructed from the optimal schedule to the 

augmented problem according to equation (III-3). 

Both theorems 3.1 and 3.2 fail to hold if either the 

assumption of identical processors or infinite due dates is 

relaxed. A solution procedure which can be extended to more 

general cases must generate subtours which begin with initial 

job M + n and end with the corresponding final job M + N + n. 

An alternate solution procedure for the identical processor 

problem, which can be extended is developed in the next 

section. 

Branch and Bound Algorithm Development 

The approach underlying the branch and bound algorithm 

to follow is that of imbedding the problem of scheduling M 

jobs on identical processors in the larger augmented single 

processor scheduling problem suggested by Theorem 3.1 and 

Theorem 3.2. Specifically, let F be the set of all feasible 

solutions to a given M job, parallel processor problem of 

Case 1 (given N f ) or Case 2 (find N * ) . Let T be the set of 

all solutions to the corresponding M job augmented single 

processor problem given by equation (III-2). 

The branch and bound algorithm must include a parti

tioning scheme, procedures to identify the elements in T-F 
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and rules by which a lower bound may be computed on the cost 

of any schedule in each subset isolated by the partitioning 

scheme. An iterative logic must be developed to drive the 

algorithm and consists of the recursive operations by which 

new collections of subsets are formed and by which subsets 

whose elements are either dominated or known to be infeasible 

are eliminated. 

Partitioning Scheme 

A partitioning, or branching, scheme must partition a 

given collection of subsets £ in such a way that any parti

tioning results in a new collection of subsets whose elements 

are collectively identical to the elements in t and such that 

at least one divisible subset in t is divided into proper 

subsets. The partitioning scheme used in the algorithm to 

follow always partitions a collection £ consisting of a single 

divisible subset T^ into two mutually exclusive subsets T^ f 

and T i". 

Specifically, let T. C T be a subset of solutions s 

to the augmented problem such that T . ^ 0 . If A B fl s i s 
1 s e T i 

the set of all changeovers common to all schedules s in T^, 

let (p,q)e { U s - A}. Then the partition is defined as 

{s I s e T ^ (p ,q)es>, (III-4J 

T. 1 
FT {s |seT i; (p,q)/£s}. (IH-5) 
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The partition defined by equations (III-4) and (III-5) 

is valid since it does not add any elements to the partitioned 

subsets and since the subsets are proper subsets. 

Theorem 3.3. Given T^ 1 and T i " as defined by {III-4) 

and (III-5), then 

T i
t U T i

M = T i f 

T i» C T± and T i " C T^, 

T i» f T i " f T±. 

Proof. For any seT^, either (p,q) e s or (p,q) t s. 

If (p,q) e s, s e T ^ and s ^ " . If (p,q) i s, scT i" and s e T ^ . 

Therefore T i
 1 U T i " = T i . Also T ^ fl T^" = 0 by definition. 

Therefore, T i
f c T±9 T i " C T± and T± • ? T±" J T ^ 

The complete partitioning scheme must specify some 

procedure for selecting the changeover (p,q). A very power

ful selection procedure is to choose that element (p,q) which, 

if not selected, would be likely to yield suboptimal solu

tions in T^ 1. The motivation for this selection rule is 

the alternate cost concept [32]. 

Theorem 3.4. If a single processor schedule s does 

not include the changeover (i,j) then the cost z(s) of s 

is bounded as follows 
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z(s) > min c. 1 U + min c (III-6) 

Selecting the changeover (p,q) such that 0 - max 

^ij £ o r Ci»j) t s» seT^, has been very powerful in 

single-salesman problems [6, 12]. 

Since F C T, then z(s) is also bounded by 0 ^ . 

Corollary 3.1. If a parallel processor schedule S 

is constructed from s where (p,q) ft s, then 

Therefore, selecting the changeover (p,q) by maximum 

alternate cost should be effective in the partitioning de

fined by (III-4) and (III-5). 

Feasibility Tests 

The algorithm must at least implicitly specify a 

collection of subsets t containing only and all infeas-
—o 

ible parallel processor schedules. One way of accomplishing 

this is to construct the corresponding parallel processor 

schedule S for any augmented problem solution s and then 

test S against the definition of feasibility. 

This procedure is inefficient since it only operates 

on a single solution S. A more efficient procedure would be 

to find entire subsets of infeasible solutions. If (p,q) is 

selected and T.* is partitioned according to (III-4), several 

z(S) > 6.. =» min c. 1 U + min c 
v^i 

(III-7) 
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conditions necessary for feasibility for any SeT^ 1 are as 

follows. 

Condition (i). If i is the beginning job and j is 

the ending job in the partial sequence (i,k),..., (p,q)>...> 

(h,j) containing (p,q), any seT^ 1 is feasible only if 

(j,i) i S. Otherwise there are either cycles between real 

jobs or changeovers from final jobs. To indicate infeasi-

bility of any S such that (j,i) e S, let c..̂  - °°. 

Condition (ii). If (p,q) is imbedded in a sequence 

[(M + n, k ) , . . . , (p,q),..., (h,j)], any SeT^ is feasible 

only if (j, M + N + u) t S, where u i n. Otherwise, a sched-

ule begins and ends on different processors. Let C j M+N + U ~ 
0 0 for all u / n to indicate infeasibility. 

Condition (iii). If (p,q) is imbedded in a sequence 

[(i,k),..., (p,q),..., (j, M + N + n)], any SeT^ 1 is feasible 

only if (M + u, i) i S, where u f n. Such schedules are 

infeasible for the same reasons given for Condition (ii). 

Set c ^ + u ^ " 0 0 for all u f n to indicate infeasibility. 

Condition (iv). If for any SeT^ 1 sequence [(M + n, k ) , 

(h,i)] e S and sequence [(j,g),..., (f, M + N + u)] e S, 

and u f n, then any S such that (i,j) e S is infeasible. 

Such schedules also begin and end on different processors. 
.A 

Therefore let c^. = °°. 

Lower Bounds 

The key prerequisite in the development of any branch 

and bound algorithm is the computation of an efficient 
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lower bound on the cost of any solution in each partitioned 

subset. Since Theorem 3.1 and Theorem 3.2 allow the set of 

all feasible solutions F to the parallel processor problem 

to be enveloped by the set of all solutions T to an augmented 

single processor problem, then two well known theorems re

lating to single-salesman traveling salesman problems are 

helpful in establishing lower bounds. 

Theorem 3.5 [32]. If C - { C j j } describes a single 

salesman problem, if kp and k^ are real numbers associated 

with an entry c such that 
pq 

C'pj * CPJ " V C j = 1 ' " " r ; W 

c'iq " Ciq " k q ; (is=1>---> T> ^P) 

c' = c - k - k pq pq p q 

c = c rs rs (r^p; s^q) 

and if 

z(s) * E c,. 

z'(s) = I c'.. 
( i . j ) e s 1 J 

then 
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z'(s) « z(s) - k p - k q. 

Subtracting the smallest element in a row (column) of 

a matrix from each element in the row (column) is defined as 

row (column) reduction. A fully reduced matrix is one in 

which there exists at least one zero in each row and in each 

column. The above theorem suggests reducing a matrix as 

much as possible while maintaining nonnegativity and using 

the sum of the reducing constants to bound the cost of any 

constructed parallel processor schedule. The following 

corollary makes the scheme clear. 

Corollary 3.2. If 

- min c. - min [c 
v u 

(IH-8) 

then 

(i,j)eS 
E 

(i,j)eS 
+ E min c. 

i v 1 i v 

+ E min [c - min c ], 
v 

so that 

h = E min c. + E min [c . - min c ] 
i v j u J v 

(IH-9) 
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is a lower bound on Z 
( i . J ) e S 

The quantity h in (III-9) is a lower bound b(F) on 

the total changeover time required by any feasible parallel 

processor schedule. Also, h is the sum of the constants 

used in subtracting the maximum constants from each row and 

each column. 

Corollary 3.2 can be used recursively to compute 

lower bounds on any subset T^ 1 partitioned from T^ by 

equation (III-4). Since (p,q) e seT^ 1, jobs p and q can be 

joined to form a composite job, say r, so that a scheduling 

problem with one less job is represented by T^ 1. Job r 

incurs the same changeover times as going to p and from q. 

In addition, certain changeovers known to be infeasible from 

feasibility conditions (i) - (iv) can be assigned an infinite 

cost in the new scheduling problem. If the matrix describ

ing the new problem is reduced as suggested by (III-9), then 

h is the time in excess of the lower bound b(T^) required 

by selecting (p,q). That is, 

The other theorem helpful in establishing lower bounds 

is Theorem 3.4 from which a lower bound on the total change

over time required for any SeT. 1 1 is 

bCV) - b(T.) + h. (111-10) 



b ( T i
M ) * b(T i) + 6 (III-ll) 

Recursive Procedure 

The recursive procedure selected for the algorithm is 

one which minimizes data storage requirements, which is fre

quently the limiting factor in problem size capability. The 

operations used to drive the algorithm to optimality are as 

follows. 

Operation (i). For any partitioning, select the 

smallest subset T^ which is neither known to be infeasible 

or dominated. If no such T^ exists, terminate the algorithm. 

Operation (ii). Partition T i into T^' and TV* using 

equations (III-4) and (III-5). 

Operation (iii). Compute a lower bound on the cost 

of any solution in T^* and T^" using equations (111-10) and 

(III-ll). 

Branch and Bound Algorithm 

Based on the above considerations, the branch and 

bound algorithm for the identical processor scheduling prob

lem is as follows. 

Step 1. Construct C according to equation (III-2). 

If N* is to be determined, N* • N and F is an (N x N) matrix 

with (N - 1) diagonal elements equal to zero and all other 

elements equal to infinity. Let z Q be the total changeover 

time for the best schedule available at any step of the 
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algorithm. 

Step 2. Let * T, the set of all parallel processor 

schedules. Reduce C by equation (II1-8). Compute h from 

equation (III-9). The lower bound b(T i) = h. 

Step 3. Compute 6̂ .. for each changeover (i,j) by 

equation (III-6). Let 0 = max 0... 
pq i j iJ 

Step 4. Partition T. into T.• and T." according to * i l l 
(III-4) and (III-5). Compute b ( T i

M ) from equation (III-ll). 

Step 5. Develop the matrix describing the problem 

given by the subset T." by letting c - «>. o / i y ° pq 
Step 6. Develop the matrix describing the problem 

given by T^ f by (a) letting C p j - «>, 1 ± 3 ± N 1 and 

c. s », 1 i <_ N 1 , and (b) finding those c. . - °° for those l q il 
(i,j) found infeasible by applying feasibility conditions 

(i) " (iv). 

Step 7. Reduce C describing T^' according to (III-8). 

Compute b(T^ ?) from (111-10). If the reduced matrix has 

exactly two rows and two columns whose elements are not all 

infinite, T^ f = {S}, a single schedule with cost b ( T i
t ) . The 

two remaining changeovers required to complete S are those 

changeovers which have zero times in each finite row and 

column. If T.' = S and if b ( T i
t ) < z , let z Q = b ( T i

f ) . 

Step 8. If f {S} or if b ( T i
l ) > z , backtrack to 

the smallest subset, say T^, for which b(T^) < z Q and proceed 

according to Step 3; if no such T^ exists, the current best 

schedule is optimal and the algorithm is terminated. 
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Otherwise, go to Step 3, letting T\ = T\ 1. 

Illustrative Problems 

An example problem is solved below for each of the 

two possible assumptions which could be made with respect 

to the number of processors to be used in the final schedule 

Identical Processor Example Where N' is Specified 

Consider an M s 5 job, N = 2 available identical 

processor problem with changeover times 

C = 

Let the changeover time from an initial job to any job 

j be U j where u = f u j } " [6, 5, 5, 3, 5] and let the change

over time to final job j be v^ where v f = {v.} • [4, 5, 5, 

1, 6], 

Assume that exactly N ! = 2 of the N = 2 available 

processors are to be activated in the final schedule. Accord 

ing to Step 1, an augmented matrix 
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00 8 4 7 2 4 4 

2 00 7 2 4 5 5 

2 5 00 6 3 5 5 

4 4 3 00 5 1 1 

1 2 3 1 00 6 6 

6 5 5 3 5 00 00 

6 5 5 3 5 oo 00 

is constructed. The total changeover time zQ for the best 

schedule available equals infinity. 

From Step 2, the subset at hand is T^ - T. C is re

duced according to (III-8) to yield 

CO 5 o2 s o1 2 2 

0° 00 3 0° 2 3 3 

o1 2 00 4 1 3 3 

3 2 0° oo 4 0 2 0 2 

0° O 1 0° 0° CO 5 5 

3 1 0° 0° 2 CO CO 

3 1 0° 0° 2 00 CO 

where the superscripts are the alternate costs to be computed 

in Step 3. (Non-zero elements have zero alternate cost.) A 

lower bound on the total changeover time required for any 

SeT i is b(T i) = h * 17, computed from equation (III-9). The 

progress of the solution procedure can be represented by the 
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tree given in Figure 1 where b(T) = 17 since = T. 

From Step 3, changeover (4,9) is tied for maximum 

alternate cost and is arbitrarily selected as the changeover 

on which to base the first partitioning. (Note that the 

C f ^ j element in C 1 represents the (4,9) changeover since 

changeovers to artificial job n are to be taken as change-

overs to final job M + N + n.) 

According to Step 4, set is partitioned into 1 

which includes all S such that (4,9) e S and T\" which in

cludes all S such that (4,9) t S. The subsets T i ' and T i " 

are denoted (4,9) and (4,9), respectively, in Figure 1. 

Also b ( T i
M ) - b(T i) + 6 4 9 = 17 + 2 = 19. 

From Step 5, the changeover time matrix describing 

the scheduling problem given by the subset T^fl is 

C = 

The matrix describing the scheduling problem at T^ f 

i s 
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Schedule 1: 
6-4-8 

Schedule 2* 
7-3-1-5-2-9 

Figure 1. Tree Representation of the Solution to the 
Identical Processor Example Where N' is 
Specified 
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C = 

which was developed according to Step 6. The only active 

feasibility condition was (i) which made the (6,4) change

over infeasible. 
A, 

The new matrix C describing 1 is reduced according 

to Step 7 and the lower bound b(T i») • b(T i) + h * 17 + 2 

- 19. 

Step 8 required that Steps 3 - 7 be performed recur

sively. The remainder of the iterations are entirely 

analogous to the one performed above, and are summarized in 

Figure 1. Note that an optimal solution with a total change

over time of 20 was found on the first pass, but that one 

backtrack was required to prove optimality. The backtrack 

terminated with an alternate optimal solution identical to 

the first except that the processors are reversed. 

Identical Processor Example Where N* is to be Determined 

The same problem given above can be solved under the 

assumption that N* is to be determined. The only significant 

difference is the way in which the algorithm is started. 
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Step 1 now specifies that 

CO 8 4 7 2 4 4 

2 CO 7 2 4 5 5 

2 5 00 6 3 5 5 

4 4 3 00 5 1 1 

1 2 3 1 oo 6 6 

6 5 5 3 5 0 00 

6 5 5 3 5 CO 0 

The iterations are summarized in the tree given by 

Figure 2. Note that no backtracking was required to find 

the optimal solution to this problem, which has a total 

changeover time of 14. It is interesting that the previous 

example requiring exactly two processors in the final 

solution required an incremental 6 units of changeover time 

over the unconstrained solution, which is approximatley a 431 

increase in total changeover time. 
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Figure 2. Tree Representation of the Solution to the 
Identical Processor Example Where N* is to 
be Determined 
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CHAPTER IV 

SCHEDULING JOBS WITH ALL INFINITE DUE DATES 

ON DISTINCT PARALLEL PROCESSORS 

The present chapter extends the identical processor 

scheduling algorithm to admit distinct processor problems. 

Distinct processors mean that, in general, c j j n 7* ciju 

when n 7* u. It is still assumed that dj = » for all j . The 

existence of N distinct changeover cost matrices precludes 

a formulation entirely analogous to the identical processor 

formulation. Therefore, certain concepts underlying the 

identical processor algorithm must be extended. 

Extensions of Identical Processor Algorithm Components 

Let F be the set of all feasible distinct processor 

schedules. Any admissible schedule is also a feasible 

schedule if all dj = °°. Let T be the set of all parallel 

processor schedules in which an initial job is performed 

first and a final job is performed last on each processor. 

The approach is to imbed the problem of finding an optimal 

feasible parallel processor schedule S* e F in the less 

restrictive problem of finding an optimal parallel processor 

schedule S* e T in such a way as to insure feasibility. 

Therefore, the better than optimal but infeasible solutions 

in T - F must be efficiently isolated. In addition, the 
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branch and bound partitioning scheme and bounding rules must 

be extended to treat the more generalized problem. 

Partitioning Scheme 

The partitioning scheme used in the distinct processor 

branch and bound algorithm always partitions a single nonempty 

subset T^ whose elements are schedules which have in common 

a number (possibly zero) of changeovers on specific processors 

and which prohibit a number (possibly zero) of changeovers 

on specific processors. The partitioning is made by selecting 

a changeover (p,q) n for processor n and dividing T^ into T^ 1 

all of whose elements include the (p,q) n changeover and T^" 

all of whose elements prohibit the (p,q) n changeover. 

That is, T^ c T, T^ f 0 and the subset of changeovers 

common to all SeT. is A = fl S. If (p,q) e { U S - A } , 
~ 1 SeT± ~ n SeT i ~ 

then the partition is defined as 

T±' = {SlSeiy, Cp,q) neS} (IV-1) 

T." = {S|SeT.; (p,q) n^S}. (IV-2) 

This partitioning scheme differs from the earlier 

scheme of equations (III-4) and (III-5) since it explicitly 

assigns changeovers to processors. However, it is a valid 

partitioning procedure since it partitions a subset T^ into 

proper subsets and does not add any elements in the parti

tioning. 
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Theorem 4.1. Given T i
l and T i " as defined by (IV-1) 

and (IV-2), then 

T. 1 U T. 1 1 s T. , l l l' 

T i
t C T i and T^ 1 C T i , 

T.• j T." f T.. 
I ' I I 

Proof. For any SeT^, either (p,q) n e S or (P» cl) n t S. 

If (P,q) n e S, then SeT^ and S,^". Otherwise SeT^ 1 and 

S^T i
t. Therefore T i

t U T^ 1 1 = Also, since T i
t fl T±" 

- 0, then T.'C T. , T." C T. and T. 1 j T." t T. . ^' i i ' l l i l l 
The selection procedure for the changeover (p,q) n is 

an extension of the alternate cost procedure used for the 

identical processor problem. If a changeover (i>j) n is not 

made on processor n, then exactly one of the following two 

events may occur: (1) the changeover (i,j) is not made on 

any processor, necessitating a changeover (i,u) r, u f j and 

a changeover (v,j) t, v f i; or (2) the changeover (i,j) r, 

r f n is made. The occurrence of exactly one of the events 

(1) or (2) is necessary for an admissible parallel processor 

schedule since each job must be processed. These consider

ations lead to the following lower bounding on the cost of any 

parallel processor schedule which does not include a given 

changeover (i,j) n. 
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changeovers from each SeT\, increasing the probability that 

the optimal solution S*eT\ f. 

Feasibility Tests 

Since each changeover is explicitly assigned to a 

specific processor, some new feasibility tests can be stated 

and some of the identical processor feasibility tests can 

be extended. The following conditions are necessary for 

feasibility. 

Condition (i). Given set T., let (j,k) e S e T.. 
i — ^ _ 2.

 w * ' p p 1 

A partition T^ f of T^ using (r,s) n is admissible only if 

j ^ k ^ r ^ s when p f n. This condition states that change-

overs both from and to a given job must be performed on only 

one processor to insure admissibility. 

Condition (ii). Given a set T^, suppose (M+n, M+N+n) n 

e S n e T^. Then any partition 1 of T^ using changeover 

(r,s)p is admissible only if p f n. This condition states 

that when an initial - final job pair has been selected for 

procesosr n (implying that processor n is not activated) 

then requiring processor n to make any other changeovers 

results in infeasible solutions. 

Condition (iii). Given a set T^, suppose there exists 

a complete schedule S » [(M+n, i^ ) , . . . , (i , M+N+p)] 
r » F P ' 

e T^. Then a partitioning 1 of T^ based on (r,s) n is ad

missible only if n f p. This condition is actually the 

general case of Condition (ii) and states that if a complete 

schedule for any processor is contained in a subset of 
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Theorem 4.2. Let (i>j) n be a changeover on processor 

n such that c . < °°. The cost z(S) of any admissible ljn ' 
schedule S such that (i,j)_ £ S is bounded as follows: 

z(S) > min [ Y i J n; 6 i J n ] - 8 i j n , (IV-3) 

where y.. s min 
^ n l<r<N 

min 
K r < N 

{c. vjr } 

and 

Proof. If for an admissible schedule S, (i>j) n £ S, 

then either (1) the (i,j) changeover is not made on any 

processor or (2) the (i,j) changeover is made on processor 

r, r f n. If event (1) occurs, a changeover (i,u) r and a 

changeover (v,j) t must be included in S since S was assumed 

to be an admissible schedule. Therefore, if event (1) occurs 

z(S) > y.• . If event (2) occurs, then z(S) > . Since ~ — 'ijn ~ — ijn 
exactly one of the events (1) and (2) must occur if S is 

to be admissible, then the cost of S can be bounded from 

below by finding the minimum over all outcomes. 

In general, the subset T. 1 partitioned from T. will be 

smaller than T^ M because the schedules in T^ 1 have more 

changeovers in common. Therefore the partition is con

structed according to (IV-1) and (IV-2), selecting (P* 0.^ s o 

that B„ - max {6.. }. This procedure excludes high-time 
pan iir r 
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solutions, then any further partition based on another 

changeover on that processor is inadmissible. 

Condition (iv). Given a set T\, suppose subsequences 

f(M+n, i1>n) Cij-i.n' i j , n ) ]
 e Ti' [(ik,n> ̂ •l.n1'"" 

(i , M+N+n)] e T. and (w,x) e T. . A partitioning T. ' of x_»n x n x x n 
T. based on (r,sl is admissible only if r / i. and i p j ,n 
s f i^ n when p - n. This condition simply states that a 

complete schedule for processor n which excludes a change

over already assigned to processor n is inadmissible. 

Condition (v). Given a set T^, suppose (j,k)peSpeT^. 

Any partition T^' of T^ based on a changeover (M+n, M+N+n) 

is admissible only if n t p. This condition states that 

when one or more jobs have already been assigned to a pro

cessor, the selection of an initial - final pair implying 

no work for the same processor results in an infeasible 

solution. 

Condition (vi). If (r,s)„ e T., then (s,r)„ is in-
i i — s i - Jxi x n 

admissible in T^ or any of its partitions. This condition 

relates to inadmissible cycles in a given processor's 

schedule. 

Condition (vii). If N * is to be determined and if 

(N - 1) initial-final changeovers (M + n, M + N + n ) n 

e U S, then the remaining initial-final changeover SeT^ ~ 
(M + u, M + N + u ) u £ g^ip S is infeasible. Otherwise, 

i 
there would be an initial-final sequence on all processors. 

Condition (viii). If exactly N ' processors are to 
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be activated and if N - N f initial-final changeovers 

(M + n, M + N + n ) n e ĝ , S any initial-final changeover 

(M + u, M + N + u ) u e gMp S is infeasible. Otherwise, less 

than N 1 processors will be activated. 

Condition (ix). Suppose exactly N 1 processors are to 

be activated and the set of changeovers ĝ , S place m jobs 

on p processors. Then if M - m £ N f-p, any changeover 

(r,s) n £ ĝ T S is infeasible if n is one of the p processors. 

Otherwise, less than N f processors would be activated. Also, 

if M - m <N f-p, the entire subset of solutions T^ 1 is infeas

ible. Similarly, if p • N f any ( r > s ) n £ 5 ^ S is infeasible. 

if n is not one of the p processors, unless ( r > s ) n is a n 

initial-final changeover. 

The simultaneous satisfaction of the above conditions 

is only a necessary condition for admissibility. However, 

they do identify a large number of inadmissible schedules 

because they identify entire subsets of inadmissible solu
tions. Conditions (i) - (vi) combined with the definition of 

an admissible schedule above provide an efficient mechanism 

for generating a collection t^ of inadmissible subsets. 

Lower Bounds 

Suppose a subset of solutions T^ is partitioned into 

T i
l and T^' according to (IV-1) and (IV-2). The identical 

processor procedure for establishing a lower bound b(T^ f) 

on the total changeover time required by any SeT^ can be 

extended to the distinct processor case. Consider an array 
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C = {c.. } constructed from matrices ljn 

C = 

1 2 ... M M+l ... M+N 

M 
M+l 

M+N 

9n=<cijn> B 

D 

(IV -4) 

The elements of the upper left submatrix C n equal those 

entries in C which give the changeover times between original 

jobs for processor n. Submatrix A has infinite entries 

except for row n (row M + n of C ) in which element cXMj_ . „ r v ~n M+n,j,n 
equals the changeover time from processor n's initial job 

M + n to job j. Similarly, submatrix B has infinite entries 
/ \ 

except for column n (column M + n of C } in which element 
/ \ 

c i M+n n e c l u a ^ s t^ i e changeover time from job i to processor 

n's final job M + N + n. D is an (N x N) submatrix with 

diagonal elements equal to zero and off-diagonal elements 

equal to infinity. 

The distinct processor bounding procedure rests on 

array reduction of C. Array C is fully reduced if for each 
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i there exists some h and k such that - 0 and for each 

j there exists some f and g such that cfjg ~ 0. 

Array reduction can be used to establish lower bounds 

on any SeT\ f using a procedure analogous to the identical 

processor bounding b( T ^ f ) . The basis for this extension is 

that constants can be systematically subtracted from certain 

elements of array C to obtain an array C f; and that the cost 

of any S under C 1 equals the cost under C 1 less the constants 

subtracted. The following is the result underlying the 

extension. 

Theorem 4.3. Given C constructed according to (IV-4), 

if k and k are real numbers associated with c such 
pn qn pqn 

that 

- c . - k j ^ q ; l < u < N pju pju pn * M. » _ _ 

= c - - k i ^ p ; l < u < N lqu lqu qn v * — — 

= c - k - k 1 < u < N pqu pqu pn qn - -

c t r t u = crtu r ^ p; t ^ q; 1 < u < N 

and if for admissible schedule S 

z(S) - Z c.. 
(i,j) neS ^ n 
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z' (S) = Z 
(i,j) neS 

then z'(S) = z(S) - k. pn - k qn-

Proof, In any admissible schedule S, all original 

jobs precede exactly one other job and all original jobs 

follow exactly one other job. Final jobs precede exactly 

zero other jobs and initial jobs follow exactly zero other 

jobs. Therefore, exactly one changeover (p,j) n, 1 ± j ± M + 

N, n e N will be included in any admissible changeover. 

Then, if a constant k „ is subtracted from each such fp,jV, » pn r J n 
l ^ . j f _ M + N, n e N , then the cost of any admissible sched

ule S under the revised costs will be exactly k „ less than 
' pn 

under old costs. Similarly, any admissible schedule includes 
exactly one changeover (i,q) n, l < _ i < _ M + N, n e N , and 

subtracting k from each such (i,s) reduces the total cost ° qn n 
of any admissible schedule S by exactly kq n» 

Theorem 4.3 suggests that repeated subtraction of 

constants from the cost data for any subset of solutions T. 

be performed such that c \ j n :L 0 a n c* using the sum of the 

subtraction constants as a lower bound on the cost z(S) of 

Corollary 4.1. If 

c ijn - m m c. 
v,r 1 i v r - min [c 

u,r uj r - min c, v,r uvr CIV-S) 
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then 

Z c . * Z c f.. + Z min c. (i,j)nes ^ n (i.j^eS ^ n i v.r l v r 

+ ? m i n t cujr • m i n c uvr ]> j u,r J v,r 

so that 

h - Z min c. + Z min [c , - min c ] (IV-6) 
i v,r j u,r J v,r 

is a lower bound on the total changeover time for any S under 

C. 

Since the minimum over all processors r occurs in 

each reduction constant in (IV-5) and (IV-6), a (M + N) x 

(M + N) composite matrix 

C* »'{cj.} - min {c.. } (IV-7) 

can be reduced in the usual way to find h. That is 

c*!, = c*. - min c* - min [c*. - min c* ] (IV-8) 
±J XJ Y U V 

h = Z min c* + Z min [c*. - min c* ]. (IV-9) 
i v 1 V j u U J v u 

is a lower bound b(F) on any SeT^. 
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An analogous procedure can be used to bound from 

below the time required for any subset 1 C defined by 

(IV-1). Jobs p and q can be treated as a single job on 

processor n, so that a scheduling problem with one less job 

is represented by T^ f. Infeasible changeovers identified from 

feasibility conditions (i) - (vi) can be assigned an infinite 

cost in array C Matrix C* can be recomputed according to 

(IV-7) to describe the new problem at T^ 1. Then C* can be 

reduced according to (IV-8) and (IV-9) to find the time in 

excess of b(T^) incurred by selecting (p,q) n. That is 

b C i y ) = b(T i) + h. (IV-10) 

The lower bounding of any SeT^ 1 1 defined according to 

(IV-2) is a straightforward application of Theorem 4.2 so 

that 

boy') = b ( ^ ) + e p q n (IV-11) 

where &pq n
 1 S computed according to equation (IV-3). 

Branch and Bound Algorithm 

Based on the above extensions, and using the analogous 

recursive operations, the generalized algorithm can be stated 

as follows. 

Step 1. Construct C according to (IV-4) and 
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feasibility conditions (vii) - (ix). Construct C* according 

to (IV-7). Let z Q be the total changeover time for the best 

schedule available at any step of the algorithm; initially 

Z = oo. 
O 

Step 2. Let • T, the set of all parallel processor 

schedules. Reduce C* according to (IV-8), performing the 

same operations on C according to (IV-5). Compute h from 

(IV-9) and let b(T±) = h. 

Step 3. Compute 0 ^ j n f ° r each (i,j) n e C* and let 
e ™ « = max {9.. }. pqn ljn 

Step 4. Partition T\ into 1\ 1 and TV 1 according to 

(IV-1) and (IV-2). Compute b(T\ M) from (IV-11). 

Step 5. Develop the data describing the problem at 

T i
M by letting c p q n = ~, letting c* q - min'{c }. 

Step 6. Develop the data describing the problem at 

T. • by (a) letting c . = 0 0, 1 <_ j <_ M + N, u e N, (b) 
J. jj J U 

letting c ^ q u = °°, l < ^ i < ^ M + N , u e N , (c) letting c ^ j u
 = 0 0 

for those (i,j) n which are known to be infeasible by feasi

bility conditions (i) - (ix) and (d) recomputing C* according 

to equation (IV-7). 

Step 7. Reduce C* according to (IV-8), performing the 

same operations on C according to (IV-5). Compute h from 

(IV-6) and b ( T i
f ) from (IV-10). If C*' has exactly two rows 

and two columns which are not all infinite, complete the 

single schedule SeT^' by adding those changeovers which have 

one zero in each noninfinite row and column of C*'. If 1 
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-'{S} and if b(T.*) < z . let z = b(T.»). 
1 o o 1 

Step 8. If T. f t {S} or if b(T.') > z . backtrack to * 1 — 1 — o 
the smallest subset, say T^, for which b(T\) < Z q and proceed 

according to Step 3; if no such T\ exists, the current best 

schedule is optimal and the algorithm is terminated. Other

wise, go to Step 3, letting 1\ - T i
t . 

Illustrative Problems 

Two example problems are given below to illustrate 

the use of the algorithm for the case when the number of 

processors to be utilized is a given number N' _< N and when 

part of the scheduling problem is to determine N*, the optimal 

number of processors. 

Distinct Processor Example Where N 1 is Specified 

Consider an M s 5 job, N = 2 available distinct 

processor problem where the number of processors N 1 to be 

activated in the final schedule is given as N' - 2. The 

changeover cost data for processors one and two are, respec

tively, 

Si - (IV-12) 
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5 2 -

00 4 4 6 1 

2 00 2 8 3 
3 9 CO 6 8 

4 3 4 oo 4 

8 9 2 5 00 

(IV-13) 

Let the changeover time from initial job M + n to any job 

j be given by u nj where 

5 - { V -
4 5 9 9 3 
1 3 5 7 1 

(IV-14) 

Similarly, let the time from any job j to final job M + N + n 

be v . where 

1 7 9 7 1 

2 4 8 8 5 

According to Step 1, 

(IV-15) 

5L " 

CO 6 5 9 2 1 00 

3 00 3 8 6 7 00 

1 7 CO 9 7 9 00 

2 5 9 00 3 7 00 

3 8 9 8 CO 1 00 

4 5 9 9 3 oo oo 

00 oo 00 CO CO 00 00 

(IV-16) 
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?2 s and (IV-17) 

C* -

00 4 4 6 1 1 2 

2 00 2 8 3 7 4 

1 7 00 6 7 9 8 

2 3 4 00 3 7 8 

3 8 2 5 oo 1 5 

4 5 9 9 3 oo 00 

1 3 5 7 1 00 00 

(IV-18) 

Note that the submatrix D in (IV-4) has all infinite elements 

due to feasibility condition (viii). 

From Step 2, C* and C are reduced to yield 

C* 1 = 

00 2 4 1 0 0 0 

0 00 0 2 1 5 1 

0 4 00 1 6 8 6 

0 0 2 00 1 5 5 

2 6 1 0 00 0 3 

1 1 6 2 0 00 00 

0 1 4 2 0 00 00 

(IV-19) 
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f 1 

r i 

r 1 

00 4 4 4 1 0 00 
1 00 1 2 4 5 oo 
0 5 oo 4 6 8 CO 
0 2 7 OO 1 5 OO 
2 6 8 3 CO 0 OO 
1 1 6 2 0 CO 00 
CO CO CO CO 00 oo 00 

00 2 3 1 0 00 0 

0 oo 0 2 1 oo 1 

2 7 00 1 7 CO 6 

2 0 2 CO 2 oo 5 

7 7 1 0 CO 00 3 

CO oo CO CO oo oo CO 
0 1 4 2 0 CO CO 

and (IV-20) 

(IV-21) 

A lower bound on the total changeover time required by any 

feasible schedule is h » 17 and the tree of Figure 3 is 

started. 

According to Step 3, element (6,5) of C* 1 has the 

maximum alternate cost of one. Therefore (P-oJ^, " (6,5)^ 

since c 6,5 ' C6,5,r 
By Step 4, the set at hand is partitioned into T i

t , 

denoted by ( 6 , 5 ) i n Figure 3, and T^ M, denoted by (6,5)^ 

in Figure 3. 
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The cost data to be computed in Step 5 describing the 

scheduling problem of subset T^" is identical to equations 

(IV-19), (IV-20), and (IV-21) except that c* g = » and 

C6,5,l s °°-
All changeovers to and from either job 5 or 6 must 

now be performed on processor 1. The adjustments of Step 5 

C* = 

9l = 

(IV- 20), and (IV-21) yield 

oo 2 3 1 oo 0 0 

0 OO 0 2 00 5 1 

0 5 00 1 00 8 6 

0 0 2 CO 00 5 5 

2 6 8 3 00 0 oo 

oo oo CO oo CO oo oo 

0 1 4 2 00 00 CO 

oo 4 4 4 oo 0 OO 

1 oo 1 2 00 5 OO 

0 5 00 4 00 8 00 

0 2 7 CO oo 5 00 

2 6 8 3 CO 0 00 

CO 00 CO CO CO CO 00 

CO 00 oo CO oo 00 00 

(IV-22) 

and (IV-23) 
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CO 2 3 1 CO oo 0 

0 OO 0 2 CO oo 1 

2 7 CO 1 oo CO 6 

2 0 2 CO CO CO 5 

CO CO CO CO oo CO 09 

CO CO OO CO oo oo oo 

0 1 4 2 oo 00 CO 

( I V - 2 4 ) 

T h e o n l y reduction on C* o f equation ( I V - 2 2 ) r e q u i r e d 

b y Step 7 is in column four where e a c h entry c a n b e r e d u c e d 

b y a constant one. C given by (IV-23) and (IV - 2 4 ) a r e s i m i 

l a r l y reduced. Therefore b ( T i
l ) « 1 7 + 1 • 18 a s shown i n 

Figure 3 . 

Step 8 determines that neither is T^' a singleton 

subset {S} nor is b (T- 1) = 18 < z_ = °°. Additional itera-~ V 1 o 
tions analogous to the one above are required* T h e r e s u l t s 

of these iterations are displayed in the tree of Figure 3 . 

Note that the optimal schedule was found on the first pass 

but that four backtracks were required to prove optimality. 

Distinct Processor Example Where N* is to be Determined 

Consider the same problem given by equations ( I V - 1 2 ) -

(IV-15) under the assumption that the number of processors 

activated is unconstrained. The solution proceeds exactly 

the same except that the D submatrices of C^ and C 2 in 

equations (IV-16) and (IV-17) respectively have diagonal 
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entries of zero and off-diagonal entries of infinity. There

fore C* of (IV-18) is computed accordingly and the algorithm 

proceeds as usual. The tree representation of the solution 

is given in Figure 4. 

The optimal solution was again found on the first pass 

of the procedure. However, only one backtrack was required 

to prove optimality. This reduced the amount of backtracking 

that was encountered for most problems where the number of 

processors was unconstrained (see Chapter VI). Also the 

total changeover time was only 16 units for the unconstrained 

solution compared to 21 units for the constrained problem. 



Schedule 1: 6-8 
Schedule 2: 7-5-4-2-3-1-9 

Figure 4. Tree Representation of Solution to the 
Distinct Processor Example Where N* 
is to be Determined 
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CHAPTER V 

SCHEDULING JOBS WITH SOME FINITE DUE DATES 

The algorithm given in the previous chapter provides 

procedures to schedule jobs with all infinite due dates on 

parallel processors in such a way as to minimize total 

changeover time. The present chapter extends these algo

rithms to admit a set of M jobs for which there is at least 

one finite due date. 

The minimization of total setup time is still the 

criterion, but each job must complete processing before its 

due date. If the individual job due dates are so restrictive 

that there exists no parallel processor schedule that meets 

all due dates, then there exists no feasible solution to the 

problem. Procedures for the situation where no feasible 

solution exists are beyond the scope of this study. 

The previous algorithm considered the set of feasible 

schedules F to be imbedded in a larger superset T, and any 

admissible schedule was also a feasible schedule since all 

due dates were infinite. Extending the solution procedures 

to admit job due dates involves devising methods to identify 

those admissible solutions which are due date infeasible. 

Obviously, one way of doing this is to check each complete 

schedule to see if all due dates are met. However, this 
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approach is not efficient. Ideally, it is desired to elimi

nate entire subsets of solutions during early stages of the 

solution procedure. This can be done by identifying change-

overs whose inclusion in a subset would result in the entire 

subset being infeasible. The present chapter develops tests 

to identify such infeasible changeovers. The basic approach 

underlying the feasibility tests developed below is due to 

the single processor results of Pierce and Hatfied [6]. How

ever, in addition to extending their results to the multi

processor problem, a new lower bounding scheme is given which 

significantly improves their basic concept. 

Development of Feasibility Conditions 

Let the M jobs be numbered in nondecreasing due date 

order so that for any two jobs i and j, i < j implies that 

^1 — • t n e n o t a t i ° n [i] n denote the job which has the 

ith smallest due date of all jobs currently assigned to 

processor n by some subset T^ at a given stage of the solu

tion procedure. For example, if for T^ at some stage of the 

algorithm jobs 3, 5 and 10 with respective due dates 12, 13 

and 20 are assigned to processor 5, then = 3, [2],- = 5 

and [3] 5 = 10. Also d ^ j = d^ = 12, d r ^ = d r
 a 13 and 

d£^] = " 20. Finally, let k n be the number of jobs 

currently assigned to processor n in subset T^ at some stage 

of the algorithm. 
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Necessary Conditions 

A condition necessary for the feasibility of any 

solution SeT\ is the following: 

Condition 1. If there exist changeovers g£j, S that 

require jobs [l]n> [2] [ k
nl n

 t 0 b e performed on proc

essor n, then each Sel\ is feasible only if 

where b j > n - ^ c± [ j ^ 

A schedule S is feasible only if all job due dates are 

met. That is, all processing on a given job must be com

pleted before its due date for feasibility. Furthermore, for 

any job [ v ] n , all processing on jobs [ l ] n , [2] n,..., [v-l] n 

must also be completed before d r , since d n i <_ d r ? , <_. .. 
L V J n L 1 J n L Z J n 

^[v] . Suppose there exists some u, 1 < u < k for which n — — n 

u 
, 2 X

 ( B M n , n + > M n , n > ^ [ u ] n 

Note that b r . n is a lower bound on the cost of any change-IJ J n,n 
over to job [Jln« Therefore it is impossible to meet job 

[u] 's due date unless Condition 1 is met. n 
The above condition is clearly not sufficient be

cause the jobs already assigned to processor n will, in 
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general, be a combination of jobs such that the lower bound 

D [ j ] n on the cost of the changeover to the job on processor 

n with the jth smallest due date will not be realized. In 

fact, knowledge of the changeovers already included in a sub

set can be used to make the necessary condition more 

efficient by tightening the lower bounds bp.-, 
n n 

Suppose a changeover ( w > [ J l n ) n
 e s e T ^ s 0 t n a t fj^ n 

must be processed on n. Then it is known that a cost 
C r . , must be incurred instead of min c. r., . 

w [ ^ n n l<i<N l [ ^ n n 

In general 

w [ j ] n n - K i < N l [ ^ ] n n 

Therefore b r j - j n can be made more efficient (larger) by 

redefining it as 

n Cw[j] n i f < w ' » V n e s ^ S * n 1 

^ n ' 1 1 J min c-r--, otherwise. 
K i < N 1 U J n n 

Thus, the quantity 

v 

e v . » B jSi C b U ] n . n + P[;] n,n) 

is a lower bound on the time required for both processing 

and changeovers for jobs [l]n> [2] [v]n» 
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The amount of "slack time" Qj-yj n available before 

time dj-vj for making changeovers (i»[j] n) n f ° r j £ v whose 

costs c . r . , n are larger than the lower bound b r . , and for U J n Lj J n 

changing over for and processing jobs [v+1] [ k n ] n is 

important in feasibility tests. 

To illustrate the concept, suppose that T^ « {S | 

(3,5)2 e S} so that job 3 and job 5 must be completed on 

processor 2. Figure 5 shows a typical relationship between 

the time data. In this situation, q c „ - d c - e c „ would 
' n5,n 5 5,n 

obviously be available before d r and q ~ = min (q,-

dj - e^ n ) would be available before time d^. Figure 6 shows 

a different but also typical relationship between the data. 

In this case a certain amount of job 5's processing must 

occur before time d^ in order that job 5's due date d,- be 

met. However, 

*S,n = d 5 " e5,n a n d «3,n = m i n ^ 5 , n ; d 3 ' e3,n )-

In general 

q[v] n,n " min[«[v+l]n,n> d [ v ] n " e[v] n,nl-

Using the concept of slack time q r r l , feasibility 
m n , n 

Condition 1 can be restated and a number of feasibility tests 

can be stated to identify infeasible changeovers (i»j) n f ° r 

a given processor n: 
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b3,n £ ^ c3,5,n 

e 3 
• + 
,n d 3 ES 

\ • 1 

,n d 5 

Figure 5. Typical Relationships Between Time Data 
When Processing on a Job Begins After 
the Previous Job's Due Date 

b3,n c3,5,n 

[ + \ \ 1 
3 ,n 5 ,n 5 

Figure 6. Typical Relationships Between Time Data 
When Processing on a Job Must Begin 
Before the Previous Job's Due Date 
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Condition 1 1. If there exist changeovers'{(i,j) ) e 

SeT. ? t h a t r e c l u i r e J o b s [i^n* t 2] n»---» [ k n ] n to be per
formed on processor n, then each SeT^ is feasible only if 

q [ i l , n ^ ° 1 = 1 V 
n 

Condition 2. Let [i] n and [ j ] n be any two jobs 

currently assigned to processor n such that 1 <_ i < j £ k n 

and for which q ^ ^ < If b [ j ] n > n • > 

^Til n t n e n J o b c a n n o t Precede job [i] n in any 

sequence on processor n. Also since <l[v] n £ ^[i] n £ o r 

v < i, then all changeovers ([j]n> [ v l n ) n
 a r e infeasible for 

1 < v < i. 

Condition 2 follows from the fact that, under the 

stated assumptions, n
 > ^[±] ^ ^ ° H ° W S tJ^n o n 

processor n when b ^ / * V ^ n * «[i] n,n' 

Condition 3. Under the assumptions of Condition 2, 

changeovers ([r] n, [ j l n ) n
 a r e infeasible for 1 <_ r £ i if 

6 [ i ] n > d[r] n-
Condition 3 follows from the requirement that jobs 

M+n, [l] n,..., l>-l] n, [r+l] n,..., [i-l] n, [ i ] n must be 

completed before job [r] n and the earliest time at which this 

total processing could be complete is e^. 

Condition 4. For any job, [i]n> 1 f. i < k n> currently 

assigned to processor n, the ([i] n, M+N+n) n changeover is 

infeasible if e r v l „ > d r . i . 
[k] n,n [i] n 
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Condition 4 is obvious from the fact that jobs 

[1] t^n^n m u s t ^ e included in processor n fs schedule 

so that e [ ] c ] n ^ s a lower bound on the completion time for 

all k jobs, n J 

Condition 5. For jobs [i] n and [j ] n , 1 <_ i < j <_ k n, 

i £ q[i] n,n < «[j] n.n a n d i £ b[j] n,n + P[j] n,n > «[i] n,n' 
then ([j] n, [ i ] n ) n

 i s infeasible. 

Condition 5 states that if job [ j ] n is to be processed 

before job [i]n» then the lower bound brjj n + ^[j] n o n 

changing over to_ and processing job [j] n must be less than 

the slack available before job [i] n
fs due date. 

Condition 6. If [i] n and [j] n are two jobs 1 <_ i < j 

< k n for which q [ i ] n > n > q [ j ] n > n and d [ . ^ < d ^ then the 

([j] n» [ i ] n ) n changeover is infeasible if bp., + p^., 

+ efi] n,n > d [ i ] n -
Condition 6 states that if a lower bound Prj] n

 + 

k[j] n + e[i] n o n t^ i e t * m e r e ciuired to process and make 
the required changeovers for jobs [i] n and [j] n under the 

stated assumptions is greater than cL^-i , then ([jln> [ i ] n ) n 
1 •'n 

is infeasible. 

Condition 7. If [i] n and [j] n are any two jobs 

1 < i < j < k for which — — n 

d = min { d r j ] ; d r i ] • c[i] ntj] nn + P [ j ] n , n } 

= d t i ] n
 + C f i ] n [ J ] n n + p t j ] n , n 
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then f[il„, is infeasible if er„-, „ > d r . , where v l j n » L« / jn yn Lvl ,n 1 1 1 _ L n L Jn 
<*rvl 1 d < d f y + 1 1 and 1 < v < i. 

n n 
Condition 7 simply states that, under the given 

conditions, the selection of the ([i] n, H ] n ) n changeover 
will cause some job to be late if the lower bound e r , on 

Jn 
the time required to process jobs [1] [v] is greater 

than job [il 's due date, n 
Sufficient Condition 

The above eight conditions are useful in identifying 

changeovers which, if added to any schedule in a given 

subset of solutions, would make that schedule infeasible. 

If the subset of solutions contains a singular com

plete parallel processor schedule, then a condition sufficient 

for feasibility is that each job's due date be met. 

Condition 8. If a complete parallel processor schedule 

S requires k jobs on processor n, 1 < n < N, then S is 

feasible if and only if 

C M * n ' i l , n ' n + P ( i l , n > ' n 1 d i i , n 

and 

M+n,i- .n p(i, 1 ,n + I { c 
l,n l,n"" j-2 lj-l,n' 1j,n» n 

+ Pfi ) n } 1 d i ' V = 2 , ' " > k n 
L 1 j , n J , n xv,n n - 1,..., N 
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However, even though Condition 8 is both necessary and 

sufficient, the exclusive reliance on it would result in an 

inefficient scheme to isolate infeasible solutions since it 

relates to a singleton subset T^. 

Modification of Solution Procedure 

Using Conditions 1-8, the algorithm developed in 

Chapters III and IV can be modified to schedule jobs with 

due dates on parallel processors. The required additions are 

as follows. 

Step 7 1 . Check the changeover selected in Step 3 for 

feasibility using Conditions 1-7 given above. If the change

over is infeasible, set b(T^ !) • «>. If L ' = {S}, a single 

solution, check S for feasibility using Condition 8. If S 

is infeasible, set b(T^ !) - °°. 

Illustrative Problems 

Distinct Processor Example with Moderately Constraining Due 

Dates 

Consider a N = 2 available distinct processor problem 

in which M = 5 jobs have the moderately constraining due 

dates d = {d^ > = [29, 38, 52, 59, 87]. Let the processing 

time p. be given by 
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3 5 

2 5 

6 8 

7 7 

1 5 

For comparison, let the changeover time data be the same 

as the examples in Chapter IV given by equations (IV-12) -

(IV-15) and assume that N* is to be determined. 

The algorithm of Chapter IV augmented by Step 7' is 

appropriate. The solution of the present example proceeds 

exactly as the example in the previous chapter except for 

the execution of Step 7'. Therefore the tree in Figure 7 

describing the present solution begins exactly like the tree 

of Figure 4, which relates to the previous example. In 

solving the present problem Step 7' states that each pair 

(i,j) n selected is to be tested for feasibility using feasi

bility conditions 1-7 of this chapter. This involves 

inspecting the branch to which the pair (i>j) n selected by 

Step 3 is appended to determine all jobs assigned to proc

essor n by that branch. The lower bounds e. on completion 

time for each job j on processor n and the slack times q. 

for each job j on processor n are computed and Conditions 1-7 

are tested. 

The first changeover selected by Step 3 involving real 

jobs is (4,2) 9, the second pair selected after initialization. 
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Therefore 

e2,2 = b2,2 + P2,2 = c4,2,2 + ?2,2 = 3 + 5 = 8 

and 

e4,2 = e2,2 + b4,2 + P 4,2 = e2,2 + m \ n ci,4,2 + ?4,2 

= 8+5+7 = 20. 

Then 

«4,2 = d 4 " e4,2 = 59 - 20 ^ 39 

and 

q 2 £ = m i n ^ 4 2' d 2 ~ e 2 2* = m i n ^ 3 9 » 52 - 8} = 39. 

With these data, Tests 1-7 can easily be made and the (4,2)2 
changeover cannot be identified as infeasible by any of the 

necessary conditions. 

After (4,2) 2 passed the necessary conditions, branching 

continued to the right in Figure 7 and all nodes passed the 

necessary conditions until the first complete solution 

S = (6,8; 7,5,4,2,3,1,8} is reached. This solution failed 

the sufficient condition in Step 7* as illustrated in Figure 8 



Figure 7. Tree Representation of the Solution to the 
Distinct Processor Example with Moderately 
Constraining Due Dates (continued on next 
page) 



Figure 7. (Concluded) 



Figure 8. Partial Schedule {(7,5), (5,4), (4,2), (2,3)} of § 2 



92 

because by time d^ = 29, job 1 had not been processed. 

Note from Figure 7 that the optimal schedule 

S =* {6,8; 7,1,5,4,2,3,9} was found after only two backtracks 

but that 13 more backtracks were required to prove optimality. 

Also note that all of the necessary conditions were met at 

each stage of the branching. 

Distinct Processor Example with Highly Constraining Due Dates 

The utility of the necessary conditions can be illus

trated by resolving Example 1 with the rather restrictive 

due dates d = {d^} = [18, 30, 49, 61, 72], 

The tree representation of the solution is given in 

Figure 9, where some uninteresting branches have been 

omitted. The first complete solution S = {6,8; 7,5,4,2,3,1,9} 

is infeasible by Condition 8. 

When (4,2)2 and (5,1)2 a r e s P e c i f i e d for processor 2, 

condition 2 is failed for i - 1, j = 5. Here jobs 1, 2, 4 

and 5 are assigned to processor 2 and the lower bounds on 

completion times are 

e 1,2 5,1,2 = 8+5 = 13 

1,2 + b 2,2 - 13+3+5 * 21 

2,2 + b 4,2 - 21+5+7 - 33 

4,2 + b 5,2 = 33+1+5 = 39. 
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i - 2, M+N+n - 9 

Figure 9. Tree Representation of the Solution to the 
Distinct Processor Example with Restrictive 
Due Dates (continued on next page) 



P i * » ™ 9- (Concluded) 
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The slack times are 

39 = 33 

e 4 2> - min {33, 28} = 28 

e 2 , 2 } " 9 

e l , 2 } = 5 

Obviously, the assignments pass Condition 1 since 

°*1 2' °*2 2' ̂ 4 2' °*5 2 > ^* However, for job 1 and job 5, 
„ < Qc and b c o + p c o = 6 > q 1 o = 5 and Condition 2 1 ,n ^5,n 5,2 r5,2 ^1,2 

states that job 5 cannot precede job 1 on processor 2. 

Figure 10 shows the infeasibility of this assignment which 

places the earliest time at which job 1 could be completed 

at time t = 19, which is past its due date of time t = 18. 

The other tests involved in the tree in Figure 9 can 

be explained similarly. For example, consider the branch 

which assigns changeovers (7,2)2, (3,4^, and (1,5)2 t 0 

processor 2 and which fails Condition 3 for i = 3, j = 5 and 

r = 1. Figure 11 shows the relationship of the data. In 

this case ^ ~ 24 and 0.5 2 = ^9. Test 3 states that the 

(1,5)2 c n angeover is infeasible. Figure 11 confirms this by 

inspection since processing on jobs 2 and 3 would have to be 

completed before job 1 and this processing cannot be complete 

before e T = 24 while d., = 18. 

«5,2 = d 5 " e5,2 = 7 2 ~ 

q 4 > 2 • min { q 5 > 2 ; d 4 -

q 2 > 2 " rain ^ 4 > 2
; d 2 ' 

q± 2 - min {q 2 2 ; & ± -



5,2 5,1,2 

14 t 19 
d 1=18 

Figure 10. Partial Schedule { (5 ,2) , (2,1)} of S 2 

b l , 2 C7,2,2 tf2,V23 b3,2 C 3,4,2 
'/'//, 
V p 4 z 

c l , 5 , 2 

14 16 f 24 30 37 
e„ 

38 43 
e r 

d 1=18 

Figure 11. Relationships Between Time Data for S 2 

Illustrating Infeasibility CD 
ON 
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CHAPTER VI 

COMPUTATIONAL EXPERIENCE 

The algorithm developed in the previous chapters has 

been coded in FORTRAN V for the Univac 1108. The computer 

code is given in Appendix A, and incorporates features to 

take advantage of the structure of the problem being solved 

by suppressing certain operations when they are not required, 

e.g., suppressing due date tests when all dj • », 

Computational experience concentrated on general cases 

of the problem under assumptions which typically adversely 

affect the computing times of branch and bound algorithms. 

These results are as follows. 

Results for Distinct Processor Problems 

For a given problem size, the largest number of 

admissible solutions apparently results when the processors 

are distinct and when N* is to be determined. Size of the 

solution space is frequently an indicator of problem difficulty 

and computational experience was concentrated on the class of 

problems defined by this assumption. 

Branch and bound algorithms incorporating similar 

branching and bounding schemes for related problems have 

shown the worst performance when the data had low variability 
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[6, 12]. Therefore, the computational experience was concen

trated on problems with low changeover time variability. 

Problems involving either 2, 3 or 4 processors and 

from 5 to 15 jobs, inclusive, were solved to investigate the 

algorithm performance with respect to this class of jobs. 

Five problems for each assumption on M and N were generated 

so that 165 problems were solved under the present assump

tions. Low data variability was introduced by generating 

the changeover times for both real and dummy jobs for each 

problem from a discrete uniform fO, 10] distribution. 

Figure 12 shows the computing times averaged over 

the five problems. (Computing time for each experiment is 

given in Appendix B.) The average computing times for a 

given number of processors N appears to lie along a straight 

line on the semi-log plot. This suggests that the average 

time t^j in minutes, to find the optimal solution to an M 

job N processor problem is of the form 

where a^ and b^ are constants. The broken lines in Figure 12 

are the least squares lines fitted to equation (VI-1) for a 

given N. The least squares estimates for a^ and b^ for the 

three curves are given in Table 1, 
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Figure 12. Average Computing Time and Least Squares Lines 
for Distinct Processor Problems 
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Table 1. Least Squares Estimates of a^ and b^ 

N a N b N 

2 -8.2022 1.7860 

3 -6.9998 1.7390 

4 -6.0188 1.7200 

The broken lines have approximately equal slopes b N 
a N 

and intercepts e which place them an equal distance apart. 
/\ /\ /\ a 

Neither the null hypothesis that b 2 - b^ or b^ = b^ can be 
rejected by a t-test (assuming normally distributed regression 

errors) at the 0.95 confidence level. Furthermore, both the 
a l a 2 a 2 a 3 null hypothesis that e = e and e = e are rejected by 

a t-test at the 0.95 confidence level. 

These findings suggest that the average computing time 

tĵ j in minutes is actually of the form 

t M N - e a 6 M Y N , CVI-2) 

where a, 3 and y are constants. Accordingly, all times in 

Figure 12 were used to determine the least squares equation 

t M N - e " 9 ' 7 7 5 2 (1.7480) M (2.4600) N. (VI-3) 
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The solid lines of Figure 12 are the family of lines of 

equation (VI-3). 

Equation (VI-3) provides an adequate predictor of 

average computing time over the range of parameters studied. 

The coefficient of multiple determination of (VI-3) is 
2 

R - 0.981. However, it may be unwise to extrapolate (VI-3) 

to larger problems. 

A limited number of additional distinct processor 

problems were solved under alternative assumptions. Fifteen 

problems were developed by generating job changeover times 

from a discrete uniform [0, 20] distribution. Fifteen 

additional problems with all discrete uniform [0, 10] were 

developed and solved under the assumption that the number of 

processors to be activated is specified to be N f. The computing 

times for these additional problems are given in Table 2 

along with the comparable mean computing times from the 

previous problems. The number of additional problems solved 

is insufficient to allow a valid comparison of the computing 

times for the different classes of distinct processor 

problems. However, it is noted that all but three of the 

problems with discrete uniform [0, 20] changeover times 

resulted in computing times below the average time required 

for problems with discrete uniform [0, 10] changeover times. 

This is apparently not inconsistent with the experience of 

others [6, 12] with related algorithms. 
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Table 2 . Computing Times for (a) Problems with 
Discrete Uniform [ 0 , 2 0 ] Changeover Times, 
(b) Problems where N 1 = N Compared to 
(c) the Mean Computing Times for Previous 
Problems 

Parameters Problem Set - Computing Time 

M N (a) (b) (c) 

cn
 

2 . 0 0 2 3 . 0 0 1 5 . 0 0 3 3 

8 2 . 0 4 8 7 . 0 6 1 6 . 0 4 9 1 

10 2 . 0 3 8 9 . 0 2 5 2 . 0 7 3 4 

12 2 . 1 8 8 4 . 1 6 0 3 . 3 4 0 4 

15 2 . 1 6 9 6 2 . 0 0 0 0 1 . 8 1 1 2 

5 3 . 0 0 6 7 . 0 0 4 1 . 0 0 9 6 

8 3 . 0 6 5 0 . 0 5 9 7 . 1 1 9 2 

10 3 1 . 5 0 4 9 . 3 9 7 3 . 2 0 0 0 

12 3 . 7 8 9 3 . 6 6 7 2 . 8 0 7 6 

15 3 . 4 5 9 9 3 . 6 7 7 3 2 . 5 6 0 8 

5 4 . 0 1 9 4 • 0 3 0 6 . 0 2 8 3 

8 4 . 3 3 3 0 . 1 3 7 4 . 2 9 5 9 

10 4 1 . 0 1 8 0 . 2 4 1 0 . 7 2 0 4 

12 4 1 . 3 9 5 9 1 . 9 6 6 8 1 . 5 7 2 5 

15 4 1 . 7 1 5 8 2 . 0 0 0 0 8 . 1 3 7 1 
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Results for Problems with Due Dates 

The effect of introducing due dates was investigated 

by solving each of the 55 previous N = 2 processor problems 

under two sets of due dates. That is, 110 problems with 

finite due dates were solved. 

One set of due dates were such that they made only a 

moderate number of admissible solutions due date infeasible; 

i.e., the due dates were moderately constraining. These 

problems would therefore be problems of average difficulty 

as far as finding a solution which meets all due dates. 

These moderately constraining due dates were developed by 

generating the due date for job i from a discrete uniform 

[20(i-l), 20i] distribution. All changeover times are 

discrete uniform [0, 10]. For convenience, all processing 

times were also generated from a discrete uniform [0, 10] 

density. The expected processing time plus the expected 

changeover time to any job is 10 and the expected time to 

complete k jobs is 5 + 10k. Since the expected due date of 

job i is lOi, there are only a moderate number of sequences 

which satisfy job i's due date. 

The other set of due dates were such that a larger 

subset of the admissible solutions were due date infeasible. 

This was accomplished by generating job i's due date from a 

discrete uniform [10(i-l), lOi] distribution. Therefore, 

this set of due dates is described as highly constraining. 

The average computing times for these problems are 
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illustrated in Figure 13 along with the average computing 

times for the same problems unconstrained by due dates. The 

average computing time for this class of due date problems 

does not appear to be explained by an equation of the form 

of (VI-1). Therefore the least squares fit to (VI-1) is not 

shown in the figure. Admitting moderately constraining due 

dates increases average computing time, although perhaps not 

significantly. However, a marked increase in average 

computing time results when the due dates are highly 

constraining. 

Results for Identical Processor Problems 

Computational experience was not concentrated on the 

identical processor case for the reasons previously enumer

ated. However, three sets of identical processor problems 

were developed and solved. Each set of identical processor 

problems contained 15 problems so that 45 identical proc

essor problems were solved. In the first set, all job 

changeover times were generated from a discrete uniform [0, 10] 

distribution and the problems were solved under the assumption 

that N' - N. The second set of problems was developed 

similarly, and they were solved under the assumption that N* 

was to be determined. The third set of problems had discrete 

uniform [0, 20] changeover times and these problems were 

solved under the assumption that N 1 =* N. 

The computing times for the identical processor 
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Figure 13. Average Computing Time for Distinct Processor 
Problems Where N=2 for (a) Infinite Due Dates, 
(b) Moderately Constraining Due Dates, and (c) 
Highly Constraining Due Dates 
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problems are given in Table 3. The number of experiments 

is inadequate to make valid conclusions. However, it is 

noted that relaxing the assumption that exactly N 1 = N 

processors are to be activated resulted in reduced computing 

times in all but three problems. Also, increasing the 

changeover time variability resulted in lower computing 

times in all but one* problem. 
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Table 3. Computing Times for Identical Processor Problems 
Where (a) N f = N, (b) N* is to be Determined and 
(c) Changeover Times are Discrete Uniform [0,20] 

Parameters Problem Set - Computing Time 

M N (a) (b) (c) 

5 2 .0027 .0026 .0014 

8 2 .0334 .0117 .0030 

10 2 .0852 . 0276 .0233 

12 2 .0325 . 5080 .0985 

15 2 3.2165 .1835 .5111 

5 3 .0378 .0332 .0033 

8 3 .0559 . 2980 6.4790 

10 3 .2750 . 3020 .0220 

12 3 3.5179 2.8700 . 7984 

15 3 2.9765 5.2765 .0656 

5 4 .0915 .0855 .0266 

8 4 2.3200 1.7233 .0854 

10 4 5.7984 2.5321 . 3302 

12 4 8.3765 3.2625 .8249 

15 4 9.4771 2.9870 2.0060 
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CHAPTER VII 

HEURISTIC PROCEDURES FOR SCHEDULING PARALLEL PROCESSORS 

The computational experience reported in the previous 

chapter indicates that exact procedures are probably computa

tionally inefficient for many problems of moderate size. 

The present chapter develops and evaluates several heuristic 

procedures for solving larger scheduling problems. The 

procedures given below, except for random scheduling, incor

porate heuristics which have shown promise in similar 

problems and therefore can be considered to be logical 

extensions of existing results. 

The Heuristic Procedures 

Random Scheduling 

A simple heuristic is to generate a number of random 

solutions, using the best solution found. The procedure is 

computationally fast but it has certain disadvantages. 

Typical problems are structured such that there are only a 

few near-optimal solutions and the probability of generating 

one of these on a single iteration is quite small. When a 

large number of trials are performed to increase the proba

bility of generating a good solution, the procedure becomes 

inefficient. However, it is included here because the 

results can be compared against more realistic heuristics. 
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Random scheduling involves randomly partitioning the 

M real jobs into N subsets, scheduling the jobs in each 

subset in random order and attaching an initial job and a 

final job to the N single processor schedules. If the problem 

involves determining the number of processors activated, N 

is a random integer, 1 < N < N. Otherwise N is the specified 

number of processors. A FORTRAN V routine for random 

scheduling is given in Appendix C 

Shortest Changeover Next 

Procedures which build schedules on the basis of 

shortest changeover next have performed well in the single 

machine problem involving jobs with sequence-dependent setup 

times [1, 34], The shortest changeover next heuristic was 

extended to the parallel processor problem by successively 

finding single processor schedules S n according to the follow

ing rules. If the processors are identical select the next 

(initially the first) processor n and find the minimum 

changeover time c * . * „ = min {c. . } between real jobs. 
-1- > j 

If the processors are distinct, select the minimum change

over time c.* .* * = min { c . } between real jobs over 

all processors. Job i* is the first real job and job j* is 

the second real job on the processor n. If g is the last 

job added to S n , sequentially add jobs by selecting that 

changeover (g,k*) for which c , * is a minimum, g ^ k*. 

Jobs are added to S until either a final job is selected 
n J 

for k*, or until no more jobs can be added if a prescribed 
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number of processors are to be activated. 

Changeover Imbedded in Minimum Time Subsequence Next 

The shortest changeover next heuristic tends to be 

myopic in the sense that it does not consider the time effects 

of any additional changeovers necessitated by selecting the 

shortest changeover next. Determining a machine's schedule 

by successively adding the changeovers which necessitate 

subsequences of minimum time would seem to overcome this 

myopic tendency. This can be considered as a "look ahead" 

scheme. An additional logical basis for considering this 

heuristic is that an optimal schedule for M' jobs with 

sequence-dependent setup times on a single machine is a 

subsequence of M' jobs with minimum total changeover time. 

This optimality condition will hopefully be approached if 

changeovers incurring minimum time subsequences are added 

sequentially to a machine's schedule. 

This heuristic was applied to the identical processor 

problem by selecting the next (initially the first) processor 

n and then letting the first changeover (i*,j*) in S n 

between real jobs be that changeover such that the total 

subsequence time 

cM +n,i*,n + ci*,j*,n + ^ { cj*,k,n } 

is a minimum. If g* is the last job added to S , additional 
° J ~n 

jobs are added by selecting that changeover (g*,k*) such 



Ill 

that the subsequence time 

c a * k* n + m i n { c k * k n } 

g » » k^k* » K » n 

is a minimum. If k* is a final job, it is understood that 

min {c v* v } = 0. Jobs are sequentially added to S„ until 
k^k* » K» n ~ n 

either the final job M+N+n is selected or until no more jobs 

can be added to S if a specified number of processors are to 

be activated. Since the processors are identical, individual 

schedules are developed in sequential order S^, S2,.... 
If the processors are distinct, the schedules are not 

developed in sequential order. The next processor n* and 

the first changeover (i*,j*) n* between real jobs on that 

processor is determined by selecting (i*,j*) n* such that 

cM>n*,i*,n* + ci*,j*,n* = ^ { cj*,k,n* } 

is a minimum and then sequentially adding jobs as before. A 

FORTRAN V code for either this heuristic or the shortest 

changeover next heuristic is given in Appendix D. 

Maximum Regret (Branch and Bound Without Backtrack) 

Ashour, et al. [35] have reported good results using 

a tour-building scheme for the traveling salesman problem by 

linking at any stage those cities which would incur a 

maximum regret or alternate cost as defined by Little, et al. 

[12]. Ashour, et al. [35] also experimented with a look 
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ahead rule to break ties when there exist alternative maximum 

alternate costs. 

The extension of the maximum regret heuristic to the 

parallel machine problem can best be described as branch and 

bound without backtrack. Successive changeovers are assigned 

to specific processors by selecting those admissible change-

overs with maximum alternate cost computed by equation (IV-3). 

This heuristic seems reasonable based on experience 

with the branch and bound algorithms developed in the previous 

chapters. The exact algorithms frequently find either an 

optimal or near optimal solution on the first iteration even 

though much backtracking may be required to verify optimality 

or to make a slight improvement for optimality. The steps of 

the solution procedure are exactly the same as those of the 

optimal algorithms, except that no backtracking is required. 

The FORTRAN V code in Appendix I for the exact algorithm 

incorporates an indicator variable to suppress backtracking, 

if desired. 

Maximum Regret With Look Ahead 

The look ahead scheme proposed by Ashour, et al. 

involves breaking ties between maximum alternate cost by 

selecting that changeover which provides the minimum cost 

reduction if that changeover were selected. That is, if 

there are ties for maximum alternate cost in Step 3 of the 

exact algorithm, select that changeover (i*,j*) such that 
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Z [min c..] + Z [min {c.. - min c..}] 
i jtj* 1 3 j ifi* 1 3 ifi* 1 3 

is minimum. 

The above look ahead scheme is also imbedded in the 

FORTRAN V code in Appendix A and is controlled by an indicator 

variable. 

Computational Experience 

The five scheduling heuristics were evaluated by 

applying them to various sized parallel processor problems. 

Heuristic solutions were found for selected problems solved 

optimally in Chapter VI, allowing the quality of the 

heuristic solutions to be compared directly with the optimal 

solutions. Larger problems were also solved heuristically. 

These solutions were evaluated by approximating the distri

bution of total changeover time for each large problem and 

making comparisons in terms of the probability that a random 

solution yields a better solution. There appear to be 

significant differences in computing times for heuristic 

procedures, and computing times apparently do not increase 

exponentially with problem size. 

In general, the maximum regret heuristic provided the 

best solutions, followed by maximum regret with look ahead, 

shortest changeover next, minimum time subsequence, and 

random scheduling. 
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Comparison With Optimal Solutions 

The five heuristics were applied to the distinct 

processor problems where N* is to be determined and where 

the changeover times are randomly selected from a discrete 

uniform [0, 10] distribution. Table 4 compares these 

heuristic solutions to the optimal solutions determined by 

the exact algorithm. The maximum regret heuristic produced 

the solution nearest the optimal solution in all but one 

problem. The maximum regret heuristic found the optimal 

solution in two of the 15 distinct processor problems. 

Adding the look ahead feature to the maximum regret heuristic 

did not lead to improved solutions in the test problems. 

The shortest changeover next heuristic produced an 

optimal solution for one of the 15 problems. It produced 

the same solution as the maximum regret heuristic for one 

other problem. The shortest changeover next heuristic 

found solutions of higher total changeover time for all other 

problems. 

A slightly different pattern emerges when the heuristics 

are applied to identical processor problems. This is evident 

from Table 5 where the heuristic solutions are compared to 

the optimal solution for each of 15 identical processor 

problems. (It was assumed that N* was to be determined and 

changeover times were discrete uniform [0, 10].) Adding the 

look ahead scheme to the maximum regret heuristic provided 

a better solution to only one test problem. 
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Table 4. Comparison of Heuristic Solutions to 
Optimal Solutions of Distinct Processor 
Problems Where N* is to be Determined 
and Where c.. . U [0,10] 

Parameters Scheduling Method - Changeover Time 

Max, 
Regret Shortest Min. 

Max. Look Change Time 
M N Optimal Regret Ahead Next Subseq. Random 

5 2 8 21 21 21 21 35 

8 2 6 12 12 20 20 46 

10 2 12 13 21 29 31 59 

12 2 5 9 10 25 27 73 

15 2 6 9 9 41 39 56 

5 3 7 9 9 18 18 28 

8 3 8 11 15 8 29 47 

10 3 7 7 7 21 25 73 

12 3 8 15 18 22 43 65 

15 3 6 15 16 29 33 78 

5 4 6 6 6 11 15 25 

8 4 10 11 11 21 46 61 

10 4 9 18 19 17 29 84 

12 4 6 13 14 17 33 89 

15 4 5 8 8 35 48 104 
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Table 5. Comparison of Heuristic Solutions to 
Optimal Solution of Identical Processor 
Problems Where N* is to be Determined 
and Where c.. - U [0,10] 

Parameters Scheduling Method - Changeover Time 

Max. 
Regret Shortest Min. 

Max. Look Change Time 
M N Optimal Regret Ahead Next Subseq. Random 

5 2 11 11 11 22 19 31 

CO
 2 7 7 7 31 33 51 

10 2 13 15 15 30 37 58 

12 2 7 13 13 16 42 57 

15 2 10 10 10 35 44 70 

5 3 15 15 15 30 24 50 

8 3 12 12 14 21 17 34 

10 3 7 8 8 23 34 61 

12 3 10 11 11 29 49 59 

15 3 8 8 8 41 67 76 

5 4 15 15 15 18 24 49 

CO
 4 13 13 13 26 31 68 

10 4 9 11 11 28 27 57 

12 4 14 17 14 28 43 68 

15 4 8 9 9 38 58 96 
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The difference in computing times for the five 

heuristics and the optimal procedure is illustrated in 

Figure 14 along with the least square fit to equation (VI-1). 

Although the figure only gives the computing times for 

distinct processor problems in which N = 3, the pattern is 

typical of computing times for other problems. It is noted 

that the heuristics 1 computing times are not ranked in the 

same order as the apparent goodness of their solutions. The 

typical relationship is that between the shortest changeover 

next heuristic and the maximum regret heuristic where an 

increase in computing time provides an improved solution. 

An anomalous relationship may exist between the maximum regret 

heuristic and the maximum regret with look ahead heuristic 

where the increased computing time leads to little or no 

improvement in the solution. 

Computational Results for Large Problems 

Some computational experiments with the heuristic 

procedures were performed on larger scheduling problems. The 

experiments were directed toward determining (a) the quality 

of the heuristic solutions, (b) whether the marked difference 

and linear trend in the computing times indicated in Figure 

14 extrapolated to larger problems, and (c) whether the 

heuristic procedures were ranked the same with respect to 

quality of solution. 

In order to answer these questions, 10 test problems 

involving up to 40 jobs and 10 processors were attempted. 
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Figure 14. Computing Time for Alternative Scheduling Procedures 
for Distinct Processor Problems Where N * 3, N* is 
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These problems were for the most general parallel processor 

case, involving distinct processors where N* is to be 

determined. All changeover times were assumed to follow a 

discrete uniform [0, 10] distribution and were generated 

accordingly. 

The evaluation of the quality of the heuristic 

solutions is difficult because the optimal solutions are 

unknown. It was decided that some idea as to the distribution 

of total changeover time for each test problem would be 

helpful. Since M jobs are to be scheduled on N* processors 

and since 2N* initial and final jobs must be processed, the 

total changeover time is a random variable X = Xj, + X 2
 + ... 

+ XM+2JJ* where X^ is discrete uniform [0, 10]. Attempts to 

find the distribution function analytically for specific 

j - M + 2N* failed because of the discrete nature of the 

problem. 

Therefore, following Lockett and Muhleman [34] on a 

related problem, schedules were developed at random for each 

problem and the total changeover time was computed. A 

histogram was developed from 1000 sampled schedules for each 

problem. For example, the sampled distributions of total 

changeover times for the M - 25, N 3 5 problem and the M = 30, 

N = 10 problem are shown in Figure 15. 

Total changeover time appears to be normally distributed. 

The sample mean and unbiased sample variance were used as 

estimates of the parameters for each of the 10 distributions. 
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A chi-square goodness of fit test at the 0.95 confidence 

level did not reject the hypothesis that total changeover 

time was normally distributed for each problem. 

The heuristic solutions to the 10 problems are given 

in Table 6, which gives the parameters of the sampled 

distributions. The maximum regret heuristic resulted in 

the solution with the least total changeover time in over 

60% of the problems solved. Adding the look ahead scheme 

resulted in a lower time solution in three of the six 

schedules which it developed. 

Table 7 expresses the heuristic solutions in standard 

deviations below the estimated mean total changeover time. 

The averages are a rough measure of overall goodness and 

indicate that the difference between maximum regret and 

shortest changeover next scheduling may be insignificant. 

However, even if the difference is significant, the cost of 

additional computing time may offset the reduction obtained 

in the objective function. 

It appears that the same marked difference in 

computing times for heuristic solutions to large problems 

exists. This is illustrated in Figure 16 which shows the 

computing times when N - 5 fitted by least squares to 

equation (VI-1). The rate of growth with problem size 

appeared to be an extrapolation of the curves in Figure 14, 

indicating that heuristic solutions for large problems are 

obtained with approximately the same efficiency as for small 

problems. 



Table 6. Comparison of Heuristic Solutions to Estimated Total 
Changeover Time Distribution for Selected Large Problems 

N u m b e r 
o f 

P r o b l e m J o b s 
N u m b e r M 

A v a i l 
a b l e 

N u m b e r 
o f 

P r o c 
e s s o r s 

N 

Heuristic Procedure - Total 
Changeover Time 

Estimated 
Normal 

Parameters 

M a x . S h o r t e s t 
R e g r e t C h a n g e - M i n , 

M a x . L o o k o v e r T i m e 
R e g r e t A h e a d N e x t S u b s e q . R a n d o m M e a n 

S t a n d a r d 
D e v i a t i o n 

1 20 5 12 12 40 81 121 128.1 15.5 
2 25 5 15 13 34 69 108 150.1 16.8 
3 30 5 15 15 22 42 165 173.9 17.9 
4 35 5 13 12 33 33 196 198.2 19.4 
5 40 5 21 27 38 38 210 224.9 20.6 

6 20 10 17 15 35 65 117 143.6 18.1 
7 25 10 18 * 32 70 171 173.8 19.4 

CO
 30 10 14 * 14 72 158 193.7 19.1 

9 35 10 * 23 90 2 30 226.6 21.6 
10 40 10 * * 44 86 255 251.7 21.8 

•Problem size exceeded allowed storage on the Univac 1108 used. 
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Table 7. Heuristic Solutions to Selected Large Problems, 
Expressed in Deviations Below Estimated Mean 
Total Changeover Time 

Heuristic Procedure - Standard ^NoSal* 
Deviations Below Sample Mean Parameters 

Max. Shortest 
Regret Change- Min. 

Problem Max. Look over Time Standard 
Number Regret Ahead Next Subseq. Random Mean Deviation 

1 7.52 7.52 5.68 3.04 0.46 128.1 15.5 

2 8,05 8.16 6.92 4.82 2.50 150.1 16.8 

3 9.43 9.43 8.48 7.36 0.50 173.9 17.9 

4 9.55 9.61 8.52 8.52 0.11 198.2 19.4 

5 9.88 9.60 9.04 9.04 0.72 224.9 20.6 

6 7.00 7.10 6.00 4.35 1.47 143.6 18.1 

7 8.03 * 7.30 5.35 0.14 173.8 19.4 

8 9.40 * 9.40 6. 37 1.87 193.7 19.1 

9 * * 9.41 6.32 -0.20 226.6 21.6 

10 * * 9.50 7.60 -0.15 251.7 21.8 

Average 8.61 8.57 8.03 6.28 0. 75 
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Figure 16. Computing Times for Heuristic Solutions to 
Selected Large Problems 
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CHAPTER VIII 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

A branch and bound algorithm was developed for the 

parallel processor scheduling problem. The algorithm admits 

parallel processor problems with finite job due dates and 

distinct processors. Unique features of the algorithm 

include (a) the lower bounding procedures used in identifying 

dominated subsets of solutions, (b) the sequential feasibility 

tests based on conditions necessary for both schedule admis

sibility and due date feasibility, and (c) a backtracking 

scheme which minimizes the amount of data required for the 

recursive operations. 

A FORTRAN V computer code was develoepd for the 

algorithm and a number of computational experiments were 

performed. Computational experience was concentrated on 

distinct processor problems with low changeover time vari

ability under three classes of due dates. Computing time 

increased exponentially with both M and N for this class of 

problems. A prediction equation for mean computing time was 

developed for the special case where all due dates are 

infinite. Relaxing the due dates decreased computing time, 

which was a minimum when all due dates are infinite. 
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A limited number of additional problems were solved. 

These included distinct processor problems with increased 

changeover time variability, distinct processor problems 

under alternative assumptions on the number of processors to 

be activated and identical processor problems under a variety 

of assumptions. 

In general, optimal solutions appear to be elusive 

for many parallel processor problems because of either the 

problem size or structure. Several heuristic procedures 

were developed for this class of problems. These included 

adaptations of branch and bound without backtrack, branch 

and bound with look ahead and without backtrack, shortest 

changeover next, minimum time subsequence and (for comparison) 

random scheduling. The heuristic solutions were compared to 

optimal solutions for small problems and to the estimated 

distribution of changeover time for selected large problems. 

It was determined that the branch and bound without back

track procedure provided good schedules with reasonable 

computing times. 

Recommendations 

Several ideas for extensions of the parallel processor 

results have evolved from the present investigation. 

Relaxed Assumptions 

Some of the assumptions underlying the present inves

tigation could be relaxed to admit some important variations 
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of the parallel processor problem. Additional time constraints 

on both jobs and processors frequently exist. Processor n's 

availability is more generally constrained to some time 

interval [a n, 3 R] $ [O,00] to account for noncontinuous 

operation. In addition to due date d^, job j generally has 

an arrival time a^ which is the earliest time that processing 

can begin. The branch and bound approach is still appropriate 

for these variations, but some significant extensions would 

be necessary. 

Alternative Criteria 

The minimization of total changeover time is taken 

as one of the most important criteria in scheduling environ

ments [4,5]. There are, however, alternative criteria 

which could be equally important. 

The minimization of total processor use time is 

appropriate for many problems, especially when the job 

processing times differ significantly from processor to 

processor. An important variation is the minimization of 

maximum completion time. Many of the algorithm components 

are applicable here, but the extension would rest on the 

development of efficient lower (for minimization) bounds on 

the objective function. 

Due dates frequently cannot be met and there are a 

number of criteria that could be appropriate, depending on 

the penalty cost of late jobs. Ideally, a procedure to 

minimize job lateness on parallel processors should be 
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derived. This would provide a conceptual basis on which 

optimization procedures involving lateness could be developed. 

In addition, there is a large class of possible 

objective functions which, in general, are functions of total 

processor use time. The branch and bound approach may 

extend to cases where the functions are linear or perhaps 

continuous, nondecreasing convex, since lower bounding would 

be fairly straightforward. 

Recursive Operations 

The development of alternative branch and bound 

recursive operations could be important in the parallel 

processor algorithm, and in similar algorithms. The most 

elusive development would be that of adaptive recursive 

operation. It appears that the efficiency of lower bounds 

is highly dependent on problem structure, which changes 

during the solution procedure due to partitioning. Also a 

flooding operation where large subsets with small lower 

bounds are investigated may be effective, depending on 

problem structure. The development of logical switching rules 

to evaluate the structure of the data at hand and then select 

the most appropriate recursive operation would be challenging. 

Heuristic Procedures 

The combinatorial nature of the parallel processor 

problem makes optimality a formidable goal in some cases. In 

view of this, new heuristics could be developed and the 

heuristic procedures of Chapter VII could be thoroughly 
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investigated and perhaps made more powerful (at the expense 

of computing time) by incorporating more powerful decision 

rules. Also, optimal stopping procedures could be developed 

by comparing the estimated computing time to find one more 

solution to the expected improvement in objective function. 



APPENDIX A 

FORTRAN V CODE FOR OPTIMAL, MAXIMUM REGRET, 

AND MAXIMUM REGRET WITH LOOK AHEAD SCHEDULING 
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I N T E G E R C C O S T ' P I N D O P j O f C D l M E N . T H t T A j C H O L D 
R E AD { 5 . 9 9 ) M , N » N P R I M E » n T Y P E » L 0 0 K » 1 0 P T » I 0 U E 

99 F O R M A T ( ) 
D I M E N S I O N C C 0 S T ( 2 5 r 2 5 , 5 ) > C H 0 L D ( 2 b » 2 5 ' 5 ) » 

X F l N D C ( 2 5 , 2 5 ) , P ( 1 5 r 5 ) . D ( 1 5 ) » K R E D C m 2 5 » 2 5 ) . N 0 D E ( 2 5 » 2 5 » 5 0 ) » 
X L B O U N O ( 5 0 ) » K H O L D ( 2 5 » 2 5 ) » M J O S ( 2 5 ) • I E K < 2 5 ) $ I Q K ( 2 5 ) 
COlMEN=M-»-2*N 
INFIN=999 
I C 0 U N T = 0 
IPAIRS=M+N"2 
NFLAG=O 
I T E R = 1 C A L L L O A D ( N T Y P E » M r N » C c O S T » K R E D C D » F l N L > C . P . D » C H O L O » I X » I s » I A ' I B » l C , 

X I D ) 
N N 0 D E = 1 L C O S T = I N F l N 

l9o F O R M A T ( 1 H 0 ' » * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ) * r * * * * * * 4 t * < t « * * * t ) 
C A L L R E D U C E ( C H O L D » C D I M E N , N » C O I M E N » C D I M E N , K R E O C D » I S U M ) 
L B O U N D < N N O D E ) = I S U M 
N N 0 D E = N N 0 D E + 1 
L B O U N D ( N N O D t ) = I S U M 

3 0 l C A L L A L T E R ( L O O K » N F L A G . N O D E # N N O O E •K R E D C O # M # N » C H 0 L D » F I N Q C # T H E T * » 
XMROW»MCOL»ICOUNT) 
I F ( T H E T A , E Q . ( - 1 ) ) 6 0 TO 1 3 0 5 
IC0UNT=IC0UNT+1 
NNEXT=NNODE+I 
L30UND(NNEXT)=L30UND( NN0DE) D O 5 C 1 I = 1 » C D I M E N 
0 0 5 C 1 J = 1 ' C D I M E N 
N O D E ( I , J t N N E X T ) = N 0 D E { 1 . J # N N O D E ) 

5 0 1 C O N T I N U E 
N O D E ( M R O W » M C O L » N N O D E ) = - ( 1 0 0 - l - F I N D C t M R O W » M C 0 L ) ) 
L 3 0 U N D ( N N O D E ) = L 3 0 U N D ( M N O D E ) + T H E T A 
I F ( L B O U N D ( N N O D E ) , G T • 9 9 9 > LBOUND(NNODE)=999 
K P R S 5 R = F I N D C ( M R 0 W » M C 0 L ) 
C A L L U P D A T l C K P R S S R . t D j M E N f M R O W . M C O L f N . C H O L D ) 
I F ( I D U E . E Q . O ) G O T O 8 O 1 
D O 7 C 9 I = 1 » C D I M E N 
M J 0 3 ( I ) = 0 

7 0 9 C O N T I N U E 
M J 0 B ( M R 0 W ) = 1 
M J 0 - M M C 0 L ) = 1 
D O 7 1 3 I = 1 » C 0 I M E N 
DO 7',3 J = 1 » C D I M E N 
T F ( N O D E ( I » J r N N E X T ) - J L O o . N F , K P R 5 S R ) G O T O 7 1 3 
MJ0r3(I)=l 
M J 0 3 ( J ) = 1 

7 1 3 C O N T I N U E 
DO 7 1 5 I = 1 » M 
I E K ( I ) = 0 

7 1 5 C O N T I N U E 
I F L A G = 0 
I H O L D = 0 
0 0 7 3 5 I = 1 » M 
I F ( M J 0 B ( I ) . E O . O ) GO To 7 3 5 
I F ( I . N E . M C O L ) G O T O 7?i 
I F ( I F L A G , G T . 0 ) G O TO 7l9 
I E K ( I ) = C C O S T ( M R O W » M C O L , K P R S S R ) + P U » K P R S S R ) 
IFLA G=1 



I H O L D = I E K ( I ) 
G O T O 7 3 5 

7 1 9 I E K ( I ) = I H 0 L D + C C 0 S T ( M R 0 W » M C 0 L » K P R S 5 R ) + P ( I , K P R S S R ) I H O L D = I E K ( D 
7 2 l lFROM=o 

D O 7 2 3 K = 1 » C D I M E N 
l F ( N O D E < K » I » N N E X T ) - 1 0 0 t N E . K P R S S R > G O T O 7 2 3 
I F R 0 M = K 

7 2 3 C O N T I N U E 
I F ( I P R O M . E Q . O ) S O TO 7 2 7 
i F d F L A G . G T . o ) G O TO j25 
I E K ( I ) = C C O S T ( I F R O M , I , k P R S S R ) + P ( I » K P r S S R ) 
i f l a g = i 
i h o l d = i e k ( d 
G O T O 7 3 5 

7 2 5 I E K < I ) = I H O L D + C C O S T ( I F r O M » I » K P R S S K ) + p < I , K P r S S R > 
I H 0 L D = I E K ( D 
G O T O 7 3 5 

7 2 7 I B K = 9 9 9 
D O 7 E 9 J = 1 » C Q I M E N 
I F < C C O S T ( J » I , K P R S 5 R ) - i B K . G T , 0 ) G O T O 7 2 9 
I B K = C C 0 S T ( J » I » K P R S S R ) 

7 2 9 C O N T I N U E 
I F ( I F L A G . 3 T , O ) G O TO 73I 
I E K < I ) = I B K + P ( I » K P R S S R ) 
I F L A G = 1 
I H O L D = I E K ( D 
G O T O 7 3 5 

7 3 i I E K ( I ) = I H O L D + I B K + P ( I » K P R S S R ) 
I H O L O = I E K ( I ) 

7 3 5 C O N T I N U E 
J O B S r O 
D O 7 3 6 I = 1 » C D I M E N 
J 0 3 S = J o 3 S * M J o B ( I > * 

7 3 6 C O N T I N U E 
D O 7 3 8 I = 1 » C D I M E N 
I Q K ( I ) = 0 

7 3 8 C O N T I N U E 
INlARK=0 
I H O L D = 0 
J I N D = M + 1 
D O 7 3 9 K = 1»M 
L J 0 3 = J I N D - K 
IF ( M J 0 8 < L J O Q ) , E Q , 0 ) G 0 T O 7 3 9 
IF(IvARK.GT.o) G O T O 7 3 7 
I Q K ( L J 0 3 ) = 0 ( L J 0 3 ) - I E K ( L J 0 B ) 
I M A R K = l 
I H O L D = I Q K ( L J O B ) 
G O TO 7 3 9 

7 3 7 I C 0 M P = D ( L J O Q ) - I E K ( L v J O p ) 
I Q K ( L J 0 B ) = M I N 0 ( I C 0 M P » i H O L D ) 
I H O L D = I Q K ( L J o B ) 

7 3 g C O N T I N U E 
I 3 A C K = 0 
D O 7tfl I = 1 » M 
I F ( M J 0 3 ( I ) . E Q , 0 ) G O To 7 4 1 
I F ( I Q K ( I ) , G E , 0 ) G O T O 7<H 
I F ( I B A C K . E Q . l ) G O T O 74I 
N N O D E = N N O D E + i 



I8ACK=1 
7*1 CONTINUE 

IF ( I B A C K , E Q . 1 > GO TO i305 
IBACK=0 
IRANGErM-1 
DO 749 I = 1»IRANGE 
IF(MJ03(I).EO,0)GO TO 749 
ILARGEsI+1 
DO 748 KslLARGErM 
IF(MJ03(K) . E O . O G O TO 748 
lF(I,Eo.MCOL,AND,K,EQ.MROW)GO TO 743 
IF(NODE(K»I»KPR5SR)-1 0O.NE.KPRSSK)GO TO 7^8 

7^3 l F ( I O K ( I ) t G E # I Q K ( K ) ) G o TO 748 
IHOLD=0 
IFLAG=0 
JRANGEsK-l 
DO 747 J=1»JRANGE 
LA5TJ=K-J 
IF(MJOB(LASTj).EQ,0>Go TO 747 
IF(IFLAG,GT #0)SO TO 7^7 
IFLAG=1 
IH0LD=IEK(LASTJ) 

747 CONTINUE 
IF(IEK(K)-IH0LD,LE #IQ«;(I) )GO TO 748 
IF(IBACK #£Q.1)G0 TO 7^Q 
IBACK=1 
NNODE=NNODE-ri 

748 CONTINUE 
749 CONTINUE 

lF(IBACK fEtf.l)GO TO 1305 
IBACK=0 
IRANGEsM-l 
DO 759 I=1»IRANGE 
IF(IBACK,EQ.1)G0 TO 7 5 9 
IF(MJ03(I).EQ.0 ) G Q TO 759 
I L A R G E = I + 1 
D O 7«58 KrlLARGErM 
I F ( M J 0 3 U ) . E Q . O J G O TO 758 
I F ( I G K ( I ) , G E T I Q K ( K j ) G 0 TO 758 
I5MAUL=I-1 
DO 755 IR=1»ISMALL 
I F ( I R . E Q . M R 0 W . A N 0 . X . E Q , M C 0 U : ) G 0 TO 753 
I F(NCDE< I R»K.KPRSSR)-. 1OO . N E.KPRSSR)GO TO 755 753 I F ( I E K ( I ) . L E , D ( I R » ) G O TO 755 
I F ( I 3 A C K , E Q . 1 ) G 0 TO 7 55 
I 3 A C K = l 
N N O D E=NNOQE+i 

755 C O N T I N U E 
758 CONTINUE 
759 CONTINUE 

IF(I3ACK,£Q.D GO TO i305 
K U S T = 0 
KSTART=M+1 
DO 763 K=1,M 
IF(KLAST . G T,o)GO TO 7 6 3 
KNEXT=KSTAKT-«K 
IF(MJ03(KNEXT).EQ.Q)Go TO 763 
K L A S T = K N E X T 

763 C O N T I N U E 



IBACK=0 
00 769 I=1»M 
LF(I3ACK F£Q.L)G0 TO 7 69 
IF(MJ03(I).EG.OJGO TO 769 
IF(I,EQ,KLAST)G0 TO 7^9 
KFLNAL=M+iM+KPRS5R 
LF(I,EQ,MR0w.AN0 FKFLNAU .EQ.MC0L)OO TO 765 
LF(NOOE(I»KFINAL#KPRS SR)-100.NET^RSSR)GO TO 769 

765 IF(IEK(KLAST).LEFD(I>)GO TO 769 
IQACK=1 
N N O D E = N N O D E +i 

769 C O N T I N U E 
LF(IBACK FEQ.l>GO TO 1305 IBACK=0 IRANGE=M-l 
DO 779 I=1»IRANGE 
IF(IBACK,EQ.1)G0 TO ?79 
IF(MJ0B(I)TEO#0)GO TO 779 
ILARGE=I+1 
DO 778 K=ILARGE»M 
IF(I3ACK,E0,1)60 TO 776 
IF(MJ03(K)»EQ.0)GO TO 778 
IF(I,EQ,MCOL,AND.K.EQ.MROW>GO TO 771 
IF(NODEU>I»KPRSSR)-LOO.NE.KPRSSR>50 TO 778 

771 LF(ICVK(I).GE,IQK(K))G 0 TO 778 
I F D B A C K . E Q . D G O TO 778 
IF(K,NE.MC0L)G0 TO Hp 
13K=CC0ST(MROW tMCOL»KPRSSR) 
GO TO 777 

772 IFR0M=0 
DO 773 K1=1»CDIMEN 
LF(NODETKLRK,NNEXT)-l00.NE.KPRSS«)GO TO 773 
IFR0M=K1 

773 CONTINUE 
IF(IFROM.EQ.O>GO TT;o 
I B K = C C 0 S T ( I F R 0 M . K > K P R S S R > 
GO TO 777 

77I> 13*=999 
DO 776 J=1,CDIMEN 
LF(CC0ST(J»K,KPRSSM)-IBK.GT.0)GO TO 776 
I3K=CC0ST(VJ,K»KPR5SR) 

77F, CONTINUE 
777 IF<IBACK,EQ.1>G0 T(0 778 

IF(IBK+P(K»KPRSSR) WLE IQK(I))G0 TO 778 
IBACK=1 
NNODE=NNODE+l 

778 CONTINUE 
779 CONTINUE 

IF(I3ACK,EQ,1)G0 T(3> 1305 
IBACK=0 
IRANGE=M-1 
DO 789 Irl>IRANGE 
IF(IBACK.EQ.1)G0 TO) 7G9 
ILARGE=I+1 
DO 708 K=ILARGE,M 
IF(MJ03(K).EQ,0)GO TO 788 
IFD.EQ.MCOL.ANO.K.EQ.MROVNGO TO 78L 
LF(NODE<K»I,KPRSSR)«l0D.NE.KPRSSR)GO TO 788 

78I LF(LQK<I) TNE , IQK<K)JSO TO 788 
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I F ( D ( I ) . G £ . D ( K ) ) G 0 T O 788 
I F ( K , N E # M C 0 L ) G 0 T O 7 8 P 

I B K = c C O S T ( M R O W r M C O L » K p R S S R ) 
G O TO 7 8 7 

7 8 2 I F R 0 M = 0 
D O 7 8 3 K l s l r C D I M E N 
I F ( N 0 D E U l » K , N N E X T ) - l 0 0 . N E . K P R S 5 R ) G O T O 783 
I F R O M = K l 

7 8 3 C O N T I N U E 
I F ( I F R O M , E O . O ) S O T O 7«4 
I 3 K = C C 0 S T ( I F R 0 M , K » K P R S S R ) 
G O T O 7 8 7 

784 I B K = 9 9 9 
D O 7 8 6 J = 1 » C D I M E N 

1 I F ( C C 0 S T ( J » K , K P R S S R ) - j B K » G T , 0 ) G O T O 7 8 6 
I B K = C C 0 S T ( J . K » K P R S S R ) 

7 8 6 C O N T I N U E 
787 I F ( I B K + P ( K » K P R S S R ) + I E K ( D . L E , D ( I ) ) 6 0 T O 7 8 8 

I F ( I B A C K . E Q . 1 ) G 0 TO 7fi8 
I B A C K = 1 
N N O D E = N N O D E + i 

7 8 8 C O N T I N U E 
7 8 9 C O N T I N U E 

I F ( I B A C K , E Q . 1 > 6 0 T O 1 3 0 5 
I 3 A C K = 0 
I R A N G E = M - 1 
D O 4 8 9 I s l » l R A N G E * 
I F < I B A C K . E Q . 1 > G 0 TO <*e9 
I F ( M J O B C I ) . E Q . Q ) G 0 T O 4 8 9 
XL.ARGE=X+1 
D O (fca K r l L A R G E # M 
£ F ( M J 0 3 ( K ) • E Q , 0 ) G O T O 4 8 8 
I F < I . E G . M R O W , A N D . j < . E Q . M C O L ) G O TO 4 8 1 
IF ( N O D E ( I r * » K P R S S R ) -lfiO »NE • K P R S S R ) G O TO 4 8 8 

48l I R H S = D ( I ) -I-CCOST (11K pKpRSSR)+P ( K » K P R S S R ) 
I D 3 A R = M I N 0 < D ( K ) * I R H S ) 
I F ( I ? 3 A R t M E , l R H S ) G O TQ 4 0 8 
DO 4M7 J l = i , M 
I F ( M J 0 3 ( J D . E Q . 0 ) G O T o 4 0 7 
I F ( I V . G T , 0 ) G O T O 4 8 7 
J l N = j l + l 
I V N = O 
DO if63 J 2 = J 1 N » M 
l F ( I v / N , G T . 0 ) G O TO 483 
I F ( M J 0 B ( J 2 ) . E Q . O ) 6 0 T 0 4 8 3 I V N = J 2 

4 8 3 C O N T I N U E 
I F ( I V N . E Q , 0 ) G 0 T O 4 8 7 
I F ( D ( J D , L E . I D B A R . A N D . I D B A R . L T . D ( I V N ) ) G 0 T O 4 8 4 
3 0 TO 4 8 7 

4 8 4 I V = J l 
4 8 7 C O N T I N U E 

I F ( I 3 A C K , £ Q . 1 ) G 0 T O 4 a 8 
I F ( I E K ( I V ) . U E » D ( I ) ) G O T O 4 8 8 
I B A C < = X 
N« M 0 D E=NN0DE+ 1 

4 8 a C O N T I N U E 
4 8 9 C O N T I N U E 

I F ( I 3 A C K , E Q . 1 ) S 0 T O I3O5 
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8 0 1 N N 0 D E = N N Q 3 E + 1 
N O D E ( M R O W , M C o L » N N O D E ) - 1 0 0 + F I N D C ( M R O W ' M C O L ) 
C A t L U P D A T 2 ( K P R 5 S R , C D i M E N » M R 0 W . M C 0 L , M . N » C H 0 L D r N F L A 6 » 

X I C O U N T , N O D E , N N O D E ) 
9 0 5 I F ( I P A I R S - I C O U N T ) 1 0 0 5 , 1 0 0 5 , 9 0 7 
9 0 7 C A U L U P D A T K < N P R I M E , F I N J D C , M R O W , M C O L , C H 0 L D , C D I M £ N , M , N , 

X K P R S S R , K R E D C D * N F L A G , N o D E , N N O D E , I C O U N T , K H O L D ) 
C A L L R E D U C E ( c H O L D # C D I M E N , N , C D l M E N , C O l M E N , K K E O C D > I S U M ) 
L B O U N D ( N N O D E ) = L 3 0 U N D ( M N O D E > + I S U M 

9 9 8 I F ( L 3 0 U N D ( N N O D E ) . G E . L C O S D G O T O 1 3 0 5 
GO TO 3 0 1 

1 0 0 5 C A L L U P D A T M N P R I M E , F I N D C , M R 0 W » M C O L , C H 0 L D , C D I M E N > M , N » 
X K P R S S R , K R E D C D » N F L A G » N Q D E , N N O D E , I C O U N T , K H O L D ) 
C A L L R E D U C E ( C H 0 L D # C D I v . E N ,N » C D I M £ N > C D I M E N , K R E D C D » I S U M ) 
I P A S S = 0 
D O 1 0 1 9 I = 1 » C D I M E N 
D O 1 0 1 9 j s l r C D I ^ E N 
I F ( I A 3 S ( K R E D C D ( I » J ) ) , E Q » 9 9 9 ) G 0 T O 1 0 1 9 
LR0lv= I 
L C 0 L = J 
I F ( I P A S S . G T . O ) G O T O 1 0 1 6 
I S A V E = K R E D C D ( L R O W # L C O L ) 
K R E D : D ( L R O W , L C O L ) = 9 9 9 
DO U.11 K = 1 » C D I M E N 
I F ( I ^ B S ( K R E D C D ( K , L C 0 L ) ) . E Q . 9 9 9 ) G 0 T O 1 0 1 1 
KR0W=K 
L S A V E = K R E D C D ( K » L C O L ) 
K R E D C D ( < , L C 0 L ) = 9 9 9 

1 0 1 1 C O N T I N U E 
N A D O =o I N U M = 0 
I S T A R T = L R O W + i 
D O 1 0 1 5 I I N D = I S T A R T » C D I M E N 
D O l o l 5 J I N D = 1 , C D I M E N i F d ^ B S t K R E D c D d l N D ' J i N D ) ) , E Q . 9 9 9 ) G 0 TO 1 0 1 5 
I N U M = I N U M+1 

1 0 1 5 C O N T I N U E 
I F ( I N U M . G T . 0 ) G 0 TO 1 0 i 6 
K K E D : D ( K R O W , L C O L ) = L S A v E 
I P A S S = I P A S 5 + I 
G O TO 1 0 1 9 

1 0 1 6 N O D E ( L R O W , L C O L , N N O D E ) = 1 0 0 + F I N D C 1 L R O W » L C O L ) N A D D = N A D D + 1 
D O l o l 7 J 1 = 1 , C D I M E N 
K R E D C D ( L R O W # j l ) = 9 9 9 

1 0 1 7 C O N T I N U E 
D O lol8 I 1 = 1 , C D I M E N 
K R E D C D ( H , L C 0 L ) = 9 9 9 

1 0 1 8 C O N T I N U E 
I P A S S = I P A S S + i 

1 0 1 9 C O N T I N U E 
I F ( N A D O • E Q • 2 ) G O T O I O 5 9 
L B O U N D ( N N O D E ) = 9 9 9 
G O T O 1 3 0 5 

1 0 5 9 L 3 0 U N D ( N N O D E ) = L B O U N D ( N J N O D E ) +1 SUM 
I F ( I Q U E . E Q . O ) 6 0 T O 1 0 & 0 
I 3 E G I N = M + 1 
I E N D = M * N 

9^0 D O 9 4 9 I = I 3 E G I N » I E N 0 
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U O B r l 
LTIME=0 
IPRSSR=IJ0»-M 
DO J~L * CDIMEN 
I P ( N O D E ( I v J O B , J»NNODE) ,L.E.O)GO T O 9 4 3 
J J O B = J 

943 CONTINUE 
JFINAL=M+N+IPRSSR 
I F ( J J 0 3 . E Q . J F I N A D G O T 0 949 
L T l M E = L T I M E + c C O S T ( U 0 3 R J J 0 B » I P R 5 S R ) + P ( J J 0 B - I P R S S R ) 
I F ( L T I M E . G T . D ( J J 0 B ) ) U B 0 U N D C N N 0 D E > = 9 9 9 
U 0 3 = J J 0 B 
GO TO 9 4 1 

94q CONTINUE 
1 0 6 0 WRITE(6»190) 

W R I T E < 6 » 1 5 9 8 ) I T E R 
IBEGIN=M+1 
IEND=M+N 
UTOT/lL=0 
DO l o 8 9 I=l3EGINrlEND 
U 0 3 = I 
I P R S 5 R = U 0 3 - M 
WRIT? (6» 1 0 8 0 ) IPRSSR.»IjOB 

1 0 6 0 FORM/.T (1H0» 13X» »SCHEDULE , i l 3 » 3 X » , = : , r l 4 ) 
1085 DO 1086 J=1»CDIMEN 

I F < N 0 D E ( I J 0 3 , J , N N 0 D E ) # t E . 0 ) G O TO 1086 
JJ03=J 

1 0 6 6 CONTINUE 
WrtITc7<6»1087) J J O B 

I O 8 7 FORMAT(30X'I3) 
LT0TAL=LT0TA L+CC0STCIj03»JJ03,lPRSSR) 
JFlN. f tL=M+N+IPRSSR 
IF(JJ08.EQ.JFINADG0 T 0 1089 
IJ03=JJ0B 
GO TO 1085 

1089 CONTINUE 
WRITE<6»1189)LT0TAL, 

1189 F0RMAT(lH0»l3Xr'TOT^L C O S T * » 4 X » r 1 4 ) 
lF(LCOUND(^NODE),GT«UC0ST)G0 TO 1305 
LC0ST=LB0UND(NN00E) 
WRITE(6»1191)LCOST 

1 1 9 1 FORMAT(1H0»13X» »L,CoST»»9X»• = •»I4> 
lF(l0PT.Ea.0,AND,LC0ST,J-T #999)GO TO 9999 
DO 1 2 0 5 I = l » c O I M E N 
D O 1 2 0 5 J = l » c D I M E N 
N O D E ( 1 9 J » 1 ) = N O D E ( I , J , MNODE) 

1205 CONTINUE 
1305 NEXTrO 

NlNDEX=NN0DE-2 
D O 1 3 0 7 K = 1 » N I N D E X 
J=NNODE-K 
I F ( U B 0 U N D ( J ) . G E . L C 0 S T ) G 0 T O 1 3 0 7 
I F ( N E X T . G T . 0 ) 6 O TO 1 3Q 7 
NEXTrJ 

1307 CONTINUE 
I F < N E X T , N E . O ) G O T O 1 5Q 5 
W R I T E ( 6 » 1 4 9 1 ) 

1 4 9 1 FORMAT(14X»»CURRENT SOLUTION IS OPTIMAL') 
GO TO 9 9 9 9 
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1 5 0 5 I S T A R T = N E X T + 1 
D O 1 5 0 7 I = I S T A R T , N N O D E 

L 8 0 U N 0 ( I ) = 0 
1 5 0 7 C O N T I N U E 

D O 1 5 0 9 K=ISTART»NN0De 
DO 1 5 0 9 I = 1 » C D I M E N 
D O 1509 J = 1 » C D I M E N 
N O 0 E ( I , J , K ) = 0 

1 5 0 9 C O N T I N U E 
N F U A G = 0 
N N O D E=NEXT 
G O TO 1 5 1 3 

1 5 1 3 I N D E X = N - 1 
DO 1515 I = l » c D I M E N 
D O 1515 J = l , c D I M E N 
K R E D C D ( I , J ) = c C O S T ( I » J r i ) 
F I N D C ( I » J ) = 1 
DO 1515 K = l » I N D E X 
N E X T = K + 1 
I F ( C C 0 S T ( I » J , N E X T ) - K R E D C D ( I . J ) ) l 5 m , 1 5 1 « » , l 5 1 5 

1 5 H K R E D C D ( I , J ) = c C 0 5 T t I . » J , N E X T ) 
F l N D c ( I » J ) = N E X T 

1 5 1 5 C O N T I N U E 
D O 1 5 1 9 K = 1 * N 
D O 1 5 1 9 I=1»CDIMEN 
D O 1519 J=l,cDIMEN 
C H 0 L D ( I » J . K ) = C C O S T ( I , j , K ) 

1 5 1 9 C O N T I N U E 
LOOPrO 
D O 1 5 2 1 I = l , c D I M E N 
DO 1 5 2 1 J = 1 « C D I M E N 
I F ( N O D E ( I . J » N N O D E ) # E Q # 0 > G O T O 1 5 2 1 
IF ( N O D E ( I »«J> N N O D E ) , G T # 0 ) N O D E ( I , J »N N O D E ) = 0 
L 0 o P = L 0 0 P + l 

1 5 2 I C O N T I N U E 
C A L L R E D U C E ( c H O L D > C O I v i E N . N r C D l M E N » C D l M E N , K R E D C D f I S U M ) 
I C 0 U N T = 0 
D O 1 5 5 9 L = l » L O O P 
CALL ALTER < LOOK » NFLAG,NODE »nnooe*KREDCD » M# N, CHOLD # FIN DC » THETA, 

X M R O W , M C O L » I C O U N T ) 
l F ( N O D E ( M R O w , M C O L » N N O D E ) ) 1 5 2 9 , 1 5 5 5 , 1 5 5 5 

1 5 2 9 K P R S S R = F I N D C ( M R O W , M C O L ) 
C H O L D ( M R O W » McOL tKPRSSR)=-999 
KREDcD ( M R 0 W . , M C 0 L)=-999 
D O 1 5 3 9 K = 1 » N 
I F ( I A 3 S ( K R E D CD ( M R 0W » M C 0 L ) ) • L E , IA B S ( C H O L D ( M R O W » M C O L , K ) ) ) 

X G O TO 1 5 3 9 
1 5 3 ^ K R E D C D ( M R0W . M C0L ) = C H0L D ( M R0W # M C0L » K ) 

F I N D C ( M R O W » MCO L ) = K 
1 5 3 9 C O N T I N U E 

G O TO 1 5 8 9 
1 5 5 5 K P R S S R = F I N D C ( M R O W » M C O L ) 

I C 0 U N T = I C 0 U N T 4-1 
NODE(MROW 9MCOL»NNODE)=100+KPRSSR 
C A L L U P D A T K K P R S S R . C D j M E N . M R O W , M C O L » N , C H O L D ) 
C A L L U P D A T 2 ( K P R S S R . C D i M E N , M R O W , M C O L » M , N . C H O L D , N F L A G f 

X I C 0 U N T , N 0 D E , N N 0 D E ) 
C A L L U P D A T K ( N P R I M E , F I N D C , M R O W , M C O L , C H O L D , C D I M E N , M , N r 

X K P R S S R , K R E D C D » N F L A G » N Q D E , N N O D E , I C O U N T , K H O L D ) 
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1589 CALL REDuC£(cHOLO,CDIv | E N»N»CDlMEN»CDlMEN»KREDCD , I S U M ) 
1559 CONTINUE 

I T E R = I T E R + 1 
1 5 9 a F O R M AT(1H0» »ITERATION;»#13) 

G O TO 3 0 1 
9 9 9 g S T O P 

E N D 
S U B R O U T I N E L O A D I N T Y P E , M » N , C C O S T , K C O S T , F I N D C » P » D » C H O L D , I X » I S » I A » x b , 

XIC,ID) 
INTEGER C D I M E N » C C O S T , K C O S T » F I N D C » P , D » C H O L D 
CDIMEN=M+2*N 
DIMENSION CC0ST(25,25,5)#KC0ST(25#25>» 

XFINDC<25»25) , P(15»5)#D(5)» 
XCH0LD(25,2&»5) 
R E A D ( 5 , 2 9 ) U ( C C O S T ( I , J , K ) # J = 1 , C D 1 M E N > # 

* I = 1 »C D I M E N ) # K = 1 ' N ) 
R E A D ( 5 » 2 9 ) ( ( P < I » J ) » I = 1 » M ) # J = 1 » N ) 
READ(5,29)(D(I)#I=1»M) 

29 FORMAT( ) 
40 INDEX=N-1 

DO 50 I=1»CDIMEN 
DO 50 J=1»CDIMEN 
KC0ST(I»J)=CcOST(I,J»i) 
FlNDC<I»J)=l 
DO 50 K=l»INDEX 
N E X T=K>1 
IF(CC0ST(I»J.NEXT)-KC0ST ( I»J>) 4 l » 4 1 » 5 0 

**1 K C O S T ( I # J ) = C C O S T ( I , J » N E X T ) 
F I N D C ( I » J ) = N E X T 

5o CONTINUE 
DO 69 K=1»N 
DO 69 I=1»CDIMEN 
DO 69 J=lrCDlMEN 
CHOLD(I»JrK) =CCOST(I,j,K> 

69 CONTINUE 
99 R E T U R N 

END 
SUBROUTINE REDUCECCHO LDrCDlMEN,N>IROWS,iCOLSrRMATRX,IcUM) 
INTEGER R M A T R X r C M O L D , c D l M E N 

DIMENSION RMATRX<25'25)»CH0LDC25»25f5) 
ISUM=0 
DO 50 I=1,IR0WS 
M1N=999 
00 29 J=1»IC0LS 
I F ( I ; B S C R M A T R X ( I » J ) ) - M I N ) 21.29*29 

2i MIN=RMATRX(I,J) 
29 CONTINUE 

lF(MiN,EQ,0.OR.MIN fEQ,999) GO TO 50 
ISUM = I S U M + M I N 
00 31 L=1»N 
DO 31 K=1»IC0LS 
IF(IABS(CHOLD(I»K»L))-999)30»31»31 

30 CHOLD(I»K,L)=CHOLD(I, K,L)-MIN 
CHOLD<IfK,l-) =MAX0(0»CHOLD(I,K,L) > 

31 CONTINUE 
DO 49 K=1,IC01S 
IF(IA3S ( R M A T R X(I » K ))-999)37»49r49 

37 R M A T R X ( I , / < ) = R M A T R X ( I , K ) - M I N 
49 CONTINUE 
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5 0 C O N T I N U E 
D O 8C J = l » I C O L S 
M l N = 9 9 9 
D O 5 9 I = l » I R O W S 
I F ( I ^ B S ( R M A T R X ( I » J ) ) - M I N ) 5 1 » 5 9 » 5 9 

51 M I N = R M A T R X ( I , J ) 
5 9 C O N T I N U E 

I F ( M l N , E Q . 0 , O R » w I I N , E Q # 9 9 9 ) G O TO 80 
I S U M = I S U M + M I N 
D O 61 L = 1 » N 
0 0 61 K = 1 » I R 0 W S 
l F ( l A B S ( C H O L D ( K » J , L ) J « 9 9 9 ) 6 0 » 6 1 » 6 i 

8 0 C H 0 L D ( K r J » L ) = C H 0 L D ( K , j R L ) - M I N 
C H 0 L D ( K » J » L ) = M A X 0 ( 0 » C H O L D ( K , J » L ) > 6 l C O N T I N U E 
0 0 7 9 L = 1 » I R 0 W S 
I F ( I « , 3 S ( R M A T R X ( L » J ) ) - 9 9 9 ) 6 7 , 7 9 * 7 9 

6 7 R M A T R X ( L , J ) = R M A T R X ( I . , J ) - M I N 
7g C O N T I N U E 
8 0 C O N T I N U E 

R E T U R N 
E N D 
S U B R O U T I N E A L T E R ( L O O K , N F L A G , N 0 D E » N N 0 U E , K R E D C D » M , N , C H O L D » F I N D C , 

X T H E T A » M R O W » M C O L » I C O U M T ) 
I N T E G E R T H E T A I » T H E T A 2 , T H E T A , C D l M E N , F l N D C , C H O L D 
C D I M E N = M + 2 * N 
D I M E N S I O N C H 0 L D ( 2 5 , 2 5 , 5 > » 

X F I N D C ( 2 5 , 2 5 ) , K R E D C D t 2 s » 2 5 ) » 
X N 0 D E ( 2 5 » 2 5 » 5 Q ) , I M A T ( 2 ^ , 2 5 » 5 ) » J M A T 1 2 5 » 2 5 ) 9 
X J F I N 3 ( 2 5 , 2 5 ) , L 0 H 0 L ( 2 5 , 2 5 ) 

T H E T A = - 1 
MROW=0 
MC0L=0 
D O 89 I = 1 # C D I M E N 
DO 8 9 J = 1 » C D I M E N 
I F ( < R E D C D ( I » J ) . N E . O ) G O TO 8 9 
K R £ D c D ( I , J ) = 9 9 9 
M I N R 0 W = 9 9 9 
D O 19 L = 1 ' C D I M E N 
I F ( I A B S ( K R E D C D ( I » L ) ) - V , I N R O W ) 9 » l 9 » 1 9 

9 M l N R C W = K R E D C D ( I » L ) 
1 9 C O N T I N U E 

M I N C 0 L = 9 9 9 
DO 39 K = 1 » C D I M E N 
I F ( I A B S ( K R E D C D ( K » J ) J - M I N C O L ) 2 9 » 3 9 » 3 9 

2 9 M I N C 0 L = K R £ D C 3 ( K # J ) * 
3 9 C O N T I N U E 

K R £ D c D ( I , J ) = o 
T H E T f l = M I N R O W + M I N C o L 
I F ( T H E T A 1 , G E , 9 9 9 ) T H E T A l = 9 9 9 
N c X T = 9 9 9 
l P R S S R = F l N D C ( I r J ) 
L S A V E = C H O L D ( I » J » I P R S S R ) 
C H O L D ( I » J » I P R S S R ) = 9 9 9 
30 59 K P R S 5 R = 1 , N I F ( I : 3 S ( C H 0 L D ( I » J » K P R s S R ) ) - N E X T ) 4 9 , 5 9 , 5 9 

4 9 N E X T = C H 0 L 3 ( I , J » K P R S 5 R ) 
5g C O N T I N U E 
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C H O L D ( I # J » I P R S S R ) = L S A y E 
I F ( 9 9 9 - N E X T ) 6 1 » 6 1 . 6 9 

6l T H E T A 2 = 9 9 9 
3 0 TO 79 

69 T H E T,-2=N E X T - L S A V E : 
I F ( T M E T A 2 . L T . 0 ) T H E T A 2 = 0 

7 9 I T E S T = M I N 0 ( T H E T A 1 , T H E T A 2 ) 
l F ( I , G T . M , A N D . v J . S T T M ) I T E S T = 0 
I F ( I T E S T . L T . T H E T A ) G O T O 8 9 
I F ( L 0 0 K . E Q » 0 ) G 0 T O 1 9 g 
I F ( I T E S T , G T . T H E T A ) 6 0 T 0 l 9 9 
I X B = M R O W 
I X C = M C 0 L 
I V A R = 0 
l F ( l x B , E Q , 0 . 0 R . I X C t E Q . 0 ) G O T O 1 9 9 

IO7 D O 1 g 9 H = 1 »C D I M E N 
DO 1 0 9 J 1 = 1 » C D I M E N 
J F I N D ( I 1 . J 1 ) = F I N D C ( I 1 , J 1 ) 

1 0 9 C O N T I N U E 
DO H 3 U = l » c D I M E N 
0 0 1 1 3 J 1 = 1 » C D I M E N 
DO H 3 K = 1 » N 
I M A T ( I 1 » J l » K ) = C H O L D < I i # J 1 # K ) 

H 3 C O N T I N U E 
I A B C r F l N D C ( M R O W r M C o L ) 
DO H 9 I l = l - C D I M E N 
D O 1 1 9 J 1 = 1 , C D I M E N 
J M A T ( I l » J D = K R E D C D ( I l , J l ) 

1 1 9 C O N T I N U E 
N A B D r N F L A G 
D O 1 2 3 I l = l r C D I M E N 
D O 1 2 3 J l = l , c D I M £ N 
L 0 H 0 L < I 1 » J D r O 1 2 3 C O N T I N U E 
M N O D = N N O D E 
j C O T r l C O U N T 
C A L L U P D A T K ( J F I N D » I X B , I X C . I M A T . C D I M E N . M » N . I A B C , J M A T » 

X N A 3 D , N O D E * M N O D * J C O T » L o H O L ) 
C A L L R E D U C E ( I M A T , C D I M £ N » N - C D I M E N * C D I M E N » J M A T . I S U M ) 
I V A R = I V A R + 1 
l F ( I v A R . E a . 2 ) G 0 TO 1 3 i I R E D s l S U M 1 X 3 = 1 
I X C = J 
GO TO 1 0 7 

I3i I F ( I R E D . L T . I S 0 M ) G 0 T O 8 9 
1 9 9 T H E T A = I T E S T 

M R O W = I 
M C 0 L = J 

89 C O N T I N U E 
R E T U R N 
E N D 
S U B R O U T I N E U p D A T l ( K P R s S R r C D l M E N » M K O w » M C O L . N . C H O L O ) 
I N T E G E R C H O L D » C D I M E N 
D I M E N S I O N C H 0 L D ( 2 5 . 2 5 . 5 ) 
K S T 0 P = K P R S S R - 1 
K S T A R T = K P R S S R + 1 
I F ( K S T 0 P - D 2 l r 7 » 7 

7 DO 19 K = 1 , K S T 0 P 
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D O 9 J=1 , C D I.MEN 
CH0LD(MR0W» J , K)=999 
CH0LD(MC0L,J,K)=999 

9 C O N T I N U E 
DO 19 I = 1 , C D I M E N 
CH0LD(I»MC0L R K)=999 
CH0LD(I»MR0W,K)=999 

19 C O N T I N U E 
2l lF(N - K S T A R T)tfl,23r23 
23 D O 39 K = K S T A R T»N 

D O 29 J=l»CDlMEN 
CHoLD (MROW»J ,K)=999 
C H O L D ( M C O L , J R K)=999 

29 C O N T I N U E 
DO 39 I=1 » C D I M E N 
CH0LD(I#MC0L.K)=999 
CH0LD(I#MR0W ,K)=999 

39 C O N T I N U E 
*1 R E T U R N 

E N D 
S U B R O U T I N E UpDAT2(KPRsSR»CDlMEN,MR0w»MC0L»M,N»CH0LD»N FLAS, 

XlC0UNT.N0DE»NN0DE) 
I N T E G E R CDlMEN , C H O L L > 
D I M E N S I O N C H O L D <25,25,5> » N O D E(25>25,50) 
KINTL=M + K P R S S R 
K F I N ^ L = M + N + K P R S S R 
N L E V E L=N-1 
MARKrO 
DO 3 I = 1 , C D I M E N 
D O 3 J=1,C0IMEN 
lP=NODEtI»J»NNODE)-lOo 
l F ( l p # N E F K P R S S R ) G O TO 3 
MARK= M A R K>1 

3 C O N T I N U E 
U 0 3 = K I N T L 
N P A T H=1 
DO 6 K M A R K =1,M A R K 
l F ( N P A T H T E Q . 0 ) G O TO 6 
JJ03=0 
D O 4 J = 1 , C D I M E N 
I F < N O D E(IJ03,J » N N O D E) #L£tO)GO T O 4 
JJ03cJ 

4 C O N T I N U E 
I F { J j O 3 . E Q . 0 ) G O TO 5 
U 0 3 = J J 0 B 
GO TO 6 

5 NPATH=0 
6 C O N T I N U E 

I F ( N P A T H , E O » l « A N D • J J O Q # E Q » K F I N A L ) G O TO 89 
37 J S T A R T = M + N+1 

J S T O P = K F I N A L - I 
L S T A R T = K F I N A L + I 
L S T 0 P = M + 2 * N 
I F (JST0P-JSTART)43,39,39 

39 D O ifi J=JSTARTrJSTOP 
C H O L D ( M C O L » J , K P R S S R ) = g g 9 

4i C O N T I N U E 
43 I F ( L S T 0 P - L S T A R T ) 4 9 , 4 5 . 4 5 
<*5 DO if7 J = L S T A R T . L S T O P 



CHOLO(MCOL *J,KPRSSR)= 999 
47 CONTINUE 
49 M S T A R T=M+1 

M S T O P = K I N T L - I 
N S T A R T r K I N T U l 
NSTOP= M + N 
IF(MST0P-MSTART)63,59,59 

59 DO 61 I=MSTART»MSTOP 
CHOLD(I *MROW,KPRSSR)=g99 

61 CONTINUE 
63 IF(NST0P-NSTART>69,65,65 
65 DO 67 I=NSTART»NSTOP 

CHOLO(I»MROw,KPRSSR)=g99 
67 CONTINUE 
69 CHOLD(KINTL,KFINAL,KP RSSR)=999 

CHOLD(MCOL» MROW 9KPRSSp)=999 
70 lF(NFLA6 tLT,NLEVEL)G0 TO 76 

DO 73 J=1»CDIMEN 
I F ( C H 0 L D ( M R 0 W , J » K P R S S R ) . N E , 9 9 9 ) 6 0 T O 73 
CHOLD(MC0L»J,KPRSSR)= 999 

73 CONTINUE 
DO 77 I=l»CDlMEN 
I F ( C H O L O ( I » M C O L » K P R S S R ) . N E . 9 9 9 J G 0 TO 77 
CHOLD(I> MROW,KPRSSR)=g99 

77 CONTINUE 
78 DO 79 J=l,CDlM £ N 

CHOLD(MROW»J,KPRSSR)= 999 
79 CONTINUE 

DO 81 I=1»CDIMEN 
CHOLD(19MCOL,KPRSSR)=g99 

81 CONTINUE 
G O TO 99 

89 DO 91 I=1»CDIMEN 
DO 91 J=1»CDIMEN 
CHOLD(I> J ,KPRSSR)=999 

9l CONTINUE 
99 RETURN 

END 
SUBROUTINE UpDATK(NPRiME,FlNDC,M R O W , M C O L ,CHOLDrCDlMEN,M » N , 

XKPRSSR,KREDCDrNFLAGrNoOE»NNODE,lCOUNT,KHOLD) 
INTEGER C H O L D » C D I M E N , F I N D C 
DIMENSION CH0LD(25,25,5)»FINDC(25»25), 

XKREDC0(25»25),N0D£(25,25»50), 
XKH0LD(25,25) 

K I N T L = M+KPRSSR 
KFINAL= M+N+KPRSSR 
N L £ V E L=N-1 
DO 2 I=l,COlMEN 
DO 2 J = 1 , C D I M E N 
IF(N0DE(I,J,NNODE) , U E %0)GO TO 2 
K=NOPE(I,J»NNODE)-lOO 
IF(K,EQ.KPRSSR)G0 TO 2 

DO 1 LIND=1 » N 
CHOLD(J*MROw.LIND)=99 9 

1 CONTINUE 
K R E D'D(J,MR0W)=999 
FINDC <J»MR0W)=999 

2 CONTINUE 
M A R K =0 



D O 3 I s l . C D l M E N 
D O 3 J = 1 . C D I M E N 
I P = N 0 D E ( I » U * N N O D E ) - l O o 
l F ( l p . N E T K P R S S R ) S O T O 3 
M A R K = M A R K + 1 

3 C O N T I N U E 
U O B r K l N T L 
N P A T H = 1 
D O 6 K M A R K = 1 , M A R K 
I F ( N P A T H , E Q . 0 ) G 0 T O 6 
J J O B r O 
D O t* J = 1 , C D I M E N 
I F ( N O D E ( I J 0 3 . J . N N O D E ) . L E . O ) G O T O 
J U O S r J 

4 C O N T I N U E 
I F ( J J O B . E Q « 0 ) G O T O 5 
U O B r J j O B 
G O T O 6 

5 NPATH=0 
6 C O N T I N U E 

I F ( N P A T H . E Q . l . A N D . J J 0 9 , E Q , K F I N A L ) G O T O 7 9 
D O l Q I - U . C D I M E N 
D O 1Q J = 1 , C D I M E N 
KHOLD (I * J ) = N O D E < I * J t NkjODE ) 

10 C O N T I N U E 
ICriAINrKINTL, 
D O 15 I L 0 0 P = 1 > M 
J J O B r O 
-DO 1 2 J = 1 » C D I M E N 
l F ( K H O L D ( I C H f l I N . J ) t L E , 0 ) G O T O 1 2 
K = K H O L D ( l C H A i N » J ) - 1 0 0 
l F ( K t N E . K P R S S R ) G O T O 12 
J J O B r J 
K H O L D < I C H A l N . J ) = 0 

1 2 C O N T I N U E 
I F ( J J O 3 , E Q . 0 ) G O T O 2 1 
I C H A I N = J J O B 

1 5 C O N T I N U E 
2l J C H A I N = K F I N A | _ 

D O 2 5 J L 0 0 P = 1 » M 
U 0 3 = 0 
D O 2 3 I = l r C D l M E N * 
I F ( K H 0 L D ( I » J C H A I N ) # L E , 0 ) G O T O 2 3 
K = K H O L D < I » J C H A I N ) - 1 0 0 
l F ( K , N E . K P R S S R ) G O T O ? 3 U03rl 
K H 0 L D ( I # J C H A I N ) = 0 

2 3 C O N T I N U E 
I F ( I J 0 3 . E Q « 0 ) G O T O 2 7 
J C H A I N = I J 0 3 

2 5 C O N T I N U E 
2 7 KCHErK=0 

DO 3 3 I I N D = 1 , C D I M E N 
DO 3 3 J I N D = 1 , C D I M E N 
I F ( K C H E C K . G T . O ) G O T O 35 
I P ( K H 0 L D ( I I N D » J I N D ) . L E , 0 ) G O TO 3 3 

. K = K H O L D { I I N D , J I N D ) - I 0 o 
I P ( K . N E . K P R S S R ) G 0 T O 3 3 K C H E C K s l 



3 3 C O N T I N U E 
I F ( K C H E C K . E Q . O . A N D , N F u A G . L T . N L E V E L ) So T O 8 

3 5 K R E D C D ( I C H A I N » J C H A I N ) = 9 9 9 
C H O L D ( I C H A l N , J C H A l N » K p R S S R ) = 9 9 9 
F I N D C ( I C H A I N , J C H A I N ) = 9 9 9 

8 D O 9 J = 1 . C D I M E N 
K R E D C D ( M R 0 W , J ) = 9 9 9 
F I N D C ( M R 0 W » J ) = 9 9 9 

9 C O N T I N U E 
D O 19 I = l . C D l M E N 
K R E D C D ( I » M C 0 L ) = 9 9 9 
F I N 0 C ( I » M C 0 L > = 9 9 9 

1 9 C O N T I N U E 
D O 2 9 J = 1 , C D I M E N 
K R E D C D ( M C 0 L , J ) = C H 0 L D ( M C 0 L » J » K P R 5 S R ) 
F l N D C < M C O L * J ) = K P R S S R 

2 9 C O N T I N U E 
D O 31 I = l , C O l M E N 
K R E D C D ( I • M R O W ) = C H O L O ( 1 . M R O W * K P R S S R ) 
F l N D C < I » M R O W ) = K P R S S R 

3 l C O N T I N U E 
J S T A R T = M + N + 1 
J S T O P = K F I N A L - l 
L S T A R T = K F I «n » A L+1 
L S T 0 P = M + 2 * N 
I F ( J S T O P - J S T A R T ) H 3 # 3 9 , 3 9 

3 9 D O 41 J = J S T A R T » J S T O P 
K R E D C D ( M C 0 L . j ) = 9 9 9 
F I N D C ( M C 0 L # J ) = 9 9 9 

^ 1 C O N T I N U E 
••3 I F ( L 5 T 0 P - L S T A R T ) 4 9 . 4 5 , 4 5 
**5 D O 47 J = L S T A R T , L S T O P 

K R £ D C D ( M C 0 L , j ) = 9 9 9 
F l N 0 c ( M C 0 L » J ) = 9 9 9 

**7 C O N T I N U E 
4 9 MSTART=M+1 

M S T O P = K l N T L - t 
N S T A R T = K I N T L + i 
N S T O P = v ) + M 
I F ( M S T O P - M S T A R T ) 6 3 , 5 9 , 5 9 

5 9 D O 61 I = M S T A R T » M S T O P 
K R E D C D ( I . M R O W ) = 9 9 9 
F I N D C ( I * M H 0 W ) = 9 9 9 

61 C O N T I N U E 
63 I F ( N S T O P - N S T A R T ) 6 9 . 6 5 , 6 5 
65 D O 6 7 I = N S T A R T » N S T O P 

K R E D C D ( I . M R O W ) = 9 9 9 
F l N D c ( I » M R 0 W ) = 9 9 9 

67 C O N T I N U E 
69 K R E D C D ( K I N T L , K F I N A L ) = 9 9 9 

G O T O 1 9 9 
7 9 D O 83 J = 1 , C D I M E N 

K R E D c D ( M R O W , j ) = 9 9 9 
F l N D c ( M R 0 W ' J ) = 9 9 9 

83 C O N T I N U E 
D O 8 4 I = 1 » C D I M E N 
K R E 0 C D ( I , M C 0 L ) = 9 9 9 
F I N D C ( I » M C 0 L ) = 9 9 9 

84 C O N T I N U E 



DO 91 I=1,CDIMEN 
DO 91 J=1»CDIMEN 
I F ( F I N D C ( I » J ) , N E , K p R S S R ) G O TO 91 
KREDCD(I.J>=999 
DO 89 K=1*N 
lF(lABS(CHOLD(I#J#K))-KRE0CD(IrJ))8l»8l»89 

8i K R £ D c D ( I . J ) = c H O L D ( I » J , K ) 
FINDC(I»J)=K 

89 CONTINUE 
9l CONTINUE 

N F L A G = N F L A G + I 
I F ( N ? L A S , L T # N L E V E L ) G O TO 199 
DO 97 K=1,N 
LROWrM+K 
LCOL=M+N+K 
I F ( F I N D C ( U R 0 W » L C 0 L ) . E Q , 9 9 9 ) G 0 TO 97 
I P R O = F I N D C ( L R O W » L C O L ) 
F ? N D c ( L R 0 W » L c 0 L ) = 9 9 9 
K R £ D c D ( L R 0 W . u C 0 L ) = 9 9 9 
CHOLD(LROW»LcOL #IPRO) =999 

97 CONTINUE 
139 DO 135 Irl#CDlMEN 

DO 1 3 5 J=1»CDIMEN 
KHOLD(I#J)=0 

135 CONTINUE 
D O 137 K=1»M 
KH0LD<K»K)=999 

137 CONTINUE 
KL£FT=0 
DO 141 I=1»CDIMEN 
DO 141 J=1,CDIMEN 
I F ( I A B S ( K R E D C 0 ( I . J ) ) . E Q , 9 9 9 ) G 0 TO 141 
I F ( K L E F T # 3 T , O ) G O TO U l 
K L £ F T = F I N D C ( I . J ) 

1*H CONTINUE 
DO 149 I=1»CDIMEN • 
DO 149 J=1»CDIMEN 
lF(NODE(I,J,NNODE).LE.O)GO TO 149 
K=NODE(I.J»NNODE)-100 
IF(K.NE.KLEFT)G0 T O U9 
KHOLD«I»J)=999 
DO 143 Jl=lrCOIMEN 
lF(KH0LD ( I»Jl).NE.999) GO TO 143 
KHOLD( J » J D = 9 9 9 

1^3 C O N T I N U E 
DO 147 I l = l » c D I M E N 
I F ( K H 0 L D ( U » J ) . N E » 9 9 9 ) G 0 TO 147 
KH0LD(I1»I>=999 

1^7 CONTINUE 
149 CONTINUE 

DO 159 I=lrCDlMEN 
DO 159 J=1,CDIMEN 
I F ( K H 0 L D ( I # J ) ,N E , 9 9 9 )Q O TO 159 
KREDCD(I,J)=999 
CH0LD(I^J»KLEFT)=999 
FINDC(I»J)=999 

159 CONTINUE 
199 IF(NPRIME.EQ,0)GO TO 299 

NMACH=0 
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D O 2 0 7 K = 1 » N 
K M A C H=0 
DO 2 0 3 I = 1 »C D 1M E N 
DO 2 0 3 J = 1 » C D I M E N 
L C O L V = M + N + I 
I F ( I , G T . M , A N D . J . 3 T . L C O U V ) S O T O 2 0 3 
l F ( N 0 D E < I r J , N N O D E ) - 1 0 0 t N E . K ) G O T O 2 0 3 
I F ( K M A C H , G T , o ) G O T O 2 o 3 
K M A C H=1 

2 0 3 C O N T I N U E 
NMACH=NMACH+KMACH 

2 0 7 C O N T I N U E 
I F { N V A C H , L . T - N P R I M E ) G O T O 2 9 9 
D O 2 6 9 K r i # N 
K M A C H=0 
D O 2 1 7 I r l » C D l M E N 
D O 2 1 7 J = 1 » C D I M E N 
L C O L V = M + N + I 
I F ( I , G T . M . A N D . J . S T . L C O L V ) G O TO 2 1 7 
l F ( N O D E C l » J » W N O D E ) - 1 0 o # N E , K ) G O T O 2 l 7 
l F ( K M A C H # G T . o > S O TO 2 i 7 
K M A C H = 1 

2 1 7 C O N T I N U E 
l F ( K M A C H # G T . o > G O T O 2ft9 
N F L A G = N F L A G + I 
D O 2 1 9 I = 1 - C D I M E N 
D O 2 1 9 J = 1 » C Q I M E N 
I1= M+K 
J1 = M + N+K 
K R E D c D ( H , I ) r 9 9 9 
K R E D C D ( J , J l ) = 9 9 9 
C H 0 L D < I » J # K ) = 9 9 9 
I F ( F l N D C ( I » J ) . N E t K ) G O T O 2 1 9 
K R E D C D ( I , J ) = 9 9 9 
D O 2 1 5 Kl=lrN 
I F ( C H O L D ( I » J , K 1 ) - K R E D C D ( I » J ) . G T . U ' G O T O 2 l 5 
K R E D c D ( I , J ) = c H O L D ( I » J , K l ) 
F l N D c < I » J ) = K l 

2 1 5 C O N T I N U E 
2 1 9 C O N T I N U E 

I F ( N F L A G , L T , N L E V E L ) G O T O 2 6 9 
D O 2 3 5 I = 1 » C D I M E N 
D O 2 3 5 J = 1 » C Q I M E N 
K H O L 3 < I » J ) = 0 

2 3 5 C O N T I N U E 
DO 2 3 7 K 1 = 1 , M 
K H 0 L L J ( K 1 » K 1 ) = 9 9 9 

2 3 7 C O N T I N U E 
K L E F T = 0 
D O 2 4 1 I s l » C D l M E N 
DO 2 4 1 J = 1 » C D I M E N 
I F ( K R E D C D ( I , J ) , E Q , 9 9 9 ) G 0 T O 2 4 1 
l F ( K L E F T . G T , o ) 6 0 T O 2 i U 
K L E F T = F I N 0 C < I , J ) 

2 4 i C O N T I N U E 
D O 2 4 9 I = 1 » C D I M E N 
D O 2(+9 J = 1 » C D I M E N 
I F ( N 0 D E ( I » J » N N 0 D E ) T L E . 0 ) 6 0 T O 2 4 9 
K l = N O D E ( I # J » M N O D E ) - 1 0 o 



lF(Kl,NE fKLEFT)GO TO 2 4 9 
KH0L0(I»J)=9<?9 
DO 243 J l = l » c D l M E N 
IF(KH0LD(I»J1).NE.999)G0 TO 243 
KH0LD<J'J1>=999 

2«*3 CONTINUE 
DO 247 Il=l,cOlMEN 
IF(KH0LD(I1.J),NE.999)G0 TO 247 
K H 0 L D d l . D = 9 9 9 

2^7 CONTINUE 
2^9 CONTINUE 

DO 259 I=1»CDIMEN 
DO 259 J=1»CDIMEN 
lF(KH0LD(I»J).NE f999)s0 TO 259 
KREDCD(I.J)=999 
CH0LD(I,J.KLEFT)=999 
FINDC<I»J)=999 

259 CONTINUE 
269 CONTINUE 
299 RETURN 

END 



APPENDIX B 

COMPUTING TIMES FOR EXPERIMENTS WITH 

THE EXACT ALGORITHM 
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Table 8. Computing Times for Distinct Processor 
Problems Where N = 2 

Replication Average 

1 2 3 4 5 
Lomputi] 

Time 

5 .0042 .0018 .0019 .0053 .0034 .0033 

6 .0031 .0139 .0189 .0182 .0066 .0121 

7 .0441 .0248 .0067 .0582 .0131 .0294 

8 .1000 .0030 .0387 .0392 .0647 .0491 

9 .0377 .0269 .0393 .1367 .0097 .0501 

10 .2074 .0867 .1560 .0591 .0376 .0734 

11 .0217 .3264 .1148 .3245 .1232 .1821 

12 .1170 .5634 .4029 .3318 .2868 .3404 

13 . 7224 .3651 .4004 .1942 .2626 .3889 

14 1.0696 .9999 .8150 .2839 1.0326 .8402 

15 1.3212 2.3999 1.8230 1.1580 2.3538 1.8112 
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Table 9. Computing Times for Distinct Processor 
Problems Where N = 3 

Replication Average 
M Computing 

1 2 3 4 5 Time 

5 .0128 .0097 .0054 .0138 .0061 .0096 

6 .0223 .0148 .0218 .0234 .0292 .0223 

7 .0293 .0444 .0286 .0575 .0441 .0408 

8 .0874 .0966 .1618 .0310 .2193 .1192 

9 .2129 .0670 .2868 .0969 .1831 .1693 

10 .1591 .4161 .7231 .2264 .1100 .2000 

11 1.0397 .6136 .3208 .6107 .5470 .6264 

12 .8000 1.2648 .2892 .8526 .8314 .8076 

13 1.3289 .2875 1.4156 1.5990 1.3366 1.1935 

14 1.7630 .8595 2.1749 1.5339 3.1996 1.9062 

15 2.8717 1.2893 3.8757 2.3056 2.4618 2.5608 
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Table 10. Computing Times for Distinct Processor 
Problems Where N = 4 

Replication Average 
M Computing 

1 2 3 4 5 Time 

5 .0157 .0421 .0267 .0367 .0202 .0283 

6 .0805 .0549 .1417 .0171 .1044 .0797 

7 .0880 .0132 .1143 .0945 .1059 .0832 

8 .2271 .2184 .3935 .1879 .4526 .2959 

9 .4505 .1438 .7109 .4505 .6536 .4819 

10 .7211 .7261 .4662 .3944 1.2942 .7204 

11 1.0881 .9028 .5455 1.2959 2.3075 1.2280 

12 2.1433 1.8081 1.6916 1.0486 1.1711 1.5725 

13 2.0304 2.1644 2.9316 1.9775 2.8996 2.4007 

14 4.1284 4.6534 4.3909 

15 8.2560 8.0182 8.1371 
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Table 11. Computing Times for Distinct Processor 
Problems Where N - 2 and Where Due Dates 
are Moderately Constraining 

Replication Average 
PI 1 2 3 4 5 Time 

5 .0038 . 0025 .0020 .0054 .0049 .0037 

6 .0030 .0408 .0196 .0031 .0080 .0149 

7 .0453 .0231 .0096 .0560 .0159 .0300 

8 .1694 .0506 .0317 .1381 .0552 .0890 

9 .0870 .0058 .1151 .1743 .2649 .1294 

10 .1234 .0287 . 3248 .0975 .0892 .1327 

11 .1598 . 2536 .2652 .1076 .2008 .1974 

12 .2893 .5459 .3368 .1340 .4635 . 3539 

13 1.2105 . 2761 .4065 .4336 . 5786 .5811 

14 1.0297 .8966 .9244 .6231 1.0215 .8991 

15 2.1073 1.3271 2.0213 1.9721 2.2407 1.9337 
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Table 12. Computing Times for Distinct Processor 
Problems Where N * 2 and Where Due Dates 
are Highly Constraining 

Replication Average 
M n . Computing 

1 2 3 4 5 Time 

5 .0053 .0020 .0195 .0087 .0022 .0075 

6 .0668 .2155 .0112 .0266 .0095 .0659 

7 .6407 .0284 .0092 .0215 .0063 .1412 

8 .1393 .0035 .2460 .5730 .0177 .1959 

9 .0205 .1249 .5164 .3657 .0287 .2112 

10 .0559 .5149 .0752 .4327 .2448 .2647 

11 .4507 .5492 .4129 .2679 .7183 .4798 

12 .7899 1.0608 .3109 1.0872 .3762 .7250 

13 .8964 1.0239 .5673 .8219 .9611 .8541 

14 .6469 1.9771 2.0611 1.3702 2.4062 1.6923 

15 2.7193 3.0111 1.9556 1.3675 3.4550 2.5017 



APPENDIX C 

FORTRAN V CODE FOR RANDOM SCHEDULING 
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INTEGER C C O S T . C O I M E N 
DIMENSION CC0ST<25,25#5>,MjOB<i5),N A R R A Y(i5,5),MACH(5) 
READf5.29)M»N,NTYP£»NPRlM£ 

29 FORMAT( ) 
C D I M E N = M+2*N 
READ(5,2 qJ < C(CCOSTiI»J.Kj >J=l»CDlMEN)• 

*I=lrCDlMEN) , K=1»N) 
J08S=0 
DO 51 1=1,15 
MJOB(I)=0 

51 CONTINUE 
DO 55 1=1,15 
DO 55 Jrl,5 
NARRAY(i,J)=0 

55 CONTINUE 
DO 57 1=1,5 
MACH<I)=0 

57 CONTINUE 
103 CALL MGEN(M,IS,MNExT) 

IF(MJOBtMNEXT) #EO#i)GO TO 103 
MJOB(MNEXT)=i 
J 0 B S = J 0 B S + 1 
C A L L NGEN{M,N,N P R I M E,JOBS tNTYPE,IU»MNEXT»MACH»NARRAY) 
I F ( J 0 B S # L T . M ) G 0 TO 1 0 3 
LTOTAL=o 
DO 131 I = 1 , N 
IJOB=M+i 
WRITE(6.108)I,IJ08 

108 FORMAT(iH0,13X»'S C H E D U L F* »l3»3x, » = » ,14) 
111 IF(MACH.I).EQ . O J G O T o 127 

INDEX=MACH(I) 
DQ 121 j=l,INDEX 

115 DO 121 K=1,M 
I F ( N A R R A Y ( K » I ) . N E . J ) G O TO 121 
LTOTAL=LTOTAL+CCOSTtIJOP,K fI) 
WRITE(6.119)K 

119 F0RMAT(30X»I3) 
117 IJCB= K 
121 CONTINUE 
127 JJOB=M+ N+I 

WRITE(6,!19)JJ0B 
129 L T O T A L = L T O T A L + C C O S T < U O P , ^ J O B , I ) 
131 CONTINUE 

WRITE<6,169)LT0T»AL 
189 F O R M A T ( I H 0 , 1 3X , « T O T A L CCSTt ,MX, i = t, jtf) 

STOP 
END 



APPENDIX D 

FORTRAN V CODE FOR SHORTEST CHANGEOVER NEXT 

OR MINIMUM TIME SUBSEQUENCE SCHEDULING 



INTEGER CCOST»CDIMEN 
R E A O ( 5 » 2 9 ) M . N » I X » I A , I B » N T Y P E , N P R 1 M E # L 0 0 K 

29 FORMAT( ) 
DIMENSION CCOST (25*25,5) 
LTOTAL=0 
JOBSsO 
NTOTALsO 
IPRSSR=0 
CDIMEN=M+2*N 
TlME=0, 
R E A D ( 5 , 2 9 ) ( ( ( C C O S T ( I , j , K ) » J = 1 . C D I M E N ) > 

*I=1»C0IMEN)»K=1»N) 
9l IF(J03S.GE»M)G0 TO 1 9 5 

I F(NPRIME.EQ,0)GO TO 93 
I F ( M - J 0 3 S , L E # N P R I M E - N T 0 T A L ) G 0 TO 181 

93 MlNC=999 
IF(NTYPE.EQ,l)GO T O 9^ 
IPRSSRsIPRSSR+1 
DO 33 I=1»M 
DO 33 J=1»M 
IF ( L O O K.EQ.O)GO TO 31 
MlNR0W=999 
DO 3C K=1,CDIMEN 
IF(K,EQ.I)G0 TO 30 
lF(MINROW,LT,CCOST(J. K.IPRSSR))GO TO 30 
MlNRCWrCCOST(J.K.lPRSsR) 

3 0 CONTINUE 
ITEST=M+IPRSSR 
LTEST=CCOST(I. J# I P R S S R ) 4-CCOST(ITtST, I , IPRSSR)+MINROW 
IF(MINC.LE.LTEST ) 6 0 T o 3 3 
M I N C = L T E S T 
U O B s I 
J J 0 3 = J 
GO TO 3 3 

3 1 I F ( M I N C . U T « C c O S T ( I . J . x P R S S R ) ) G O T O 3 3 
M l N C = C c O S T ( I , J » I P R S S R j 
U O B r l 
J J O B = J 

33 CONTINUE 
GO TO 97 

94 DO 95 I=1» M 
DO 95 J=1* M 
DO 95 K=1*N 
lF(It.00K.EQ.0)G0 T O <U 
MlNR0W=999 
DO 4 0 KIND=1,CDIMEN 
IF(KIND.EQ.I)GO T O 40 
I F ( M I N R O W . L T , C C O S T ( J . K I N D . K ) ) G O TO 4 O 
MINR0W=CC0ST ( J»KIN0»K) 

40 CONTINUE 
ITEST=M*K 
L T E S T = C C O S T ( I . J . K ) + C C o S T ( I T E S T » I » K ) + M l N R O W 
IF(MINC.LE.LTEST ) G 0 T O 95 
MINC=LTEST 
U O B = I 
J U 0 3 = J 
I P R S S R = K 
GO TO 95 

<*l I F ( M I N C . L T . C c O S T d . J . K ) )GO TO 95 
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M 1 N C = C C 0 S T < I , J » K ) 
U O B = I 
JJ03=J 
IPRSSR= K 

95 CONTINUE 
97 INTL=,M+IPRSSR 

I F I N ^ L = M + N + I P R S S R 
WRITE<6#108)IPRSSR,IN TL 

108 FORMAT(1H0»13X» 'SCHEDULE'•I3»3X>• = •914) 
WRITE(6»119)IJ0B 
WRlTE(6»ll9)jJ0B 

119 FORMAT(30X'I3> 
L T 0 T A L = L T 0 T A L + C C 0 S T ( I N T L » I J 0 B . I P R 5 5 R ) 4 . C C 0 S T ( I J 0 B » J J 0 B , I P R S S R ) 
DO 141 J=1»CQIMEN 
DO mi K=1»N 
CC05T(IJ0B» J , K)=999 
CC0ST(INTL» J , K)=999 
CC0ST( J#IJ0B , K)=999 
CC0S7(J»JJ0B ,K)=999 

l4i CONTINUE 
JOBSrJOBS+2 
NTOTAL=NTOTA L+l 
U O B r J J O B 

161 IF{J0BS.GE . M)G0 TO I9i 
IF(NPRIME.EQ,0)GO TO 163 
I F ( M - . J 0 B 5 .G T , N P R I M E - N T 0 T A L ) G 0 TO 163 
W R I T E(6»119)IFINAL 
LTOTAl.=LTOTA L+CCOSTlIjOB,IFINAL#IPRSSR) 
GO TO 181 

I63 KMIN=999 
IDIMEN=CDIMEN 
I F ( N T O T A L . E Q # N P R I M E . O R , N T O T A L , E Q . N ) I D I M E N = M 
DO 165 K=1#IDIMEN 
IF ( K,EQ #IJ03)G0 TO I 6 5 
IF(M-J0BS.EQ,1)G0 T O t*4 
IF(LOOK.EQ.O)GO TO 44 
IF< K,GT . M)GO TO 44 
MlNR0W=999 
DO 43 KIND=1,CDIMEN 
IF(KIND»EQ#IJ0B)G0 T O 43 
IF{MINR0W.LT,CC0ST ( K, KIND.IPRSSR))GO TO 43 
MlNR0W=CC0ST ( K»KIND»IpRS5R) 

43 CONTINUE 
L T E S T = C C O S T ( I J O B . K , I P R s S R ) + M I N R O W 
IF(KMIN.LE»ITEST)G0 T o 165 
KMlNrLTEST JJOB= K 
GO TO 165 

44 I F ( C C 0 S T ( I J 0 B » ! U I P R S S R ) . G E . K M I N ) G Q TO 165 
JJ09= K 
KMiN=CCOSTUjOB , K » l P R s S R ) 

I65 CONTINUE 
WRITE(6»119)JJ0B 
L T O T A L = L T O T A L + C C 0 S T C IJOB 9JJOB»IPRSSR) 
DO 1 71 J=1»CDIMEN 
DO 17I K=1 » N 
C C 0 S T < U 0 3 » J . K ) = 9 9 9 
CC0ST(J#JJ0B , K)=999 

l7i CONTINUE 



U O B ^ J J O B 
IF(IJ03.NE.IFINAL ) G 0 T 0 179 
OO 175 I=1»CDIMEN 
DO 1 7 5 J=1»CDIMEN 
CCOST(I#J#IPRSSR ) = 9 9 9 

1 7 5 CONTINUE 
I F ( J 0 3 S . L E # M - 2 ) G O T O 91 
G O T C 1 8 1 

l7g J03S=J0BS*1 
G O TO 161 

1 8 1 IIND=M+1 
JlND=M+N 
MINC = 9 9 9 
l F ( N T Y P E T E Q , i ) G O T O lfl2 
IPRS5R=IPRSSR+1 
DO 1 8 6 I = H N D » J I N D 
DO 1 8 6 J=1»M 
I F ( L O O K , E Q . O ) G O T O 5 9 
ITEST=.M+N+IPRSSR 
L T E S T = C C O S T ( I » J » I P R S S R ) + C C 0 5 T ( J # I T E s T - I P R s S R ) 
IF(LTEST.GT.M1NC)G0 T o 5 9 
MlNCrLTEST 
U 0 3 = I 
J J 0 3 = J 
GO TO 186 

5 9 I F ( M I N C . L E . C C 0 S T ( I . J . I P R S S R > > G 0 T O 186 
M l N C = C C O S T ( I . J « I P R S S R ) 
IJ03=I 
J J O B = J 

1 8 6 CONTINUE 
G O TO 184 

1 8 2 D O 1 6 3 I = H N D » J I N D 
DO 1 8 3 J=1»M 
DO 1 8 3 Krl»N 
I F ( L O O K . E Q . O ) G O T O 6 9 
ITEST=M+N+K 
L T E S T = C C O S T ( i . J » K ) + C C 0 S T ( J » I T E S T » K ) 
I F ( L T E S T , G T # M I N C ) G 0 T o 183 
MlNCsLTEST 
U O B r l 
J J O B = J 
IPRSSR= K 
GO TO 1 8 3 

6 9 l F ( M l N C . L E f C c O S T ( I , J . K ) ) G O T O 1 8 3 
U 0 3 r l 
J J 0 3 = J 
IPRSSR= K 
M I N C = C C 0 S T ( I , J » K ) 

183 CONTINUE 
1 8 4 WRlTE(6 » 1 0 8)lPRSSR.IJo8 

W R I T E ( 6 » l l 9 ) J J O B 
IFINAL= M+N+IPRSSR 
WRITE(6# 1 1 9)IFINAL 
LT0TAL=LT0TAL+CC0ST<Ij03rJJ0B.IPRSSR)+CC0ST ( J J 0 B,IFlN AL#lPRSSR> 
DO 165 J=1»CDIMEN 
DO 1 8 5 Ksl»N 
C C O S T < I U 0 3 » J , K ) = 9 9 9 
C C 0 S T ( J » J J O 3 , K ) = 9 9 9 
C C 0 S T < J J 0 3 » J , K ) = 9 9 9 
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185 CONTINUE 
J03S=UOBS+l 
lF(J03S.LT*M)GO TO 18j 
GO TC 195 

I9i WRITE(6»ll9)IFINAL 
LTOTALrLTOTA L+CCOST<Ij03,IFINAL,1PRSSR) 195 WRITE(6*201>LTOTAL % 

STOP 



162 

BIBLIOGRAPHY 

1. Conway, R. W., Maxwell, W. L., and Miller, L. W., Theory 
of Scheduling, Addison-Wesley, Reading, Massachusetts, 
(1967). 

2. Panwalkar, S. S., Dudek, R. A., and Smith, M. L., 
"Sequencing Research and the Industrial Scheduling Prob
lem," presented at the Symposium on Scheduling, North 
Carolina State University, Raleigh, May 15-17, 1972. 

3. Woolsey, R. E. D., "A Survey of Quick-and-Dirty Methods 
for Production Scheduling,11 Production and Inventory 
Management, 12(1971), l(February), 60-68. 

4. Smith, M. L., "A Critical Analysis of Flow-Shop 
Sequencing," Doctoral Dissertation, Texas Tech University, 
(1968). 

5. Prunzel, J. F., "Setup Times and Setup Costs in 
Sequencing Problems," Master's Thesis, Texas Tech 
University, (1972). 

6. Pierce, J. F. and Hatfield, D. J., "Production Sequencing 
by Combinatorial Programming," Chapter 17 of J. F, Pierce, 
Operations Research and the Design of Management Infor
mation Sy8terns, Technical Association of the Pulp and 
Paper Industry, New York, (1967). 

7. Geoffrion, A. M, and Marsten, R. E., "Integer Programming 
Algorithms: A Framework and State-of-the-Art Survey," 
Chapter 5 of A. M. Geoffrion, Perspectives in Optimization, 
Addison-Wesley, Reading, Massachusetts, (1972). 

8. Garfinkel, R. S. and Nemhauser, G. L., "The Set-
Partitioning Problem: Set Covering with Equality 
Constraints," Operations Research , 17(1969), 5(September-
October), 848-856. 

9. Lemke, C. E., Salkin, H. M., and Spielberg, K., "Set 
Covering by Single-Branch Enumeration with Linear-
Programming Subproblems," Operations Research, 19(1971), 
4(July-August), 998-1025. 

10. Jensen, P. A., "Optimum Network Partitioning," Operations 
Research^ 19(1971), 4(July-August), 916-932. 



163 

11. Pierce, J. F., "Application of Combinatorial Programming 
to a Class of All Zero-One Integer Programming Prob
lems," Management Science, 15(1968), 3(November), 
191-209. 

12. Little, J. D. C , Murty, K. G. , Sweeny, D. W., and 
Karel, C , "An Algorithm for the Traveling Salesman 
Problem," Operations Research, 11(1963), 6(November-
December), 972-989. 

13. Hu, T. C. "Parallel Sequencing and Assembly Line Oper
ations," Operations Research, 9(1961), 6(November), 
841-848. 

14. McNaughton, R., "Scheduling with Deadlines and Loss 
Functions," Management Science, 6(1959), 1(October), 
1-12. 

15. Eastman, W. L., Even, S., and Isaacs, I. M., "Bounds for 
the Optimal Scheduling of n Jobs on m Processors," 
Management Science, 11(1964), 2(November), 268-279. 

16. Lawler, E. L., "On Scheduling Problems with Deferral 
Costs," Management Science, 11(1964), 2(November), 
280-288. 

17. Root, J. G., "Scheduling with Deadlines and Loss Functions 
on K Parallel Machines," Management Science, 11(1965), 
3(January), 460-475. 

18. Rothkopf, Michael, "Scheduling Independent Tasks on One 
or More Processors," Doctoral Dissertation, Massachusetts 
Institute of Technology, (1964). 

19. Rothkopf, Michael, "Scheduling Independent Tasks on 
Parallel Processors," Management Science, 12(1966), 
5(January), 437-447. 

20. Cox, D. R. and Jessop, W. N., "The Theory of a Method of 
Production When There Are Many Products," Operational 
Research Quarterly, 13(1962), 4(December), 309-328. 

21. Elmaghraby, S. E., "The Sequencing of N Jobs of M 
Parallel Processors," Research Memorandum, North Carolina 
State University, January, 1968. 

22. Elmaghraby, S. E., "The Machine Sequencing Problem--
Review and Extensions," Naval Research Logistics Quarterly, 
15(1968). 



164 

23. Braun, W., "A Computerized Simulation Approach to the 
Solution of the Carrier Dispatching Problem," Master's 
Thesis, Kansas State University. 

24. Hayes, R. L., "The Delivery Problem," Doctoral Disser
tation, Carnegie Institute of Technology, (1967). 

25. Newton, R. M. and Thomas, W. H., "Design of School Bus 
Routes by Digital Computer," presented at the Thirtieth 
National Meeting of ORSA, October, 1966. 

26. Quon, J., Charnes, A., and Werson, S,, "Simulation and 
Analysis of a Refuse Collection System," Journal of the 
Sanitary Engineering Division, ASCE, 91(1965), 
SA5(October), 17-36. 

27. Balinski, M. L. and Quandt, R. E., "On an Integer Program 
for a Delivery Problem," Operations Research, 12(1964), 
2(March-April), 300-304. 

28. Held, M. and Karp, R. M,, "A Dynamic Programming Approach 
to Sequencing Problems," Journal of SIAM, 10(1962), 
1(March), 196-210. 

29. Clark, G. and Wright, J. W,, "Scheduling Vehicles from a 
Central Depot to a Number of Delivery Points," Operations 
Research, 12(1964), 4(July-August), 568-571. 

30. Tillman, F. A. and Cochran, H., "A Heuristic Approach for 
Solving the Delivery Problem," Journal of IE, 19(1968), 
7(July), 354-358. 

31. Hering, R. W., "Evaluation of Some Heuristic Look-Ahead 
Rules for Multiple-Terminal Delivery Problems," Master's 
Thesis, Kansas State University, (1970). 

32. Bellmore, M. and Nemhauser, G. L., "The Traveling Sales
man Problem: A Survey," Operations Research, 16(1968), 
3(May-June), 538-558. 

33. Hong, S., "A Linear Programming Approach for the 
Traveling Salesman Problem," Doctoral Dissertation, The 
John Hopkins University, (1972). 

34. Lockett, A. G. and Muhlemann, A. P., "A Scheduling 
Problem Involving Sequence-Dependent Changeover Times," 
Operations Research, 20(1972), 4(July-August), 895-902. 



Ashour, S., Vega, J. F., and Parker, R. G., "A Heuristic 
Algorithm for Traveling Salesman Problems," Transportation 
Research, 6(1972), 187-195. 



166 

VITA 

Born April 23, 1944, in Leesburg, Florida, 

Joseph D. Marsh attended public schools there and entered 

the University of Florida in September, 1962. He completed 

the liberal arts program of the University College and was 

named Vice President and Director of True Temp, Inc., a 

Leesburg, Florida mechanical contractor in September, 1964. 

He entered the College of Engineeirng at the Univer

sity of Florida in September, 1965, and received the 

Bachelor of Industrial Engineering degree with honors in 

December, 1967. During his undergraduate program, he was 

charter president of the University of Florida Chapter of 

Alpha Pi Mu, national industrial engineering honorary. He 

was elected to membership in Sigma Tau and Tau Beta Pi, both 

national engineering honoraries, and national scholastic 

honorary, Phi Kappa Phi. He was tapped as a charter member 

of the University's chapter of leadership honorary, Omicron 

Delta Kappa. 

He entered graduate school at the University of 

Florida in January, 1968, working as a graduate teaching 

assistant and as Project Engineer for the University's 

J. Hillis Miller Health Systems Research Division. He 

received the Master of Science in Engineering degree in 

June, 1969, and was elected to associate membership in the 



167 

scientific Society of the Sigma Xi. 

Joseph D. Marsh began doctoral study in industrial 

engineering at the Georgia Institute of Technology in 

June, 1969. He served as both Graduate Teaching Assistant 

and Instructor in the School of Industrial and Systems 

Engineering. He is now Assistant Professor in the Depart

ment of Operations Research at the George Washington 

University. 


