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AI won’t replace the scientist, but scientists 
who use AI will replace those who don’t*

*Adapted from a Microsoft report, “The Future Computed” 

AI will change the way we do science

We are in an “AI arms race”
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Why now?  Why ORNL?

• Data is plentiful

• Computing is 
ubiquitous

• AI is accessible

• Mission

• Facilities – we have the ability to 
produce, manage, store and analyze 
“extreme” data sets
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Classification and 
regression

Surrogates Control systems

An AI Taxonomy Drives Research Strategy

Inverse problems, 
design and 
optimization
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Building and exploring libraries of atomic defects in graphene
Imaging and manipulating matter on the atomic level with 

Scanning Transmission Electron Microscope (STEM)

M. Ziatdinov, O. Dyck, B. G. Sumpter, S. Jesse, R. K. Vasudevan, S. V. Kalinin. Building and exploring libraries of atomic 
defects in graphene: scanning transmission electron and scanning tunneling microscopy study. ArXiv:1809.04256 (2018)

STEM measures
local structure

Defect 
identification

Calculated electronic 
structure

STM (measures local 
electronic properties)



66

La-doped BiFeO3

Decoded results: Exploration of structural symmetry breaking for atomic defects in graphene

For levels of noise
comparable to that in typical
experiments, most of atomic
position deviations from
“ground truth” are below 12
pm (< 10 % of C-C bond)

M. Ziatdinov, S. Jesse, R. K. Vasudevan, B. G. Sumpter, S. V. Kalinin, O. Dyck. 
Tracking atomic structure evolution during directed electron beam induced Si-

atom motion in graphene via deep machine learning. ArXiv:1809.04785 (2018).

Experimental data (Si in graphene)
Neural network (schematics)

Strain (%)

Variations of bond lengths in SiC defect

Rapid analysis of noisy data with fully convolutional neural network
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Deep neural networks to distinguish structural features of simulated 

LaAlO3/SrTiO3 interfaces

Prediction: Step (p=0.96). Actual: Step

Prediction: Diffuse (p=1.00). Actual: Diffuse

Structural Model3D Convolutional 
Layers

Kernel size (2,5,5)*

32 64 64
Number of Filters

Dense 
Layers

256 
units

Softmax
Layer

2 
units

Structure 
Classification

Softmax

3D Input

3D Average 
Pooling Layer

256 
units

M. Oxley et al., in preparation

Deep learning for solving inverse problems in imaging and multi-
spectral data
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Goal: classify time-dependent 
electroencephalographic data 

• Hybrid biomimetic/solid-state devices 
– solid-state neurons 
– biomimetic membranes 
– co-located computing and memory
– parallel computational operations
– nanowatts

• Designed and trained using Evolutionary 
Optimization for Neuromorphic System (EONS) on 
Summit

• 3D-printed microfluidic-based devices were 
fabricated on silicon wafers with patterned silver 
electrodes

Machine Learning for Biosynaptic Neuromorphic Devices
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Research

Project Drivers and Research Structure

• Application drivers
– Bioscience
– Materials synthesis and 

additive manufacturing
• Learning

– Reinforcement learning
– Transfer learning and next-

gen neural nets 
– Representation learning

• Scalability
• Confidence

– UQ
– Explainability
– Validation

Additive 
ManufacturingBioscience

Other 
applications, 

including 
national security

ScalabilityPhysics-informed 
Learning Confidence

Reinforcement 
Learning

Transfer Learning 
and Next-Gen NN

Representation 
Learning

Uncertainty 
Quantification

Explainability

Validation

Applications

Drivers
Demos
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Summit includes

• 4608 nodes
• Dual-rail Mellanox EDR 

InfiniBand network
• 250 PB IBM Spectrum Scale 

file system transferring data at 
2.5 TB/s

Each node has

• 2 IBM POWER9 processors
• 6 NVIDIA Tesla V100 GPUs
• 608 GB of fast memory
• 1.6 TB of NVMe memory

System Performance

• Peak performance of 200 
petaflops for modeling & 
simulation

• Peak of 3.3 ExaOps for data 
analytics and artificial 
intelligence

Scalability and HPC Architectures (Beyond Moore)
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Using Tensor Cores is key to high performance

• MENNDL is the kernel of one of our 
Gordon Bell finalists

– Determines optimal 
hyperparameters for a DNN

– Relatively easy to parallelize

– Effectively demonstrates the power 
of the Tensor core units (as well as 
the challenge of using them)

• Mixed precision presents 
algorithmic challenges

– What accuracy is actually needed 
for simulations

– Performance must now be 
correlated to accuracy

Travis Johnston, ORNL
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A Good Infrastructure Is Required To Manage Data

Facilities

Capability Compute at OLCF:

Simulation &
Compute/Data Workflows at 

Scale
Data Life-Cycle:
Dissemination, 

Sharing, Analytics 
Products

Workflows:
Staging and 

Cross-System and 
Cross-Facility

Analytics:
Analysis at Scale
Visual Analytics

Data On-Ramps: 
Observational Data

Scalable 
Computing
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• Data is
– Limited
– Poor quality with large uncertainties
– Unlabeled
– Physically constrained

Address through reinforcement learning
– Agents in an environment learn actions 

that maximize some cumulative reward 

• Learning algorithms
– slow 
– networks are non-optimal

Address through stochastic optimal 
control algorithms

Fast, Efficient Learning with Limited Data

Agent Environment

States

Actions

Model-based 
Approximations

Partial 
Information

Rewards

𝑋𝑋𝑁𝑁+1 = 𝑋𝑋𝑁𝑁 + ∆𝑥𝑥𝑥𝑥(𝑋𝑋; 𝜃𝜃)
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Knowledge Representation  and  Representation Learning

• Knowledge is stored in “syntactic” space.  Humans tend to 
think in semantic space, i.e., in terms of the meaning.

• Representation learning and encodings are necessary for
– Multimodal AI
– Transfer learning

• Understanding and learning how to represent knowledge is 
the key to human-computer interactions (HCI)

– Explainability
– “Document” summarization
– Causal inference
– Robustness
– Validation

• Focus on graph-based representations
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Confidence: Uncertainty Quantification

• An AI is simply a model and has 
uncertainty.  UQ can also enhance 
explainability and support decision 
making 

• Types of Uncertainty
• Data 

• Model form

• Learning

• “Semantic”

• Bayesian methods/variational inference common, but  are computationally 
expensive  
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Confidence: Validation, Explainability and 
Reproducibility

• Validation
– Is the model (including training data) appropriate for the decisions being 

made?
– Must be evidence based
– Requires some form of UQ, robustness guarantees and bounds on 

“distortion”

• Explainability
– Can the model present a sequence of steps 

that can justify the answer to an expert?
– Expert based
– Depends on representations

• Reproducibility
– Does the same experiment lead to the same conclusion?
– Can we run different experiments and not contradict our conclusion?
– If we create a new model with the same data, do we get the same 

conclusions? Evidence based

Ex
pe

rt 
ba

se
d

Verification 
& Validation

Ex
pl

ai
na

bi
lit

y

Complexity

In
te

rp
re

ta
bi

lit
y
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Observations and Issues That Drive Our Research 
Investments

• Data quantity is easy, data quality is hard  
– Access to and availability of “good” and “labeled” data is one of the biggest challenges for AI
– We need a sustainable data infrastructure and data policies

• Validation, validation, validation and explainability

• Resilience and robustness are critical.  Highly optimized systems are often the most sensitive to 
disruption

• Vulnerability threats for AI (hacking, intentional manipulation) are a huge concern for deployment

• AI may change how we do science, but it can also cover up bad science

• We need to understand and address the ethics and human impact of AI

• Scalability is important, but it needs to be put into the context of the entire workflow

• We need to manage expectations 

• HCI is critical

• AI is an art
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Join ORNL’s AI Summer Institute!

Diverse teams of students who will collaborate 
to solve real scientific challenges

Collaboration with leading scientists and 
mentors who have expertise in AI and ML or 
domain sciences such as materials or physics

Educational seminars, professional 
development, and career opportunities

Opportunities to present work to and interact 
with ORNL's scientists in an open forum

Opportunities to work on the world's smartest 
supercomputers

Requirements:
• US Citizen or LPR
• Rising junior, senior, Master’s or 

PhD
• Prior experience in machine 

learning and artificial 
intelligence, data science 
and analytics, statistics and 
mathematics, high 
performance computing, 
and/or visualization and visual 
analytics

Apply now at 
ai.ornl.gov/summerinstitute
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