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Al won’t replace the scientist, but scientists
who use Al will replace those who don't’

"Adapted from a Microsoft report, “The Future Computed”

Al will change the way we do science

We are in an “Al arms race”
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Why nowe Why ORNL?

e Datais plentiful

« Computing is
ubiquitous

e Alis accessible

.........

e Mission

» Facilities — we have the ability to
produce, manage, store and analyze
‘extreme” data sefts
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I ¥0axRinge  An Al Taxonomy Drives Research Sirategy

Classification and Surrogates Inverse problems,
regression design and

Control systems

optimization

Sub-A probe

Interface
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Building and exploring libraries of atomic defects in graphene

Imaging and manipulating matter on the atomic level with
Scanning Transmission Electron Microscope (STEM)

Sputtered to edge
from source material
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Edge atom

made dopant
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STEM measures y Dtifec:. Calculatted telectronlc STM (measures local
local structure identification structure electronic properties)
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M. Ziatdinov, O. Dyck, B. G. Sumpter, S. Jesse, R. K. Vasudevan, S. V. Kalinin. Building and exploring libraries of atomic
defects in graphene: scanning transmission electron and scanning tunneling microscopy study. ArXiv:1809.04256 (2018)

Deep
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Rapid analysis of noisy data with fully convolutional neural network

Experimental data (Si in graphene)
: Neural network (schematics)
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Decoded results: Exploration of structural symmetry breaking for atomic defects in graphene

Variations of bond lengths in SiC defect
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M. Ziatdinov, S. Jesse, R. K. Vasudevan, B. G. Sumpter, S. V. Kalinin, O. Dyck.
Tracking atomic structure evolution during directed electron beam induced Si-
atom motion in graphene via deep machine learning. ArXiv:1809.04785 (2018).
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Deep learning for solving inverse problems in imaging and multi-
spectral data
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Machine Learning for Biosynaptic Neuromorphic Devices

Goal: classify time-dependent } ——@®——

electroencephalographic data b__._g@—k
I |

« Hybrid biomimetic/solid-state devices V

— solid-state neurons

—- biomimetic membranes @

- co-located computing and memory | P

- parallel computational operations
- nanowatts

« Designed and trained using Evolutionary
Optimization for Neuromorphic System (EONS) on
Summit

« 3D-printed microfluidic-based devices were
fabricated on silicon wafers with patterned silver
electrodes
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Project Drivers and Research Structure

Application drivers
- Bioscience Applications
— Materials synthesis and

ddifi f '
LeOc:mn;nve manufacturing

- Reinforcement learning s oo
. ysics-informe - .
— Transfer learning and next- Learning Scalability Confidence
gen neural nets
1 H Reinf t U taint
- Representation learning eaming Quantiication
° SCC”CIbI'ITY ;Lodnls\lfz;#e(;oergir&g'\l Seelatnals iy
« Confidence ;
B UQ Re|c|>_reecslrenr?;r%’non Validation
— Explainability
- Validation
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I Xk Scalability and HPC Architectures (Beyond Moore) ﬁ,ﬁ,ﬁ,t

Summit includes Each node has System Performance

4608 nodes « 2IBM POWER®? processors « Peak performance Qf 200
- Dual-rail Mellanox EDR - 6 NVIDIA Tesla V100 GPUs Sﬁ]mlg?lg; for modeling &
InfiniBand network U

»  Peak of 3.3 ExaOps for data
« 250 PB IBM Spectrum Scale . ’ b
file system fransferring data at 146 T8 ©if VIS oy analytics and arfificial

2.5TB/s intelligence

« 608 GB of fast memory
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- 2 2 GB/s Write
TF 42 TF (6x7 TF) -4+—p» HBM/DRAM Bus (aggregate B/W)
HBM 96 GB (6x16 GB) ~-—» NVLINK
DRAM 512 GB (2x16x16 GB) ~4—= X-Bus (SMP)
NET 25 GB/s (2x12.5 GB/s) ~d—7 PCle Gen4
MMsg/s a3 -+—» EDR IB

HBM & DRAM speeds are aggregate (Read+Write).
All other speeds (X-Bus, NVLink, PCle, I1B) are bi-directional.



Using Tensor Cores is key to high performance

« MENNDL is the kernel of one of our
Gordon Bell finalists

— Determines optimal
hyperparameters for a DNN

— Relatively easy to parallelize

— Effectively demonstrates the power
of the Tensor core units (as well as
the challenge of using them)

* Mixed precision presents
algorithmic challenges

— What accuracy is actually needed
for simulations

Performance must now be
correlated to accuracy
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Application Performance (PetaFLOPs)

167.0
152.5

7
8

B

74.385

37.193 ¢

18.596 +

9.298 1

4.649

= Mean mixed precision performance (u)
m +50

V¥ Measured
Y Projected

— Single Precision
(4=5.039, 0=1.725)

Mixed Single/Half Precision
(4=6.053, 0=2.701)

. i
128 256

i i
512 1024

Number of Nodes (6 G

Empirical (Single-GPU) Performance Distribution

e
o

2.5 5.0 1.5
Performance (TeraFLOPs)

10.0 125 15.0 17.5 20.0

Travis Johnston, ORNL



A Good Infrastructure Is Required To Manage Data

Data On-Ramps:

Observational Data Facilities .
Scalable “— =

Computing ‘ - = R
Workflows: i :

Staging and
Cross-System and
Cross-Facility

Capability Compute at OLCF: ‘

Simulation &
Compute/Data Workflows at
Scale

Data Life-Cycle:
Dissemination,
Sharing, Analytics
Products
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Fast, Efficient Learning with Limited Data

Actions

o Datais Fj

— Limited

— Poor quality with large uncertainties
- Unlabeled W Rewards ﬂ
— Physically constrained Modolbased

. : Stat
Address through reinforcement learning =~
- Agents in an environment learn actions

that maximize some cumulative reward <
weigl:’: layer
. . ]—'(x) ! relu
« Learning algorithms pyr—r—— L
identity

- slow F(x) +x

- networks are non-optimal

Address through stochastic optimal Xy41 = Xy + AXF(X;0)

conftrol algorithms
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Knowledge Representation and Representation Learning

Knowledge is stored in “syntactic” space. Humans tend to
think in semantic space, i.e., in terms of the meaning.

Representation learning and encodings are necessary for
— Multimodal Al
— Transfer learning

Understanding and learning how to represent knowledge is 4 % B
the key to human-computer interactions (HCI)

— Explainability

- “Document” summarization
— Causal inference

— Robustness

— Validation

Focus on graph-based representations
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Confidence: Uncertainty Quantification

- An Alis simply a modelondhas

uncertainty. UQ can also enhance /’mje_rs_e_Ufc_efjafr_yfgaj{ﬁc_afo_ﬂffffjim ___________________ N

explainability and support decision [/ cassic machine earing protlem ., |
1 I interpretation & model model fit !
mleng : : decision making structure criteria : :
| |
I \‘ / '
| o |
b Types Of UncerTalnTy l : unobservable . statistical : indirect : I
| | inferred state approximate mOd?I ¢ input observations 1 |
| : © inference induction regularization (@) : |
- Data I N (d) ‘:} (b) s | :
A t : t L
R R - m - fmmm———— demmm e mm - -
- Model form l ) o - - ' |
\ solution - inference J model form regularization measurement
\ uncertainty errors uncertainty effects errors /
- Learning N - g

« “Semantic”

- Bayesian methods/variational inference common, but are computationally
expensive
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Confidence: Validation, Explainability and
Reproducibility

« Validation 4
- Is the model (including training data) appropriate for the decisions being %
made? g
— Must be evidence based g
- Requires some form of UQ, robustness guarantees and bounds on =
“distortion”
b EXplaInablllty m
— Can the model present a sequence of steps
that can justify the answer to an expert?
—  Expert based o
o
— Depends on representations § Z
Q
t 2
« Reproducibility 8l | 3
L &

— Does the same experiment lead to the same conclusion?

— Can we run different experiments and not contradict our conclusion?

— If we create a new model with the same data, do we get the same -
conclusions? Evidence based

%OAK RIDGE

National Laboratory




%

OAK RIDGE

National Laboratory

Observations and Issues That Drive Our Research
Investments

Data quantity is easy, data quality is hard
— Access to and availability of “good” and “labeled” data is one of the biggest challenges for Al
— We need a sustainable data infrastructure and data policies

Validation, validation, validation and explainability

Resilience and robustness are critical. Highly optimized systems are often the most sensitive to
disruption

Vulnerability threats for Al (hacking, intentional manipulation) are a huge concern for deployment
Al may change how we do science, but it can also cover up bad science

We need to understand and address the ethics and human impact of Al

Scalability is important, but it needs to be put into the context of the entire workflow

We need to manage expectations

HCl is critical

Al is an art



Join the ORNL Artificial Intelligence Team.

Oak Ridge National Laboratory is currently seeking researchers and leaders in Artificial Intelligence (Al)
and Machine Learning (ML) and hiring entry-level and postdoctoral positions.

ORNL's Al & ML Initiative harnesses the Laboratory’s unique suite of expertise, compute capabilities,
and facilities to solve some of the nation’s most daunting challenges in R&D and national security.

Specifically, ORNL offers...

Leadership in high-performance computing: The Laboratory’s

IBM system, dubbed Summit, is currently the most powerful and
*smartest” computer in the world with a tensor core GPU architecture
that makes it ideal for rapidly developing and training scientific
artificial intelligence and machine learning networks.

Unparalleled scientific facilities and datasets: ORNL hosts some
of the world’s most advanced scientific facilities and instruments,
including the National Transportation Research Center, the Spallation
Neutron Source, and the Manufacturing Demonstration Facility, to
name a few. These assets generate the large and unique scientific
datasets perfectly suited for Al analysis.

Leadership in scientific disciplines: As a Department of Energy
laboratory, ORNL staff drive innovation in additive manufacturing,
neutron science, national security, materials science, and artificial
intelligence applications for biology and medicine.

Harnessing these assets in concert, however, requires interdisciplinary
research teams and a collaborative environment such as the one

%OAK RIDGE enabled by ORNL diverse scientific research programs.
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Join ORNL’s Al Summer Institute!

Diverse teams of students who will collaborate
to solve real scientific challenges

¥ § Collaboration with leading scienfists and
- | mentors who have expertise in Al and ML or Requirements:
domain sciences such as materials or physics * US Cifizen or LPR
» Rising junior, senior, Master's or
PhD

: : 0 Prior experience in machine
= Educational seminars, professional oG el @il

development, and career opportunities inteligence, data science

and analytics, statistics and
mathematics, high
performance computing,
and/or visualization and visual
analytics

VIR L Opportunities to present work to and interact

Apply now at
ai.ornl.gov/summerinstitute
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