
SCHEDULING PARALLEL PROCESSORS

A Thesis

Presented to

The Faculty of the Division

of Graduate Studies and Research

Joseph Df1 Marsh

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

in the School of Industrial and Systems Engineering

Georgia Institute of Technology

June, 19 73

SCHEDULING PARALLEL PROCESSORS

Approved:

D o u g l a s C. Montgomery, Ch^rman

Ricnard H. Deajie
»

V
Fred E. Wiinams

Date Approved by Chairman ^llljlj

ii

ACKNOWLEDGMENTS

Dr. Douglas C. Montgomery directed my work on the

parallel processor scheduling problem. His guidance,

scholarly attitude and sincere interest have been important

catalysts in the conduction of this research.

Dr. Richard H. Deane and Dr. F. E. Williams contrib

uted unselfishly and conscientiously to this investigation,

providing direction and guidance which could only have

resulted from many extra hours of work for them.

Dr. R. Gary Parker reviewed the manuscript and pro

vided many helpful suggestions and comments. Special thanks

are due to him.

Dr. Lynwood A, Johnson participated in the final oral

examination. In addition, his lectures in scheduling theory

and operations research techniques for production planning

were an enlightening part of my doctoral coursework and were

major factors in my decision to undertake the scheduling

research which resulted in this dissertation.

The help provided by Mrs, Sharon Butler in preparing

the manuscript is greatly appreciated.

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS ii

LIST OF TABLES V

LIST OF ILLUSTRATIONS vii

SUMMARY ix

Chapter

I. INTRODUCTION 1

Problem Description
Programming Approaches
Purpose and Objectives
Scope and Limitations

II. LITERATURE SURVEY 25

Results for Scheduling Parallel Processors
Single Processor Results
Results from Conceptually Similar Problems

III. SCHEDULING JOBS WITH ALL INFINITE DUE DATES
ON IDENTICAL PARALLEL PROCESSORS 31

Formulation as an Augmented Traveling
Salesman Problem

Branch and Bound Algorithm Development
Branch and Bound Algorithm
Illustrative Problems

IV. SCHEDULING JOBS WITH ALL INFINITE DUE DATES
ON DISTINCT PARALLEL PROCESSORS 55

Extensions of Identical Processor
Algorithm Components

Branch and Bound Algorithm
Illustrative Problems

V. SCHEDULING JOBS WITH SOME FINITE DUE DATES. . . 77

Development of Feasibility Conditions
Modification of Solution Procedure
Illustrative Problems

iv

Chapter Page

VI. COMPUTATIONAL EXPERIENCE 97

Results for Distinct Processor Problems
Results for Problems with Due Dates
Results for Identical Processor Problems

VII. HEURISTIC PROCEDURES FOR SCHEDULING PARALLEL
PROCESSORS 108

The Heuristic Procedures
Computational Experience

VIII. CONCLUSIONS AND RECOMMENDATIONS 125

Conclusions
Recommendations

Appendix

A. FORTRAN V CODE FOR OPTIMAL, MAXIMUM REGRET
AND MAXIMUM REGRET WITH LOOK AHEAD SCHEDULING . 130

B. COMPUTING TIMES FOR EXPERIMENTS WITH THE
EXACT ALGORITHM 149

C. FORTRAN V CODE FOR RANDOM SCHEDULING 155

D. FORTRAN V CODE FOR SHORTEST CHANGEOVER NEXT
OR MINIMUM TIME SUBSEQUENCE SCHEDULING 157

BIBLIOGRAPHY 162
VITA 166

V

LIST OF TABLES

Table Page

1 Least Squares Estimates of a^ and b^ 100

2 Computing Times for (a) Problems with Discrete
Uniform [0,20] Changeover Times, (b) Problems
Where N'-N Compared to (c) Mean Computing
Times for Previous Problems 102

3 Computing Times for Identical Processor
Problems Where (a) N'=N, (b) N* is to be
Determined and (c) Changeover Times are
Discrete Uniform [0,20] 107

4 Comparison of Heuristic Solutions to Optimal
Solutions of Distinct Processor Problems
Where N* is to be Determined and Where
cijn~ U [0 > 1 0] 1 1 5

5 Comparison of Heuristic Solutions to Optimal
Solutions of Identical Processor Problems
Where N* is to be Determined and Where
c i j n ~ U [0 ' 1 0] 1 1 6

6 Comparison of Heuristic Solutions to
Estimated Total Changeover Time Distribution
for Selected Large Problems 122

7 Heuristic Solutions to Selected Large
Problems, Expressed in Deviations Below
Estimated Mean Total Changeover Time 123

8 Computing Times for Distinct Processor
Problems Where N=2. . . . 150

9 Computing Times for Distinct Processor
Problems Where N=3 151

10 Computing Times for Distinct Processor
Problems Where N=4 152

11 Computing Times for Distinct Processor
Problems Where N=2 and Where Due Dates are
Moderately Constraining 153

vi

Table Page

12 Computing Times for Distinct Processor
Problems Where N-2 and Where Due Dates
are Highly Constraining 154

vii

LIST OF ILLUSTRATIONS

Figure Page

1 Tree Representation of the Solution to the
Identical Processor Example Where N 1 is
Specified 51

2 Tree Representation of the Solution to the
Identical Processor Example Where N* is to
be Determined 54

3 Tree Representation of the Solution to the
Distinct Processor Example Where N 1 is
Specified 72

4 Tree Representation of the Solution to the
Distinct Processor Example Where N* is to
be Determined 76

5 Typical Relationships Between Time Data When
Processing on a Job Begins After the Previous
Job's Due Date 82

6 Typical Relationships Between Time Data When
Processing on a Job Must Begin Before the
Previous Job's Due Date 82

7 Tree Representation of the Solution to the
Distinct Processor Example with Moderately
Constraining Due Dates 89

8 Partial Schedule {(7,5), (5,4), (4,2), (2,3)}
of S 2 91

9 Tree Representation of the Solution to the
Distinct Processor Example with Restrictive
Due Dates 93

10 Partial Schedule { (5 ,2), (2,1)} of S 2 96

11 Relationships Between Time Data for S2
Illustrating Infeasibility ~ 96

viii

Figure Page

12 Average Computing Time and Least Squares
Lines for Distinct Processor Problems 99

13 Average Computing Time for Distinct Processor
Problems Where N=2 for (a) Infinite Due Dates,
(b) Moderately Constraining Due Dates and (c)
Highly Constraining Due Dates 105

14 Computing Time for Alternative Scheduling
Procedures for Distinct Processor Problems
Where N=3, N* is to be Determined, and
c i j n~U[0,10] 118

15 Distributions of Sampled Total Changeover
Times 120

16 Computing Times for Heuristic Solutions to
Selected Large Problems 124

ix

SUMMARY

This investigation treats the problem of scheduling

M batch-type jobs which have sequence-dependent changeover

times but which are otherwise independent on N parallel

processors. In general, it is assumed that the sequence-

dependent changeover times are not identical for each

processor, each job is available at some arbitrary time zero

and deadlines or due dates may be imposed on the jobs. Each

job is to be processed by exactly one of the N available

parallel processors. The criterion is the minimization of

total changeover time subject to the constraint that all due

dates must be met. In the absence of job due dates, the

criterion is to minimize total changeover time.

The solution to the parallel processor problem involves

partitioning the M jobs into N or fewer distinct subsets while

simultaneously determining the processing sequence within

each subset. Two possible assumptions are admitted with

respect to the number of partitions (processors) depending on

whether this number is specified or is a decision variable.

Four programming approaches are investigated and only

combinatorial programming and heuristic programming are

found to be computationally feasible for problems of realistic

size. It is shown that the special case where the processors

are identical and where all job due dates are infinite can

X

be formulated as a traveling salesman problem. However,

this approach fails to extend to any more generalized cases.

A branch and bound algorithm which can be extended is

developed for the identical processor problem where all job

due dates are infinite and where the number of processors to

be activated can either be specified or can be a decision

variable. The algorithm is subsequently extended to admit

distinct processors and jobs with due dates.

Computational experience was concentrated on distinct

processor problems where N* is to be determined and where

changeover times are discrete uniform [0, 10]. The average

computing time tj^ in minutes for this class of problems

increases exponentially with M and N and is adequately

described by

t M N - e" 9* 7 7 5 2(1.7480) M(2.4600) N.

Additional computational experiments included distinct proc

essor problems under two classes of due dates, distinct

processor problems under certain alternative assumptions and

some identical processor problems. The computational results

suggest that many moderately-sized problems are computationally

infeasible.

In view of this, several heuristic procedures are

developed to solve the parallel processor scheduling problem.

The heuristic procedures were evaluated by comparing their

xi

solutions for small problems to the optimal solutions found

by the optimal algorithm. Larger problems were also solved

heuristically and these solutions were evaluated by approxi

mating the distributions of total changeover time for selected

large problems and making comparisons based on these distri

butions .

Some ideas for extending the above results to include

certain alternative criteria and assumptions are given.

CHAPTER I

INTRODUCTION

Scheduling research to date has been directed toward

the solution of many somewhat distinct problems related to

the order of processing jobs on machines. There exists a

viable theory of scheduling which allows the determination

of optimal schedules under various alternative criteria,

constraints and assumptions. For example, optimal scheduling

algorithms are known which minimize either mean flow time,

maximum job lateness or total machine setup costs under

certain constraints and assumptions [1].

However, there exists a well-known lack of practical

application of these research results [2, 3]. One possible

reason for this is that existing scheduling algorithms solve

problems that are rarely found in industrial scheduling

environments [2], Another possible reason is that existing

algorithms are too difficult and/or too expensive to apply

in practice [3].

At least two recent surveys of companies throughout

the United States support these observations [4, 5], The

survey findings provided the following suggested reasons for

the lack of application of scheduling research to existing

scheduling problems. First, the number of jobs scheduled at

2

any time usually exceeds the capability of most scheduling

algorithms. Only 19% of the survey responses indicated

problem sizes with no more than 10 jobs and 10 machines.

Therefore, many scheduling algorithms, while perhaps approach

ing the correct problem, are incapable of handling the

prevalent problem size.

Second, almost every company surveyed had both primary

and secondary criteria while most scheduling criteria attempt

to optimize a single measure of effectiveness. Most companies

considered the meeting of due dates to be the most important

criterion. The most common secondary objective was to mini

mize changeover times for which 48% of the companies said

were sequence-dependent for more than half of their opera

tions .

Third, at least 81% of the respondents indicated that

several machines are available to perform similar work with

about 60% of the replies indicating that the machines were

of a different type. Most existing scheduling research

results relates to single machine scheduling. (See [1] for

example.)

The general purpose of the research reported herein

is to develop solution procedures for several cases of the

scheduling problem involving parallel processors. The

criterion is the minimization of total changeover time sub

ject to the constraint that all due dates must be met.

3

Problem Description

Specifically, the class of scheduling problems treated

in this investigation involves scheduling the M batch-type

jobs in job set M on the N parallel processors in machine

set N. The M jobs have sequence-dependent changeover times,

but are otherwise independent. This parallel processor prob

lem is the generalization of the problem of sequencing a set

of jobs with sequence-dependent setup times on a single

machine. In the absence of due dates the single processor

problem is the archetypal combinatorial optimization problem

best known as the traveling salesman problem. The parallel

processor problem under investigation could best be described

as a multi-salesman traveling salesman problem where the due

dates impose latest arrival time constraints.

Assumptions and Definitions

Scheduling is used synonymously with sequencing since

the problem is one of partitioning the jobs into N (or fewer)

distinct subsets while (simultaneously) determining the

optimal processing sequence within each subset and insuring

that the due date of each job is met. The intermediate or

long-range smoothing of workforce and production levels is

therefore not a consideration in the scheduling procedures

developed in this study.

Independent jobs mean that there exist no precedence

or technological constraints which require some jobs to be

completed before others begin. Precedence constraints would

4

exist, for example, when the jobs are actually elements of

an overall process where some elements are prerequisites

for others.

Sequence-dependent changeover (or setup) times refers

to the case where the time required for the changeover (i,j)

from job i to job j depends both on i and j. In addition,

changeover time dependence on processor n is assumed. The

time required for changeover (i,j) on processor n is denoted

c.. and is assumed to be given in an array C = {c.. }. ljn ljn
Each c-. is assumed to be deterministic. The special case ijn
where c-. - c.. for all i,j e M and all processors ijn I J W —~ ^

n,w e N is called the identical processor problem. Since

the changeover times for identical processors depend only

on i and j, they can be given in a single changeover time

matrix C = tc^j}. The general case which exists if some
c . f c . is called the distinct processor problem, ljn iju * *

Each job is assumed to be available at some arbitrary

time zero and is to be processed exactly once by one of the

N available processors. This implies that c . = 0 0 and that r n n
no preemption is allowed.

Associated with each job j is a deadline or due date

dj measured from arbitrary time zero. The special case

where no job has a due date is indicated by letting dj m °°,

V- j e M. Due dates are said to exist if any dj<°°. When the

dj are so restrictive that all possible schedules involve

late jobs, there is said to exist no feasible schedule.

5

The processing time required for job j on processor

n is denoted p. .

For a given processor, there is typically some initial

(possibly idle) state and a cost is involved when changing

from the initial state to the state required for processing

the first job. Similarly, there is usually some final

(possibly idle) processor state required after completing

the schedule, and reaching this final state involves a cost

which depends on the last job in the schedule. If M jobs

are to be scheduled on N parallel processors, the work

required in going from the initial state of processor n to

the first job on processor n is defined as initial job M + n.

Similarly, final job M + N + n is defined as the work re

quired in going from the last job on processor n's schedule

to the final state.

Notationally the original jobs are numbered 1,2,...,M;

the initial jobs are numbered M + 1, M + 2,..., M + N ; and

the final jobs are numbered M + N + l , M + N + 2 , . . . ,

M + 2N. The time c M + n j n required to bring processor n

from its initial state to the state required for processing

any job j is assumed to be given and it is assumed that

w ^ x - „ - 0. It is noted that c,.. . = C w . „ • for M+n,M+N+n,n M+n,i,n M+u,j,u
any job j e M for any processors n and u if the processors

are identical. The analogous assumption is made for the

time c.. M +iyj + n n required in going from any job j to the

final state on processor n.

6

A schedule S n of M' real jobs on the nth processor

may be represented by the vector of M' + 1 ordered pairs

S n = [CM • n, i 1 > n) , (i 1 > n , i 2 > n) , . . . , (i M , > n , M + N * n)] ,

where i.. n denotes the (j + l)st job in processor n's sched

ule. A schedule S = [(M + n, M + N + n) 1 indicates that
~n J

processor n is not activated. A schedule S is admissible
~n

if (a) initial job M + n is first, (b) final job M + N + n

is last, (c) all other jobs precede exactly one other job,

and (d) each job is processed exactly once. A feasible
schedule S is an admissible schedule in which all due dates ~n
are met.

A parallel processor schedule is a listing of single

processor schedules

S ~ [S^ > ^2 ,. . . , S^]

which includes each real job exactly once.

There are N (possibly distinct) available processors.

The most general assumption is that the scheduling algorithm

is to determine the optimal number of processors, N*<N. When

the number of processors to be used in the final solution

is specified in advance, for example by management policy,

that number will be denoted by N 1 . Obviously N'<N.

An exact algorithm is defined to be a solution

7

procedure which generates a schedule in a finite number of

steps which optimizes some measure of scheduling performance.

A heuristic algorithm is a solution method which generates a

schedule in a finite number of steps which is in general

suboptimal, although hopefully near-optimal.

Problem Statement

The problem involves finding, over all feasible sched

ules S, that schedule S* for the M jobs on a (possibly given)

subset of processors N C N which minimizes

E~ l c. .
neN (i,j)eS n ^ n

subject to

E S p + c | <d
k-1 (i ,n (i) , (i) , n) i ;

k,n k-l,n k,n r,n

r = 1,..., R ¥ n e N,
n

where R is the number of real jobs scheduled on processor
n

n and where i • M + n. o ,n
If all dj = °°, then the constraint is automatically

satisfied and the problem is a traveling salesman problem

with N available salesmen.

8

Size of the Solution Space

The number of possible solutions is frequently an

indicator of the degree of difficulty encountered in

solving combinatorial problems. Suppose that M jobs are to

be sequenced on a single processor, say n, so that an admissi

ble schedule is

S n -'{(M + n i 1) , (i 1, i 2) , . . . , (1 ^ , i M) , (i M, M + N + n)}.

There are exactly Ml such admissible single processor sequences

since the M original jobs can be ordered in M! ways between

the initial and final jobs. (Note that the initial and final

jobs do not affect the number of admissible sequences.) If

each of the M jobs is to be sequenced on exactly one of N

available processors, the number of admissible solutions

depends on whether the number of processors to be activated

is specified and whether the processors are identical or dis

tinct.

N' Given. Suppose the M jobs are to be sequenced on

N available processors in such a way that exactly N f proc

essors are activated. First, assume that the processors

are distinct. Then single processor schedules can be permuted

to yield different schedules. For example, for M=3, N'=2

§ = { h ; ? 2 } = { ^ 4 ' 1 ^ CI,6); (5,2), (2,3), (3,7)}

9

and

§' = § 2 } - ' U 4 , 2) , (2,3), (3,6); (5,1), (1,7)}

are different schedules.

Talcing this into consideration, consider a given per

mutation i^, i2»..., iĵ of the M jobs. The initial and

final jobs on the N processors cannot affect the number of

admissible solutions. To partition the given permutation

into N 1 subsets is the same as selecting N' - 1 spaces of

the M - 1 spaces between jobs in the given permutation. This
M - 1

can be done in (̂ , _ ^) ways. Since this partitioning re

sults in a unique parallel processor schedule for each
M - 1

permutation of the M jobs, there are (N, _ ^)M! admissible
solutions, given the N' processors to be activated. There

N
are (̂ ,) ways of selecting the processors, so that the total

number of admissible solutions is

Note that this always exceeds the total number of single

processor schedules by a factor of (jji)(jji _ J) •

If the processors are identical, any N 1 processors

are the same as any other N 1 processors. In addition, there

are exactly N 1I permutations of single processor schedules.

10

Therefore, there are exactly

M - K M !
(N ' - 1' WT

admissible identical processor schedules which activate

exactly N 1 processors. This number can either be less than,

greater than, or equal to M ! depending on whether

r M * h 1 £ 1 l N ' - 1 J WT > A"

N * To Be Determined. When the number of processors

to be activated is unspecified, all but one processor may

have zero jobs scheduled. Assume that the processors are

distinct. Under these assumptions, a unique parallel proc

essor schedule can be constructed by taking a given permu

tation i^, i2>..., i^ and placing a slash before i^, a slash

after i^ and N - 1 slashes in the now M + 1 spaces between

any combination of slashes and jobs. The number of ways of
. . . . , . ,N + M - Is partitioning a given permutation in this manner is (^) ,

the number of ways of selecting M places out of N + M - 1

places. Since this can be done for each permutation, there

are + JJ " 1) MI admissible distinct processor schedules.

This number is always larger than M !

Consider the case where the processors are identical

and N * is to be determined. Permutations of single proc

essor schedules do not yield different parallel processor

11

schedules. There are N! permutations of an n-tuple. But

some permutations result in the same parallel processor

schedule. Hence there are at most

rN + M - 1. M!
L M J FT

different identical processor schedules when N* is to be

determined.

The number of feasible schedules in the solution

space is a subset of the number of admissible solutions.

This number depends on the nature of the due dates.

Programming Approaches

There are at least four programming approaches to

solving the problem. These approaches are described as

follows.

Integer Programming

An integer programming formulation exists for the

most general parallel machine scheduling problem where

there exists at least one finite due date. Alternative formu

lations are possible for either the case where the number of

processors in the final solution is not known in advance

(N* is determined by the solution procedure) or the case

where the number of processors N 1 < N is specified.

Consider first the case where N* is unknown and where

each processor is identical. Define activity A., i = 1,...,

12

I, as an N-dimensional column vector of 0,1 constants a^j

where

An activity may be thought of as a potential schedule for

one of the N available processors which satisfies all feasi

bility (due date) constraints. The index i ranges over the

set {1,2,...,!} of all feasible single processor schedules.

the total cost of the changeovers required by the jobs in

feasible single processor schedule i. However, this cost is

sequence-dependent and therefore C^* is the optimal solution

to a traveling salesman problem with constraints on due dates

and initial-final jobs. An exact algorithm exists for the

determination of C.*[61.
I

1 if job j is to be included in schedule i
0 otherwise

Let the cost of activity i be C.*. That is, C i* is

The integer programming problem is to minimize

I

i = l
(I-l)

subject to

I
Z

i = l
x. - 1 j = 1 , . . . , M (1-2)

13

I
(1-3)

x± - 0,1. (1-4)

where M = total number of jobs to be scheduled.

The first M constraints (1-2) insure that each job

will be in exactly one single processor schedule. Constraint

(1-3) insures that N* <_ N. Note that N* is the number of

activities in the optimal basis.

Unfortunately, for even small values of M, the total

number of activities, I, can become very large. A precise

estimate of I is impossible because its magnitude depends on

the number of activities which are infeasible because of due
M M M M dates. An upper bound on I is (̂) + (2) +...+ (̂) - 2 - 1

which is reached when no due dates are constraining with

respect to feasible activities. For example, if M = 50 then

2^ - 1>10^ and even if only a small subset of this maximum

number of single processor schedules are due date feasible

the resulting integer program is computationally infeasible

It is possible to slightly improve the computational

aspects of the integer programming approach. If constraint

(1-3) is ignored, the resulting integer program is actually

the well-known set partitioning problem (a special set cover

ing problem where all constraints are equalities) which has

[7].

I x. < N
i=l

14

been treated by enumerative algorithms [8, 9] , dynamic pro

gramming [10] and combinatorial programming [11]. It appears

that partitioning problems of up to several hundred integer

variables may be solved in less than 15 minutes using the

algorithms in [8, 9, 11]. The solution scheme is as follows.
M

Step 1. Generate the set of all 2 - 1 subsets of

the M jobs. Eliminate those subsets which would be due date

infeasible regardless of the order of processing. At this

point I subsets remain.

Step 2. Solve I single processor sequencing problems

to determine the C^*, If the jobs have all infinite due

dates the problems are classical traveling salesman problems.

If at least one due date is finite the problems are modified

traveling salesman problems.

Step 3. Solve the set partitioning problem which

results by ignoring constraint (1-3) in the integer program.

If the number of activities N* in the optimal basis is less

than or equal to N, an optimal feasible solution has been

determined. Otherwise, go to Step 4.

Step 4. Find the minimum number of processors N

which will yield a feasible solution. Solve N - N + 1

integer programs identical in objective function (I-l) and

constraints (1-2) but changing constraint (1-3) to

15

The N - N + 1 programs would be solved with N = N, N + 1,...,

N. The solution with the lowest value for the objective

function is optimal.

This scheme slightly extends the computational power

of the integer programming approach. However, each step in

the scheme can become computationally infeasible with moder

ate values of M. The simplest step, Step 1, involves a

significant number of numerical operations since each of the
M
2 - 1 subsets must be checked against due date constraints.

The feasibility of Step 2 depends on the efficiency of algo

rithms of the traveling salesman type. Perhaps the best

algorithm for jobs with all infinite due dates is the Little,

et al. [12] procedure which has solved a 40-salesman (job)

asymmetric problem in less than nine minutes (IBM 7090). If

at least one job has a finite due date the only existing

algorithm for Step 2 is that of Pierce and Hatfield [6] which

has solved problems of 20 jobs in less than eight minutes

(IBM 7094). The feasibility of Step 4 is obviously limited

by the present state of the art in integer programming

algorithms [7].

The above integer programming formulation considers

the case where N* is unknown. If the number of processors

to be used is specified in advance to be N f _< N, an analogous

formulation results with original constraint (1-3) being

replaced by

16

I
S x. = N' (1-6)

i=l 1

to insure that exactly N f activities (processors) will be in

the final solution.

If the processors are not identical, the formulation

is essentially the same except that for each subset of the
M
2 - 1 possible subsets a distinct activity must be defined.

M
That is, an upper bound on I is now N (2 -1).

Dynamic Programming

It is possible to use dynamic programming as the

solution technique in the development of an exact algorithm

for at least some cases of the parallel processor scheduling

problem. The procedure given below is basically a variation

of an algorithm of Held and Karp [13] which was developed

to minimize other cost criteria in scheduling parallel proc

essors. The case of identical processors and unknown

number of final processors N* <_ N will be considered.

Consider first the problem of optimally scheduling

m n real jobs with all infinite due dates on a single proc

essor n. This is basically finding an optimal sequence
which begins at job M + n, executes i.. i and ends & J 9 l , n ' m . n n
at job M + N + n. Let s be a subset of {1,..., m } and let

' ' n
f n(s,g) be the minimum cost of a subsequence on processor n

which begins with dummy initial job M + n and terminates

with job g, g ^ M + N + 1. This implies that the subsequence

17

terminates on some real job. Also let n(s) denote the number

of jobs in s and let s - g denote the set which results from

deleting job g from s, g e s.

Then for

n(s)=l, £ n({g>,g) = c M+n,g,n for any g (1-7)

n(s)>l, f n(s,g) 55 min [f n(s-g,r) + c]. (1-8)
res-g &

Equation (1-8) follows from the following consider

ations. Suppose that in executing the jobs in s, job r

immediately precedes job g. Then, assuming that the other

jobs are optimally sequenced, the cost incurred is f n(s-g,r) +
crgn* taking the minimum over all choices of r yields (1-8).

If K n denotes the minimum cost of a complete schedule

which begins with job M + n, executes m n jobs and ends with

job M + N + n, then

K = min
n

 g e

in [f nU,...,m n},g) • c M + N] (1-9)
U,...,m nJ 6 '

A schedule

S n = [(M.n,i 1), (i± , i 2) Ci m , M +n +n)]
n

is optimum if and only if

18

K n = £ ({ i l , n " " » \ , t l } 9 ^ . n 5 + c (i m n) , (M+N+n) ,n (1-10)
n'

and for 2 < p < m - 1 — — n

f({ii _>...> i _ > i . I i . I „) = f({ii i „},i) l,n' 9 p,n p+l,n ' p+l,n v l,n p,n ' p,n

The optimal single processor schedule is computed as

follows. The quantities f n(s,g) are computed recursively

from (1-7) and (1-8). K n is computed from (1-9). Then (1-10)

and (I-11) are used to compute the optimal schedule where

i „ is determined first, and the i I ii « succes-m ^ n m n-l,n» l,n
sively.

The following parallel processor solution procedure

uses the single processor formulation.
M-1

Step 1. Generate the set of all 2 subsets of the
M jobs. Call the resulting subsets S ^ , S ^ 2 \ . . . , S ^ l \

)
>

(i)
Step 2. Recursively compute ^ n (S ^ » g) using (1-6)

and (1-8) and compute K n for each subset S^*-* from equation

(1-9).

Step 3. Solve a set-partitioning problem to assign

the jobs to processors in such a way as to minimize

N
E K

n-1 n

19

Call this minimum cost partition T

Step 4. For each comp

C D
»• • • >

compute the optimum schedule

using (1-10) and (1-11).

The dynamic programming formulation has a structure

which is similar to the integer programming approach. Step

1 essentially enumerates all potential schedules, eliminating

those which are a priori infeasible. Step 2 computes costs

on these schedules. Step 3 determines which schedules should

appear in the final solution and Step 4 determines the over

all optimal schedule.

The dynamic programming formulation therefore has

many of the same computational disadvantages as the integer

programming formulation. Additionally, the computer storage

requirements inherent in any recursive procedure become

excessive for reasonably-sized problems.

It is also possible, at least conceptually, to consider

the case of finite due dates by introducing a method in

Step 1 to eliminate those schedules which are obviously due

date infeasible and by introducing due date constraints in

Step 2 and Step 4. However, the modifications add a signifi

cant number of additional numerical operations and add

greatly increased computer storage requirements to an already

computationally infeasible solution procedure.

Branch and Bound Methods

One of the most successful exact solution procedures

for solving combinatorial problems similar to scheduling

20

parallel processors is the branch and bound method. Given

the problem of minimizing an objective function f(x) sub

ject to x e F, the branch and bound procedure partitions the

feasible region F into finer and finer subsets while computing

a lower bound for each subset on the value which f(x) may

obtain.

Branch and bound schemes are frequently enhanced by

imbedding the basic optimization problem in a larger, less

restrictive problem by introducing a non-empty superset T,

FCT along with a bounded extension g of the objective function

f with the requirements that (a) g(x) s f(x) whenever x e F

and (b) there exists an x e T such that g(x) - f(x*), where

x* is the optimal solution to the original problem.

A branch and bound algorithm must include a procedure

to identify infeasible solutions, a partitioning (branching)

scheme, bounding rules, and a recursive operation for form

ing new collections of subsets, excluding those elements

which are known to be either infeasible or suboptimal.

More specifically, if Y denotes the set of all sub

sets of T, if T denotes the set of all collections of subsets

t of T and if the union of all subsets in any collection t

is denoted by U(;t) , then these requirements may be stated

as follows.

Feasibility Test. The algorithm must specify a

collection with the following properties

(i) The elements of t contain only infeasible

21

solutions. That is U(t)CT-F:
—o

(ii) All singleton infeasible subsets {x} are
included in t . That is, if x e T-F,
then {x} e t .

—o
One procedure for satisfying the requirement of a

feasibility test is to specify a procedure to identify all

singleton infeasible subsets {x}. Computation efficiency is

enhanced by identifying larger infeasible subsets.

Partitioning Scheme. A partitioning, or branching,

scheme is a function p: T-*-T such that

(i) U [p(t)] - (t);
(ii) T i

f e p(t) only if T i
l C T± e t; and

(iii) p(t) = t if and only if all T. e t
are singleton subsets

Conditions (i) and (ii) state that the partitioning

scheme cannot add any elements to the partitioned subsets.

Condition (iii) states that the partitioning scheme must

divide at least one divisible subset into proper subsets.

Bounding Rules. The algorithm must specify a lower

bound on the value of g(x) for any subset T^. .

The lower bounding rule is a function b: T-*-R

(i) g(x) > b(T i) for all x e T;

(ii) b(Tj) > b(T A) if TJC T. C T ; and

(iii) b({x}) = g(x)

Condition (ii) states that deleting points from sub

sets does not lead to lower upper bounds. Condition (iii)

states that the lower bound on the cost of any solution in a

22

singleton subset is in fact the cost of that solution.

Recursive Operation. The branch and bound recursive

operation is a function B such that if p(t') • _t, then

B(t/) • t - t , where t is that subcollection of t̂ whose

elements are known to be either dominated or infeasible.

Branch and bound algorithms have been developed to

optimally schedule a moderate number of jobs with some finite

due dates on a single processor [6], The development of

branch and bound algorithms to optimally schedule parallel

processors is one objective of the present research.

Heuristic Programming

Approximate, or heuristic, procedures are useful in

many scheduling environments. When the feasible set contains

a number of solutions with insignificant differences in the

objective function, then exact procedures frequently become

inefficient in this near-optimal region compared to the

ultimate payoff of strict optimality. Also, known exact

procedures require a number of iterations which grows approx

imately exponentially with increasing size for combinatorial

problems.

Heuristic algorithms can be classified as being either

(1) exact algorithms which have been modified so that an

optimum can no longer be guaranteed, or even expected and (2)

approximate algorithms which do not depend on any exact

algorithm.

A consideration of both classes of heuristic algorithms

23

with respect to parallel processor scheduling and the develop

ment of and experimentation with some heuristic algorithms

to handle realistically-sized parallel processor problems

is the basis of some of the present research.

Purpose and Objectives

The overall purpose of this study is to develop

computationally feasible algorithms for scheduling parallel

processors for a number of cases. The following specific

objectives are delineated:

1. To develop exact algorithms for scheduling

parallel processors under alternative assumptions, each of

which, when carried to completion, guarantees an optimal

solution if one exists.

2. To evaluate these exact algorithms with respect

to computational limitations.

3. To develop efficient heuristic algorithms which

will provide good quality solutions to the class of problems

for which exact procedures are inefficient.

4. To evaluate the heuristic algorithms with respect

to computational efficiency and quality of solution.

Scope and Limitations

The scope of this research is that of the short-

term scheduling function relating to parallel processors

where the single criterion is the minimization of total

changeover time. Limitations include the consideration of

24

only the static case, where all jobs and their scheduling

parameters are known at some arbitrary time zero. No

stochastic elements are admitted in the scheduling parameters.

25

CHAPTER II

LITERATURE SURVEY

Results for Scheduling Parallel Processors

There is a growing literature on the problem of

scheduling parallel processors. Unfortunately, most of it

treats special cases whose restrictive assumptions include

sequence-independent setup times in order to make the

problem tractable.

An early paper by Hu [13] considered the case of

dependent jobs where all setup times are zero (and therefore

sequence-independent) and where all processing times are

equal. These assumptions allowed the development of net

work algorithms to either minimize the number of processors

required to complete all the jobs by a given time or to

minimize the completion time of all jobs given a prescribed

number of machines.

McNaughton [14] treats the problem of scheduling inde

pendent jobs with sequence independent setup times on

parallel processors in order to minimize the sum of linear

losses f.(t.) which job i accrues if it exceeds its deadline i i
by t^ time units. Important results in McNaughton's paper

are theorems on lot-splitting. He shows that for the objec

tive of minimizing total loss as defined above with a single

26

processor, an optimal solution exists in which no task is

split. He notes that for the case of parallel processors

which are not identical in capacity that the general optimal

solution will contain split jobs. However, he shows that

under the assumption that all deadlines are zero with losses

linear in time there always exists a non-split schedule with

total loss no greater than any given split schedule. His

results include an algorithm for scheduling parallel proc

essors of unequal capacities but no algorithm could be

developed for the case of identical processors.

Noting that McNaughton's [14] paper yielded no iden

tical processor scheduling algorithm, Eastman, Even, and

Isaacs [15] computed upper and lower bounds on the cost of

the optimal solution under the same assumptions.

Lawler [16] treated the problem of scheduling indepen

dent jobs with sequence-independent setup times on identical

processors to minimize total deferral cost which is the

sum of nonlinear job deferral costs g^(c^) which is assumed

to be monotonically nondecreasing with the time of completion

c^ of job i. Lawler shows that the transportation method of

linear programming can be used to schedule identical parallel

processors when the processing times for the jobs are equal.

For the case of unequal processing times an approximate

solution is given based on a scheme where each job i is

divided into a number a. of "unit time" jobs.
i

Under the same assumptions, including sequence-

27

independent setup times. Root [17] developed an algorithm

to optimally schedule identical parallel processors when all

jobs have a common deadline d and have identical loss func

tions f^(c^-d) = max [0, b(c^-d)], b>0, where c^ is the

completion time for job i.

Rothkopf [18, 19] treats the problem of scheduling

identical parallel processors under the same assumptions of

sequence-independent setup times but allowing job waiting

(loss) functions g^(c^) to be any function monotonic and non-

decreasing in c^, the completion time for the ith job. A

dynamic programming algorithm is formulated to minimize the

sum of discounted waiting costs, use costs B.. if job i is

processed by processor j, and costs G Q(t^,t 2,...,t^) associ

ated with a schedule in which processor j completes the jobs

assigned to it at time t., where G_ is a monotonic nonde-
j o

creasing function of each of its arguments. McNaughton 1s
[14] multiprocessor splitting theorem is extended to the case

- rt
where jobs have waiting cost functions of the form h^e ,

r>0.

All of the studies referenced make the restrictive

assumption of sequence-independent setup times. When this

assumption is relaxed, the approach of minimizing the total

loss (waiting, deferral) from all jobs becomes invalid. The

approach of minimizing total loss also implicitly assumes

that all job requirements remain the same whether or not the

deadline is met.

28

An equally restrictive approach with respect to

parallel processors is the variation of the classical economic

lot size formula to schedule jobs with sequence-independent

setup times and deadlines. This method was first proposed by

Cox and Jessop [20] and recently has been revived by Elmaghraby

[21, 22].

The above examination of the literature shows that the

problem of sequence-dependent setup times has been neglected.

The reason for this is that the sequence-dependent assumption

introduces complexities which seem to prohibit the discovery

of a straight-forward solution such as sequencing on some

job parameter such as processing time or due date. The paral

lel processor results to date therefore are at present

unextendable to the sequence-dependent case.

This conclusion suggests the alternate approaches to

the literature of investigating single processor results

which show promise of being significant in developing parallel

processor algorithms and examining problems conceptually simi

lar to parallel processor scheduling problems. These alter

nate approaches are discussed below.

Single Processor Results

Pierce and Hatfield [6] have developed a branch and

bound algorithm for scheduling jobs on a single processor

which provides an exact solution. The computational feasi

bility of their single processor algorithm is limited, the

29

largest problem solved being one of scheduling 30 jobs on a

single processor. They assert that the single processor

algorithm is computationally feasible up to 20 jobs. How

ever, suggestions for extending the already limited branch

and bound approach to the case of parallel processors were

made. Many of the concepts developed in the present research

evolved from suggestions in [6].

Results from Conceptually Similar Problems

A well-known problem which is similar to the problem

of scheduling parallel processors is the delivery or routing

problem. Basically, the delivery problem is concerned with

the transportation of products from one set of locations to

another set of locations under vehicle capacity and other

constraints which govern the nature of the routings.

There are several assumptions about the delivery prob

lem which affect the structure of the problem. However, two

assumptions characterize those formulations important to

parallel scheduling. One is the assumption that the route is

not fixed and that the total distance traveled is sequence-

dependent. The other is the assumption of several vehicles

to satisfy known demands of customers at various locations.

Given the above assumptions, the traditional criterion

in the delivery problem is to minimize the distance traveled.

When several trucks are involved, the analogy with the paral

lel processor problem is clear.

30

The principal methods proposed for the solution of

the delivery problem have been simulation [23, 24, 25, 26],

integer programming [27], dynamic programming [28], and

heuristic programming [29, 30, 31]. The only formulations

significantly different from those discussed in Chapter I

are the heuristic programming approaches. These formu

lations also attempt to provide solutions to problems of

realistic size. Nearly all heuristic programs for the delivery

problem are tour building schemes which sequentially build

a delivery route for a truck based on "penalties" or costs

which might occur if a particular link were not incorporated

into the route. The predominant cost measure is based on

the symmetrical distance assumption which is highly untenable

in the parallel processor problem. Furthermore, the heuristic

schemes incorporate the symmetry assumption in such a

fundamental way that extension to the asymmetric case is

impossible.

Therefore, very few results in the literature are

applicable directly to the problem of scheduling parallel

processors. However, many of the ideas and suggestions in

the literature are important in the development of new pro

cedures .

31

CHAPTER III

SCHEDULING JOBS WITH ALL INFINITE DUE DATES

ON IDENTICAL PARALLEL PROCESSORS

This chapter treats the special case where the

processors are identical (c^j n - ciju £ o r a n ^ i>J> n> u) and
where all due dates are infinite.

There are two cases which arise in scheduling parallel

processors.

Case 1. Scheduling M jobs on exactly N 1 of N avail

able processors.

Case 2. Scheduling M jobs on an optimal number N*

of N available processors where N* £ N.

The assumption underlying Case 1 is that each of N'

processors must have at least one job on its schedule. This

situation is frequently an operating policy, e.g., to meet

labor agreements. The more general assumption underlying

Case 2 is that the number of processors to be activated in

the schedule is a decision variable.

As shown below, either case of the identical processor

problem can be formulated as an augmented traveling salesman

problem. However, this formulation cannot be extended to

the general case. An alternative branch and bound solution

procedure which can be extended is developed.

32

Formulation as an Augmented Traveling Salesman Problem

Either Case 1 or Case 2 of the identical processor

problem under consideration can be solved as an augmented

traveling salesman problem. This approach is inapplicable

if any of the present assumptions are relaxed. However, the

approach can be modified so that it is extendable to the

generalized problem. The augmented traveling salesman for

mulation for each case is given as an introduction to the

more generalized approach.

Case 1 Formulation

Consider an M + 1 city traveling salesman problem

where the distances between cities i and j are given by the

generally asymmetric distance matrix D * {d^.}, where d ^ • 0 6.

Let the cities 1,..., M + 1 be numbered in such a way that

M + 1 is the home city. The optimal single salesman solution

is that tour

t = [(i-^ i 2)» (i2> i3)>--*» (iM> ^ + 1 ^ ' ^M+l' i l ^
j

which includes each city exactly once and for which the total

distance z(t) « 2 d.. traveled is a minimum.
(i,j)et 1 3

Consider the case where N' salesmen are available at

the home city M + 1, where each salesman must visit at least

one city and where each city is to be visited exactly once.

Augment the original problem given by D by adding N ! - 1

artificial cities so that the new problem has M + N 1 cities.

33

Let D = {d^j} describe the augmented problem where

1 2 ... M+l M+2 ... M+N'

D B

D = M+l
M+2 (III-l)

M+N'

and where the (Nf - 1) x (M + 1) submatrix A is N' - 1 rows

identical to row M + 1 of D, the (M + 1) x (N' - 1) submatrix

B is N 1 - 1 columns identical to column M + 1 of D and F is

an (N' - 1) x (N1 - 1) submatrix with infinite elements.

The key result to follow is that the optimal N 1

salesman solution is imbedded in the optimal solution to the

augmented problem. The ordered pairs (i,j) in any tour

t f = [(ij> **2^ ' C^2* ̂ 3^»***» Cij^+N' * ̂ "l̂ -J
!

include one element from each row and column of D. Tours

with finite total distance exist if M > N', a condition

which is assumed.

34

Theorem 3.1. For every tour t' with finite total

distance to the M + N 1 city problem given by D, there exists

an N' salesman solution with equal total distance and the

converse holds.

Proof. Given any tour

^' ~ [(iĵ > ^2^' ^ 2 * ^3) »• • • > ^M+N'' ^ 1 ^

to the augmented problem, the total distance traveled will

be infinite if any link (i,j) is included such that M + 1 <̂

i <_ M + N' and M + l £ j £ M + N ' . Therefore, tours with

finite total distance will not include any links between any

combination of the original home city M + 1 and the arti

ficial cities M + 2 , . . . , M + N ' . If the artificial cities

in t f are identified and replaced by the home city M + 1, the

result is a sequence of N' subtours (an N'-tour) since city

M + 1 appears N' + 1 times. Furthermore, the N'-tour has

the same cost as t' since the artificial cities are identical

to city M + 1.

The converse follows by beginning with any N' sales

man solution. This consists of N' subtours, each involving

the home city M + 1. In N' - 1 of the subtours, city M + 1

can be replaced by one of the N' - 1 artificials, yielding

Slightly different versions of both Theorem 3.1 and
Theorem 3.2 have been simultaneously and independently proved
by Hong [33] using a graph theoretic approach.

35

a single tour of equal cost to the M + N 1 city problem.

This result can be used to solve the present case of

the identical processor problem if it is implicitly under

stood that rows M + 1,..., M + N 1 represent initial jobs and

columns M + 1,..., M + N' represent final jobs. The change

over time matrix C is augmented with N' artificial jobs to

obtain

1 2 ... M M+l ... M+N*

C = i c i . } = M
M+l

M+N'

B

(III-2)

where A is an (N' x M) submatrix of identical rows, B is

an (N1 x M) submatrix of identical columns and F = ».

The optimal single processor schedule

s* = [(i^, i 2) , (^2' ^3)»• • • > (iĵ +JYJF 9 ^2.)]

36

to the M + N 1 job problem is the solution to a traveling

salesman problem where s* is presented in such a way that

i.. - M + 1. Let i v be the jth artificial job in s*, e.g., 1
i v - i, = M + 1. The optimal parallel processor schedule

K l 1

S* can be constructed from s* by letting

S. - [(i k , i. + 1),...> (i k i k)] (HI-3) ~1 K j K j + 1 Kj+1 1 Kj+i

where any changeover (i v 1 , i v) to an artificial job indi-

cates a changeover to final job i, + N f (by Theorem 3.1).

A minor complication arises because the jth artificial

job i v is an initial job, say M + n, and i, + N 1 repre-
K j K j + 1

sents a final job M + N 1 + u, where in general n ^ u.

According to the original problem assumptions, such a single

processor schedule is inadmissible since it implies that a

schedule starts on processor n and ends on processor u. For

the present special case, the complication is only notational

since all initial jobs are identical and all final jobs are

identical. The complication becomes formidable, however, if

any assumption is relaxed.

Case 2 Formulation

An analogous augmented traveling salesman formulation

exists for the case where determining the optimal number

N* <_ N is part of the identical processor problem. Let D be

defined as in equation. (III-l) except that N f = N and

F = 0 = {0>, an (N - 1) x (N - 1) matrix with zero entries.

37

The following theorem shows that the optimal multi-salesman

tour (and therefore the optimal number of salesmen) is

imbedded in the single salesman solution of D.

Theorem 3.2. For every tour t 1 with finite total

distance to the M + N city problem given by D, there exists

an N £ N salesman solution with equal total distance and the

converse holds.

Proof. Tours with finite total distance to the M + N

city problem may now contain links (i,j) between artificial

cities M + 2 ^ i < M + N , M + 2 ^ j < _ M + N . Given any tour

t 1 to the augmented problem, the artificial cities M + 2,...,

M + N may be replaced by the home city M + 1 without changing

the total distance traveled. Therefore, exactly N subtours

exist with the same cost as t f. However, some of the sub

tours may be degenerate subtours (M + 1, M + 1) between the

home city, each indicating an idle salesman. The number of

salesmen utilized, N, equals the number of nondegenerate

subtours and N ^ 1 since cL̂ +i M+I = 0 0 in the augmented

problem.

The converse follows from the fact that an N-tour

includes city M + 1 exactly N + 1 times. Then the N - l

artificial cities may replace all but two of the home cities

in such a way as to yield an equal cost single tour to the

augmented problem.

This result can similarly be used to solve the identi

cal processor problem where the optimal number of processors

38

N* ^ N is to be determined. An augmented single processor

problem is solved, allowing a maximum of N - 1 changeovers

between artificial jobs. The optimal parallel processor

schedule is constructed from the optimal schedule to the

augmented problem according to equation (III-3).

Both theorems 3.1 and 3.2 fail to hold if either the

assumption of identical processors or infinite due dates is

relaxed. A solution procedure which can be extended to more

general cases must generate subtours which begin with initial

job M + n and end with the corresponding final job M + N + n.

An alternate solution procedure for the identical processor

problem, which can be extended is developed in the next

section.

Branch and Bound Algorithm Development

The approach underlying the branch and bound algorithm

to follow is that of imbedding the problem of scheduling M

jobs on identical processors in the larger augmented single

processor scheduling problem suggested by Theorem 3.1 and

Theorem 3.2. Specifically, let F be the set of all feasible

solutions to a given M job, parallel processor problem of

Case 1 (given N f) or Case 2 (find N *) . Let T be the set of

all solutions to the corresponding M job augmented single

processor problem given by equation (III-2).

The branch and bound algorithm must include a parti

tioning scheme, procedures to identify the elements in T-F

39

and rules by which a lower bound may be computed on the cost

of any schedule in each subset isolated by the partitioning

scheme. An iterative logic must be developed to drive the

algorithm and consists of the recursive operations by which

new collections of subsets are formed and by which subsets

whose elements are either dominated or known to be infeasible

are eliminated.

Partitioning Scheme

A partitioning, or branching, scheme must partition a

given collection of subsets £ in such a way that any parti

tioning results in a new collection of subsets whose elements

are collectively identical to the elements in t and such that

at least one divisible subset in t is divided into proper

subsets. The partitioning scheme used in the algorithm to

follow always partitions a collection £ consisting of a single

divisible subset T^ into two mutually exclusive subsets T^ f

and T i".

Specifically, let T. C T be a subset of solutions s

to the augmented problem such that T . ^ 0 . If A B fl s i s
1 s e T i

the set of all changeovers common to all schedules s in T^,

let (p,q)e { U s - A}. Then the partition is defined as

{s I s e T ^ (p ,q)es>, (III-4J

T. 1
FT {s |seT i; (p,q)/£s}. (IH-5)

40

The partition defined by equations (III-4) and (III-5)

is valid since it does not add any elements to the partitioned

subsets and since the subsets are proper subsets.

Theorem 3.3. Given T^ 1 and T i " as defined by {III-4)

and (III-5), then

T i
t U T i

M = T i f

T i» C T± and T i " C T^,

T i» f T i " f T±.

Proof. For any seT^, either (p,q) e s or (p,q) t s.

If (p,q) e s, s e T ^ and s ^ " . If (p,q) i s, scT i" and s e T ^ .

Therefore T i
 1 U T i " = T i . Also T ^ fl T^" = 0 by definition.

Therefore, T i
f c T±9 T i " C T± and T± • ? T±" J T ^

The complete partitioning scheme must specify some

procedure for selecting the changeover (p,q). A very power

ful selection procedure is to choose that element (p,q) which,

if not selected, would be likely to yield suboptimal solu

tions in T^ 1. The motivation for this selection rule is

the alternate cost concept [32].

Theorem 3.4. If a single processor schedule s does

not include the changeover (i,j) then the cost z(s) of s

is bounded as follows

41

z(s) > min c. 1 U + min c (III-6)

Selecting the changeover (p,q) such that 0 - max

^ij £ o r Ci»j) t s» seT^, has been very powerful in

single-salesman problems [6, 12].

Since F C T, then z(s) is also bounded by 0 ^ .

Corollary 3.1. If a parallel processor schedule S

is constructed from s where (p,q) ft s, then

Therefore, selecting the changeover (p,q) by maximum

alternate cost should be effective in the partitioning de

fined by (III-4) and (III-5).

Feasibility Tests

The algorithm must at least implicitly specify a

collection of subsets t containing only and all infeas-
—o

ible parallel processor schedules. One way of accomplishing

this is to construct the corresponding parallel processor

schedule S for any augmented problem solution s and then

test S against the definition of feasibility.

This procedure is inefficient since it only operates

on a single solution S. A more efficient procedure would be

to find entire subsets of infeasible solutions. If (p,q) is

selected and T.* is partitioned according to (III-4), several

z(S) > 6.. =» min c. 1 U + min c
v^i

(III-7)

42

conditions necessary for feasibility for any SeT^ 1 are as

follows.

Condition (i). If i is the beginning job and j is

the ending job in the partial sequence (i,k),..., (p,q)>...>

(h,j) containing (p,q), any seT^ 1 is feasible only if

(j,i) i S. Otherwise there are either cycles between real

jobs or changeovers from final jobs. To indicate infeasi-

bility of any S such that (j,i) e S, let c..̂ - °°.

Condition (ii). If (p,q) is imbedded in a sequence

[(M + n, k) , . . . , (p,q),..., (h,j)], any SeT^ is feasible

only if (j, M + N + u) t S, where u i n. Otherwise, a sched-

ule begins and ends on different processors. Let C j M+N + U ~
0 0 for all u / n to indicate infeasibility.

Condition (iii). If (p,q) is imbedded in a sequence

[(i,k),..., (p,q),..., (j, M + N + n)], any SeT^ 1 is feasible

only if (M + u, i) i S, where u f n. Such schedules are

infeasible for the same reasons given for Condition (ii).

Set c ^ + u ^ " 0 0 for all u f n to indicate infeasibility.

Condition (iv). If for any SeT^ 1 sequence [(M + n, k) ,

(h,i)] e S and sequence [(j,g),..., (f, M + N + u)] e S,

and u f n, then any S such that (i,j) e S is infeasible.

Such schedules also begin and end on different processors.
.A

Therefore let c^. = °°.

Lower Bounds

The key prerequisite in the development of any branch

and bound algorithm is the computation of an efficient

43

lower bound on the cost of any solution in each partitioned

subset. Since Theorem 3.1 and Theorem 3.2 allow the set of

all feasible solutions F to the parallel processor problem

to be enveloped by the set of all solutions T to an augmented

single processor problem, then two well known theorems re

lating to single-salesman traveling salesman problems are

helpful in establishing lower bounds.

Theorem 3.5 [32]. If C - { C j j } describes a single

salesman problem, if kp and k^ are real numbers associated

with an entry c such that
pq

C'pj * CPJ " V C j = 1 ' " " r ; W

c'iq " Ciq " k q ; (is=1>---> T> ^P)

c' = c - k - k pq pq p q

c = c rs rs (r^p; s^q)

and if

z(s) * E c,.

z'(s) = I c'..
(i . j) e s 1 J

then

44

z'(s) « z(s) - k p - k q.

Subtracting the smallest element in a row (column) of

a matrix from each element in the row (column) is defined as

row (column) reduction. A fully reduced matrix is one in

which there exists at least one zero in each row and in each

column. The above theorem suggests reducing a matrix as

much as possible while maintaining nonnegativity and using

the sum of the reducing constants to bound the cost of any

constructed parallel processor schedule. The following

corollary makes the scheme clear.

Corollary 3.2. If

- min c. - min [c
v u

(IH-8)

then

(i,j)eS
E

(i,j)eS
+ E min c.

i v 1 i v

+ E min [c - min c],
v

so that

h = E min c. + E min [c . - min c]
i v j u J v

(IH-9)

45

is a lower bound on Z
(i . J) e S

The quantity h in (III-9) is a lower bound b(F) on

the total changeover time required by any feasible parallel

processor schedule. Also, h is the sum of the constants

used in subtracting the maximum constants from each row and

each column.

Corollary 3.2 can be used recursively to compute

lower bounds on any subset T^ 1 partitioned from T^ by

equation (III-4). Since (p,q) e seT^ 1, jobs p and q can be

joined to form a composite job, say r, so that a scheduling

problem with one less job is represented by T^ 1. Job r

incurs the same changeover times as going to p and from q.

In addition, certain changeovers known to be infeasible from

feasibility conditions (i) - (iv) can be assigned an infinite

cost in the new scheduling problem. If the matrix describ

ing the new problem is reduced as suggested by (III-9), then

h is the time in excess of the lower bound b(T^) required

by selecting (p,q). That is,

The other theorem helpful in establishing lower bounds

is Theorem 3.4 from which a lower bound on the total change

over time required for any SeT. 1 1 is

bCV) - b(T.) + h. (111-10)

b (T i
M) * b(T i) + 6 (III-ll)

Recursive Procedure

The recursive procedure selected for the algorithm is

one which minimizes data storage requirements, which is fre

quently the limiting factor in problem size capability. The

operations used to drive the algorithm to optimality are as

follows.

Operation (i). For any partitioning, select the

smallest subset T^ which is neither known to be infeasible

or dominated. If no such T^ exists, terminate the algorithm.

Operation (ii). Partition T i into T^' and TV* using

equations (III-4) and (III-5).

Operation (iii). Compute a lower bound on the cost

of any solution in T^* and T^" using equations (111-10) and

(III-ll).

Branch and Bound Algorithm

Based on the above considerations, the branch and

bound algorithm for the identical processor scheduling prob

lem is as follows.

Step 1. Construct C according to equation (III-2).

If N* is to be determined, N* • N and F is an (N x N) matrix

with (N - 1) diagonal elements equal to zero and all other

elements equal to infinity. Let z Q be the total changeover

time for the best schedule available at any step of the

47

algorithm.

Step 2. Let * T, the set of all parallel processor

schedules. Reduce C by equation (II1-8). Compute h from

equation (III-9). The lower bound b(T i) = h.

Step 3. Compute 6̂ .. for each changeover (i,j) by

equation (III-6). Let 0 = max 0...
pq i j iJ

Step 4. Partition T. into T.• and T." according to * i l l
(III-4) and (III-5). Compute b (T i

M) from equation (III-ll).

Step 5. Develop the matrix describing the problem

given by the subset T." by letting c - «>. o / i y ° pq
Step 6. Develop the matrix describing the problem

given by T^ f by (a) letting C p j - «>, 1 ± 3 ± N 1 and

c. s », 1 i <_ N 1 , and (b) finding those c. . - °° for those l q il
(i,j) found infeasible by applying feasibility conditions

(i) " (iv).

Step 7. Reduce C describing T^' according to (III-8).

Compute b(T^ ?) from (111-10). If the reduced matrix has

exactly two rows and two columns whose elements are not all

infinite, T^ f = {S}, a single schedule with cost b (T i
t) . The

two remaining changeovers required to complete S are those

changeovers which have zero times in each finite row and

column. If T.' = S and if b (T i
t) < z , let z Q = b (T i

f) .

Step 8. If f {S} or if b (T i
l) > z , backtrack to

the smallest subset, say T^, for which b(T^) < z Q and proceed

according to Step 3; if no such T^ exists, the current best

schedule is optimal and the algorithm is terminated.

48

Otherwise, go to Step 3, letting T\ = T\ 1.

Illustrative Problems

An example problem is solved below for each of the

two possible assumptions which could be made with respect

to the number of processors to be used in the final schedule

Identical Processor Example Where N' is Specified

Consider an M s 5 job, N = 2 available identical

processor problem with changeover times

C =

Let the changeover time from an initial job to any job

j be U j where u = f u j } " [6, 5, 5, 3, 5] and let the change

over time to final job j be v^ where v f = {v.} • [4, 5, 5,

1, 6],

Assume that exactly N ! = 2 of the N = 2 available

processors are to be activated in the final schedule. Accord

ing to Step 1, an augmented matrix

49

00 8 4 7 2 4 4

2 00 7 2 4 5 5

2 5 00 6 3 5 5

4 4 3 00 5 1 1

1 2 3 1 00 6 6

6 5 5 3 5 00 00

6 5 5 3 5 oo 00

is constructed. The total changeover time zQ for the best

schedule available equals infinity.

From Step 2, the subset at hand is T^ - T. C is re

duced according to (III-8) to yield

CO 5 o2 s o1 2 2

0° 00 3 0° 2 3 3

o1 2 00 4 1 3 3

3 2 0° oo 4 0 2 0 2

0° O 1 0° 0° CO 5 5

3 1 0° 0° 2 CO CO

3 1 0° 0° 2 00 CO

where the superscripts are the alternate costs to be computed

in Step 3. (Non-zero elements have zero alternate cost.) A

lower bound on the total changeover time required for any

SeT i is b(T i) = h * 17, computed from equation (III-9). The

progress of the solution procedure can be represented by the

50

tree given in Figure 1 where b(T) = 17 since = T.

From Step 3, changeover (4,9) is tied for maximum

alternate cost and is arbitrarily selected as the changeover

on which to base the first partitioning. (Note that the

C f ^ j element in C 1 represents the (4,9) changeover since

changeovers to artificial job n are to be taken as change-

overs to final job M + N + n.)

According to Step 4, set is partitioned into 1

which includes all S such that (4,9) e S and T\" which in

cludes all S such that (4,9) t S. The subsets T i ' and T i "

are denoted (4,9) and (4,9), respectively, in Figure 1.

Also b (T i
M) - b(T i) + 6 4 9 = 17 + 2 = 19.

From Step 5, the changeover time matrix describing

the scheduling problem given by the subset T^fl is

C =

The matrix describing the scheduling problem at T^ f

i s

51

Schedule 1:
6-4-8

Schedule 2*
7-3-1-5-2-9

Figure 1. Tree Representation of the Solution to the
Identical Processor Example Where N' is
Specified

52

C =

which was developed according to Step 6. The only active

feasibility condition was (i) which made the (6,4) change

over infeasible.
A,

The new matrix C describing 1 is reduced according

to Step 7 and the lower bound b(T i») • b(T i) + h * 17 + 2

- 19.

Step 8 required that Steps 3 - 7 be performed recur

sively. The remainder of the iterations are entirely

analogous to the one performed above, and are summarized in

Figure 1. Note that an optimal solution with a total change

over time of 20 was found on the first pass, but that one

backtrack was required to prove optimality. The backtrack

terminated with an alternate optimal solution identical to

the first except that the processors are reversed.

Identical Processor Example Where N* is to be Determined

The same problem given above can be solved under the

assumption that N* is to be determined. The only significant

difference is the way in which the algorithm is started.

53

Step 1 now specifies that

CO 8 4 7 2 4 4

2 CO 7 2 4 5 5

2 5 00 6 3 5 5

4 4 3 00 5 1 1

1 2 3 1 oo 6 6

6 5 5 3 5 0 00

6 5 5 3 5 CO 0

The iterations are summarized in the tree given by

Figure 2. Note that no backtracking was required to find

the optimal solution to this problem, which has a total

changeover time of 14. It is interesting that the previous

example requiring exactly two processors in the final

solution required an incremental 6 units of changeover time

over the unconstrained solution, which is approximatley a 431

increase in total changeover time.

54

Figure 2. Tree Representation of the Solution to the
Identical Processor Example Where N* is to
be Determined

55

CHAPTER IV

SCHEDULING JOBS WITH ALL INFINITE DUE DATES

ON DISTINCT PARALLEL PROCESSORS

The present chapter extends the identical processor

scheduling algorithm to admit distinct processor problems.

Distinct processors mean that, in general, c j j n 7* ciju

when n 7* u. It is still assumed that dj = » for all j . The

existence of N distinct changeover cost matrices precludes

a formulation entirely analogous to the identical processor

formulation. Therefore, certain concepts underlying the

identical processor algorithm must be extended.

Extensions of Identical Processor Algorithm Components

Let F be the set of all feasible distinct processor

schedules. Any admissible schedule is also a feasible

schedule if all dj = °°. Let T be the set of all parallel

processor schedules in which an initial job is performed

first and a final job is performed last on each processor.

The approach is to imbed the problem of finding an optimal

feasible parallel processor schedule S* e F in the less

restrictive problem of finding an optimal parallel processor

schedule S* e T in such a way as to insure feasibility.

Therefore, the better than optimal but infeasible solutions

in T - F must be efficiently isolated. In addition, the

56

branch and bound partitioning scheme and bounding rules must

be extended to treat the more generalized problem.

Partitioning Scheme

The partitioning scheme used in the distinct processor

branch and bound algorithm always partitions a single nonempty

subset T^ whose elements are schedules which have in common

a number (possibly zero) of changeovers on specific processors

and which prohibit a number (possibly zero) of changeovers

on specific processors. The partitioning is made by selecting

a changeover (p,q) n for processor n and dividing T^ into T^ 1

all of whose elements include the (p,q) n changeover and T^"

all of whose elements prohibit the (p,q) n changeover.

That is, T^ c T, T^ f 0 and the subset of changeovers

common to all SeT. is A = fl S. If (p,q) e { U S - A } ,
~ 1 SeT± ~ n SeT i ~

then the partition is defined as

T±' = {SlSeiy, Cp,q) neS} (IV-1)

T." = {S|SeT.; (p,q) n^S}. (IV-2)

This partitioning scheme differs from the earlier

scheme of equations (III-4) and (III-5) since it explicitly

assigns changeovers to processors. However, it is a valid

partitioning procedure since it partitions a subset T^ into

proper subsets and does not add any elements in the parti

tioning.

57

Theorem 4.1. Given T i
l and T i " as defined by (IV-1)

and (IV-2), then

T. 1 U T. 1 1 s T. , l l l'

T i
t C T i and T^ 1 C T i ,

T.• j T." f T..
I ' I I

Proof. For any SeT^, either (p,q) n e S or (P» cl) n t S.

If (P,q) n e S, then SeT^ and S,^". Otherwise SeT^ 1 and

S^T i
t. Therefore T i

t U T^ 1 1 = Also, since T i
t fl T±"

- 0, then T.'C T. , T." C T. and T. 1 j T." t T. . ^' i i ' l l i l l
The selection procedure for the changeover (p,q) n is

an extension of the alternate cost procedure used for the

identical processor problem. If a changeover (i>j) n is not

made on processor n, then exactly one of the following two

events may occur: (1) the changeover (i,j) is not made on

any processor, necessitating a changeover (i,u) r, u f j and

a changeover (v,j) t, v f i; or (2) the changeover (i,j) r,

r f n is made. The occurrence of exactly one of the events

(1) or (2) is necessary for an admissible parallel processor

schedule since each job must be processed. These consider

ations lead to the following lower bounding on the cost of any

parallel processor schedule which does not include a given

changeover (i,j) n.

59

changeovers from each SeT\, increasing the probability that

the optimal solution S*eT\ f.

Feasibility Tests

Since each changeover is explicitly assigned to a

specific processor, some new feasibility tests can be stated

and some of the identical processor feasibility tests can

be extended. The following conditions are necessary for

feasibility.

Condition (i). Given set T., let (j,k) e S e T..
i — ^ _ 2.

 w * ' p p 1

A partition T^ f of T^ using (r,s) n is admissible only if

j ^ k ^ r ^ s when p f n. This condition states that change-

overs both from and to a given job must be performed on only

one processor to insure admissibility.

Condition (ii). Given a set T^, suppose (M+n, M+N+n) n

e S n e T^. Then any partition 1 of T^ using changeover

(r,s)p is admissible only if p f n. This condition states

that when an initial - final job pair has been selected for

procesosr n (implying that processor n is not activated)

then requiring processor n to make any other changeovers

results in infeasible solutions.

Condition (iii). Given a set T^, suppose there exists

a complete schedule S » [(M+n, i^) , . . . , (i , M+N+p)]
r » F P '

e T^. Then a partitioning 1 of T^ based on (r,s) n is ad

missible only if n f p. This condition is actually the

general case of Condition (ii) and states that if a complete

schedule for any processor is contained in a subset of

58

Theorem 4.2. Let (i>j) n be a changeover on processor

n such that c . < °°. The cost z(S) of any admissible ljn '
schedule S such that (i,j)_ £ S is bounded as follows:

z(S) > min [Y i J n; 6 i J n] - 8 i j n , (IV-3)

where y.. s min
^ n l<r<N

min
K r < N

{c. vjr }

and

Proof. If for an admissible schedule S, (i>j) n £ S,

then either (1) the (i,j) changeover is not made on any

processor or (2) the (i,j) changeover is made on processor

r, r f n. If event (1) occurs, a changeover (i,u) r and a

changeover (v,j) t must be included in S since S was assumed

to be an admissible schedule. Therefore, if event (1) occurs

z(S) > y.• . If event (2) occurs, then z(S) > . Since ~ — 'ijn ~ — ijn
exactly one of the events (1) and (2) must occur if S is

to be admissible, then the cost of S can be bounded from

below by finding the minimum over all outcomes.

In general, the subset T. 1 partitioned from T. will be

smaller than T^ M because the schedules in T^ 1 have more

changeovers in common. Therefore the partition is con

structed according to (IV-1) and (IV-2), selecting (P* 0.^ s o

that B„ - max {6.. }. This procedure excludes high-time
pan iir r

60

solutions, then any further partition based on another

changeover on that processor is inadmissible.

Condition (iv). Given a set T\, suppose subsequences

f(M+n, i1>n) Cij-i.n' i j , n)]
 e Ti' [(ik,n> ̂ •l.n1'""

(i , M+N+n)] e T. and (w,x) e T. . A partitioning T. ' of x_»n x n x x n
T. based on (r,sl is admissible only if r / i. and i p j ,n
s f i^ n when p - n. This condition simply states that a

complete schedule for processor n which excludes a change

over already assigned to processor n is inadmissible.

Condition (v). Given a set T^, suppose (j,k)peSpeT^.

Any partition T^' of T^ based on a changeover (M+n, M+N+n)

is admissible only if n t p. This condition states that

when one or more jobs have already been assigned to a pro

cessor, the selection of an initial - final pair implying

no work for the same processor results in an infeasible

solution.

Condition (vi). If (r,s)„ e T., then (s,r)„ is in-
i i — s i - Jxi x n

admissible in T^ or any of its partitions. This condition

relates to inadmissible cycles in a given processor's

schedule.

Condition (vii). If N * is to be determined and if

(N - 1) initial-final changeovers (M + n, M + N + n) n

e U S, then the remaining initial-final changeover SeT^ ~
(M + u, M + N + u) u £ g^ip S is infeasible. Otherwise,

i
there would be an initial-final sequence on all processors.

Condition (viii). If exactly N ' processors are to

61

be activated and if N - N f initial-final changeovers

(M + n, M + N + n) n e ĝ , S any initial-final changeover

(M + u, M + N + u) u e gMp S is infeasible. Otherwise, less

than N 1 processors will be activated.

Condition (ix). Suppose exactly N 1 processors are to

be activated and the set of changeovers ĝ , S place m jobs

on p processors. Then if M - m £ N f-p, any changeover

(r,s) n £ ĝ T S is infeasible if n is one of the p processors.

Otherwise, less than N f processors would be activated. Also,

if M - m <N f-p, the entire subset of solutions T^ 1 is infeas

ible. Similarly, if p • N f any (r > s) n £ 5 ^ S is infeasible.

if n is not one of the p processors, unless (r > s) n is a n

initial-final changeover.

The simultaneous satisfaction of the above conditions

is only a necessary condition for admissibility. However,

they do identify a large number of inadmissible schedules

because they identify entire subsets of inadmissible solu
tions. Conditions (i) - (vi) combined with the definition of

an admissible schedule above provide an efficient mechanism

for generating a collection t^ of inadmissible subsets.

Lower Bounds

Suppose a subset of solutions T^ is partitioned into

T i
l and T^' according to (IV-1) and (IV-2). The identical

processor procedure for establishing a lower bound b(T^ f)

on the total changeover time required by any SeT^ can be

extended to the distinct processor case. Consider an array

62

C = {c.. } constructed from matrices ljn

C =

1 2 ... M M+l ... M+N

M
M+l

M+N

9n=<cijn> B

D

(IV -4)

The elements of the upper left submatrix C n equal those

entries in C which give the changeover times between original

jobs for processor n. Submatrix A has infinite entries

except for row n (row M + n of C) in which element cXMj_ . „ r v ~n M+n,j,n
equals the changeover time from processor n's initial job

M + n to job j. Similarly, submatrix B has infinite entries
/ \

except for column n (column M + n of C } in which element
/ \

c i M+n n e c l u a ^ s t^ i e changeover time from job i to processor

n's final job M + N + n. D is an (N x N) submatrix with

diagonal elements equal to zero and off-diagonal elements

equal to infinity.

The distinct processor bounding procedure rests on

array reduction of C. Array C is fully reduced if for each

63

i there exists some h and k such that - 0 and for each

j there exists some f and g such that cfjg ~ 0.

Array reduction can be used to establish lower bounds

on any SeT\ f using a procedure analogous to the identical

processor bounding b(T ^ f) . The basis for this extension is

that constants can be systematically subtracted from certain

elements of array C to obtain an array C f; and that the cost

of any S under C 1 equals the cost under C 1 less the constants

subtracted. The following is the result underlying the

extension.

Theorem 4.3. Given C constructed according to (IV-4),

if k and k are real numbers associated with c such
pn qn pqn

that

- c . - k j ^ q ; l < u < N pju pju pn * M. » _ _

= c - - k i ^ p ; l < u < N lqu lqu qn v * — —

= c - k - k 1 < u < N pqu pqu pn qn - -

c t r t u = crtu r ^ p; t ^ q; 1 < u < N

and if for admissible schedule S

z(S) - Z c..
(i,j) neS ^ n

64

z' (S) = Z
(i,j) neS

then z'(S) = z(S) - k. pn - k qn-

Proof, In any admissible schedule S, all original

jobs precede exactly one other job and all original jobs

follow exactly one other job. Final jobs precede exactly

zero other jobs and initial jobs follow exactly zero other

jobs. Therefore, exactly one changeover (p,j) n, 1 ± j ± M +

N, n e N will be included in any admissible changeover.

Then, if a constant k „ is subtracted from each such fp,jV, » pn r J n
l ^ . j f _ M + N, n e N , then the cost of any admissible sched

ule S under the revised costs will be exactly k „ less than
' pn

under old costs. Similarly, any admissible schedule includes
exactly one changeover (i,q) n, l < _ i < _ M + N, n e N , and

subtracting k from each such (i,s) reduces the total cost ° qn n
of any admissible schedule S by exactly kq n»

Theorem 4.3 suggests that repeated subtraction of

constants from the cost data for any subset of solutions T.

be performed such that c \ j n :L 0 a n c* using the sum of the

subtraction constants as a lower bound on the cost z(S) of

Corollary 4.1. If

c ijn - m m c.
v,r 1 i v r - min [c

u,r uj r - min c, v,r uvr CIV-S)

65

then

Z c . * Z c f.. + Z min c. (i,j)nes ^ n (i.j^eS ^ n i v.r l v r

+ ? m i n t cujr • m i n c uvr]> j u,r J v,r

so that

h - Z min c. + Z min [c , - min c] (IV-6)
i v,r j u,r J v,r

is a lower bound on the total changeover time for any S under

C.

Since the minimum over all processors r occurs in

each reduction constant in (IV-5) and (IV-6), a (M + N) x

(M + N) composite matrix

C* »'{cj.} - min {c.. } (IV-7)

can be reduced in the usual way to find h. That is

c*!, = c*. - min c* - min [c*. - min c*] (IV-8)
±J XJ Y U V

h = Z min c* + Z min [c*. - min c*]. (IV-9)
i v 1 V j u U J v u

is a lower bound b(F) on any SeT^.

66

An analogous procedure can be used to bound from

below the time required for any subset 1 C defined by

(IV-1). Jobs p and q can be treated as a single job on

processor n, so that a scheduling problem with one less job

is represented by T^ f. Infeasible changeovers identified from

feasibility conditions (i) - (vi) can be assigned an infinite

cost in array C Matrix C* can be recomputed according to

(IV-7) to describe the new problem at T^ 1. Then C* can be

reduced according to (IV-8) and (IV-9) to find the time in

excess of b(T^) incurred by selecting (p,q) n. That is

b C i y) = b(T i) + h. (IV-10)

The lower bounding of any SeT^ 1 1 defined according to

(IV-2) is a straightforward application of Theorem 4.2 so

that

boy') = b (^) + e p q n (IV-11)

where &pq n
 1 S computed according to equation (IV-3).

Branch and Bound Algorithm

Based on the above extensions, and using the analogous

recursive operations, the generalized algorithm can be stated

as follows.

Step 1. Construct C according to (IV-4) and

67

feasibility conditions (vii) - (ix). Construct C* according

to (IV-7). Let z Q be the total changeover time for the best

schedule available at any step of the algorithm; initially

Z = oo.
O

Step 2. Let • T, the set of all parallel processor

schedules. Reduce C* according to (IV-8), performing the

same operations on C according to (IV-5). Compute h from

(IV-9) and let b(T±) = h.

Step 3. Compute 0 ^ j n f ° r each (i,j) n e C* and let
e ™ « = max {9.. }. pqn ljn

Step 4. Partition T\ into 1\ 1 and TV 1 according to

(IV-1) and (IV-2). Compute b(T\ M) from (IV-11).

Step 5. Develop the data describing the problem at

T i
M by letting c p q n = ~, letting c* q - min'{c }.

Step 6. Develop the data describing the problem at

T. • by (a) letting c . = 0 0, 1 <_ j <_ M + N, u e N, (b)
J. jj J U

letting c ^ q u = °°, l < ^ i < ^ M + N , u e N , (c) letting c ^ j u
 = 0 0

for those (i,j) n which are known to be infeasible by feasi

bility conditions (i) - (ix) and (d) recomputing C* according

to equation (IV-7).

Step 7. Reduce C* according to (IV-8), performing the

same operations on C according to (IV-5). Compute h from

(IV-6) and b (T i
f) from (IV-10). If C*' has exactly two rows

and two columns which are not all infinite, complete the

single schedule SeT^' by adding those changeovers which have

one zero in each noninfinite row and column of C*'. If 1

68

-'{S} and if b(T.*) < z . let z = b(T.»).
1 o o 1

Step 8. If T. f t {S} or if b(T.') > z . backtrack to * 1 — 1 — o
the smallest subset, say T^, for which b(T\) < Z q and proceed

according to Step 3; if no such T\ exists, the current best

schedule is optimal and the algorithm is terminated. Other

wise, go to Step 3, letting 1\ - T i
t .

Illustrative Problems

Two example problems are given below to illustrate

the use of the algorithm for the case when the number of

processors to be utilized is a given number N' _< N and when

part of the scheduling problem is to determine N*, the optimal

number of processors.

Distinct Processor Example Where N 1 is Specified

Consider an M s 5 job, N = 2 available distinct

processor problem where the number of processors N 1 to be

activated in the final schedule is given as N' - 2. The

changeover cost data for processors one and two are, respec

tively,

Si - (IV-12)

69

5 2 -

00 4 4 6 1

2 00 2 8 3
3 9 CO 6 8

4 3 4 oo 4

8 9 2 5 00

(IV-13)

Let the changeover time from initial job M + n to any job

j be given by u nj where

5 - { V -
4 5 9 9 3
1 3 5 7 1

(IV-14)

Similarly, let the time from any job j to final job M + N + n

be v . where

1 7 9 7 1

2 4 8 8 5

According to Step 1,

(IV-15)

5L "

CO 6 5 9 2 1 00

3 00 3 8 6 7 00

1 7 CO 9 7 9 00

2 5 9 00 3 7 00

3 8 9 8 CO 1 00

4 5 9 9 3 oo oo

00 oo 00 CO CO 00 00

(IV-16)

70

?2 s and (IV-17)

C* -

00 4 4 6 1 1 2

2 00 2 8 3 7 4

1 7 00 6 7 9 8

2 3 4 00 3 7 8

3 8 2 5 oo 1 5

4 5 9 9 3 oo 00

1 3 5 7 1 00 00

(IV-18)

Note that the submatrix D in (IV-4) has all infinite elements

due to feasibility condition (viii).

From Step 2, C* and C are reduced to yield

C* 1 =

00 2 4 1 0 0 0

0 00 0 2 1 5 1

0 4 00 1 6 8 6

0 0 2 00 1 5 5

2 6 1 0 00 0 3

1 1 6 2 0 00 00

0 1 4 2 0 00 00

(IV-19)

71

f 1

r i

r 1

00 4 4 4 1 0 00
1 00 1 2 4 5 oo
0 5 oo 4 6 8 CO
0 2 7 OO 1 5 OO
2 6 8 3 CO 0 OO
1 1 6 2 0 CO 00
CO CO CO CO 00 oo 00

00 2 3 1 0 00 0

0 oo 0 2 1 oo 1

2 7 00 1 7 CO 6

2 0 2 CO 2 oo 5

7 7 1 0 CO 00 3

CO oo CO CO oo oo CO
0 1 4 2 0 CO CO

and (IV-20)

(IV-21)

A lower bound on the total changeover time required by any

feasible schedule is h » 17 and the tree of Figure 3 is

started.

According to Step 3, element (6,5) of C* 1 has the

maximum alternate cost of one. Therefore (P-oJ^, " (6,5)^

since c 6,5 ' C6,5,r
By Step 4, the set at hand is partitioned into T i

t ,

denoted by (6 , 5) i n Figure 3, and T^ M, denoted by (6,5)^

in Figure 3.

72

°P CM

to £

rsi / x-s

+->

O
+->

C *

O <D
• H ,CJ

r H <D
O r H

CO £X|

M-i rt
O X
w
H

o
cn

o
• H
+->
CTJ CA
+-> 0

O

CO rH (P

H 4-1
Pu-P ' H
(D U O
& PS <D

• H Pk
<D +J CO
<D cn

H Q - H

73

The cost data to be computed in Step 5 describing the

scheduling problem of subset T^" is identical to equations

(IV-19), (IV-20), and (IV-21) except that c* g = » and

C6,5,l s °°-
All changeovers to and from either job 5 or 6 must

now be performed on processor 1. The adjustments of Step 5

C* =

9l =

(IV- 20), and (IV-21) yield

oo 2 3 1 oo 0 0

0 OO 0 2 00 5 1

0 5 00 1 00 8 6

0 0 2 CO 00 5 5

2 6 8 3 00 0 oo

oo oo CO oo CO oo oo

0 1 4 2 00 00 CO

oo 4 4 4 oo 0 OO

1 oo 1 2 00 5 OO

0 5 00 4 00 8 00

0 2 7 CO oo 5 00

2 6 8 3 CO 0 00

CO 00 CO CO CO CO 00

CO 00 oo CO oo 00 00

(IV-22)

and (IV-23)

7 4

CO 2 3 1 CO oo 0

0 OO 0 2 CO oo 1

2 7 CO 1 oo CO 6

2 0 2 CO CO CO 5

CO CO CO CO oo CO 09

CO CO OO CO oo oo oo

0 1 4 2 oo 00 CO

(I V - 2 4)

T h e o n l y reduction on C* o f equation (I V - 2 2) r e q u i r e d

b y Step 7 is in column four where e a c h entry c a n b e r e d u c e d

b y a constant one. C given by (IV-23) and (IV - 2 4) a r e s i m i

l a r l y reduced. Therefore b (T i
l) « 1 7 + 1 • 18 a s shown i n

Figure 3 .

Step 8 determines that neither is T^' a singleton

subset {S} nor is b (T- 1) = 18 < z_ = °°. Additional itera-~ V 1 o
tions analogous to the one above are required* T h e r e s u l t s

of these iterations are displayed in the tree of Figure 3 .

Note that the optimal schedule was found on the first pass

but that four backtracks were required to prove optimality.

Distinct Processor Example Where N* is to be Determined

Consider the same problem given by equations (I V - 1 2) -

(IV-15) under the assumption that the number of processors

activated is unconstrained. The solution proceeds exactly

the same except that the D submatrices of C^ and C 2 in

equations (IV-16) and (IV-17) respectively have diagonal

75

entries of zero and off-diagonal entries of infinity. There

fore C* of (IV-18) is computed accordingly and the algorithm

proceeds as usual. The tree representation of the solution

is given in Figure 4.

The optimal solution was again found on the first pass

of the procedure. However, only one backtrack was required

to prove optimality. This reduced the amount of backtracking

that was encountered for most problems where the number of

processors was unconstrained (see Chapter VI). Also the

total changeover time was only 16 units for the unconstrained

solution compared to 21 units for the constrained problem.

Schedule 1: 6-8
Schedule 2: 7-5-4-2-3-1-9

Figure 4. Tree Representation of Solution to the
Distinct Processor Example Where N*
is to be Determined

77

CHAPTER V

SCHEDULING JOBS WITH SOME FINITE DUE DATES

The algorithm given in the previous chapter provides

procedures to schedule jobs with all infinite due dates on

parallel processors in such a way as to minimize total

changeover time. The present chapter extends these algo

rithms to admit a set of M jobs for which there is at least

one finite due date.

The minimization of total setup time is still the

criterion, but each job must complete processing before its

due date. If the individual job due dates are so restrictive

that there exists no parallel processor schedule that meets

all due dates, then there exists no feasible solution to the

problem. Procedures for the situation where no feasible

solution exists are beyond the scope of this study.

The previous algorithm considered the set of feasible

schedules F to be imbedded in a larger superset T, and any

admissible schedule was also a feasible schedule since all

due dates were infinite. Extending the solution procedures

to admit job due dates involves devising methods to identify

those admissible solutions which are due date infeasible.

Obviously, one way of doing this is to check each complete

schedule to see if all due dates are met. However, this

78

approach is not efficient. Ideally, it is desired to elimi

nate entire subsets of solutions during early stages of the

solution procedure. This can be done by identifying change-

overs whose inclusion in a subset would result in the entire

subset being infeasible. The present chapter develops tests

to identify such infeasible changeovers. The basic approach

underlying the feasibility tests developed below is due to

the single processor results of Pierce and Hatfied [6]. How

ever, in addition to extending their results to the multi

processor problem, a new lower bounding scheme is given which

significantly improves their basic concept.

Development of Feasibility Conditions

Let the M jobs be numbered in nondecreasing due date

order so that for any two jobs i and j, i < j implies that

^1 — • t n e n o t a t i ° n [i] n denote the job which has the

ith smallest due date of all jobs currently assigned to

processor n by some subset T^ at a given stage of the solu

tion procedure. For example, if for T^ at some stage of the

algorithm jobs 3, 5 and 10 with respective due dates 12, 13

and 20 are assigned to processor 5, then = 3, [2],- = 5

and [3] 5 = 10. Also d ^ j = d^ = 12, d r ^ = d r
 a 13 and

d£^] = " 20. Finally, let k n be the number of jobs

currently assigned to processor n in subset T^ at some stage

of the algorithm.

79

Necessary Conditions

A condition necessary for the feasibility of any

solution SeT\ is the following:

Condition 1. If there exist changeovers g£j, S that

require jobs [l]n> [2] [k
nl n

 t 0 b e performed on proc

essor n, then each Sel\ is feasible only if

where b j > n - ^ c± [j ^

A schedule S is feasible only if all job due dates are

met. That is, all processing on a given job must be com

pleted before its due date for feasibility. Furthermore, for

any job [v] n , all processing on jobs [l] n , [2] n,..., [v-l] n

must also be completed before d r , since d n i <_ d r ? , <_. ..
L V J n L 1 J n L Z J n

^[v] . Suppose there exists some u, 1 < u < k for which n — — n

u
, 2 X

 (B M n , n + > M n , n > ^ [u] n

Note that b r . n is a lower bound on the cost of any change-IJ J n,n
over to job [Jln« Therefore it is impossible to meet job

[u] 's due date unless Condition 1 is met. n
The above condition is clearly not sufficient be

cause the jobs already assigned to processor n will, in

8 0

general, be a combination of jobs such that the lower bound

D [j] n on the cost of the changeover to the job on processor

n with the jth smallest due date will not be realized. In

fact, knowledge of the changeovers already included in a sub

set can be used to make the necessary condition more

efficient by tightening the lower bounds bp.-,
n n

Suppose a changeover (w > [J l n) n
 e s e T ^ s 0 t n a t fj^ n

must be processed on n. Then it is known that a cost
C r . , must be incurred instead of min c. r., .

w [^ n n l<i<N l [^ n n

In general

w [j] n n - K i < N l [^] n n

Therefore b r j - j n can be made more efficient (larger) by

redefining it as

n Cw[j] n i f < w ' » V n e s ^ S * n 1

^ n ' 1 1 J min c-r--, otherwise.
K i < N 1 U J n n

Thus, the quantity

v

e v . » B jSi C b U] n . n + P[;] n,n)

is a lower bound on the time required for both processing

and changeovers for jobs [l]n> [2] [v]n»

81

The amount of "slack time" Qj-yj n available before

time dj-vj for making changeovers (i»[j] n) n f ° r j £ v whose

costs c . r . , n are larger than the lower bound b r . , and for U J n Lj J n

changing over for and processing jobs [v+1] [k n] n is

important in feasibility tests.

To illustrate the concept, suppose that T^ « {S |

(3,5)2 e S} so that job 3 and job 5 must be completed on

processor 2. Figure 5 shows a typical relationship between

the time data. In this situation, q c „ - d c - e c „ would
' n5,n 5 5,n

obviously be available before d r and q ~ = min (q,-

dj - e^ n) would be available before time d^. Figure 6 shows

a different but also typical relationship between the data.

In this case a certain amount of job 5's processing must

occur before time d^ in order that job 5's due date d,- be

met. However,

*S,n = d 5 " e5,n a n d «3,n = m i n ^ 5 , n ; d 3 ' e3,n)-

In general

q[v] n,n " min[«[v+l]n,n> d [v] n " e[v] n,nl-

Using the concept of slack time q r r l , feasibility
m n , n

Condition 1 can be restated and a number of feasibility tests

can be stated to identify infeasible changeovers (i»j) n f ° r

a given processor n:

82

b3,n £ ^ c3,5,n

e 3
• +
,n d 3 ES

\ • 1

,n d 5

Figure 5. Typical Relationships Between Time Data
When Processing on a Job Begins After
the Previous Job's Due Date

b3,n c3,5,n

[+ \ \ 1
3 ,n 5 ,n 5

Figure 6. Typical Relationships Between Time Data
When Processing on a Job Must Begin
Before the Previous Job's Due Date

83

Condition 1 1. If there exist changeovers'{(i,j)) e

SeT. ? t h a t r e c l u i r e J o b s [i^n* t 2] n»---» [k n] n to be per
formed on processor n, then each SeT^ is feasible only if

q [i l , n ^ ° 1 = 1 V
n

Condition 2. Let [i] n and [j] n be any two jobs

currently assigned to processor n such that 1 <_ i < j £ k n

and for which q ^ ^ < If b [j] n > n • >

^Til n t n e n J o b c a n n o t Precede job [i] n in any

sequence on processor n. Also since <l[v] n £ ^[i] n £ o r

v < i, then all changeovers ([j]n> [v l n) n
 a r e infeasible for

1 < v < i.

Condition 2 follows from the fact that, under the

stated assumptions, n
 > ^[±] ^ ^ ° H ° W S tJ^n o n

processor n when b ^ / * V ^ n * «[i] n,n'

Condition 3. Under the assumptions of Condition 2,

changeovers ([r] n, [j l n) n
 a r e infeasible for 1 <_ r £ i if

6 [i] n > d[r] n-
Condition 3 follows from the requirement that jobs

M+n, [l] n,..., l>-l] n, [r+l] n,..., [i-l] n, [i] n must be

completed before job [r] n and the earliest time at which this

total processing could be complete is e^.

Condition 4. For any job, [i]n> 1 f. i < k n> currently

assigned to processor n, the ([i] n, M+N+n) n changeover is

infeasible if e r v l „ > d r . i .
[k] n,n [i] n

84

Condition 4 is obvious from the fact that jobs

[1] t^n^n m u s t ^ e included in processor n fs schedule

so that e [] c] n ^ s a lower bound on the completion time for

all k jobs, n J

Condition 5. For jobs [i] n and [j] n , 1 <_ i < j <_ k n,

i £ q[i] n,n < «[j] n.n a n d i £ b[j] n,n + P[j] n,n > «[i] n,n'
then ([j] n, [i] n) n

 i s infeasible.

Condition 5 states that if job [j] n is to be processed

before job [i]n» then the lower bound brjj n + ^[j] n o n

changing over to_ and processing job [j] n must be less than

the slack available before job [i] n
fs due date.

Condition 6. If [i] n and [j] n are two jobs 1 <_ i < j

< k n for which q [i] n > n > q [j] n > n and d [. ^ < d ^ then the

([j] n» [i] n) n changeover is infeasible if bp., + p^.,

+ efi] n,n > d [i] n -
Condition 6 states that if a lower bound Prj] n

 +

k[j] n + e[i] n o n t^ i e t * m e r e ciuired to process and make
the required changeovers for jobs [i] n and [j] n under the

stated assumptions is greater than cL^-i , then ([jln> [i] n) n
1 •'n

is infeasible.

Condition 7. If [i] n and [j] n are any two jobs

1 < i < j < k for which — — n

d = min { d r j] ; d r i] • c[i] ntj] nn + P [j] n , n }

= d t i] n
 + C f i] n [J] n n + p t j] n , n

85

then f[il„, is infeasible if er„-, „ > d r . , where v l j n » L« / jn yn Lvl ,n 1 1 1 _ L n L Jn
<*rvl 1 d < d f y + 1 1 and 1 < v < i.

n n
Condition 7 simply states that, under the given

conditions, the selection of the ([i] n, H] n) n changeover
will cause some job to be late if the lower bound e r , on

Jn
the time required to process jobs [1] [v] is greater

than job [il 's due date, n
Sufficient Condition

The above eight conditions are useful in identifying

changeovers which, if added to any schedule in a given

subset of solutions, would make that schedule infeasible.

If the subset of solutions contains a singular com

plete parallel processor schedule, then a condition sufficient

for feasibility is that each job's due date be met.

Condition 8. If a complete parallel processor schedule

S requires k jobs on processor n, 1 < n < N, then S is

feasible if and only if

C M * n ' i l , n ' n + P (i l , n > ' n 1 d i i , n

and

M+n,i- .n p(i, 1 ,n + I { c
l,n l,n"" j-2 lj-l,n' 1j,n» n

+ Pfi) n } 1 d i ' V = 2 , ' " > k n
L 1 j , n J , n xv,n n - 1,..., N

86

However, even though Condition 8 is both necessary and

sufficient, the exclusive reliance on it would result in an

inefficient scheme to isolate infeasible solutions since it

relates to a singleton subset T^.

Modification of Solution Procedure

Using Conditions 1-8, the algorithm developed in

Chapters III and IV can be modified to schedule jobs with

due dates on parallel processors. The required additions are

as follows.

Step 7 1 . Check the changeover selected in Step 3 for

feasibility using Conditions 1-7 given above. If the change

over is infeasible, set b(T^ !) • «>. If L ' = {S}, a single

solution, check S for feasibility using Condition 8. If S

is infeasible, set b(T^ !) - °°.

Illustrative Problems

Distinct Processor Example with Moderately Constraining Due

Dates

Consider a N = 2 available distinct processor problem

in which M = 5 jobs have the moderately constraining due

dates d = {d^ > = [29, 38, 52, 59, 87]. Let the processing

time p. be given by

87

3 5

2 5

6 8

7 7

1 5

For comparison, let the changeover time data be the same

as the examples in Chapter IV given by equations (IV-12) -

(IV-15) and assume that N* is to be determined.

The algorithm of Chapter IV augmented by Step 7' is

appropriate. The solution of the present example proceeds

exactly as the example in the previous chapter except for

the execution of Step 7'. Therefore the tree in Figure 7

describing the present solution begins exactly like the tree

of Figure 4, which relates to the previous example. In

solving the present problem Step 7' states that each pair

(i,j) n selected is to be tested for feasibility using feasi

bility conditions 1-7 of this chapter. This involves

inspecting the branch to which the pair (i>j) n selected by

Step 3 is appended to determine all jobs assigned to proc

essor n by that branch. The lower bounds e. on completion

time for each job j on processor n and the slack times q.

for each job j on processor n are computed and Conditions 1-7

are tested.

The first changeover selected by Step 3 involving real

jobs is (4,2) 9, the second pair selected after initialization.

88

Therefore

e2,2 = b2,2 + P2,2 = c4,2,2 + ?2,2 = 3 + 5 = 8

and

e4,2 = e2,2 + b4,2 + P 4,2 = e2,2 + m \ n ci,4,2 + ?4,2

= 8+5+7 = 20.

Then

«4,2 = d 4 " e4,2 = 59 - 20 ^ 39

and

q 2 £ = m i n ^ 4 2' d 2 ~ e 2 2* = m i n ^ 3 9 » 52 - 8} = 39.

With these data, Tests 1-7 can easily be made and the (4,2)2
changeover cannot be identified as infeasible by any of the

necessary conditions.

After (4,2) 2 passed the necessary conditions, branching

continued to the right in Figure 7 and all nodes passed the

necessary conditions until the first complete solution

S = (6,8; 7,5,4,2,3,1,8} is reached. This solution failed

the sufficient condition in Step 7* as illustrated in Figure 8

Figure 7. Tree Representation of the Solution to the
Distinct Processor Example with Moderately
Constraining Due Dates (continued on next
page)

Figure 7. (Concluded)

Figure 8. Partial Schedule {(7,5), (5,4), (4,2), (2,3)} of § 2

92

because by time d^ = 29, job 1 had not been processed.

Note from Figure 7 that the optimal schedule

S =* {6,8; 7,1,5,4,2,3,9} was found after only two backtracks

but that 13 more backtracks were required to prove optimality.

Also note that all of the necessary conditions were met at

each stage of the branching.

Distinct Processor Example with Highly Constraining Due Dates

The utility of the necessary conditions can be illus

trated by resolving Example 1 with the rather restrictive

due dates d = {d^} = [18, 30, 49, 61, 72],

The tree representation of the solution is given in

Figure 9, where some uninteresting branches have been

omitted. The first complete solution S = {6,8; 7,5,4,2,3,1,9}

is infeasible by Condition 8.

When (4,2)2 and (5,1)2 a r e s P e c i f i e d for processor 2,

condition 2 is failed for i - 1, j = 5. Here jobs 1, 2, 4

and 5 are assigned to processor 2 and the lower bounds on

completion times are

e 1,2 5,1,2 = 8+5 = 13

1,2 + b 2,2 - 13+3+5 * 21

2,2 + b 4,2 - 21+5+7 - 33

4,2 + b 5,2 = 33+1+5 = 39.

93

i - 2, M+N+n - 9

Figure 9. Tree Representation of the Solution to the
Distinct Processor Example with Restrictive
Due Dates (continued on next page)

P i * » ™ 9- (Concluded)

95

The slack times are

39 = 33

e 4 2> - min {33, 28} = 28

e 2 , 2 } " 9

e l , 2 } = 5

Obviously, the assignments pass Condition 1 since

°*1 2' °*2 2' ̂ 4 2' °*5 2 > ^* However, for job 1 and job 5,
„ < Qc and b c o + p c o = 6 > q 1 o = 5 and Condition 2 1 ,n ^5,n 5,2 r5,2 ^1,2

states that job 5 cannot precede job 1 on processor 2.

Figure 10 shows the infeasibility of this assignment which

places the earliest time at which job 1 could be completed

at time t = 19, which is past its due date of time t = 18.

The other tests involved in the tree in Figure 9 can

be explained similarly. For example, consider the branch

which assigns changeovers (7,2)2, (3,4^, and (1,5)2 t 0

processor 2 and which fails Condition 3 for i = 3, j = 5 and

r = 1. Figure 11 shows the relationship of the data. In

this case ^ ~ 24 and 0.5 2 = ^9. Test 3 states that the

(1,5)2 c n angeover is infeasible. Figure 11 confirms this by

inspection since processing on jobs 2 and 3 would have to be

completed before job 1 and this processing cannot be complete

before e T = 24 while d., = 18.

«5,2 = d 5 " e5,2 = 7 2 ~

q 4 > 2 • min { q 5 > 2 ; d 4 -

q 2 > 2 " rain ^ 4 > 2
; d 2 '

q± 2 - min {q 2 2 ; & ± -

5,2 5,1,2

14 t 19
d 1=18

Figure 10. Partial Schedule { (5 ,2) , (2,1)} of S 2

b l , 2 C7,2,2 tf2,V23 b3,2 C 3,4,2
'/'//,
V p 4 z

c l , 5 , 2

14 16 f 24 30 37
e„

38 43
e r

d 1=18

Figure 11. Relationships Between Time Data for S 2

Illustrating Infeasibility CD
ON

97

CHAPTER VI

COMPUTATIONAL EXPERIENCE

The algorithm developed in the previous chapters has

been coded in FORTRAN V for the Univac 1108. The computer

code is given in Appendix A, and incorporates features to

take advantage of the structure of the problem being solved

by suppressing certain operations when they are not required,

e.g., suppressing due date tests when all dj • »,

Computational experience concentrated on general cases

of the problem under assumptions which typically adversely

affect the computing times of branch and bound algorithms.

These results are as follows.

Results for Distinct Processor Problems

For a given problem size, the largest number of

admissible solutions apparently results when the processors

are distinct and when N* is to be determined. Size of the

solution space is frequently an indicator of problem difficulty

and computational experience was concentrated on the class of

problems defined by this assumption.

Branch and bound algorithms incorporating similar

branching and bounding schemes for related problems have

shown the worst performance when the data had low variability

98

[6, 12]. Therefore, the computational experience was concen

trated on problems with low changeover time variability.

Problems involving either 2, 3 or 4 processors and

from 5 to 15 jobs, inclusive, were solved to investigate the

algorithm performance with respect to this class of jobs.

Five problems for each assumption on M and N were generated

so that 165 problems were solved under the present assump

tions. Low data variability was introduced by generating

the changeover times for both real and dummy jobs for each

problem from a discrete uniform fO, 10] distribution.

Figure 12 shows the computing times averaged over

the five problems. (Computing time for each experiment is

given in Appendix B.) The average computing times for a

given number of processors N appears to lie along a straight

line on the semi-log plot. This suggests that the average

time t^j in minutes, to find the optimal solution to an M

job N processor problem is of the form

where a^ and b^ are constants. The broken lines in Figure 12

are the least squares lines fitted to equation (VI-1) for a

given N. The least squares estimates for a^ and b^ for the

three curves are given in Table 1,

99

I i t I f L I 1 1 1
5 6 7 8 9 10 11 12 13 14 15

Number of Jobs, M

Figure 12. Average Computing Time and Least Squares Lines
for Distinct Processor Problems

100

Table 1. Least Squares Estimates of a^ and b^

N a N b N

2 -8.2022 1.7860

3 -6.9998 1.7390

4 -6.0188 1.7200

The broken lines have approximately equal slopes b N
a N

and intercepts e which place them an equal distance apart.
/\ /\ /\ a

Neither the null hypothesis that b 2 - b^ or b^ = b^ can be
rejected by a t-test (assuming normally distributed regression

errors) at the 0.95 confidence level. Furthermore, both the
a l a 2 a 2 a 3 null hypothesis that e = e and e = e are rejected by

a t-test at the 0.95 confidence level.

These findings suggest that the average computing time

tĵ j in minutes is actually of the form

t M N - e a 6 M Y N , CVI-2)

where a, 3 and y are constants. Accordingly, all times in

Figure 12 were used to determine the least squares equation

t M N - e " 9 ' 7 7 5 2 (1.7480) M (2.4600) N. (VI-3)

101

The solid lines of Figure 12 are the family of lines of

equation (VI-3).

Equation (VI-3) provides an adequate predictor of

average computing time over the range of parameters studied.

The coefficient of multiple determination of (VI-3) is
2

R - 0.981. However, it may be unwise to extrapolate (VI-3)

to larger problems.

A limited number of additional distinct processor

problems were solved under alternative assumptions. Fifteen

problems were developed by generating job changeover times

from a discrete uniform [0, 20] distribution. Fifteen

additional problems with all discrete uniform [0, 10] were

developed and solved under the assumption that the number of

processors to be activated is specified to be N f. The computing

times for these additional problems are given in Table 2

along with the comparable mean computing times from the

previous problems. The number of additional problems solved

is insufficient to allow a valid comparison of the computing

times for the different classes of distinct processor

problems. However, it is noted that all but three of the

problems with discrete uniform [0, 20] changeover times

resulted in computing times below the average time required

for problems with discrete uniform [0, 10] changeover times.

This is apparently not inconsistent with the experience of

others [6, 12] with related algorithms.

1 0 2

Table 2 . Computing Times for (a) Problems with
Discrete Uniform [0 , 2 0] Changeover Times,
(b) Problems where N 1 = N Compared to
(c) the Mean Computing Times for Previous
Problems

Parameters Problem Set - Computing Time

M N (a) (b) (c)

cn

2 . 0 0 2 3 . 0 0 1 5 . 0 0 3 3

8 2 . 0 4 8 7 . 0 6 1 6 . 0 4 9 1

10 2 . 0 3 8 9 . 0 2 5 2 . 0 7 3 4

12 2 . 1 8 8 4 . 1 6 0 3 . 3 4 0 4

15 2 . 1 6 9 6 2 . 0 0 0 0 1 . 8 1 1 2

5 3 . 0 0 6 7 . 0 0 4 1 . 0 0 9 6

8 3 . 0 6 5 0 . 0 5 9 7 . 1 1 9 2

10 3 1 . 5 0 4 9 . 3 9 7 3 . 2 0 0 0

12 3 . 7 8 9 3 . 6 6 7 2 . 8 0 7 6

15 3 . 4 5 9 9 3 . 6 7 7 3 2 . 5 6 0 8

5 4 . 0 1 9 4 • 0 3 0 6 . 0 2 8 3

8 4 . 3 3 3 0 . 1 3 7 4 . 2 9 5 9

10 4 1 . 0 1 8 0 . 2 4 1 0 . 7 2 0 4

12 4 1 . 3 9 5 9 1 . 9 6 6 8 1 . 5 7 2 5

15 4 1 . 7 1 5 8 2 . 0 0 0 0 8 . 1 3 7 1

103

Results for Problems with Due Dates

The effect of introducing due dates was investigated

by solving each of the 55 previous N = 2 processor problems

under two sets of due dates. That is, 110 problems with

finite due dates were solved.

One set of due dates were such that they made only a

moderate number of admissible solutions due date infeasible;

i.e., the due dates were moderately constraining. These

problems would therefore be problems of average difficulty

as far as finding a solution which meets all due dates.

These moderately constraining due dates were developed by

generating the due date for job i from a discrete uniform

[20(i-l), 20i] distribution. All changeover times are

discrete uniform [0, 10]. For convenience, all processing

times were also generated from a discrete uniform [0, 10]

density. The expected processing time plus the expected

changeover time to any job is 10 and the expected time to

complete k jobs is 5 + 10k. Since the expected due date of

job i is lOi, there are only a moderate number of sequences

which satisfy job i's due date.

The other set of due dates were such that a larger

subset of the admissible solutions were due date infeasible.

This was accomplished by generating job i's due date from a

discrete uniform [10(i-l), lOi] distribution. Therefore,

this set of due dates is described as highly constraining.

The average computing times for these problems are

104

illustrated in Figure 13 along with the average computing

times for the same problems unconstrained by due dates. The

average computing time for this class of due date problems

does not appear to be explained by an equation of the form

of (VI-1). Therefore the least squares fit to (VI-1) is not

shown in the figure. Admitting moderately constraining due

dates increases average computing time, although perhaps not

significantly. However, a marked increase in average

computing time results when the due dates are highly

constraining.

Results for Identical Processor Problems

Computational experience was not concentrated on the

identical processor case for the reasons previously enumer

ated. However, three sets of identical processor problems

were developed and solved. Each set of identical processor

problems contained 15 problems so that 45 identical proc

essor problems were solved. In the first set, all job

changeover times were generated from a discrete uniform [0, 10]

distribution and the problems were solved under the assumption

that N' - N. The second set of problems was developed

similarly, and they were solved under the assumption that N*

was to be determined. The third set of problems had discrete

uniform [0, 20] changeover times and these problems were

solved under the assumption that N 1 =* N.

The computing times for the identical processor

1 0 5

10.0

1.0

0.1

0.01

(c)
> <

a

J L 1
8 9 10 11 12
Number of Jobs, M

13 14 15

Figure 13. Average Computing Time for Distinct Processor
Problems Where N=2 for (a) Infinite Due Dates,
(b) Moderately Constraining Due Dates, and (c)
Highly Constraining Due Dates

106

problems are given in Table 3. The number of experiments

is inadequate to make valid conclusions. However, it is

noted that relaxing the assumption that exactly N 1 = N

processors are to be activated resulted in reduced computing

times in all but three problems. Also, increasing the

changeover time variability resulted in lower computing

times in all but one* problem.

107

Table 3. Computing Times for Identical Processor Problems
Where (a) N f = N, (b) N* is to be Determined and
(c) Changeover Times are Discrete Uniform [0,20]

Parameters Problem Set - Computing Time

M N (a) (b) (c)

5 2 .0027 .0026 .0014

8 2 .0334 .0117 .0030

10 2 .0852 . 0276 .0233

12 2 .0325 . 5080 .0985

15 2 3.2165 .1835 .5111

5 3 .0378 .0332 .0033

8 3 .0559 . 2980 6.4790

10 3 .2750 . 3020 .0220

12 3 3.5179 2.8700 . 7984

15 3 2.9765 5.2765 .0656

5 4 .0915 .0855 .0266

8 4 2.3200 1.7233 .0854

10 4 5.7984 2.5321 . 3302

12 4 8.3765 3.2625 .8249

15 4 9.4771 2.9870 2.0060

108

CHAPTER VII

HEURISTIC PROCEDURES FOR SCHEDULING PARALLEL PROCESSORS

The computational experience reported in the previous

chapter indicates that exact procedures are probably computa

tionally inefficient for many problems of moderate size.

The present chapter develops and evaluates several heuristic

procedures for solving larger scheduling problems. The

procedures given below, except for random scheduling, incor

porate heuristics which have shown promise in similar

problems and therefore can be considered to be logical

extensions of existing results.

The Heuristic Procedures

Random Scheduling

A simple heuristic is to generate a number of random

solutions, using the best solution found. The procedure is

computationally fast but it has certain disadvantages.

Typical problems are structured such that there are only a

few near-optimal solutions and the probability of generating

one of these on a single iteration is quite small. When a

large number of trials are performed to increase the proba

bility of generating a good solution, the procedure becomes

inefficient. However, it is included here because the

results can be compared against more realistic heuristics.

109

Random scheduling involves randomly partitioning the

M real jobs into N subsets, scheduling the jobs in each

subset in random order and attaching an initial job and a

final job to the N single processor schedules. If the problem

involves determining the number of processors activated, N

is a random integer, 1 < N < N. Otherwise N is the specified

number of processors. A FORTRAN V routine for random

scheduling is given in Appendix C

Shortest Changeover Next

Procedures which build schedules on the basis of

shortest changeover next have performed well in the single

machine problem involving jobs with sequence-dependent setup

times [1, 34], The shortest changeover next heuristic was

extended to the parallel processor problem by successively

finding single processor schedules S n according to the follow

ing rules. If the processors are identical select the next

(initially the first) processor n and find the minimum

changeover time c * . * „ = min {c. . } between real jobs.
-1- > j

If the processors are distinct, select the minimum change

over time c.* .* * = min { c . } between real jobs over

all processors. Job i* is the first real job and job j* is

the second real job on the processor n. If g is the last

job added to S n , sequentially add jobs by selecting that

changeover (g,k*) for which c , * is a minimum, g ^ k*.

Jobs are added to S until either a final job is selected
n J

for k*, or until no more jobs can be added if a prescribed

110

number of processors are to be activated.

Changeover Imbedded in Minimum Time Subsequence Next

The shortest changeover next heuristic tends to be

myopic in the sense that it does not consider the time effects

of any additional changeovers necessitated by selecting the

shortest changeover next. Determining a machine's schedule

by successively adding the changeovers which necessitate

subsequences of minimum time would seem to overcome this

myopic tendency. This can be considered as a "look ahead"

scheme. An additional logical basis for considering this

heuristic is that an optimal schedule for M' jobs with

sequence-dependent setup times on a single machine is a

subsequence of M' jobs with minimum total changeover time.

This optimality condition will hopefully be approached if

changeovers incurring minimum time subsequences are added

sequentially to a machine's schedule.

This heuristic was applied to the identical processor

problem by selecting the next (initially the first) processor

n and then letting the first changeover (i*,j*) in S n

between real jobs be that changeover such that the total

subsequence time

cM +n,i*,n + ci*,j*,n + ^ { cj*,k,n }

is a minimum. If g* is the last job added to S , additional
° J ~n

jobs are added by selecting that changeover (g*,k*) such

Ill

that the subsequence time

c a * k* n + m i n { c k * k n }

g » » k^k* » K » n

is a minimum. If k* is a final job, it is understood that

min {c v* v } = 0. Jobs are sequentially added to S„ until
k^k* » K» n ~ n

either the final job M+N+n is selected or until no more jobs

can be added to S if a specified number of processors are to

be activated. Since the processors are identical, individual

schedules are developed in sequential order S^, S2,....
If the processors are distinct, the schedules are not

developed in sequential order. The next processor n* and

the first changeover (i*,j*) n* between real jobs on that

processor is determined by selecting (i*,j*) n* such that

cM>n*,i*,n* + ci*,j*,n* = ^ { cj*,k,n* }

is a minimum and then sequentially adding jobs as before. A

FORTRAN V code for either this heuristic or the shortest

changeover next heuristic is given in Appendix D.

Maximum Regret (Branch and Bound Without Backtrack)

Ashour, et al. [35] have reported good results using

a tour-building scheme for the traveling salesman problem by

linking at any stage those cities which would incur a

maximum regret or alternate cost as defined by Little, et al.

[12]. Ashour, et al. [35] also experimented with a look

112

ahead rule to break ties when there exist alternative maximum

alternate costs.

The extension of the maximum regret heuristic to the

parallel machine problem can best be described as branch and

bound without backtrack. Successive changeovers are assigned

to specific processors by selecting those admissible change-

overs with maximum alternate cost computed by equation (IV-3).

This heuristic seems reasonable based on experience

with the branch and bound algorithms developed in the previous

chapters. The exact algorithms frequently find either an

optimal or near optimal solution on the first iteration even

though much backtracking may be required to verify optimality

or to make a slight improvement for optimality. The steps of

the solution procedure are exactly the same as those of the

optimal algorithms, except that no backtracking is required.

The FORTRAN V code in Appendix I for the exact algorithm

incorporates an indicator variable to suppress backtracking,

if desired.

Maximum Regret With Look Ahead

The look ahead scheme proposed by Ashour, et al.

involves breaking ties between maximum alternate cost by

selecting that changeover which provides the minimum cost

reduction if that changeover were selected. That is, if

there are ties for maximum alternate cost in Step 3 of the

exact algorithm, select that changeover (i*,j*) such that

113

Z [min c..] + Z [min {c.. - min c..}]
i jtj* 1 3 j ifi* 1 3 ifi* 1 3

is minimum.

The above look ahead scheme is also imbedded in the

FORTRAN V code in Appendix A and is controlled by an indicator

variable.

Computational Experience

The five scheduling heuristics were evaluated by

applying them to various sized parallel processor problems.

Heuristic solutions were found for selected problems solved

optimally in Chapter VI, allowing the quality of the

heuristic solutions to be compared directly with the optimal

solutions. Larger problems were also solved heuristically.

These solutions were evaluated by approximating the distri

bution of total changeover time for each large problem and

making comparisons in terms of the probability that a random

solution yields a better solution. There appear to be

significant differences in computing times for heuristic

procedures, and computing times apparently do not increase

exponentially with problem size.

In general, the maximum regret heuristic provided the

best solutions, followed by maximum regret with look ahead,

shortest changeover next, minimum time subsequence, and

random scheduling.

114

Comparison With Optimal Solutions

The five heuristics were applied to the distinct

processor problems where N* is to be determined and where

the changeover times are randomly selected from a discrete

uniform [0, 10] distribution. Table 4 compares these

heuristic solutions to the optimal solutions determined by

the exact algorithm. The maximum regret heuristic produced

the solution nearest the optimal solution in all but one

problem. The maximum regret heuristic found the optimal

solution in two of the 15 distinct processor problems.

Adding the look ahead feature to the maximum regret heuristic

did not lead to improved solutions in the test problems.

The shortest changeover next heuristic produced an

optimal solution for one of the 15 problems. It produced

the same solution as the maximum regret heuristic for one

other problem. The shortest changeover next heuristic

found solutions of higher total changeover time for all other

problems.

A slightly different pattern emerges when the heuristics

are applied to identical processor problems. This is evident

from Table 5 where the heuristic solutions are compared to

the optimal solution for each of 15 identical processor

problems. (It was assumed that N* was to be determined and

changeover times were discrete uniform [0, 10].) Adding the

look ahead scheme to the maximum regret heuristic provided

a better solution to only one test problem.

115

Table 4. Comparison of Heuristic Solutions to
Optimal Solutions of Distinct Processor
Problems Where N* is to be Determined
and Where c.. . U [0,10]

Parameters Scheduling Method - Changeover Time

Max,
Regret Shortest Min.

Max. Look Change Time
M N Optimal Regret Ahead Next Subseq. Random

5 2 8 21 21 21 21 35

8 2 6 12 12 20 20 46

10 2 12 13 21 29 31 59

12 2 5 9 10 25 27 73

15 2 6 9 9 41 39 56

5 3 7 9 9 18 18 28

8 3 8 11 15 8 29 47

10 3 7 7 7 21 25 73

12 3 8 15 18 22 43 65

15 3 6 15 16 29 33 78

5 4 6 6 6 11 15 25

8 4 10 11 11 21 46 61

10 4 9 18 19 17 29 84

12 4 6 13 14 17 33 89

15 4 5 8 8 35 48 104

116

Table 5. Comparison of Heuristic Solutions to
Optimal Solution of Identical Processor
Problems Where N* is to be Determined
and Where c.. - U [0,10]

Parameters Scheduling Method - Changeover Time

Max.
Regret Shortest Min.

Max. Look Change Time
M N Optimal Regret Ahead Next Subseq. Random

5 2 11 11 11 22 19 31

CO
 2 7 7 7 31 33 51

10 2 13 15 15 30 37 58

12 2 7 13 13 16 42 57

15 2 10 10 10 35 44 70

5 3 15 15 15 30 24 50

8 3 12 12 14 21 17 34

10 3 7 8 8 23 34 61

12 3 10 11 11 29 49 59

15 3 8 8 8 41 67 76

5 4 15 15 15 18 24 49

CO
 4 13 13 13 26 31 68

10 4 9 11 11 28 27 57

12 4 14 17 14 28 43 68

15 4 8 9 9 38 58 96

117

The difference in computing times for the five

heuristics and the optimal procedure is illustrated in

Figure 14 along with the least square fit to equation (VI-1).

Although the figure only gives the computing times for

distinct processor problems in which N = 3, the pattern is

typical of computing times for other problems. It is noted

that the heuristics 1 computing times are not ranked in the

same order as the apparent goodness of their solutions. The

typical relationship is that between the shortest changeover

next heuristic and the maximum regret heuristic where an

increase in computing time provides an improved solution.

An anomalous relationship may exist between the maximum regret

heuristic and the maximum regret with look ahead heuristic

where the increased computing time leads to little or no

improvement in the solution.

Computational Results for Large Problems

Some computational experiments with the heuristic

procedures were performed on larger scheduling problems. The

experiments were directed toward determining (a) the quality

of the heuristic solutions, (b) whether the marked difference

and linear trend in the computing times indicated in Figure

14 extrapolated to larger problems, and (c) whether the

heuristic procedures were ranked the same with respect to

quality of solution.

In order to answer these questions, 10 test problems

involving up to 40 jobs and 10 processors were attempted.

118

0.005
0.0011 1 1 1 1 I 1 t I 1 1 I

5 8 10 12 15

Figure 14. Computing Time for Alternative Scheduling Procedures
for Distinct Processor Problems Where N * 3, N* is
to be Determined and c.. ~U [0,10]

l i n 1 ' J

119

These problems were for the most general parallel processor

case, involving distinct processors where N* is to be

determined. All changeover times were assumed to follow a

discrete uniform [0, 10] distribution and were generated

accordingly.

The evaluation of the quality of the heuristic

solutions is difficult because the optimal solutions are

unknown. It was decided that some idea as to the distribution

of total changeover time for each test problem would be

helpful. Since M jobs are to be scheduled on N* processors

and since 2N* initial and final jobs must be processed, the

total changeover time is a random variable X = Xj, + X 2
 + ...

+ XM+2JJ* where X^ is discrete uniform [0, 10]. Attempts to

find the distribution function analytically for specific

j - M + 2N* failed because of the discrete nature of the

problem.

Therefore, following Lockett and Muhleman [34] on a

related problem, schedules were developed at random for each

problem and the total changeover time was computed. A

histogram was developed from 1000 sampled schedules for each

problem. For example, the sampled distributions of total

changeover times for the M - 25, N 3 5 problem and the M = 30,

N = 10 problem are shown in Figure 15.

Total changeover time appears to be normally distributed.

The sample mean and unbiased sample variance were used as

estimates of the parameters for each of the 10 distributions.

120

CO
e

O

.25

. 2 0 H

.15

S . 1 0
ca x> o
u

.05

9 4 1 5 4
(a) T o t a l C h a n g e o v e r T i m e f o r t h e M = 2 5 , N

2 0 4
P r o b l e m

(b) Total Changeover Time for the M=30, N=10 Problem

Figure 15. Distributions of Sampled Total Changeover Time

121

A chi-square goodness of fit test at the 0.95 confidence

level did not reject the hypothesis that total changeover

time was normally distributed for each problem.

The heuristic solutions to the 10 problems are given

in Table 6, which gives the parameters of the sampled

distributions. The maximum regret heuristic resulted in

the solution with the least total changeover time in over

60% of the problems solved. Adding the look ahead scheme

resulted in a lower time solution in three of the six

schedules which it developed.

Table 7 expresses the heuristic solutions in standard

deviations below the estimated mean total changeover time.

The averages are a rough measure of overall goodness and

indicate that the difference between maximum regret and

shortest changeover next scheduling may be insignificant.

However, even if the difference is significant, the cost of

additional computing time may offset the reduction obtained

in the objective function.

It appears that the same marked difference in

computing times for heuristic solutions to large problems

exists. This is illustrated in Figure 16 which shows the

computing times when N - 5 fitted by least squares to

equation (VI-1). The rate of growth with problem size

appeared to be an extrapolation of the curves in Figure 14,

indicating that heuristic solutions for large problems are

obtained with approximately the same efficiency as for small

problems.

Table 6. Comparison of Heuristic Solutions to Estimated Total
Changeover Time Distribution for Selected Large Problems

N u m b e r
o f

P r o b l e m J o b s
N u m b e r M

A v a i l
a b l e

N u m b e r
o f

P r o c
e s s o r s

N

Heuristic Procedure - Total
Changeover Time

Estimated
Normal

Parameters

M a x . S h o r t e s t
R e g r e t C h a n g e - M i n ,

M a x . L o o k o v e r T i m e
R e g r e t A h e a d N e x t S u b s e q . R a n d o m M e a n

S t a n d a r d
D e v i a t i o n

1 20 5 12 12 40 81 121 128.1 15.5
2 25 5 15 13 34 69 108 150.1 16.8
3 30 5 15 15 22 42 165 173.9 17.9
4 35 5 13 12 33 33 196 198.2 19.4
5 40 5 21 27 38 38 210 224.9 20.6

6 20 10 17 15 35 65 117 143.6 18.1
7 25 10 18 * 32 70 171 173.8 19.4

CO
 30 10 14 * 14 72 158 193.7 19.1

9 35 10 * 23 90 2 30 226.6 21.6
10 40 10 * * 44 86 255 251.7 21.8

•Problem size exceeded allowed storage on the Univac 1108 used.

123

Table 7. Heuristic Solutions to Selected Large Problems,
Expressed in Deviations Below Estimated Mean
Total Changeover Time

Heuristic Procedure - Standard ^NoSal*
Deviations Below Sample Mean Parameters

Max. Shortest
Regret Change- Min.

Problem Max. Look over Time Standard
Number Regret Ahead Next Subseq. Random Mean Deviation

1 7.52 7.52 5.68 3.04 0.46 128.1 15.5

2 8,05 8.16 6.92 4.82 2.50 150.1 16.8

3 9.43 9.43 8.48 7.36 0.50 173.9 17.9

4 9.55 9.61 8.52 8.52 0.11 198.2 19.4

5 9.88 9.60 9.04 9.04 0.72 224.9 20.6

6 7.00 7.10 6.00 4.35 1.47 143.6 18.1

7 8.03 * 7.30 5.35 0.14 173.8 19.4

8 9.40 * 9.40 6. 37 1.87 193.7 19.1

9 * * 9.41 6.32 -0.20 226.6 21.6

10 * * 9.50 7.60 -0.15 251.7 21.8

Average 8.61 8.57 8.03 6.28 0. 75

124

Figure 16. Computing Times for Heuristic Solutions to
Selected Large Problems

125

CHAPTER VIII

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

A branch and bound algorithm was developed for the

parallel processor scheduling problem. The algorithm admits

parallel processor problems with finite job due dates and

distinct processors. Unique features of the algorithm

include (a) the lower bounding procedures used in identifying

dominated subsets of solutions, (b) the sequential feasibility

tests based on conditions necessary for both schedule admis

sibility and due date feasibility, and (c) a backtracking

scheme which minimizes the amount of data required for the

recursive operations.

A FORTRAN V computer code was develoepd for the

algorithm and a number of computational experiments were

performed. Computational experience was concentrated on

distinct processor problems with low changeover time vari

ability under three classes of due dates. Computing time

increased exponentially with both M and N for this class of

problems. A prediction equation for mean computing time was

developed for the special case where all due dates are

infinite. Relaxing the due dates decreased computing time,

which was a minimum when all due dates are infinite.

126

A limited number of additional problems were solved.

These included distinct processor problems with increased

changeover time variability, distinct processor problems

under alternative assumptions on the number of processors to

be activated and identical processor problems under a variety

of assumptions.

In general, optimal solutions appear to be elusive

for many parallel processor problems because of either the

problem size or structure. Several heuristic procedures

were developed for this class of problems. These included

adaptations of branch and bound without backtrack, branch

and bound with look ahead and without backtrack, shortest

changeover next, minimum time subsequence and (for comparison)

random scheduling. The heuristic solutions were compared to

optimal solutions for small problems and to the estimated

distribution of changeover time for selected large problems.

It was determined that the branch and bound without back

track procedure provided good schedules with reasonable

computing times.

Recommendations

Several ideas for extensions of the parallel processor

results have evolved from the present investigation.

Relaxed Assumptions

Some of the assumptions underlying the present inves

tigation could be relaxed to admit some important variations

127

of the parallel processor problem. Additional time constraints

on both jobs and processors frequently exist. Processor n's

availability is more generally constrained to some time

interval [a n, 3 R] $ [O,00] to account for noncontinuous

operation. In addition to due date d^, job j generally has

an arrival time a^ which is the earliest time that processing

can begin. The branch and bound approach is still appropriate

for these variations, but some significant extensions would

be necessary.

Alternative Criteria

The minimization of total changeover time is taken

as one of the most important criteria in scheduling environ

ments [4,5]. There are, however, alternative criteria

which could be equally important.

The minimization of total processor use time is

appropriate for many problems, especially when the job

processing times differ significantly from processor to

processor. An important variation is the minimization of

maximum completion time. Many of the algorithm components

are applicable here, but the extension would rest on the

development of efficient lower (for minimization) bounds on

the objective function.

Due dates frequently cannot be met and there are a

number of criteria that could be appropriate, depending on

the penalty cost of late jobs. Ideally, a procedure to

minimize job lateness on parallel processors should be

128

derived. This would provide a conceptual basis on which

optimization procedures involving lateness could be developed.

In addition, there is a large class of possible

objective functions which, in general, are functions of total

processor use time. The branch and bound approach may

extend to cases where the functions are linear or perhaps

continuous, nondecreasing convex, since lower bounding would

be fairly straightforward.

Recursive Operations

The development of alternative branch and bound

recursive operations could be important in the parallel

processor algorithm, and in similar algorithms. The most

elusive development would be that of adaptive recursive

operation. It appears that the efficiency of lower bounds

is highly dependent on problem structure, which changes

during the solution procedure due to partitioning. Also a

flooding operation where large subsets with small lower

bounds are investigated may be effective, depending on

problem structure. The development of logical switching rules

to evaluate the structure of the data at hand and then select

the most appropriate recursive operation would be challenging.

Heuristic Procedures

The combinatorial nature of the parallel processor

problem makes optimality a formidable goal in some cases. In

view of this, new heuristics could be developed and the

heuristic procedures of Chapter VII could be thoroughly

129

investigated and perhaps made more powerful (at the expense

of computing time) by incorporating more powerful decision

rules. Also, optimal stopping procedures could be developed

by comparing the estimated computing time to find one more

solution to the expected improvement in objective function.

APPENDIX A

FORTRAN V CODE FOR OPTIMAL, MAXIMUM REGRET,

AND MAXIMUM REGRET WITH LOOK AHEAD SCHEDULING

131

I N T E G E R C C O S T ' P I N D O P j O f C D l M E N . T H t T A j C H O L D
R E AD { 5 . 9 9) M , N » N P R I M E » n T Y P E » L 0 0 K » 1 0 P T » I 0 U E

99 F O R M A T ()
D I M E N S I O N C C 0 S T (2 5 r 2 5 , 5) > C H 0 L D (2 b » 2 5 ' 5) »

X F l N D C (2 5 , 2 5) , P (1 5 r 5) . D (1 5) » K R E D C m 2 5 » 2 5) . N 0 D E (2 5 » 2 5 » 5 0) »
X L B O U N O (5 0) » K H O L D (2 5 » 2 5) » M J O S (2 5) • I E K < 2 5) $ I Q K (2 5)
COlMEN=M-»-2*N
INFIN=999
I C 0 U N T = 0
IPAIRS=M+N"2
NFLAG=O
I T E R = 1 C A L L L O A D (N T Y P E » M r N » C c O S T » K R E D C D » F l N L > C . P . D » C H O L O » I X » I s » I A ' I B » l C ,

X I D)
N N 0 D E = 1 L C O S T = I N F l N

l9o F O R M A T (1 H 0 ' » *) * r * * * * * * 4 t * < t « * * * t)
C A L L R E D U C E (C H O L D » C D I M E N , N » C O I M E N » C D I M E N , K R E O C D » I S U M)
L B O U N D < N N O D E) = I S U M
N N 0 D E = N N 0 D E + 1
L B O U N D (N N O D t) = I S U M

3 0 l C A L L A L T E R (L O O K » N F L A G . N O D E # N N O O E •K R E D C O # M # N » C H 0 L D » F I N Q C # T H E T * »
XMROW»MCOL»ICOUNT)
I F (T H E T A , E Q . (- 1)) 6 0 TO 1 3 0 5
IC0UNT=IC0UNT+1
NNEXT=NNODE+I
L30UND(NNEXT)=L30UND(NN0DE) D O 5 C 1 I = 1 » C D I M E N
0 0 5 C 1 J = 1 ' C D I M E N
N O D E (I , J t N N E X T) = N 0 D E { 1 . J # N N O D E)

5 0 1 C O N T I N U E
N O D E (M R O W » M C O L » N N O D E) = - (1 0 0 - l - F I N D C t M R O W » M C 0 L))
L 3 0 U N D (N N O D E) = L 3 0 U N D (M N O D E) + T H E T A
I F (L B O U N D (N N O D E) , G T • 9 9 9 > LBOUND(NNODE)=999
K P R S 5 R = F I N D C (M R 0 W » M C 0 L)
C A L L U P D A T l C K P R S S R . t D j M E N f M R O W . M C O L f N . C H O L D)
I F (I D U E . E Q . O) G O T O 8 O 1
D O 7 C 9 I = 1 » C D I M E N
M J 0 3 (I) = 0

7 0 9 C O N T I N U E
M J 0 B (M R 0 W) = 1
M J 0 - M M C 0 L) = 1
D O 7 1 3 I = 1 » C 0 I M E N
DO 7',3 J = 1 » C D I M E N
T F (N O D E (I » J r N N E X T) - J L O o . N F , K P R 5 S R) G O T O 7 1 3
MJ0r3(I)=l
M J 0 3 (J) = 1

7 1 3 C O N T I N U E
DO 7 1 5 I = 1 » M
I E K (I) = 0

7 1 5 C O N T I N U E
I F L A G = 0
I H O L D = 0
0 0 7 3 5 I = 1 » M
I F (M J 0 B (I) . E O . O) GO To 7 3 5
I F (I . N E . M C O L) G O T O 7?i
I F (I F L A G , G T . 0) G O TO 7l9
I E K (I) = C C O S T (M R O W » M C O L , K P R S S R) + P U » K P R S S R)
IFLA G=1

I H O L D = I E K (I)
G O T O 7 3 5

7 1 9 I E K (I) = I H 0 L D + C C 0 S T (M R 0 W » M C 0 L » K P R S 5 R) + P (I , K P R S S R) I H O L D = I E K (D
7 2 l lFROM=o

D O 7 2 3 K = 1 » C D I M E N
l F (N O D E < K » I » N N E X T) - 1 0 0 t N E . K P R S S R > G O T O 7 2 3
I F R 0 M = K

7 2 3 C O N T I N U E
I F (I P R O M . E Q . O) S O TO 7 2 7
i F d F L A G . G T . o) G O TO j25
I E K (I) = C C O S T (I F R O M , I , k P R S S R) + P (I » K P r S S R)
i f l a g = i
i h o l d = i e k (d
G O T O 7 3 5

7 2 5 I E K < I) = I H O L D + C C O S T (I F r O M » I » K P R S S K) + p < I , K P r S S R >
I H 0 L D = I E K (D
G O T O 7 3 5

7 2 7 I B K = 9 9 9
D O 7 E 9 J = 1 » C Q I M E N
I F < C C O S T (J » I , K P R S 5 R) - i B K . G T , 0) G O T O 7 2 9
I B K = C C 0 S T (J » I » K P R S S R)

7 2 9 C O N T I N U E
I F (I F L A G . 3 T , O) G O TO 73I
I E K < I) = I B K + P (I » K P R S S R)
I F L A G = 1
I H O L D = I E K (D
G O T O 7 3 5

7 3 i I E K (I) = I H O L D + I B K + P (I » K P R S S R)
I H O L O = I E K (I)

7 3 5 C O N T I N U E
J O B S r O
D O 7 3 6 I = 1 » C D I M E N
J 0 3 S = J o 3 S * M J o B (I > *

7 3 6 C O N T I N U E
D O 7 3 8 I = 1 » C D I M E N
I Q K (I) = 0

7 3 8 C O N T I N U E
INlARK=0
I H O L D = 0
J I N D = M + 1
D O 7 3 9 K = 1»M
L J 0 3 = J I N D - K
IF (M J 0 8 < L J O Q) , E Q , 0) G 0 T O 7 3 9
IF(IvARK.GT.o) G O T O 7 3 7
I Q K (L J 0 3) = 0 (L J 0 3) - I E K (L J 0 B)
I M A R K = l
I H O L D = I Q K (L J O B)
G O TO 7 3 9

7 3 7 I C 0 M P = D (L J O Q) - I E K (L v J O p)
I Q K (L J 0 B) = M I N 0 (I C 0 M P » i H O L D)
I H O L D = I Q K (L J o B)

7 3 g C O N T I N U E
I 3 A C K = 0
D O 7tfl I = 1 » M
I F (M J 0 3 (I) . E Q , 0) G O To 7 4 1
I F (I Q K (I) , G E , 0) G O T O 7<H
I F (I B A C K . E Q . l) G O T O 74I
N N O D E = N N O D E + i

I8ACK=1
7*1 CONTINUE

IF (I B A C K , E Q . 1 > GO TO i305
IBACK=0
IRANGErM-1
DO 749 I = 1»IRANGE
IF(MJ03(I).EO,0)GO TO 749
ILARGEsI+1
DO 748 KslLARGErM
IF(MJ03(K) . E O . O G O TO 748
lF(I,Eo.MCOL,AND,K,EQ.MROW)GO TO 743
IF(NODE(K»I»KPR5SR)-1 0O.NE.KPRSSK)GO TO 7^8

7^3 l F (I O K (I) t G E # I Q K (K)) G o TO 748
IHOLD=0
IFLAG=0
JRANGEsK-l
DO 747 J=1»JRANGE
LA5TJ=K-J
IF(MJOB(LASTj).EQ,0>Go TO 747
IF(IFLAG,GT #0)SO TO 7^7
IFLAG=1
IH0LD=IEK(LASTJ)

747 CONTINUE
IF(IEK(K)-IH0LD,LE #IQ«;(I))GO TO 748
IF(IBACK #£Q.1)G0 TO 7^Q
IBACK=1
NNODE=NNODE-ri

748 CONTINUE
749 CONTINUE

lF(IBACK fEtf.l)GO TO 1305
IBACK=0
IRANGEsM-l
DO 759 I=1»IRANGE
IF(IBACK,EQ.1)G0 TO 7 5 9
IF(MJ03(I).EQ.0) G Q TO 759
I L A R G E = I + 1
D O 7«58 KrlLARGErM
I F (M J 0 3 U) . E Q . O J G O TO 758
I F (I G K (I) , G E T I Q K (K j) G 0 TO 758
I5MAUL=I-1
DO 755 IR=1»ISMALL
I F (I R . E Q . M R 0 W . A N 0 . X . E Q , M C 0 U :) G 0 TO 753
I F(NCDE< I R»K.KPRSSR)-. 1OO . N E.KPRSSR)GO TO 755 753 I F (I E K (I) . L E , D (I R ») G O TO 755
I F (I 3 A C K , E Q . 1) G 0 TO 7 55
I 3 A C K = l
N N O D E=NNOQE+i

755 C O N T I N U E
758 CONTINUE
759 CONTINUE

IF(I3ACK,£Q.D GO TO i305
K U S T = 0
KSTART=M+1
DO 763 K=1,M
IF(KLAST . G T,o)GO TO 7 6 3
KNEXT=KSTAKT-«K
IF(MJ03(KNEXT).EQ.Q)Go TO 763
K L A S T = K N E X T

763 C O N T I N U E

IBACK=0
00 769 I=1»M
LF(I3ACK F£Q.L)G0 TO 7 69
IF(MJ03(I).EG.OJGO TO 769
IF(I,EQ,KLAST)G0 TO 7^9
KFLNAL=M+iM+KPRS5R
LF(I,EQ,MR0w.AN0 FKFLNAU .EQ.MC0L)OO TO 765
LF(NOOE(I»KFINAL#KPRS SR)-100.NET^RSSR)GO TO 769

765 IF(IEK(KLAST).LEFD(I>)GO TO 769
IQACK=1
N N O D E = N N O D E +i

769 C O N T I N U E
LF(IBACK FEQ.l>GO TO 1305 IBACK=0 IRANGE=M-l
DO 779 I=1»IRANGE
IF(IBACK,EQ.1)G0 TO ?79
IF(MJ0B(I)TEO#0)GO TO 779
ILARGE=I+1
DO 778 K=ILARGE»M
IF(I3ACK,E0,1)60 TO 776
IF(MJ03(K)»EQ.0)GO TO 778
IF(I,EQ,MCOL,AND.K.EQ.MROW>GO TO 771
IF(NODEU>I»KPRSSR)-LOO.NE.KPRSSR>50 TO 778

771 LF(ICVK(I).GE,IQK(K))G 0 TO 778
I F D B A C K . E Q . D G O TO 778
IF(K,NE.MC0L)G0 TO Hp
13K=CC0ST(MROW tMCOL»KPRSSR)
GO TO 777

772 IFR0M=0
DO 773 K1=1»CDIMEN
LF(NODETKLRK,NNEXT)-l00.NE.KPRSS«)GO TO 773
IFR0M=K1

773 CONTINUE
IF(IFROM.EQ.O>GO TT;o
I B K = C C 0 S T (I F R 0 M . K > K P R S S R >
GO TO 777

77I> 13*=999
DO 776 J=1,CDIMEN
LF(CC0ST(J»K,KPRSSM)-IBK.GT.0)GO TO 776
I3K=CC0ST(VJ,K»KPR5SR)

77F, CONTINUE
777 IF<IBACK,EQ.1>G0 T(0 778

IF(IBK+P(K»KPRSSR) WLE IQK(I))G0 TO 778
IBACK=1
NNODE=NNODE+l

778 CONTINUE
779 CONTINUE

IF(I3ACK,EQ,1)G0 T(3> 1305
IBACK=0
IRANGE=M-1
DO 789 Irl>IRANGE
IF(IBACK.EQ.1)G0 TO) 7G9
ILARGE=I+1
DO 708 K=ILARGE,M
IF(MJ03(K).EQ,0)GO TO 788
IFD.EQ.MCOL.ANO.K.EQ.MROVNGO TO 78L
LF(NODE<K»I,KPRSSR)«l0D.NE.KPRSSR)GO TO 788

78I LF(LQK<I) TNE , IQK<K)JSO TO 788

135

I F (D (I) . G £ . D (K)) G 0 T O 788
I F (K , N E # M C 0 L) G 0 T O 7 8 P

I B K = c C O S T (M R O W r M C O L » K p R S S R)
G O TO 7 8 7

7 8 2 I F R 0 M = 0
D O 7 8 3 K l s l r C D I M E N
I F (N 0 D E U l » K , N N E X T) - l 0 0 . N E . K P R S 5 R) G O T O 783
I F R O M = K l

7 8 3 C O N T I N U E
I F (I F R O M , E O . O) S O T O 7«4
I 3 K = C C 0 S T (I F R 0 M , K » K P R S S R)
G O T O 7 8 7

784 I B K = 9 9 9
D O 7 8 6 J = 1 » C D I M E N

1 I F (C C 0 S T (J » K , K P R S S R) - j B K » G T , 0) G O T O 7 8 6
I B K = C C 0 S T (J . K » K P R S S R)

7 8 6 C O N T I N U E
787 I F (I B K + P (K » K P R S S R) + I E K (D . L E , D (I)) 6 0 T O 7 8 8

I F (I B A C K . E Q . 1) G 0 TO 7fi8
I B A C K = 1
N N O D E = N N O D E + i

7 8 8 C O N T I N U E
7 8 9 C O N T I N U E

I F (I B A C K , E Q . 1 > 6 0 T O 1 3 0 5
I 3 A C K = 0
I R A N G E = M - 1
D O 4 8 9 I s l » l R A N G E *
I F < I B A C K . E Q . 1 > G 0 TO <*e9
I F (M J O B C I) . E Q . Q) G 0 T O 4 8 9
XL.ARGE=X+1
D O (fca K r l L A R G E # M
£ F (M J 0 3 (K) • E Q , 0) G O T O 4 8 8
I F < I . E G . M R O W , A N D . j < . E Q . M C O L) G O TO 4 8 1
IF (N O D E (I r * » K P R S S R) -lfiO »NE • K P R S S R) G O TO 4 8 8

48l I R H S = D (I) -I-CCOST (11K pKpRSSR)+P (K » K P R S S R)
I D 3 A R = M I N 0 < D (K) * I R H S)
I F (I ? 3 A R t M E , l R H S) G O TQ 4 0 8
DO 4M7 J l = i , M
I F (M J 0 3 (J D . E Q . 0) G O T o 4 0 7
I F (I V . G T , 0) G O T O 4 8 7
J l N = j l + l
I V N = O
DO if63 J 2 = J 1 N » M
l F (I v / N , G T . 0) G O TO 483
I F (M J 0 B (J 2) . E Q . O) 6 0 T 0 4 8 3 I V N = J 2

4 8 3 C O N T I N U E
I F (I V N . E Q , 0) G 0 T O 4 8 7
I F (D (J D , L E . I D B A R . A N D . I D B A R . L T . D (I V N)) G 0 T O 4 8 4
3 0 TO 4 8 7

4 8 4 I V = J l
4 8 7 C O N T I N U E

I F (I 3 A C K , £ Q . 1) G 0 T O 4 a 8
I F (I E K (I V) . U E » D (I)) G O T O 4 8 8
I B A C < = X
N« M 0 D E=NN0DE+ 1

4 8 a C O N T I N U E
4 8 9 C O N T I N U E

I F (I 3 A C K , E Q . 1) S 0 T O I3O5

136

8 0 1 N N 0 D E = N N Q 3 E + 1
N O D E (M R O W , M C o L » N N O D E) - 1 0 0 + F I N D C (M R O W ' M C O L)
C A t L U P D A T 2 (K P R 5 S R , C D i M E N » M R 0 W . M C 0 L , M . N » C H 0 L D r N F L A 6 »

X I C O U N T , N O D E , N N O D E)
9 0 5 I F (I P A I R S - I C O U N T) 1 0 0 5 , 1 0 0 5 , 9 0 7
9 0 7 C A U L U P D A T K < N P R I M E , F I N J D C , M R O W , M C O L , C H 0 L D , C D I M £ N , M , N ,

X K P R S S R , K R E D C D * N F L A G , N o D E , N N O D E , I C O U N T , K H O L D)
C A L L R E D U C E (c H O L D # C D I M E N , N , C D l M E N , C O l M E N , K K E O C D > I S U M)
L B O U N D (N N O D E) = L 3 0 U N D (M N O D E > + I S U M

9 9 8 I F (L 3 0 U N D (N N O D E) . G E . L C O S D G O T O 1 3 0 5
GO TO 3 0 1

1 0 0 5 C A L L U P D A T M N P R I M E , F I N D C , M R 0 W » M C O L , C H 0 L D , C D I M E N > M , N »
X K P R S S R , K R E D C D » N F L A G » N Q D E , N N O D E , I C O U N T , K H O L D)
C A L L R E D U C E (C H 0 L D # C D I v . E N ,N » C D I M £ N > C D I M E N , K R E D C D » I S U M)
I P A S S = 0
D O 1 0 1 9 I = 1 » C D I M E N
D O 1 0 1 9 j s l r C D I ^ E N
I F (I A 3 S (K R E D C D (I » J)) , E Q » 9 9 9) G 0 T O 1 0 1 9
LR0lv= I
L C 0 L = J
I F (I P A S S . G T . O) G O T O 1 0 1 6
I S A V E = K R E D C D (L R O W # L C O L)
K R E D : D (L R O W , L C O L) = 9 9 9
DO U.11 K = 1 » C D I M E N
I F (I ^ B S (K R E D C D (K , L C 0 L)) . E Q . 9 9 9) G 0 T O 1 0 1 1
KR0W=K
L S A V E = K R E D C D (K » L C O L)
K R E D C D (< , L C 0 L) = 9 9 9

1 0 1 1 C O N T I N U E
N A D O =o I N U M = 0
I S T A R T = L R O W + i
D O 1 0 1 5 I I N D = I S T A R T » C D I M E N
D O l o l 5 J I N D = 1 , C D I M E N i F d ^ B S t K R E D c D d l N D ' J i N D)) , E Q . 9 9 9) G 0 TO 1 0 1 5
I N U M = I N U M+1

1 0 1 5 C O N T I N U E
I F (I N U M . G T . 0) G 0 TO 1 0 i 6
K K E D : D (K R O W , L C O L) = L S A v E
I P A S S = I P A S 5 + I
G O TO 1 0 1 9

1 0 1 6 N O D E (L R O W , L C O L , N N O D E) = 1 0 0 + F I N D C 1 L R O W » L C O L) N A D D = N A D D + 1
D O l o l 7 J 1 = 1 , C D I M E N
K R E D C D (L R O W # j l) = 9 9 9

1 0 1 7 C O N T I N U E
D O lol8 I 1 = 1 , C D I M E N
K R E D C D (H , L C 0 L) = 9 9 9

1 0 1 8 C O N T I N U E
I P A S S = I P A S S + i

1 0 1 9 C O N T I N U E
I F (N A D O • E Q • 2) G O T O I O 5 9
L B O U N D (N N O D E) = 9 9 9
G O T O 1 3 0 5

1 0 5 9 L 3 0 U N D (N N O D E) = L B O U N D (N J N O D E) +1 SUM
I F (I Q U E . E Q . O) 6 0 T O 1 0 & 0
I 3 E G I N = M + 1
I E N D = M * N

9^0 D O 9 4 9 I = I 3 E G I N » I E N 0

137

U O B r l
LTIME=0
IPRSSR=IJ0»-M
DO J~L * CDIMEN
I P (N O D E (I v J O B , J»NNODE) ,L.E.O)GO T O 9 4 3
J J O B = J

943 CONTINUE
JFINAL=M+N+IPRSSR
I F (J J 0 3 . E Q . J F I N A D G O T 0 949
L T l M E = L T I M E + c C O S T (U 0 3 R J J 0 B » I P R 5 S R) + P (J J 0 B - I P R S S R)
I F (L T I M E . G T . D (J J 0 B)) U B 0 U N D C N N 0 D E > = 9 9 9
U 0 3 = J J 0 B
GO TO 9 4 1

94q CONTINUE
1 0 6 0 WRITE(6»190)

W R I T E < 6 » 1 5 9 8) I T E R
IBEGIN=M+1
IEND=M+N
UTOT/lL=0
DO l o 8 9 I=l3EGINrlEND
U 0 3 = I
I P R S 5 R = U 0 3 - M
WRIT? (6» 1 0 8 0) IPRSSR.»IjOB

1 0 6 0 FORM/.T (1H0» 13X» »SCHEDULE , i l 3 » 3 X » , = : , r l 4)
1085 DO 1086 J=1»CDIMEN

I F < N 0 D E (I J 0 3 , J , N N 0 D E) # t E . 0) G O TO 1086
JJ03=J

1 0 6 6 CONTINUE
WrtITc7<6»1087) J J O B

I O 8 7 FORMAT(30X'I3)
LT0TAL=LT0TA L+CC0STCIj03»JJ03,lPRSSR)
JFlN. f tL=M+N+IPRSSR
IF(JJ08.EQ.JFINADG0 T 0 1089
IJ03=JJ0B
GO TO 1085

1089 CONTINUE
WRITE<6»1189)LT0TAL,

1189 F0RMAT(lH0»l3Xr'TOT^L C O S T * » 4 X » r 1 4)
lF(LCOUND(^NODE),GT«UC0ST)G0 TO 1305
LC0ST=LB0UND(NN00E)
WRITE(6»1191)LCOST

1 1 9 1 FORMAT(1H0»13X» »L,CoST»»9X»• = •»I4>
lF(l0PT.Ea.0,AND,LC0ST,J-T #999)GO TO 9999
DO 1 2 0 5 I = l » c O I M E N
D O 1 2 0 5 J = l » c D I M E N
N O D E (1 9 J » 1) = N O D E (I , J , MNODE)

1205 CONTINUE
1305 NEXTrO

NlNDEX=NN0DE-2
D O 1 3 0 7 K = 1 » N I N D E X
J=NNODE-K
I F (U B 0 U N D (J) . G E . L C 0 S T) G 0 T O 1 3 0 7
I F (N E X T . G T . 0) 6 O TO 1 3Q 7
NEXTrJ

1307 CONTINUE
I F < N E X T , N E . O) G O T O 1 5Q 5
W R I T E (6 » 1 4 9 1)

1 4 9 1 FORMAT(14X»»CURRENT SOLUTION IS OPTIMAL')
GO TO 9 9 9 9

138

1 5 0 5 I S T A R T = N E X T + 1
D O 1 5 0 7 I = I S T A R T , N N O D E

L 8 0 U N 0 (I) = 0
1 5 0 7 C O N T I N U E

D O 1 5 0 9 K=ISTART»NN0De
DO 1 5 0 9 I = 1 » C D I M E N
D O 1509 J = 1 » C D I M E N
N O 0 E (I , J , K) = 0

1 5 0 9 C O N T I N U E
N F U A G = 0
N N O D E=NEXT
G O TO 1 5 1 3

1 5 1 3 I N D E X = N - 1
DO 1515 I = l » c D I M E N
D O 1515 J = l , c D I M E N
K R E D C D (I , J) = c C O S T (I » J r i)
F I N D C (I » J) = 1
DO 1515 K = l » I N D E X
N E X T = K + 1
I F (C C 0 S T (I » J , N E X T) - K R E D C D (I . J)) l 5 m , 1 5 1 « » , l 5 1 5

1 5 H K R E D C D (I , J) = c C 0 5 T t I . » J , N E X T)
F l N D c (I » J) = N E X T

1 5 1 5 C O N T I N U E
D O 1 5 1 9 K = 1 * N
D O 1 5 1 9 I=1»CDIMEN
D O 1519 J=l,cDIMEN
C H 0 L D (I » J . K) = C C O S T (I , j , K)

1 5 1 9 C O N T I N U E
LOOPrO
D O 1 5 2 1 I = l , c D I M E N
DO 1 5 2 1 J = 1 « C D I M E N
I F (N O D E (I . J » N N O D E) # E Q # 0 > G O T O 1 5 2 1
IF (N O D E (I »«J> N N O D E) , G T # 0) N O D E (I , J »N N O D E) = 0
L 0 o P = L 0 0 P + l

1 5 2 I C O N T I N U E
C A L L R E D U C E (c H O L D > C O I v i E N . N r C D l M E N » C D l M E N , K R E D C D f I S U M)
I C 0 U N T = 0
D O 1 5 5 9 L = l » L O O P
CALL ALTER < LOOK » NFLAG,NODE »nnooe*KREDCD » M# N, CHOLD # FIN DC » THETA,

X M R O W , M C O L » I C O U N T)
l F (N O D E (M R O w , M C O L » N N O D E)) 1 5 2 9 , 1 5 5 5 , 1 5 5 5

1 5 2 9 K P R S S R = F I N D C (M R O W , M C O L)
C H O L D (M R O W » McOL tKPRSSR)=-999
KREDcD (M R 0 W . , M C 0 L)=-999
D O 1 5 3 9 K = 1 » N
I F (I A 3 S (K R E D CD (M R 0W » M C 0 L)) • L E , IA B S (C H O L D (M R O W » M C O L , K)))

X G O TO 1 5 3 9
1 5 3 ^ K R E D C D (M R0W . M C0L) = C H0L D (M R0W # M C0L » K)

F I N D C (M R O W » MCO L) = K
1 5 3 9 C O N T I N U E

G O TO 1 5 8 9
1 5 5 5 K P R S S R = F I N D C (M R O W » M C O L)

I C 0 U N T = I C 0 U N T 4-1
NODE(MROW 9MCOL»NNODE)=100+KPRSSR
C A L L U P D A T K K P R S S R . C D j M E N . M R O W , M C O L » N , C H O L D)
C A L L U P D A T 2 (K P R S S R . C D i M E N , M R O W , M C O L » M , N . C H O L D , N F L A G f

X I C 0 U N T , N 0 D E , N N 0 D E)
C A L L U P D A T K (N P R I M E , F I N D C , M R O W , M C O L , C H O L D , C D I M E N , M , N r

X K P R S S R , K R E D C D » N F L A G » N Q D E , N N O D E , I C O U N T , K H O L D)

139

1589 CALL REDuC£(cHOLO,CDIv | E N»N»CDlMEN»CDlMEN»KREDCD , I S U M)
1559 CONTINUE

I T E R = I T E R + 1
1 5 9 a F O R M AT(1H0» »ITERATION;»#13)

G O TO 3 0 1
9 9 9 g S T O P

E N D
S U B R O U T I N E L O A D I N T Y P E , M » N , C C O S T , K C O S T , F I N D C » P » D » C H O L D , I X » I S » I A » x b ,

XIC,ID)
INTEGER C D I M E N » C C O S T , K C O S T » F I N D C » P , D » C H O L D
CDIMEN=M+2*N
DIMENSION CC0ST(25,25,5)#KC0ST(25#25>»

XFINDC<25»25) , P(15»5)#D(5)»
XCH0LD(25,2&»5)
R E A D (5 , 2 9) U (C C O S T (I , J , K) # J = 1 , C D 1 M E N > #

* I = 1 »C D I M E N) # K = 1 ' N)
R E A D (5 » 2 9) ((P < I » J) » I = 1 » M) # J = 1 » N)
READ(5,29)(D(I)#I=1»M)

29 FORMAT()
40 INDEX=N-1

DO 50 I=1»CDIMEN
DO 50 J=1»CDIMEN
KC0ST(I»J)=CcOST(I,J»i)
FlNDC<I»J)=l
DO 50 K=l»INDEX
N E X T=K>1
IF(CC0ST(I»J.NEXT)-KC0ST (I»J>) 4 l » 4 1 » 5 0

**1 K C O S T (I # J) = C C O S T (I , J » N E X T)
F I N D C (I » J) = N E X T

5o CONTINUE
DO 69 K=1»N
DO 69 I=1»CDIMEN
DO 69 J=lrCDlMEN
CHOLD(I»JrK) =CCOST(I,j,K>

69 CONTINUE
99 R E T U R N

END
SUBROUTINE REDUCECCHO LDrCDlMEN,N>IROWS,iCOLSrRMATRX,IcUM)
INTEGER R M A T R X r C M O L D , c D l M E N

DIMENSION RMATRX<25'25)»CH0LDC25»25f5)
ISUM=0
DO 50 I=1,IR0WS
M1N=999
00 29 J=1»IC0LS
I F (I ; B S C R M A T R X (I » J)) - M I N) 21.29*29

2i MIN=RMATRX(I,J)
29 CONTINUE

lF(MiN,EQ,0.OR.MIN fEQ,999) GO TO 50
ISUM = I S U M + M I N
00 31 L=1»N
DO 31 K=1»IC0LS
IF(IABS(CHOLD(I»K»L))-999)30»31»31

30 CHOLD(I»K,L)=CHOLD(I, K,L)-MIN
CHOLD<IfK,l-) =MAX0(0»CHOLD(I,K,L) >

31 CONTINUE
DO 49 K=1,IC01S
IF(IA3S (R M A T R X(I » K))-999)37»49r49

37 R M A T R X (I , / <) = R M A T R X (I , K) - M I N
49 CONTINUE

140

5 0 C O N T I N U E
D O 8C J = l » I C O L S
M l N = 9 9 9
D O 5 9 I = l » I R O W S
I F (I ^ B S (R M A T R X (I » J)) - M I N) 5 1 » 5 9 » 5 9

51 M I N = R M A T R X (I , J)
5 9 C O N T I N U E

I F (M l N , E Q . 0 , O R » w I I N , E Q # 9 9 9) G O TO 80
I S U M = I S U M + M I N
D O 61 L = 1 » N
0 0 61 K = 1 » I R 0 W S
l F (l A B S (C H O L D (K » J , L) J « 9 9 9) 6 0 » 6 1 » 6 i

8 0 C H 0 L D (K r J » L) = C H 0 L D (K , j R L) - M I N
C H 0 L D (K » J » L) = M A X 0 (0 » C H O L D (K , J » L) > 6 l C O N T I N U E
0 0 7 9 L = 1 » I R 0 W S
I F (I « , 3 S (R M A T R X (L » J)) - 9 9 9) 6 7 , 7 9 * 7 9

6 7 R M A T R X (L , J) = R M A T R X (I . , J) - M I N
7g C O N T I N U E
8 0 C O N T I N U E

R E T U R N
E N D
S U B R O U T I N E A L T E R (L O O K , N F L A G , N 0 D E » N N 0 U E , K R E D C D » M , N , C H O L D » F I N D C ,

X T H E T A » M R O W » M C O L » I C O U M T)
I N T E G E R T H E T A I » T H E T A 2 , T H E T A , C D l M E N , F l N D C , C H O L D
C D I M E N = M + 2 * N
D I M E N S I O N C H 0 L D (2 5 , 2 5 , 5 > »

X F I N D C (2 5 , 2 5) , K R E D C D t 2 s » 2 5) »
X N 0 D E (2 5 » 2 5 » 5 Q) , I M A T (2 ^ , 2 5 » 5) » J M A T 1 2 5 » 2 5) 9
X J F I N 3 (2 5 , 2 5) , L 0 H 0 L (2 5 , 2 5)

T H E T A = - 1
MROW=0
MC0L=0
D O 89 I = 1 # C D I M E N
DO 8 9 J = 1 » C D I M E N
I F (< R E D C D (I » J) . N E . O) G O TO 8 9
K R £ D c D (I , J) = 9 9 9
M I N R 0 W = 9 9 9
D O 19 L = 1 ' C D I M E N
I F (I A B S (K R E D C D (I » L)) - V , I N R O W) 9 » l 9 » 1 9

9 M l N R C W = K R E D C D (I » L)
1 9 C O N T I N U E

M I N C 0 L = 9 9 9
DO 39 K = 1 » C D I M E N
I F (I A B S (K R E D C D (K » J) J - M I N C O L) 2 9 » 3 9 » 3 9

2 9 M I N C 0 L = K R £ D C 3 (K # J) *
3 9 C O N T I N U E

K R £ D c D (I , J) = o
T H E T f l = M I N R O W + M I N C o L
I F (T H E T A 1 , G E , 9 9 9) T H E T A l = 9 9 9
N c X T = 9 9 9
l P R S S R = F l N D C (I r J)
L S A V E = C H O L D (I » J » I P R S S R)
C H O L D (I » J » I P R S S R) = 9 9 9
30 59 K P R S 5 R = 1 , N I F (I : 3 S (C H 0 L D (I » J » K P R s S R)) - N E X T) 4 9 , 5 9 , 5 9

4 9 N E X T = C H 0 L 3 (I , J » K P R S 5 R)
5g C O N T I N U E

141

C H O L D (I # J » I P R S S R) = L S A y E
I F (9 9 9 - N E X T) 6 1 » 6 1 . 6 9

6l T H E T A 2 = 9 9 9
3 0 TO 79

69 T H E T,-2=N E X T - L S A V E :
I F (T M E T A 2 . L T . 0) T H E T A 2 = 0

7 9 I T E S T = M I N 0 (T H E T A 1 , T H E T A 2)
l F (I , G T . M , A N D . v J . S T T M) I T E S T = 0
I F (I T E S T . L T . T H E T A) G O T O 8 9
I F (L 0 0 K . E Q » 0) G 0 T O 1 9 g
I F (I T E S T , G T . T H E T A) 6 0 T 0 l 9 9
I X B = M R O W
I X C = M C 0 L
I V A R = 0
l F (l x B , E Q , 0 . 0 R . I X C t E Q . 0) G O T O 1 9 9

IO7 D O 1 g 9 H = 1 »C D I M E N
DO 1 0 9 J 1 = 1 » C D I M E N
J F I N D (I 1 . J 1) = F I N D C (I 1 , J 1)

1 0 9 C O N T I N U E
DO H 3 U = l » c D I M E N
0 0 1 1 3 J 1 = 1 » C D I M E N
DO H 3 K = 1 » N
I M A T (I 1 » J l » K) = C H O L D < I i # J 1 # K)

H 3 C O N T I N U E
I A B C r F l N D C (M R O W r M C o L)
DO H 9 I l = l - C D I M E N
D O 1 1 9 J 1 = 1 , C D I M E N
J M A T (I l » J D = K R E D C D (I l , J l)

1 1 9 C O N T I N U E
N A B D r N F L A G
D O 1 2 3 I l = l r C D I M E N
D O 1 2 3 J l = l , c D I M £ N
L 0 H 0 L < I 1 » J D r O 1 2 3 C O N T I N U E
M N O D = N N O D E
j C O T r l C O U N T
C A L L U P D A T K (J F I N D » I X B , I X C . I M A T . C D I M E N . M » N . I A B C , J M A T »

X N A 3 D , N O D E * M N O D * J C O T » L o H O L)
C A L L R E D U C E (I M A T , C D I M £ N » N - C D I M E N * C D I M E N » J M A T . I S U M)
I V A R = I V A R + 1
l F (I v A R . E a . 2) G 0 TO 1 3 i I R E D s l S U M 1 X 3 = 1
I X C = J
GO TO 1 0 7

I3i I F (I R E D . L T . I S 0 M) G 0 T O 8 9
1 9 9 T H E T A = I T E S T

M R O W = I
M C 0 L = J

89 C O N T I N U E
R E T U R N
E N D
S U B R O U T I N E U p D A T l (K P R s S R r C D l M E N » M K O w » M C O L . N . C H O L O)
I N T E G E R C H O L D » C D I M E N
D I M E N S I O N C H 0 L D (2 5 . 2 5 . 5)
K S T 0 P = K P R S S R - 1
K S T A R T = K P R S S R + 1
I F (K S T 0 P - D 2 l r 7 » 7

7 DO 19 K = 1 , K S T 0 P

142

D O 9 J=1 , C D I.MEN
CH0LD(MR0W» J , K)=999
CH0LD(MC0L,J,K)=999

9 C O N T I N U E
DO 19 I = 1 , C D I M E N
CH0LD(I»MC0L R K)=999
CH0LD(I»MR0W,K)=999

19 C O N T I N U E
2l lF(N - K S T A R T)tfl,23r23
23 D O 39 K = K S T A R T»N

D O 29 J=l»CDlMEN
CHoLD (MROW»J ,K)=999
C H O L D (M C O L , J R K)=999

29 C O N T I N U E
DO 39 I=1 » C D I M E N
CH0LD(I#MC0L.K)=999
CH0LD(I#MR0W ,K)=999

39 C O N T I N U E
*1 R E T U R N

E N D
S U B R O U T I N E UpDAT2(KPRsSR»CDlMEN,MR0w»MC0L»M,N»CH0LD»N FLAS,

XlC0UNT.N0DE»NN0DE)
I N T E G E R CDlMEN , C H O L L >
D I M E N S I O N C H O L D <25,25,5> » N O D E(25>25,50)
KINTL=M + K P R S S R
K F I N ^ L = M + N + K P R S S R
N L E V E L=N-1
MARKrO
DO 3 I = 1 , C D I M E N
D O 3 J=1,C0IMEN
lP=NODEtI»J»NNODE)-lOo
l F (l p # N E F K P R S S R) G O TO 3
MARK= M A R K>1

3 C O N T I N U E
U 0 3 = K I N T L
N P A T H=1
DO 6 K M A R K =1,M A R K
l F (N P A T H T E Q . 0) G O TO 6
JJ03=0
D O 4 J = 1 , C D I M E N
I F < N O D E(IJ03,J » N N O D E) #L£tO)GO T O 4
JJ03cJ

4 C O N T I N U E
I F { J j O 3 . E Q . 0) G O TO 5
U 0 3 = J J 0 B
GO TO 6

5 NPATH=0
6 C O N T I N U E

I F (N P A T H , E O » l « A N D • J J O Q # E Q » K F I N A L) G O TO 89
37 J S T A R T = M + N+1

J S T O P = K F I N A L - I
L S T A R T = K F I N A L + I
L S T 0 P = M + 2 * N
I F (JST0P-JSTART)43,39,39

39 D O ifi J=JSTARTrJSTOP
C H O L D (M C O L » J , K P R S S R) = g g 9

4i C O N T I N U E
43 I F (L S T 0 P - L S T A R T) 4 9 , 4 5 . 4 5
<*5 DO if7 J = L S T A R T . L S T O P

CHOLO(MCOL *J,KPRSSR)= 999
47 CONTINUE
49 M S T A R T=M+1

M S T O P = K I N T L - I
N S T A R T r K I N T U l
NSTOP= M + N
IF(MST0P-MSTART)63,59,59

59 DO 61 I=MSTART»MSTOP
CHOLD(I *MROW,KPRSSR)=g99

61 CONTINUE
63 IF(NST0P-NSTART>69,65,65
65 DO 67 I=NSTART»NSTOP

CHOLO(I»MROw,KPRSSR)=g99
67 CONTINUE
69 CHOLD(KINTL,KFINAL,KP RSSR)=999

CHOLD(MCOL» MROW 9KPRSSp)=999
70 lF(NFLA6 tLT,NLEVEL)G0 TO 76

DO 73 J=1»CDIMEN
I F (C H 0 L D (M R 0 W , J » K P R S S R) . N E , 9 9 9) 6 0 T O 73
CHOLD(MC0L»J,KPRSSR)= 999

73 CONTINUE
DO 77 I=l»CDlMEN
I F (C H O L O (I » M C O L » K P R S S R) . N E . 9 9 9 J G 0 TO 77
CHOLD(I> MROW,KPRSSR)=g99

77 CONTINUE
78 DO 79 J=l,CDlM £ N

CHOLD(MROW»J,KPRSSR)= 999
79 CONTINUE

DO 81 I=1»CDIMEN
CHOLD(19MCOL,KPRSSR)=g99

81 CONTINUE
G O TO 99

89 DO 91 I=1»CDIMEN
DO 91 J=1»CDIMEN
CHOLD(I> J ,KPRSSR)=999

9l CONTINUE
99 RETURN

END
SUBROUTINE UpDATK(NPRiME,FlNDC,M R O W , M C O L ,CHOLDrCDlMEN,M » N ,

XKPRSSR,KREDCDrNFLAGrNoOE»NNODE,lCOUNT,KHOLD)
INTEGER C H O L D » C D I M E N , F I N D C
DIMENSION CH0LD(25,25,5)»FINDC(25»25),

XKREDC0(25»25),N0D£(25,25»50),
XKH0LD(25,25)

K I N T L = M+KPRSSR
KFINAL= M+N+KPRSSR
N L £ V E L=N-1
DO 2 I=l,COlMEN
DO 2 J = 1 , C D I M E N
IF(N0DE(I,J,NNODE) , U E %0)GO TO 2
K=NOPE(I,J»NNODE)-lOO
IF(K,EQ.KPRSSR)G0 TO 2

DO 1 LIND=1 » N
CHOLD(J*MROw.LIND)=99 9

1 CONTINUE
K R E D'D(J,MR0W)=999
FINDC <J»MR0W)=999

2 CONTINUE
M A R K =0

D O 3 I s l . C D l M E N
D O 3 J = 1 . C D I M E N
I P = N 0 D E (I » U * N N O D E) - l O o
l F (l p . N E T K P R S S R) S O T O 3
M A R K = M A R K + 1

3 C O N T I N U E
U O B r K l N T L
N P A T H = 1
D O 6 K M A R K = 1 , M A R K
I F (N P A T H , E Q . 0) G 0 T O 6
J J O B r O
D O t* J = 1 , C D I M E N
I F (N O D E (I J 0 3 . J . N N O D E) . L E . O) G O T O
J U O S r J

4 C O N T I N U E
I F (J J O B . E Q « 0) G O T O 5
U O B r J j O B
G O T O 6

5 NPATH=0
6 C O N T I N U E

I F (N P A T H . E Q . l . A N D . J J 0 9 , E Q , K F I N A L) G O T O 7 9
D O l Q I - U . C D I M E N
D O 1Q J = 1 , C D I M E N
KHOLD (I * J) = N O D E < I * J t NkjODE)

10 C O N T I N U E
ICriAINrKINTL,
D O 15 I L 0 0 P = 1 > M
J J O B r O
-DO 1 2 J = 1 » C D I M E N
l F (K H O L D (I C H f l I N . J) t L E , 0) G O T O 1 2
K = K H O L D (l C H A i N » J) - 1 0 0
l F (K t N E . K P R S S R) G O T O 12
J J O B r J
K H O L D < I C H A l N . J) = 0

1 2 C O N T I N U E
I F (J J O 3 , E Q . 0) G O T O 2 1
I C H A I N = J J O B

1 5 C O N T I N U E
2l J C H A I N = K F I N A | _

D O 2 5 J L 0 0 P = 1 » M
U 0 3 = 0
D O 2 3 I = l r C D l M E N *
I F (K H 0 L D (I » J C H A I N) # L E , 0) G O T O 2 3
K = K H O L D < I » J C H A I N) - 1 0 0
l F (K , N E . K P R S S R) G O T O ? 3 U03rl
K H 0 L D (I # J C H A I N) = 0

2 3 C O N T I N U E
I F (I J 0 3 . E Q « 0) G O T O 2 7
J C H A I N = I J 0 3

2 5 C O N T I N U E
2 7 KCHErK=0

DO 3 3 I I N D = 1 , C D I M E N
DO 3 3 J I N D = 1 , C D I M E N
I F (K C H E C K . G T . O) G O T O 35
I P (K H 0 L D (I I N D » J I N D) . L E , 0) G O TO 3 3

. K = K H O L D { I I N D , J I N D) - I 0 o
I P (K . N E . K P R S S R) G 0 T O 3 3 K C H E C K s l

3 3 C O N T I N U E
I F (K C H E C K . E Q . O . A N D , N F u A G . L T . N L E V E L) So T O 8

3 5 K R E D C D (I C H A I N » J C H A I N) = 9 9 9
C H O L D (I C H A l N , J C H A l N » K p R S S R) = 9 9 9
F I N D C (I C H A I N , J C H A I N) = 9 9 9

8 D O 9 J = 1 . C D I M E N
K R E D C D (M R 0 W , J) = 9 9 9
F I N D C (M R 0 W » J) = 9 9 9

9 C O N T I N U E
D O 19 I = l . C D l M E N
K R E D C D (I » M C 0 L) = 9 9 9
F I N 0 C (I » M C 0 L > = 9 9 9

1 9 C O N T I N U E
D O 2 9 J = 1 , C D I M E N
K R E D C D (M C 0 L , J) = C H 0 L D (M C 0 L » J » K P R 5 S R)
F l N D C < M C O L * J) = K P R S S R

2 9 C O N T I N U E
D O 31 I = l , C O l M E N
K R E D C D (I • M R O W) = C H O L O (1 . M R O W * K P R S S R)
F l N D C < I » M R O W) = K P R S S R

3 l C O N T I N U E
J S T A R T = M + N + 1
J S T O P = K F I N A L - l
L S T A R T = K F I «n » A L+1
L S T 0 P = M + 2 * N
I F (J S T O P - J S T A R T) H 3 # 3 9 , 3 9

3 9 D O 41 J = J S T A R T » J S T O P
K R E D C D (M C 0 L . j) = 9 9 9
F I N D C (M C 0 L # J) = 9 9 9

^ 1 C O N T I N U E
••3 I F (L 5 T 0 P - L S T A R T) 4 9 . 4 5 , 4 5
**5 D O 47 J = L S T A R T , L S T O P

K R £ D C D (M C 0 L , j) = 9 9 9
F l N 0 c (M C 0 L » J) = 9 9 9

**7 C O N T I N U E
4 9 MSTART=M+1

M S T O P = K l N T L - t
N S T A R T = K I N T L + i
N S T O P = v) + M
I F (M S T O P - M S T A R T) 6 3 , 5 9 , 5 9

5 9 D O 61 I = M S T A R T » M S T O P
K R E D C D (I . M R O W) = 9 9 9
F I N D C (I * M H 0 W) = 9 9 9

61 C O N T I N U E
63 I F (N S T O P - N S T A R T) 6 9 . 6 5 , 6 5
65 D O 6 7 I = N S T A R T » N S T O P

K R E D C D (I . M R O W) = 9 9 9
F l N D c (I » M R 0 W) = 9 9 9

67 C O N T I N U E
69 K R E D C D (K I N T L , K F I N A L) = 9 9 9

G O T O 1 9 9
7 9 D O 83 J = 1 , C D I M E N

K R E D c D (M R O W , j) = 9 9 9
F l N D c (M R 0 W ' J) = 9 9 9

83 C O N T I N U E
D O 8 4 I = 1 » C D I M E N
K R E 0 C D (I , M C 0 L) = 9 9 9
F I N D C (I » M C 0 L) = 9 9 9

84 C O N T I N U E

DO 91 I=1,CDIMEN
DO 91 J=1»CDIMEN
I F (F I N D C (I » J) , N E , K p R S S R) G O TO 91
KREDCD(I.J>=999
DO 89 K=1*N
lF(lABS(CHOLD(I#J#K))-KRE0CD(IrJ))8l»8l»89

8i K R £ D c D (I . J) = c H O L D (I » J , K)
FINDC(I»J)=K

89 CONTINUE
9l CONTINUE

N F L A G = N F L A G + I
I F (N ? L A S , L T # N L E V E L) G O TO 199
DO 97 K=1,N
LROWrM+K
LCOL=M+N+K
I F (F I N D C (U R 0 W » L C 0 L) . E Q , 9 9 9) G 0 TO 97
I P R O = F I N D C (L R O W » L C O L)
F ? N D c (L R 0 W » L c 0 L) = 9 9 9
K R £ D c D (L R 0 W . u C 0 L) = 9 9 9
CHOLD(LROW»LcOL #IPRO) =999

97 CONTINUE
139 DO 135 Irl#CDlMEN

DO 1 3 5 J=1»CDIMEN
KHOLD(I#J)=0

135 CONTINUE
D O 137 K=1»M
KH0LD<K»K)=999

137 CONTINUE
KL£FT=0
DO 141 I=1»CDIMEN
DO 141 J=1,CDIMEN
I F (I A B S (K R E D C 0 (I . J)) . E Q , 9 9 9) G 0 TO 141
I F (K L E F T # 3 T , O) G O TO U l
K L £ F T = F I N D C (I . J)

1*H CONTINUE
DO 149 I=1»CDIMEN •
DO 149 J=1»CDIMEN
lF(NODE(I,J,NNODE).LE.O)GO TO 149
K=NODE(I.J»NNODE)-100
IF(K.NE.KLEFT)G0 T O U9
KHOLD«I»J)=999
DO 143 Jl=lrCOIMEN
lF(KH0LD (I»Jl).NE.999) GO TO 143
KHOLD(J » J D = 9 9 9

1^3 C O N T I N U E
DO 147 I l = l » c D I M E N
I F (K H 0 L D (U » J) . N E » 9 9 9) G 0 TO 147
KH0LD(I1»I>=999

1^7 CONTINUE
149 CONTINUE

DO 159 I=lrCDlMEN
DO 159 J=1,CDIMEN
I F (K H 0 L D (I # J) ,N E , 9 9 9)Q O TO 159
KREDCD(I,J)=999
CH0LD(I^J»KLEFT)=999
FINDC(I»J)=999

159 CONTINUE
199 IF(NPRIME.EQ,0)GO TO 299

NMACH=0

147

D O 2 0 7 K = 1 » N
K M A C H=0
DO 2 0 3 I = 1 »C D 1M E N
DO 2 0 3 J = 1 » C D I M E N
L C O L V = M + N + I
I F (I , G T . M , A N D . J . 3 T . L C O U V) S O T O 2 0 3
l F (N 0 D E < I r J , N N O D E) - 1 0 0 t N E . K) G O T O 2 0 3
I F (K M A C H , G T , o) G O T O 2 o 3
K M A C H=1

2 0 3 C O N T I N U E
NMACH=NMACH+KMACH

2 0 7 C O N T I N U E
I F { N V A C H , L . T - N P R I M E) G O T O 2 9 9
D O 2 6 9 K r i # N
K M A C H=0
D O 2 1 7 I r l » C D l M E N
D O 2 1 7 J = 1 » C D I M E N
L C O L V = M + N + I
I F (I , G T . M . A N D . J . S T . L C O L V) G O TO 2 1 7
l F (N O D E C l » J » W N O D E) - 1 0 o # N E , K) G O T O 2 l 7
l F (K M A C H # G T . o > S O TO 2 i 7
K M A C H = 1

2 1 7 C O N T I N U E
l F (K M A C H # G T . o > G O T O 2ft9
N F L A G = N F L A G + I
D O 2 1 9 I = 1 - C D I M E N
D O 2 1 9 J = 1 » C Q I M E N
I1= M+K
J1 = M + N+K
K R E D c D (H , I) r 9 9 9
K R E D C D (J , J l) = 9 9 9
C H 0 L D < I » J # K) = 9 9 9
I F (F l N D C (I » J) . N E t K) G O T O 2 1 9
K R E D C D (I , J) = 9 9 9
D O 2 1 5 Kl=lrN
I F (C H O L D (I » J , K 1) - K R E D C D (I » J) . G T . U ' G O T O 2 l 5
K R E D c D (I , J) = c H O L D (I » J , K l)
F l N D c < I » J) = K l

2 1 5 C O N T I N U E
2 1 9 C O N T I N U E

I F (N F L A G , L T , N L E V E L) G O T O 2 6 9
D O 2 3 5 I = 1 » C D I M E N
D O 2 3 5 J = 1 » C Q I M E N
K H O L 3 < I » J) = 0

2 3 5 C O N T I N U E
DO 2 3 7 K 1 = 1 , M
K H 0 L L J (K 1 » K 1) = 9 9 9

2 3 7 C O N T I N U E
K L E F T = 0
D O 2 4 1 I s l » C D l M E N
DO 2 4 1 J = 1 » C D I M E N
I F (K R E D C D (I , J) , E Q , 9 9 9) G 0 T O 2 4 1
l F (K L E F T . G T , o) 6 0 T O 2 i U
K L E F T = F I N 0 C < I , J)

2 4 i C O N T I N U E
D O 2 4 9 I = 1 » C D I M E N
D O 2(+9 J = 1 » C D I M E N
I F (N 0 D E (I » J » N N 0 D E) T L E . 0) 6 0 T O 2 4 9
K l = N O D E (I # J » M N O D E) - 1 0 o

lF(Kl,NE fKLEFT)GO TO 2 4 9
KH0L0(I»J)=9<?9
DO 243 J l = l » c D l M E N
IF(KH0LD(I»J1).NE.999)G0 TO 243
KH0LD<J'J1>=999

2«*3 CONTINUE
DO 247 Il=l,cOlMEN
IF(KH0LD(I1.J),NE.999)G0 TO 247
K H 0 L D d l . D = 9 9 9

2^7 CONTINUE
2^9 CONTINUE

DO 259 I=1»CDIMEN
DO 259 J=1»CDIMEN
lF(KH0LD(I»J).NE f999)s0 TO 259
KREDCD(I.J)=999
CH0LD(I,J.KLEFT)=999
FINDC<I»J)=999

259 CONTINUE
269 CONTINUE
299 RETURN

END

APPENDIX B

COMPUTING TIMES FOR EXPERIMENTS WITH

THE EXACT ALGORITHM

150

Table 8. Computing Times for Distinct Processor
Problems Where N = 2

Replication Average

1 2 3 4 5
Lomputi]

Time

5 .0042 .0018 .0019 .0053 .0034 .0033

6 .0031 .0139 .0189 .0182 .0066 .0121

7 .0441 .0248 .0067 .0582 .0131 .0294

8 .1000 .0030 .0387 .0392 .0647 .0491

9 .0377 .0269 .0393 .1367 .0097 .0501

10 .2074 .0867 .1560 .0591 .0376 .0734

11 .0217 .3264 .1148 .3245 .1232 .1821

12 .1170 .5634 .4029 .3318 .2868 .3404

13 . 7224 .3651 .4004 .1942 .2626 .3889

14 1.0696 .9999 .8150 .2839 1.0326 .8402

15 1.3212 2.3999 1.8230 1.1580 2.3538 1.8112

151

Table 9. Computing Times for Distinct Processor
Problems Where N = 3

Replication Average
M Computing

1 2 3 4 5 Time

5 .0128 .0097 .0054 .0138 .0061 .0096

6 .0223 .0148 .0218 .0234 .0292 .0223

7 .0293 .0444 .0286 .0575 .0441 .0408

8 .0874 .0966 .1618 .0310 .2193 .1192

9 .2129 .0670 .2868 .0969 .1831 .1693

10 .1591 .4161 .7231 .2264 .1100 .2000

11 1.0397 .6136 .3208 .6107 .5470 .6264

12 .8000 1.2648 .2892 .8526 .8314 .8076

13 1.3289 .2875 1.4156 1.5990 1.3366 1.1935

14 1.7630 .8595 2.1749 1.5339 3.1996 1.9062

15 2.8717 1.2893 3.8757 2.3056 2.4618 2.5608

152

Table 10. Computing Times for Distinct Processor
Problems Where N = 4

Replication Average
M Computing

1 2 3 4 5 Time

5 .0157 .0421 .0267 .0367 .0202 .0283

6 .0805 .0549 .1417 .0171 .1044 .0797

7 .0880 .0132 .1143 .0945 .1059 .0832

8 .2271 .2184 .3935 .1879 .4526 .2959

9 .4505 .1438 .7109 .4505 .6536 .4819

10 .7211 .7261 .4662 .3944 1.2942 .7204

11 1.0881 .9028 .5455 1.2959 2.3075 1.2280

12 2.1433 1.8081 1.6916 1.0486 1.1711 1.5725

13 2.0304 2.1644 2.9316 1.9775 2.8996 2.4007

14 4.1284 4.6534 4.3909

15 8.2560 8.0182 8.1371

153

Table 11. Computing Times for Distinct Processor
Problems Where N - 2 and Where Due Dates
are Moderately Constraining

Replication Average
PI 1 2 3 4 5 Time

5 .0038 . 0025 .0020 .0054 .0049 .0037

6 .0030 .0408 .0196 .0031 .0080 .0149

7 .0453 .0231 .0096 .0560 .0159 .0300

8 .1694 .0506 .0317 .1381 .0552 .0890

9 .0870 .0058 .1151 .1743 .2649 .1294

10 .1234 .0287 . 3248 .0975 .0892 .1327

11 .1598 . 2536 .2652 .1076 .2008 .1974

12 .2893 .5459 .3368 .1340 .4635 . 3539

13 1.2105 . 2761 .4065 .4336 . 5786 .5811

14 1.0297 .8966 .9244 .6231 1.0215 .8991

15 2.1073 1.3271 2.0213 1.9721 2.2407 1.9337

154

Table 12. Computing Times for Distinct Processor
Problems Where N * 2 and Where Due Dates
are Highly Constraining

Replication Average
M n . Computing

1 2 3 4 5 Time

5 .0053 .0020 .0195 .0087 .0022 .0075

6 .0668 .2155 .0112 .0266 .0095 .0659

7 .6407 .0284 .0092 .0215 .0063 .1412

8 .1393 .0035 .2460 .5730 .0177 .1959

9 .0205 .1249 .5164 .3657 .0287 .2112

10 .0559 .5149 .0752 .4327 .2448 .2647

11 .4507 .5492 .4129 .2679 .7183 .4798

12 .7899 1.0608 .3109 1.0872 .3762 .7250

13 .8964 1.0239 .5673 .8219 .9611 .8541

14 .6469 1.9771 2.0611 1.3702 2.4062 1.6923

15 2.7193 3.0111 1.9556 1.3675 3.4550 2.5017

APPENDIX C

FORTRAN V CODE FOR RANDOM SCHEDULING

156

INTEGER C C O S T . C O I M E N
DIMENSION CC0ST<25,25#5>,MjOB<i5),N A R R A Y(i5,5),MACH(5)
READf5.29)M»N,NTYP£»NPRlM£

29 FORMAT()
C D I M E N = M+2*N
READ(5,2 qJ < C(CCOSTiI»J.Kj >J=l»CDlMEN)•

*I=lrCDlMEN) , K=1»N)
J08S=0
DO 51 1=1,15
MJOB(I)=0

51 CONTINUE
DO 55 1=1,15
DO 55 Jrl,5
NARRAY(i,J)=0

55 CONTINUE
DO 57 1=1,5
MACH<I)=0

57 CONTINUE
103 CALL MGEN(M,IS,MNExT)

IF(MJOBtMNEXT) #EO#i)GO TO 103
MJOB(MNEXT)=i
J 0 B S = J 0 B S + 1
C A L L NGEN{M,N,N P R I M E,JOBS tNTYPE,IU»MNEXT»MACH»NARRAY)
I F (J 0 B S # L T . M) G 0 TO 1 0 3
LTOTAL=o
DO 131 I = 1 , N
IJOB=M+i
WRITE(6.108)I,IJ08

108 FORMAT(iH0,13X»'S C H E D U L F* »l3»3x, » = » ,14)
111 IF(MACH.I).EQ . O J G O T o 127

INDEX=MACH(I)
DQ 121 j=l,INDEX

115 DO 121 K=1,M
I F (N A R R A Y (K » I) . N E . J) G O TO 121
LTOTAL=LTOTAL+CCOSTtIJOP,K fI)
WRITE(6.119)K

119 F0RMAT(30X»I3)
117 IJCB= K
121 CONTINUE
127 JJOB=M+ N+I

WRITE(6,!19)JJ0B
129 L T O T A L = L T O T A L + C C O S T < U O P , ^ J O B , I)
131 CONTINUE

WRITE<6,169)LT0T»AL
189 F O R M A T (I H 0 , 1 3X , « T O T A L CCSTt ,MX, i = t, jtf)

STOP
END

APPENDIX D

FORTRAN V CODE FOR SHORTEST CHANGEOVER NEXT

OR MINIMUM TIME SUBSEQUENCE SCHEDULING

INTEGER CCOST»CDIMEN
R E A O (5 » 2 9) M . N » I X » I A , I B » N T Y P E , N P R 1 M E # L 0 0 K

29 FORMAT()
DIMENSION CCOST (25*25,5)
LTOTAL=0
JOBSsO
NTOTALsO
IPRSSR=0
CDIMEN=M+2*N
TlME=0,
R E A D (5 , 2 9) (((C C O S T (I , j , K) » J = 1 . C D I M E N) >

*I=1»C0IMEN)»K=1»N)
9l IF(J03S.GE»M)G0 TO 1 9 5

I F(NPRIME.EQ,0)GO TO 93
I F (M - J 0 3 S , L E # N P R I M E - N T 0 T A L) G 0 TO 181

93 MlNC=999
IF(NTYPE.EQ,l)GO T O 9^
IPRSSRsIPRSSR+1
DO 33 I=1»M
DO 33 J=1»M
IF (L O O K.EQ.O)GO TO 31
MlNR0W=999
DO 3C K=1,CDIMEN
IF(K,EQ.I)G0 TO 30
lF(MINROW,LT,CCOST(J. K.IPRSSR))GO TO 30
MlNRCWrCCOST(J.K.lPRSsR)

3 0 CONTINUE
ITEST=M+IPRSSR
LTEST=CCOST(I. J# I P R S S R) 4-CCOST(ITtST, I , IPRSSR)+MINROW
IF(MINC.LE.LTEST) 6 0 T o 3 3
M I N C = L T E S T
U O B s I
J J 0 3 = J
GO TO 3 3

3 1 I F (M I N C . U T « C c O S T (I . J . x P R S S R)) G O T O 3 3
M l N C = C c O S T (I , J » I P R S S R j
U O B r l
J J O B = J

33 CONTINUE
GO TO 97

94 DO 95 I=1» M
DO 95 J=1* M
DO 95 K=1*N
lF(It.00K.EQ.0)G0 T O <U
MlNR0W=999
DO 4 0 KIND=1,CDIMEN
IF(KIND.EQ.I)GO T O 40
I F (M I N R O W . L T , C C O S T (J . K I N D . K)) G O TO 4 O
MINR0W=CC0ST (J»KIN0»K)

40 CONTINUE
ITEST=M*K
L T E S T = C C O S T (I . J . K) + C C o S T (I T E S T » I » K) + M l N R O W
IF(MINC.LE.LTEST) G 0 T O 95
MINC=LTEST
U O B = I
J U 0 3 = J
I P R S S R = K
GO TO 95

<*l I F (M I N C . L T . C c O S T d . J . K))GO TO 95

159

M 1 N C = C C 0 S T < I , J » K)
U O B = I
JJ03=J
IPRSSR= K

95 CONTINUE
97 INTL=,M+IPRSSR

I F I N ^ L = M + N + I P R S S R
WRITE<6#108)IPRSSR,IN TL

108 FORMAT(1H0»13X» 'SCHEDULE'•I3»3X>• = •914)
WRITE(6»119)IJ0B
WRlTE(6»ll9)jJ0B

119 FORMAT(30X'I3>
L T 0 T A L = L T 0 T A L + C C 0 S T (I N T L » I J 0 B . I P R 5 5 R) 4 . C C 0 S T (I J 0 B » J J 0 B , I P R S S R)
DO 141 J=1»CQIMEN
DO mi K=1»N
CC05T(IJ0B» J , K)=999
CC0ST(INTL» J , K)=999
CC0ST(J#IJ0B , K)=999
CC0S7(J»JJ0B ,K)=999

l4i CONTINUE
JOBSrJOBS+2
NTOTAL=NTOTA L+l
U O B r J J O B

161 IF{J0BS.GE . M)G0 TO I9i
IF(NPRIME.EQ,0)GO TO 163
I F (M - . J 0 B 5 .G T , N P R I M E - N T 0 T A L) G 0 TO 163
W R I T E(6»119)IFINAL
LTOTAl.=LTOTA L+CCOSTlIjOB,IFINAL#IPRSSR)
GO TO 181

I63 KMIN=999
IDIMEN=CDIMEN
I F (N T O T A L . E Q # N P R I M E . O R , N T O T A L , E Q . N) I D I M E N = M
DO 165 K=1#IDIMEN
IF (K,EQ #IJ03)G0 TO I 6 5
IF(M-J0BS.EQ,1)G0 T O t*4
IF(LOOK.EQ.O)GO TO 44
IF< K,GT . M)GO TO 44
MlNR0W=999
DO 43 KIND=1,CDIMEN
IF(KIND»EQ#IJ0B)G0 T O 43
IF{MINR0W.LT,CC0ST (K, KIND.IPRSSR))GO TO 43
MlNR0W=CC0ST (K»KIND»IpRS5R)

43 CONTINUE
L T E S T = C C O S T (I J O B . K , I P R s S R) + M I N R O W
IF(KMIN.LE»ITEST)G0 T o 165
KMlNrLTEST JJOB= K
GO TO 165

44 I F (C C 0 S T (I J 0 B » ! U I P R S S R) . G E . K M I N) G Q TO 165
JJ09= K
KMiN=CCOSTUjOB , K » l P R s S R)

I65 CONTINUE
WRITE(6»119)JJ0B
L T O T A L = L T O T A L + C C 0 S T C IJOB 9JJOB»IPRSSR)
DO 1 71 J=1»CDIMEN
DO 17I K=1 » N
C C 0 S T < U 0 3 » J . K) = 9 9 9
CC0ST(J#JJ0B , K)=999

l7i CONTINUE

U O B ^ J J O B
IF(IJ03.NE.IFINAL) G 0 T 0 179
OO 175 I=1»CDIMEN
DO 1 7 5 J=1»CDIMEN
CCOST(I#J#IPRSSR) = 9 9 9

1 7 5 CONTINUE
I F (J 0 3 S . L E # M - 2) G O T O 91
G O T C 1 8 1

l7g J03S=J0BS*1
G O TO 161

1 8 1 IIND=M+1
JlND=M+N
MINC = 9 9 9
l F (N T Y P E T E Q , i) G O T O lfl2
IPRS5R=IPRSSR+1
DO 1 8 6 I = H N D » J I N D
DO 1 8 6 J=1»M
I F (L O O K , E Q . O) G O T O 5 9
ITEST=.M+N+IPRSSR
L T E S T = C C O S T (I » J » I P R S S R) + C C 0 5 T (J # I T E s T - I P R s S R)
IF(LTEST.GT.M1NC)G0 T o 5 9
MlNCrLTEST
U 0 3 = I
J J 0 3 = J
GO TO 186

5 9 I F (M I N C . L E . C C 0 S T (I . J . I P R S S R > > G 0 T O 186
M l N C = C C O S T (I . J « I P R S S R)
IJ03=I
J J O B = J

1 8 6 CONTINUE
G O TO 184

1 8 2 D O 1 6 3 I = H N D » J I N D
DO 1 8 3 J=1»M
DO 1 8 3 Krl»N
I F (L O O K . E Q . O) G O T O 6 9
ITEST=M+N+K
L T E S T = C C O S T (i . J » K) + C C 0 S T (J » I T E S T » K)
I F (L T E S T , G T # M I N C) G 0 T o 183
MlNCsLTEST
U O B r l
J J O B = J
IPRSSR= K
GO TO 1 8 3

6 9 l F (M l N C . L E f C c O S T (I , J . K)) G O T O 1 8 3
U 0 3 r l
J J 0 3 = J
IPRSSR= K
M I N C = C C 0 S T (I , J » K)

183 CONTINUE
1 8 4 WRlTE(6 » 1 0 8)lPRSSR.IJo8

W R I T E (6 » l l 9) J J O B
IFINAL= M+N+IPRSSR
WRITE(6# 1 1 9)IFINAL
LT0TAL=LT0TAL+CC0ST<Ij03rJJ0B.IPRSSR)+CC0ST (J J 0 B,IFlN AL#lPRSSR>
DO 165 J=1»CDIMEN
DO 1 8 5 Ksl»N
C C O S T < I U 0 3 » J , K) = 9 9 9
C C 0 S T (J » J J O 3 , K) = 9 9 9
C C 0 S T < J J 0 3 » J , K) = 9 9 9

161

185 CONTINUE
J03S=UOBS+l
lF(J03S.LT*M)GO TO 18j
GO TC 195

I9i WRITE(6»ll9)IFINAL
LTOTALrLTOTA L+CCOST<Ij03,IFINAL,1PRSSR) 195 WRITE(6*201>LTOTAL %

STOP

162

BIBLIOGRAPHY

1. Conway, R. W., Maxwell, W. L., and Miller, L. W., Theory
of Scheduling, Addison-Wesley, Reading, Massachusetts,
(1967).

2. Panwalkar, S. S., Dudek, R. A., and Smith, M. L.,
"Sequencing Research and the Industrial Scheduling Prob
lem," presented at the Symposium on Scheduling, North
Carolina State University, Raleigh, May 15-17, 1972.

3. Woolsey, R. E. D., "A Survey of Quick-and-Dirty Methods
for Production Scheduling,11 Production and Inventory
Management, 12(1971), l(February), 60-68.

4. Smith, M. L., "A Critical Analysis of Flow-Shop
Sequencing," Doctoral Dissertation, Texas Tech University,
(1968).

5. Prunzel, J. F., "Setup Times and Setup Costs in
Sequencing Problems," Master's Thesis, Texas Tech
University, (1972).

6. Pierce, J. F. and Hatfield, D. J., "Production Sequencing
by Combinatorial Programming," Chapter 17 of J. F, Pierce,
Operations Research and the Design of Management Infor
mation Sy8terns, Technical Association of the Pulp and
Paper Industry, New York, (1967).

7. Geoffrion, A. M, and Marsten, R. E., "Integer Programming
Algorithms: A Framework and State-of-the-Art Survey,"
Chapter 5 of A. M. Geoffrion, Perspectives in Optimization,
Addison-Wesley, Reading, Massachusetts, (1972).

8. Garfinkel, R. S. and Nemhauser, G. L., "The Set-
Partitioning Problem: Set Covering with Equality
Constraints," Operations Research , 17(1969), 5(September-
October), 848-856.

9. Lemke, C. E., Salkin, H. M., and Spielberg, K., "Set
Covering by Single-Branch Enumeration with Linear-
Programming Subproblems," Operations Research, 19(1971),
4(July-August), 998-1025.

10. Jensen, P. A., "Optimum Network Partitioning," Operations
Research^ 19(1971), 4(July-August), 916-932.

163

11. Pierce, J. F., "Application of Combinatorial Programming
to a Class of All Zero-One Integer Programming Prob
lems," Management Science, 15(1968), 3(November),
191-209.

12. Little, J. D. C , Murty, K. G. , Sweeny, D. W., and
Karel, C , "An Algorithm for the Traveling Salesman
Problem," Operations Research, 11(1963), 6(November-
December), 972-989.

13. Hu, T. C. "Parallel Sequencing and Assembly Line Oper
ations," Operations Research, 9(1961), 6(November),
841-848.

14. McNaughton, R., "Scheduling with Deadlines and Loss
Functions," Management Science, 6(1959), 1(October),
1-12.

15. Eastman, W. L., Even, S., and Isaacs, I. M., "Bounds for
the Optimal Scheduling of n Jobs on m Processors,"
Management Science, 11(1964), 2(November), 268-279.

16. Lawler, E. L., "On Scheduling Problems with Deferral
Costs," Management Science, 11(1964), 2(November),
280-288.

17. Root, J. G., "Scheduling with Deadlines and Loss Functions
on K Parallel Machines," Management Science, 11(1965),
3(January), 460-475.

18. Rothkopf, Michael, "Scheduling Independent Tasks on One
or More Processors," Doctoral Dissertation, Massachusetts
Institute of Technology, (1964).

19. Rothkopf, Michael, "Scheduling Independent Tasks on
Parallel Processors," Management Science, 12(1966),
5(January), 437-447.

20. Cox, D. R. and Jessop, W. N., "The Theory of a Method of
Production When There Are Many Products," Operational
Research Quarterly, 13(1962), 4(December), 309-328.

21. Elmaghraby, S. E., "The Sequencing of N Jobs of M
Parallel Processors," Research Memorandum, North Carolina
State University, January, 1968.

22. Elmaghraby, S. E., "The Machine Sequencing Problem--
Review and Extensions," Naval Research Logistics Quarterly,
15(1968).

164

23. Braun, W., "A Computerized Simulation Approach to the
Solution of the Carrier Dispatching Problem," Master's
Thesis, Kansas State University.

24. Hayes, R. L., "The Delivery Problem," Doctoral Disser
tation, Carnegie Institute of Technology, (1967).

25. Newton, R. M. and Thomas, W. H., "Design of School Bus
Routes by Digital Computer," presented at the Thirtieth
National Meeting of ORSA, October, 1966.

26. Quon, J., Charnes, A., and Werson, S,, "Simulation and
Analysis of a Refuse Collection System," Journal of the
Sanitary Engineering Division, ASCE, 91(1965),
SA5(October), 17-36.

27. Balinski, M. L. and Quandt, R. E., "On an Integer Program
for a Delivery Problem," Operations Research, 12(1964),
2(March-April), 300-304.

28. Held, M. and Karp, R. M,, "A Dynamic Programming Approach
to Sequencing Problems," Journal of SIAM, 10(1962),
1(March), 196-210.

29. Clark, G. and Wright, J. W,, "Scheduling Vehicles from a
Central Depot to a Number of Delivery Points," Operations
Research, 12(1964), 4(July-August), 568-571.

30. Tillman, F. A. and Cochran, H., "A Heuristic Approach for
Solving the Delivery Problem," Journal of IE, 19(1968),
7(July), 354-358.

31. Hering, R. W., "Evaluation of Some Heuristic Look-Ahead
Rules for Multiple-Terminal Delivery Problems," Master's
Thesis, Kansas State University, (1970).

32. Bellmore, M. and Nemhauser, G. L., "The Traveling Sales
man Problem: A Survey," Operations Research, 16(1968),
3(May-June), 538-558.

33. Hong, S., "A Linear Programming Approach for the
Traveling Salesman Problem," Doctoral Dissertation, The
John Hopkins University, (1972).

34. Lockett, A. G. and Muhlemann, A. P., "A Scheduling
Problem Involving Sequence-Dependent Changeover Times,"
Operations Research, 20(1972), 4(July-August), 895-902.

Ashour, S., Vega, J. F., and Parker, R. G., "A Heuristic
Algorithm for Traveling Salesman Problems," Transportation
Research, 6(1972), 187-195.

166

VITA

Born April 23, 1944, in Leesburg, Florida,

Joseph D. Marsh attended public schools there and entered

the University of Florida in September, 1962. He completed

the liberal arts program of the University College and was

named Vice President and Director of True Temp, Inc., a

Leesburg, Florida mechanical contractor in September, 1964.

He entered the College of Engineeirng at the Univer

sity of Florida in September, 1965, and received the

Bachelor of Industrial Engineering degree with honors in

December, 1967. During his undergraduate program, he was

charter president of the University of Florida Chapter of

Alpha Pi Mu, national industrial engineering honorary. He

was elected to membership in Sigma Tau and Tau Beta Pi, both

national engineering honoraries, and national scholastic

honorary, Phi Kappa Phi. He was tapped as a charter member

of the University's chapter of leadership honorary, Omicron

Delta Kappa.

He entered graduate school at the University of

Florida in January, 1968, working as a graduate teaching

assistant and as Project Engineer for the University's

J. Hillis Miller Health Systems Research Division. He

received the Master of Science in Engineering degree in

June, 1969, and was elected to associate membership in the

167

scientific Society of the Sigma Xi.

Joseph D. Marsh began doctoral study in industrial

engineering at the Georgia Institute of Technology in

June, 1969. He served as both Graduate Teaching Assistant

and Instructor in the School of Industrial and Systems

Engineering. He is now Assistant Professor in the Depart

ment of Operations Research at the George Washington

University.

