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Abstract —Visual analytics has been gaining increasing interest due to its fascinating characteristic that leverages both humans’
visual perception and the power of computing. Although various computational methods are being proposed, they do not properly
support visual analytics. One of the biggest obstacles towards their real-time visual analytic integration is their high computational
complexity. As a way to tackle this problem, this paper presents PIVE, a Per-Iteration Visualization Environment for supporting
real-time interactive visualization with computational methods. The main idea behind PIVE is that most advanced computational
methods work by refining the solution iteratively. By visually delivering the result from each iteration to users, the proposed framework
enables users to quickly acquire the information that the computational method provides as well as the ability to perform continuous
interactions with them in real time. We show the effectiveness of PIVE in terms of real-time visualization and interaction capabilities by
customizing various dimension reduction methods such as principal component analysis, multidimensional scaling, and t-distributed
stochastic neighborhood embedding, and clustering methods such as k-means and latent Dirichlet allocation.

Index Terms —real time, interaction, visualization, multi-threading, clustering, dimension reduction, visual analytics
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1 INTRODUCTION

The innate ability of humans to quickly perceive insight through visuélom each side: (Ijumans’ perceptual precisiand (2) theteration-
analysis and decision processes has been a key factor in the growtlvise behavior of computational methods
visual analytic researcthLy, 25]. One of the most significant efforts ~ Forhumans’ perceptual precisiome highlight that when perceiv-
made by visual analytics researchers is the integration of various camg numbershumans do not require a high precisisoch as a double
putational methods from data mining and machine learning areas witha single precisions typically used in modern computers. For exam-
visual analytics so that users can benefit from intelligent meaningfule, when perceiving the value of most people know its approximate
information generated by these techniques. For example, dimensiaiue, e.g., 3.14. In practice, perceiving it as a more accurate valu
reduction and clustering methods have been commonly used in highg., 3.1415926, does not make much difference . In a moretanaly
dimensional data visual analytics, P3]. More recently, latent Dirich- context, suppose the topic modeling has given a topic-wise representa-
let allocation (LDA) B], a popular method for document topic model+ion of a particular document as (55.5852%, 38.8615%, 5.533%) with
ing, has been adopted in a wide variety of visual analytics systems fespect to three topics, e.g., science, sports, and economicsle Peop
document analysi®B, 9, 18]. may perceive its topic contribution at a tenth value at most, which is
However, a critical hurdle in the integration of computational metrapproximately (55.6%, 38.9%, 5.5%), but it would not change their
ods into visual analytics is the significant amount of computationgerception significantly even if more accurate numbers were consid-
time required by these methods. As computational methods becoerted.
more advanced and capable, they usually run much slower, making ifThis substantially low perceptual precision compared to that of
almost impossible to visualize and interact with them smoothly in reatomputational methods opens up a variety of possibilities to reduce
time visual analytics. Due to this significant running time, even thoughe intensive computational time taken in running a computational
numerous computational methods are currently being developed ameithod in a visual analytics environment. As a complementary char-
some methods such as t-distributed stochastic neighbor embeddingteristics of the computational methods to achieve this goal, we focus
SNE) [27] even claim their suitability directly in visualization appli- on theiriteration-wise behaviorThese days, many modern computa-
cations, the state-of-the-art in visual analytics does not seem to fulignal methods are performed through an iterative refinement pgoces
utilize the advancements in computational methods. Consequentlyyittil reaching the final converged solution. An important observation
many domain areas, people still resort to only a few basic compufaund in most methods is that throughout the iteratiansyajor re-
tional methods such as principal component analysis (PC#)dnd finement of the solution typically occurs in early iterations while only
multidimensional scaling (MDS)7] for dimension reduction, hierar- minor changes occur in the later iterationl indicates that the low-
chical clustering an#-means 8] for clustering, etc. precision outputs of computational methods are dominated by their
However, we believe that various important aspects have beeajor refinement made during early iterations. In this respect, hu-
largely ignored when integrating (advanced) computational methoagns may be able to obtain most information from the computational
into visual analytics. In a sense that such an integration essentially inethod outputs in a much shorter amount of time than the full itera-
volves both humans and computational methods, exploiting the ché@ns until convergence.
acteristics of each side simultaneously may bring a synergetic effectHowever, apart from well-principled convergence criteria studied
for their tight integration that would not be possible otherwise. Motin most computational methods, it is not straightforward to deter-
vated by this general idea, this paper focuses on the following aspetiisie when to terminate the iteration at which the result is reasonably
accurate from the perspective of humans’ perceptual precision. In
stead, we propose an alternative approach called PP&E!feration
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Such real-time interaction capabilities based on this tight integra- As another popular approach for improve the efficiency in visual-
tion of computational methods at an iteration level makes significaizing large-scale data, numerous studies have been based on multi-
differences in terms of the approaches for handling how we interabtreading techniques. In this context, the main role of multi-threading
with a computational method. That is, from a perspective of views to separate the data processing/computation module and the visu-
ing it as a black box, the turn-around time required for a particulalization/rendering modules as multi-threads, allowing their efficient
interaction is usually equivalent to the time taken in running the egencurrent running. A notable line of research is called ‘in situ’ vi-
tire set of iterations until its convergence. Therefore, previoustsfforsualization 19, 32]. The main idea of it is, given large-scale data,
in adding an interaction capability to a computational method intets alleviate some post-processing overheads that had to be taken care
active have mainly focused on the sophisticated algorithmic modifif by the visualization module and let these overheads handled in the
cations that can maximally reflect the users’ intention from a singfghase of the data processing/computation in which the powerful com-
interaction. Accordingly, during a single interaction, it was generallguting resource is readily available. In this manner, even though the
recommended that users give the computational method a substaniishalization module does not have a computing power, which is often
amount of changes that are carefully made. Otherwise, users weuldloe case, the visualization can fluidly be performed. Although similar
frustrated if the result due to a user interaction does not properly te-the ‘in situ’ visualization approach, Tu et aq] has utilized the
flect their intention after a long time of waiting for the computationatiata sharing aspects in a parallel supercomputing environment. On
method to converge. On the contrary, in PIVE, a turn-around time ftive other hand, there have been approaches that have utilized multi-
a single user interaction drastically decreases to the time taken in rthreading mainly for the purpose of providing a efficient responsive
ning a single or a small number of iterations at most instead of an entirger interactions1] by separating an application and a visualization
set of iterations. In this respect, PIVE enables usepetform multi- threads into multiple concurrent threads.
ple small interactions continuously by quickly adjusting their interac- As will described in detail in Sectio8, PIVE adopts a similar
tions based on the real-time response of the computational methodmulti-threading idea in order to reduce the overhead of the visualiza-

Motivated by these ideas, this paper discusses about PIVE in detaih module that has to go through a constant updating as the itera-
and present the example realizations of various well-known computins of the computation method go. Howevegne of these multi-
tional methods under PIVE. The main contributions of this paper threading-based approaches hardly exploited the nature of the itera-
summarized as follows: tive refinement processes found in most computational methods, which

) ) ) ) makes a clear distinction of PIVE to the previous work
e Presentation of PIVE as a general idea to tightly integrate com- Fyrthermore, efficient interactive visualization has been a main con-
putational methods in visual analytics at an iteration level.  cern in the context of dynamic/streaming data. When visualizing dy-
. . . . . namic/streaming data, the overall theme found in various approaches
e In-depth discussion about the potential issues and their solutiq@gy, ypdate the visualization efficiently given incremental changes in a
in PIVE data set. In this context, Cottam et &] has recently discussed about
af taxonomy for dynamic data visualization. Although the detailed ap-
d proaches may differ, several prior studi@®,[31] have started from
a relatively similar idea that the visualization update is carried out
only when significant changes/events have been detected. Addition-
Ally, Alsakran et al. ] has visualized the streaming documents using
a GPU-accelerated force-directed layout technique.
Various interesting ideas from dynamic data visualization could
e Use cases of the customized methods with real-time user intég applied to further improve the updating process of visualization
action examples in PIVE. Neverthelesghe primary problem that PIVE tackles arises
from the intensive amount of computations in the computational meth-
The rest of this paper is organized as follows. SecBaliscusses re- ods, and thus an efficient updating of the visualization module is not a
lated work. Sectior8 describes PIVE in more detail and discuss itgoncern in general.
potential issues and their solutions. Sectbpresents various cus-
tomized computational methods with their supported interactions 222  User Interaction with Computational Methods

PIVE. Using these customized methods, Secidescribes the quan- There have been numerous efforts to make computational methods,

titative analyses about the iteration-wise behavior of computationghich are mostly automated, user-interactive in visualization applica-

methods and provide several use cases of the customized methods ity one of the most representative work is based on MI9pthat

their real-time interactions under PIVE in several well-known visug|{zs added MDS a capability of incorporating user feedback based on

analytics systems. nally, Sectiéreoncludes the paper and discusseg ser-specified visual region. A more recent work called obsenvatio

about the future work. level interaction 11] has provided a general framework in which the

5 RELATED WORK user ir_neraction from a scatter plot is incorporated in a Bayesian prob-
abilistic framework.

In this section, we briefly discuss various previous studies from the These user interaction capabilities have long been emphasized in

two main perspectives: those aiming at efficient interactive visualizerms of clustering since clustering is generally a difficult problem.

tion and those trying to make computational method user-interactigeo et al. 23] has improved a traditional clustering method called hi-

e Realizations of PIVE with various well-known computation
methods (PCA, MDS, t-SNE-means, and LDA) in establishe
visual analytics systems

e Customizations of the above methods for real-time user inter
tion capabilities under PIVE

in visualization applications. erarchical clustering so that it can have flexible interactive capability
. ) o with the clustering result in a bioinformatics domain. More recently,
2.1 Efficient Interactive Visualization iVisClustering [L8] has tried to make a more recent method LDA in-

Not surprisingly, numerous studies have focus on the visualization dpractive by supporting cluster merging/splitting, cluster keyword re-
plications of large-scale data. Among various approaches, one of fiieement, etc.

straightforward but reasonable approaches is by using a subsatbof d However, most methods have treated the computational method as
by sampling. For example, Fisher et all3[ has proposed an ef- a black box, and thus the interactions they support are inherently far
ficient way of dealing with large-scale data visualization by initiallffrom being real-time because the entire set of iterations for a new run
using only a small portion of data and then perform an incrementafl the computational method is required for each iteration. Nonethe-
update on the visualization. Ellis et al1(] has also taken a ran- less, a variety of work has addressed the importance of the capability
dom sampling-based visualization approach mainly for avoiding tfier supporting a continuous set of real-time interactions with computa-
visualization clutter due to a large number of visualized objects whit®nal methods due to the highly exploratory nature of human interac-
considering the efficiency issues during visualization. tions [12, 21, 24]. In this sense, PIVE, which leverages both humans’
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Fig. 1: An overall diagram of PIVE (b) in contrast to the standard (iteration-wise) one (a). In the standard framework (a), a computional
method is treated as a black box, as depicted by a gray rectangle. On ¢hdhatid, PIVE (b) breaks down the computational method at its
iteration level, allowing it to be visualized at each iteration while taking into adcamy user iteractions. The blue line separates the overall
procedure into two separate threads with their message queue, asisliibe/blue rectangle, to remove potential computational overheads.

(b) The PIVE workflow

perceptual precision and the iteration-wise behavior of computatiomabdule has been initiated, visual analytic systems must wait for it to
methods, bears a potentially great impact in achieving this goal.  finish its iterations before it outputs the visualization to users.
On the contrary, PIVE takes the results of intermediate iterations

3 PER-ITERATION VISUALIZATION ENVIRONMENT (PIVE) out of the computational module and delivers them to the visualization
First, we describe an overall flow of PIVE (Figi(a)), by highlight- module whenever they are available. More specifically, as highlighted
ing its differences from the standard (non-iteration-wise) approattith the red horizontal line in Figl(b), the result from each itera-
(Fig. 1(b)). tion is always passed to the post-processing step, the output of which,

Let us begin with a general procedure when an iterative computf-turn, reaches all the way to the visualization module, regardless of
tional method is integrated in visual analytics. As shown in E{g), Whether it has converged or not. Consequently, these intermediate re-
input data, which are usually represented as multidimensional vectdiglts are visualized to users much more quickly than having to wait for
are given to the computational module along with its required parani€ converged solutions.
ter values. The computational module pre-processes the data, if necedn addition, PIVE enables the above-discussed interactions to be
sary, and runs through iterations, which are usually divided into mustantly reflected by directly interacting with the process for each it-
tiple sub-routines, until it converges. Upon convergence, the outptration of the computational module, as highlighted with the red ver-
goes through a post-processing step. tical line in Fig. 1(b). For instance, given the result of a particular

The final output of the computational module is then passed to tlieration, one could exclude certain data items from the following it-
visualization module, which encodes it in a visual space and finakyations, which accelerate the later iterations due to the reduced data
delivers its visualization to users. For example, the output of a diize. Furthermore, users could change the number of clusters while a
mension reduction method, e.g., PCA, can map data items onto thestering method is running, which immediately affects the following
coordinates of the screen space, and the output of clustering cantgeations.
used to color-code each group of data clusters.

Users can then better explore the visually represented data with §3¢ Issues and Solutions
help of the information provided by the computational method a . . .
oftepn interact with comqu:atlonaI meythods by a%justlng their |nputdn;9 -1 Computational Overhead and Mutti-threading
as well as their parameters. These interactions trigger another rurCaimputational overheads are one of the issues that can be potentially
the computational method. For example, given the cluster summamyroduced by this framework. As can be seen in the red-lined stacked
for a set of text documents, if a user finds an interesting cluster, the usectangle blocks in Figl(b), visual analytics systems have to process
may perform another iteration of clustering on the particular subsetttte output for each iteration repetitively while the standard approach
obtain more details about the chosen subset. On the other hand, useegls to process only the final output once. These additional com-
might want to adjust the number of clusters, which is usually a usquutations could undermine the effectiveness of the proposed frame-
specified parameter in clustering methods, to find the best clusterimgrk. Let us suppose that a particular computational method, which
result for the data. requires 50 iterations to converge, converges in a minute. If the pro-

In most of the described visualizations and interactions, the stggesed framework runs only 4-5 iterations within the same amount of
dard framework generally treats the computational module as a bldgke, then users might prefer the standard approach instead of being
box, which the visualization module has no control over, depicted aple to check the intermediate results since the results from such early
a gray rectangle in Fidl(a). In other words, once the computationalterations may not be satisfactory.



However, we claim that this issue can be easily overcome by appt-a particular iteration or a series of iterations.
ing a multi-threaded approach to the proposed framework. As shown
by the blue ellipses in Figl(b), the entire process can be separated CUSTOMIZED METHODS UNDER PIVE
into two concurrent processes/threads. The first thread shown to fhepis section, following the proposed framework, we present sev-
left is responsible only for_ the sub-routine_s inside the iteration whi Tal customized computational methods in visual analytics systems.
the second thread on the right handles actions from the post-processpagbegin with, we have chosen three visual analytics systems, Foda-
block to the visualization block. These two threads communicate W%Testbed,\]igsav\ﬁ and iVisClustering 18], which involve computa-
each other via a message queue, as shown by the blue rectangle o iR methods.
in Fig. 1(b), where the outputs for each iteration for post-processing rqqayaTestbed is a visual analytics system for high-dimensional

are to be stored. _ _ data, where users can apply various dimension reduction and cluster-
Modern computers are usually equipped with at least two or mogg, methods for exploratory analysis. Among various methods sup-
cores on the CPU. These two threads can be executed virtually ted, we have chosen three dimension reduction methoMDS,
parallel, which hardly slow down the computational methods cony- PCA, and3. t-SNE. Jigsaw is a well-known system for document
pared to the standard approach. Although not included in this PaPERalysis, and we have chosérk-means, which is used to provide a

for the computational methods we customized, we compared the gl mary in terms of a compact set of clusters. Finally, iVisCluster-
computing time between PIVE and the standard frameworks, but Wiﬂb is an interactive document clustering system which GseBA, a

multi-threading implemented, there were essentially no dif‘ferencesijgpumr topic modeling method.

their running times. In the following, we describe how each method is customized

'Even in this multi-threading framework, the following case may|ong with the additional interactions we implemented in the proposed
still be problematic. Suppose the second thread involves more int¢ymework.

sive computations than the first thread because, for example, the post-

processing block takes more time than the processes at each iteration. Principal Component Analysis (PCA)
As a result, the second thread would act as a bottleneck in the ove
flow of the proposed framework, resulting in the message queue

CA [16] is a well-known dimension reduction method that captures
creasing. One way to handle this issue is to store the results of e eﬁmaxmal variance in the data via a linear projection. PCA is mainly

; : P ; ; : d on the method called eigendecomposition, the algorithms of
iteration periodically rather than storing every one of them in the fir§8S€ nod . * .
thread. Alternatively, the second thread could take the most recg\‘ﬂ'Ch are categorized into two different methods, the QR algorithm

iteration-level results and discard the remaining older ones from tﬁ@d th? Lanczos algorithni{]. . . . .
Basically, the Lanczos algorithm approximates a given data matrix

message queue. Under this situation, the visualization of the interrge- h " 1 the Krvl bspaddl[ the di -
diate results may be somewhat discontinuous, but users would alwRys2 much smaller one in the Krylov subspadé] the dimension

be given the most recent result, which should be the most accurd vhich iteratively expands, and efficiently solves the eigendecom-
solution up to the current iteration position on the latter matrix. Due to the nature that this matrix well-

Finally, the other overhead comes from copying results from ea prqximates the largest eigenvectors of the origin_al one, the Lanczos
iteration to the message queue, which results in a memory write gorithm performs much faster than the QR algorithm in visual ana-

eration. In the standard approach, these results for each iteration pes in W?'Ch.on%aiew dlmegsmndsséineec:ed. tati f FodavaT
usually written to the same memory space over iterations since the''c CUStOMIze the Lanczos-base Impiementation ot Fodava I-

results from previous iterations do not need to be maintained. Hoﬁﬁtbed so that the results for each iteration are dynamically visualized.

ever, memory write operations are generally very fast. Furthermogie2
the outputs from each iteration of computational methods take up a
much smaller memory compared to input data. For example, eveMPS [7] is a traditional dimension reduction method that attempts
the data is a very high-dimensional, say, in the hundreds of thousat@lgoreserve given distances/relationships of data items in a lower-
of dimensions, such as is the case in text data, the dimension reduc@ignensional space. Given the ideal distadgebetweenx; and x;,
outputs would only be two-dimensional representations assuming tHélS solves

are visualized in a 2D space. Since the amount of additional compu- )

tational time and memory that is required by our approach is minimal, min Z (dij — cﬁj) , 1)

we do not see memory overheads being a critical issue. X (i <n

Multidimensional Scaling (MDS)

whered;; is the distance between the reduced dimensional vextors
. . ) ) ) andx;. A Euclidean distancgx; — ;|| is usually used fodjj. Solving
The second issue in the proposed framework is the visual inconsigy, (1) iteratively refines;’s based on various optimization techniques
tency, which occurs during visualization updates, due to dynamic 1®]. We customize MDS in FodavaTestbed by extracting x{® at
sults changing each iteration. The most severe case occurs whe iteration from the MDS implementation.

visualization changes too frequently. Although the amount of change

generally diminishes as the iterations proceed, frequently changing4i2.1  User Interaction Capabilities

sualizations may prevent users from obtaining a consistent plCtureAO(;ditionally, while the results for each iteration of MDS are visualized

the data. . . . . . . in a scatter plot, we support the interaction capability that enables users
To address these issues with visual inconsistencies, we've cOM&UR, ove the data points by mouse via drag-and-drop, similar to the

W'ﬂ: sevetjal possible cotntrlolsh_ 'Lhe flrlsctj mtost baj"c option W(:jul? l.35‘\r(?fuse force-directed layout. Then, during the MDS iterations, their
a stop and resume controf which would stop and resume updates, gf,, positions in the screen space are translated back to the MDS out-
the visualization. Secondly, a time period control would manage t%

X o - S t coordinatesy’s. The changes im;’s at a particular iteration then
length of the visualization. Additionally, we could pair this time CONZgtact the following iterations by generating differef’s. In terms

troller with two choices - the option to visualize the most up-to—da@how MDS behaves due to these changes, we provide two different

result or to_wsuahze the r_esult of the ne_xt item in t_he queus, .Wh' pabilities: ‘soft’ vs. ‘hard’ placement. The soft placement consnue
would provide the user with smoother visual transitions. Similar

3.1.2 Visual Inconsistency and User Control

) . . ) o erations without any changes in MDS behaviors. It is equivalent to
the 'stop/resume’ interaction, since our approach maintains each o

. . ) tarting MDS with the intermediate result at the particular iteration
intermediate results, we could simply expand the controls to also

b . . the initial values fox;’s.
both the 'play backwards’ and 'jump to...’ options. These interac- € initial vajues fox's

tions would help users understand the overall trajectory of the resultsht t p: / / f odava. gat ech. edu/ f odava- t est bed- sof t war e
through each iteration. Through the use of these controls, it is very 2ht t p: / / ww. cc. gat ech. edu/ gvu/ii/jigsaw
possible that the user may uncover an interesting insight into the data®We obtained the code from the original authors of the systems.
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The hard placement capability fixes the valuesxd for points ]
moved by the user. This can be easily achieved by skipping the u | W
date step of these's in the following iterations. Note that, however,
even though their values do not change, other data points are still i . : W

When using the semi-supervised MDS, an important advantage
the proposed framework is that users can immediately check the ¢ ,
fects of these interactions via the iteration-wise visualization. Ou .. ~ o

fluenced by these fixed points, and in this sense, our approach isg*
modifications in FodavaTestbed support both types of interactions.

Time (sec)

semi-supervised MDS that reflects user interventions.

Time (s
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4.3 t-Distributed Stochastic Neighbor Embedding (t-SNE) (@) PCA (b) MDS

t-SNE [27] is a relatively new dimension reduction method. It in- Fig. 3: The computing times of the example in Fg.
terprets pairwise distances as probabilities both in high-dimensional
and lower-dimensional spaces and tries to minimize their Kull-
back—Leibler divergence, a distance measure between probability ¢ “
tributions. Unlike the previous methods discussed, it focuses on pi ™ "
serving neighborhood relationships instead of global ones, and it X
shown its outstanding capabilities in visualizations.

Although we skip the detailed formulations because of the scope :
the visual analytics community, the algorithm works iteratively by re: * H
fining the lower-dimensional coordinates based on a gradient desce? R
based framework. In practice, however, t-SNE does not proviteeac ™ N R [t et |
stopping criterion, and thus it typically iterates several hundred time R S g e

by default for any data set, which usually takes a significant amount o{ The cl . N
. . ’ . b N it bership ch b) Th ting ti
time. We customize the t-SNE in FodavaTestbed in a similar manne a) The cluster membership changes  (b) The computing times

to the way we altered MDS. Fig. 5. The behaviors for each iterationlefneans with and without

. i the interaction made in Fig(b). In (a), the decreasing lines are the
4.3.1 User Interaction Capabilities cluster membership changes between the current and the previous it-
Likewise, we provide both the soft and hard placement interactiorgations while the increasing ones are the correct cluster memberships
for t-SNE, as discussed in MDS. Although the algorithm details awgith respect to the final solutions without the interaction. The black
different, the overall iterative procedure turns out to be quite similaertical line represents the iteration point of the interaction made.

to MDS. Thus, for the soft placement, we restart t-SNE with the in-

termediate results immediately during iterations. For the hard one, w& Latent Dirichlet Allocation (LDA)

skip the update step for data items moved by the user in the foIIowiil% . . .
iterations while they still influence other points in the t-SNE iteration&;2?A [4] is & popular topic modeling method for documents based on a
nerative probabilistic model. Given a number of topics, it gives two

Therefore, our altered method can be viewed as a semi-supervisegetn > ST . A
SNE. outputs: the term-wise distribution of each topic and the topic-wise

distribution of each document. The iterations of LDA basically update
these two outputs alternately. From a clustering viewpoint, the former
o ) ) corresponds to a centroid vector of each topic cluster, and the latter
k-means, which is a widely-used clustering method, performs the fg} a soft-clustering coefficient. By taking the topic index that has the
lowing steps iteratively: 1. computing the centroid of each cluster ky{aximum value in the latter, a document is clustered to a particular
averaging the data vectors in the corresponding cluster and 2. up(ﬂ@ﬁcl
ing the cluster assignment of each data item based on its closest C'“St‘?{flsCIustering uses one of the fastest LDA libraries called Mallet
ce_ntroid. The iteration terminates when there are no cluster memﬁgo]’ which implements LDA based on a Gibbs samplig][ Al-
ship changes. ) . _ though this sampling-based approach does not guarantee a conver-
Although Jigsaw provides a cluster view basedkaneans, it cur- gence, it is being widely used because of its simplicity and robustness
rently visualizes only the pre-computed results sikeeeans is usu- against overfitting, compared to the variational approximation method
ally very slow to converge. We customize it so that users can ryioposed in4]. Due to this convergence issue, LDA usually iterates
k-means in real-time and the intermediate cluster memberships are gy;re_defined number of iterations and usually requires a significant

4.4 k-means

namically visualized. amount of time. We customize the Mallet library so that it can give the
. - outputs from each iteration to iVisClustering, allowing iVisClustering
4.4.1 User Interaction Capabilities to dynamically update its visualization.

Additionally, we add several interaction capabilities in the proposed

framework. One is to split/merge clusters during iterations. On@s 1  User Interaction Capabilities

split/merge interaction, similar to the soft placement in MDS and t- B o o ) . )

SNE, k-means restarts with the intermediate cluster memberships thagddition to the original iVisClustering interaction capabilities being

reflect split/merged clusters, involving dynamic changeskmzeans available during iterations, we also add several interactions with LDA

parameter which represents the number of clusters. in i\/isClustering, Similar to those in JigsaW: Spllttlng/merglng CIUS'
Similar to the hard placement in MDS and t-SNE, another capablfrs and fixing the cluster assignments of particular data items during

ity we provide is the option to fix the cluster assignments of the datalfgrations. The customization of LDA for such interactions is similar

a particular cluster. To accomplish this, we skip the updating step {§fk-means, and thus we skip the details due to the page limit.

the cluster assignment for these data in the following iterations. How-

ever, they still contribute to the centroid computing step. A similag ExpeERIMENTS

semi-supervised way é¢means was previously proposet], but our

framework significantly accelerates such interactions witheans. [N this section, we present behaviors within each iteration for compu-
tational methods as well as their interactive aspects in the proposed

4htt p: // honepage. tudel ft.nl/19j 49/t - SNE. ht m framework.
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Fig. 2: The behavior for each iteration of PCA and MDS and their visualimati@pshots. In (a) and (e), the red lines represent the criteria
values of each method, the lower-dimensional variance in PCA and éss stlue, i.e., Eql], in MDS. The blue line is the Euclidean distances
of the lower-dimensional outputs between the current and the previgasadtes, and the black line is those between the current and the final
iterations. In (e), the black and the blue lines almost coincide. In PCRQXgkial image data representing pixel values in 2,048 dimensions
have been used, and in MDS, 500 handwritten digit data representirigages in 16 dimensions have been used.
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(a) The 333th-iteration result  (b) The 333th-iteration result after mov- (c) The 344th-iteration result (d) The 362th-iteration result
ing points

Fig. 4: A point-moving interaction example using t-SNE. The two overlapplogters,|’ and 'o,’ are separated due to a user interaction of
moving apart a few points from each cluster. 1,558 spoken letter datesented in 618 dimensions have been used.

5.1 lteration-wise Behaviors and Visualization number of changes that occur while the visualization is dynamically
d}gdated, we draw arrows to represent where a particular data item has
fnoved relative to the previous iteration, and color-code each data item
oerepresentwhich cluster index it previously belonged to. As shown in

the criteria value, i.e., the lower-dimensional variance, as well as t 8.7 and in the redlines in Fig, although significant change occurs
lower-dimensional outputs (FigX(a)) converge within a few itera- in early iterations (Fig7(a)), they diminishes quickly, as seen in the

tions, indicating that only a few iterations of the Lanczos algorithm. =~ : : P : .

are needed in visual analytics applications (FR{b)-(d)). Nonethe- S|xth|t|t('e:r_at|;)r& (F||g_;|.7(b)), WT;]Cht.'S not m# ?th d'tf.f eretntkfror_n tr|1e flntatlh

less, each iteration takes roughly the same amount of computation tiffia (F!g.S(d)). owever, the ime each fteration fakes s aimost the

except for the first iteration which includes the pre-processing tim%‘r.’lme( 195(d)).

(Fig. 3(a)). Instead of having to perform a fairly large number of it-

erations, as most PCA algorithms do, the iteration-wise visualization

enables users to obtain an equivalent visualization much quickly. AFinally, LDA, which is a sampling-based approach, shows a signifi-

similar argument applies to MDS as well. Although its convergenasantly different behavior from the previous methods (Bjg Although

is relatively slow compared to PCA (Fig(e)), we obtain the results cluster membership changes between iterations generally decrease and

similar to the final one achieved at the 10th iteration (F&{§-(h)). the solution narrows to the final solutions (F&§a)), cluster member-

We do not present the quantitative analyses for t-SNE, but we foushlips change significantly even after many iterations, in this case after

tendencies similar to MDS, and we will focus on its interactive aspect$200 iterations. In iVisClustering, we could see the top keywords of

in the following section. each topic become somewhat stable after several hundreds of itera-
In clustering, the behavior of each iterationkafneans is presented tions (Fig.6(a)), but the randomness of the sampling-based algorithms

in Fig. 5 as well as their snapshots in Jigsaw in Fig. In Jigsaw, might make it harder to give consistent visualizations when compared

in order to best assist users in easily identifying the location and ttedeterministic methods in PIVE.

Fig. 2 shows the behaviors of each iteration for the customized P
and MDS along with their computing times shown in F3g.In PCA,



Table 1: The keyword summaries of the sampled clusters with/without firtegactions ok-means performed in Fig.

[ [ Cluster 1 [ Cluster 6 [ Cluster 7 [ Cluster 8 [ Cluster 10 |

Fig.7(c) | process,trying,latency turing,100,budget| quasimonte,unbalanced,choigeconcern,rich,solvable intel,orchestrate,nonapproximabilit
Fig. 7(d) schur,process,trying | turing,budget,100| quasimonte,unbalanced,choi¢geconcern,rich,solvablg intel,orchestrate,nonapproximability

Table 2: The keyword summaries of the selected clusters during splittthgarging interactions démeans performed in Fi@.

Cluster 1 Cluster 2 Cluster 3
1-a 1-b 1-c 1-d 1-a 1-b a | 1-b
Fig. 8(a) analysts,cdc,| weird,contents, | fundraising, | chromosomes,100fold) warm,rhythms, | 37,symptoms, social,cause,symptoms
earliest oneyearold 11,7bd may605375rossignol pretend said
Fig. 8(b) enjoy,contents,weird warm,37,rhythms social,causes, social,causes,
people cerebellum
Fig. 8(c) enjoy,contents,weird warm,37,symptoms 1000,social, | incredible,symptoms,
causes cerebellum
this interaction, as shown in the increasing red line in B{@). The
. final outputs of the cluster view in Jigsaw of the two cases can also be
compared in Figs7(c) and (d), both of which are similar in terms of
s cluster sizes as well as keyword descriptions.
gmm 5.2.3 Split/merge clusters in k-means
Our customization ok-means enables users to merge multiple small
= or semantically related clusters or split large or unclear clusters8Fig.
shows its example in Jigsaw. In the third iteration, we merge yellow
= teratons - was "™ and green clusters and split a white cluster (Bi@)). The resulting
(@) The cluster membership changes  (b) The computing times is shown in Fig8(b). We obtain a much more balanced set of clusters

(Fig. 8(c)) compared to the final result in which no splitting/merging
Fig. 6: The iteration-wise behaviors of LDA. In (a), the blue line repwas performed (Fig8(d)). Furthermore, after analyzing the docu-
resents cluster membership changes between the current and the mpests in two split clusters, we found that one of the clusters primarily
vious iterations while the red line represents the correct cluster meaentained documents about the causes of autism while the other about

berships with respect to the final solutions. the symptoms, as seen in the keyword summary in&ig). Without
the interaction, one will notice in Fig(d) that these clusters are not
5.2 Real-time User Interactions easily separated.

Basically, in all three systems, we provide basic interactions that con- o ) . L
trol the visualization for each iteration, as discussed in Se@ibnin ~ -2-4  Filtering noisy documents to improve topics in LDA

the following, we show several use cases of the interactions discussef@ ability to filter noisy documents has been an appealing interaction

in Section4. for LDA in iVisClustering. To be specific, given parallel coordinate
) o representations of topic-wise distributions of documents, users can in-
5.2.1 Moving data points in t-SNE teractively filter out documents that are not strongly related to a sin-

Fig. 4 shows an interesting interaction which involves moving a dae topic, i.e., documents that have a very small maximum value in
point in t-SNE. Given some overlapping clusters in a particular visudhe topic-wise distribution. By removing them and re-running LDA,
ization generated by t-SNE (Fig(a)), users place several points fromiVisCluster generally obtains significantly clearer topics. In PIVE, we
different clusters far apart (Figd(b)), and then t-SNE reflects thesePerformed this interaction near the 300th iteration (B{9)), which is
changes in the following iterations, resulting in tje separation of mo8f early iteration when compared to the total number of iterations per-
points in two clusters from each other (Fidgc)(d)). This simple, yet formed by LDA. However, such an interaction successfully generates
powerful example clearly illustrates the advantage of providing use¢arer topics (Fig9(c)) over the standard approach where users have
with the ability to interact with computational methods in our frameto wait for the algorithm to finish its full iterations in order to perform
work in real-time visual analytics. the same interaction.

5.2.2 Fixing cluster assignments in k-means 6 CONCLUSIONS AND FUTURE WORK

For ourk-means method, we provide users with another interactiale have presented PIVEP¢r teration Visualization Environment
that allows them to fix cluster assignments for particular data itenfisr supporting real-time interactive visualization with computational
at a certain iteration. This interaction becomes especially useful wherethods). One of its apparent advantages is its ability to present users
users feel that particular clusters are adequate and want to present thvith the intermediate results during the interactions, which could re-
from changing much. In addition, fixing some clusters that are alreadgal a significant amount of information immediately in visual analyt-
stable in early iterations can accelerate the later iterations by excludiog. Another important advantage is that it indeed opens up the possi-
them from the cluster assignment step. bility of performing small multiple interactions, which in the past have
Fig. 5 shows the effects of such interactions. First, we start with tHeeen considered to be too inefficient, and allows the real-time control
same example shown in Fig.but we fix the clustering assignments ofover computational methods in visual analytics. In fact, the interac-
the cluster highlighted in yellow rectangles, which amounts to 44% tibns we proposed in this paper are relatively simple, which do not
the total data items, at the sixth iteration (Fi¢p)). Once this interac- involve any major algorithmic modifications, but after a sequence of
tion is performed, the computing times for the following iterations ofhteractions, the results reflects the intention of users sufficiently well
k-means drops significantly (Fig(b)). However, only less than 10% in real-time. In this sense, PIVE makes them significantly useful by
of the final cluster memberships differ from the final results withownabling users to perform these interactions easily and efficiently.



(a) The second-iteration result (b) The sixth-iteration result

(c) The converged (25th-iteration) result after fixing téus

(d) The converged (26th-iteration) result without any iattion

Fig. 7: The results of the PIVE integration kfmeans in Jigsaw. At the sixth iteration, the interaction of fixing the yellowredl@lusters is
made (b). The final result with and without this interaction is shown in (d)(di respectively. The NSF-awarded abstract data have bedn use
The detailed keyword summary is shown in Table

However, the advantage of our framework can be limited when thgs] A. Buja, D. Cook, and D. Swayne. Interactive high-dimemsil data vi-
changes between iterations remain nontrivial, resulting in inconsistent sualization.Journal of Computational and Graphical Statisti€g1):78—
visualizations. We have seen this kinds of limitations when using LDA 99, 1996.
under PIVE due to the random nature of the used LDA algorithm. A$6] J. Cottam, A. Lumsdaine, and C. Weaver. Watch this: A taxaydor
a future work, we plan to tackle this problem more actively by, for ~ dynamic data visualization. Misual Analytics Science and Technology
example, post-processing the results or even imposing additional con- (VAST), 2012 IEEE Conference,grages 193-202, 2012.
straints in computational methods so that the results from the follow’] T- F. Cox and M. A. A. Cox. Multidimensional Scaling Chapman &
ing iterations do not change much from the current ones. Finally, an- Hall/CRC, London, 2000. ) o
other interesting research direction we will pursue is to extend PIVE ] J- De Leeuw. Applications of convex analysis to multidirsiemal scal-

. : . . ing. Recent developments in statisfipages 133-146, 1977.
various parallelized computational algorithms for the large-scale dat ng ! .
visual analytics. t[@] W. Dou, X. Wang, R. Chang, and W. Ribarsky. Paralleltspi& proba

bilistic approach to exploring document collections.isual Analytics
Science and Technology (VAST), 2011 IEEE Conferenc@ages 231
—240, oct. 2011.

G. Ellis and A. Dix. Enabling automatic clutter reductim parallel co-
ordinate plotsVisualization and Computer Graphics, IEEE Transactions
on, 12(5):717-724, 2006.

A. Endert, C. Han, D. Maiti, L. House, S. Leman, and C. Kort
Observation-level interaction with statistical modelsVual analytics.

REFERENCES [10]

[1] J. Alsakran, Y. Chen, Y. Zhao, J. Yang, and D. Luo. Strealitnamic
visualization and interactive exploration of text streanmsPacific Visu-
alization Symposium (PacificVis), 2011 IEFtages 131-138, 2011.

[2] S. Basu, A. Banerjee, and R. J. Mooney. Semi-supervisestating by

(11]

(3]
[4]

seeding. InProceedings of the Nineteenth International Conference on
Machine Learning ICML '02, pages 27-34, San Francisco, CA, USA,

2002. Morgan Kaufmann Publishers Inc. [12

C. Bishop. Pattern recognition and machine learningpringer, 2006.
D. M. Blei, A. Y. Ng, and M. |. Jordan. Latent dirichlet altation.Jour-
nal of Machine Learning ResearcB:993-1022, March 2003.

(23]

In Visual Analytics Science and Technology (VAST), 2011 |E&ffez-
ence onpages 121-130, 2011.

] G. Faconti and M. Massink. Continuous interaction watmputers: Is-

sues and requirements/ol. 3 of the proc. of HCI International 2001
pages 301-305, 2001.
D. Fisher, I. Popov, S. Drucker, and m. schraefel. Trustiimepartially



Fig. 8: An example of split/merge interactions. The yellow and green on@3 are merged to the same-colored ones, respectively, in (b), and
the white one in (a) is split to the-same colored ones in (b). Webpages alttiam have been used as an input data set. The detailed keyword

(a) The third-iteration result
split/merge interactions

summary is shown in Tabl2

[14]
[15]

[16]
[17]

(18]

[29]
[20]

[21]

[22]

(23]

(a) The third-iteration result

(b) The fourth-iteration result aft@) The final (15th-iteration) result wiftl) The final (7th-iteration) result with-
split/merge interactions

out splitmerge interactions

privacy

network

sins

secure

algorithm

reference &
|

| ripem

service
brvacy

' network

29

(b) The 300th-iteration result

[ rotgor]

Hardware|

. anonymous -
privac m
securi
user
accessed
ripem

(c) The 700th-iteration result

Fig. 9: An example of filtering documents whose cluster membershipsnatear. This interaction is done in the 300th iteration, and the topics
become clearer in the later iterations. 20 newsgroups data have been use

right: incremental visualization lets analysts explorgéatatasets faster. [24]
In Proceedings of the SIGCHI Conference on Human Factors in-Corf25]
puting System<CHI '12, pages 1673-1682, New York, NY, USA, 2012.
ACM.

G. H. Golub and C. F. van LoanMatrix Computations, third editian
Johns Hopkins University Press, Baltimore, 1996.

I. T. Jolliffe. Principal Component AnalysiSpringer-Verlag, New York,
1986.

I. T. Jolliffe. Principal component analysisSpringer, 2002.

D. Keim. Information visualization and visual data miningsualization
and Computer Graphics, IEEE Transactions 8(i):1 -8, jan/mar 2002. [28]
H. Lee, J. Kihm, J. Choo, J. Stasko, and H. Park. iVis@rsy: Aninter-
active visual document clustering via topic modelif@pmputer Graph-

ics Forum 31(3pt3):1155-1164, 2012.

K.-L. Ma. In situ visualization at extreme scale: Chaties and opportu-

(26]

[27]

nities. Computer Graphics and Applications, IEEF9(6):14-19, 2009. [29]
A. K. McCallum. Mallet: A machine learning for languageothit.
http://mallet.cs.umass.edu, 2002.

H. Piringer, C. Tominski, P. Muigg, and W. Berger. A muhireading [30]

architecture to support interactive visual exploratidfisualization and
Computer Graphics, IEEE Transactions,d’5(6):1113-1120, 2009.

I. Porteous, D. Newman, A. Ihler, A. Asuncion, P. Smyth,dan [31]
M. Welling. Fast collapsed gibbs sampling for latent diréttdllocation.

In Proceedings of the 14th ACM SIGKDD international confeeena
Knowledge discovery and data miningDD '08, pages 569-577, New
York, NY, USA, 2008. ACM.

J. Seo and B. Shneiderman. Interactively exploringgrighical clustering

results [gene identificationfComputey 35(7):80 —86, jul 2002. [32]

R. Spence and A. Press. Information visualization. 2000

J. Thomas and K. CookKlluminating the path: The research and devel-
opment agenda for visual analytiomlume 54. IEEE, 2005.

T. Tu, H. Yu, L. Ramirez-Guzman, J. Bielak, O. Ghattas|KMa, and
D. R. O’Hallaron. From mesh generation to scientific viswualan: an
end-to-end approach to parallel supercomputingProceedings of the
2006 ACM/IEEE conference on Supercomput®@ '06, New York, NY,
USA, 2006. ACM.

L. van der Maaten and G. Hinton. Visualizing data ush8NE. Journal

of Machine Learning Research:2579-2605, 2008.

F. Wei, S. Liu, Y. Song, S. Pan, M. X. Zhou, W. Qian, L. Shi,Tan, and
Q. Zhang. Tiara: a visual exploratory text analytic systemPioceed-
ings of the 16th ACM SIGKDD international conference on Kieolge
discovery and data miningKDD '10, pages 153-162, New York, NY,
USA, 2010. ACM.

M. Williams and T. Munzner. Steerable, progressive ndirttiensional
scaling. Ininformation Visualization, 2004. INFOVIS 2004. IEEE Sym-
posium onpages 57 —64, 0-0 2004.

P. C. Wong, H. Foote, D. Adams, W. Cowley, and J. Thomas.ayio vi-
sualization of transient data streams.Iiformation Visualization, 2003.
INFOVIS 2003. IEEE Symposium,qgrages 97—-104, 2003.

Z. Xie, M. Ward, and E. Rundensteiner. Visual explayatof stream
pattern changes using a data-driven framework. In G. Bebig8dyle,

B. Parvin, D. Koracin, R. Chung, R. Hammound, M. Hussain, T.-Kar
Han, R. Crawfis, D. Thalmann, D. Kao, and L. Avila, editokslvances
in Visual Computingvolume 6454 of_ecture Notes in Computer Science
pages 522-532. Springer Berlin Heidelberg, 2010.

H. Yu, C. Wang, R. Grout, J. Chen, and K.-L. Ma. In situua$ization



for large-scale combustion simulation€omputer Graphics and Appli-
cations, IEEE 30(3):45-57, 2010.



	Introduction
	Related Work
	Efficient Interactive Visualization
	User Interaction with Computational Methods 

	Per-Iteration Visualization Environment (PIVE)
	Issues and Solutions
	Computational Overhead and Multi-threading
	Visual Inconsistency and User Control


	Customized Methods under PIVE
	Principal Component Analysis (PCA)
	Multidimensional Scaling (MDS)
	User Interaction Capabilities

	t-Distributed Stochastic Neighbor Embedding (t-SNE)
	User Interaction Capabilities

	k-means
	User Interaction Capabilities

	Latent Dirichlet Allocation (LDA)
	User Interaction Capabilities


	Experiments
	Iteration-wise Behaviors and Visualization
	Real-time User Interactions
	Moving data points in t-SNE
	Fixing cluster assignments in k-means
	Split/merge clusters in k-means
	Filtering noisy documents to improve topics in LDA


	Conclusions and Future Work

