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SUMMARY

This dissertation is focused on the application of elastic metamaterials and phononic

crystals to problems encountered in industry. The field of elastic metamaterials has expe-

rienced a large amount of development and is reaching a level of maturity where practical

applications can be developed. In this dissertation three applied problems are addressed:

the vibration mitigation of a large electrical generator; the impact and bouncing of circuit

breaker electrodes; and the use of phononic materials for pulse shaping in Hopkinson bar

tests.

Various base isolation techniques have been developed for heavy machinery. This dis-

sertation looks at the problem of a vibrating electric generator and how phononic material

concepts could be applied to mitigate vibrations. Two concepts are investigated: the first

uses resonators tuned to the motion and natural frequency of the mode closest to the ex-

citation frequency; the second technique replaces the previous support with periodically

applied grounding springs. The frequency response obtained using both techniques show

that they can attenuate the response at the excitation frequency. Finally, a practical imple-

mentation of grounding springs is presented.

High voltage vacuum circuit breakers have become the standard for industrial circuit

breaker applications. Circuit breakers interrupt the flow of electricity through an electri-

cal network, protecting it if the current flow becomes too high. When the electrodes in a

circuit breaker close, initiating the flow of electricity, they bounce off of each other before

reaching resting contact. During bouncing arcing occurs between the electrodes, which can

lead to permanent welding of the electrodes and failure of the circuit breaker. Previously,

the electrode bouncing problem has been studied using discrete lumped element models,

with the underlying assumption that the bouncing was arising from resonance within the

system. However, this perspective ignores wave propagation when impact occurs. In this

dissertation a model of electrode bouncing, treating the electrodes as a continuous system,
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is developed. The model shows how waves propagate through the bouncing electrode sys-

tem, and helps illustrate what parameters control the bounce time. Wave bounce criteria

are also suggested which could help reduce circuit breaker bouncing.

Hopkinson bar tests are used to obtain dynamic material properties such as strain rate

dependent stress-strain relationships. This is accomplished by sending a mechanical shock

wave, or pulse, down the bar and into the material sample to be tested. Parameters such

as amplitude, shape, and duration of the wave are important in obtaining the desired ma-

terial properties. The research presented in this dissertation shows that through using op-

timized elastic metamaterial concepts, an input pulse to a longitudinal bar can be shaped

to sufficiently approximate a specified, predefined output pulse. Concepts including local

resonators, phononic crystals, grounding springs, and cross-sectional variations were inves-

tigated. These concepts are applied to a homogeneous rod and analyzed using the transfer

matrix technique. The output of a metamaterial rod is predicted using the dynamic stiffness

matrix. The metamaterial parameters for a combined phononic crystal - local resonator are

then tuned using an optimization algorithm to achieve the desired response of the system.

These applications demonstrate three scenarios where phononic materials can be ap-

plied to industrial problems, for vibration mitigation and pulse shaping. The generator

vibration mitigation problem investigates phononic material techniques that would main-

tain the static stiffness required to support the generator. The circuit breaker problem de-

velops a new model for bouncing that clarifies the role of wave propagation, suggesting

that phononic materials could be used to modify the wave shape in a beneficial way. The

Hopkinson bar problem, which had similarities to the circuit breaker problem, develops

this concept further, resulting in pulse shaping using phononic materials. This is a novel

application.

Based on the work presented here a number of different design techniques could be

pursued to push the boundaries of these applications even further. The pulse shaping tech-

nique was developed looking at the acceleration profile of a wave. This could be developed
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for stress, strain, or velocity as well as similar Hopkinson bar tests using tension or tor-

sional waves. The same technique could also be used to optimize a phononic material for a

different quantity, such as the energy distribution in the system. One other avenue of devel-

opment could look at optimizing the bar cross-sectional area to shape the pulse traveling

through the system.
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CHAPTER 1

INTRODUCTION

1.1 Overview

This dissertation is focused on the application of phononic materials to problems encoun-

tered in industry. Three main problems are addressed: vibration mitigation for a large

electrical generator; the modeling of impact and bouncing of circuit breaker electrodes;

and pulse shaping using phononic materials for Hopkinson bar tests. Previous research

in the field of elastic metamaterials has focused on introducing band gaps to block the

propagation of waves at particular frequencies. Through various techniques wave direc-

tionality, focusing, or topological modes can be introduced into a structure. A large variety

of phononic material concepts and analysis techniques are available in the literature, but

so far a limited number of practical applications for elastic metamaterials have been devel-

oped. In addressing the problems described above, this dissertation expands the practical

application of phononic materials. To this end, this dissertation discusses the modeling

of waves created by impact, phononic material techniques to mitigate vibration, modeling

techniques to obtain dispersion relationships and predict wave shapes, and techniques to

obtain geometry optimized for dispersion. This chapter provides a general review of elastic

metamaterials and phononic crystals, problem motivation and objectives, and an outline of

the dissertation.

1.2 Background

General background on elastic metamaterials is reviewed here. Because the problems ex-

amined in this dissertation have unique backgrounds, problem specific literature is reviewed

at the beginning of each chapter. Two important developments in the field of phononic ma-
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terials has allowed the discipline to progress to where it is today. In the 1970’s observations

about wave propagation in periodic [1] or periodically stiffened structures [2] was the first

important development, which has since been termed phononic crystals. Later, locally res-

onant crystals that created subwavelength bandgaps in structures were developed. This

allowed for the creation of frequency stop bands at much lower frequencies than could be

achieved with material periodicity [3]. Structures using designed local resonance have been

termed elastic metamaterials.

The theoretical development of elastic metamaterials has generated a wide range of con-

cepts. For example, in transversely vibrating beams low-frequency bandgaps were opened

using a variety of methods, including periodically applied spring mass resonators with

both torsional and translational components [4] and mass resonators with two translational

degrees of freedom [5]. Local resonators were applied to beams and rods using using addi-

tional beams as springs [6], as well as continuum resonator beams attached via a Winkler

foundation [7].

When local resonators were applied periodically they created bandgaps due to the reso-

nance frequency and the periodicity of the structure [8]. When the frequency of the periodi-

cally applied resonators is tuned to match the bandgap frequency created by the periodicity,

even wider bandgaps are produced [9]. Masses were also mounted on two springs result-

ing in resonators with both translational and rotational degrees of freedom [5], effectively

creating low frequency bandgaps on transversely vibrating structures. A somewhat similar

concept coupled the resonators from adjacent unit cells, resulting in two-degree of freedom

motion of the resonators, leading to a unique band structure and directional wave response

[10]. Instead of coupled degrees of freedom, one technique tuned resonators to different

resonant frequencies around a frequency range of interest. The stiffness was optimized

to provide the highest degree of attenuation, resulting in attenuation spanning the entire

frequency range of interest [reich, 11].

Additional techniques looked at designing resonators which contained a rigid mass sur-
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rounded by a softer material acting as a spring [12]. This resulted in three degree of free-

dom resonators which could attenuate both transverse and longitudinal waves. Another

interesting technique used what has been termed inertial amplification. Inspired by the de-

velopment of the inerter [13], inertial amplifiers basically use the mechanical advantage

created by a mass on a lever to make it behave as if it were more massive than it actually

is. When the inertial amplifier is used periodically, as an elastic metamaterial, it results in

wide low frequency bandgaps [14]. This concept has been successfully applied to continu-

ous structures [15] and has been the subject of topology optimization for enhanced bandgap

width [16].

Elastic metamaterials have the ability to create what has been termed a negative effec-

tive mass or stiffness [4], which can be used to counteract externally applied forces on a

system. A double negative elastic metamaterial has both a negative effective mass and stiff-

ness. One design of a double negative elastic metamaterial resulted in a stopband for both

longitudinal and transverse waves, as well as a negative Poisson’s ratio [17], opening up

the possibility of negative refraction or the inverse Doppler effect. Double negative elastic

metamaterials were also created using an analogy from electric circuit networks, achieving

a wider bandgap than could be created by only negative mass or stiffness [18].

Other interesting concepts have also been developed, such as metamaterials used to

create an anisotropy that corrected dispersion of waves in an elastic waveguide [19]. Shape

memory alloys were used to create temperature dependent bandgaps for vibration isolation

[20]. Elastic metamaterials were also used to create topologically protected wave modes,

resulting in waves which can follow specific paths through a material [21].

Lattice structures have also been used to create phononic materials. Periodic honey-

comb structures have been found to exhibit a variety of different effects including wave

beaming [22]. A wide variety of lattices, such as hexagonal, triangle, and square honey-

comb lattices, as well as Kagome lattices, were also analyzed. The different lattices types

exhibit a designable band structure based on properties such as material density, or slender-
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ness ratio of the the constituent beam members [23]. Using a mass supporting rubber lattice

embedded within a transversely vibrating frame, a high-stiffness, high-damping structure

was designed which created low frequency bandgaps [24]. Inertial amplifiers were also

deployed in an array to create an elastic metamaterial lattice with a wide bandgap [25].

Along with the development of a wide variety of concepts, analysis techniques have

also been developed or repurposed for use in elastic metamaterials. The typical analysis

for an elastic metamaterial applies the Bloch theorem to a single unit cell of a crystal, which

relates the displacements at opposing edges of a unit cell through a phase shift [26]. The

resulting equation is often solved using a simple plane-wave expansion. Transfer matrices

were developed very early in the study of periodic systems, creating a simple mathematical

way to analyze structurally complex configurations of periodic structures [27]. A more

recent example of transfer matrix use is in [7]. A similar technique uses spectral elements

to determine the dispersion relationship for wave propagation in beams [8]. In [23] the

finite element (FE) method was used to construct the mass and stiffness matrices for a unit

cell composed of Timoshenko beams. Then periodic boundary conditions were applied

and the dispersion relationship was found by solving the eigenvalue problem. For more

complex geometry which cannot be modeled with simple beam elements a technique using

commercially available FE software was developed to apply periodic boundary conditions

for a specific wave number and then use a modal analysis step to extract the corresponding

frequencies, determining the dispersion relationship [28].

All of the previous techniques assumed periodic boundary conditions. Periodic bound-

ary conditions presuppose an infinitely repeating periodic lattice. The analysis of finite

periodic systems is important for the implementation of periodic elastic metamaterials.

Development of analysis techniques for finite periodic structures also occurred very early

in the field. For example, reference [29] demonstrated a way to calculate the natural fre-

quencies of a finite periodic system and showed that these natural frequencies fall outside

of the stop bands of the structure. More recently, a technique assuming an infinite number
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of resonators on a finite beam was developed to derive the dispersion relationship [30]. The

response to an infinite number of resonators was shown to be adequately approximated by

as few as five resonators, depending on the composition of the system.

The background presented in this section has discussed the development of elastic meta-

material topics including resonators on rods and beams, lattices, and analysis techniques.

It has covered some of the important developments in the field of elastic metamaterials, but

is not comprehensive. For example, it has not discussed nonlinear elastic metamaterials

which were not considered for this dissertation. For a more comprehensive review of what

has previously been accomplished using elastic metamaterials see [31].

1.3 Motivation and Objectives

Section 1.2 demonstrates that there has been a large amount of development in the field

of elastic metamaterials and a wide variety of concepts from which to draw for the design

and analysis of elastic metamaterials. During the review of elastic metamaterials literature

a limited number of elastic metamaterial applications for industry were found. Two such

applications include periodically applied rotational resonators for the seismic isolation of

buildings [32] and the use of spherical granules to create a vibration mitigating support [33].

The contact of the granules with the walls of the support results in a high pass mechanical

filter. Because of the wide variety of ideas from which to draw in the elastic metamaterial

literature, this field of study is beginning to reach a level of maturity where applications

can be developed.

The purpose of this dissertation is to push the boundaries of the application of elastic

metamaterials and demonstrate their practical use. Because of this the broad objective of

this dissertation was to find ways to apply elastic metamaterials to three industry problems,

vibration mitigation for heavy machinery, bounce reduction of impacting circuit breaker

electrodes, and pulse shaping for Hopkinson bar tests.

Elastic metamaterials are a natural choice to consider for vibration mitigation problems,
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because they have the possibility of making minimal modifications to heavy machinery

support structures while introducing frequency bandgaps that could result in attenuation

of the vibration to be mitigated. For the problem of vibration mitigation for heavy ma-

chinery there are a couple of technical challenges which need to be considered. Often

heavy machinery operates at relatively low frequencies. Also, because it is heavy, stati-

cally stiff supports are required to hold it. Under these requirements, a vibration mitigation

solution will need to be able to maintain a static stiffness while also being tuned to lower

frequencies which typically would require more massive resonators to provide effective at-

tenuation. For this problem solutions that mitigated vibration and addressed these design

constraints were explored.

The other two problems, bounce reduction of electrodes and pulse shaping for Hopkin-

son bars, although very different applications, have similar phenomena underlying them

that can be addressed by the same elastic metamaterial solution. In high-voltage vacuum

circuit breakers, when the electrodes close to allow the flow of electricity they impact caus-

ing elastic waves to propagate through them. These waves reflect off of the various surfaces

within the electrodes and return to the impact interface. When the waves combine at the

interface under the right conditions the electrodes lose contact, that is they bounce. For

a typical closing event the electrodes bounce multiple times before achieving resting con-

tact. During this bouncing electrical arcing occurs which degrades the contact surface of

the electrodes. If the bouncing were modified to create shorter duration bounces the arcing

could be significantly reduced and the circuit breaker life could be extended. However, the

bouncing phenomenon is nonlinear, and previous models have not clarified the underly-

ing mechanisms leading to the bouncing. For this problem the underlying causes for the

bouncing were explored further. Motivated by this lack of understanding, the objective

of this project was to create a model that provided a greater fundamental understanding

of the bouncing phenomenon, so that the bounce reduction could be addressed in a more

systematic way.
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Hopkinson bar tests are used to measure dynamic material properties. This project is

specifically interested in shock testing of accelerometers. In the test a pulse is created

by an impacting rod striking the Hopkinson bar, similar to the bouncing electrodes when

they first make contact. However, in the Hopkinson bar the bounce after impact is not of

interest. The bar directs the pulse into the object to be tested. The shape of the pulse is the

important aspect of this problem. Different pulse shapes can be used to provide additional

information about the dynamic properties of the system. In a typical Hopkinson bar the

shape of the pulse is a product of the velocity and length of the impacting rod. Usually

the Hopkinson bar is designed to prevent wave dispersion and maintain the shape of the

wave pulse. Instead, this project considered intentionally introducing dispersion into the

Hopkinson bar, in a controlled manner, to cause the output pulse to change into a desired

shape for testing as it traveled through the bar. Because phononic materials are known to

introduce dispersion and bandgaps, they seemed like a likely candidate to shape the input

pulse in a controllable way. However, elastic metamaterials have not been used for pulse

shaping before. As a result, it was necessary to explore how elastic metamaterials would

change the shape of waves traveling through them, as well as determine the necessary

characteristics to successfully accomplish this.

1.4 Contributions

This dissertation contributes to the field of elastic metamaterials in four different ways:

1. It explores the application of elastic metamaterials to heavy industrial equipment,

and demonstrates mode targeted resonators and grounding springs attached to the

supports.

2. It proposes a new analytical model for the bouncing of circuit breaker electrodes

after closing. Prior work on this subject has treated the electrodes as discrete element

systems. This oversimplified treatment made it difficult to understand the factors that
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controlled the bounce duration. The new model clarifies these factors.

3. It develops and refines a novel technique to shape pulses in 1D rods. Previous elastic

metamaterials have focused on controlling the bandgaps the metamaterials introduce,

but have not taken advantage of the effect introducing the bandgap has on the dis-

persion of the waves. The change in dispersion has not yet been used in a controlled

way to accomplish something such as shape pulses traveling through a metamaterial.

4. It demonstrates the geometry and implementation for the pulse shaping technique in

a physically realizable structure.

1.5 Work Organization

This dissertation is organized into five chapters. Chapter 1 provides general background

information for elastic metamaterials, motivation, and contributions. Chapter 2 examines

the vibration of an electric generator and the application of internal resonators and ground-

ing springs applied to the supports as vibration mitigation techniques. Chapter 3 describes

the circuit breaker electrode bouncing problem. It introduces a new model treating the

electrodes as continuous rods and demonstrates how wave propagation within the structure

governs the bouncing phenomenon. Chapter 4 presents the Hopkinson bar pulse shaping

problem. It describes the Hopkinson bar experiment, presents results on different phononic

materials capabilities to change the shape of a wave, and presents an optimization routine

which successfully finds geometry for the shaping of predefined pulse shapes. Chapter 5

summarizes the work presented, describes some of the challenges in applying elastic meta-

materials to practical problems, and puts forward some suggestions for future work.
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CHAPTER 2

PERIODIC INTERNAL RESONATORS FOR POWER GENERATOR SUPPORT

VIBRATION MITIGATION

2.1 Overview

This chapter presents research on vibration mitigation for large electric generators. The

results are applicable to other heavy rotating machinery. Two vibration mitigation concepts

were investigated. The first employs resonators tuned to the natural frequency of the mode

closest to the excitation frequency. The second technique replaced the previous support

with a metamaterial support composed of periodically applied grounding springs. The

frequency response of the systems shows both can significantly attenuate the excitation

frequency. Finally, a practical implementation of the grounding springs is analyzed using

finite element analysis (FEA).

2.2 Introduction

Massive power generators introduce a large amount of vibration into their operating envi-

ronment. The mitigation of vibration in power generators and other heavy machinery poses

a difficult problem. Because these machines have a large mass, they must be placed on

statically stiff supports. They also often have low operating frequencies. Vibration can be

passed through the machinery support, which acts like an elastic spring, to the floor or base

of the structure the machine is mounted to.

One of the simplest ways to reduce transmitted vibration is by mounting the heavy

equipment on an inertia block. The massive inertia block effectively increases the mass

of the system, causing a downward shift in the system’s natural frequency and a reduction

in velocity. Assuming that the operating frequency is above the natural frequency of the
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system, this results in a greater amount of attenuation at the operating frequency [34]. The

drawback to this technique is that it results in a large increase in mass, which in many cases

can be prohibitive.

Another technique, used to reduce the large amount of mass while still effectively at-

tenuating the transmitted vibration, is to use a levered mass. Instead of a large inertia block,

a lever mechanism, with a mass mounted at the end, is placed in parallel with the elastic

supports of the structure [35]. The effective inertia of the levered mass can be increased by

exploiting the mechanical advantage of the lever. This results in smaller masses providing

attenuation at very low frequencies.

Sometimes, instead of adding an inertia block or additional support mechanisms, it

might be desirable to make a direct modification to the structure of the elastic support

itself. Theoretically, elastic metamaterials offer strong potential benefits, given their ability

to generate sub-wavelength frequency bandgaps, while being integrated into the support

structure [8]. Assuming that the support is in the form of a stiff elastic spring, such as

an iron rod, there are several elastic metamaterial concepts to choose from. For example,

replacing the elastic support with a mass spring chain with equivalent static stiffness results

in higher stop band attenuation than could be achieved using a massive inertia block [36].

Adding internal resonators to each individual mass on the chain can increase attenuation

even further. However, each additional mass introduces another resonance. This means

that the cut-off frequency is pushed higher, making this technique difficult to implement

when attenuation at low frequencies is desirable. One variation to this approach examined

holding the mass constant, but creating a spectrum of resonant frequencies around a natural

frequency of interest [37, 11]. This technique provided a wider but shallower attenuation

zone than a periodically applied resonator tuned to a single frequency would have. Another

variation to the mass chain technique involves replacing the masses with levered masses

in parallel with the springs. This concept results in lower stop-band frequencies than the

spring-mass chain [38], but still leads to an overall increase in the cut-off frequency.
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A limitation to these approaches is that the attenuation, and the effective lower range,

of each of these concepts, is dependent on the resonator mass to beam stiffness ratio. For

transverse beam vibration the beam stiffness is typically much lower than that for longitudi-

nal beam vibration, so elastic metamaterials used for transverse vibration at low frequencies

are relatively easy to design compared to longitudinal vibration. This can be problematic

when the beam is excited in both longitudinal and transverse directions from machine vi-

bration.

Most metamaterial structures create a mechanical band stop filter, with the overall goal

being to move the stop band to the lowest frequency range possible. A transversely vi-

brating beam with a periodic elastic boundary presents an interesting alternative. As the

stiffness of the elastic boundary increases, a band gap with an initial frequency of zero

emerges [39]. In other words, the elastic boundary results in a high pass filter. The same

can be done for a longitudinally vibrating beam, which may be useful in vibration isolation

applications. One way this has been carried out is by using a chain of granular media, em-

bedded within a rod. The rod acts like the grounding spring, and the metal, or plastic beads

effectively become a nonlinear load-bearing high pass filter [33]. However, granular media

are also limited in their load bearing capacity, with the potential to deform plastically.

The purpose of this chapter is to introduce two concepts to address the vibration of

heavy machinery, with a large generator being used as an example of how they can be ap-

plied. The first technique targets resonators to the natural frequency and rotational motion

of an important contributing mode of the system. Instead of being placed on the supports,

these resonators are placed directly on the body of the generator. The second technique

modifies the support to include a grounded spring mass chain, which is known to behave

as a high pass filter, in such a way that the static stiffness is maintained, but the dynamic

stiffness at the frequency of interest is reduced. This technique is analyzed using both a

lumped mass model and an FE model. FE designs taking into account space limitations

will be presented.
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Figure 2.1: Axial view diagram of a power generator.

2.2.1 Problem Statement

Power generators convert mechanical energy into electrical energy based on the Faraday

principle, which states that magnetic flux in an electric circuit will induce an electrical

current. The two main parts of a generator used to accomplish this are the stator and the

rotor. Figure 2.1 provides a simple diagram showing this. The stator typically has magnets

inside of it which generate a magnetic field. The rotor has a number of wire windings.

When the rotor spins, the change in magnetic flux through the wire windings induces an

electrical current.

To cause the rotor to spin, a turbine or internal combustion engine, is used to convert

other sources of energy into rotational mechanical energy. The rotational element of the

turbine is then attached to the shaft of the generator, shown in yellow in Fig. 2.1, causing the

turbine to spin. For example, in a typical nuclear reactor, heat from the nuclear reaction is

used to generate high pressure steam which drives the turbine. The spinning of the turbine

causes the generator rotor to rotate in the magnetic field, and electricity is generated.

An additional magnetic field is also induced by the electric current in the rotor. This

magnetic field is very strong, and can deform the generator stator, in the manner shown in

Fig. 2.2. The rotor rotation results in a rotating deformation of the stator at twice the fre-

quency of the spinning rotor, which also results in a deformation of the generator supports.
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Figure 2.2: Snapshots of undeformed generator shape (on left) and deformed shape of
generator (on right) under rotating magnetic fields.

This deformation leads to vibration of the supports in both the longitudinal and transverse

directions. The longitudinal vibration of the supports leads to sound and vibration in the

working environment of the generator. This work is concerned particularly with mitigating

this longitudinal vibration to reduce the sound and vibration transmitted to the environment.

In the generator, the magnetic field spins with the rotor at a frequency of 1/2fm Hz

(typically 50 or 60 Hz depending on the country), resulting in a deformation as shown

in Fig. 2.2 rotating at a frequency of fm. Because this excitation induces noise in the

operating environment, this research seeks to attenuate this vibration. This needs to be

accomplished while at the same time maintaining the transverse and static stiffness of the

supports. Because phononic material concepts have not been exhaustively explored for

similar applications, the design space for this problem will be restricted to phononic ma-

terial solutions. These offer the potential to provide a simple solution without requiring a
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complete redesign of the entire structure of the generator, as some other solutions would.

2.3 Power Generator Elementary Model

Prior to designing supports for the generator, an FE model was developed to capture the

key physics of the vibrating generator. This model was developed based on geometry

information provided by the research sponsor. It was validated by comparing the modal and

frequency response to modal and frequency response data provided by the research sponsor.

Analytical lumped element models for the highest contributing modes of the system were

then created to simplify the development of vibration mitigation techniques.

2.3.1 Model Description

The generator FE model and mesh is shown in Fig. 2.3. Because the generator is composed

of a long cylindrical mass motion in the z-direction is constrained, therefore linear plane

strain elements provide an adequate approximation of the generator behavior. The ideal-

ized generator can be treated as a cylindrical mass resting on two elastic supports. These

supports attach to the generator at approximately its equator, and then go to mechanical

ground. The spinning of the rotor results in vibration in the x-y plane with no deformation

or motion along the axial direction. This research applies these assumptions for all FE

models presented for the generator, unless otherwise specified.

Specific information about the size and mass of the rotor was not provided by the re-

search sponsor, therefore the rotor was not modeled. Instead, the research sponsor provided

proprietary information about the load created by the rotating magnetic field. This load was

applied as a rotating pressure load on the inner surface of the stator. This was used for the

calculation of the frequency response of the generator. The net effect of the load, shown

Fig. 2.3, produces an oscillating vertical force and axial moment moment about the center

of the generator.

Both of the supports connect the generator to ground. The base of each support was
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Figure 2.3: Generator FEA model geometry, boundary conditions, and loading.

fixed in all degrees of freedom to simulate the connection to the generator foundation. For

the force transmitted by the supports to ground the reaction forces at the nodes on the base

of the right support were summed to get the total force through the support. This is shown

as Ftr in Fig. 2.3. The reaction forces through the right support in the y-direction are used

for all models, to allow for a consistent comparison.

2.3.2 Generator Modal Analysis

Prior to designing vibration mitigation supports for the generator, vibration mThe first 6

modes of the generator are shown in Fig. 2.4, with arrows showing the direction of motion

for each mode. In the first three modes the stator body does not deform, while the supports

do. The first mode is analogous to transverse beam vibration with a mass at the end. In

this mode the stator moves as a rigid body from side to side, horizontally. The second

mode is analogous to longitudinal beam vibration with a mass at the end. In this mode, the

stator moves as a rigid body in the vertical direction. In the third mode, the stator rotates

as a rigid body about its center while the supports are stretched or compressed alternately.

Although the motion of the stator is different in the second and third modes, the motion of
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Figure 2.4: The first 6 mode shapes for the power generator model.

the supports is similar. Both modes lead to compression and tension of the supports in a

comparable manner. The fourth, fifth, and sixth modes all include deformation of the stator.

In the fourth mode, the sides are alternately compressed or stretched, exciting the supports

in a transverse manner. The fifth mode is very similar to the fourth mode, only rotated

by 45o. This leads to excitation of the supports in both the transverse and longitudinal

directions. In the sixth mode a triangular shape is created by the stator, with the sides and

corners alternating between pushing in or pulling out. This mode also excites the supports

in a transverse and longitudinal way.

The natural frequencies predicted by this model have less than a 3% difference with

those provided by the research sponsor. Although not perfect, the natural frequencies are

close enough to provide confidence that this model is capturing the primary physics of

interest in the vibration of the power generator, and that the model can be used for further

development of vibration mitigation techniques.

The first mode and the fourth, fifth, and sixth modes, were provided here to show val-
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idation of the model. In attenuating the longitudinal excitation at a frequency of fm Hz

the second and third modes are of primary interest for two reasons. The first reason is

that they are the two closest modes to the frequency of vibration, and therefore will be the

largest contributors to the response at that frequency. The second reason is that both of

these modes involve longitudinal deformation of the supports, and thus are contributors to

the longitudinal excitation which the supports experience.

2.3.3 Generator Frequency Response

The frequency response of the generator, presented as the y-component of the reaction

force through the right support, is shown in Fig. 2.5 using the loading described in Sec.

2.3.1. The response was normalized by the natural frequency of mode 3, the first rotational

mode of the system. It was normalized by this frequency because this frequency is closest

to the excitation frequency of interest, fm, and because this mode dominates the response

of the system.

The first resonance of the response shown in Fig. 2.5, appears at approximately ω/ωrot1 =

0.8. This resonance is mode 2 as shown in Fig. 2.4, the first longitudinal vibrational mode

of the system. The first mode of the system, which has motion mainly in the transverse (i.e.

x) direction occurs at a lower frequency, but does not appear in this response because the

transverse nature of the mode did not result in any reaction forces in the y-direction. This

resonance occurs at a frequency much lower than the frequency range of interest, and so

was ignored in the analyses presented here. This model captures all of the key components

of the frequency response provided by the research sponsor, especially at the excitation

frequency.

2.3.4 Generator Simplified Models

As stated previously, this research seeks to develop a phononic material concept which

attenuates the longitudinal (y direction) vibration at the generator operating frequency.
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Figure 2.5: Response of the generator base case (unmodified supports).

Models of the generator which isolate the key physics of interest simplify the design

process needed to address this excitation, by eliminating information about unimportant

phenomenon. Although the FE model presented is already fairly simplified, even simpler

models are developed here for the second and third modes. These modes both include

longitudinal vibration of the supports, and provide the greatest contribution to vibration at

the excitation frequency. Models that focus on these two modes make it easier to develop

phononic materials that target their motion and will therefore be most effective at attenuat-

ing the generator response to the excitation frequency. These models can then be used as

design tools for developing metamaterials concepts to address the particular excitation of

interest in this problem.

From examining the second and third modes, for the longitudinal vibration of the sys-

tem the supports act like springs with a stiffness

ks = AE/L (2.1)
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Figure 2.6: Simplification of second mode to a mass on a spring.

where A is the cross-sectional area of the support, E is the Young’s modulus, and L is the

length of the support. The main generator body (stator/rotor) acts like a distributed rigid

body mass. A streamlined analytical model can be created for each of these modes which

isolates their physics using these simplifications.

The second mode behaves like a mass on a spring. This simplification is shown in Fig.

2.6. In this case the mode has been reduced to a single degree of freedom system, with

vertical displacement u(t). Using the generator mass, included as M , and support stiffness

2ks for the two supports acting as springs in parallel, the natural frequency was 96.3% that

of the second mode, less than 4% error from that predicted by the FE model. This confirms

that this simplification is a close enough approximation to be useful for design purposes,

for the second mode.

The third mode behaves like a rotating disk on two springs. This simplification is

shown in Fig. 2.7. The mass of the generator is given by M , rotational inertia by I , and

outer radius by R. This model has one degree of freedom, θ, the rotation about the center

of the disk. The vibration of the stator would be induced by the rotor, which is included

here only as Min, the input moment. The natural frequency for this model has less than

1% difference between that of the FE model. The similarity of the model to the third mode

makes the model a useful approximation for design purposes as well.
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Figure 2.7: Simplification of third mode to a disk on two springs.

2.4 Concept - Mode Targeted Tuned Resonators

The first concept presented in this research is developed on the simplified model for the

third mode – the disk on springs. Applying Newton’s second law and summing moments

about the origin O of the disk leads to the equation of motion

Iθ̈ + 2ksR
2θ = Min (2.2)

with the natural frequency

ωn = R

√
2ks
I
. (2.3)

The generator has now been reduced to a single degree of freedom model with only a

single resonance. One way to address the vibration of the generator at this resonance is by

adding tuned vibration absorbers to the outside of the generator, as shown in Fig. 2.8. In

this case the resonator masses mr, are mounted to the generator using slender flexible bars

of length lr, with stiffness kr. The stiffness of the bar can be easily controlled by modifying

its cross-sectional properties.

To model the resonators, each is assumed to move through a rotation θr − θ, relative

to the rotation of the generator. Each individual resonator is assumed to have the same
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Figure 2.8: Generator model with tuned mass absorbers.

properties and therefore the same rotational displacement. These assumptions lead to the

equation of motion for each resonator, of

mr(R + lr)
2θ̈r + kr(R + lr)lr(θr − θ) = 0 (2.4)

where the natural frequency of the tuned absorbers, is given by

ωr =

√
krlr

mr(R + lr)
. (2.5)

The equation of motion, Eq. (2.2), with the added tuned absorbers becomes

Iθ̈ + 2ksR
2θ +Nkr(R + lr)lr(θ − θr) = Min (2.6)

where N is the total number of tuned absorbers used.

Assuming time harmonic motion, Eq. (2.4) can be solved for θr and then subbed into

21



Eq. (2.6) to get an expression for θ of

θ

[
2ksR

2 − ω2

(
I +N

mr(R + lr)
2

1− ω2

ω2
r

)]
= Min. (2.7)

By adding the resonators in this manner the specific rotational mode of interest can be

targeted. The tuned resonators increase the effective inertia of the system, seen in the term

in round brackets in Eq. (2.7). This shifts the natural frequency of the generator, and also

provides attenuation at the natural frequency they are tuned to.

Of particular interest is the attenuation of force transferred to ground through the sup-

ports, shown as fl and fr in Fig. 2.8. Since the amplitude of these forces is the same, it is

only necessary to examine one of these forces. Assuming that the generator rotates through

small angles, the force transmitted through the right support is given by

ftr = ksθR (2.8)

or
ftr
Min

=
ksR[

2ksR2 − ω2

(
I +N mr(R+lr)2

1−ω2

ω2
r

)] (2.9)

The frequency response of the generator, both without (base case, Fig. 2.7) and with

resonators, is shown in Fig. 2.9 for an example case of a 25 metric ton mass with 40 evenly

spaced 10 kg resonators attached. The resonator mass to generator mass ratio is 1.6%. In

this example, the resonators are tuned to the assumed excitation frequency to be attenuated

of 100 Hz. The resonators provide more than two orders of magnitude attenuation at the

operating frequency, and provide a band gap width of 10.5 Hz. This shows that using this

concept, and by designing resonators to target the specific structural motion of interest,

small amounts of mass can effectively provide attenuation.
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Figure 2.9: Generator model with tuned mass absorbers.

2.5 Concept - Base Isolation Using a Grounded Spring-Mass Chain

Alternatively, instead of adding resonators to the mass of the generator, it may be desirable

to modify the generator support to act as a mechanical filter. Using the FEA model of

the unmodified generator geometry, shown in Fig. 2.3, as a base, and for comparison,

a modification to the support is made to reduce vibration transmitted by the base to the

ground. It is easier to develop concepts for the support on the mass-on-a-spring model

(Fig. 2.6) instead of the rotational model, since it involves only a single spring. Then the

concepts can be scaled up to the full FE model.

Previous research [36] has explored the possibility of adding mass in the chain of sup-

port, as shown in Fig. 2.10. This research found that adding masses along the main chain

increased the slope of the frequency response after the natural frequencies in the attenua-

tion zone, providing more attenuation faster, but at the expense of adding new resonances,

23



uN

Fin

M

m

u2m

u1m

k

uM

..
.

k

k

k

k

2ks

M u(t)

Fin

uN

Fin

M

m

u2m

u1m

k

kg

uM

f1

..
.

k

k

k

k

kg

kg

OR

Simple mode
2 model

Spring mass
chain support

Grounded spring 
mass chain support

Figure 2.10: Support modified to include a spring mass chain.

which pushed the cut-off frequency of the system higher. For a high-mass, high-stiffness

system with a low excitation frequency such as the power generator, this is not a feasible

solution because the additional masses push the cut-off frequency above the excitation fre-

quency. If this solution is modified slightly to include grounding springs on the masses,

a grounded spring mass chain results, which is known to produce a high pass mechan-

ical filter [33]. This concept is examined in greater detail here. Before integrating any

concepts into the simple mass-on-a-spring model the dispersion diagram of the grounded

spring mass chain is used as a tool to evaluate the concept’s ability to provide attenuation

at the excitation frequency.

2.5.1 Spring Mass Chain Dispersion

An example of several unit cells of an infinite chain is shown in Fig. 2.11. For this config-

uration, the equation of motion for the nth mass is

mün + (2k + kg)un − k(un−1 + un+1) = 0. (2.10)
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Figure 2.11: Example of a grounded spring mass chain.

To get the dispersion relationship, a plane wave solution is employed, so that un = ũ(µ(ω))ei(µn−ωt)

where µ = κd is the normalized wave number, and κ is the wave number [31]. Subbing

this into Eq. (2.10) leads to the dispersion relation

Ω =
√

2[1− cos(µ)] + Ω2
g (2.11)

where

Ω = ω
ω0

(2.12)

Ωg = ωg

ω0
(2.13)

ω0 =
√

k
m

(2.14)

ωg =
√

kg
m
. (2.15)

Here Ω and Ωg are the normalized excitation frequency and what is herein termed the

normalized grounding frequency, respectively. The normalized grounding frequency is the

resonant frequency if the mass were only connected to the grounding spring.

Using Eq. (2.11) the lower and upper bounds of the pass band for this system can be

found. The minimum occurs when cos(µ) = 1, and the max occurs when cos(µ) = −1,
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which leads to

Ωmin = Ωg (2.16)

Ωmax =
√

4 + Ω2
g. (2.17)

Because the grounded spring mass chain is a high pass filter it can be used to stop low

frequencies from propagating through the structure. Based on the above equations, criteria

can be established to tune ωmin, the lower end of the pass band, or the upper end of the stop

band, which ranges from 0−ωmin. If it were desirable that a target frequency ωt fall inside

the stop band, then the spring mass chain must meet the requirement that

ωmin > ωt. (2.18)

If the mass were fixed, then this criteria can be reduced to a requirement on the grounding

springs, of

kg > mω2
t . (2.19)

This means that the value of kg can be tuned to place a target frequency of ωt inside of a

stop band.

As an example, the first mode natural frequency of the generator discussed in Sec.

2.4, is given by Eq. (2.3). To make this natural frequency fall within the stop band of a

support modified to include grounding springs the grounding spring stiffness must satisfy

the requirement

kg > mR

√
2ks
I

(2.20)

where m is the chosen mass in the spring mass chain. In Fig. 2.12 a nondimensionalized

dispersion diagram which might result from this choice, from Eq. (2.11), is shown with

Ωmin = 0.3, chosen to safely place a target frequency of Ωt = 0.04 within the bandgap

generated by the structure.
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Figure 2.12: Nondimensionalized dispersion diagram for grounded spring mass chain, with
stop bands shown in gray, target frequency in red, and dispersion relation in blue.

2.5.2 Simple Spring Mass Chain Support

Fig. 2.10 shows a simple lumped element model of how the grounded spring mass chain

may be incorporated into the support of the structure. The input force to this model is

indicated by Fin, a force applied to the generator mass of the system, modeling how the

magnetic load would excite the generator in this manner. The transmitted force of interest

is indicated by f1 = ftr, the reaction force along the main spring chain.

Two different responses to this system are shown, Figs. 2.13 and 2.14, with a similar

Ωmin to that shown in the dispersion diagram, Fig. 2.12. The response is normalized by the

first natural frequency of the system without the grounded masses, which is

ωn1 =

√
ks
M

=

√
(N + 1)k

M
. (2.21)

In Fig. 2.13 the ratio of individual grounded mass to generator mass is m/M = 0.1. This

is a relatively high mass ratio. For example, if the mass of the generator were 10,000 kg,

the mass of each individual mass in the chain would be 1,000 kg. Although an infeasible
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Figure 2.13: Analytical model of a grounded mass spring chain support, m/M = 0.1, N
is the number of unit cells included in the chain.

mass, this amount was chosen to demonstrate that the desired high-pass filtering effects do

in fact occur. The transmitted force through the main chain to ground is reduced by several

orders of magnitude until just before Ωmin for the pass band.

In Fig. 2.14 the ratio of individual grounded masses to the generator mass is m/M =

0.004. Even at this very small value more than 65% attenuation occurs for frequencies less

than Ωmin for the N = 5 case, except at the generator natural frequency, ωn1. The natural

frequency was shifted by the increased stiffness which resulted when the grounding springs

were added.

These examples demonstrate the potential of the grounded spring-mass chain concept to

reduce the response over a chosen frequency range. All of the new frequencies introduced

by the spring-mass chain fall within the pass band (highlighted in gray), predicted by the

dispersion diagram of the system. At frequencies lower than the pass-band attenuation

occurs. These results demonstrate how designing a grounded spring mass support would

28



Figure 2.14: Analytical model of a grounded mass spring chain support, m/M = 0.004,
N is the number of unit cells included in the chain.

work, as well. As the number of unit cells, N, increases, greater attenuation occurs. Also,

at higher masses greater attenuation is achieved. To design a grounded spring mass support

these results suggest that more unit cells, and higher masses, will result in more effective

vibration mitigation. Finally, by adding the grounding springs, the overall stiffness of the

system was increased. This could be an undesirable effect depending on how this affects

the natural frequency of the system that falls within the band gap. This can be mitigated by

modifying the spring stiffnesses along the main spring mass chain to maintain the value of

this natural frequency.

These results show that the dispersion relation can be used to determine the spring stiff-

nesses and mass values for designing a grounded spring mass support. They also show that

a grounded spring mass chain, when integrated into the support can effectively attenuate

the vibration experienced by the support.
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2.5.3 Implementation of a Spring Mass Chain Support on a Generator

Although these concepts have been shown to be theoretically feasible, they do not address

the reality of the challenges in implementing them. In a typical tuned resonator system,

there is a trade-off between the stiffness and mass of the system. To achieve attenuation at

low frequencies, high mass is required, but this increases the stiffness.

In an applied setting, there is another design variable that becomes particularly relevant,

and often disqualifies phononic material concepts. This variable is the available space.

To effectively apply a phononic material concept enough unit cells need to be included to

provide sufficient attenuation, but the available space can limit the number of unit cells. The

vibrating generator problem has short supports. In order to provide sufficient attenuation

each unit cell needs to be relatively compact. Therefore this problem is a good example of

how space constraints might be taken into account.

Fig. 2.15 shows how the grounded spring mass chain can be implemented as a support

for the generator with 5 masses. Because the support needs to stay statically stiff, each of

the springs was replaced with a longitudinal bar. This is possible because a longitudinal

bar acts like a spring with equivalent stiffness given in Eq. 2.1. Because the mechanical

ground is a horizontal plane, for the generator, each of the grounding springs needs to

become longer to reach the ground. To obtain the same static stiffness each of the grounding

springs needs to have an increased thickness to compensate for the added length. This

actually becomes a limiting factor with the small amount of space provided. Too many

masses would result in too much space being taken up by the grounding springs. As noted

earlier, the space available for grounding springs becomes a limiting factor in the number

of unit cells that can be included.

Each of the springs along the main chain were also replaced with longitudinal bars, of

constant length, except for the top spring, which needed to be a little longer to provide

clearance from the generator for the first mass. Its thickness was adjusted accordingly. The

masses were modeled as simple blocks. This is another limiting factor in the application
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Figure 2.15: Application of the grounded spring-mass chain for the generator support.

of the grounded spring-mass chain. Because some clearance is necessary for the mass the

amount of vertical available space is reduced. This reduces the number of masses that can

be included.

The grounded spring mass support incorporated into the generator is shown in Fig.

2.16. The support is the same length, but is a little wider than the previous support. To

verify that the behavior of this concept is as expected from the dispersion diagrams and

simplified models provided previously the response of the generator with these supports

was simulated.

For the simulations the generator support is subject to fixed boundary conditions at the

base, to simulate ground, as indicated by the red arrows. The loading was identical to that

used for the generator with the unmodified support (Fig. 2.3), and the transmitted force

was measured at the right most member, indicated by the green arrow. This member is the

main chain spring on the right side of the chain attached to ground. It is equivalent to the

spring indicated in Fig. 2.15 by the reaction force fb meaning the base force.

The FEA results for two variations of this support design are shown in Fig. 2.17, for

the same mass ratios as given in Figs. 2.13 and 2.14. The results were normalized by
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Figure 2.17: Response of the generator with grounded spring mass chain supports.
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the first rotational mode of the generator system, because this was the closest resonance

to the target frequency, and the response at this resonance dominated all the others. The

pass band for the m/M = 0.004 case is indicated in gray. Any new natural frequencies

introduced for this case fall inside of the pass band. Because of the large number of natural

frequencies in this frequency range, the new natural frequencies of the grounded resonators

are a little difficult to separate from the natural frequencies of the system. However, the

rapid roll-off after the pass band matches what was predicted in the discrete mass model.

For the m/M = 0.1 case, the newly introduced modes occur at lower frequencies due to

the larger stiffness used for kg. However, these frequencies fall within the pass band for

this particular case of mass and stiffness.

At the target frequency of ω/ωrot1 = 0.96 there is attenuation of approximately 94%

for the m/M = 0.004 case, and approximately 99% for the m/M = 0.1 case. Although

the same number of masses are used, because the masses are much larger for this case, the

transmitted force is reduced even further. These results show that the grounded spring-mass

support can successfully attenuate vibration, acting as a high-pass filter.

2.6 Conclusion

Two concepts have been proposed as potential candidates for reducing the vibration of

heavy machinery, without reducing the static stiffness necessary to support the machinery.

The first concept was a simple resonator designed to reduce rotational vibration by increas-

ing the rotational inertia. This reduction in rotational vibration resulted in attenuation of the

force transferred from the generator to ground at the excitation frequency. The second con-

cept was designed based on a phononic material concept, grounding springs, which when

stiff enough are known to create a high pass filter. Adding the grounding springs changed

the frequency response of the supports at the excitation frequency of interest, also result-

ing in a large amount of attenuation. Both of these concepts could be used for vibration

mitigation of other rotating machinery as well.
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CHAPTER 3

HIGH VOLTAGE VACUUM CIRCUIT BREAKER BOUNCE MITIGATION

3.1 Overview

High voltage vacuum circuit breakers have become the standard for industrial circuit breaker

applications. Circuit breakers interrupt the flow of electricity through an electrical network,

protecting it if the current flow becomes too high. When the electrodes in a circuit breaker

close, initiating the flow of electricity, they bounce off of each other before reaching resting

contact. During bouncing, arcing occurs between the electrodes, which can lead to perma-

nent welding of the electrodes and failure of the circuit breaker. Previously the electrode

bouncing problem has been studied analytically using various lumped element models or

numerically using finite element models. These analyses focused on the energy dissipation

or predict the bounce duration. However, wave propagation within the system and how it

affected bouncing was not analyzed. In this chapter a new model of electrode bouncing,

treating the electrodes as a continuous system, is developed. This model provides ana-

lytical solutions to wave propagation in the system, as well as analytical solutions to the

bounce duration. These analytical solutions illuminate what parameters of the system con-

trol the bounce duration for the electrodes. Some criteria are also suggested which could

help reduce circuit breaker bouncing.

3.2 Introduction

Of particular interest for this chapter is electrode arc reduction during bouncing due to

electrode closure of medium and high voltage vacuum circuit breakers. Circuit breakers

work like switches, which open, interrupting the flow of current, to protect the circuit and

its constitutive elements if the current flow becomes too high. In high voltage vacuum
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circuit breakers a fixed and a movable electrode are placed in a vacuum, which acts as

a dielectric, preventing current flow. If the current flow becomes too high the electrodes

separate and the vacuum prevents any further current from flowing. A diagram of a typical

vacuum circuit breaker is shown in Fig. 3.1. When the circuit is closed again the following

process occurs:

1. The movable electrode is given a closing velocity, usually between 1 - 2 m/s.

2. An arc forms between the electrodes as they approach each other.

3. The arc melts the surface of the electrodes, ejecting particles into the vacuum reduc-

ing its dielectric effectiveness as a barrier to current flow [40].

4. The electrodes make contact and initially bounce off of each other for a period of

time. It takes approximately 1 - 2 ms for an arc to be established [40]. Usually

bounces are long enough for more arcing to occur.

5. After some period of time the electrodes are welded together in resting contact, due

to surface melting [41].

The welding that occurs when the circuit breaker closes is called percussive welding. If the

percussive weld is too strong, then the circuit breaker will be unable to reopen, constituting

a critical failure of the breaker. Previously, investigations into the optimal surface material

identified materials that resulted in improved weld resistance [42]. The strength of the

arc also has an effect on the failure of the circuit breaker. To reduce the effect of the arc

the shape of the electrodes were given a spiral shape, causing the arc to move around the

surface of the electrode, reducing the amount of localized heating at any one spot [43][44].

Another strategy to reduce the strength of the weld and maintain the life of the circuit

breaker is to reduce the arc duration because it results in less melting of the electrode

surfaces. This means fewer particles are ejected into the vacuum, maintaining its dielectric
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Figure 3.1: Vacuum circuit breaker mechanical diagram.

capabilities, so that arcing is less probable during bouncing. It also means a weaker resting

weld, leading to less force necessary to open the breaker, and a longer breaker life.

At the time of impact stress waves are created in the electrodes, and propagate through

them. As the waves propagate they will reflect off of boundaries. Although the stress waves

are initially compression waves due to the impact, after reflections off of the boundaries

the waves can return to the electrode interface in tension [45]. When the contact interface

between the two electrodes reaches a state of tension, then bouncing initiates and contact

is lost. Springs at the base of the electrodes push the electrodes together again, resulting in

multiple bounces, and ultimately resting contact. Electrode bounce duration is dependent

on the complex interaction of a number of factors, which will be demonstrated and explored

further in this chapter. These factors include the wave speeds in the electrodes, the electrode

lengths, and stiffness of the springs the electrodes are mounted on, as well as mechanical

energy dissipation from the impact [46].

Effort has already been put into reducing the amount of heating the electrodes experi-

ence by modifying their contact and bounce characteristics. In [47] a spring was added to

the base of the fixed electrode, as well as a bellows, to minimize the contact bouncing. The

dissipation of kinetic energy during contact was studied in [46]. Contact after impact can

only be maintained if at least some of the kinetic energy from impact is dissipated. The

main method of energy dissipation for electrode contacts was found to be plastic deforma-

tion of the electrode surfaces, along with some slip and friction. Multiple open and close

cycles result in repetitive reworking and work hardening of the electrode surfaces leading

to the possibility that the electrode contact surfaces could fail in fatigue. Impact energy
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is also dissipated through the support structure of the electrodes. If the amount of impact

energy transferred to the support structure is maximized then electrode bouncing can be

reduced. Reference [48] later confirmed experimentally and with FE models that the im-

pact force from closing electrodes resulted in stresses beyond the yield stress of the contact

materials. The closing speed was also optimized to minimize total arc duration, which is a

combination of closing duration and bounce duration [49].

Previous research examining the bouncing portion of the electrode arc problem has

mainly focused on either experimental investigation of the circuit breakers, or else sim-

ulated the impact and bounce using finite element or lumped element models. None of

these models were used to look at the role wave propagation played in bouncing. Treating

the electrodes as a continuous system would allow for greater fundamental insight, from a

wave propagation perspective, into what dynamics play a role in the initiation of bounce,

and what factors control the bounce duration. Because arcing can’t be avoided during

closing, and it is difficult to eliminate bouncing completely, this research seeks to provide

information which will help to modify the wave propagation phenomenon, and therefore

the bouncing, so that arcing doesn’t occur during electrode bouncing.

3.2.1 Bounce Requirements

In Fig. 3.2 a time record of bounce and contact for two electrodes is shown. A low

value indicates bounce, while a high value indicates contact. The data has been nondi-

mensionalized assuming that the electrodes are made out of copper with a wave speed

ccopper and a length L of 1m. Using these assumed values time was nondimensionalized

with tnondim = tccopper/L. Material properties used for copper can be found in Table 3.1.

This data was obtained from experiments conducted by the research sponsor.

From the data in Fig. 3.2 some bounce criteria can be developed. The average bounce

duration for the data is 7.48 nondimensional time units. Using the same nondimensional-

ization, it takes 3.5 - 7 nondimensional time units for an arc to set up (assuming 1 - 2 ms).
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Figure 3.2: Sample experimental data of bouncing circuit breakers electrodes with contact
indicated by a high value and bounce indicated by a low value.

Young’s Modulus (E) 110 GPa
Density (ρ) 8930kg/m3

Wave Speed (c =
√
E/ρ) 3510m/s

Table 3.1: Material properties used for assumed copper electrode.

38



Desired Arc Duration Reduction (%) 25 50 100

Necessary Bounce Duration Reduction (%) 13.3 26.5 53

Table 3.2: Reduction in bounce duratio necessary to achieve a desired reduction in arc
duration.

If the average bounce duration could be reduced to less than 3.5 then arcing would be elim-

inated. The percent reduction in bounce duration required to prevent arcing is calculated to

be
7.48− 3.5

7.48
∗ 100% = 53% (3.1)

This means that reducing the average bounce duration from 7.48 to 3.5 nondimensionalized

time units, which is a 53% reduction, would result in a 100% reduction in arc duration.

Table 3.2 includes data for the necessary reduction in bounce duration for a couple other

cases. This simple analysis shows that bouncing does not need to be eliminated to prevent

arcing. If instead the bouncing can be reduced to sufficiently short bounces then arcing will

be eliminated, improving the performance of the circuit breaker.

3.3 Basic Circuit Breaker Bouncing Model

In this work the electrodes in the circuit breaker are modeled as continuous rods. This sim-

plification of the actual electrodes naturally lends to the derivation of analytical expressions

for bounce duration, something which previous analyses did not provide. The continuous

electrode model is shown in Fig. 3.3. Each electrode is modeled as a rod undergoing longi-

tudinal vibration. The key parameters modeled include: the lengths of the rods L1 and L2;

the rod densities ρ1 and ρ2; the rod Young’s moduliE1 andE2; the rod cross sectional areas

A1 and A2; the initial closing velocity vi; the base displacement for the movable spring, ub;

and the spring stiffness k. The base displacement and movable spring model the actuator

which pushes the two electrodes together.

These important values allow the problem to be nondimensionalized. Using the pa-
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Figure 3.3: Simplified electrode impact model.

ρ̂2 =
ρ2L2

1

ρ1A1
Â1 = A1

L2
1

Â2 = Â1
ρ1c1
ρ2c2

v̂i = vi
c1

L̂2 = L2

L1
ĉ2 = c2

c1
=
√

E2ρ1
E1ρ2

ûb = ub

L1
k̂ = kL1

E1A1

Table 3.3: Nondimensional parameters governing the electrode bouncing problem.

rameters t∗ = L1/c1, m∗ = ρ1A1L1, and L∗ = L1 the nondimensional parameters given

in Table 3.3 were derived. c1 and c2 are the wave speeds in the movable and fixed rods,

respectively. These are calculated through the relationship c =
√
E/ρ. The parameters

of greatest importance to the bouncing problem are bolded on the second row of Table

3.3. This research looks at how varying three of these parameters, L̂2, ĉ2, and k̂ affect the

bounce duration. The fourth parameter, ûb controls the compression of the base spring. In

the model, if the base spring is not compressed, then as the rods displace forwards after

impact the spring will pull the movable rod away from the fixed rod. But this is not what

the actuator in the actual circuit breaker would do, it would continue to provide a closing

force. By applying a base displacement to the spring equal to or greater then the maximum

displacement in the rod the spring can be kept in compression, always pushing the rods

together, as actually occurs in the circuit breaker.

In the circuit breaker, each electrode is made of the same material. The model included

here allows the material of the two electrodes to vary. Because of this the effect of changing

the wave speed on the bounce duration can be studied. It is hypothesized that a change in
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wave speed could lead to a desirable reduction in bounce duration. Only the first bounce

and the parameters that affect it are examined in this analysis. Although the bounces before

permanent contact are not identical, it is assumed that the first bounce will provide enough

insight into the waves and physical processes that affect electrode bouncing to significantly

modify the electrode bounce characteristics. In practice, changing electrode wave speeds

is not realizable through changing the materials of the electrodes because of other design

considerations (such as conductivity) that factor into the choice of materials. However,

dispersion could be introduced using phononic materials to create an effective change in

wave speed at different frequencies.

One important assumption has to do with a constraint placed on the reflection coeffi-

cient. Typically, when a wave hits an interface between two different materials, or a change

in cross sectional area, part of the wave is transmitted and part of the wave is reflected. If

the rods were identical, then the reflection coefficient would be zero, and the transmission

coefficient would be 1. The wave would be transmitted perfectly. Including two different

materials would result in a new reflection, introduced at the interface boundary, each time

a wave reaches it. Because in actuality the electrodes are made of the same material, this

wave is undesirable, and unnecessarily complicates the model. To eliminate this wave, the

reflection coefficient must be zero. The reflection coefficient is given as

cr =
Â2ρ̂2ĉ2 − Â1ρ̂1ĉ1

Â1ρ̂1ĉ1 + Â2ρ̂2ĉ2

. (3.2)

Requiring the reflection coefficient to be zero means that the numerator of Eq. 3.2 must be

zero. The densities and wave speeds are independent variables to be investigated, so the no

reflection requirement puts a constraint on the cross sectional area. To prevent reflection at

the contact interface the following relationship must be satisfied

Â2 = Â1
ρ̂1ĉ1

ρ̂2ĉ2

. (3.3)
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This requirement simplifies the analysis, by preventing reflections which wouldn’t other-

wise be in the system, but does change the amplitude of the transmitted wave. However,

the general trends and conclusions derived from the analysis are still valid.

3.3.1 Equations of Motion

The system is modeled as two separate rods, given by the equations

∂2u1

∂x̂2
=
∂2u1

∂t̂2
(3.4)

∂2u2

∂x̂2
=

1

ĉ2
2

∂2u2

∂t̂2
(3.5)

where u1(x̂, t̂) is the nondimensional displacement in the movable rod, and u2(x̂, t̂) is the

nondimensional displacement in the fixed rod. x̂ and t̂ are the nondimensional displacement

and time, defined as x̂ = x/L1 and t̂ = tc1/L1. For all further references the .̂ on x̂ and t̂

is omitted for simplicity, and they are referred to as x and t. The initial conditions to the

problem are

u1(x, 0) = 0 (3.6)

∂u1

∂t
= v̂i (3.7)

u2(x, 0) = 0 (3.8)

∂u2

∂t
= 0. (3.9)

The boundary conditions at the spring and fixed end are given by

k̂ [u1(0, t)− ûb(0, t)] = ∂u1
∂x

(0, t) (3.10)

u2(L̂2, t) = 0. (3.11)
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The boundary conditions at the contact interface change depending on whether or not the

electrodes are in or out of contact. When they are in contact continuity requires that the

force and the velocity match. Mathematically this is stated as

∂u1

∂t
(L̂1, t) =

∂u2

∂t
(0, t) (3.12)

∂u1

∂x
(L̂1, t) =Ê2Â2

∂u2

∂x
(0, t). (3.13)

When the electrodes are out of contact the force and velocity no longer match. However,

the physics requires that the stress at the free ends goes to zero. This leads to the out of

contact boundary condition for the electrode contacting ends, of

∂u1

∂x
(L̂1, t) =

∂u2

∂x
(0, t) = 0. (3.14)

3.3.2 D’Alembert’s Solution

From a wave propagation perspective, the best way to solve these equations is using D’Alembert’s

solution, sometimes referred to as the method of characteristics. This solution shows the

motion of the underlying waves in the system, which results in the observed displacement,

stress, and velocity. D’Alembert’s solution is typically used for waves propagating in infi-

nite rods, but can be modified to include reflections for finite rods. The solution assumes

that two waves, a right traveling wave f(x − ct) and a left traveling wave g(x + ct). For

this problem, two simultaneous solutions, one for each rod, occur. These are, in nondimen-

sionalized form

u1(x, t) =f1(x− t) + g1(x+ t) (3.15)

u2(x, t) =f2(x− ĉ2t) + g2(x+ ĉ2t). (3.16)
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Each reflection off of a boundary can be thought of as a wave propagating from infinity and

reaching the boundary at the same time as the wave being reflected. This is called an image

in the literature. The total solution is the sum of the waves and all their reflections, given

by

u1(x, t) =
∞∑
n=0

f1n(x− t) + g1n(x+ t). (3.17)

The stress and velocity can also be calculated, and are defined as

σ1(x, t) =Ê1

∞∑
n=0

f ′1n(x− t) + g′1n(x+ t) (3.18)

v1(x, t) =ĉ1

∞∑
n=0

−f ′1n(x− t) + g′1n(x+ t) (3.19)

and likewise for u2, σ2, and v2. More information about D’Alembert’s solution and the

method of characteristics can be found in many textbooks on partial differential equations,

or wave propagation in solids, such as [45]. One of the simplest ways to portray the wave

propagation is by use of characteristic diagrams, which show the waves and their reflec-

tions.

3.3.3 Calculating Reflections From Boundary Conditions

The reflections off of fixed and free boundaries are very simple to solve for. For a fixed

end a force balance requires that the wave reflect off with the same amplitude and sign,

resulting in stress doubling when the wave hits a fixed end. At a fixed end velocity and

displacement must go to zero. For a free end a force balance requires the forces to go to

zero, resulting in a stress wave with the same amplitude, but opposite sign being reflected.

For both velocity and displacement there is no restriction at a free end, resulting in velocity

or displacement doubling. Greater detail on boundary conditions can be found in [45].

The most difficult boundary condition to solve for in this problem is the spring end. To

solve for this end, following the process explained in [45] use Eq. 3.15 in Eq. 3.11 with
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x = 0. This gives

k̂f(t) + f ′(t) = g′(t)− k̂g(t) + k̂ûb. (3.20)

Because the incoming wave g(x + t) is known this is a first order differential equation of

f(x − t). The Laplace transform provides a straightforward way to solve this differential

equation. Taking the Laplace transform of Eq. 3.20 yields

F (s) =

(
1− 2k̂

s+ k̂

)
G(s) +

k̂ûb

s(s+ k̂)
. (3.21)

The inverse Laplace transform can then be taken to yield an equation for the reflection f(t).

This gives

f(t) = g(t) + ûb(1− e−k̂t)− L−1

{
2k̂

s+ k̂
G(s)

}
(3.22)

which can then be used to calculate the reflection of an arbitrary waveform g(x + t) off

of a compressed spring boundary. To get the final solution, sum everything together, then

replace t with x+ t.

3.3.4 Finite Difference Solution

To provide comparison and validation to the analytical solutions, the equations were also

solved numerically using finite difference derivatives. Equations 3.4 and 3.5 are the classic

example of a hyperbolic partial differential equation. To solve partial differential equa-

tions with finite difference derivatives, solutions typically fall into the implicit or explicit

category. For this problem, because we are interested in looking at relatively short time

scales for the propagation of a wave in the structure, the explicit technique is the natural

choice [50]. The derivatives in the wave equation are approximated with central difference
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derivatives to get

∂2u

∂x2
≈
uni+1 − 2uni + uni−1

∆x2
(3.23)

∂2u

∂t2
≈ un+1

i − 2uni + un−1
i

∆t2
(3.24)

where the index i corresponds to a discrete step in space, and n a discrete step in time. By

subbing these equations into Eq. 3.4 and then solving for un+1
i an expression for each node,

at each time step, is found to be

un+1
i = 2uni − un−1

i +

(
∆t

∆x

)2 (
uni+1 − uni + uni−1

)
. (3.25)

For the initial conditions, n = 0 and u0
i = u(xi, 0). Because of the way that the time

derivative is taken, one of the terms will end up with a negative index. This negative index

can be solved for by taking a first finite difference derivative in time to get

∂u

∂t
≈ vni =

un+1
i − un−1

i

2∆t
. (3.26)

This provides the first time step equation, which uses the initial velocity v0
i , to get

u1
i = u0

i + v0
i +

1

2

(
∆t

∆x

)2 (
u0
i+1 − u0

i + u0
i−1

)
. (3.27)

Because of the boundaries, indices that extend outside of the actual length of the rod are

also included. These indices refer to ghost nodes, which can be solved for in terms of

other nodes within the rod, by looking at the force balance on the boundaries. For a free

boundary stress goes to zero, so

∂u

∂x
≈
unI+1 − unI−1

2∆x
⇒ unI+1 = unI−1 (3.28)

where I represents the boundary node index. A fixed boundary is very simple to deal with.
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Its displacement must be zero, so unI = 0. The spring boundary condition also requires a

force balance. The requirement that

k̂u(0, t) =
∂u

∂x
(0, t) (3.29)

becomes

k̂un0 =
un1 − un−1

2∆x
(3.30)

which can be solved for the ghost node to get

un−1 = un1 − 2k̂∆xun0 (3.31)

For the two rod bounce model two continuity boundary conditions are also required.

As stated previously, at the contact interface the velocities must be equal and forces must

balance during contact. This leads to a system of equations to solve for the ghost nodes at

each end. For the velocity to be equal,

vni =
un+1
I − un−1

I

2∆t
(3.32)

which can be used at the two ends in contact to get the relationship that

un+1
1I
− un−1

1I
= un+1

20
− un−1

20
(3.33)

where u1 is the displacement in rod 1, and u2 is the displacement in rod 2. In the model

both rods use the same time step. However, the spatial step, ∆x, must be different for the

model to work. Setting the forces equal at the surface of contact gives that

∂u1

∂x
(L̂1, t) = ĉ2

∂u2

∂x
(0, t) (3.34)
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which is approximated using finite difference derivatives, as

un1I+1
− un1I−1

2∆x1

= ĉ2

un21 − u
n
2−1

2∆x2

. (3.35)

Eqs. 3.33 and 3.35 can be solved simultaneously for the ghost nodes un1I+1
and un2−1

to

enforce continuity across the boundary while the rods are in contact. The solutions to these

equations are

un1I+1
=

2

1 + ĉ2
∆x1
∆x2

[
un1I +

1

2

(
ĉ2

∆x1

∆x2

− 1

)
un1I−1

+

(
ĉ2

∆x1

∆x2

)2

(un21 − u
n
20

)

]
(3.36)

un2−1
=un21 − ĉ2

(
∆x2

∆x1

)2

(un1I+1
− un1I−1

) (3.37)

The explicit solution to the wave equation is only conditionally stable, depending on

a nondimensional constant called the Courant number. The Courant number is typically

given as

C =
c∆t

∆x
(3.38)

or using the nondimensionalization used in these equations, just

C =
∆t

∆x
. (3.39)

For the numerical equations to be stable and converge, the spatial and time stepping must

be chosen so that the Courant number is less than 1 [45]. For the simulations shown here,

the Courant number is set to 0.5. This value provided sufficient resolution and accuracy for

the problem, while still allowing for a reasonable amount of computation time.

3.3.5 Calculating Bounce Duration

To calculate the solutions, the propagating waves and their reflections must be tracked. A

bounce initiates when the contact interface goes into a state of tension. Once a tension
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wave reaches the interface there is nothing holding the two surfaces together, and they

separate. To simulate the bounce the contacting ends then become free ends, and the waves

are tracked, and reflected in the individual rods. The bounce ends when the displacements

of the tips of the rods are equal again. The bounce duration is given by

tb = tbf − tbi (3.40)

where tbf is the final bounce time, when the rod displacement matches again, and tbi is the

initial bounce time, when the stress reaches a value of zero, just prior to going into tension.

Watching how this value changes provides insight into how the main variables affect the

length of the bounce.

3.4 Circuit Breaker Bouncing Results

3.4.1 k̂ →∞

Analytically k̂ = ∞ models the impact and subsequent bouncing of two fixed base rods.

Although this case does not occur in practice, it provides useful insight as a limiting case

to show how the rods bounce off of each other. Solving for this case and tracking the wave

propagation gives the wave shapes at bounce initiation (tbi) in the movable rod as

fb10(x− t) =



1
2
v̂i(x− t)− 1

2
v̂i if 0 ≤ x− t < L̂1

−1
2
v̂i if − L̂1 ≤ x− t < 0

−1
2
v̂i(x− t)− v̂i if − 2L̂1 ≤ x− t < −L̂1

(3.41)

gb10(x+ t) =


1
2
v̂i if 0 ≤ x+ t ≤ L̂1

−1
2
v̂i(x+ t) + v̂i if L̂1 < x+ t ≤ 2L̂1

(3.42)

Some reflections are included in the wave definitions, for convenience, when the waves and

reflections formed a single wave packet. The wave shapes at bounce initiation in the fixed
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rod are

fb20(x− ĉ2t) =


− 1

2ĉ2
v̂i(x− ĉ2t) if 0 ≤ x− ĉ2t ≤ ĉ2L̂1

−1
2
v̂i if ĉ2L̂1 < x− ĉ2t ≤ ĉ2L̂1 + 2L̂2

(3.43)

gb20(x+ ĉ2t) =


1

2ĉ2
v̂iL̂1 if 2ĉ2L̂1 ≤ x+ ĉ2t ≤ ĉ2L̂1 + 2L̂2

− 1
2ĉ2
v̂i(x+ ĉ2t) + L̂1v̂i + v̂i

ĉ2
L̂2 if ĉ2L̂1 + 2L̂2 < x+ ĉ2t ≤ 2ĉ2L̂1 + 2L̂2

(3.44)

To demonstrate the results produced by the models described, consider a bouncing rod

problem with k̂ → ∞ and ûb = 0, with L̂2 = 0.5 and ĉ2 = 0.56 using Eqs. 3.41 - 3.44.

These parameters result in the characteristic diagram for displacement, shown in Fig. 3.4.

The displacement for both movable and fixed rods are shown together, as labeled. The

bounce initiates at a value of t = 1, and ends at t = 2.79. The characteristic diagram using

the finite difference derivatives is shown in Fig. 3.5 confirms the analytical solutions are

correct, matching very closely.

Using these equations the waves, and their derivatives, can be tracked to determine

when the contact interface is about to go into tension, indicating bounce initiation, and

when the tip displacements are about to match again, indicating contact. Analytically this

is a tedious and time consuming process because there are many little details to follow to

calculate the bounce duration correctly. Numerically it is also difficult, for different rea-

sons. The bouncing of the electrodes is a nonlinear process, and as a result sometimes the

numerical solver used has difficulty solving after contact. To improve the finite difference

solution accuracy, WENO methods could be used, which are able to model oscillatory mo-

tion and discontinuities in hyperbolic partial differential equations with higher accuracy

than the current methods [51].

Tracking the waves leads to analytical solutions for the bounce duration in the k̂ →∞
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Figure 3.4: Characteristic diagram for displacement of rods for first bounce, with movable
rod displacement being shown from values 0 to 1, fixed from 1 to 1.5, and parameters
k̂ =∞, ĉ2 = 0.56, L̂2 = 0.5, ûb = 0.

Figure 3.5: Characteristic diagram for displacement of rods for first bounce using finite
difference derivatives, compare to Fig. 3.4.
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case. Solutions for some values are given as

t̂b(ĉ2, L̂2) =



3L̂2

2ĉ2
+ 3

4
if 3

10
ĉ2 ≤ L̂2 ≤ 1

2
ĉ2

2L̂2

ĉ2
if 1

2
ĉ2 < L̂2 ≤ ĉ2

1 + L̂2

ĉ2
if ĉ2 < L̂2 ≤ 3ĉ2

(3.45)

The bounce duration solutions defined in Eq. 3.45 are piecewise defined because the waves

are piecewise defined. This leads to different bounce duration solutions depending on what

part of the wave has reached the tips of the rods when the bounce ends and contact is

reestablished. When plotted, Fig. 3.6 shows a clear trend in the bounce durations. As ĉ2

increases, bounce duration decreases. As L̂2 decreases, bounce duration decreases. What

this means, overall, is that bounce durations are shorter if the wave travels through the

fixed rod faster. From a design perspective this suggests that if the wave speed could

be increased in the fixed rod, relative to the movable, through some kind of metamaterial

induced dispersion, bounces would be shortened. These conclusions, of course, are difficult

to generalize to a non-infinite spring stiffness, but at least give a first glimpse of how the

wave speed affects the bouncing.

Earlier, in Table 3.2, requirements were given to reduce the bounce duration to elimi-

nate arcing. As long as bounces were less than 3.5 time units, no arcing would occur. In

Fig. 3.6 the duration for all of the bounces calculated is less than this requirement. The

inconsistency is due to the fact that in the actual system neither rod has a perfectly rigid

base. There is some kind of spring stiffness. By tuning the spring stiffness at the base of

the rod, the bounce duration could be modified to provide a reasonable range for the pre-

dicted bounce durations. This would be expected in particular for the nominal case where

ĉ2 = 1 and L̂2 = 0.5. Time did not allow for a thorough analysis of the spring stiffness.

However, observations here suggest that the spring stiffness itself plays a very important

role in bounce duration, and that stiffening the base spring on the movable electrode may
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Figure 3.6: Bounce duration for first bounce of the impacting rods, with k̂ = ∞ and
varying ĉ2 and L̂2.

be another way to modify the bouncing to prevent arcing.

3.4.2 k̂ = 2

To provide insight into how the waves were affected by the spring, bouncing for the spring

value k̂ = 2 was analyzed. For these models the spring base displacement was set to be

ûb = 1
2
v̂iL̂1. This value was chosen because the maximum wave displacement in the rods

must be less than this. This ensures that the spring will always be compressed preventing

it from pulling the movable rod away from the fixed rod. Fig. 3.7 shows the stress waves

in the system, and some of the reflections, at the time of impact.

In Fig. 3.7 an example of the stress waves at impact is shown, with values of k̂ = 2,

ûb = 1
2
v̂iL̂1, L̂2 = 0.5, and ĉ2 = 0.56. The stress waves are indicated by df and dg, which

is compact notation for the derivatives of f and g, the left and right traveling waves with

respect to x − t and x + t, respectively. The waves at the time of impact in the movable
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Figure 3.7: Stress waves and ghost waves, indicated as the derivatives df or dg of the
traveling wave displacements f and g that will result from reflections off of the spring and
fixed ends at the time of impact, in the movable (solid) and fixed (dashed) rods for k̂ = 2,
ûb = 1

2
v̂iL̂1, L̂2 = 0.5, and ĉ2 = 0.56.

Figure 3.8: Characteristic diagram of stress waves for k̂ = 2, ûb = 1
2
v̂iL̂1, L̂2 = 0.5, and

ĉ2 = 0.56
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rod (rod 1) are square waves, shown by df10(x− t) and dg10(x+ t). The rods are assumed

to be in a state of zero stress at the time of impact. The wave dg10 is a left traveling wave.

As contact initiates, it begins to reflect off of the spring boundary. The reflected wave is a

right traveling wave, given by df11. The fist big pulse in this wave occurs when the leading

edge of dg10 hits the spring at impact, and the second big pulse occurs when the trailing

edge of dg10 hits the spring. After that the response decays down to zero. df10 is the right

traveling wave at the time of impact. At impact it starts to travel into the fixed rod. Waves

traveling in the fixed rod (rod 2) are indicated by dashed lines. The wave is transmitted,

but attenuated due to the requirement from Eq. 3.3. The transmitted wave is then reflected

off of the fixed boundary, as dg20 and returns to the interface. While this is happening the

other waves are being tracked to determine when the stress at the contact interface returns

to zero just prior to a tension wave reaching it.

The characteristic diagram for these stress waves, from time t = 0 to tbi , is shown in

Fig. 3.8. Some of the traveling waves are indicated by black arrows. Note that the slope of

the arrows is related to the wave speed. Because the wave speed in the fixed rod was slower

for this simulation, the slopes in the fixed rod are steeper. At time t = 0 compression waves

propagate away from the contact interface, while at the same time df11, which gradually

goes from compression to tension, propagates towards the contact interface. Eventually, at

time t = 1.68 the waves sum up to zero, and bounce initiates. Waves inside of each rod

continue to propagate, but without the continuity conditions.

The bounce initiation time was found by tracking these initial waves. These times are

given by the equation

tbi =


L̂1

ĉ1
+ 1

k̂ĉ1
ln(2 + k̂) if ĉ2 ≤ 2L̂2

1+ 1

k̂
ln(2+k̂)

& k̂ > ln(2 + k̂)

2L̂1

ĉ1
if 2L̂2

1+ 1

k̂
ln(2+k̂)

< ĉ2 ≤ 1

(3.46)

The transcendental requirement that k̂ > ln(2+ k̂) means that k̂ >∼ 1.15, all the way up to
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infinity. So if the ĉ2 requirement is satisfied, then this solution will be similar to the k̂ =∞

case for large values of k̂. For the case where tbi = L̂1

ĉ1
+ 1

k̂ĉ1
ln(2 + k̂), the wave shapes in

the two rods, at bounce initiation, are

fb10(x−t) =



1
2
v̂i(x− t− x̂s) + v̂i

k̂

(
1− 1

2+k̂
ek̂(x−t−L̂1)

)
+ûb

(
1− 1

2+k̂
ek̂(x−t−L̂1)

)
if x̂s ≤ x− t ≤ L̂1

−1
2
v̂iL̂1 − v̂i

k̂

1

2+k̂
ek̂(x−t−L̂1) + v̂i

k̂

1

2+k̂
ek̂(x−t)

+ûb

(
1− 1

2+k̂
ek̂(x−t−L̂1)

)
if − L̂1 < x− t ≤ x̂s

− v̂i
k̂

1

2+k̂
ek̂(x−t−L̂1) + v̂i

k̂

1

2+k̂
ek̂(x−t) − v̂iL̂1e

k̂(x−t+L̂1)

+ûb

(
1− 1

2+k̂
ek̂(x−t−L̂1)

)
if x− t < −L̂1

(3.47)

gb10(x−t) =



1
2
v̂iL̂1 if 0 ≤ x− t ≤ L̂1

−1
2
v̂i(x− t) + v̂iL̂i + v̂i

k̂

1

2+k̂

(
1− e−k̂(x−t−L̂1)

)
+ ûb

2+k̂

(
1− e−k̂(x−t−L̂1)

)
if L̂1 < x− t ≤ 2L̂1 − x̂s

− v̂i
k̂

(1− 1
2

ln(2 + k̂)) + v̂i
k̂

1

2+k̂

(
1− e−k̂(x−t−L̂1)

)
+ v̂i

k̂

1

2+k̂

(
1− e−k̂(x−t−2L̂1)

)
+ ûb

2+k̂

(
1− e−k̂(x−t−L̂1)

)
if 2L̂1 − x̂s < x− t

(3.48)

fb20(x− ĉ2t) =



1
2
v̂i
ĉ2

(x− ĉ2t− ĉ2x̂s) + v̂i
k̂

(
1− 1

2+k̂
e

k̂
ĉ2

(x−ĉ2t)
)

+ûb

(
1− 1

2+k̂
e

k̂
ĉ2

(x−ĉ2t)
)

if 0 ≤ x− ĉ2t ≤ ĉ2x̂s

−1
2
v̂i
ĉ2

(x− ĉ2t− ĉ2x̂s) if ĉ2x̂s < x− ĉ2t ≤ L̂2

(3.49)
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gb20(x− ĉ2t) =


1
2
v̂iL̂1 if 0 ≤ x− ĉ2t ≤ 2L̂2 − ĉ2(L̂1 + x̂s)

−1
2
v̂i
ĉ2

(x− ĉ2t− 2L̂2)− 1
2
v̂ix̂s if 2L̂2 − ĉ2(L̂1 + x̂s) < x− ĉ2t ≤ L̂2

(3.50)

where x̂s = 1/k̂ ln(2 + k̂) is a shift resulting from the wave propagation prior to bounce.

Tracking these complex waves, and their reflections, leads to the transcendental equa-

tion for bounce duration, of

t̂b − c1e
−kt̂b = c2 if m ≤ L̂2 ≤ n (3.51)

where

c1 =2
1− ek̂ + ûbk̂

v̂i

k̂(2 + k̂)
(3.52)

c2 =2
L̂2

ĉ2

− 2

k̂
ln(2 + k̂) +

2

k̂

(
1− 1

2 + k̂)

)
− 2ûb

v̂i(2 + k̂)
(3.53)

and

m =
1

2
ĉ2 +

1

2

ĉ2

k̂
ln(2 + k̂) (3.54)

n =ĉ2 −
ĉ2
k̂

(
1− ek̂

)
+ ĉ2ûb

v̂i

2 + k̂
e−2k̂ +

ĉ2

k̂
ln(2 + k̂)− ĉ2

k̂

(
1− 1

2 + k̂

)
+

ĉ2ûb

v̂i(2 + k̂)

(3.55)

The solutions for the bounce duration tb can be found from Eq. 3.51 using a numerical

solver. Figure 3.9 shows Eq. 3.51 plotted as a function of ĉ2 and L̂2. Due to the complex-

ity of the equations, only one portion of the bounce duration was found. The same trends

as appeared in Fig. 3.6 also appear. As ĉ2 increases, bounce duration decreases. As L̂2

decreases, bounce duration decreases. An important difference also appears. The lowest
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Figure 3.9: Bounce durations for k̂ = 2 and ûb = 1
2
v̂i.

bounce duration is lower than the limiting value of 1 seen in Fig. 3.6 for the fixed boundary

condition case. This lower bounce durattion is a result of the spring, which modifies the

waves in such a way that the tips can simply skip off of each other briefly before recontact-

ing. If this bounce goes to zero, it does not mean that all bounces are eliminated, only that

the bounce will initiate from a later wave reflection.

3.4.3 Analysis of Bounce Duration Results

The results from the bounce duration have illustrated several points about the bouncing of

the electrodes. Because the systems are so complex, some general observations may be

more helpful than solving for specific cases. The wave functions are piecewise defined, so

the bounce duration for a given combination of parameters could take a prohibitively long

amount of time to solve for analytically. Only specific ranges have been solved for here.

However, the solutions examined have revealed that the waves, the wave speed, and the
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Figure 3.10: Example stress waves during bounce, indicated by df and dg, illustrating
important wave characteristics that affect bounce duration.

base spring, all have an important effect on the bounce length. Physically, it should also be

apparent that the stiffness of the base spring is important. In the limiting case, as the base

spring stiffness goes to zero, the rods will bounce off of each other, and never recontact.

By increasing the spring stiffness, multiple bounce cycles occur. As the spring gets stiffer

these bounces can become very short.

3.5 Wave Characteristics for Bouncing and Dispersion

An important observation can be made from watching what characteristics of the waves

have the largest effect on bounce duration. Fig. 3.10 shows an example of stress waves in

the rod during a bounce, using the same compact notation for the derivatives of displace-

ment df and dg used in Fig. 3.7 to indicate the stress waves. Two characteristics of the

waves seem to have a large effect on the duration of the bounces. The first is the distance
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Ld. This is the distance between dg20 and its approaching reflection df21. This distance

changes depending on the value of ĉ2. If ĉ2 is small, so is Ld. This distance can lead to a

stall in the tip motion, where even though the waves are propagating the tips of the rods

are not moving, because the waves are not interacting with the tips of the rods. The stall

lasts as long as it takes the wave to reach the tip end. The result is that the tips do not move

closer to each other, making the bounce last longer.

The other important characteristic of the waves is the slope. Large portions of the wave

with a positive or a negative slope indicates the tips are moving in a uniform direction, either

towards, or away from each other, leading to longer bounces. If the stress can be made to

alternate between compression and tension along the length of the rod, the bounces will be

shorter.

Both of these effects can be mitigated by introducing dispersion, as mentioned earlier.

A simple dispersion relationship can be used to show this. Consider a square wave prop-

agating in an elastic rod. This wave can be represented, in the frequency domain, by the

expression [52]

u(x, ω) = a1(ω)e−jkx (3.56)

where a1(ω) is a frequency dependent coefficient, and k is the wave number. Given an

input force f(t) ⇒ F (ω) the coefficient a1ω can be found from the boundary condition,

through a force balance
∂u

∂x
(x, ω)|x=0 = −F (ω)

EA
(3.57)

By subbing in Eq. 3.56 the coefficient is found to be

a1(ω) =
F (ω)

jkEA
(3.58)
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Figure 3.11: Comparison of nondispersive wave and same wave, with dispersion relation-
ship k = ω0.9

c
, traveling in a rod.

The final solution in the time domain is

u(x, t) =
∑
ω

F (ω)

jkEA
e−j(kx−ωt). (3.59)

For a typical rod k = ω/c, but the effects of dispersion can be investigated by making

k → k(ω) an arbitrary function of frequency. By using this equation, and choosing the

dispersion relationship k(ω), an arbitrary dispersion relationship can be investigated to see

how it affects the wave shape over time. One possible dispersion relationship is

k =
ω0.9

c
. (3.60)
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When this dispersion relationship is applied, the wave is distorted as shown in Fig. 3.11.

If this dispersion relationship could be realized in the rod, the wave could be distorted

in desirable ways, as discussed above. This dispersive relationship causes the wave to

oscillate about zero, as some frequencies move out ahead of others. These oscillations

would result in more frequent changes in direction of the electrode tips, leading to more

rapid, smaller bounces. The main portion of the wave also moves faster, which would

also lead to less stall time. It is anticipated that a dispersion relationship similar to this,

could be induced through elastic metamaterials, such as grounding springs or resonators.

Elastic metamaterials always introduce dispersion around the edges of the bandgaps of the

frequencies that they effect. This concept is investigated in greater detail in Ch. 4.

3.6 Conclusion

The circuit breaker bouncing problem was investigated in this work using analytical and

numerical techniques. A model for the circuit breaker was proposed and nondimensional-

ized. Analytical solutions were then developed and validated with finite difference solu-

tions. These models provided insight into how the circuit breaker bouncing was affected

by the waves. The key findings can be summarized as follows:

1. The circuit breaker bounce duration is dependent on both relative wave speed and

electrode length. These both directly affect the amount of time it takes a wave to

travel in a rod, and can be tuned to achieve shorter bounces.

2. The circuit breaker bounce duration is also dependent on the base spring stiffness for

the movable electrode. Generally stiffer base springs lead to short bounces.

3. From observation, the shape of the waves in the electrodes affect the bounce duration,

and can be modified through modifying the spring stiffness.

From the results of the model presented and analyzed in this chapter show that the shape of

the wave affects the bounce duration. This shape can be modified by introducing dispersion
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into the propagating wave. Several mechanisms to do this are introduced in the next chapter.
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CHAPTER 4

PULSE SHAPING IN 1D ELASTIC WAVEGUIDES FOR SHOCK TESTING

4.1 Overview

In this chapter a novel application of phononic materials, motivated by Hopkinson bar test-

ing for accelerometers, is presented. The research presented here shows that through using

optimized phononic material concepts, an input pulse to a longitudinal bar can be shaped

to sufficiently approximate a specified, predefined output pulse. The phononic material

bars were modeled analytically using the dynamic stiffness and transfer matrices. Con-

cepts including local resonators, phononic crystals, grounding springs, and cross-sectional

variation were explored, and parametric studies showed that no individual parameter of

the phononic materials allowed for precise enough control to achieve the possible desired

output pulse shapes. The parameters for a combined phononic crystal - local resonator are

then tuned using an optimization algorithm to achieve the desired response of the system.

The analytical model optimized values were investigated for sensitivity to perturbations

which might be introduced during manufacturing, which could reduce the performance of

the phononic material. The analytical model was then converted into physical geometry,

which when analyzed using the FE method, showed that the desired wave shapes were

produced.

4.2 Introduction

Mechanical shock events can be reproduced in the laboratory using Hopkinson bar tests.

In general Hopkinson bar tests are used to measure the dynamic properties of a material

or system by causing a pulse to travel down an incident rod, via an axial impact from a

projectile, and then measuring the pulse reflection and transmission through a sample [53].
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These tests are used to qualify electronic systems exposed to mechanical shocks by defining

the shape of the pulse as a test specification. In these tests the electronics to be tested are

usually placed at the end of the Hopkinson bar instead of between the two sides of a split

bar [54]. Hopkinson bar tests are used on MEMS systems, such as accelerometers, which

are subject to high accelerations on the order of 100,000 g’s [55, 56].

For the Hopkinson bar test a couple of different pulse shaping techniques have previ-

ously been developed. One technique inserts a thin disk between the impacting projectile

and the incident rod. When the thin disk is impacted it plastically deforms, resulting in a

change to the pulse shape created by the projectile. The insert geometry can be designed to

control the desired pulse properties [57, 58]. Changing the projectile shape is an alternative

technique used to modify the pulse shape. Different shapes can result in pulses with faster

or slower rise times as well as a change in pulse duration [59].

Hopkinson bar tests rely on the key assumption that the wave propagating in the rod

is non-dispersive. This requirement is satisfied by requiring the rod to be homogeneous

with a uniform cross-sectional area, and the wavelength of a pulse to be long compared to

the diameter of the bar [53]. When axial impact between two rods occurs the wavelength

of the input pulse is twice the length of the impacting rod [45] which means that to avoid

dispersion the impacting rod must be long compared to the largest dimension of the cross-

section. In this chapter dispersion is intentionally introduced through rod design, as a way

to shape pulses to meet desired specifications. It is primarily concerned with determining

what rod geometry and features are necessary to produce the desired pulse shape.

Elastic metamaterials introduce dispersion and bandgaps that can be used to modify

the shape of a pulse. Single resonator and dual resonator metamaterials have recently been

applied to a similar problem, blast mitigation, in an attempt to reduce the amplitude of an

input pulse to a system. With the frequency spectrum of the resonators tuned to overlap that

of the blast wave, significant wave attenuation occurred [60]. A resonant “woodpile” pro-

vided improved blast mitigation by optimizing the individual element length to minimize
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the wave force amplitude [61]. Pulse shaping is very similar to the blast mitigation prob-

lem, with the caveat that instead of blocking the wave, the wave is allowed to propagate

within the structure with designed dispersion characteristics.

Four basic concepts are explored here, with two of them used for actual pulse shaping.

The four concepts are phononic crystals, local resonators, cross-sectional variation, and

grounding springs. Phononic crystals are built of geometric or material periodicity intro-

duced into a structure [62]. This periodicity leads to an impedance mismatch and creates

frequency stop-bands at wavelengths corresponding to the unit cell length of the structure.

The second building block is the local resonator. Local resonance effects produce sub-

wavelength bandgaps around the natural frequency of the resonators, and generate negative

effective mass or stiffness [3]. The third concept, cross-sectional variations, forces the

shape of a pulse to change as it travels through a rod [63]. The fourth, grounding springs,

is a periodic implementation of an elastic foundation, also known as a Winkler foundation

for beams [64]. Elastic foundations in strings, beams, and rods introduce dispersion which

does not allow for the propagation of waves at low frequencies [45], i.e. it creates a high-

pass filter. Phononic crystals and local resonators were more promising and explored in

greater depth for their pulse shaping capabilities.

4.3 Theoretical Background

4.3.1 Input and Output

The input pulse due to an impacter striking the incident rod in a Hopkinson bar test is

modeled as a haversine [54]. The input force is then given as

f(t) =
fp
2

(
1− cos

(
2π

τ
t

))
= fp sin2

(π
τ
t
)

(4.1)

where fp is the pulse amplitude and τ is the shock duration. The shock duration is depen-

dent upon the length of the projectile impacting the incident bar and the wave speed. For a
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Figure 4.1: Initial force and acceleration wave shapes.

projectile of length Lp with wave speed c0,

τ =
2Lp
c0

. (4.2)

This result can be found by applying D’Alembert’s solution to the longitudinal impact

of two rods [45]. The input force amplitude is also dependent on the impact velocity.

However, because this research is only concerned with the overall shape of the wave and the

relative amplitude, fp will be assumed to have a unit value. The results will be applicable to

any amplitude wave that satisfies the Hopkinson bar assumptions about wavelength listed

earlier. The input acceleration corresponding to the input force pulse is expressed as

a(t) = ap sin

(
2π

τ
t

)
. (4.3)

where ap is the acceleration pulse amplitude. Herein the acceleration wave shape is the

wave shape to be tuned. One important feature is the fundamental frequency, ω0 which is

ω0 =
2π

τ
. (4.4)
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Figure 4.2: Example output curve created from Eq. 4.5.

The input force and acceleration pulse shapes are plotted in Fig. 4.1.

There are two input pulse features of particular interest for Hopkinson bar tests. For

tests measuring strain rate dependent material properties a constant strain rate is important,

which requires a constant rise in the pulse [57]. For other Hopkinson bar tests, used to

study the fracture behavior of materials, the pulse duration is also relevant [58]. The output

wave formulation was chosen in order to provide control of the desired strain rate and pulse

duration. These properties in an output pulse shape are modeled with the expression

ad(t) =

A



1− cos (2πf1t− φ1) ts ≤ t ≤ t1 + ts

1 t1 + ts ≤ t ≤ t1 + ts + Td

1− cos (2πf2t− φ2) t1 + ts + Td ≤ t ≤ t1 + t2 + ts + Td

0 otherwise

(4.5)
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where f1 = 1/t1, f2 = 1/t2, φ1 = 2πf1ts, and φ2 = 2πf2(ts+Td+t1−t2). The subscript d

is used to indicate that this is the desired output pulse shape. t1 and t2 are the time duration

of the rising and falling portion of the waves, Td is the time duration of the dwell, and A

is the amplitude. ts is the amount of time it takes the wave to travel down the rod. These

variables are defined graphically on an example curve in Fig. 4.2.

Equation 4.5 was chosen because it provides a simple way to define the output curve in

terms of only a few variables. Equation 4.5 only includes the portion of the pulse before

the first zero crossing, and does not represent the entire wave form created by the initial

impact. In Hopkinson bar tests the initial pulse is usually followed by additional waves due

to various effects, such as reflections off of the ends of the bars. However, only the wave

before the first zero crossing is important (even before the wave begins to fall from its first

peak) [54]. Because of this, any waves after the first zero crossing were neglected and will

not be shown herein.

4.3.2 Transfer and Dynamic Stiffness Matrices

The transfer matrix is used to determine the rod’s dispersion relationship, which reveals the

effect of different rod parameters on wave dispersion in the frequency domain. Although

the transfer matrix can be used to predict wave propagation in the time domain, it is not

used here due to ill-conditioning which occurs with increasing numbers of unit cells [65].

Instead the global dynamic stiffness matrix, which avoids this problem, is used to simulate

wave propagation through the rod, and to predict what the output wave shape will be in

the time domain. Predicting the output wave shape provides a way to study how different

metamaterial parameters affect the wave shape. Both of these matrices are developed from

the dynamic stiffness matrix for a unit cell. These techniques were also selected because

they can be used to predict both dispersion and wave propagation in a variety of periodic

configurations.

The dynamic stiffness matrix relates the generalized displacements at the ends of the
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Figure 4.3: Example rod unit cell.

rod to their corresponding generalized forces. The transfer matrix method relates the gen-

eralized forces and displacements at one end of the rod to the generalized forces and dis-

placements at the other.

For an example unit cell, as shown in Fig. 4.3, the forces and displacements are related

by the dynamic stiffness matrix [D], in the frequency domain, as


F1

F2

 =


D11 D12

D21 D22



u1

u2

 . (4.6)

Expressions for Dij vary depending on the features of the unit cell, and will be defined for

specific cases later. For arbitrary adjacent sections n and n+1 of a rod, as shown in Fig. 4.4,

continuity conditions are required to capture the wave propagation from one unit cell to the

next. To enforce continuity, at a shared boundary between unit cells the displacements are

identical, so u1n+1 = u2n . The forces must also be in equilibrium requiring that F1n+1 =

−F2n . These relationships are necessary to derive the transfer matrix from the dynamic

stiffness matrix, because the transfer matrix describes the transference of these quantities

from one unit cell to the next. To obtain the transfer matrix, one can rearrange Eq. 4.6 so

that the force and displacement for each end are on the same side of the equation, and then

apply the continuity conditions to obtain


u1

F1


n+1

=


−D−1

12 D11 D−1
12

D22D
−1
12 D11 −D21 D22D

−1
12



u1

F1


n

(4.7)
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Figure 4.4: A finite rod composed of an arbitrary number of sections.

The transfer matrix then is

[T ] =


−D−1

12 D11 D−1
12

D22D
−1
12 D11 −D21 D22D

−1
12

 (4.8)

For a bar composed of N different sections, as shown in Fig. 4.4, the transfer matrix

models how a force in one section would be transferred to the next section by concurrently

multiplying the transfer matrices of adjacent cells together. The resulting equation would

be 
u1

F1


N+1

= [T ]N [T ]N−1 · · · [T ]2[T ]1


u1

F1


1

=
N∏
i=1

[T ]i


u1

F1


1

(4.9)

The global transfer matrix then becomes a product of the transfer matrices so that

[T ] =
N∏
i=1

[T ]i. (4.10)

Using this approach, the output wave at one end of the rod can be found from a prescribed

input wave at the other end. This same transfer matrix could be used to model a rod of N

identical sections, or a periodic system composed of a unit cell consisting of N different

sections.

This technique can be used to determine dispersion characteristics in a periodic system

by applying the Floquet-Bloch theorem, which says that the state vector at identical places
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on adjacent unit cells is the same, but with a phase shift. Mathematically, this is stated as


u1

F1


n+1

= eiµ


u1

F1


n

(4.11)

where eiµ describes the phase shift at nondimensionalized wave number µ = κL where L

is the length of the unit cell. Using Eq. 4.8


u1

F1


n+1

= [T ]


u1

F1


n

= eiµ


u1

F1


n

(4.12)

which can be rewritten as

(
[T ]− eiµ(ω)[I]

)

u1

F1


n

= [0] (4.13)

The dispersion relationship can be found by solving this eigenvalue problem. To solve, for

a given frequency compute the eigenvalues λ and eigenvectors. Then use the relationship

λ = eiµ(ω) to calculate the complex wave number for that given frequency. The real por-

tion of the wave number corresponds to the wave propagation while the imaginary portion

corresponds to wave attenuation or amplification, and indicates where band gaps are. The

eigenvectors correspond to the wave modes of the system at that frequency.

One of the interesting characteristics of this eigenvalue problem is that the eigenvalues

come in complex conjugate pairs. These eigenvalues correspond to wave propagation to the

left and to the right. For most systems the wave is attenuated as it propagates, so the correct

eigenvalue to use will be the eigenvalue that results in wave attenuation in the direction of
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wave propagation. For a wave propagating to the right this will be the eigenvalue that

results in a positive imaginary value for µ.

For the prediction of the propagating wave shape the global dynamic stiffness matrix

is used. Although this can be done with the transfer matrix, as the number of unit cells

increases, meaning the number N in Eq. 4.10 grows larger, the transfer matrix becomes

ill-conditioned [65]. Because the global dynamic stiffness matrix does not require the

multiplication of multiple matrices, it performs better as far as conditioning is concerned.

The global dynamic stiffness matrix provides the forces and displacements at the be-

ginning and end of each section along a finite rod such as that shown in Fig. 4.4. In order to

create this matrix, let Eq. 4.6 represent the ith element of the rod. The global dynamic stiff-

ness matrix is then created by adding overlapping components, similar to the finite element

method, as follows,



F 1

F 2

F 3

...

FN

FN+1



=



D1
11 D1

12

D1
21 D1

22 +D2
11 D2

12

D2
21 D2

22 +D3
11

. . .

DN−1
22 +DN

11 DN
12

DN
21 DN

22





u1

u2

u3

...

uN

uN+1



(4.14)

where the superscript refers to the element number, with forces and displacement represent-

ing the forces and displacements of the left end of the element. All terms left unspecified

are zero. The internal forces sum to zero, so F 2 = F 3 = ... = FN = 0. The initial force

F 1 is prescribed by the chosen input wave form, i.e. the frequency domain representation

of Eq. 4.1, and the output force corresponds to a free end so FN+1 = 0 also.
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Equation 4.14 captures all pulse reflections within the phononic material. This includes

zero crossings that occur after the initial pulse. Only the initial pulse, before the first

zero crossing, is used in testing the accelerometers or measuring other dynamic material

properties. Portions of the wave beyond the first zero crossing are not of interest for this

work, therefore they are not shown in the results.

The dynamic stiffness matrix is defined in the frequency domain. In order to use the

dynamic stiffness matrix the input pulse shape must be transformed into the frequency do-

main. Once all of the forces and terms in the dynamic stiffness matrix have been specified,

simply invert the dynamic stiffness matrix to find the frequency domain displacements for

each of the degrees of freedom. All other quantities of interest, such as acceleration or

stress, can then be calculated from the displacement. Finally, to get the pulse shape, trans-

form back from the frequency domain to the time domain.

4.3.3 Longitudinal Rod Governing Equation

The dynamic stiffness matrix and transfer matrix were derived without determination of

the properties of the rod they would be modeling. Now that the framework for modeling

has been developed, the phononic unit cells themselves can be modeled. The bars in the

Hopkinson bar experiment are modeled using the longitudinal wave equation

∂2u

∂x2
=

1

c2
0

∂2u

∂t2
(4.15)

where c0 =
√
E/ρ, and E and ρ are the Young’s modulus and density, respectively. The

coordinate x and displacement, u are shown in Fig. 4.5. This formulation assumes a

constant cross-section, linear elastic material, and uniform stress distribution over the cross

section. Waves modeled by Eq. 4.15 are nondispersive. This formulation assumes that

the lateral inertia, taken into account through the Poisson ratio, is negligible. For the main

frequency components of interest for the input waves simulated here this assumption holds
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Figure 4.5: Coordinates and displacement for a longitudinal rod.

true. Assuming time harmonicity, Eq. 4.15 reduces to

∂2u

∂x2
+
ω2

c2
0

u = 0 (4.16)

which has the solution

u(x) = A1e
iκx + A2e

−iκx. (4.17)

4.3.4 Dynamic Stiffness Matrix

The dynamic stiffness matrix for a rod unit cell is found by evaluating Eq. 4.17 at the

boundaries. This leads to the equations

u1 = u(0) = A1 + A2 (4.18)

u2 = u(L) = A1e
iκL + A2e

−iκL (4.19)

F1 = −EA∂u
∂x

(0) = −EAiκ(A1 − A2) (4.20)

F2 = EA
∂u

∂x
(L) = EAiκ

(
A1e

iκL − A2e
−iκL) (4.21)

which can be solved to eliminate A1 and A2 to get the matrix equation


F1

F2

 =
EAκ

sin(κL)


cos(κL) −1

−1 cos(κL)



u1

u2

 . (4.22)

The dynamic stiffness matrix is the matrix in Eq. 4.22 that relates the displacement and

force vectors. Eq. 4.22 shows the contents of the dynamic stiffness matrix presented in Eq.
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Figure 4.6: Example of a phononic crystal unit cell.

4.6 for a straight rod. The transfer matrix is then found from Eq. 4.22 using Eq. 4.8.

A phononic crystal unit cell is shown in Fig. 4.6. The transfer matrix for a phononic

crystal is found using the transfer matrix for two separate rods and then applying the trans-

fer matrix multiplication property in Eq. 4.10 so that

[T ]pc = [T ]2 [T ]1 . (4.23)

The global dynamic stiffness matrix can be created by alternating matrices [D]1 and [D]2

for the respective rod sections that they represent as shown in Eq. 4.14.

A unit cell for a rod with local resonators is shown in Fig. 4.7. The dynamic stiffness

matrix for a rod with a resonator is derived in the same way, but the right boundary force

balance (Eq. 4.21) becomes

F2 = EA
∂u

∂x
(L) + kr(u2 − ur)

= EAiκ
(
A1e

iκL − A2e
−iκL)+ kr(u2 − ur) (4.24)

with the mass spring resonator modeled by the equation

mrür + kr(ur − u2) = 0. (4.25)
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Figure 4.7: Example of a unit cell for a rod with periodically applied local resonators.

Using the assumption of time harmonicity, Eq. 4.25 is rearranged to find that

ur =
1

1−
(
ω
ωr

)2 (4.26)

where ωr =
√
kr/mr. Equation 4.26 is used to eliminate ur in Eq. 4.24. Then using Eqs.

4.18 – 4.20 with Eq. 4.24 the matrix equation for a local resonator is found to be


F1

F2

 =


EAκ cos(κL)

sin(κL)
− EAκ

sin(κL)

− EAκ
sin(κL)

EAκ cos(κL)
sin(κL)

− kr (ω/ωr)2

1−(ω/ωr)2



u1

u2

 . (4.27)

The matrix in Eq. 4.27 is the dynamic stiffness matrix presented in Eq. 4.6 for a rod with a

local resonator attached. This dynamic stiffness matrix is identical to that of the rod, with

the addition of the kr term in the bottom right element.

A unit cell for a rod with a grounding spring is shown in Fig. 4.8. This can be thought

of as a limiting case for the local resonator with infinite mass. Equations 4.18 - 4.20 are the

same, but the force balance at the right end becomes

F2 = EA
∂u

∂x
(L) + kgu2

= EAiκ
(
A1e

iκL − A2e
−iκL)+ kgu2. (4.28)
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Figure 4.8: Rod unit cell with a grounding spring.

Solving Eqs. 4.18 – 4.20 with Eq. 4.28 leads to the matrix equation


F1

F2

 =


EAκ cos(κL)

sin(κL)
− EAκ

sin(κL)

− EAκ
sin(κL)

EAκ cos(κL)
sin(κL)

+ kg



u1

u2

 . (4.29)

The matrix in Eq. 4.29 is the dynamic stiffness matrix for a rod with a grounding spring

attached. The only difference between the matrix in Eq. 4.22 for the original rod and this

one is the addition of the kg term in the bottom right element.

A unit cell for a rod with an exponentially varying cross-section is shown in Fig. 4.9.

The cross-sectional variation results in a different governing equation. For this specific

case, the governing equation is

1

A(x)

∂

∂x

(
A(x)

∂u

∂x

)
=

1

c2
0

∂2u

∂t2
(4.30)

The final governing equation will depend on the choice of cross-sectional variation. Not

all cross-sectional variations result in analytically solvable governing equations. For the

purposes of this work, the cross-section will be restricted to the analytically solvable expo-

nential variation of the form

A(x) = πr2(x) = π
(
r0e
−βx)2

, (4.31)
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Figure 4.9: Rod with an exponentially decaying cross-sectional area.

where r is the rod radius, r0 is the radius value at x = 0, and β controls the exponential

decay or growth of the rod.

This profile falls into the class of cross-sectional variations known as ’horns,’ which can

behave as amplifiers or attenuators [45]. A positive value of β results in exponential decay

as x grows. This leads to a smaller cross-section at the terminal unit cell or rod end and

a larger amplitude wave. A negative value results in exponential growth in cross-sectional

area, a larger cross-section at the terminal end of the rod, and as a result a smaller amplitude

wave. If the cross-sectional area at the ends is specified then this can be used in Eq. 4.31 to

solve for the necessary value of β. To do this, let α = A(L)/A(0) which when evaluated

using Eq. 4.31 and solving for β gives that

β = − 1

2L
lnα. (4.32)

When Eq. 4.31 is used for the cross-sectional variation and assuming time harmonic

vibration, Eq. 5.2 becomes
∂2u

∂x2
− 2β

∂u

∂x
+
ω2

c2
0

= 0 (4.33)
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The solution is then in the form

u(x) = A1e

(
β+i
√
κ2−β2

)
x

+ A2e

(
β−i
√
κ2−β2

)
x (4.34)

When Eq. 4.34 is evaluated at the boundaries the resulting four equations are

u1 = u(0) =A1 + A2 (4.35)

u2 = u(L) =A1e

(
β+i
√
κ2−β2

)
L

+ A2e

(
β−i
√
κ2−β2

)
L (4.36)

F1 = −EA(0)
∂u

∂x
(0) =− EA(0)

(
A1

(
β + i

√
κ2 − β2

)
− A2

(
β − i

√
κ2 − β2

))
(4.37)

F2 = EA(0)
∂u

∂x
(L) =EA(L)

(
A1

(
β + i

√
κ2 − β2

)
e

(
β+i
√
κ2−β2

)
L

−A2

(
β − i

√
κ2 − β2

)
e

(
β−i
√
κ2−β2

)
L

)
(4.38)

which lead to the matrix equation


F1

F2

 =


De11 De12

De21 De22



u1

u2

 . (4.39)
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Figure 4.10: Unit cell combining both a phononic crystal and local resonance into a single
elastic metamaterial.

where

Ce =
E

eβL sin(
√
κ2 − β2L)

(4.40)

De11 = −βeβLCeA(0) sin
(√

κ2 − β2L
)

+
√
κ2 − β2eβLCeA(0) cos

(√
κ2 − β2L

)
(4.41)

De12 = −CeA(0)
√
κ2 − β2 (4.42)

De21 = −CeA(0)e2βL
√
κ2 − β2 (4.43)

De22 = βeβLCeA(0) sin
(√

κ2 − β2L
)

+
√
κ2 − β2eβLCeA(0) cos

(√
κ2 − β2L

)
(4.44)

The dynamic stiffness matrix for an exponential rod is given in Eq. 4.39 with components

given by Eqs. 4.40 – 4.44.

Finally, a combination of the phononic crystal and resonator concepts was also explored

in a single unit cell, as shown in Fig. 4.10. The dynamic stiffness matrix for the first part

is given by Eq. 4.27 and for the second part by Eq. 4.22. The transfer matrix for this unit

cell is found using Eq. 4.23.
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Figure 4.11: Effect of change in the phononic crystal cross-sectional area on the output
pulse shape.

4.4 Parametric Studies

Parametric studies of the phononic crystal, local resonator, ground spring, and exponen-

tially varying metamaterials were conducted using Eq. 4.14 to determine the various pa-

rameters’ effect on the output wave shape.

4.4.1 Phononic Crystal

For a phononic crystal three variables were investigated including:

1. Cross sectional area rA = A2

A1

2. Unit cell length rLuc = L1+L2

Li1+Li2
where Lij is the initial length of the jth section.

3. Relative section lengths Lr = L1

L1+L2
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Figure 4.12: Effect of change of relative section lengths in the phononic crystal on the
output pulse shape.

Figure 4.13: Effect of phononic crystal unit cell length on the output pulse shape.
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Wave shapes for the parametric studies on cross-sectional area, phase length, and unit cell

length are shown in Figs. 4.11 – 4.13. The number of unit cells used for the parametric

studies was fixed at 12.

In Fig. 4.11 as rA decreases from 0.28 to 0.1 the pulse shape decreases in amplitude

and has a longer rise time. Ripples, or lobing, starts to develop as rA becomes smaller. As

rA grows from a value of 1 the amplitude significantly decreases, and the rise time also

increases. Figure 4.12 shows an interesting change in the shape of the waves, where very

little ripples occur, but the rise time initially increases, and then decreases as Lr approaches

a value of unity. In Fig. 4.13 as the unit cell length increases the amplitude of the wave

decreases, and ripples in the wave become more pronounced.

4.4.2 Local Resonator

For the local resonator elastic metamaterial two variables were investigated, including:

1. Resonator mass rm = mr

mrod
where mrod is the mass of the unit cell rod.

2. Natural frequency rω = ωr

ω0
where ω0 is the fundamental frequency of the input pulse.

rω measures how close the resonator natural frequency is to the fundamental input

frequency.

These results are shown Figs. 4.14 and 4.15 respectively. The resonator introduces a sinu-

soidal curve into the output pulse. Because of this, sometimes the initial pulse drops below

zero very rapidly, leading to a shorter wave duration. For small values of mr the resonator

does not have a dramatic effect on the shape of the wave. As mr increases the a sinusoid

begins to appear in the curve. Once the mass of the resonator moves past approximately

1/2 the mass of the rod the amplitude of this additional sinusoid has increased to the point

where it causes the first zero crossing to appear much sooner. The parametric study of the

natural frequency shows that the affect of the sinusoid decreases as the resonance moves

away from the fundamental frequency. This suggests that the resonator only affects the
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Figure 4.14: Effect of change in the resonator mass on the output pulse shape.

Figure 4.15: Effect of change in the resonator frequency on the output pulse shape.
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Figure 4.16: Effect of ground spring cut-off frequency on the output pulse shape.

shape of the wave when its resonance is sufficiently close to the input wave fundamental

frequency.

4.4.3 Grounding Springs

For the grounding spring phononic material the grounding spring forms a high pass fil-

ter. The effect of moving the filter cut-off frequency ωc on the shape of the input pulse

was investigated by increasing the cutoff frequency from zero (no grounding springs) to

0.85ω0. These results are shown in Fig. 4.16. As the cut-off frequency grows closer to the

fundamental frequency ω0 the wave amplitude is attenuated. This trend continues as the

cut-off frequency increases past the fundamental frequency. These results suggest that the

grounding spring concept could be a useful tool for blocking or attenuating wave propaga-

tion, but not for tuning the shape of a propagating pulse, therefore grounding springs were

not explored further.
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Figure 4.17: Effect of different exponentially decaying cross-sectional areas on wave
shape, with α = A(L)/A(0) being the ratio between initial and final cross-sectional ar-
eas.

4.4.4 Exponentially Varying Cross Section

For the exponentially varying cross section only a single unit cell the entire length of the rod

was used, to demonstrate the amplification and attenuation effects of this cross-sectional

variation. These results are shown in Fig. 4.17. As the cross-sectional ratio α becomes

larger the wave amplitude becomes proportionately smaller. As α becomes smaller the

wave becomes proportionately larger. The amplitude decreases because the wave energy is

spread over a larger area, and increases when the wave energy is concentrated in a smaller

area. This suggests that this particular concept could be used to scale the desired amplitude

of the output wave shape.
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4.5 Optimization

The combination of the local resonator and phononic crystal, as shown in Fig. 4.10 was

optimized to create desired pulse shapes. A preliminary optimization for several different

wave types was conducted in Matlab using the analytical model. A sensitivity analysis was

then performed to determine how perturbations in the optimized parameters would affect

the output pulse shape. Physical metamaterial geometry was then optimized in Abaqus.

The number of unit cells was fixed at 9 because this has been shown to be sufficient to get

the full effect of a periodic structure [30]. Two main categories of wave shapes, dwells and

ramps, were investigated to determine whether or not pulses could be shaped to achieve

shapes that highlight two features of interest for pulses in Hopkinson bar tests: the wave

duration, and the rising wave, as noted in Sec. 4.3.1. Finally, as noted earlier, only the

portion of the pulse before the first zero crossing is of interest.

4.5.1 Fitness Function

For optimization, the error between the actual output curve and the desired output curve is

e(t) = ad(t)− ao(t). (4.45)

The error measurement of a pulse is then calculated by taking the integral of the squared

error

E =

∫ T

0

e2(t)dt (4.46)

which is shown graphically in Fig. 4.18. This is also known as the L2 norm of the error.

The L2 norm was chosen because it is a standard error measurement used for optimization

and provides a sufficient measure of the difference between the desired and expected output

waves for the optimization routine.

This error measurement is sufficient for the optimization routine, but does not provide
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Figure 4.18: Graphical representation of the error integration in Eq. 4.46 with the error to
be integrated up to the end of the desired output curve, shown in gray.

a good measure of how close the optimized wave matches the desired wave, because the

optimization tries to make the output value of Eq. 4.46 as close to zero as possible, in

absolute terms. For reporting purposes, the error between the desired output wave and the

actual output wave will be reported as the ratio of the L2 norms of the actual and desired

outputs, given as

EL2 =
‖ao‖
‖ad‖

. (4.47)

This expression provides a relative comparison between the two waves. A unit value rep-

resents a perfect match, and non-unit values describes the relative goodness of fit.

4.5.2 Analytical Model Optimization Results

The optimization variables used for the analytical model were the cross-sectional area ratio

rA, the unit cell total length ratio rLuc , the unit cell phase length ratio Lr, the resonator to

unit cell mass ratio rm, and the ratio of resonance to fundamental input frequency rω, as

presented earlier in the parametric study. In Matlab the optimization was performed using

the fminsearch function which uses the Nelder-Mead simplex algorithm.

Results of the optimization routine for three different ramp type waves are shown in
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Table 4.1: Optimized parameter values for ramp type waves.

t1, t2 rm = mr

mrod
rω = ωr

ω0
rA = A2

A1
Lr = L1

L1+L2
rLuc = L1+L2

Li1+Li2
EL2 = ‖ao‖

‖ad‖
5
6
τ , 1

6
τ 0.259 1.244 0.442 0.401 1.156 1.016

1
2
τ , 1

2
τ 0.127 1.179 0.246 0.866 1.046 1.010

1
6
τ , 5

6
τ 0.137 1.083 0.675 0.458 1.762 0.931

Fig. 4.19. The results show some ripples in the rising wave, but overall demonstrate good

consistency with the desired output waves. Table 4.1 shows the values of the optimized

variables for each wave shape and the error measurement. The optimized output for the

5/6τ , 1/6τ and 1/2τ , 1/2τ ramp type waves was very close to the desired wave shapes

with a difference in the L2 norms of 0.02 or less. The 1/6τ , 5/6τ optimized wave was also

close but had a difference in the L2 norm of 0.07 indicating that the optimized metamaterial

structure was not able to approximate this leftward sloping wave quite as well.

In addition to the three different ramps shown in Fig. 4.19 another four rightward fac-

ing ramps were investigated. The rightward facing ramps were investigated further because

achieving lower slopes with slower rise times is often desired for Hopkinson bar tests in-

vestigating rate dependent loading properties. Results from the FE optimization, presented

in the next section (Sec. 4.5.4) also suggested that this wave shape would be easier to

achieve for phononic materials. Results for the metamaterial optimization for rightward

facing ramps are shown in Fig. 4.20 with optimized parameters in Table 4.2.

The results show an unexpected trend – that the metamaterial performs better at pulse

shaping as the rise times become longer and the fall times become shorter. The symmetric

wave, which had an error of 0.01 when the total duration of the wave was τ , had an error of

0.15 when the total wave duration was 2τ . There are several factors that probably contribute

to this. The original wave input is of duration τ , so the metamaterial needs to stretch the

wave. This can be accomplished by slowing down some of the frequency content of the

wave. However, the hybrid metamaterial/phononic crystal investigated herein is not able to

do that, especially for longer waves, in a symmetric manner.
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Figure 4.19: Optimized wave shapes for ramp type desired outputs, with the top, middle,
and bottom waves having t1 = 5/6τ, t2 = 1/6τ ; t1 = 1/2τ, t2 = 1/2τ ; and t1 = 1/6τ, t2 =
5/6τ respectively, all with Td = 0 (no dwell) as defined in Fig. 4.2.
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Table 4.2: Optimized parameter values for longer ramp type waves.

t1, t2 rm = mr

mrod
rω = ωr

ω0
rA = A2

A1
Lr = L1

L1+L2
rLuc = L1+L2

Li1+Li2
EL2 = ‖ao‖

‖ad‖

τ , τ 0.200 0.895 0.227 0.180 1.856 0.854
5
4
τ , 3

4
τ 0.164 0.983 0.213 0.268 1.783 0.875

3
2
τ , 1

2
τ 0.250 1.382 0.184 0.345 1.233 0.921

7
4
τ , 1

4
τ 0.271 1.233 0.185 0.183 1.485 0.982

Results of the optimization routine for three different square type waves are shown in

Fig. 4.21. In each successive wave the dwell becomes a little bit longer, and the rise and

fall times are reduced. In a similar fashion to the ramps, these waves show some ripples,

but overall are consistent with the desired output wave shapes. The values of the optimized

variables, with the wave error measurement, are shown in Table 4.3. There is a clear trend

in the Lr ratio. As the length of the dwell increases the Lr ratio becomes smaller. rω also

decreases. For each of these waves the output wave shape very closely matches the desired

wave shape, with the 1
3
τ , 1

3
τ , 1

3
τ and 1

4
τ , 1

2
τ , 1

4
τ waves having an error measurement of

less than 0.01, and the 1
6
τ , 2

3
τ , 1

6
τ wave having an error measurement of 0.031. When

optimized, the proposed metamaterial very effectively achieves this class of wave shapes.

The way that the optimization routine modifies the wave shape becomes clearer in the

dispersion relationships for the waves. Figures 4.22 – 4.24 show the dispersion relation-

ships for the small, medium, and large dwells, respectively. The transfer functions between

the rod inputs and optimized output waves were also calculated. The dispersion relation-

ships are lined up in the frequency domain with their corresponding transfer function am-

plitudes.

The dispersion relationships show that as the dwell becomes larger, the band gap intro-

duced by the phononic crystal becomes narrower, and the band gap introduced by the local

resonator moves closer to the fundamental frequency ω = ω0. The transfer function shows

that bandgaps predicted by the dispersion relationship do in fact occur in the frequency

domain of the propagated wave, as shown by the low amplitude portions of the transfer

92



Figure 4.20: Optimized wave shapes for longer rightward facing ramp type desired outputs,
with the first wave t1 = τ, t2 = τ , the second t1 = 5/4τ, t2 = 3/4τ , the third t1 =
3/2τ, t2 = 1/2τ , and the fourth t1 = 7/4τ, t2 = 1/4τ , all with Td = 0 (no dwell) as
defined in Fig. 4.2.

Table 4.3: Optimized parameter values for square type waves.

t1, Td, t2 rm = mr

mrod
rω = ωr

ω0
rA = A2

A1
Lr = L1

L1+L2
rLuc = L1+L2

Li1+Li2
EL2 = ‖ao‖

‖ad‖
1
3
τ , 1

3
τ , 1

3
τ 0.124 1.219 0.473 0.357 1.332 0.994

1
4
τ , 1

2
τ , 1

4
τ 0.121 1.183 0.461 0.243 1.366 1.001

1
6
τ , 2

3
τ , 1

6
τ 0.123 1.142 0.459 0.173 1.470 0.969
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Figure 4.21: Optimized wave shapes for dwell type desired outputs with the top, middle,
and bottom waves having t1 = 1/3τ, Td = 1/3τ, t2 = 1/3τ ; t1 = 1/4τ, Td = 1/2τ, t2 =
1/4τ ; and t1 = 1/6τ, Td = 2/3τ, t2 = 1/6τ respectively, as defined in Fig. 4.2.

functions (in blue) lining up exactly with the predicted dispersion bandgaps.

4.5.3 Analytical Model Sensitivity Analysis

The pulse shaping technique was investigated for its sensitivity to variations in both ma-

terial and geometric properties. Manufacturing processes introduce imperfections into

structures which can cause them to perform differently than intended. Two properties, the

Young’s modulus, and the cross-sectional area, were perturbed to determine how changes in

these parameters would affect the pulse shaping performance of the phononic material and

its robustness when manufactured. In all simulations the Young’s modulus was assumed

to be uniform throughout the structure. However, the sensitivity of the pulse shaping tech-

nique to variation in the Young’s modulus was chosen because this material property is

known to vary based on a variety of factors that are difficult to control in manufacturing,

and is a common variation. The cross-sectional area was chosen because it is the main
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Figure 4.22: Dispersion diagram of the optimized unit cell for the t1 = 1/3τ, Td =
1/3τ, t2 = 1/3τ dwell wave, bandgaps highlighted in gray and imaginary portion shown
as a dashed line. The transfer function amplitude is shown on a log scale in the colorbar
with highest values in dark red of approximately log10(1.8) and lowest values in dark blue
as approximately log10(0.005).

Figure 4.23: Dispersion diagram of the optimized unit cell for the t1 = 1/4τ, Td =
1/2τ, t2 = 1/4τ dwell wave, bandgaps highlighted in gray and imaginary portion shown
as a dashed line. The transfer function amplitude is shown on a log scale in the colorbar
with the highest values in red as approximately log10(1.5) and the lowest values in blue as
approximately log10(0.02).
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Figure 4.24: Dispersion diagram of the optimized unit cell for the t1 = 1/6τ, Td =
2/3τ, t2 = 1/6τ dwell wave, bandgaps highlighted in gray and imaginary portion shown as
a dashed line. The transfer function amplitude is shown on a log scale in the colorbar with
red as approximately log10(1.6) and the lowest values in blue as approximately log10(0.03).

geometric feature used in introducing the phononic crystal.

In all previous simulations the phononic material unit cell shown in Fig. 4.10 was mod-

eled combining the dynamic stiffness matrices for a rod with a resonator, given in Eq. 4.27,

and an unmodified uniform rod, given in Eq. 4.22. The sensitivity to the Young’s modulus

was investigated by assuming that the first section, with the resonator, has a Young’s mod-

ulus of E1 and the second section has a Young’s modulus of E2. For the first section E1

was held constant at the nominal values used for the previous simulations. For the second

section a nominal 5% variation was introduced according to the relationship

E2 = E1(1 + 0.05xr) (4.48)

where

xr = σr. (4.49)

The variable r is a random number drawn from a normal distribution with a mean of zero
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and a standard deviation of 1. Using σ = 3 makes xr a random number drawn from

a distribution with standard deviation of 3. For r, 100 values were chosen, the Young’s

modulus E2 was perturbed, and then the pulse shape for the 5/6τ, 1/6τ pulse using the

optimized parameters given in Table 4.1 was calculated. A similar procedure for the cross-

sectional area, but using the relationship

A2 = rAA1(1 + 0.05xr) (4.50)

was followed. This results in a 5% variation with three standard deviations around the

optimized cross-sectional area A2.

The pulse shapes for the perturbed Young’s modulus are shown in Fig. 4.25. Various

models are shown in gray, with the two most extreme variations in pulse shape defining

the inner and outer edges of this envelope of curves. This envelope of curves’ boundaries

correspond to Emin = 0.49E1, shown in green, and Emax = 1.39E1, shown in pink. These

boundaries suggest that the output curves scale according to the size of the variation in

Young’s modulus. Even though a variation in Young’s modulus by a factor as extreme as

0.5 or 1.39 would be extremely uncommon, a variation this large does not dramatically

change the pulse shaping performance. For the majority of variations shown, the change

in the output pulse shape would be inconsequential to the performance of the phononic

material.

The pulse shapes for the perturbed cross-sectional area are shown in Fig. 4.26. Once

again various models are shown in gray, with the two most extreme variations in area

defining the inner and outer edges of the envelope of curves. For the cross-sectional area

the boundaries of this envelope correspond to Amin = 0.62A2 and Amax = 1.47A2 given

in green and pink, respectively. These results follow the same trends as the variation in

Young’s modulus, with smaller values of cross-sectional area resulting in lower rise time,

and larger values resulting in higher rise times. These results suggest that the amount of
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Figure 4.25: Sensitivity analysis for the pulse shaping technique, showing the effect of
random variation in Young’s Modulus on the pulse shape.

variation from the optimal curve would scale depending on the variation in cross-sectional

area, and that for small variations there would be a negligible variation from the optimized

curve.

The results of the sensitivity analysis show that the pulse shaping technique is relatively

insensitive to variations in the Young’s modulus or cross-sectional area. These results sug-

gest that when implemented physically the phononic material would behave as expected,

with minor but unimportant variations to the overall performance resulting from manufac-

turing defects.

4.5.4 FE Optimization

Physical Geometry

In order to perform optimization using FEA the combined unit cell shown in Fig. 4.10 was

translated into a physically realizable geometry. The basic geometry used for the FE unit

cell is shown in Fig. 4.27. The two different phases of the rod were modeled as coaxial
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Figure 4.26: Sensitivity analysis for the pulse shaping technique, showing the effect of
random variation in area on the pulse shape.

cylinders with different cross-sectional radii r1 and r2 to control the relative cross-sectional

areas A1 and A2, and different lengths L1 and L2 to control the relative phase lengths.

The mass of the resonator translated into a concentric ring around the second phase of

the phononic crystal connecting to the terminating end of the first phase of the phononic

crystal via supports which also act as springs. The resonator mass and spring geometry

were designed to result in a vibration mode with motion along the axis of the rod (the

direction of wave propagation). As a nominal starting value the natural frequency of this

mode was tuned to 0.92ω0. Although this geometry is not stiff enough to prevent other

mode shapes near ω0 from arising, all other modes near the frequency range of interest

require out of plane or shearing motion to be excited. Because the rod will be excited

by an axial impact, these motions will be minimal, therefore the other modes will have a

negligible effect on the wave shape and their influence can be ignored.

The FE rod geometry is shown in Fig. 4.28. Assuming a minimum of 6 unit cells

per wavelength, the minimum wavelength the mesh could capture was calculated. The

mesh size accurately captures wave propagation for frequencies up to 1.91ω0, capturing
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Figure 4.27: Various views of the unit cell geometry created from simplified combined
unit cell shown in Fig. 4.10, with the far right view showing a cut-away view of a spring.

the main frequency content of the impact, while also allowing for reasonable runtime of

the optimization routine. Mesh convergence studies showed that there was no significant

difference between the output wave shape with this mesh density and higher mesh densities.

In the FE optimization, for the phononic crystal the same variables were used for opti-

mization, namely the cross-sectional area, the relative lengths of the phases, and the total

length of the unit cell. For the resonator, in the simplified model the mass and natural fre-

quency were optimized. However, for the FE model these characteristics are functions of

the size of the mass and the length and cross-section of the spring. As a result, geometric

quantities which result in a change to the mass or spring stiffness were optimized as substi-

tutes. The mass was controlled by optimizing rmouter , its outer radius. The spring stiffness

was controlled by optimizing its width, controlled by the angle θs that the spring sweeps

through. The mass was easy to calculate, therefore the optimized mass ratio rm = mr/mb

comparing the resonator mass to the bar mass will still be reported as before. There are

four supports, composed of cylindrical sectors with a fixed thickness and length. If each

support sweeps through an angle of 45o they combine into a single solid support. For mod-

eling purposes the maximum angle is constrained to 44o to maintain clearance between

the springs. The ratio rθ = θs/44 will be reported to reflect this, instead of the natural

frequency. Although the angle the supports sweep through affects the natural frequency of
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Figure 4.28: Nominal FE rod geometry composed of 9 unit cells as shown in Fig. 4.27
with wave propagation in the z-direction.

the resonator, it does not scale in exactly the same way as the mass on a spring does. Some

stiffness from the rod also contributes. As a result it is easier to report the optimized angle

swept through by the support than the natural frequency. As a general rule, the larger the

support angle, the higher the natural frequency.

The extension of the geometry resulted in geometric constraints to provide clearance

between the resonator and the other parts of the unit cell. These constraints, and their

justification are as follows:

1. rmouter ≥ r1 sets a minimum value of mr ≈ 0.1 and prevents the mass width from

being smaller than the spring width, which would cause problems with meshing the

parametric model.

2. 44 ≥ θk ≥ 1 prevents interference between the different springs, but also prevents

the springs from having zero spring stiffness, which will cause errors in the FE code.
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Table 4.4: Optimized parameter values for ramp type waves using an FE model.

t1, t2 rm = mr

mrod
rθ = θs

44
rA = A2

A1
Lr = L1

L1+L2
rLuc = L1+L2

Li1+Li2
EL2 = ‖ao‖

‖ad‖
5
6
τ , 1

6
τ 0.048 0.599 0.515 0.525 0.971 0.901

1
2
τ , 1

2
τ 0.049 0.371 0.622 0.679 1.437 0.987

1
6
τ , 5

6
τ 0.023 0.437 0.700 0.069 2.150 1.026

3. 0.7 ≥ rA ≥ 0.05 The lower bound allows for a very small but non-zero cross-

sectional area. The upper bound prevents interference between the second phase of

the phononic crystal and the resonator.

4. L2 ≥ 1.05Lm where Lm is the combined length of the mass and support spring.

The second phase length of the phononic crystal must be longer than Lm or else the

resonator will interfere with the subsequent unit cell.

The FE model was implemented using the Abaqus Python API. It was optimized using the

Nelder-Mead simplex algorithm available in the Python scipy module.

FEA Optimization Results

Results for the FEA optimized ramp type waves are shown in Fig. 4.29. The optimized

values are shown in Table 4.4 and the optimized geometries in Fig. 4.30. The optimized

metamaterial was able to successfully achieve both a symmetric and rightward ramp, but

struggled to achieve a leftward ramp. Although the EL2 error measurement was closer for

the leftward 1/6τ, 5/6τ than the rightward 5/6τ, 1/6τ waves, qualitatively it can be seen

from Fig. 4.29 that the leftward desired ramp was not achieved, while the rightward ramp

matched the desired wave shape almost exactly except for the peak of the wave. These

results are similar to what the simple analytical model predicted in Sec. 4.5.2.

In Table 4.4 there are two clear trends. As the wave shape shifts from right to left, the

total unit cell length ratio rLuc increases, and the cross-sectional area ratio rA increases.

This indicates that decreasing the total length and the cross sectional area A2 contribute to
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Figure 4.29: Optimized wave shapes produced by FE models for rightward facing ramp
type desired outputs for waves (from top to bottom) t1 = 5/6τ, t2 = 1/6τ ; t1 = 1/2τ, t2 =
1/2τ ; and t1 = 1/6τ, t2 = 5/6τ .
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Figure 4.30: Optimized geometries for, from top to bottom, the t1 = 5/6τ, t2 = 1/6τ ;
t1 = 1/2τ, t2 = 1/2τ ; and t1 = 1/6τ, t2 = 5/6τ ramp type waves.

shifting the wave to the right.

In addition to the three different ramps presented in Fig. 4.29, four longer rightward

facing ramps were investigated. The results for these ramps are shown in Fig. 4.31 with the

optimized parameters given in Table 4.5 and optimized geometries shown in Fig. 4.32. The

optimized waves follow the same trends as predicted by the optimization of the simplified

analytical model. The optimized t1 = τ, t2 = τ and t1 = 5/4τ, t2 = 3/4τ waves did not

match the desired wave shape as closely as the two wave shapes that were slanted further

right. The only clear trend in the optimized parameters was that rθ became progressively

smaller, meaning softer springs and therefore a lower natural frequency for the resonator.

This, also coupled with a low mass of the resonator, suggests that the resonator does not
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Table 4.5: Optimized parameter values for longer ramp type waves using an FE model.

t1, t2 rm = mr

mrod
rθ = θs

44
rA = A2

A1
Lr = L1

L1+L2
rLuc = L1+L2

Li1+Li2
EL2 = ‖ao‖

‖ad‖

τ , τ 0.200 0.467 0.345 0.548 1.344 0.882
5
4
τ , 3

4
τ 0.250 0.442 0.320 0.435 1.254 0.881

3
2
τ , 1

2
τ 0.019 0.133 0.255 0.467 1.484 0.987

7
4
τ , 1

4
τ 0.029 0.126 0.213 0.330 1.484 1.066

Figure 4.31: Optimized wave shapes for, from top to bottom, the t1 = τ, t2 = τ ; t1 =
5/4τ, t2 = 3/4τ ; t1 = 3/2τ, t2 = 1/2τ ; and t1 = 7/4τ, t2 = 1/4τ ramp type waves.
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Figure 4.32: Optimized geometries for, from top to bottom, the t1 = τ, t2 = τ ; t1 =
5/4τ, t2 = 3/4τ ; t1 = 3/2τ, t2 = 1/2τ ; and t1 = 7/4τ, t2 = 1/4τ ramp type waves.
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Table 4.6: Optimized parameter values for dwell type waves using a FE model.

t1, Td, t2 rm = mr

mrod
rθ = θs

44
rA = A2

A1
Lr = L1

L1+L2
rLuc = L1+L2

Li1+Li2
EL2 = ‖ao‖

‖ad‖
1
3
τ , 1

3
τ , 1

3
τ 0.075 0.459 0.657 0.707 1.585 1.111

1
4
τ , 1

2
τ , 1

4
τ 0.115 0.520 0.680 0.549 1.131 1.125

1
6
τ , 2

3
τ , 1

6
τ 0.240 0.578 0.700 0.297 0.756 0.927

Figure 4.33: Optimized wave shapes for, from top to bottom t1 = 1/3τ, Td = 1/3τ, t2 =
1/3τ ; t1 = 1/4τ, Td = 1/2τ, t2 = 1/4τ ; t1 = 1/6τ, Td = 2/3τ, t2 = 1/6τ dwell type
waves.

play a large role in obtaining this particular wave shape. It is instead controlled by the

tuning of the phononic crystal parameters.

Results for the FEA optimized dwell type waves are shown in Fig. 4.33. The optimized

parameters are shown in Table 4.6 and the optimized geometries are shown in Fig. 4.34.

The EL2 error measurements show that the metamaterial was able to successfully shape

dwell type waves. However, the analytical model optimization predicted flatter regions in

the dwell section, something which the FEA optimization routine struggled to achieve, with
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Figure 4.34: Optimized geometries for, from top to bottom t1 = 1/3τ, Td = 1/3τ, t2 =
1/3τ ; t1 = 1/4τ, Td = 1/2τ, t2 = 1/4τ ; t1 = 1/6τ, Td = 2/3τ, t2 = 1/6τ dwell type
waves.

the best approximation of this in the longest dwell case. The optimized values show that

as the dwell became longer and the rise times shorter, the mass of the resonator increased.

Also, the length of each unit cell decreased and the phase ratio became smaller, shifting

from a longer first phase to a longer second phase.

4.6 Conclusion

In this chapter a technique to shape pulses in 1D elastic waveguides was developed. The

input wave was specified as a haversine, and a general equation that could specify both

ramps and dwells as outputs was created, allowing for the creation of the desired output
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pulse shape. The elastic bar was modeled analytically using the dynamic stiffness and

transfer matrices. Parametric studies showed that no individual parameter of the phononic

materials allowed for precise enough control to achieve the possible desired output wave

shapes. Instead, the use of an optimization routine showed that by tuning the various pa-

rameters, ramp and square type waves could be produced using an analytical model to

match the desired wave shapes. A sensitivity analysis of the optimized analytical model

showed that the pulse shape is relatively insensitive to perturbations in both material and

optimized geometric properties.

Finally, the analytical model was translated into an FE model. The change in cross-

sectional area of the rods implemented the phononic crystal, the resonator mass translated

into a collar, and the springs translated into supports connecting the collar to the rod. The

FE model was parametrized and subjected to geometric constraints which the analytical

model was not subject to. When the parametrized FE models were optimized for the same

desired pulse shapes as the analytical models, physically realizable geometry was found

that creates reasonable approximations of the desired pulses.

The results of this chapter demonstrate that phononic materials can be used to shape

pulses traveling in 1D waveguides. This is a novel use of phononic materials which has not

been demonstrated before. This chapter also shows that complex phononic materials are

not needed to do this. Instead this was demonstrated using a set of simple phononic crystal

and elastic metamaterial concepts. By combining and optimizing the effects of the two

simple phononic materials, physically realizable geometry was produced which resulted in

pulse shaping.
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CHAPTER 5

CONCLUSIONS AND CONTRIBUTIONS

5.1 Summary

To date, elastic metamaterials have found limited success in practical applications. The

overarching goal of this dissertation is to explore potential practical problems where elastic

metamaterial concepts could be successfully applied. To this end, three wave propagation

or vibration problems have been investigated. These problems include vibration mitigation

for a massive vibrating industrial machine, i.e. an electric generator; the bouncing of elec-

trodes in a circuit breaker during a closing event and how to reduce the accompanying arc

time; and pulse shaping in Hopkinson bar tests.

For the vibration mitigation of the electric generator two different concepts were ex-

plored. These included spring mass resonators mounted to the generator, tuned to resonate

at its excitation frequency. Applying these resonators to the generator resulted in a reduced

force experienced at the base of the supports, where the generator attached to ground.

The other concept consisted of periodically applied grounding springs which create a me-

chanical high pass filter. The stiffness of these springs were tuned to place the generator

excitation frequency within the stop band. This concept resulted in a reduction of the force

experienced along the main support of the structure, although the total force through all

of the grounding springs remained the same. Results of this study highlight some of the

difficulties in applying elastic metamaterial concepts to vibration mitigation of heavy ma-

chinery.

For the circuit breaker electrode bouncing problem each electrode was modeled as a

continuous system with waves propagating through it. When the electrodes were in contact

they were modeled as a single system, and when they were out of contact as two separate
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systems. Contact was initiated when the electrode contact tips’ displacement matched,

and was broken when a tension wave reached the contact interface. The result is that

although each electrode was modeled as a linear system, the combined system was highly

nonlinear. Both analytical and numerical approaches were used to find solutions to the

system model. The results showed that the electrode bounce duration was dependent on

several parameters, including the wave speed in the electrodes, the length of the electrodes,

and the stiffness of the electrode base spring. The results suggested that if the wave duration

from impact could be modified by changing the slope of the stress wave as it propagates

through the system then the bounce time could be reduced. One suggested way to do this

was by modifying the wave shape via elastic metamaterials.

The Hopkinson bar test and electrode bouncing problem are similar in that both systems

have individual waves propagating through the system, and both could benefit from control

of the shape of those waves. As a result, the pulse shaping suggested by the bouncing elec-

trode problem was explored more fully in the Hopkinson bar problem. For the Hopkinson

bar the input pulse shape was known and the desired output pulse shape was chosen. The

research investigated what phononic crystal and metamaterial characteristics were neces-

sary to achieve the desired pulse shape. Four metamaterial concepts were investigated,

including phononic crystals, local resonators, grounding springs, and cross-sectional vari-

ation. The investigation found that a combined unit cell composed of a phononic crystal

and local resonator had the greatest potential for wave shaping. An optimization routine

applied to the analytical model demonstrated that the proposed unit cell could perform

pulse shaping and was relatively insensitive to defects, and an optimization routine applied

to an FE model found the necessary geometry to achieve this. Two different classes of

waves, dwell shaped waves and ramp shaped waves were successfully achieved using the

FE optimization routine.
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5.2 Challenges and Constraints in the Practical Application of Elastic Metamateri-

als

As was stated in Sec. 5.1 the goal of this research was to explore the potential practical

application of elastic metamaterials. This effort has run into several constraints which add

additional complexity to the application of elastic metamaterials. There is a fundamental

tradeoff between the important quantities of the bandgap frequency and length of phononic

crystals; stiffness and mass of local resonators; and mass and geometric extension of local

resonators. These constraints are reviewed and summarized here.

The tradeoff between frequency and length is well known. Phononic crystals introduce

bandgaps into structures via the use of material or geometric periodicity. This periodicity

results in bandgaps for frequencies with wavelengths close to the characteristic length of

the periodicity. For example, Fig. 4.22 shows a bandgap that starts at ω/ω0 ≈ 1.9. In

this case the wave length is approximately 2.4 times the length of a unit cell. In designing

phononic crystals, as the desired frequency for the bandgap becomes lower the wave length

becomes longer, requiring a longer unit cell size. As a result, the length scales needed to

create bandgaps at low frequencies become prohibitive for many possible uses.

Local resonators offer the ability to avoid the geometric size problem. The local res-

onators create what has been termed subwavelength bandgaps, i.e. bandgaps that appear at

frequencies lower than would appear due to the periodicity of the structure. These bandgaps

appear at the resonant frequency of the resonator. There is also a fundamental limitation

with mass and stiffness that creates difficulty in applying local resonators for vibration iso-

lation of large structures. This can be seen by the resonant frequency for a mass-spring

resonator, of

ωr =

√
k

m
(5.1)

where k is the stiffness and m is the mass. To keep a constant resonant frequency, if

the stiffness goes up, the mass also must increase. This became a limiting factor for the
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generator in Ch. 2. It prevented the supports from being modified into a monatomic lattice,

as described in [31], because they also needed to be stiff to enough support the static weight

of the generator. The high static stiffness required a prohibitively high mass to create an

elastic metamaterial with a bandgap that included the excitation frequency of interest.

Finally, when developing the physical implementation of local resonators, there is a

limitation in mass and geometric extension when trying to apply internal resonators as

described in [31]. Again in the case of the generator, because the mass the supports were

holding was very large, even though the resonators could be effective at a small fraction of

the total mass, the amount of space needed for the masses was still too large for them to fit

within the space the support provided. Thus even though a potentially effective vibration

mitigation technique, its application was limited by the conflicting requirements of the mass

and its geometric extension.

These limitations provide a suggestion for the kinds of problems in which elastic meta-

materials would be able to be effectively applied for vibration mitigation techniques. For

large scales or high frequencies phononic crystals might be sufficient. On smaller scales

or lower frequencies the local resonator would be a more appropriate choice. But the lo-

cal resonator also will be limited by the amount of kinetic energy inherent in the system,

necessary stiffness, and space for mass. These tradeoffs suggest that applied problems that

require lower stiffness or with the excitation frequency appearing at higher frequencies

would be better targets for the successful use of elastic metamaterials. A good example

of this kind of problem is the use of phononic crystals and elastic metamaterials for pulse

shaping in Ch. 4. The input pulse resulted in a frequency spectrum which was sufficiently

high enough for phononic crystals to be used and where less massive resonators could be

effective.

5.3 Research Contributions

The research contributions of this work are as follows:
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1. The application of elastic metamaterials to heavy industrial equipment was explored,

and a couple of possible concepts were demonstrated.

2. A new analytical model for the bouncing of circuit breaker electrodes after closing

was proposed. Prior work on this subject has modeled the electrodes numerically or

else treated the electrodes as lumped element systems. These models were not used

to examine wave propagation in the electrodes. The new model naturally lends itself

to an understanding of the role wave propagation plays in electrode bouncing and

provides analytical solutions that show how various aspects of the electrode affects

the wave propagation and the electrode bounce.

3. A technique to shape pulses in 1D rods using phononic materials was developed and

refined. Phononic materials have not previously been used to perform pulse shaping

in elastic waveguides.

4. The geometry and implementation for the pulse shaping technique was demonstrated

in a physically realizable structure.

5.4 Recommendations for Future Work

5.4.1 Hopkinson Pressure Bar

There are two immediate developments which would be valuable for the pulse shaping

techniques described in Ch. 4. The first is to experimentally validate the pulse shaping

technique to show that the optimized elastic metamaterials developed behave as predicted.

The second is to develop the same technique to be used for shaping stress, strain, or velocity

quantities. Although this dissertation has focused on acceleration, many split Hopkinson

bar tests focus on stress and strain [66, 67]. Thus these would be valuable additions to the

pulse shaping technique.

Additionally, split Hopkinson pressure bar tests have been developed for both tension

waves [68] and torsional waves [69]. The work in Ch. 4 assumed a compression test. How-
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ever, a tensile wave would be expected to travel in the same manner through the system.

Thus, with minimum development pulse shaping could be adapted for tensile waves. In

torsional split Hopkinson bar tests square type waves [70] are important. Torsional wave

propagation and longitudinal wave propagation in bars are modeled using the same gov-

erning equations [71]. Thus a similar analysis to that in Ch. 4 could be used to develop

pulse shaping in torsional bars, with optimization to develop torsional metamaterials and

geometry for actual use.

5.4.2 Electrode Bouncing

In Ch. 3 a new analytical model was proposed for the bouncing of circuit breaker electrodes

that was able to predict bounce time and duration based on the waves traveling through the

system. For the electrode bouncing problem recommended future work focuses on three

specific areas. The first is to use the analytical model to further explore the effect of base

spring stiffness on bounce duration. This would be accomplished by assuming that the

wave speeds of the electrodes are the same, and that the electrode lengths nominally satisfy

the relationship L1 = 2L2, and then modifying the spring stiffness to see how it affects

the propagating waves and the resulting bounce duration. The second recommendation

is to develop a finite difference model that implements a WENO scheme, to make the

numerical solutions more effectively model the discontinuities present in the bouncing bar

phenomenon. It is expected that this would make the numerical solution more robust, and

less subject to noise. The third recommendation comes from the pulse shaping developed

for the Hopkinson bar test demonstrated in Ch. 4. Using the analytical models for electrode

bouncing, the pulse shaping and optimization techniques could be applied to develop a

metamaterial that shapes the wave caused by electrode impact to reduce the time of bounce

for the electrode. This has not been explored in this dissertation and would be another

interesting application of pulse shaping.
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5.4.3 Dispersion Optimization

In Ch. 4 pulse shaping was accomplished by defining an objective function in the time

domain that measured the error between an actual and desired output wave shape. If the

input and output pulse shape are known, then an inverse problem can be formulated to de-

termine the necessary dispersion relationship for the material the wave would pass through,

to cause it to transform into the desired output wave. A metamaterial could be optimized

using an objective function that calculated the error between the desired dispersion rela-

tionship and the actual dispersion relationship. By doing this the dispersion relationship

could be approximated with an elastic metamaterial.

5.4.4 Pulse Shaping Using Variable Cross-Section

In Sec. 4.4 the effect of an exponentially varying cross-section on pulse shape was in-

vestigated. This is a very specific case of a class of rods with wide variability. As Sec.

4.4 showed, a varying rod cross-section changes the shape of a pulse traveling through it.

Varying the rod cross-section could be used to obtained desired output wave shapes. The

governing equation for a rod with unspecified cross-section is

1

A(x)

∂

∂x

(
A(x)

∂u

∂x

)
=

1

c2
0

∂2u

∂t2
. (5.2)

In this equation, more general solutions have been found assuming that the cross section is

given by both a polynomial [72] or sinusoidal expansion[73]. Even if analytical solutions

are not available for a specified cross-section, so long as the equation remains numerically

solvable this would be a sufficient model for pulse shaping. The coefficients in the cross-

sectional area polynomial or Fourier series could be treated as variables to be optimized to

cause an output pulse shape to match a desired output pulse shape. This could provide an

additional optimization technique for the shaping of pulses.
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