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SUMMARY

The objective of this thesis is the development, implementation and optimization of a

GPU execution model extension that efficiently supports time-varying, nested, fine-grained

dynamic parallelism occurring in the irregular data intensive applications. These dynam-

ically formed pockets of structured parallelism can utilize the recently introduced device-

side nested kernel launch capabilities on GPUs. However, the low utilization of GPU

resources and the high cost of the device kernel launch make it still difficult to harness

dynamic parallelism on GPUs. This thesis then presents an extension to the common

Bulk Synchronous Parallel (BSP) GPU execution model – Dynamic Thread Block Launch

(DTBL), which provides the capability of spawning light-weight thread blocks from GPU

threads on demand and coalescing them to existing native executing kernels. The finer

granularity of a thread block provides effective and efficient control of smaller-scale, dy-

namically occurring nested pockets of structured parallelism during the computation. Eval-

uations of DTBL show an average of 1.21x speedup over the baseline implementations.

The thesis proposes two classes of optimizations of this model. The first is a thread block

scheduling strategy that exploits spatial and temporal reference locality between parent ker-

nels and dynamically launched child kernels. The locality-aware thread block scheduler is

able to achieve another 27% increase in the overall performance. The second is an energy

efficiency optimization which utilizes the SMX occupancy bubbles during the execution of

a DTBL application and converts them to SMX idle period where a flexible DVFS tech-

nique can be applied to reduce the dynamic and leakage power to achieve better energy

efficiency. By presenting the implementations, measurements and key insights, this thesis

takes a step in addressing the challenges and issues in emerging irregular applications.
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CHAPTER I

INTRODUCTION

There has been considerable success in harnessing the superior compute and memory band-

width of Graphics Processing Units (GPUs) to accelerate traditional scientific and engineer-

ing computations [7][48][61][60] dominated by structured control and data flows across

large data sets using Bulk Synchronous Parallel (BSP) execution models represented by

Compute Unified Device Architecture (CUDA) [57] and OpenCL [34]. These applications

can be effectively mapped to the rigid 1D-3D massively parallel grid structures underlying

modern BSP programming languages for GPUs. However, emerging High Performance

Computing (HPC) and enterprise data intensive applications represented by data analytics,

graph processing, machine learning and similar applications are dominated by sophisticated

algorithms characterized by irregular control, data, and memory access flows challenging

the effective harnessing of GPU accelerators.

Despite the above observation, there still exist segments of the computation within

many irregular applications that locally exhibit structured control and memory access be-

haviors. These Dynamically Formed Pockets of Structured Parallelism (DFP) occur in a

data dependent, nested, time-varying manner and their most straightforward implementa-

tions usually lead to poor workload balance, control flow divergence, and memory irreg-

ularity resulting in poor utilizations and hence lower performance. State-of-the-practice

GPU execution models have introduced the device-side kernel launching functionality rep-

resented by NVIDIA’s CUDA Dynamic Parallelism (CDP) model [58] and OpenCL’s device-

side kernel enqueue [34] which can be utilized to implement DFP. However, the heavy-

weight nature of a GPU kernel, especially the non-trivial kernel launching overhead, mit-

igates the efficiency and effectiveness of such models. This has led to growing demands

for a better execution model with lightweight mechanism to support DFP abstractions that

more efficiently targets fine-grained dynamic parallelism in irregular applications.
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This research seeks to propose such a lightweight execution model based on the inves-

tigation and characterization of several irregular applications. The first part of this research

characterizes DFP by implementing and evaluating these GPU benchmarks with device-

launched kernels in CDP [74]. In comparison with the original flat implementations where

DFP are processed by individual threads, it is demonstrated that while CDP does address

the productivity and algorithmic issues and exhibits potential performance benefit in terms

of better control and memory behavior, the ability to harness dynamic parallelism on GPUs

is still difficult in most cases due to 1) the low utilization of GPU resources and poor

memory latency hiding ability caused by the discrepancy between the fine-grained DFP

kernels and limited kernel level concurrency that results in low GPU occupancy and 2) the

non-trivial overhead introduced by hardware and software stacks that are associated with

the device-side kernel launch functionality and are aggravated by the substantially large

number of DFP kernels.

To address the above challenges, the second part of this research proposes an extension

to the traditional BSP execution model - Dynamic Thread Block Launch (DTBL) [72],

which provides a lightweight mechanism for harnessing dynamic parallelism by spawn-

ing Thread Blocks (TBs) from GPU threads on demand and coalescing them with existing

native executing kernels. The finer granularity of a TB provides effective and efficient con-

trol of smaller-scale, dynamically occurring pockets of structured parallelism during the

computation. The TB coalescing process enlarges the pool of TBs that belong to an exist-

ing kernel so that they can be scheduled together to the GPU computation units referred

as Stream Multiprocessors (SMXs) (using NVIDIA terminology [57]). This effectively in-

creases TB-level concurrency which leads to higher GPU occupancy and utilization. DTBL

also introduces substantially more lightweight microarchitecture support, driver and run-

time implementations such that the overhead of launching a TB is considerably smaller

than launching a kernel. With DTBL, the implementations of irregular CUDA applica-

tions launch one or multiple TBs for identified DFP with sufficient parallelism. Benchmark

2



applications implemented with DTBL are evaluated on a cycle-level simulator to demon-

strate the improved execution performance compared with the implementations using the

flat GPU programming methodology or CDP.

To further explore and develop appropriate optimizations to avail of the potential of

the DTBL execution extensions, the third part of this research focuses on the TB schedul-

ing strategies that can effectively exploit spatial and temporal memory reference locality

between parent kernels and dynamically launched child kernels, or between child kernels

launched from the same parent kernel thread (sibling kernels). Modern GPU microarchi-

tecture schedulers are designed for non-dynamic parallelism settings and are unaware of

this new type of locality relationships. Towards this end this research first provides an

analysis of parent-child and child-sibling reference locality in a set of benchmark appli-

cations. This analysis motivates a locality-aware scheduler referred as LaPerm [73] for

dynamic TBs across the SMXs. LaPerm provides multiple levels of prioritization schemes

that seek to ensure that child kernels can exploit temporal locality with parent kernels, and

spatial and temporal locality with sibling kernels. It also balances overall SMX utilization

with effective utilization of the local SMX L1 caches resulting in overall improved sys-

tem performance. Experimental evaluation on a cycle-level simulator demonstrates that by

increasing both the L1 and L2 cache performance, LaPerm is able to achieve Instruction-

Per-Cycle (IPC) improvement over the original baseline TB scheduler.

The fourth part of this research examines the DTBL from the energy efficiency per-

spective and proposes an energy saving optimization based on the SMX occupancy phase

behavior of DTBL. A comparison is performed between the execution phase behavior of

DTBL and the regular GPU programming methodology to handle dynamic workloads such

as the Persistent Thread (PT) model where the number of TBs executed on the SMXs are

fixed in advance and a global work queue is employed to assign new dynamic work to

those TBs. The purpose of such a comparison is to demonstrate the existence of SMX

utilization variations when dynamic parallelism evolves and therefore the potential energy

3



saving opportunities brought by the DTBL execution model. Specifically, the SMX oc-

cupancy bubbles where the SMX occupancy falls below a threshold are utilized for better

energy efficiency, which are performed by 1) designing a new TB diversion and scheduling

strategy to convert the SMX occupancy bubbles to SMX idle periods and ii) employing a

flexible GPU Dynamic Voltage and Frequency Scaling (DVFS) scheme to reduce energy

consumption.

This thesis argues that a GPU execution model with lightweight dynamic spawning of

workload and associated scheduling and energy consumption optimizations can efficiently

target the fine-grained dynamic parallelism in irregular applications. Specifically, this

thesis makes the following contributions.

1. Establishing the concept of Dynamically Formed Pockets of Structured Parallelism

(DFP) via illustrations of their forms and behavior in emergent irregular GPU appli-

cations.

2. Characterizing DFP and elaborating insights from implementing multiple data in-

tensive irregular CUDA benchmarks with child kernel launching functionality intro-

duced by the CUDA CDP execution model, specifically in terms of control flow and

memory behavior, GPU utilization and hardware/software overhead.

3. Designing the Dynamic Thread Block Launch (DTBL) as an effective lightweight

execution mechanism for spawning dynamically created parallel work that is able to

effectively harness the compute and memory bandwidth of GPUs. This is achieved

from two perspectives.

• Fine-grained TB launching and aggregation that increase GPU occupancy and

utilization.

• Lightweight microarchitecture and runtime design to alleviate the hardware and

software stack overhead.

4



4. Optimizing the scheduling strategy for DTBL to further improve the execution per-

formance by exploring the memory reference locality between the parent TBs and

child TBs.

5. Exploring energy saving opportunities in DTBL by demonstrating the existence of

SMX occupancy bubbles which can be leveraged for better energy efficiency.

The remainder of this thesis is organized as follows. Chapter 2 provides the background

and related work of this thesis. Chapter 3 introduces the concept of DFP and its features by

characterizing multiple irregular applications with CDP implementations. Chapter 4 pro-

poses the DTBL extension to the current GPU execution model with detailed semantics

definition, microarchitecture design, benefits and overhead analysis, and performance eval-

uation. Chapter 5 describes a memory locality-aware optimization for the DTBL model

that is motivated by the memory reference locality relationships between the dynamic TBs

in DTBL implementations and efficiently utilizes the GPU memory hierarchy for such lo-

cality relationship to achieve overall performance improvement. Chapter 6 examines the

DTBL model from the energy and power dissipation perspective and proposes to utilize the

SMX occupancy phase behavior for a new energy saving optimization that increases the

energy efficiency of DTBL. Chapter 7 is the conclusion of this thesis.

5



CHAPTER II

BACKGROUND AND RELATED WORKS

This chapter provides the background for this thesis, including an introduction to the GPU

execution model and the baseline GPU architecture, the scheduling process on the GPUs,

the dynamic parallelism execution model that is supported by the current GPUs and the ba-

sic GPU power model adopted by this thesis. The NVIDIA terminology is used throughout

the thesis, including its CUDA programming models and the Kepler GK110 architecture

as it is the first architecture to support CUDA Dynamic Parallelism (CDP). However, the

methodology, analysis and conclusions in this thesis also apply to new architectures and

programming models such as AMD’s GPUs and the OpenCL [34] programming models.

This chapter also reviews the research works from various aspects that are related to this

thesis.

2.1 Baseline GPU Architecture and CUDA Programming Model

The baseline GPU architecture adopted by this thesis is shown in Figure 1. It is composed

of several major functional units: the Kernel Management Unit (KMU), the Kernel Distrib-

utor (KD), the computation units referred as Stream Multiprocessor (SMX) and the SMX

scheduler which dispatches workload to the SMXs. An NVIDIA Kepler GK110 architec-

ture [54] comprises of multiple SMXs, each of which features 192 single-precision CUDA

cores, 64 double-precision units, 32 special function units and 32 load/store units. It also

includes 64K, 32-bit registers and 64KB scratch-pad memory that can be used either as a

L1 cache or shared memory. An L2 cache is shared across SMXs and connects through

one or more memory controllers to the off-chip DRAM which is used as the GPU device

memory. The GPU is connected to the host CPU by the interconnection bus and accepts

operation commands such as memory copy and kernel launching from the CPU.
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Figure 1: Baseline GPU architecture

Compute Unified Device Architecture (CUDA) [57] is the programming model intro-

duced by NVIDIA for its GPUs. As shown in Figure 2(a), a CUDA program is expressed

as a set of parallel kernels in which threads are grouped together into Thread Block (TB) or

Cooperative Thread Array (CTA) and then into 1D-3D grids, all threads executing the same

kernel code subject to user-defined synchronization barriers. Multiple memory spaces can

be accessed by the GPU threads during their execution, including the global memory which

resides in the GPU device memory and is visible to all the threads of a kernel, the shared

memory which is visible only to the threads of a TB and holds the data that has the life-

time of a TB, and the local memory that is private to each individual thread. The constant

memory and texture memory are two additional memory spaces that are visible to all the

threads in the kernel. They reside in the GPU device memory but have different accessing

patterns or addressing modes than the global memory.

2.2 Kernel, Thread Block and Warp Scheduling on GPUs

The CPU launches GPU kernels by dispatching kernel launching commands. Kernel pa-

rameters are passed from the CPU to the GPU at the kernel launching time and stored in
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the GPU global memory with necessary alignment requirements. The parameter addresses

are part of the launching command along with other kernel information such as grid/TB

dimension configuration and entry PC address. All the launching commands are passed

to the GPU through software stream queues (e.g. CUDA stream). Kernels from different

streams are independent from each other and may be executed concurrently while kernels

from the same stream should be executed in the order that they are launched. The streams

are mapped to Hardware Work Queues (HWQ) in the GPU that create hardware-managed

connections between the CPU and the GPU. Earlier NVIDIA GPUs combine all streams

and map them to only one HWQ, resulting in serialization of kernel launches from differ-

ent streams. The current generation of NVIDIA GPU introduce Hyper-Q[53] - a technique

which constructs multiple HWQs and maps individual streams to each HWQ to realize con-

currency. However, if the number of software streams exceeds the number of HWQs, some

of them will be combined and serialized. In the baseline GPU architectures, the Kernel

Management Unit (KMU) manages multiple HWQs by inspecting and dispatching kernels

at the head of the queue to the Kernel Distributor. Once the head kernel is dispatched, the

corresponding HWQ stops being inspected by the KMU until the head kernel completes.

The KMU also manages all the kernels dynamically launched or suspended by an SMX

(e.g. through use of the CUDA Dynamic Parallelism feature) as discussed in section 2.4.
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The Kernel Distributor (KD) holds all the active kernels ready for execution. The num-

ber of entries in the KD is the same as that of HWQs (32 in the GK110 architecture) as this

is the maximum number of independent kernels that can be dispatched by the KMU. Each

entry manages a set of registers that record the kernel status including kernel entry PC, grid

and TB dimension information, parameter addresses and the number of TBs to complete.

The SMX scheduler takes one entry from the KD in first-come-first-serve (FCFS) order

and sets up the SMX control registers according to the kernel status. It then distributes the

TBs of the kernel to each SMX limited by the maximum number of resident TBs, threads,

number of registers, and shared memory space per SMX.

In today’s GPU, the SMX scheduler dispatches the TBs of a kernel to the SMX in

a round-robin fashion. Each cycle it picks one TB using the increasing order of the TB

ID and dispatches it to the next SMX that has enough available resources to execute this

specific TB. When a kernel is launched, all SMXs are unoccupied and therefore can accom-

modate one TB at each cycle, resulting in TBs being evenly distributed across the SMXs.

For example, scheduling 100 TBs on a 13-SMX K20 GPU would result in SMX0 being

assigned TBs (0, 13, 26, . . . ), SMX1 being assigned TBs (1, 14, 27, . . . ) and so on. When

all the SMXs are fully occupied by the TBs, the SMX scheduler is not able to dispatch new

TBs to the SMXs until one of the older TBs finishes execution. To illustrate it with the same

example, suppose each SMX will be fully occupied by 3 TBs. TB 39 cannot be dispatched

to SMX0 immediately after TB 38 as there are not enough resources available. At some

point, TB 17 on SMX4 becomes the first TB to finish execution so the SMX scheduler can

schedule TB 39 to the SMX4 instead of SMX0. This TB scheduling strategy in the baseline

GPU architecture is designed to ensure the fairness of occupancy across all the SMXs and

thereby execution efficiency. The SMX scheduler keeps updating the control register and

the register in each KD entry to reflect the number of TBs that remain to be scheduled as

well as those still being executed. When all the TBs of a kernel finish, the KD will release

the corresponding kernel entry to accept the next kernel from the KMU.
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During execution, a TB is partitioned into groups of 32 threads called a warp as the

basic thread group executed on a 32-lane Single-Instruction-Multiple-Data (SIMD) unit

made of CUDA cores as shown in Figure 2(b). SMXs maintain the warp contexts for the

lifetime of the TB. At each cycle, the warp scheduler selects a warp from all the resident

warps on the SMX that have no unresolved dependency according to a scheduling policy

(e.g. round-robin) and then issues its next instruction to the cores. Each SMX in the GK110

has four warp schedulers and eight instruction dispatch units, allowing four warps to be

issued simultaneously. By interleaving the execution of all the issued warps, an SMX is

able to achieve hardware multithreading and hide memory latency. All the threads in a warp

execute the same instruction in a lock-step fashion. When there is a branch and threads in

a warp take different paths, the execution of threads on different paths will be serialized.

This is referred to as control flow divergence and results in low SIMD lane utilization. The

baseline architecture uses an immediate post-dominator reconvergence technique (PDOM)

reconvergence stack [24] to track and reconverge the threads that take different branches.

Memory accesses generated by 32 threads in a warp for aligned consecutive word addresses

are coalesced into one memory transaction. Otherwise multiple memory transactions are

generated to retrieve the data which may increase the memory access latency for the entire

warp. This pattern of irregular memory accesses is referred as memory divergence [46].

2.3 Concurrent Kernel Execution

Concurrent kernel execution is realized by distributing TBs from different kernels across

one or more SMXs. If one kernel does not occupy all the SMXs, the SMX scheduler takes

the next kernel and distributes its TBs to the remaining SMXs. When a TB finishes, the

corresponding SMX notifies the SMX scheduler to distribute a new block either from the

same kernel or from the next kernel entry in the KD if the current kernel does not have

any remaining TBs to distribute and the SMX has enough resources available to execute

a TB of the next kernel. Therefore, multiple TBs from different kernels can execute on
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the same SMX [20]. In today’s GPU, kernels can be executed concurrently to the limit of

32 (number of entries in KD). Large kernels which either have many TBs or use a large

amount of resources are not likely to be executed concurrently. On the other hand, if the

kernels in the KD only use a very small amount of SMX resources, the SMX may not be

fully occupied even after all the kernels in the KD are distributed, which results in under-

utilization of the SMX.

2.4 CUDA Dynamic Parallelism and Device-side Kernel Launch

Recent advances in the GPU programming model and architecture support device-side ker-

nel launches - CUDA Dynamic Parallelism [58] - which provides the capability of launch-

ing kernels dynamically from the GPU without going back to the host CPU. This new

functionality has been provided starting with the Kepler GK110 architecture. The kernel,

TB or thread that initiates the device launch is the parent and the kernel that is launched

by the parent is the child. Several device-side API calls can be invoked to specify the child

kernel configuration, setup parameters, and dispatch kernels through device-side software

streams to express dependencies.

When a child kernel is launched, the parameter buffer pointer of the kernel is retrieved

through the device runtime API cudaGetParameterBuffer. Then the argument values

are stored in the parameter buffer and the kernel is launched by calling cudaLaunchDevice.

CDP allows explicit synchronization between the parent and the child through a device run-

time API cudaDeviceSynchronize. Launches can be nested from parent to child, then

child to grandchild and so on. The deepest nesting level that requires explicit synchro-

nization is referred as the synchronization depth. The maximum synchronization depth

supported on GK110 is 24. Parents will be suspended and yield to child kernels if explicit

synchronization is required. If no explicit synchronization is specified, there is no guar-

antee of the execution order between the child and parent. Concurrent execution of the
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child kernels is possible but not guaranteed, depending on the availability of the GPU re-

sources. The 32 concurrent kernels supported on the GK110 architecture include both the

host-launched and device-launched kernels. Parent and child kernels have coherent access

to global memory with full consistency only at the point when parent kernels launch child

kernels or the explicit synchronization is requested. Shared memory and local memory are

exclusive for parent and child kernels and are invisible to each other.

In the baseline GPU architecture, there is a path from each SMX to the KMU so that

all the SMXs are able to issue new kernel launching commands to the KMU. Similar to

host-side launched kernels, parameters are stored in the global memory and the address is

passed to the KMU with all other configurations. When a parent decides to yield to a child

kernel, the SMX suspends the parent kernel and notifies the KMU to hold the suspended

kernel information. The KMU dispatches device-launched or suspended kernels to the KD

along with other host-launched kernels in the same manner. Therefore device-launched

kernels also take advantage of concurrent kernel execution capability.

Current architecture support of device-side kernel launching comes with non-trivial

overhead. The total kernel launching time scales with the number of child kernels, which is

composed of the time spent in allocating the parameters, issuing a new launching command

from the SMX to the KMU, and dispatching a kernel from the KMU to the KD. Device-side

kernel launches also require a substantial global memory footprint. A parent may gener-

ate many child kernels which can be pending for a long time before being executed, thus

requiring the GPU to reserve a fair amount of memory for storing the associated informa-

tion of the pending kernels. On the other hand, the device runtime has to save the states

of the parent kernel when they are suspended to yield to the child kernels at the explicit

synchronization points.
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2.5 GPU Power Modeling

This thesis relies on a high-level GPU power model proposed and used in GPUWattch [41].

The model is implemented and integrated with the cycle-level GPU simulator GPGPU-

Sim [9] based on the McPAT power model [43].

The GPU power is composed of the leakage power, the idle SMX power, as well as

the dynamic power of all the GPU components, including registers, shared memory, ex-

ecution units, caches, main memory, etc. The dynamic power of the GPU components

are computed by collecting the microarchitectural parameters of each component through

GPGPU-Sim and then feeding them into the McPAT model with several adapated blocks

specifically designed for the GPU microarchitecture. The idle SMX power is determined

by executing several microbenchmarks on a real GPU and controlling the number of active

SMXs by using different number of TBs and configurations. The leakage power is modeled

by measuring the GPU constant power as described in [41].

The GPU has multiple execution performance capability and power consumption states

referred as the P-state, each of which has the corresponding voltage and frequency set-

tings [52]. The P-state with the highest performance will also have the highest power

consumption, and vice versa. The DVFS technique has been made available on the cur-

rent NVIDIA GPU to adjust the P-state for the entire GPU. However, P-state of each SMX

cannot be controlled separately. The voltages scaling follows the model used in [2] for

different frequencies under different technology.

2.6 Related Works

There has been considerable effort in developing new GPU algorithms, frameworks and

methodologies for the irregular application domain. This section briefly reviews the re-

search works that are related to this thesis.
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2.6.1 Characterization of GPU Workloads

Characterization and analysis of GPU applications can be traced to a very early time,

mainly focusing on regular applications which have rigid 1D-3D data structures that can

be directly mapped to GPU architectures. Kerr et al. [33] characterizes GPU kernels using

different metrics and proposes methodologies to write GPU programs with better perfor-

mance. The benchmark suites Rodinia [17] proposed by Che et al., Parboil [68] proposed

by Stratton et al., and SHOC [21] proposed by Danalis are some representative bench-

marks used in GPU studies. Research with these benchmarks have focused on approaches

to utilize the structured BSP model efficiently.

Recently people have been investigating the performance of new irregular applications

on GPUs which exhibit more unstructured control flow and memory behavior. These ap-

plications are represented by graph processing, machine learning, relational computing and

etc. Examples of these applications implemented by GPUs include 1) Adaptive Mesh Re-

finement (AMR) used for combustion simulations [36] that operates on grid-like structure

and refines each cell in the grid according to certain temperature conditions, 2) graph col-

oring problem whose goal is to assign a color to each vertex in the graph such that no

neighboring vertices have the same color [19], 3) product recommendation systems that

use item-based collaborative filtering algorithm to construct a similarity matrix containing

the customer purchasing information, and 4) the relational JOIN operator where two input

relation arrays are examined to generate a new relation array consisting of the key-value

pairs where the keys are present in both of the input arrays [22]. To facilitate the devel-

opment of new GPU programming methodologies or execution models, many researchers

have performed systematic characterization and analysis of these irregular applications.

Burtscher et al. [14] study the behavior of irregular applications on GPUs with quantitative

metrics for both control flow and memory access irregularity. Che et al. [16] use the Panno-

tia benchmark suite to illustrate the characteristics of irregular graph applications on GPUs.

These works show that implementations of irregular GPUs applications mainly suffer from
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workload imbalance and scattered memory accesses that cause control flow and memory

irregularity.

2.6.2 Research on Irregular Applications on GPUs

Researchers have been investigating and seeking more efficient solutions for the irregular

applications, e.g., implementing them using the BSP model but with new programming

methodologies. Gupta et al. [27] introduce the Persistent Thread (PT) programming style

on GPUs where a number of TBs that occupy all the SMXs are initially launched and

stay on the GPU for the life time of the kernel. These TBs dynamically generate tasks

that are appended to a globally visible software queue while persistently consuming tasks.

The goal of the PT model is to achieve overall GPU workload balance especially across

the SMXs while processing evolving irregularity in the programs. Merrill [47] implement

Breath-First Search (BFS) on GPUs using fine-grained TBs to adaptively explore the neigh-

bors of vertices in parallel which can utilize the SMXs more efficiently and achieve better

fine-grained load balance. However, such effort has not been applied to other irregular

applications in a more general form. Other research works on GPU irregular applications

include redesigning data structures and re-organizing memory accesses through algorithm,

compiler and runtime optimizations to harness the GPU capability. Solomon et al. [66] in-

vestigate and change the synchronization behavior of the BFS algorithm as well as that of a

Matrix Parenthesization algorithm to improve performance. Zhang et al. [80] present a sys-

tematic transformation framework to remove dynamic irregularities in both control flows

and memory references by data relocation and memory reference redirection. Wu et al. [77]

employ the kernel fusion technique for the implementations of relational algebra operators

on the GPU to reduce memory irregularity in all levels of memory hierarchies. The goal

of these studies is to decrease the irregularity of the control flow and memory behavior or

adapt the algorithm to the GPU architectures.
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2.6.3 Research on Nested Dynamic Parallelism

It has been observed that many of the irregularities can be converted or implemented as

fine-grained dynamically formed structured parallelism. Improving the performance of ir-

regular applications by handling dynamic parallelism is an important and challenging ques-

tion in the GPU programming community. Lars et al. [11] implement the nested parallel

programming language NESL on the GPU by flattening the nested parallelism semantics

using compiler and runtime techniques. Lee et al. [38] propose an auto-tuning framework

that efficiently maps the nested patterns in GPU applications using logical multidimen-

sional domain with pruning constraints and adaptive shared memory management. Stef-

fen et al. [67] propose a dynamic micro-kernel architecture for global rendering algorithm

which supports dynamically spawning threads as a new warp to execute a subsection of the

parent threads code. Orr et al. [59] design a task aggregation framework on GPU based on

the channel abstraction proposed by Gaster et al [25]. Each channel is defined as a finite

queue in virtual memory (global memory space that is visible to both the CPU and the

GPU) whose elements are dynamically generated tasks that execute the same kernel func-

tion. Kim et al. [35] implement a hardware work list and investigate several different work

distribution schemes to process dynamically generated parallel work elements. All these

works have been taking steps toward more effective and efficient solutions for processing

dynamic parallelism in irregular applications.

The prevalence of dynamic parallelism execution models on GPUs such as CDP and

OpenCL device-side enqueue enables a more general, flexible and productive implementa-

tion strategy for the irregular applications by using device-launched kernels for dynamically

generated workload. As a newly introduced technology, the utilizations of CDP have been

reported by a few research works. Wang et al. [71] propose the CDP implementation of

graph-based substructure pattern mining by using device-launched kernels to expand the

depth-first search tree in parallel. DiMarco et al. [23] analyze the clustering algorithm in-

cluding the K-means clustering and the hierarchical clustering with CDP implementation
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which invokes child kernels directly from GPU for data updating to avoid CPU-GPU inter-

action. Zhang et al. [81] apply CDP to a set of graph algorithms on the GPU by adapting to

their data-driven nature. The idea is to launch a kernel from the CPU to process the outer

loop of the graph problems followed by another kernel launched from the GPU to process

the inner loop for vertex expansion. Li et al. [42] uses device-side kernel launches for irreg-

ular loops and recursive computations. Improved overall performance are reported in these

studies when the implementations are carefully tuned to avoid excessive CPU-GPU com-

munications and device kernel launching overhead while taking advantage of the flexibility

of the CDP model.

However, the device-launched kernels in the above implementations are applied only

for the coarse-grained dynamic parallelism and are able to avoid the CPU-GPU communi-

cation overhead in the original non-CDP implementations. In most cases, the fine-grained

dynamic parallelism is the major source of irregularity in these applications and can dom-

inate the performance consequences. Device-side kernel launching functionality is still

difficult to be fully utilized in its current form for the fine-grained dynamic parallelism due

to its non-trivial overhead especially in the scenario where hundreds or thousands of ker-

nels have to be launched. Therefore, researchers have been proposing different extensions

and optimizations. Yang et al. [79] analyze the nested parallelism in several benchmarks

and observe that CDP implementations dramatically reduce memory bandwidth. They then

propose a compiler technique that can dynamically activate or deactivate the GPU threads

to adapt to the evolving parallelism in the applications. Chen et al. [18], on the other hand,

propose a compiler technique “Free Launch” that reuses the parent threads to process the

child kernel tasks and dynamically converts programs written with CDP into the ones that

only employ parent threads. This is accomplished by a set of transformations to deal with

thread mapping, shared memory usage and synchronizations. All these techniques can ap-

ply to the regular BSP execution model and employ compiler and runtime optimizations to

avoid the extra overhead introduced by device-side kernel launching.
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2.6.4 Research on GPU Scheduling

The SMX scheduling strategy has an essential impact on the overall performance of GPUs,

especially when they are incorporated with the cache and memory system performance.

Research works in this area include new warp scheduler, TB schedulers and new memory

system designs. Rogers et al. [63] employ multiple warp schedulers to achieve optimal

cache performance in different scenarios. The schedulers are able to adaptively choose

which warp to be dispatched according to the heuristics that are generated from cache be-

havior. Narasiman et al. [50] propose a two-level warp scheduler to minimize the memory

access latency. The basic idea is to divide pending warps into multiple groups so that warps

in each group can be scheduled together. Group switching only happens when warps from

one group are all stalled because of the long-latency memory operations. Jog et al. [31]

advance the two-level warp scheduling technique to make it TB aware so that the mem-

ory locality existing in the warps that belong to the same TB can be better accommodated

when warp group switching happens. Kayıran et al. [32] demonstrate that the memory

contention could be caused by scheduling maximum possible number of TBs as this limit

is only determined based on SMX occupancy but does not take into account the mem-

ory system performance. They propose to use a dynamic TB scheduling mechanism to

minimize such contention. Lee et al. [39] make the argument that consecutive TBs may

have memory reference locality which can be better utilized to improve cache and mem-

ory system performance when scheduled on the same SMX instead of neighboring SMXs.

Rhu et al. [62] design a locality-aware memory hierarchy that is both able to accept coarse-

grained memory accesses that are common in regular applications as well as adapt to the

fine-grained memory access patterns in irregular applications on GPU. In both cases, the

newly designed memory system is able to achieve high bandwidth utilization. While the

above works have demonstrated considerable effort in memory system aware scheduling,

none of them are directly applicable to the domain of dynamic parallelism in GPUs where

new types of locality behaviors are introduced, e.g., spatial and temporal reference locality
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between parent kernels and child kernels.

2.6.5 Research on GPU Energy Efficiency

Many studies have explored and analyzed the energy efficiency of GPUs. Different power

models have been proposed [44][29] to estimate the GPU power consumption more accu-

rately, which could in turn facilitate more research on power-based GPU optimizations.

DVFS and power gating technology have been proposed for GPUs on multiple levels.

Jiao et al. [30] study the benefit of concurrent kernel execution from the power consump-

tion perspective and combine it with DVFS to improve energy efficiency. Ge et al. [26]

investigate the impacts of DVFS on applications executed on the Tesla K20 GPU. Abdel-

Majeed et al. [3] propose a tri-modal register access control unit as well as an active

mask aware activity gain unit to reduce both the leakage power and the dynamic power

of GPU register files. Lee et al. [40] present a warp-compression scheme that reduces the

data redundancy within a warp by compressing the register values so that power gating

can be applied to unused register banks to save register file power consumption. Abdel-

Majeed et al. [4] propose to schedule instructions of the same type together so that the

execution units can have a long window of idlenss to be turned off with power gating.

They [5] also discover the existence of significant fine-grained pipeline bubbles in warp

execution and convert these bubble to potential energy saving opportunities using a spe-

cific scheduling startegy so that power-gating can be applied on the idle warp lanes to

reduce leakage energy. Xu et al. [78] study the behavior of branch divergence and propose

a warp scheduler to schedule warps with similar branch divergence patterns together to cre-

ate long warp lanes idleness for applying power gating. Wang et al. [76] proposes to power

gate GPU caches when there are no cache requests. While the energy saving optimizations

proposed by the above works are based on the GPU applications implemented with regular

BSP model and may also show benefits in the dynamic parallelism from a general perspec-

tive, there is still a lack of new energy efficiency studies that are applicable to the dynamic
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parallelism settings on GPU.

2.6.6 Summary

In summary, while the earlier studies and research works discuss the irregular applications

on GPUs from various aspects, this thesis differs with them in addressing the problem

of fine-grained dynamic parallelism in irregular applications and seeks a more efficient

solution with new GPU execution model extensions and optimizations.
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CHAPTER III

DYNAMIC PARALLELISM IN IRREGULAR APPLICATIONS

As the first part of this thesis, this chapter explores multiple data intensive irregular CUDA

applications on GPUs with CUDA Dynamic Parallelism (CDP) support and establishes the

concept of Dynamically Formed Pockets of Structured Parallelism (DFP) through detailed

analysis of the benchmark applications in terms of control flow and memory behavior.

3.1 Impact of Irregular Applications

The CUDA and OpenCL programming model is structured around massively parallel threads

grouped into TBs organized into 1D to 3D grids. Data parallel computations over multidi-

mensional arrays of data fit well within this model where each thread can be mapped into

a logically contiguous partition of the data set.

Emerging data intensive applications are increasingly irregular by operating on unstruc-

tured data such as trees, graphs, relational data and adaptive meshes. These applications

have inherent time-varying, workload-dependent and unpredictable memory and control

flow behavior that may cause severe workload imbalance, poor memory system perfor-

mance and eventually low GPU utilization. For example, typical GPU implementations for

vertex expansion operations that are commonly used in graph problems assign one thread

to expand each vertex in the vertex frontier with a loop that iterates over all the neighbors.

Since the number of neighbors for each vertex can vary, the implementation may suffer

from poor workload balance across threads. Further, vertex expansion can generate (de-

pending on the choice of data structure) non-coalesced memory accesses due to the lack

of spatial locality across adjacent vertices leading to multiple memory transactions and

increasing memory divergence, e.g., threads finish memory instructions at different times.

Another common strategy for handling unstructured data is to use loop iterations within
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each BSP thread to access non-contiguous data elements. This too leads to increased mem-

ory divergence and load imbalance. As data structures become more diverse, the mapping

of data to threads becomes more complex and variance in memory access patterns and

control flow grow accordingly.

3.2 Dynamically Formed Pockets of Structured Parallelism

Structured memory accesses and uniform control flow make the best use of the computa-

tional and memory bandwidth of GPUs. In spite of the observations in Section 3.1, one

can observe Dynamically Formed Pockets of Structured Parallelism (DFP) in these ap-

plications that can locally effectively exploit the GPU compute and memory bandwidth.

For example, in vertex expansion common data structures used in graph problems (e.g.

Compressed Sparse Row or CSR [65]) store neighbors of one vertex in consecutive ad-

dresses and the memory access can be coalesced when neighbors are explored in parallel.

In adaptive mesh refinement used in combustion simulations, certain parts of the mesh will

be refined in parallel into a finer grained mesh creating hierarchical nested grid structures

each of which may be of different dimensions. In general, DFP commonly occurs in one of

the following two patterns:

Static Data Structure Traversal. Applications have irregular but statically defined

data structures while the algorithms that traverse them encounter varying degrees of paral-

lelism. Graph and tree traversal algorithms such as breadth first search (BFS) are examples

in this category.

Dynamic Data Generation. The application data structures themselves are generated

during execution and their form and extent are themselves data dependent. For exam-

ple, combustion simulation (adaptive mesh refinement), tree generation (indexing) and the

relational JOIN operator all start from an initial data set and dynamically generate new

irregularly structured data sets in parallel.

Given the preceding view of the behaviors of irregular applications the remainder of
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this chapter addresses the characterization and analysis.

3.3 Implementation Using CUDA Dynamic Parallelism

The introduction of device-side kernel launching in GPUs enables an implementation scheme

that new child kernels are dynamically invoked for any identified DFP in irregular appli-

cations. In the vertex expansion example, the original neighbor exploration loop can be

replaced by a dynamically launched kernel that employs uniform control flow. The ap-

proach can potentially increase the performance by reducing control flow divergence. For

some common data structures used in this problem such as Compressed Sparse Row (CSR)

where neighbor IDs of each vertex are stored in consecutive addresses, parallel neighbor

exploration may also generate coalesced memory accesses.

A common code structure for implementing DFP using device-launched kernels in

CDP is shown in Listing 3.1, where a parent thread checks some conditions and deter-

mine whether new parallel workload should be launched through childKernel either to

traverse a new portion of the data structure or to generate new data sets. A typical condi-

tion is that whether the dynamic workload has sufficient parallelism, which is designed to

avoid the low utilization of the SIMD lanes in each SMX. A straightforward understanding

of CDP implementation is that it replaces the parallel loops performed by threads in the

non-CDP implementation by child kernels. Specifically, such implementations consider

the following aspects.

1 //executed by each thread in parent kernel

2 threadData = getData(threadId);

3 if(condition(threadData))

4 childKernel <<<TBS, THREADS>>>

5 (threadData , ...);

Listing 3.1: Common code structure that handles DFP with CDP
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Parallel computation workload. As defined in DFP, the newly launched kernels han-

dle the parallel computation workload that is discovered dynamically by a parent thread at

runtime. This is in comparison to the unbalanced GPU implementations where each thread

could use a loop with different iteration count to deal with the computation. Since parent

threads only have to issue a child kernel and child kernels handle only parallel computa-

tion with little or no control divergence, the CDP implementation can achieve higher GPU

utilization. However, it should be noted that sometimes there is not enough parallelism to

launch a child kernel. For example, if the neighbor degree in vertex expansion problem is

less than the warp size, SIMD lanes cannot be fully utilized if a new kernel is launched for

expanding that vertex. In this case, the computation will still be left to the parent kernel.

Memory access patterns. The memory access pattern in a CDP implementation can

be different from a non-CDP implementation. The memory addresses that are accessed by

one thread in different loop iterations in a non-CDP implementation are now accessed by

contiguous threads in a child kernel using one memory instruction. This could effectively

change the number of coalesced memory accesses as well as cache hit rate.

Recursion. Recursive kernel launch is possible with the CDP support on GPUs. For

some of the unstructured applications, it is necessary to recursively launch new computa-

tion dynamically. Non-CDP implementation tends to either convert the recursive algorithm

to loop iterations or manage stack-based data structure at both the host and the device. The

CDP implementation simply calls the same kernel recursively.

Concurrent kernel execution. Child kernels are launched independently from each

other and can be executed concurrently. The implementation uses one stream for each child

kernel launch. Although no concurrency can be guaranteed from the perspective of GPU

architectural support of CDP [58], the use of CUDA streams can increase the possibility to

the most extent.

Child kernel configuration. A common practice for GPU programming is to partition

workload between TBs and then between threads. The same argument holds true for child
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kernels in the CDP implementations. The implementations experiment with different TB

sizes and grid sizes to generate optimal performance. TB sizes should be multiple of 32 to

eliminate any intra-warp thread divergence for child kernels. When the block size is not a

multiple of 32, the remaining threads are executed by the parent kernel. This is analogous

to the loop transformation that unrolls a loop k times by creating two loops - one that is

unrolled k times and one that has loop bounds of (N mod k) where N is the loop bound.

Shared memory. The current form of CDP does not allow the child kernel to access the

shared memory declared by the parent kernel. Therefore, if the dynamically launched child

kernel needs to access the data stored in the shared memory, CDP implementations either

pass the data value directly as the kernel argument or dump them into global memory. The

former solution can only deal with small number of arguments and the latter solution could

introduce large memory and runtime overhead.

Synchronization. CDP supports explicit synchronization between parent and child

kernels at the substantial cost of both execution time and memory footprint. Therefore, the

implementation would avoid using synchronization as much as possible. However, there

are still a few cases that synchronization is necessary to conserve either temporal or spatial

ordering consistency.

3.4 Characterization of CDP Implementations of Irregular Applications

In order to identify the major characteristics of DFP in the irregular applications, ex-

periments are performed on multiple GPUs with Kepler GK110 architectures, including

NVIDIA Tesla K20c, Geforce Titan and Tesla K40. Table 1 shows the features of these

GPUs. Both non-CDP implementations and CDP implementations of the unstructured ap-

plications are examined. The CUDA 5.5 toolkit is used including the nvcc compiler and the

runtime library. For CDP implementations, the compiler also links against CUDA device

runtime library, i.e. -lcudadevrt. The CUDA Profiler NVProf 5.5 [55] is used to mea-

sure the metrics and the overall execution time of the kernels. Benchmark performance is
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Table 1: Configurations of the GPUs used for CDP characterization experiments

Tesla K20c Geforce Titan Tesla K40
SMX 13 14 15
Cores 2496 2688 2880
Clock Frequency (MHz) 706 837 745
Global Memory Capacity (GB) 5 6 12
Memory Bandwidth (GB/s) 208 288 288

evaluated on K20c and CDP overheads are compared across all the three GPUs.

The non-CDP implementation are compared with the CDP implementation of the un-

structured applications. In both cases, inputs are evenly partitioned among threads and

TBs. In the non-CDP case, DFP is handled by individual threads respectively, generally

through loops. The CDP implementation uses dynamically launched kernels for parallel

computations detected through DFP.

To evaluate the impact of CDP implementations on both the control flow and memory

access, the following hardware metrics are used.

warp_execution_efficiency (WEE). This metric measures the ratio of active threads

within a warp to the total number of threads in a warp (32) for all executed instructions.

It is an indication of the control divergence or workload unbalance in the unstructured

applications. Note that NVProf does not allow separate metrics measurement for parent

kernels and child kernels in CDP, so the metric measured by NVProf are affected by the

parent kernel execution, the child kernel execution and the child kernel launching over-

head (recall that the overhead includes child kernel parameter passing and device runtime

management). The following approach is uesd to measure and compute the warp execu-

tion efficiency excluding CDP kernel launching overhead and referred to as the ideal WEE

(WEEI) since it represents the ideal efficiency that can be achieved:

WEEI =
WEE_parent ∗ inst_parent + WEE_children ∗ inst_children

inst_parent + inst_children

In the equation, inst_parent and inst_children are the effective executed instruction by the

parent and children respectively. When measuring WEE_parent and inst_parent, the child
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kernel launch code are removed from the parent kernel. A warm up kernel is executed

before the parent kernel to make sure the parent kernel execution path does not change when

child kernels are removed. When measuring WEE_children and inst_children, the child

kernels are extracted and launched from the hosts using the same configuration and input

data as the device launch. By doing this the CDP kernel launching overhead is excluded in

the measurement. The argument is that this approach is accurate enough to generate WEEI

as it only depends on execution path but not any hardware-dependent factors such as warp

scheduling and child kernel scheduling policy. The purpose of WEEI is to demonstrate the

potential benefit of CDP implementation of DFP by setting up the possible upper bound.

ldst_replay_overhead (LSRP). This metric measures the average number of replays

for each load/store instruction executed. Instructions are replayed when there is bank con-

flict or non-coalesced memory access. Therefore, LSRP is able to capture the memory

irregularity [14]. Since LSRP may be dependent on the execution history (e.g. cache and

RAM access history), it is not reasonable to separate the parent kernel and child kernels

to measure ideal LSRP for CDP implementations as for WEE. However, measuring the

number of load/store instructions separately leads to the conclusion that the load/store in-

structions from kernel launching overhead only comprise a very small percentage of all

the load/store instructions, so the directly measured LSRP can still be a good indication for

memory divergence affected by CDP.

l2_cache_hit_rate (L2HIT). This metric measures the L2 cache hit rate and captures

the memory locality in the program either for a thread or for threads from interleaved warps.

Again, L2HIT is measured directly without excluding the child kernel launching overhead.

3.4.1 Benchmarks

Eight irregular benchmark applications are selected with different input data sets as shown

in Table 2. The source code of these applications are from the latest benchmark suites

27



or implemented as described in recently published papers. These applications are re-

implemented with CDP. The following is a brief description of these irregular applications.

Adaptive Mesh Refinement (AMR): AMR operates on grid-like structure and refine

each cell in the grid according to certain conditions. AMR is used to represent the combus-

tion simulation problem [36] where each cell in the grid is given an average temperature.

Cells are refined to smaller cells according to the energy computed out of the average tem-

perature. The process stopped until the energy of each cell in the grid is below a threshold.

Non-CDP implementation uses one kernel for each refine level and cell refinement is per-

formed by each individual thread with loop iterations. CDP implementation launches cell

refinement kernel recursively when energy threshold condition is satisfied.

Barnes Hut Tree (BHT): The BHT problem is part of the Barnes-Hut NBody Simula-

tion [15] which computes the forces between the points in the space. A tree is built where

each leaf node only contains at most one data point. Each thread takes one data point and

compute the force between that point and any other point if they are close or the center of

mass of any other cell if they are far away. The algorithm needs each thread to traverse

the tree depending on the point-to-point distance. CDP implementation launches a new

kernel if one thread needs another level of tree traversal. The input to BHT are randomly

generated data points.

Breadth-First Search (BFS): BFS algorithm searches and visits all vertices in a graph

using breath-first patterns. Graph is stored in the CSR format where a column buffer stores

all the edges that are connected to each source vertex and a row buffer stores the start-

ing edge index of each vertex in the column buffer. The vertex frontier is maintained for

each search iteration. Each thread takes one vertex in the frontier, expands the edges,

marks visit information and puts unvisited vertices to the new frontier. CDP implementa-

tion launches child kernels dynamically to expand the vertices in parallel according to the

vertex degree (number of edges connected to the vertex). Three different graphs are used

as the input to BFS [8]: citation network (citation), USA road network (usa_road) and a

28



sparse matrix from Florida Sparse Matrix Collection (cage15). Note that while the imple-

mentation of BFS algorithm used in this thesis focuses on the data-driven methodology,

CDP implementations apply to other implementation schemes such as the topology-driven

methodology [51] as DFP still exists in the vertex expansion operation.

Graph Coloring (CLR): Graph Coloring problem is widely used in lots of research

domains, e.g. compiler register allocations. The goal is to assign a color to each vertex in

the graph such that no neighboring vertices have the same color. The algorithm [19] starts

by assigning each vertex with a random integer and then in each iteration, each thread

takes a vertex and marks itself with the iteration color if its value is larger than any adjacent

vertex. The vertices with color assigned are ignored in subsequent iterations. Similar as

BFS, CDP implementation launches new child kernels to examine the neighbors for each

vertex. The input to CLR are the three graphs used in BFS.

Regular Expression Match (REGX): Regular expression match is the centric for

many search and pattern match problems, e.g. network packet routing. The regular ex-

pression pattern is represented by finite automata (FA) and stored in the memory as a graph

where each vertex represents a state and the edges represent transitions between states [75].

Each thread takes an input stream and traverse the FA. If a match is found, the correspond-

ing state in the FA is returned. CDP implementation recursively traverses the FA and ex-

amine the transition edges in parallel. The input to REGX are the DARPA network packets

collection (regx_darpa) [45] and random string collection (regx_string).

Product Recommendation (PRE): Product recommendation systems are widely used

in industry especially on e-commerce website. These systems predict the customer pur-

chase behavior according to past purchase records. The focus is on the item-based collab-

orative filtering algorithm for recommendation systems. One important part of item-based

collaborative filtering is to construct an M ×M similarity matrix of the items by examining

the M items purchased by N customers. Each thread examines one customer and records

item-item pairs into the similarity matrix [49]. For P items purchased by one customer,
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there are P × (P − 1) pairs to be recorded. CDP implementation launches child kernels to

record these pairs in parallel. The input to PRE are data from MovieLens [1].

Relational Join (JOIN): The JOIN operator is relational algebra operator that is com-

monly used in relational database computation. The inner JOIN algorithm is evaluated

where two input relation arrays are examined to generate a new relation array consisting

of the key-value pairs where the keys are present in both of the input arrays. Each thread

takes one element from one of the input arrays and uses binary search to find matching keys

from the other array [22]. Workload imbalance can happen when matched element count

varies for threads. CDP implementation resolves the problem by launching a new kernel

to gather the result elements in parallel for each thread. The input data to JOIN are syn-

thetic data arrays that have uniform distribution (join_uniform) and gaussian distribution

(join_gaussian).

Single-Source Shortest Path (SSSP): SSSP is a classic graph problem which finds the

paths with the minimal cost (sum of weights) from a given source vertex to all the vertices

in the graph. Except the source vertex, all vertices are starting from infinite cost. It is then

updated by examining the neighbors in each iteration to find the one with minimum cost

after adding the weight from that neighbor to the vertex. CDP implementation launches

a new kernel to examine the neighbors and uses reduction to find the minimum. Input to

SSSP are the three graphs used in BFS.

3.4.2 Evaluation and Analysis

This section reports a comprehensive evaluation and analysis of the benchmark perfor-

mance. First the CDP and non-CDP implementations of the benchmarks are compared in

control flow behavior, memory behavior and overall execution time to illustrate the poten-

tial impact of handling DFP with CDP on the unstructured applications. Different inputs to

the benchmarks are used to to capture behavior and performance on various characteristics.

Then CDP overhead is evaluated from several aspects including kernel launch, memory
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Table 2: Benchmarks used in the CDP characterization experimental evaluation

Application Input Data Set
Adaptive Mesh Refinement (amr) Combustion Simulation[36]
Barnes Hut Tree (bht) [15] Random Data Points
Breadth-First Search (bfs) [47] Citation Network[8]

USA Road Network[8]
Cage15 Sparse Matrix [8]

Graph Coloring (clr) [19] Citation Network[8]
USA Road Network[8]
Graph 500 Logn20[8]
Cage15 Sparser Matrix [8]

Regular Expression Match (regx) [75] DARPA Network Packets [45]
Random String Collection

Product Recommendation (pre) [49] Movie Lens [28]
Relational Join (join) [22] Uniform Distributed Data

Gaussian Distributed Data
Single Source Shortest Path (sssp) [37] Citation Network[8]

USA Road Network[8]
Fight Network [70]
Cage15 Sparser Matrix[8]

footprint and algorithm overhead. This section also analyzes the child kernel workload

intensity and scheduling policy.

3.4.2.1 Control Flow Behavior

The WEE of non-CDP implementations and both WEE and WEEI of CDP implementations

are shown in Figure 3. Recall that WEE-CDP includes the child kernel launching overhead.

WEE of the non-CDP implementations ranges from 21.9% to 98.8%. Low WEE in-

dicates lower SIMD lane utilization or more workload imbalance in unstructured applica-

tions. By using CDP implementation for DFP, the workload imbalance or control diver-

gence can be reduced and WEE can be effectively increased. WEEI is shown here which

is the ideal WEE that can be achieved by applying CDP implementation excluding the

kernel launching overhead. For most applications, WEEI increases 2.2% to 65.3% from

WEE-nonCDP. Examples of such applications include AMR, BFS_citation, CLR_citation,

SSSP_citation, PR, REGX and JOIN, all operating on highly irregular data structure or
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Figure 3: Warp Execution Efficiency for non-CDP and CDP implementations.

generating highly irregular computation. The refinement of AMR is completely dependent

on the data point values and varies to a large degree from one thread to another. For the

citation network graph, vertex degree which represents the number of cited authors varies

largely from each other. The potential benefit is substantial when using CDP implementa-

tions for these benchmarks.

On the other hand, some applications are showing no or negative potential improve-

ment. For example, BFS, CLR and SSSP with USA road network do not achieve any

WEEI increase at all. The reason is that the degree of vertices in USA road network graph

generally ranges from one to four, which does not trigger the condition to launch a new

child kernel (recall that at least 32 threads are needed in a child kernel). These benchmarks

already have high WEE because of the relatively balanced workload among threads and

CDP implementations would not be necessary. It is even more interesting to notice that

BFS and CLR for graph cage15 have WEEI decreased from WEE-nonCDP. The reason

is that cage15 have relatively small variance in vertex degree. Launching a child kernel

for some vertices but not for others actually intensifies the workload imbalance problem,
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Figure 4: Average number of load/store instructions replay.

which results in decrease of WEE.

WEE-CDP shows the real measurement of WEE for CDP implementation. When in-

cluding the kernel launching overhead, the SIMD lane efficiency decreases dramatically.

Compared to WEE-nonCDP, WEE-CDP decreases from 3.5% to 20.2%. One hypothesis is

kernel launching overhead introduces a large number of instructions with very low SIMD

lane utilization and bring down the overall WEE (see kernel launching time analysis in sec-

tion 3.4.2.4). The more child kernels are launched to increase WEEI, the more overhead is

introduced and the larger drop-down can be observed from WEEI to WEE-CDP.

Insight. For unstructured applications that exhibit severe workload imbalance and rel-

atively high dynamic parallelism, CDP can potentially reduce control flow divergence.

However, for applications like BFS_cage15 and CLR_cage15 that do not have high thread-

level workload variance, CDP does not show performance advantages. A strategy can be

envisioned for invoking CDP based on the degree of workload variance.
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3.4.2.2 Memory Behavior

Figure 4 shows LSRP for non-CDP implementation and CDP implementation to interpret

the memory access irregularity. For all the benchmarks, CDP implementations reduce

LSRP up to 58.8%. BFS, CLR and SSSP for cage15 and REGX have the most significant

LSPR decrease among all benchmarks. These benchmarks have more scattered memory

access by each thread within a warp in the non-CDP implementations. For example, the

graph cage15 have a distributed neighbor list so the vertex expansion from different threads

access vertices far away from each other, generating many memory transactions. By using

CDP to handle DFP in unstructured applications, threads in the child kernel executing

the same memory instruction are more likely to access contiguous addresses. Memory

divergence can be greatly reduced for these benchmarks since more coalesced memory

accesses are generated.

The graph citation network, road network and PRE, on the other hand, do not show

much change in LSRP. They have the characteristic that neighbor vertices are stored close

to each other in the memory (Citations tends to be from the same list of authors for a

research area, nearby cities are connected together in the road network and for the PRE

system, people are more likely to choose similar items), so even the original non-CDP

implementation does not exhibit much memory access irregularity. CDP implementations

do not show much benefit in these cases.

The LSRP behaviors for AMR and JOIN have different explanations. Unlike other

benchmarks that traverse some irregular data structures which may generate non-coalesced

memory accesses, AMR and JOIN have irregular data computation procedures by follow-

ing dynamic and data-dependent execution paths rather than irregular memory access pat-

terns. They would also exhibit low memory divergence and not take advantage from CDP

implementations in terms of LSRP.

The L2 cache hit rate is also measured with the metric L2HIT as shown in Figure 5.

Most of the benchmarks show unchanged or decreased L2 cache hit rate due to the fact that
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Figure 5: L2 cache hit rate.

CDP implementations break the spatial locality found in the non-CDP implementations

where each thread may access contiguous addresses in different loop iterations.

The exceptions are two REGX benchmarks which show 13.2% and 20.1% cache hit rate

increase respectively. Considering LSRP is also increased, their behaviors demonstrate the

CDP implementations reserve both spatial locality within a thread and across the intra-warp

threads. In these cases the child kernels with close memory address accesses are scheduled

together, thereby increasing the cache hit rate.

Insight. Depending on the data arrangement and access patterns, CDP may reduce mem-

ory divergence by generating more coalesced memory accesses. However, it could reduce

cache hit rate since accesses that were serialized in time in a non-CDP implementation now

are redistributed across child kernels that execute concurrently. This can be mitigated by

sophisticated child kernel scheduling policies much for the same reasons interleaved warp

scheduling is effective at hiding memory latency.
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3.4.2.3 Overall Performance

To evaluate the overall performance of the benchmarks using CDP implementation, the

execution time of the computation kernels of the applications are measured. Note that the

data transfer time between CPU and GPU is excluded. The following is the approach used

to measure the ideal CDP implementation time excluding the kernel launching overhead.

First, each child kernel is replaced with a dummy kernel that has an empty function body

and the overall execution time is measured as t1. Then all the child kernel launches are

removed to measure the execution time t2. In both cases, a warm up kernel is executed

before the parent kernel to fill in the result data so that the execution paths of the parent

kernel do not change. The time t1− t2 is used as the ideal child kernel launching time and is

excluded from the actual CDP implementation execution time to generate the ideal execu-

tion time as a lower bound. Note the t1 − t2 depends on the number of child kernels which

is determined by the patterns of dynamic parallelism in each application. While the most

straightforward CDP implementation is chosen without explicitly controlling the number

of child kernels, more sophisticated implementations are possible and could potentially

reduce the overhead.

The speedup of both CDP ideal and actual execution time over non-CDP implemen-

tations are shown in Figure 6. BFS, CLR and SSSP with USA road network input shows

no speedup or slow down for both scenarios because the child kernels launching threshold

is never satisfied and no child kernel is launched. Other benchmarks show 1.13x-2.73x

speedup for CDP-ideal. REGX_darpa and REGX_string have highest ideal speedup 1.96x

and 2.73x respectively, which can be explained through the observation that CDP imple-

mentations have both positive impact on WEEI and LSRP. However, when including the

kernel launching overhead, no benchmark can perform better than the non-CDP implemen-

tation with an average of 1.21x slow down. An interesting fact is that the higher speedup

of CDP-ideal over non-CDP, the more slowdown of CDP-actual over non-CDP, since ap-

plications that can take more advantage of CDP implementations have more child kernel
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Figure 6: Speedup of CDP implementations (ideal and measured) of unstructured applica-
tions over non-CDP implementations.

launches and incur more overhead.

Insight. As the CDP implementations manage to reduce both control flow and memory

access irregularity which are two essential metrics that affect the performance on the GPU,

execution speed up is expected. However, with CDP support on GPUs in its current form,

the overhead of device-side kernel launches have a substantially negative influence on the

overall performance negating those gains.

3.4.2.4 CDP Overhead

As discussed in the previous sections, CDP implementations introduce substantial overhead

which may negate potential performance benefit brought by handling DFP using device-

side kernel launches. Such overhead is characterized in different aspects to get a compre-

hensive understanding of CDP.

CDP Launching Time The CDP launching time is measured using t1− t2 with different

thread numbers in the parent kernel to control the total number of child kernel launches.
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Figure 7: CDP launching time.

The output PTX code (assembly generated by compiling CUDA code with the nvcc com-

piler) is examined to make sure the dummy child kernels are not eliminated by the compiler

optimizations. Recall that the CDP launching time includes time spent on kernel parameter

parsing, calling cudaGetParameterBuffer and cudaLaunchDevice, as well as the time

for device runtime to setup, enqueue and dispatch the child kernels. The time spent on

data dumping by the parent kernel to pass data to the child kernels is excluded from CDP

launching time.

Figure 7 shows the result for different child kernel count across three different GPU

platforms. For all three GPUs, the CDP launching time stays around 1ms for kernel launch-

ing count from 32 to 512. Then it scales with the kernel launch count and reaches 143.3ms,

115.5ms and 98.57ms for 256K child kernel launches on K20c, Titan and K40 respectively

(in comparison, the execution time of a typical kernel in the non-CDP implementation of

BFS_citation is 3.27ms). The same method to measure the kernel launching time for each

benchmark is used and the ratio over the overall execution time is computed and shown in

Figure 6 which has average value of 36.1% and max value of 80.6%. The common prob-

lem for CDP implementation of the unstructured applications is that they require a large

number of child kernel launches but the computation workload in each child kernel is very
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Figure 8: Reserved global memory for CDP kernel launch and synchronization.

light. As the launching time scales with the number of child kernels, the performance can

dramatically degrade.

Memory footprint When using CDP, global memory in GPUs may be reserved by de-

vice runtime for child kernel launch. Device runtime maintains a kernel launching pool for

all the launched but pending execution kernels due to unresovled dependency or lack of re-

sources. The size of this pool is referred as pending launch count limit and can be specified

using cudaDeviceSetLimit with cudaLimitDevRuntimePendingLaunchCount as its

option. CDP execution reports a runtime error if the number of kernels pending execu-

tion on the fly exceeds this limit. For every pending launched child kernel, the device

runtime uses reserved memory to store the launching information such as the parameters

and configurations. On the other hand, CDP allows parent kernels and child kernels to

explicitly synchronize with each other by calling cudaDeviceSyncrhonize. The device

runtime has to save the states of parent kernels when they are suspended and yield to the

child kernels at the synchronization point. The reserved memory size depends on the syn-

chronization depth which can be specified using cudaDeviceSetLimit with the option

cudaLimitDevRuntimeSyncDepth. Again, CDP execution reports an runtime error if the

actual synchronization depth exceeds the limit.
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The reserved memory size is measured by calling the runtime API cudaMemGetInfo

before and after cudaDeviceSetLimit and compute the free memory size difference.

Figure 8 shows the memory footprint for both scenarios.

As shown in Figure 8(a), the memory size reserved stays the same for pending launch

count limit less than 32, which are 172MB, 186MB and 202MB for K20c, Titan and K40

respectively. If the pending launch count limit does not exceed 32K, the memory reserved

is less than 10% of the total global memory on K20c. The average minimum pending

launch count limit required to execute each benchmark and the reserved memory size are

shown in Figure 9. Again, the benchmarks show diverse behaviors. REGX_string requires

127K pending launch count limit and 1.2GB reserved memory. As discussed before, CDP

implementation of REGX can greatly increase WEEI and decrease LSRP by launching

many child kernels. As a tradeoff, it requires much more memory space reserved. To the

extreme opposite, the graph USA road network requires zero pending launch count limit

since the parallelism degree is very low in DFP and CDP is not activated. However, there

are still 172MB reserved memory which is the minimum cost to pay to link against device

runtime library with CDP functionality enabled.

Figure 8(b) shows that the memory reserved for synchronization scales linearly with

the synchronization depth. The highest synchronization depth 24 requires 2.2GB global

memory reservation on K20c which is 44% of the total available GPU memory. A close

analysis at the measurement shows that for each increase in synchronization depth, the

memory sizes reserved are 95MB, 102MB and 109MB for K20c, Titan and K40 respec-

tively, which scale with the number of SMXs in each GPU. This is because when the parent

kernels are suspended, all the data (including local, shared memory data and etc.) currently

occupying each SMX should be saved. As the three GPUs have the same SMX architec-

ture, the total amount of reserved memory should be that of each SMX multiplied by the

SMX count.
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Figure 9: Pending launch count limit and reserved memory size.

Algorithm overhead Besides the overhead caused by the device runtime, sometimes the

algorithm itself has to be changed for CDP implementation and may introduce overhead.

Shared memory usage in a parent kernel can be tricky as the only ways child kernels can

access the data is either through child kernel parameters or expensive global memory by-

pass. Therefore, algorithm has to be adapted to reduce shared memory passing between the

parent and the children.

Spatial ordering requirement is another source that may introduce overhead. For exam-

ple, in the JOIN benchmark, each block uses prefix-sum to compute the output offset for the

result data since JOIN requires them to be strictly ordered. While in the CDP implemen-

tation, two prefix-sums are required instead of only one in the non-CDP implementation.

One is used before the child kernel launch to compute the offset for child kernel output

data, and the other one is required after the child kernel launch to compute the offset for

remaining data that are not generated by the child kernel.

Insight. CDP introduces multiple sources of overhead from algorithm to device runtime

management. The memory footprint reduces available global memory which can be a crit-

ical problem for large HPC applications. Both the kernel launching overhead and memory
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Figure 10: Total child kernel launching count and their average thread count.

footprint scale with the number of launched child kernels. To reduce the overhead re-

quires either the programmers to decrease child kernel launch count by developing more

performance-aware algorithms for CDP implementation, or the GPU architecture and soft-

ware stack to advance the technology for reducing the time and space overhead of device-

side kernel launching.

3.4.2.5 Child Kernel Workload Intensity and Scheduling

The child kernel launching traces generated by NVProf is investigated to understand the

child kernel workload intensity and scheduling efforts. First the maximum number of child

kernels launched by a parent kernel is counted, together with the average thread number

in these child kernels in each benchmark, is shown in Figure 10. It can be noted that

while a very large amount of child kernels are launched (up to 156K as in REGX_string),

they are generally fine-grained kernels that perform very light workload (average kernel

thread count is 44). Also note that the number of child kernels launched is only slightly

larger (average 1.3x) than pending launch count limit shown in Figure 9, which implies

that most child kernels are launched together in a short period of time to quickly fill the

launching pool.
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Figure 11: Kernel execution trace for BFS_citation iteration 5.

Then the time stamp of the parent and child kernels for one iteration in BFS_citation

benchmark is shown in Figure 11. Each vertical line in the figure marks the start and end

execution time of a kernel. The first line is for the parent kernel and the remaining are

for the child kernels. The general trend shown by the figure is that kernels are scheduled

and executed with increasing time stamps until completion, which conform to the fact that

child kernels are launched when resources are available. There are two stages shown in the

figure that present dramatic increase in time stamp, denoted by C1 and C2. C1 marks the

early stage of the application, when the parent kernel starts launching several child kernels.

A close look at C1 shows that 1) child kernels start execution before the parent kernel is

finished and 2) child kernels are executed concurrently (31 child kernels start execution at

the same time). C2 marks the stage when the TBs in the parent kernel start processing a

new portion of the input vertices and generate a new round of child kernel launches. It

shows that previous round of child kernel launches are gradually completed followed by

the concurrent execution of newly launched kernels.

Insight. Using CDP often leads to more fine grained kernels compared to the host-side

launched kernels, i.e., CDP implementations can generate a large number of child kernel
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launches, where often each kernel is relatively fine grained. This makes performance more

sensitive to kernel level concurrency, kernel level scheduling policies, and kernel launching

overhead. Alternatively, application developers may wish to be cognizant of, and sensitive

to, kernel level granularity when making nested kernel calls on the GPU.

3.5 Characteristics of DFP

The above experimental evaluations of CDP implementations identify the following char-

acteristics of DFP.

High Kernel Density: Depending on the problem size, DFP in irregular applications

can show substantially high density where a large number of device kernels are launched.

The high DFP density results in high kernel launching overhead.

Low Compute Intensity: Device kernels launched for DFP are usually fine-grained

and have relatively low degrees of parallelism. Measurements across several irregular ap-

plications show that the average number of threads in each device-launched kernel is around

40 which is close to the warp size.

Workload Similarity: As DFP may exist within each thread in a kernel, and all threads

are identical, the operations performed by each dynamically launched kernel are usually

similar. However their instantiation may be with different degrees of parallelism. As per

the nature of DFP, most device-launched kernels invoke the same kernel function but can

have different configurations and parameter data.

Low Concurrency and Scheduling Efficiency: DFP generated by different threads are

independent of each other and are implemented by launching device kernels through differ-

ent software streams to enable concurrency. However, current kernel scheduling strategies

on the GPU imposes a limit on kernel-level concurrency where the maximum number of

kernels that can be executed concurrently is 32 in the GK110 architecture. As fine-grained

device kernels can only be scheduled and executed concurrently up to this limit, there may
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not be enough warps to fully occupy the SMX. The limited warp concurrency could poten-

tially cause either low utilization (if some of the SMXs are not assigned with any warps) or

poor memory latency hiding ability (if SMXs are assigned with small number of warps).

3.6 Summary

This chapter studies the dynamically formed structured data parallelism in unstructured

applications and implement them with the new CUDA Dynamic Parallelism technique on

GPUs. A set of metrics are used to evaluate and analyze the potential performance ben-

efit of the CDP implementations on the control flow behavior and memory behavior on

several unstructured benchmark applications. This chapter also presents a comprehensive

understanding of the efficiency of CDP in terms of runtime, memory footprint and algo-

rithm overhead. The experiments show that CDP implementation can achieve 1.13x-2.73x

potential speedup but the large kernel launching overhead could negate the performance

benefit and impose a barrier to realizing a highly-efficient dynamic parallelism execution

model.

The subsequent chapters of this thesis propose a solution to process DFP according to

its characteristics with a set of optimizations to achieve overall performance improvement

for irregular applications on the GPUs.
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CHAPTER IV

DYNAMIC THREAD BLOCK LAUNCH

To address the challenges imposed by the current form of dynamic parallelism support on

GPU while utilizing the DFP features in the irregular applications, this chapter introduces

the Dynamic Thread Block Launch (DTBL) execution model by explaining the motivation,

illustrating the mechanism, proposing the architecture extension, analyzing the potential

benefits and demonstrating its performance advantage by experimental results.

4.1 Motivation

While current support of device-side kernel launch on the GPU in the form of CDP provides

substantial productivity for handling DFP, the major issues of kernel launching overhead,

large memory footprint, and less efficient kernel scheduling prevent the performance effec-

tive utilization of this functionality.

This chapter proposes to extend the current GPU execution model with DTBL where

thread blocks rather than entire kernels can be dynamically launched from a GPU thread.

Thread blocks (TBs) can be viewed as light weight versions of a kernel. A kernel can make

nested TB calls on demand to locally exploit small pockets of parallel work as they occur

in a data dependent manner. When a GPU kernel thread launches a TB, it is queued up

for execution along with other TBs that are initially created by the kernel launch. Using

DTBL, the set of TBs that comprise a kernel are no longer fixed at launch time but can vary

dynamically over the lifetime of a kernel.

As this chapter will demonstrate, the dynamic creation of thread blocks can effectively

increase the SMX occupancy, leading to higher GPU utilization. The dynamic TB launch

overhead as well as memory footprint are significantly lower than that of kernel launch.

Thus, DTBL enables more efficient support of irregular applications by introducing a light

weight mechanism to dynamically spawn and control parallelism.
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4.2 DTBL Execution Model

The execution model of DTBL allows new TBs to be dynamically launched from GPU

threads and coalesced with existing kernels for scheduling efficiency. The current GPU

BSP execution model is extended with several new concepts and terms to support these

new features.

Figure 12 shows the execution model and thread hierarchy of DTBL. Any thread in a

GPU kernel can launch multiple TBs with a single device API call (see later in this sec-

tion). These TBs are composed as a single aggregated group utilizing a three dimensional

organization similar to those of a native kernel. An aggregated group is then coalesced with

a kernel - this simply means the TBs in the aggregated groups are added to the existing pool

of TBs remaining to be scheduled and executed for that kernel. In fact, an aggregated group

may be coalesced with the kernel of the parent thread (Figure 12a) or with another kernel

(Figure 12b). In either case, the newly generated aggregated group execute the same func-

tion code as the kernel with which it is coalesced, and may have different input parameter

values. Multiple aggregated groups can be coalesced to a single kernel.

In DTBL, coalescing is essential to increasing the TB scheduling performance due to i)

TBs with the same configuration can be scheduled together to achieve the designed occu-

pancy for the original kernel, possibly leading to higher GPU utilization and ii) coalesced

aggregated groups only require one common context setup including kernel function load-

ing, register and shared memory partitioning which can reduce the scheduling overhead.

More details are described in the microarchitecture later in Section 4.3.

The kernel that is initially launched either by the host or by the device using the kernel

launching API is called a native kernel. The TBs that compose the native kernel are native

TBs. TBs in an aggregated group are called aggregated TBs. When a native kernel is

coalesced with new aggregated groups, it becomes an aggregated kernel.

The idea of DTBL can be illustrated with two examples. The first example is Adaptive

Mesh Refinement (AMR) corresponding to the execution model in Figure 12a. The DTBL
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Figure 12: DTBL execution model and thread hierarchy where (a) shows the aggregated
groups launched by kernel K1 are coalesced to itself and (b) shows the aggregated groups
launched by kernel K2 are coalesced to another kernel K3.

implementation uses a native kernel K1 for the initial grid where each thread may launch

nested aggregated groups for recursively refining the cells that are processed by the thread.

All the new aggregated groups are then coalesced with K1 which become one aggregated

kernel. The second example is BFS corresponding to the execution model in Figure 12b

where a parent kernel K2 assigns threads to all the vertices in the vertex frontier and each

parent thread may launch new TBs to expand the vertex neighbors. The kernel K3 is a

native kernel previously launched by the host or the device for vertex expansion. The new

TBs generated by K2 are coalesced to K3 rather than the parent.

Thread Hierarchy Within an Aggregated TB: As in GPUs today, DTBL uses a three-

dimensional thread index to identify the threads in an aggregated TB. When coalesced to a

native kernel, the number of threads in each dimension of an aggregated TB should be the

same as that of a native TB. Therefore, aggregated TBs use the same configuration and the

same amount of resources as native TBs, minimizing the overhead when scheduled on an

SMX.

Aggregated TB Hierarchy Within an Aggregated Group: An aggregated group in DTBL

is analogous to a device-launched kernel. Within an aggregated group, aggregated TBs are

organized into one/two/three dimensions, identified by their three-dimensional TB indices.

The value of each TB index dimension starts at zero. Similar to launching a device kernel,
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Table 3: List of device runtime API calls for DTBL

Device Runtime API Calls Description
cudaGetParameterBuffer Reused from the original CUDA device run-

time library to allocate parameter buffer for a
new aggregated group.

cudaLaunchAggGroup A new API call introduced by DTBL pro-
gramming interface which launches a new ag-
gregated group.

the programmers supply data addresses through parameters and use TB indices within an

aggregated group as well as thread indices within an aggregated TB to index the data values

used by each thread.

Synchronization: DTBL uses the same synchronization semantics as the current GPU

execution model, i.e., threads within an aggregated TB can be synchronized explicitly by

calling a barrier function. However, like the base programming model no explicit barrier is

valid across native or aggregated TBs. Unlike the parent-child synchronization semantics

in the device-kernel launching model in CDP, aggregated groups cannot be explicitly syn-

chronized by its invoking kernel. Therefore, it is the programmers’ responsibility to ensure

the correctness of the program without any assumption on the execution order of aggre-

gated groups. When various irregular applications are implemented using device kernel

launching, any explicit synchronization between the child and parents is avoided due to its

high overhead in saving the parent state to the global memory, so these applications can be

easily adapted to the new DTBL model. A more thorough analysis of the usage of explicit

synchronization is left as future work.

Memory Model: DTBL also preserves the current GPU memory model, i.e., global mem-

ory, constant memory and texture memory storage are visible to all native and aggregated

TBs. Shared memory is private to each thread block and local memory is private to each

thread. No memory ordering, consistency, or coherence is guaranteed across different na-

tive or aggregated TBs.
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__global__ parent( ) {

  cudaStream_t s;

  cudaStreamCreateWithFlags(&s,  );

  void *buf=cudaGetParameterBuffer();

     //fill the buf with data

  cudaLaunchDevice(child, buf,

    grDim, tbDim, sharedMem, s);

}

__global__ child( ) {

}

__global__ parent( ) {

  

  void *buf=cudaGetParameterBuffer();

     //fill the buf with data

  cudaLaunchAggGroup(child, buf, 

    aggDim, tbDim, sharedMem);

}

__global__ child( ) {

}

(a) (b)

Figure 13: Example code segments for (a) CDP and (b) DTBL

Programming Interface: DTBL defines two device runtime API calls on top of the orig-

inal CUDA Device Runtime Library for CDP as listed in Table 3. The first API call

cudaGetParameterBuffer is the same as in the original device runtime library that is

used to allocate parameter space for an aggregated group. On the other hand, the API call

cudaLaunchAggGroup is newly defined for dynamically launching an aggregated group.

Programmers can pass the kernel function pointer when calling this API to specify the

kernel to be executed by and possibly coalesce with the new TBs. Similar to the device

kernel launching API call cudaLaunchDevice in CDP, cudaLaunchAggGroup configures

the new aggregated group with thread and TB numbers in each dimension, shared memory

size, and parameters. Note that unlike a device kernel launching which should be config-

ured with an implicit or explicit software stream to express dependency on other kernels,

the aggregated thread groups are automatically guaranteed to be independent of each other.

Example code segments for both CDP and DTBL implementations are shown in Figure 13

where a parent kernel launches child kernels in CDP and corresponding aggregated groups

in DTBL. The similarity between the two code segments demonstrate that DTBL intro-

duces minimal extensions to the programming interface.
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4.3 Architecture Extensions and SMX Scheduling

To support the new DTBL execution model, the GPU microarchitecture is extended to pro-

cess the new aggregated groups that are launched from the GPU threads. The baseline

microarchitecture maintains several data structures for keeping track of deployed kernels

and the TBs that comprise them. These data structures are extended to keep track of dy-

namically formed aggregated groups and associating them with active kernels. This is

achieved in a manner that is transparent to the warp schedulers, control divergence mech-

anism, and memory coalescing logic. Figure 14 illustrates the major microarchitecture

extensions to support DTBL. With the extended data structure and SMX scheduler, new

aggregated groups are launched from the SMXs, coalescing to existing kernels in the Ker-

nel Distributor and scheduled to execute on SMX with all other TBs in the coalesced kernel.

The detailed procedure and functionality of each data structure extension are described as

follows.

Launching Aggregated Groups

This is the first step that happens when the aggregated group launching API is invoked

by one or more GPU threads. The SMX scheduler will react correspondingly to accept the

new aggregated groups and prepare necessary information for TB coalescing in the next

step.

Similar to the device kernel launching command, DTBL introduces a new aggregation

operation command in the microarchitecture. This command will be issued when the ag-

gregated group launching API calls are invoked simultaneously by one or more threads

within the same warp. These aggregated group launches are then combined together to be

processed by the aggregation operation command.

For each newly formed aggregated group, the SMX allocates global memory blocks

through the memory controller 1O to store the parameters and configuration information 2O.

The request procedure is the same as that of a device-side kernel launch. After parameters

51



are loaded to the parameter buffer, the SMX passes the aggregation operation command to

the SMX scheduler with the information for each aggregated group 3O.

Thread Blocks Coalescing

In this step, the SMX scheduler receives the aggregation operation command and at-

tempts to match the newly launched aggregated groups with the existing kernels in the

Kernel Distributor Entries (KDE) for TB coalescing based on aggregated group configu-

rations. If the coalescing is successful, the SMX scheduler will push the new TBs in a

scheduling TB pool for the corresponding kernel. The scheduling pool is implemented

with several registers in microarchitecture to form a linked-list data structure for efficient

TB scheduling. The process is implemented as a new part of the DTBL scheduling policy 4O

which is illustrated in Figure 15 and described in the following.

For each aggregation group, the SMX scheduler first searches the KDE to locate any

existing eligible kernels that can accept the new TBs 5O. Eligible kernels should have the

same entry PC addresses and TB configuration as the aggregated group. If none are found,

the aggregated group is launched as a new device kernel. Experiments show that an ag-

gregated group is able to match eligible kernels on average 98% of the time. Mismatches

typically occur early, before newly generated device kernels fill the KDE.

If an eligible kernel is found, the SMX scheduler allocates an entry in the Aggregated

Group Table (AGT) with the three-dimensional aggregated group size and the parameter

address 6O. The AGT is composed of multiple Aggregated Group Entries (AGE) and serves

to track all the aggregated groups. Aggregated groups that are coalesced to the same eligible

kernel are linked together with the Next field of the AGE 7O. The AGT is stored on chip for

fast accesses with a limit on the number of entries. When the SMX scheduler searches for a

free entry in the AGT, it uses a simple hash function to generate the search index instead of

a brute-force search. The hash function is defined as ind = hw_tid & (AGT_size - 1) where

hw_tid is the hardware thread index in each SMX and AGT_size is the size of AGT. The
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Figure 14: Microarchitecture Flow for DTBL

intuition behind the hash function is that all threads on an SMX have the same probability

in launching a new aggregated group. The SMX scheduler is able to allocate an entry if

the entry indexed by ind in AGT is free and the ind is recorded as aggregated group entry

index (AGEI). Otherwise it will record the pointer to global memory where the aggregated

group information is stored 2O.

Now that an eligible kernel and the corresponding KDE is found, the TBs in the new

aggregated group are added to the set of TBs in the eligible kernel waiting be executed. The

AGEI or the global memory pointer of the new aggregated group information is used to up-

date the two KDE registers Next AGEI (NAGEI) and Last AGEI (LAGEI) if necessary 8O.

NAGEI indicates the next aggregated group to be scheduled in the kernel. It is initial-

ized when a kernel is newly dispatched to the Kernel Distributor to indicate no aggregated

groups exists for the kernel. LAGEI indicates the last aggregated group to be coalesced to

this kernel.

All the kernels in the Kernel Distributor are marked by the FCFS 9O with a single bit
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when they are queued to be scheduled and unmarked when all its TBs are scheduled. The

FCFS controller is extended with an extra bit to indicate if it is the first time the kernel is

marked by the FCFS. This is useful when the SMX scheduler attempts to update NAGEI

under two different scenarios.

At the first scenario, when a new aggregated group is generated, the corresponding eli-

gible kernel may have all its TBs scheduled to SMXs, be unmarked by the FCFS controller

and only be waiting for its TBs to finish execution. In this case, the NAGEI is updated with

the new aggregated group and the kernel is marked again by the FCFS controller so that

the new aggregated group can be scheduled the next time the kernel is selected by the SMX

scheduler.

At the other scenario, the eligible kernel is still marked by FCFS as it is either waiting

in the FCFS queue or is being scheduled by the SMX scheduler. In this case, there are

still TBs in the eligible kernel to be scheduled and NAGEI is only updated when the new

aggregated group is the first aggregated group to be coalesced to this kernel.
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Unlike NAGEI, LAGEI is always updated every time a new aggregated group is gener-

ated for the kernel to reflect the last aggregate group to be scheduled. With NAGEI, LAGEI

and the Next field of AGE, all the aggregated groups coalesced to the same kernel are linked

together to form a scheduling pool.

Aggregated Thread Blocks Scheduling on SMX

The last step in DTBL scheduling manages to schedule all the aggregated TBs on the

SMXs. The SMX scheduler first determines whether the native kernel or a specific aggre-

gated group should be scheduled according to the registers value generated by the previous

step for the scheduling pool. Then it distributes the TBs in the kernel or the aggregated

group to the SMXs with a set of registers to track their status. As described in the follows,

this is implemented by updating the algorithm used by the baseline GPU microarchitecture

to distribute and execute the native TBs.

When the SMX scheduler receives a kernel from the Kernel Distributor, it checks if

it is the first time the kernel is marked by the FCFS controller. If so, the SMX scheduler

starts distributing the native TBs followed by aggregated TBs pointed to by the NAGEI

(if any). Otherwise it directly starts distributing the aggregated thread blocks pointed by

NAGEI since the native TBs have already been scheduled when the kernel was previously

dispatched by the FCFS controller. Another possibility is that the new aggregated groups

are coalesced to a kernel that is currently being scheduled, the SMX scheduler will then

continue to distribute the new aggregated groups after finishing distributing the TBs from

the native kernel or current aggregated group. The SMX scheduler updates the NAGEI

every time after finishing scheduling the current aggregated group and starts the next ag-

gregated group indicated by the Next field of AGE pointed by NAGEI.

Once the SMX scheduler determines the native kernel or aggregated group to sched-

ule, it records the corresponding index of KDE (KDEI) and AGEI in its control registers

(SSCR)10O. SSCR also has a NextBL field to store the index of the next TB to be distributed

55



to the SMX. Note that since the TBs in the native kernel and the aggregated groups have

the same configuration and resource usage as constrained by the DTBL execution model,

the SMX scheduler can use a static resource partitioning strategy for both the native and

aggregated TBs, saving the scheduling cost.

The SMX scheduler then distributes TBs to each SMX. The Thread Block Control

Register (TBCR)11O on each SMX is updated correspondingly using the same value of KDEI

and AGEI in SSCR to record the kernel index in the Kernel Distributor and the aggregated

group index in the AGT so the SMX can locate the function entry and parameter address

correctly for the scheduled TB. The BLKID field records the corresponding TB index within

a kernel or an aggregated group. Once the TB finishes execution, the SMX notifies the SMX

scheduler to update the ExeBL field in the KDE12O and AGE13O which track the number of

TBs in execution.

When all the TBs of the last aggregated group marked by LAGEI have been distributed

to an SMX, the SMX scheduler notifies the FCFS controller to unmark the current kernel

to finish its scheduling. The corresponding entries in the Kernel Distributor or AGT will be

released once all the TBs complete execution.

4.4 Overhead Analysis

The hardware overhead is caused by extra data structures introduced by the architectural ex-

tensions (shaded boxes in Figure 14). New fields in the KDE (NAGEI and LAGEI), FCFS

Controller (the flag to indicate if the kernel has been previously dispatched), SSCR (AGEI)

and SMX TBCR (AGEI) together take 1096 Bytes of on-chip SRAM. The size of AGT

determines how many pending aggregated groups can be held on-chip for fast accesses. A

1024-entry AGT takes 20KB of on-chip SRAM (20Bytes per entry) which composes the

major hardware overhead (about 0.5% of the area taken by the shared memory and regis-

ters on all SMXs). Section 4.6.2.4 analyzes the sensitivity of performance to the size of the

AGT.
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The major timing overhead of launching aggregated groups includes time spent on al-

locating parameters, searching the KDE and requesting free AGT entries. As discussed be-

fore, launching from the threads within a warp are grouped together as a single command.

Therefore, the overhead is evaluated on a per-warp basis. The procedure of allocating a

parameter buffer for an aggregated group is the same as that for a device-launch kernel, so

the measurement is used directly from a K20c GPU. The search for eligible KDE entry can

be pipelined for all the simultaneous aggregated groups launches in a warp, which takes a

maximum of 32 cycles (1 cycle per entry). Searching for a free entry in AGT only takes

one cycle with the hash function for each aggregated group. If a free entry is found, there

will be zero cost for the SMX scheduler to load the aggregated group information when it is

scheduled. Otherwise the SMX scheduler will have to load the information from the global

memory and the overhead is dependent on the global memory traffic. It should be noted

that allocating the parameter buffer and searching the KDE/AGE can happen in parallel,

the slower of which determines the overall time overhead of aggregated group launching.

An alternative approach to the proposed microarchitecture extension is to increase the

number of KDE entries so that each aggregated group can be independently scheduled from

KDE. The argument is that the hardware overhead introduced by AGT could be potentially

saved. However, there are also some major side effects for this approach.

First, since aggregated groups are scheduled independently, they are not coalesced so

that TBs with different configurations are more likely to be executed on the same SMX. In

consequence, the designed occupancy for the original kernels is less likely to be achieved

and the execution efficiency could be decreased. For the same reason, the context setup

overhead such as kernel function loading and resource allocation across SMXs could be

increased. The context setup overhead is expected to scale with the number of aggregated

group scheduled from KDE.

Second, hardware complexity and scheduling latency in the KMU and FCFS controller

scales with number of KDE. For example, the number of HWQ could be increased to keep
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up the kernel concurrency, and the overhead for FCFS controller to track and manage the

status of each aggregated group also increases linearly.

4.5 Benefits of DTBL

DTBL is beneficial primarily for the following three reasons. First, compared to device-

side kernel launching, dynamic TB launches have less overhead. Instead of processing the

device-side launching kernel command through a long path from the SMX to KMU and

then to the Kernel Distributor, TBs are directly grouped with active kernels in the Kernel

Distributor by the SMX scheduler. For irregular applications that may generate a large

amount of dynamic workload, reducing the launch overhead can effectively improve the

overall performance.

Second, due to the similarity of the dynamic workload in irregular applications, dy-

namically generated TBs are very likely to be coalesced to the same kernel which enables

more TBs to be executed concurrently. Recall that the concurrent execution of fine-grained

device kernels are limited by the size of Kernel Distributor. The DTBL scheduling breaks

this limit as aggregated TBs are coalesced into a single native kernel that can take full ad-

vantage of the TB level concurrency on the SMX. This more efficient scheduling strategy

may increase the SMX occupancy which is beneficial in increasing GPU utilization, hiding

memory latency and increasing the memory bandwidth.

Third, both the reduced launch latency and increased scheduling efficiency helps to

consume the dynamically launched workload faster. As the size of reserved global memory

depends on the number of pending aggregated groups, DTBL can therefore reduce the

global memory footprint.

4.6 Experiments and Evaluation

This section evaluates the performance of DTBL from various aspects by implementing

and executing multiple CUDA irregular applications.
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Table 4: GPGPU-Sim configuration parameters for DTBL simulation

SMX Clock Freq. 706MHz
Memory Clock Freq. 2600MHz
# of SMX 13
Max # of Resident Thread Blocks per SMX 16
Max # of Resident Threads per SMX 2048
# of 32-bit Registers per SMX 65536
L1 Cache / Shared Mem Size per SMX 16KB / 48KB
Max # of Concurrent Kernels 32

4.6.1 Methodology

The experiments are performed on the cycle-level GPGPU-Sim simulator [9]. The GPGPU-

Sim is first configured to model the Tesla K20c GPU as the baseline architecture. The con-

figuration parameters are shown in Table 4. The SMX scheduler is also modified to support

concurrent kernel execution on the same SMX. The warp scheduler is configured to use the

greedy-then-oldest scheduling policy [63]. As discussed before, the proposed microarchi-

tecture extension is transparent to the warp scheduler so DTBL can take advantage of any

warp scheduling optimization that is useful to the baseline GPU architecture.

To support the device-side kernel launch capability (CDP on K20c), the device run-

time of GPGPU-Sim is extended with the implementation of corresponding API calls. The

latency of these API calls which is part of the kernel launching overhead is modeled by per-

forming the measurement on the K20c GPU with the clock() function and use the average

cycle values from 1,000 measurements across all the evaluated benchmarks. According to

the measurements, the API cudaGetParameterBuffer and cudaLaunchDevice have a

linear latency model per warp basis denoted as Ax + b where b is the initialization latency

for each warp, A is the latency for each API called by one thread in the warp and x is the

number of the threads calling the API in a warp. Note that the execution of the device API

calls will be interleaved for all the warps so that some portion of the latency introduced can

also be hidden by the interleaving, similar as the memory latency hiding. Besides the API

latency, there is also a kernel dispatching latency (from KMU to Kernel Distributor), which
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Table 5: Latency modeling for CDP and DTBL (Unit: cycles)

cudaStreamCreateWithFlag (CDP only) 7165
cudaGetParameterBuffer (CDP and DTBL) b: 8023, A: 129
cudaLaunchDevice (CDP only) b: 12187, A: 1592
Kernel dispatching 283

is measured using the average time difference between the end of the first kernel and the

start of the second kernel that is dependent of the first kernel.

The accuracy of the simulation, especially the kernel launching overhead, is verified

by running all the benchmarks both on the K20c GPU and the simulator and use the same

correlation computation method by GPGPU-Sim. The proposed architecture extension for

DTBL is implemented with overhead assignment described in Section 4.4 where the latency

for parameter buffer allocation is the same as the cudaGetParameterBuffer API call and

all other aggregated group launching latency is directly modeled by the microarchitecture

extension. The latency numbers used in the simulator are shown in Table 5.

The benchmark applications used for evaluating DTBL is the same as the ones used in

Chapter 3. However, some of the inputs to the benchmark are changed for a more com-

plete performance analysis. The final list of benchmark applications are shown in Table 6.

The original CUDA implementations are referred as flat implementations since the nested

algorithmic structure is flattened and effectively serialized within each thread. An excep-

tion is the bfs implementation [47] where dynamic parallelism for DFP is implemented

by employing TB and warp level vertex expansion techniques. For this application, the

implementation uses CDP device kernels or DTBL aggregated group to replace the TB or

warp level vertex expansion. The benchmarks with CDP are implemented in the way that

a device kernel is launched for any DFP with sufficient parallelism available. The same

methodology applies to DTBL except that a device kernel is replaced with an aggregated

group for a fair comparison. Note that the data structures and algorithms of the original

implementations are not changed in the CDP/DTBL implementations for a fair compari-

son. The proposed DTBL model for dynamic parallelism can also be orthogonal to many
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Table 6: Benchmarks used in the experimental evaluation of DTBL

Application Input Data Set
Adaptive Mesh Refinement (AMR) Combustion Simulation[36]
Barnes Hut Tree (BHT) [15] Random Data Points
Breadth-First Search (BFS) [47] Citation Network[8]

USA Road Network[8]
Cage15 Sparse Matrix [8]

Graph Coloring (CLR) [19] Citation Network[8]
Graph 500 Logn20[8]
Cage15 Sparser Matrix [8]

Regular Expression Match (REGX) [75] DARPA Network Packets [45]
Random String Collection

Product Recommendation (PRE) [49] Movie Lens [28]
Relational Join (JOIN) [22] Uniform Distributed Data

Gaussian Distributed Data
Single Source Shortest Path (SSSP) [37] Citation Network[8]

Fight Network [70]
Cage15 Sparser Matrix[8]

optimizations, e.g. worklist for work pulling and pushing to achieve high-level workload

balance, as they can be applied in either flat or nested implementations.

DTBL only uses device runtime API for thread block launching and does not introduce

any new instructions or syntax. Therefore, the CUDA compiler NVCC6.5 is used directly

to compile the benchmarks. Extending the syntax to support higher-level programming

interface similar as the CUDA kernel launching annotation “<<<>>>” is left as future work.

The same dataset is used for both the GPU and the simulator. All the applications are

executed entirely from the beginning to the end except for regx. The application regx is

divided into several sections with the memory manually populated in GPGPU-Sim, and

only computation kernels executed. Then all the computation kernels of the benchmarks

are traced to generate the performance data.

4.6.2 Result and Analysis

This section reports the evaluation and analysis of the benchmark in various performance

aspects.
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4.6.2.1 Control Flow and Memory Behavior

The control flow behavior is evaluated using the warp activity percentage which is defined

as average percentage of active threads in a warp as shown in Figure 16. The memory

behavior is evaluated using DRAM efficiency which is computed as dram_efficiency =

(n_rd+n_write)/n_activity where n_rd and n_write are the number of memory read and

write commands issued by the memory controller and n_activity is the active cycles when

there is a pending memory request. DRAM efficiency reveals the memory bandwidth uti-

lization and increases when there are more coalesced memory accesses in a given period of

time, as shown in Figure 17. On average, warp activity percentage of both CDP and DTBL

increases 10.7% from the flat implementations and DRAM efficiency increases 0.029 or

1.14x for CDP and 0.053 or 1.27x for DTBL, demonstrating that one important benefit of

both CDP and DTBL is to dynamically generate parallel workload for DFP that have more

regular control flow and coalesced memory accesses.

Since both DTBL and CDP launch dynamic parallel workloads, they fundamentally be-

have the same in reducing control flow divergence and obtain the same amount of increase

in warp activity percentage. Some benchmarks, such as amr and join_gaussian, have highly

irregular computation workload and severe imbalance problem across the threads in their

flat implementations and achieve most substantial increases in warp activity percentage

(45.3% and 21.3%). Warp activity percentage also increases for the two bfs benchmarks.

Although the baseline bfs implementation has already utilized TB-level and warp-level

vertex expansion to handle dynamic parallelism, CDP and DTBL are able to use variable

TB sizes to achieve even better workload balance. The benchmark clr_graph500 does not

show obvious changes and clr_cage15 even shows a slight drop (-5.9%) because the graphs

graph500 and cage15 already have relatively small variance in vertex degree that generate

balanced workload even in the flat implementation. Launching dynamic parallel workloads

for some vertices but not for others may break the original balance and cause more con-

trol flow divergence. This is consistent with the understanding that CDP and DTBL are
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Figure 16: Average Percentage of Active Threads in a Warp

intended to work well over unbalanced workloads.

The clr_cage15 and sssp_cage15 are two benchmarks that achieve highest DRAM effi-

ciency increase. In their flat implementations, as the graph cage15 has a distributed neigh-

bor list, the threads access vertex data far away from each other in memory and result in

more non-coalesced memory accesses and memory transactions. In comparison, CDP and

DTBL implement the DFP such that threads are more likely to access consecutive mem-

ory addresses. Memory irregularity could be significantly reduced in this case which is

demonstrated by increasing DRAM efficiency.

4.6.2.2 Scheduling Performance

By coalescing dynamically generated TBs to existing kernels on the fly, DTBL is able to

increase the TB-level concurrency for fine-grained parallel workloads. Lower launching

latency for DTBL also contributes to the increase in the number of available TBs that can

be scheduled concurrently by the SMX scheduler. Therefore, DTBL is able to outperform

CDP by increasing SMX occupancy. The SMX occupancy is evaluated by measuring the

average number of active warps in each cycle on all of the SMXs divided by maximum
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Figure 17: DRAM Efficiency

number of resident warps per SMX. The influences of scheduling strategy and launch-

ing latency are isolated by comparing the measurement with and without launching la-

tency. The results are shown in Figure 18 where the SMX occupancy achieved by CDP and

DTBL without modeling launching latency are denoted as CDP-Ideal (CDPI) and DTBL-

Ideal (DTBLI) respectively. DTBLI has average of 17.9 or 1.24x increase over CDPI. The

benchmark bht achieves the highest occupancy increases (24.6 or 1.38x) since it generates

many fine-grained parallel workloads (average number of threads in a device kernel or an

aggregated group is 33.4 which is close to warp size). Therefore, in its CDP implementa-

tion, the limited kernel-level concurrency on the GPU causes only a few threads to be active

on GPUs which results in low SMX occupancy and utilization. DTBL, on the other hand,

is able to aggregate all these fined-grained TBs together to fully utilize SMX with a higher

occupancy. Other benchmarks that generate dynamic workloads with higher parallelism

(coarse-grain workload) have less of a significant increase in SMX occupancy, represented

by pre (0.46 or 1.01x) with an average 1527.9 threads in a device kernel or an aggregated

group.
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Figure 18: SMX Occupancy

If the launching latency is included for both CDP and DTBL, SMX occupancy de-

creases from both CDPI and DTBLI (average -10.7 or -13.5% for CDP and -5.2 or -7.6%

for DTBL). The launching latency for a device kernel is higher than an aggregated group

and causes a larger drop in SMX occupancy for CDP. In regx_string, DFP has high oc-

currence and generates a large number of dynamic parallel workloads. While DTBLI out-

performs CDPI in SMX occupancy (11.2 or 1.14x) because of the increased thread block

concurrency, the launching latency even enlarges the gap (25.4 or 1.48x). The increased

SMX occupancy of DTBL also improves the DRAM efficiency as shown in Figure 17 (av-

erage 0.022 or 1.08x higher than CDP) because of the memory latency hiding capability.

The DTBL scheduling efficiency is further evaluated by comparing the average wait-

ing time (time between launching and starting execution) and memory footprint for dy-

namically generated kernels or aggregated groups as shown in Figure 19 and Figure 20

respectively. Again, the waiting time is compared with and without launching latency. On

average, DTBLI reduces the waiting time by 18.8% from CDPI while DTBL reduce the

waiting time by 24.1% and the memory footprint by 25.6% from CDP. Similar to the SMX

occupancy behavior, DTBLI of pre and join_uniform show little change in average waiting
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Figure 19: Average Waiting Time for a Kernel or an Aggregated Group

time compared because they generate coarse-grained dynamic workloads. The benchmark

regx_string has the highest DFP occurrence so it benefits most from DTBL by showing

the largest waiting time decrease (-41.8%) and significant memory footprint reduction (-

51.2%). The benchmark clr_graph500 does not show much change in the average waiting

time when including the launching latency while its SMX occupancy is significantly af-

fected by the launching latency because all the dynamically launched kernels or aggregated

groups are forced to wait for other kernels to complete and release resources before they

can be executed, which takes much longer than the launching latency. For the same reason,

this benchmark also does not have any memory footprint reduction as the information of

all the aggregated groups have to be saved while they are pending. One solution to this

problem is to enable the spatial sharing for the native kernels and the aggregated thread

groups using the software techniques introduced in [6] or hardware preemption introduced

in [69]. This way the aggregated groups are able to execute on the SMX soon after they

are generated and the memory reserved for holding their information could be released for

new aggregated groups.
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Figure 20: Memory Footprint Reduction of DTBL from CDP

4.6.2.3 Overall Performance

The overall speed up of CDPI, DTBLI, CDP and DTBL over the flat implementation is

shown in Figure 21. Note that data transferring time between CPU and the GPU is ex-

cluded. As CDPI and DTBLI decrease control flow divergence and increases memory

efficiency, they achieve average 1.43x and 1.63x ideal speedup respectively. However the

non-trivial overhead of kernel launching negates the CDP performance gain, which results

in an average of 1.16x slow down from the flat implementations. DTBL, on the other hand,

shows an average of 1.21x speedup over the flat implementation and 1.40x over the CDP,

which demonstrates that DTBL preserves the capability of CDP in increasing control flow

and memory regularity for irregular applications while using a more efficient scheduling

strategy with lower launching overhead to increase the overall performance. The bench-

mark bfs_usa_road and sssp_flight show very little change in the DTBL speedup. The

reason is that most of vertices in the input graphs have very low vertex degree. The DFP

rarely occurs in these two benchmarks so that very few device kernels or aggregated groups

are launched. Therefore, both CDP and DTBL have very limited effect on the overall per-

formance. In fact, these two benchmarks also show limited changes in other characteristics

evaluated and discussed previously. Two benchmarks have slow down instead of speedup:
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Figure 21: Overall Performance in terms of Speedup over Flat Implementation

clr_graph500 (0.97x) and regx_string (0.95x). The benchmark clr_graph500 operates on

the graph500 input data set which has a very balanced vertex degree. Therefore, the flat

implementation has good control flow and memory behavior. Using CDP or DTBL does

not help reduce the control flow or memory irregularity but introduces extra launching

overhead. For regx_string, while the large number of dynamically generated aggregated

groups in brings significant speedup ideally (2.73x for CDPI and 3.10x for DTBLI), they

also introduce substantial launching overhead even for DTBL and negates the performance

gains.

4.6.2.4 Sensitivity to AGT Size

As the major architecture extension, the size of AGT determines the hardware overhead as

well as the application performance. A larger AGT can increase the number of aggregate

groups stored on-chip and thereby the scheduling efficiency at the cost of more on-chip

SRAM. The trade off is identified by investigating the performance change over different

AGT sizes as shown in Figure 23. In average, decreasing AGT size from 1024 to 512

causes 1.31x slow down and increasing to 2048 causes 1.20x speedup. Benchmarks that

use relatively high number of dynamic aggregated groups such as bht and regx are more
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Figure 22: KDE Hitrate

sensitive to AGT size.

4.6.2.5 Sensitivity to KDE Hitrate

As the architectural extensions are designed to support DTBL, evaluation is performed for

the two individual components: Kernel Distributor and Aggregated Group Register Table.

For the Kernel Distributor, the KDE hit rate is measured when an aggregated group is

locating an eligible kernel. For AGT, measure the entry hit rate is measured when the SMX

scheduler tries to find a free entry. These evaluations enable the analysis of the aggregated

groups behavior in the unstructured applications and their sensitivity to the architecture.

Figure 22 shows the KDE hit rate with an average of 0.818. Higher hit rate indicates

higher DFP similarity. Recall that aggregate groups that do not hit an entry in the Kernel

Distributor will be launched as a device kernel which is more expensive than coalescing

with an existing kernel. For most of the benchmarks, DFP is very similar to each other so

the number of kernels that exist in the life time of an application is very small since most

of the aggregated groups are coalesced with the same kernel instead of launched as a new

device kernel. Aggregated groups fail to locate an entry in the Kernel Distributor mainly
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Figure 23: Performance Sensitivity to AGT Size Normalized to 1024 Entries

because of two reasons. First, no kernel that is calling the same entry function has been

invoked. This usually happens at the early stage of a program especially when multiple

threads are launching aggregated groups simultaneously. One solution is to launch a warm-

up native kernel at the start of the application. The warm up kernel will be staying at the

Kernel Distributor to receive aggregated thread blocks. Second, aggregated groups have

different configurations (e.g. thread number in a thread blocks) than the kernel that resides

in the Kernel Distributor. While this could be avoided by the programmers, sometime

it is necessary to keep native kernels with different configuration for handling DFP with

different features.

Figure 23 shows the AGT hit rate for different size of AGT. The default AGT size of

the proposed architecture extension is 1024. Recall that if it fails to locate a free entry,

the aggregated group information will be stored off-chip on global memory which would

introduce memory latency when the aggregated group is scheduled by the SMX scheduler

and the control registers are required to be updated. When the AGT size increases from

512 to 1024, the average hit rate increases from 0.622 to 0.816. Applications that generate

many aggregated groups in a short period of time such as clr_graph500 and regx_strings
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have lower hit rate. Increasing the AGT size could increase the hit rate at the cost of larger

on-chip SRAM size. Similarly as the solution to reduce memory footprint, using spatial

sharing on an SMX for native kernel and aggregated groups could also increase the speed

of releasing entries in AGT and thereby the hit rate for a free entry. For some kernels, hit

rate is low because of large number of aggregated groups are launched. This introduce

latency because aggregated groups will be launched as a device kernel. Potential solution

includes preemption or increase SMX sharing rate among different kernels.

4.6.3 Discussion

From the experiment evaluation and analysis, the following observations can be made for

DTBL:

• Irregular applications with fine-grained DFP benefits most from DTBL scheduling

scheme as fine-grained aggregated groups are coalesced to the same kernel to in-

crease TB-level concurrency.

• Performance of irregular applications can be highly sensitive to launching latency

as they usually generate large amount of dynamic work. The performance gain of

DTBL is partly due to its light-weight launching and scheduling schemes.

• New programming methodology and compiler technique may be developed to facili-

tate the usage of the DTBL model in the way that the generation and consumption of

dynamic aggregated groups are balanced to reduce hardware, runtime overhead and

memory footprint.

4.7 Summary

This chapter proposes Dynamic Thread Block Launch (DTBL), a new extension to the cur-

rent GPU execution model that enables dynamic thread block launching and coalescing

to existing kernels on the fly. The proposed model is specifically designed to provide a
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more efficient solution for executing dynamically formed pockets of parallelism in irregu-

lar applications. DTBL is introduced by defining the execution model, proposing minimal

modification to the programming interface and discussing the microarchitecture extension.

Through experimental evaluation on various irregular CUDA applications, it is demon-

strated that by increasing GPU scheduling efficiency and decreasing launching overhead,

the proposed model achieves average 1.21x speedup over the original flat implementation

and average 1.40x over the implementations using device-kernel launch functionality.

The subsequent chapters propose two additional optimizations for DTBL to further

improve the performance from both the memory reference locality and the energy efficiency

perspective.
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CHAPTER V

OPTIMIZING THE PERFORMANCE OF THE DTBL MODEL

To further explore the potential optimization opportunities in dynamic parallelism execu-

tion models including CDP and DTBL, this chapter examines the memory reference local-

ity that exists between the native TBs (or parent TBs) and the dynamic TBs (or child TBs)

and proposes a new locality-aware TB scheduler.

5.1 Memory Locality in Dynamic Parallelism

Previous studies on GPU have established the importance of memory locality effects and

the need for TB and warp level scheduling techniques [50][31][32][39]. While many of

the insights that motivate these works are applicable, none of them address the domain of

dynamic parallelism in GPUs. Dynamic parallelism involves device-side nested launches

of kernels or TBs (equivalently workgroups in OpenCL). Consequently it introduces new

types of locality behaviors, for example, spatial and temporal reference locality between

parent kernels and child kernels, or between child kernels launched from the same parent

kernel thread (sibling kernels). Modern GPU microarchitecture schedulers are designed for

non-dynamic parallelism settings and are unaware of this new type of locality relationships.

Existing locality-aware TB schedulers do not work across the kernel launching boundary

and therefore only utilize the TB locality information within a single kernel, either parent

or child.

The TBs of a device kernel (CDP) or a TB group (DTBL) are referred to as dynamic

TBs. TBs which launch new device kernels or TB groups are the direct parent TB. All the

TBs that are in the same kernel or TB group as the direct parent TB are the parent TBs.

The TBs in the newly launched device kernels or TB groups are the child TBs. Figure 26(a)

shows an example of the parent-child launching using either the CDP or the DTBL model.

In this example, there are eight parent TBs (P0-P7) in the parent kernel. TB P2 generates
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two child TBs (C0-C1) and is their direct parent. The direct parent of the four child TBs

(C2-C5) is TB P4. The notations of parent and child TBs will be used in subsequent dis-

cussion and equally applicable to both CDP and DTBL models as well as potentially other

dynamic parallelism models as long as they retain the TB-based BSP execution model.

The memory reference locality that exists between the parent and child TBs in the

course of exploiting dynamic parallelism is examined on a GPU. Parent-child locality pro-

vides an opportunity for optimizing performance that is not exploited by existing TB sched-

ulers on current GPUs, and is the major motivation of the proposed LaPerm TB scheduler.

5.1.1 Spatial and Temporal Locality

Researches [10][62][17] have shown that while it is common to observe the existence of

reference locality at certain time during the execution of irregular applications, it usually

occurs in a way that is non-uniform, fine-grained, nested, and dynamic. In structured appli-

cations, (e.g., many scientific codes) inter-thread locality often leads to effective coalescing

of memory references and consequent efficient use of memory bandwidth. In contrast, the

non-uniform occurrences of locality in irregular applications makes it difficult to exploit

the peak memory bandwidth. However it has been shown in Chapter 3 that the use of dy-

namic parallelism can convert intra-thread locality to uniform inter-thread locality which

in turn can lead to increased coalescing of memory accesses and thereby effective use of

memory bandwidth. For example, expanding the neighbors of a vertex in a graph problem

is often done by a single thread leading to intra-thread locality across outgoing edges. With

dynamic parallelism, a child TB can expand each vertex concurrently designated by the

parent thread. Thus, intra-thread locality of the parent is converted to inter-thread locality

of the child TB. The work in this chapter focuses on the shared structures between parent

and child which can lead to locality of references between the parent threads and the child

threads.

74



0

10

20

30

40

50

60

70

S
h

a
re

d
 F

o
o

tp
ri

n
t 

R
a

ti
o

Parent-Child

Child-Sibling

Figure 24: Shared footprint ratio for parent-child and child-sibling TBs.

The existence of such locality is demonstrated by examining the memory access pat-

terns of the direct parent and child TBs in multiple benchmarks described in Table 7. The

examination process is performed between each direct parent TB and all of its child TBs,

as well as between each child TB and all of its sibling TBs (the TBs that are launched by

the same direct parent). The memory access patterns are application-dependent regardless

of whether the CDP or the DTBL model is used. To quantify the memory access patterns

and reveal the potential parent-child locality, 1) the set of memory references that the di-

rect parent and all of its child TBs make are recorded to compute their respective sizes

as p and c in units of a 128-byte cache block, 2) the memory references that are shared

between the direct parent and all of its child TBs are identified to compute the total size

as pc cache blocks, 3) the ratio pc/c as the shared footprint ratio is computed for parent-

child. Similarly, the memory references made by a single child TB and all of its sibling TBs

are recorded respectively with size co and cs, the memory references shared by them are

identified with size cos and the ratio cos/cs is the shared footprint ratio for child-sibling.

Figure 24 shows the results with an average shared footprint ratio of 38.4% for parent-

child and 30.5% for child-sibling. It should be noted that data locality also exists among
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Figure 25: Parent-Child Locality and Potential Impact on L1 and L2 Cache

the parent TBs, but is significantly less than parent-child or child-sibling data reuse. Anal-

ysis shows that the average shared footprint ratio for parent TBs is 9.3%. Therefore this

work focuses on schedulers that can utilize the parent-child TB data reuse. Higher shared

footprint ratio reveals better potential locality between the direct parent and the child TBs

which may exist both spatially and temporally as described in the following:

Temporal Locality: A common practice in using the dynamic parallelism model for

irregular applications is that the parent TB performs the necessary computation to generate

the data, passes the data pointers (usually stored in the global memory) to the child and

invokes the child to continue the computation. The reuse of the parent-generated data by

the child TBs results in good temporal locality as long as the execution of the child TBs is

“soon enough” after the parent. The parent-child shared footprint ratio shown in Figure 24

demonstrate the potential existence of such temporal locality.

Spatial Locality: Spatial locality may exist either between the direct parent TB and

the child TBs or between different child TBs. This is usually because the computations

of either the parent or the child can access memory locations that are relatively spatially

close. For example, using a common data structure such as Compressed Sparse Row (CSR)

for the graph problem where neighbor vertices are stored in consecutive addresses in the

memory, different child TBs may explore subgraphs that are stored closely to each other
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in the memory. Compared with parent-child locality, the child-sibling locality can have

higher variation as shown in Figure 24, depending on the benchmark characteristics or even

the input data. For example, the input graphs citation_network and cage15 exhibit more

concentrated connectivity as vertices are more likely to connect to their (spatially) closer

neighbors. Therefore, with the CSR data structure and its memory mapping, the child-

sibling shared footprint ratio for the graph benchmarks that take these two input graphs

are higher than graph500 where vertices can connect to other vertices all over the graph,

resulting in child TBs dealing with more distributed memory accesses. It is even more

apparent in the benchmark amr and join that the child TBs are always working on its own

memory region with virtually no data reference from other child TBs, causing the lowest

shared footprint ratio among all the benchmarks.

While the intra TB locality of the child TBs with dynamic parallelism can result in

more coalesced memory accesses that can leverage the global memory of the GPU mem-

ory hierarchy, the locality between the parent and child TBs provides an opportunity for

improved memory performance in terms of L1 and L2 cache behavior as shown in Fig-

ure 25. L2 cache performance can be increased if locality exists among the TBs that are

executed closer in time. Furthermore, execution of these TBs on the same SMX may even

have a positive impact the L1 cache performance. However, exploiting such potential cache

behaviors is by itself not straightforward and can largely depend on the GPU SMX sched-

uler. Blelloch et al. [12][13] develop a theoretical model for scheduling fine-grained nested

parallel tasks onto parallel architectures with multi-level caches. This chapter is a practical

implementation of such a theory on the GPU architecture while also taking into account

multiple specific features that are unique to GPU such as the TB level concurrency realized

by TB interleaving scheduling.
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Figure 26: (a) An example of the parent-child kernel/TB launching, (b) its TB scheduling
results using the Round-Robin TB scheduler, (c) TB Prioritizing (TB-Pri), (d) Prioritized
SMX binding (SMX-Bind) and (e) Adaptive Prioritized SMX Binding (Adaptive-Bind).
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5.1.2 Round-Robin TB Scheduler

The SMX scheduler on current GPUs adopts the round-robin (RR) TB scheduling policy

which is designed for fairness and efficiency. This is the baseline scheduling policy used in

this chapter. This policy works well for structured applications. However, with the ability

to dynamically launch kernels or TBs, this policy fails to exploit parent-child locality or

child-sibling locality for dynamic TBs.

Figure 26(b) illustrates the effect of the RR policy for dispatching parent and child TBs

to the SMXs for the example shown in Figure 26(a). The 8 parent TBs (P0-P7) and 6 child

TBs (C0-C5) are executed on a GPU that has 4 SMXs (SMX0-SMX3). Each SMX is able to

accommodate one TB. In the baseline GPU architecture, the KDU employs a FCFS kernel

scheduler for all the parent and child kernels while the SMX scheduler only dispatches

child TBs after the parent TBs. Therefore, the child TBs (C0-C5) will be scheduled after

parent TBs (P0-P7). Furthermore, TBs are dispatched to SMXs in a round-robin fashion,

so all the parent TBs and child TBs are distributed evenly across all the SMXs (assuming

each parent TB and child TB is able to complete execution at the same pace) as shown in

Figure 26(b). There are two major issues with the resulting TB distribution in terms of the

impact on locality:

• Child TBs do not start execution soon after their direct parents. After TB P2 is

executed, the SMXs are occupied by TBs (P4-P7) before P2’s child TBs (C0-C1)

can be dispatched. TBs (P4-P7) may pollute the L1/L2 cache and make it impossible

for TBs (C0-C1) to reuse the data generated by TB P2 directly.

• Even if a child TB is scheduled soon enough after its direct parent TB, such as TB

(C2-C3), they are not dispatched on the same SMX as its direct parent. Therefore, it

is difficult to utilize the L1 cache of each SMX to exploit the parent-child or child-

sibling locality.
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The above two issues are exacerbated in real applications where the parent kernel gen-

erally is comprised of many TBs so that child TBs have to wait even longer before they

can be dispatched and executed. The long wait may potentially destroy any opportunity to

utilize the parent-child locality information.

Therefore, this work proposes LaPerm, a locality-aware TB scheduler which is specifi-

cally designed to improve locality behavior when employing dynamic parallelism on GPUs.

As the rest of this chapter will demonstrate, LaPerm leverages the spatial and temporal

locality between and among parent and child TBs leading to better memory system perfor-

mance, and therefore overall performance for irregular applications that employ dynamic

parallelism.

5.2 LaPerm Scheduler

In this section, the LaPerm TB scheduler is introduced which is comprised of three schedul-

ing decisions: TB Prioritizing, Prioritized SMX Binding and Adaptive Prioritized SMX

Binding. The scheduling decisions differ in the specific forms of reference locality that

they exploit and may showcase different performance benefits for applications with differ-

ent characteristics. LaPerm applies to the dynamically generated TBs both from device

kernels in CDP as well as the TB groups in DTBL. Architecture extensions are also pro-

posed to support LaPerm on GPUs.

5.2.1 TB Prioritizing

To address the issues with the RR TB scheduler for dynamic parallelism, a TB Prioritizing

Scheduler (TB-Pri) is proposed where dynamic TBs are assigned a higher priority so that

they can be dispatched to SMXs before the remaining TBs of the parent kernel or TB

group. The parent TBs are given an initial priority and the launched child TBs are assigned

a priority of one greater than that of the parent TBs. This priority assignment process can

be nested to accommodate nested launches from the parent TBs to a maximum level L of

the child TBs. Any nested launch level that exceeds L will be clamped to L. The goal of
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TB-Pri is to start the execution of dynamic TBs as soon as they are launched by the parents

to facilitate the leverage of temporal locality.

Figure 26(c) shows an example of applying TB-Pri to Figure 26(a). For the purpose of

illustration, the following description refers to the process of scheduling four TBs to the

four consecutive SMXs starting from SMX0 to SMX3 as one round of TB dispatching, one

cycle for each TB on an SMX. Assume the parent TBs (P0-P7) are assigned with priority 0,

then the child TBs (C0-C5) are assigned with priority 1. The first round of TB dispatching

stays the same as the RR scheduler where TBs (P0-P3) are distributed to SMX0-SMX3.

As the child TBs (C0-C1) are generated by TB P2 and assigned higher priority than TBs

(P4-P7), they will be dispatched to the SMXs before (P4-P7) in the second round, resulting

in C0 on SMX0, C1 on SMX1, P4 on SMX2 and P5 on SMX3. Since TB P4 generates

another four dynamic TBs (C2-C5), they will be scheduled on SMX0-SMX1 in the third

round before the remaining two parent TBs P6 and P7 which are dispatched in the final

round. Compared with the RR scheduler, child TBs (C0-C1) and (C4-C5) are scheduled

earlier (in the second and third round instead of the third and the fourth round), which

reduces the time gap from their direct parents and increases the possibility of better cache

behavior because of the temporal locality. As child TBs can be scheduled to all the SMXs

on the GPU, L2 cache performance increase can be the major benefit.

Architecture Support. To support TB-Pri, the kernel and TB scheduler are extended

such that they can manage TBs with different priority values. The newer generation of

NVIDIA GPUs support prioritized kernel launches [57], where kernels assigned with higher

priority can be scheduled first and preempt the kernels with lower priority using the tech-

nique described in [69]. This is realized through multiple queues with different priority

values, each of which contains the kernels with a specific priority value as shown in Fig-

ure 27(b). These priority queues are stored in the global memory and managed by KMU

which dispatches kernels to KDU from the queues with higher priority followed by those

with lower priority. Thus the SMX scheduler will also distribute TBs from kernels with
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Figure 27: Architecture Extension for LaPerm (a), the priority queues used by TB-Pri (b)
and the SMX-bound priority queues used by SMX-Bind and Adaptive-Bind.

higher priority to the SMX before those with lower priority. Preemption happens when

higher-priority kernels are generated after lower-priority kernels start execution. In this

case, when a TB from the lower-priority kernel finishes execution, the SMX scheduler will

dispatch the waiting TBs from the higher-priority kernel to take up the freed capacity.

As shown in Figure 27(a), TB-Pri for both CDP and DTBL can also use the priority

queues to manage the device kernels. Each entry of the priority queue contains information

of the device kernel or TB groups including PC, parameter address, thread configuration

and the next TB to be scheduled. The host-launched kernels stays in the lowest priority

queue 0. In CDP, the priority queues are stored in the global memory 1O. The child kernels

are assigned to the queue whose priority value is greater than its direct parent priority by

one so that TBs from the child kernels are able to be dispatched before the remaining parent

TBs. In the same priority queue, the newer kernels are appended to the tail so the priority

queue itself is FCFS. The same priority queue structures are also used for DTBL to store
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the dynamic TB group information. As proposed in [72], DTBL uses both the on-chip

SRAM and the global memory to store the dynamic TB group information when they are

generated from the SMXs. These TB group tables are reused to store the priority queues

( 1O for global memory and 2O for on-chip SRAM) so that the on-chip SRAM ensures fast

access to the TB group information from the SMX scheduler while the priority queues

stored in the global memory serve as the overflow buffer.

Issues. Although TB-Pri leverages temporal locality and moves the child TB execution

earlier, soon after the direct parent, the TB may be scheduled on any SMX. This can only

increase the L2 cache performance. In the example Figure 26(c), TB (C0-C1) are still

executed on different SMXs than its direct parent TB P2, therefore the L1 cache on SMX2

still cannot be utilized for parent-child data reuse. A similar observation applies to child

TB (C2-C5) of the direct parent TB P4. TB C4 is now executed on SMX2 immediately

after P4, which exhibits better locality than in Figure 26(b) and facilitates better L1 cache

utilization, but the remaining child TBs (C2, C3, C5) are distributed across all the SMXs so

that both the parent-child and child-sibling locality improvement is limited to the L2 cache

behavior.

5.2.2 Prioritized SMX Binding

To utilize the entire GPU cache hierarchy more effectively, especially the L1 cache for

data reuse, TB-Pri is extended so that the child TB should also be bound to the specific

SMX that is used to execute its direct parent. This policy is referred to as Prioritized SMX

Binding or SMX-Bind. The SMX binding directs the SMX scheduler to dispatch the child

TBs such that they can use the same L1 cache on the SMX that is used by the direct parent.

Figure 26(d) shows the scheduling result using SMX-Bind for the parent-child launch

structure in Figure 26(a). SMX-Bind identifies that child TBs (C0-C1) are launched by TB

P2 from SMX2 so (C0-C1) are bound and dispatched on the same SMX2. Similarly, child

TBs (C2-C5) are bound by their direct parent P4’s executing SMX which is SMX4. The
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binding process ensures that C0 and C1 are scheduled in the second and third round to

SMX2 and (C2-C5) are scheduled from the third to the sixth round to SMX0. All the re-

maining parent TBs are still dispatched using the original round-robin scheduling scheme.

As the child TBs are now always scheduled on the same SMX as the direct parent, L1 cache

can be well utilized to exploit the parent-child and child-sibling locality.

Architectural Support. The priority queues used for TB-Pri are extended to support

SMX-Bind as shown in Figure 27(c) where the priority queues from 1 to L are used for

each of the SMXs (SMX0-SMXN shown in Figure 27(c)). The priority queue 0 is shared

by all the SMXs and reserved to store the information of the top-level parent kernels (host-

launched kernels). A simple duplication of the original priority queues in Figure 27(a))

for the N SMXs would cost (N-1) times more hardware overhead, therefore, the extended

architecture evenly divides the original priority queues in into N priority queues, each asso-

ciated with one SMX with the expectation that TBs are evenly distributed across the SMXs.

For each newly generated device kernel or TB group, the SMX scheduler will push its in-

formation to the priority queues that are associated with the SMX occupied by the direct

parent. For each SMX, the TB dispatching process only fetches TBs from the associated

priority queues until all the associated priority queues are empty so that new parent TBs

can be fetched from priority queue 0. Note that in some GPUs, SMXs are divided into mul-

tiple clusters where each cluster possess more than one SMX and the L1 cache is shared

by all the SMXs in a cluster [56]. In this case, SMX-Bind scheduling scheme associates the

priority queues with the entire cluster and the newly generated TBs will be bound to any

SMX in the cluster. Within each cluster, the round-robin dispatching strategy is employed

for the TBs fetched from the priority queues.

Issues. In an ideal case, dynamic TBs can be evenly distributed across all the SMX to

avoid any fairness issues and ensures that the evenly divided priority queues among SMXs

are used in a balanced and efficient manner. However, as shown in Figure 26(d), it is possi-

ble that some parent TBs may have more nested launch levels or more child TBs (e.g. TB
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P4 and its four child TBs) than others. Restricting all these child TBs to a single SMX (or

SMX cluster) may result in the idling of other SMXs and low overall execution efficiency.

In Figure 26(d), SMX1 and SMX2 are idle after the third round of scheduling and SMX3

is idle after the second round, creating an unbalanced SMX workload. In irregular appli-

cations, it is very common that the launching patterns including nesting levels and child

TB numbers vary from one parent TB to another, increasing the possibility that SMX-Bind

could suffer from the SMX workload imbalance issue.

5.2.3 Adaptive Prioritized SMX Binding

To solve the load imbalance issues in SMX-Bind and increase the overall execution effi-

ciency while preserving the cache performance benefits, the SMX-Bind scheduling scheme

is further optimized to incorporate a more flexible TB dispatching strategy which is referred

as Adaptive Prioritized SMX Binding (Adaptive-Bind). Adaptive-Bind still first dispatches

prioritized child TBs to their bound SMX followed by other lower-priority parent TBs. At

some point, both the prioritized child TBs bound to one SMX and all the parent TBs have

been dispatched. Adaptive-Bind will then cross the SMX boundary and dispatch child TBs

that are supposed to be bound to other SMXs to the current SMX if it has enough available

resource to execute these child TBs. In this process, the dispatching scheme effectively put

all child TBs bound to other SMXs as the backup TBs of the current SMX. The backup TBs

can be viewed as TBs with the priority even lower than the top-level parent TBs which has

priority 0. The goal here is to generate a more balanced TB distribution across all the SMXs

to avoid any SMX idleness, which can result in balanced data reuse with increasing SMX

utilization. This scheduling policy is balancing the tradeoff between exploiting reference

locality within the cache hierarchy with utilization of the spatially distributed SMXs.

The scheduling results of Adaptive-Bind on Figure 26(a) is shown in Figure 26(e). Until

the third round, the TB dispatching of Adaptive-Bind is the same as that of SMX-Bind as

shown in Figure 26(d). The difference starts on SMX3 in the third round. As no child TBs
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are bound to SMX3 and all the parent TBs have been dispatched, Adaptive-Bind fetches

the next TB from P4’s child TBs – TB C3 which was originally bound to SMX0 – and

executes it on SMX3. A similar procedure applies in the fourth round of TB scheduling

on SMX1. The result shows that TB P2 and child TBs (C0-C1), and TB P4 and child TBs

(C2, C4) are scheduled on the same SMX while the remaining child TBs are scheduled

across all the SMXs. Compared with SMX-Bind, the performance of L1 may decrease due

to less parent-child data reuse but it is compensated for by better SMX workload balance

and thereby a potential positive impact on the overall execution efficiency.

Architectural Support. Adaptive-Bind still employs the same SMX-bound priority

queues that are used by SMX-Bind. However, an extended SMX scheduler is designed to

manage the priority queues and dispatch TBs. The complete Adaptive-Bind TB scheduler

operation flow is shown in Figure 28 which is implemented as an extension to the SMX

scheduler used by current GPUs. The LaPerm scheduler starts by following the normal

routine of an SMX scheduler to check if there are more TBs from KDU to dispatch and
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execute. Then it checks all the SMXs, one for each cycle, and selects the candidate TB for

the current SMX in three progressive stages: 1) highest-priority TB in the current SMX’s

priority queues, 2) parent TB in the global priority 0 queue and 3) highest-priority TB in the

backup queues. Stage 2 only happens when the current SMX’s priority queues are empty

while stage 3 only happens when both the current SMX’s priority queues and priority 0

queue are empty.

Note that in stage 3, when Adaptive-Bind selects priority queues of one SMX as the

backup queues for the current SMX, it will focus on scheduling TBs from the chosen

backup queues until they are also empty. As shown in Figure 28, the backup queues will be

recorded each time they are selected and reused next time when stage 3 is invoked if they

are not empty. The major reasons for this fixed backup scheme are that i) the TBs from

the backup queues are also more likely to be scheduled on the same SMX which may help

leverage their locality and ii) although the SMX scheduler is able to schedule TBs with dif-

ferent configurations on the same SMX, it may incur the overhead of resource initializing

such as register and shared memory partitioning. Focusing on priority queues of one SMX

can effectively minimize such overhead as each entry of a priority queue is either a kernel

or a TB group that contains TBs using the same configuration.

For simplification, Figure 28 illustrates the LaPerm scheduler in DTBL model where

TB groups are launched and pushed to the priority queues and directly scheduled by the

SMX scheduler. In CDP model, new kernels are pushed to the SMX-bound priority queues

stored in the global memory and dispatched by KMU to KDU and then to the on-chip

SMX-bound priority queues used by the SMX scheduler. Therefore, The LaPerm scheduler

also involves extension to the KMU kernel scheduler where it checks all the SMX-bound

priority queues in a round-robin fashion (one SMX a time), dispatches the kernel with

the highest priority if there is an available KDU entry and store its information in the

corresponding priority queue of its bound SMX. The KDU entry number (currently 32 on

GPUs that supports CDP) limits the dynamic kernels and thereby dynamic TBs that are
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available to be dispatched by the LaPerm SMX scheduler within a time frame. If the KDU

is filled up with the 32 concurrent kernels, newly generated kernels cannot be dispatched

from the KMU to the KDU even if they have higher priority. This is also a known limit in

the kernel preemption context [69] where the kernels that are available to be preempted are

limited to the ones that stay in KDU. In contrast, all the dynamic TBs in a DTBL model

are coalesced to kernels in KDU so they are always visible to the LaPerm scheduler. As

a result, TB dispatching with LaPerm on CDP may not always be able to find the highest-

priority TB and achieve the optimized results in terms of locality and cache performance.

5.2.4 Impact of Launching Latency

LaPerm is built on the assumption that the child TBs can be executed early enough after

the direct parent TBs to utilize the temporal locality and spatial locality. However, an

important issue in the dynamic parallelism model is the launching latency of the child TBs

especially in CDP [74], which can i) cause a long wait before the child TBs can actually be

dispatched by the LaPerm scheduler, ii) introduce a lengthy time gap between the parent

and child and iii) kill any potential parent-child locality. The DTBL model [72] along with

any other future developments in dynamic parallelism models with better architectural,

memory system, runtime, driver support may further reduce the launching latency and

make full use of LaPerm. Section 5.3 analyzes the impact of launching latency on LaPerm

scheduler performance.

5.2.5 Overhead Analysis

The major hardware overhead is caused by the priority queues used by LaPerm and the

SMX scheduler extension shown in Figure 27. The SMX-bound priority queues that are

stored in the global memory can have flexible size and be allocated during the runtime.

They are indexed per SMX and per priority level. The on-chip SMX-bound priority queues

are stored in a 3K bytes SRAM for each SMX (about 1% of the area cost by the register

file and shared memory) and is able to store 128 entries (24 byte per entry). For an L-level

88



priority queue, (L-1) index pointers are employed to separate these 128 entries to store TBs

using the decreasing order of priority. The priority queue 0 shared by all the SMXs needs

additional 768 bytes (32 24-byte entries) on-chip SRAM storage. Note that for CDP, the

number of entries of the on-chip priority queues is limited to 32 per SMX the same as the

KDU entry number.

The major timing overhead comes from pushing new dynamic TBs into priority queues

and the LaPerm TB dispatching process. For CDP, generating new device kernels already

incurs the overhead in storing the new kernel information in the global memory [57] which

is the memory access latency. Pushing them to the priority queues stored in the global

memory does not introduce additional overhead. Dispatching kernels by the KMU from

the priority queues to the KDU may incur maximum extra L cycles where L is the maxi-

mum priority levels. The overhead is caused by the searching of the highest-priority kernel

where in the worst case, all the L priority queues have to be searched, one cycle for each.

For DTBL, inserting a new TB group to the on-chip priority queues introduces the search-

ing overhead of the 128-entry queue to locate the insert position according to TB group’s

priority, which can be 128 cycles in the worst case. However, this searching overhead can

be hidden by the setting up process of the TB groups such as allocating parameter buffer. If

the on-chip priority queue is full and the new TB groups have to be stored in the overflow

priority queues in the global memory, the overhead would be the global memory access

latency which can also partly be hidden by the TB group setting up process. Finally, the

dispatching process of LaPerm TB is designed such that all the three stage searches can be

finished within one cycle just as the baseline TB scheduler.

5.2.6 Discussion

The LaPerm scheduler is designed in a manner that is transparent to the warp scheduler,

therefore it may be combined with any warp scheduler optimization such as [63][64].

Specifically, warp schedulers described in [31] also take into account the locality between
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different TBs and seek higher memory system utilization including bank-level parallelism,

row buffer hit rate and cache hit rate by using a TB-aware warp grouping and prioritiz-

ing approach. Such warp schedulers can be leveraged by LaPerm to achieve even better

memory system performance.

While many TB scheduling strategies are designed for the regular BSP model and may

not apply by their own under the dynamic parallelism model, they can be certainly imple-

mented as an optimization to LaPerm. For example, the TB scheduler introduced in [32]

can dynamically adjust the dispatching TB number on each SMX to avoid too much mem-

ory contention. In LaPerm, the relatively small L1 cache (maximum 48 KB) may result in

not fitting enough reusable data of the parent and child TBs, which can benefit from the

incorporation of such contention-based TB control strategies.

This work does not consider different data reuse patterns across child TBs, the im-

pact of data reuse distance between the parent and the child TBs as well as that of the

different hardware parameters such as cache size, thereby any scheduling optimization ac-

cordingly which could be implemented with commensurate runtime and hardware support.

The LaPerm scheduler is a first step in scheduling approaches based on understanding data-

reuse in dynamic parallelism that provides insights to help address these problems.

5.3 Experiments

In this section, the three different decisions of the LaPerm scheduler are evaluated with

multiple benchmark applications. Some key insights are provided from the evaluation re-

sults.

5.3.1 Methodology

The LaPerm scheduler is implemented on GPGPU-Sim that are extended with CDP and

DTBL. The configuration of GPGPU-Sim is the same as that for DTBL simulation which

is shown in Table 4.

The benchmark applications used to evaluate the LaPerm scheduler are adapted from
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Table 7: Benchmarks used in the experimental evaluation for LaPerm scheduler

Application Input Data Set
Adaptive Mesh Refinement (AMR) Combustion Simulation[36]
Barnes Hut Tree (BHT) [15] Random Data Points
Breadth-First Search (BFS) [47] Citation Network[8]

Graph 500 Logn20[8]
Cage15 Sparse Matrix [8]

Graph Coloring (CLR) [19] Citation Network[8]
Graph 500 Logn20[8]
Cage15 Sparser Matrix [8]

Regular Expression Match (REGX) [75] DARPA Network Packets [45]
Random String Collection

Product Recommendation (PRE) [49] Movie Lens [28]
Relational Join (JOIN) [22] Uniform Distributed Data

Gaussian Distributed Data
Single Source Shortest Path (SSSP) [37] Citation Network[8]

Graph 500 Logn20[8]
Cage15 Sparser Matrix[8]

the ones used for DTBL with different input sets as shown in Table 7. The reported results

include the overhead from both CDP/DTBL as well as the proposed LaPerm scheduler.

5.3.2 Result and Analysis

This section reports the evaluation and analysis of the benchmark in various performance

aspects. As the main focus of LaPerm is the memory system performance especially L1

and L2 cache, the cache hit rate is used as the metrics. The impact of LaPerm on the

IPC (instruction per cycle) metrics is also analyzed to evaluate the overall performance

of the applications. All the evaluations are performed both for the CDP and DTBL model.

Figure 29 and Figure 30 show the L2 and L1 cache hit rate respectively for the original CDP

and DTBL using the RR TB scheduler as well as the three different schemes employed by

LaPerm. Figure 31(a) and Figure 31(b) show the IPC normalized to the original IPC of

CDP and DTBL implementations with RR scheduler respectively.

Performance of TB-Pri. As discussed in Section 5.2.1, the goal of TB-Pri is to increase

the cache hit rate by prioritizing child TBs earlier after parent TBs. This is demonstrated
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Figure 29: L2 cache hit rate when applying LaPerm to (a) CDP and (b) DTBL.

by an average increase of 6.7% (CDP) and 8.7% (DTBL) for L2 cache hit rate and 1.1%

(CDP) and 2.1% (DTBL) for L1 cache hit rate over RR scheduler. Together they also result

in 4% and 13% normalized IPC increase for CDP and DTBL respectively.

Some of the benchmarks that achieve the highest L2 cache hit rate are pre and all the

graph applications (bfs, clr, sssp) with the cage15 input. These benchmarks generally have

more dynamic child TB launching and higher parent-child shared footprint ratio as shown

in Figure 24 and benefit more if the child TBs are able to reuse the data from the parent or

the sibling TBs.

Performance of SMX-Bind. Although TB-Pri does not target L1 cache performance,

there is still a slight increase in the L1 cache hit rate. This is because child TB prioritization

92



0

20

40

60

80

100

L
1

 C
a

c
h

e
 H

it
 R

a
te

RR TB-Pri SMX-Bind Adaptive-Bind

(a)

0

20

40

60

80

100

L
1

 C
a

c
h

e
 H

it
 R

a
te

RR TB-Pri SMX-Bind Adaptive-Bind

(b)

Figure 30: L1 cache hit rate when applying LaPerm to (a) CDP and (b) DTBL.

can result in a few child TBs coincidentally being dispatched to the same SMX as the direct

parent TB. This dispatching pattern is reinforced by SMX-Bind to achieve a L1 cache hit

rate increase shown as 6.6% on average for CDP and 13.6% on average for DTBL.

The applications pre and sssp_cage15 are again among the ones that achieve the highest

L1 cache hit rate. In addition, regx_string also exhibits good L1 cache performance benefit.

These applications have the characteristics that the workload performed by the child TBs

focus on a relatively small memory region. For example, the production recommendation

process of pre tends to search products that are highly related and thereby stored closer to

each other in the memory. As a consequence, these applications can generate more closer

memory accesses and higher child-sibling shared footprint ratio. When all these sibilant
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TBs are scheduled on the same SMX, they fundamentally increase the data reuse which

result in substantial L1 cache hit rate increase.

In contrast, for the graph applications with graph500 as input, SMX-Bind does not have

any obvious L1 cache hit rate change from TB-Pri. Although these applications present

some shared footprint ratio between the child TBs and their direct parent, the locality actu-

ally can also exist between any arbitrary non-direct parent TB and child TBs. The reason

is that graph500 is a graph with high and balanced connectivity that are evenly distributed

across all the vertices. The data used by one parent TB exploring some of the vertices can

be effectively reused by child TBs generated by a different parent exploring other vertices.

The consequence of increased locality and cache performance from such data reuse pat-

terns have already been captured by TB-Pri. Binding child TBs to specific SMX does not

necessarily generate a higher L1 cache hit rate.

One major side effect of SMX-Bind is the SMX workload imbalance which may result

in IPC decrease. Compared with TB-Pri, the average normalized IPC decreases 9% for

CDP and 5% for DTBL. For some of the DTBL applications (bfs_citation, clr_citation,

join) and almost all of the CDP applications, normalized IPC even drops below 100%

indicating performance loss from the baseline implementations with the original RR TB

scheduler. Applications suffer from larger IPC loss generally have a more imbalanced

child TB launching patterns, i.e. some parent TBs may have substantially more child TBs

and nested launching level than others, causing a long execution tail when these TBs are

exclusively restricted to an SMX.

Performance of Adaptive-Bind. By using the adaptive SMX binding approach pro-

vided by Adaptive-Bind, the SMX workload imbalance side effect brought by SMX-Bind is

minimized, which results in overall normalized increase of 6% for CDP and 27% for DTBL

at the cost of some L1 cache hit rate decrease (by 2.3% for CDP and by 3.1% for DTBL

compared with SMX-Bind). The study shows that IPC is impacted by L1 hit rate and load

balancing – in fact IPC improvements due to the latter are greater than IPC reductions due
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Figure 31: Normalized IPC when applying LaPerm to (a) CDP and (b) DTBL.

to the drop in L1 rate. The results demonstrate that Adaptive-Bind effectively combines the

benefits of prioritizing child TB execution, SMX binding and load-balance TB scheduling

to achieve cache and overall performance gains for irregular applications that are imple-

mented with the dynamic parallelism model. As a representative, application sssp_cage15

achieves the highest IPC gain (11% for CDP and 51% for DTBL).

It is interesting to see some of the applications, such as amr and pre, have their nor-

malized IPC increase from SMX-Bind and keep the value in Adaptive-Bind without any

obvious further increase. The reason is that they have a more balanced kernel launching

patterns among the some or all of the parent TBs. For example, amr has TBs in the grid

centers to simulate the combustion patterns which all have similar temperature distribution,
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requiring similar refinement performed by the child TBs. Binding their child TBs to the

SMX occupied by the direct parent will generate good L1 cache performance without caus-

ing many workload imbalance issues. Therefore, SMX-Bind would itself be a reasonable

scheduling strategy for these applications to achieve IPC increase and does not require the

SMX re-balancing process from Adaptive-Bind.

There are slight L2 cache hit rate changes compared with TB-Pri and SMX-Bind. In

fact, increasing (decreasing) L1 cache hit rate may result in fewer (more) memory accesses

falling into L2 cache, which could change the L2 cache behavior. According to the exper-

iments, these changes do not affect L2 cache hit rate substantially and are not the major

factors in affecting the overall performance.

5.3.3 Impact of Different Dynamic Parallelism Models

The microarchitecture and runtime differences of dynamic parallelism models such as CDP

and DTBL can have impact on the effectiveness of the LaPerm scheduler. One of the major

differences is the launching latency as described in Section 5.2.4. The evaluations for both

CDP and DTBL reveal that generally LaPerm in DTBL shows better cache performance

and greater IPC increase (27% versus 6% in CDP) largely due to the fact that the high

launching latency of the child kernels precludes LaPerm from timely dispatch to be exe-

cuted closer to the parents in time. As for some applications such as bfs, parent TBs usually

only have a small amount of work to do, long child launching latency leaves LaPerm no

choice but only to schedule the remaining parent TB first before any child TBs arrive to fill

the time gap.

Recall that CDP implementation today is subject to the 32 concurrent kernel limit in the

KDU, reducing the number of child TBs that are available for LaPerm to schedule. As a

result, the opportunity for LaPerm to perform an optimized TB prioritization using TB-Pri

is dramatically reduced. The limit on the scheduling of TB candidates also causes poorer

SMX imbalance for SMX-Bind as it is more likely to dispatch the available TBs to only a
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few SMXs but not other, which is the reason of the poor IPC of CDP that is even lower

than using the original round-robin TB scheduler. As opposed to CDP, DTBL use dynamic

TB coalescing to break the KDU limit and increase TB level concurrency, which makes

LaPerm a more effective and efficient solution for the TB scheduler.

5.3.4 Insights

The experiments and results show that the three different scheduling decisions employed

by LaPerm have various performance impacts on applications with different characteristics.

Some of the insights include:

• TB-Pri uses child TB prioritization to increase L2 cache performance and is specif-

ically useful for applications where the locality is not restricted to the direct parent

and its child TBs but also between multiple parents and their child TBs. Such locality

facilitates the data reuse across different SMXs.

• For applications with more restricted locality between direct parent and child TBs,

SMX-Bind is able to show the most obvious L1 cache performance improvement. On

the other hand, the overall IPC may be optimized only when there are many parent-

child launchings with similar workload to achieve SMX balance.

• There is a basic tradeoff between exploiting parent-child and child-sibling locality,

and achieving higher SMX utilizations. For most irregular applications which show

varying parent-child launching behavior across different parent TBs, Adaptive-Bind

is the TB scheduler to achieve both the best cache performance and the balanced

SMX workload which results in overall IPC increase.

5.4 Summary

This chapter proposes a thread block scheduler, LaPerm, specifically designed for dynamic

parallelism execution models on GPUs. The idea behind LaPerm is that the memory lo-

cality exists between the parent and child thread blocks that cannot be effectively exploit
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by existing round-robin TB scheduler on current GPUs. LaPerm employs three different

scheduling decisions with new microarchitectural extensions to utilize such parent-child

locality and improve the cache performance on GPUs. LaPerm is evaluated on a cycle-

level GPU simulator with several CUDA irregular applications that are implemented with

dynamic parallelism execution models, and demonstrate that by increasing both the L1 and

L2 cache performance, LaPerm is able to achieve 27% IPC improvement over the original

round-robin TB scheduler.
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CHAPTER VI

IMPROVING THE POWER EFFICIENCY OF THE DTBL MODEL

As the last research part of this thesis, this chapter examines the SMX occupancy patterns

of the irregular applications implemented with the DTBL model from the power dissipation

perspective and proposes a new power saving optimization that incorporates a flexible TB

diversion and scheduling strategy as well as an opportunistic DVFS mechanism.

6.1 Impact of SMX Occupancy Patterns on Power Dissipation

This section compares the SMX occupancy patterns of the DTBL model with the gen-

eral BSP GPU model for processing dynamic parallelism in the irregular applications and

makes the observation that the SMX occupancy variance in DTBL implementation provides

the potential opportunities for an power saving optimization.

6.1.1 DTBL vs. Persistent Thread (PT) Model

The DTBL model enables more flexible TB dispatching and execution by allowing them

to be generated on demand to process the dynamic work. This is in contrast to the typical

flat implementations for dynamic parallelism applications represented by PT model, where

a fixed number of TBs are dispatched to the SMXs and stay on the SMXs for the lifetime

of a kernel. The number of TBs used in the PT model is chosen such that maximal occu-

pancy can be achieved by the SMXs which is determined by the thread number, register

number and share memory usage by a single TB. Theoretically, the maximal occupancy

that can be achieved is 100% which means maximal number of concurrent warps that can

be executed on a SMX is reached. Accordingly, the PT model maintains a steady SMX

occupancy during the lifetime of a kernel. These TBs are then used to process the work in

the kernel: the work can be either assigned at the very beginning of the kernel, or generated

dynamically by these TBs during their processing. A global software queue is employed to
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manage these work. TBs constantly check the global queue to consume any existing work

and append new work to the queue. Processing dynamic work requires power consumption

from the SMXs which consists of the static leakage power and the dynamic power from all

the GPU components such as register files, shared memory, execution units, main memory,

etc. [41]. Note that the SMX cannot be completely idle even if there is no effective dynamic

work available to process as it is still necessary for the TBs to perform the global queue

checking operations iteratively.

The DTBL model, on the other hand, can result in a higher variance in the SMX occu-

pancy compared with the PT model. This is because the amount of dynamic work generated

can differ from time to time. Unlike the PT model, TBs in the DTBL will only be generated

and dispatched to the SMX when dynamic work is available. Therefore, DTBL implemen-

tations can have different number of concurrent warps running on a SMX at different stages

of the execution. This also includes the possible case where a SMX can be completely idle

at one time as there is not enough dynamic work to saturate all the SMXs on the GPU. Note

that the SMX still consumes a small amount of dynamic power as well as non-negligible

static leakage power even if it is completely idle, which is referred combined as SMX idle

power [41].

As a case study, Figure 32 and Figure 33 show the SMX occupancy phase behavior

and total GPU power consumption during a vertex expansion kernel for the fourth iteration

of the BFS application implemented with the DTBL and the PT model, repsectively. The

data are obtained from the cycle-level simulator GPGPU-Sim [9] with the power model

simulator GPUWattch [41]. All the measurements are done with a sampling rate of 500

cycles. In each figure, the SMX occupancy is shown for two of the SMXs on a GPU (SMX

3 and SMX 11) while the power consumption is shown for the entire GPU.

The comparison between the the DTBL and the PT models show that the SMX oc-

cupancy for the DTBL model has a much higher variance during the execution. They

both start with a constant SMX occupancy as the parent kernels are preparing the data for
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Figure 32: A case study for the SMX occupancy and power consumption in one vertex
expansion kernel of BFS with DTBL implementation

dynamic work. Subsequently, the SMX occupancy of the DTBL implementation varies

depending on the dynamic parallel degree in the vertex expansion operation and thereby

the speed of parent kernel generating new dynamic TBs while the SMX occupancy of the

PT implementation stays the same. Both implementations show a tail where SMX occu-

pancy gradually decreases to zero to indicate the completion of the kernel. Generally, for

the benchmark applications in Table 7, the SMX occupancy has a 23.5% higher variance

with the DTBL implementation than the PT implementation.

When examined from the power dissipation perspective, Figure 32 and Figure 33 show
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Figure 33: A case study for the SMX occupancy and power consumption in one vertex
expansion kernel of BFS with PT implementation

the following features of the DTBL and the PT implementations:

1. The DTBL implementation has an average lower power consumption than the PT

implementation (117.6W vs. 135.96W). This is mainly due to the SMX occupancy

variance which results in lower SMX utilization while there is smaller amount of

dynamic work. Generally, DTBL implementations of the benchmark applications

achieve a 12.7% power consumption decrease compared with PT implementations.

2. DTBL also has a lower total energy consumption compared with PT. The lower aver-

age power consumption of DTBL contributes to the lower total energy consumption.
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It should also be noted that the vertex expansion kernel implemented with DTBL

performs better in terms of the total execution time compared with PT. This is shown

as smaller total cycle count in Figure 32 than in Figure 33 (138.5K vs. 163.5K).

3. The power consumption during the final phase of the execution of both DTBL and

PT gradually decreases, which corresponds to the decrease of the SMX occupancy

during this phase. Eventually the power consumption reaches the SMX idle power

when all the SMXs are completely idle.

6.1.2 SMX Occupancy Bubble for DTBL Implementation

Aside from the fact that DTBL implementations already exhibit lower power dissipation

than the PT implementations, this section further studies the SMX occupancy behavior to

find any other possible opportunities for power saving.

In Figure 32, the occupancy of SMX 3 may drop close to zero during the execution

(between cycle 85K and 96K) and then resume to a higher value later. This is in contrast

to the occupancy of SMX 10 which is generally maintained at a high level except towards

the end of the execution. To quantify such SMX occupancy drop, a threshold is introduced

and the period where the SMX occupancy drops below the threshold is referred as SMX

Occupancy Bubble. Note that the occurrence of an SMX Occupancy Bubble may differ for

different thresholds. Figure 32 shows a threshold of 0.2 and there is one SMX Occupancy

Bubble on the SMX 3 which lasts for 11K cycles.

In general, Figure 34 shows the occurrence percentage of SMX Occupancy Bubble for

the 0.0625 SMX Occupancy threshold (4 concurrently executing warps on a SMX). The

16 benchmark applications are divided into two groups according to their SMX Occupancy

Bubble behavior. The applications in the first group has an average of 32.7% occurrence

as they generally have highly dynamic work generating patterns. The applications in the

second group only has an average of 4.1% occurence because i) they may generate dynamic

work in a more balanced pattern, represented by all the graph applications with graph500
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input as it has uniform vertex degree, ii) there are large amount of dynamically generated

TBs which may saturate the GPU, represented by the two regx applications as they are deal-

ing with highly-intensive data set, or iii) the generated dynamic work are coarse-grained

with high number of threads which could result in high SMX occupancy for the entire

execution period, represented by pre and join_uniform due to the nature of their implemen-

tation schemes.

From the power dissipation perspective, SMX Occupancy Bubble is a period which po-

tentially has low SMX utilization and long execution unit stalls or even complete SMX

idleness. Compared with the period where SMXs are highly-utilized, SMX Occupancy

Bubble would consume less power. This also includes the case where an SMX is com-

pletely idle and therefore only consumes SMX idle power just as the final phase of the

execution shown in Figure 32 and Figure 33. Note that in some cases, the SMX utilization

could still be high even during the SMX Occupancy Bubble where there is at least one warp

running. This could happen in a compute-bound application where there is much fewer or

even no SMX execution unit stalls caused by memory instructions and therefore the exe-

cution units are always busy. Generally, SMX Occupancy Bubble imposes the following

effect on the dynamic power and leakage power as described in the GPU power model:

1. SMX Occupancy Bubble would result in the dynamic power decrease of the SMX.

However, even an idle SMX would consume dynamic power to maintain the oper-

ation of its active components, such as the control logic that maintains the SMX

scheduler registers so that it can be resumed to its normal active status when new

TBs are ready to be scheduled.

2. The leakage power of the SMX stays the same during the SMX Occupancy Bubble as

it is independent of SMX utilization.

Ideally, applying power gating to an idle SMX by turning it completely off could save
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Figure 34: The occurrence percentage of SMX Occupancy Bubble for threshold of 0.0625
(4 warps) and ideal average power saving

both the dynamic power as well as the leakage power. Figure 34 shows the potential av-

erage power saving in this ideal case. The idea is to assume that the SMX is completely

idle during the SMX Occupancy Bubble so that there is only SMX idle power consumption.

Applying ideal power gating would further reduce the SMX idle power to zero. In this pro-

cess, the original power consumption is measured through GPUWattch while the SMX idle

power is the preset value in the GPUWattch configuration file according to their original

verification on the real hardware [41]. The two groups of benchmark applications exhibit

different power saving behavior as correlated to their SMX Occupancy Bubble occurrence.

While the second group only has an average of 1.1% power saving, the first group has an
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average of 24.5% power saving when both the dynamic power and the leakage power are

eliminated for the idle SMX. The potential opportunity of power saving for the first group

of applications is the major motivation of a new power saving optimization for DTBL.

However, there are two challenges that should be addressed in such an optimization.

1. The SMX is not completely idle during the entire SMX Occupancy Bubble in the

actual execution process of an application. The running warps on the SMX should

be relocated before power gating can be properly applied to turn off the SMX.

2. An ideal power gating is not possible on current GPUs. Alternatively, DVFS is able

to set an SMX to the lowest P-state to save both the dynamic and leakage power.

Applying DVFS would require careful design methodology to minimize the overhead

while achieve best energy efficiency.

6.2 SMX Occupancy Bubble-based Power Saving Optimization for DTBL

To address the above challenges, this section proposes a power saving optimization for

DTBL which is composed of two stages: 1) a dynamic TB diversion and scheduling strat-

egy that can decrease the SMX occupancy to zero during the SMX Occupancy Bubble

when necessary so that the SMX is completely idle and 2) an opportunistic DVFS mech-

anism that set the idle SMX to the lowest P-state to save both the dynamic and leakage

power while imposing minimal performance impact.

6.2.1 Dynamic TB Diversion and Scheduling

The purpose of dynamic TB diversion and scheduling for DTBL is to further reduce the

SMX occupancy during the SMX Occupancy Bubble, ultimately to zero, so it could facili-

tate the usage of the power saving techniques such as power gating or DVFS. Three steps

are necessary in this diversion and scheduling process: TB Diversion, SMX Draining and

SMX Resuming. The detailed description of these steps are as follows:

106



TB Diversion. TB Diversion relocates the TBs that are to be scheduled on the current

SMX to another SMX. It does not affect the TBs that are currently executing on the SMX

but only guarantees no new TBs will be dispatched to the current SMX.

The TB diversion process is done for each SMX. It starts by detecting the occurrence

of SMX Occupancy Bubble according to a threshold T and activated at the first time sam-

ple when the SMX occupancy falls below the threshold T . At the same time, the status

of the remaining SMXs are examined to determine if there exists an SMX that 1) does not

need TB diversion at the moment, 2) SMX occupancy below 100% and 3) enough resources

available for scheduling the relocated TB on the current SMX. Requirement 1) would guar-

antee the diversion process free of deadlock especially during a period when all SMXs have

low occupancy (e.g. execution tail) so that at least one SMX can be served as the relocation

destinations for all the remaining SMXs. Requirements 2) and 3) would locate at least one

SMX that can be served as the relocation destination for the current SMX. If any of these

three requirements could not be satisfied, the TB diversion process will abort. Otherwise,

it will start dispatching the new TBs to the remaining SMXs on the GPU as if the current

TB is not available.

SMX Draining. While TB Diversion would stop any potential SMX occupancy increase

on the current SMX, the SMX Draining process will ensure the SMX occupancy reaches

zero. The idea is simply for the SMX to wait until the current running TBs to finish. Al-

ternatively, an aggressive TB Diversion strategy could employ TB preemption [69] instead

of SMX Draining. However, the overhead of saving and resuming TB states could be non-

trivial and cause dramatic performance degradation. Therefore, this research only focuses

on the low-overhead SMX Draining strategy. However, unlike TB preemption, a TB could

take arbitrarily long time to finish during SMX Draining, although it eventually would con-

clude unless there is a deadlock. Therefore, the proposed SMX Draining process sets a

waiting period for W time samples as the maximum draining time. If the executing TBs on
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the current SMX could not complete after the waiting period, both the SMX Draining and

the TB Diversion will abort, which means new TBs will be dispatched to the current SMX

as they normally would. A successful SMX Draining process, on the other hand, would

end with a complete idle SMX where the power saving techniques can be applied.

There are two cases where the SMX Draining process is not necessary. In the first

case, when the TB diversion process starts, the SMX occupancy of the current SMX is

already zero. As no new TBs will be dispatched to the current SMX, SMX Draining could

also be avoided. The second case is related to the application of the DVFS power saving

technique. Since DVFS does not completely shut down an SMX as power gating, it is not

always mandatory to ensure the SMX is idle before applying DVFS. The details will be

discussed in Section 6.2.2.

SMX Resuming. A succesful TB diversion and SMX draining would effectively elim-

inate the availability of the current SMX to potentially save power when the workload

intensity reduces during the execution of a DTBL kernel. However, when the workload in-

tensity resumes, the TB diversion process should also be stopped so that the current SMX

could be utilized again. The SMX Resuming process will be made effective in this case.

It happens when there are TBs waiting in the GPU but no SMX is available either because

all of 100% SMX occupancy or there is not enough resource on the SMX available for the

next TB. As a consequence, the idle SMX would be resumed to consume the new TBs. If

there are multiple idle SMXs which have been through the TB diversion process, they will

be resumed one at a time at each time sample if necessary.

Figure 35 illustrates an example of dynamic TB diversion for one vertex expansion kernel

of BFS with DTBL implementation. It shows the SMX Occupancy of SMX 3 and SMX 11

before the diversion just the same as Figure 32. There are two TB Diversion processes for

SMX 3. The first one happens at the beginning of the SMX Occupancy Bubble. Since the

SMX Occupancy of SMX 3 is already zero, there is no SMX Draining process. The TB
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Figure 35: A case study for the Dynamic TB Diversion for one vertex expansion kernel of
BFS with DTBL implementation

diversion of SMX 3 and other SMXs cause an increase in the SMX occupancy of SMX 11,

which eventually reaches 100%. Subsequently, SMX 3 detects more workload on the GPU

and performs the TB Resuming to leave the SMX idle status.

The second TB diversion process happens when the SMX Occupancy of SMX 3 drops

below the threshold again around cycle 115K. The SMX draining process is activated this

time to gradually reduce the SMX Occupancy to zero. It is interesting to notice that this

is actually the execution tail of this kernel, so there is no SMX resuming as the relocated

TBs will not saturate other SMXs (e.g. SMX 11). Generally, during the execution tail of
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a kernel, TB diversion process may or may not happen depending on whether or not the

SMX occupancy of all the SMXs drop below the threshold at the same time sample. It is

also possible that all the TBs will eventually be diverted to one SMX. The SMX Resuming

process generally does not happen.

It should also be noted that in Figure 35, SMX 11 takes longer time to finish all the

TBs when the TB Diversion is applied. This imposes a negative impact on the performance

of the DTBL implementation, which brings up the question of how to trade off between

the performance degradation and energy saving. Section 6.3 will evaluate the performance

impact and energy efficiency of the proposed research in further details.

6.2.2 Opportunistic DVFS

After the TB diversion process reduces the SMX occupancy to zero, the power saving tech-

inque can be applied. As discussed before, ideal power gating technique could completely

eliminate the dynamic and leakage power of an idle SMX to achieve substantial power sav-

ing. This research examines a more practical DVFS strategy adopted by the GPU Power

simulator GPUWattch [41] which sets the SMX to the lowest P-state with low frequency

to reduce dynamic power and scales the voltage with frequency using a predictive technol-

ogy model [2] to reduce leakage power. The goal is to demonstrate the effectiveness of

the proposed power saving optimization for DTBL when incorporating its execution phase

behavior.

Applying DVFS. DVFS is applied after the SMX Draining process completes (if it is

necessary). The transition between different SMX P-states and voltages would require time

P, after which the SMX will be set to the lowest P-state and scaling voltage. When SMX

Resuming is required due to increasing workloads on the GPU, DVFS will make another

transition to the normal P-state which is the highest frequency with corresponding voltage

scaling. Again, such a transition would take time P.
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GPU-level and SMX-level DVFS. GPU-level DVFS sets the entire GPU to the lowest

P-state and scaling voltage while SMX-level DVFS only works on a single SMX. While the

latter is the major technique used in this research combining with the TB diversion process,

the former could be useful when all the SMXs are idle during the execution tail.

DVFS with SMX Draining. SMX Draining is not mandatory with DVFS. The DVFS

can be applied right after the TB diversion while the SMX occupancy is not zero. The

argument is that the negative performance impact brought by lower SMX frequency and

voltage would not last long as the workload remaining on the SMX is minimal (occupancy

is limited by the threshold used in the SMX diversion) while the upcoming power saving

could be beneficial. Again, the tradeoff between the performance and power saving is

discussed in Section 6.3.

6.2.3 Incorporating Dynamic TB Diversion and DVFS

Figure Figure 36 shows the high-level flow for the SMX Occupancy Bubble-based power

optimization for DTBL that combines both the dynamic TB diversion and opportunistic

DVFS. This flow will be performed on each SMX through the SMX scheduler at every

time sample. It starts by checking if the SMX is currently in a DVFS transition. This

step is to ensure that any DVFS decision, either the GPU-level or the SMX-level, made

at an earlier time sample is completed as the transition time could be several time sam-

ples. Then the SMX scheduler will examine if all the SMXs are in the idle state, which

is specifically designed for any execution tail so that the GPU-level DVFS can be applied

accordingly. The remaining steps in the optimization flow is divided into two parts: the

left part corresponds to the process of enforcing TB Diversion on an SMX with or with-

out SMX Draining, which eventually leads to the lowest P-state setting through DVFS; the

right part corresponds to the processing of resuming the normal status of an SMX by re-

setting it to the normal P-state. The TB scheduling for this SMX will be resumed after the

P-state transition completes.
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Figure 36: High-level Flow Chart for the SMX Occupancy Bubble-based Power Optimiza-
tion for DTBL

6.2.4 Architecture Extension

The support of the proposed power saving optimization requires the current GPU microar-

chitecture to be extended, specifically for enabling TB diversion and DVFS at different

levels according to different SMX status. As shown in Figure 37, the SMX scheduler is ex-

tended with both the new Diversion Control Registers and the extra scheduling logic for TB

scheduling and SMX status monitoring. The Diversion Control Registers are composed of

three registers: diversion status (DVR), draining status (DRN) and DVFS control (DVFS).

Each bit of the DVR and DRN indicates the current TB Diversion and SMX Draining status

of an SMX. The first bit of the DVFS register indicates if the GPU-level DVFS is activated

while the remaining bits are used for SMX-level DVFS of each SMX. There is no separate

register for the SMX Resuming status as it can be indicated by a clear DVR bit and a valid

SMX-level DVFS bit – there is no TB Diversion on the SMX but DVFS is activated which
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Figure 37: Architecture Extension for the SMX Occupancy Bubble-based Power Optimiza-
tion for DTBL

resume the SMX to its normal P-state. The new SMX Monitoring logic in the SMX sched-

uler will set/reset the values of the Diversion Control Registers according to Figure 36 by

examining the SMX Occupancy of all the SMXs. The new TB scheduling logic is respon-

sible to dispatch the TBs from the kernels in the Kernel Distributor (both the native TBs

and the dynamic TBs in DTBL) to the SMXs according to the values of DVR, that is, the

SMX with a set DVR bit will not be used as the scheduling destination. The DVFS Regu-

lator can be either on-chip or off-chip which could result in different transition time P. It

is designed in a way that the voltage and frequency of each single SMX can be controlled

separately to enable SMX-level DVFS. The decision of using DVFS Regulator to set the

SMX to the normal P-state or the lowest P-state is made with the DVFS control register in

the SMX scheduler. The DVFS regulator can also update the DVFS control register after

the transition is completed.

The proposed microarchitecture extension introduces area overhead through the new

control registers and scheduling logic. The Diversion Control Registers together take 6

bytes assuming a 13-SMX Kepler GPU. The TB Scheduling and SMX Monitoring logic
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is implemented as a state machine on top of the original SMX Scheduler which would be

the large area overhead. The microarchitecture extension itself does not introduce extra

scheduling cycles as the TB Scheduling and SMX Monitoring process will be integrated

into the original SMX Scheduling process and only happen at the designated time sample.

However, the scheduling process may introduce performance overhead to the application

which will be evaluated in Section 6.3.

6.2.5 Discussion

The power saving optimization proposed in this chapter is based on the execution phase be-

havior of the applications implemented with DTBL. As the dynamic parallelism in DTBL

exhibits substantially different behavior in terms of TB execution than a traditional GPU

BSP execution model, the strategy here is to focus on the TBs scheduling and SMX oc-

cupancy that lead to different power consumption consequence. Therefore it can be inte-

grated with many other GPU power models and optimizations that are applicable to the

general GPU applications. Specifically, techniques in controlling GPU components such

as registers [3][40], warps [5][78], caches [76] and execution units [4] can be leveraged for

fine-grained power optimization. Different power models [44][29] can be used for more

accurate power and energy consumption estimation and therefore optimization.

6.3 Experimental Evaluation

This section evaluates the proposed optimization for multiple CUDA applications imple-

mented with DTBL from both the power saving and the performance impact perspective.

Detailed analysis of the experiments are presented with multiple sensitivity studies and

insights discussion.

6.3.1 Methodology

The proposed SMX Occupancy Bubble-based power saving optimization is evaluated on

GPGPU-Sim [9] with the integrated power simulator GPUWattch [41]. The configuration
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of GPGPU-Sim is set to model the microarchitecture of the Tesla K20c GPU with the

DTBL execution model and LaPerm TB scheduler. This configuration is used as the base-

line in the experiments. The power simulation parameters for GPUWattch are configured

according to the default setting of GPUWattch, where the DVFS setting uses the P-states

which has a peak of 700MHz and a minimum of 100MHz. The scaling voltage with the

frequency is from 1V to 0.55V according to the 45nm predictive technology model [2].

The remaining section referred 100MHz/0.55V as the lowest P-state and 700MHz/1V as

the highest P-state which is the default state.

The sampling rate for the SMX occupancy evaluation, TB diversion and power opti-

mization operation is 500 cycles the same as the on-chip DVFS transition time used in

GPUWattch [41]. The SMX Occupancy threshold T for TB Diversion is set to 0.0625 or

4 warps. This number is chosen in the way such that there are enough SMX Occupancy

Bubbles in the execution for the power optimizations while there is minimized overhead

introduced by the DVFS transition. The waiting period W for SMX draining is 10 time

samples or 5000 cycles. In the experiments, the SMXs are able to be drained to complete

idleness within this waiting period for up to 95.4% of the SMX Occupancy Bubbles. The

experiments use two different DVFS transition times P: 1 time sample or 500 cycles for a

fast on-chip DVFS regulator and 20 time samples or 10000 cycles for an off-chip DVFS

regulator the same as GPUWattch [41]. While the major results in this section are reported

with the fast on-chip DVFS regulator, the sensitivity study discusses the impact of an off-

chip DVFS regulator with longer transition time.

This section uses the same set of benchmark applications as shown in Table 7. As

described in Section 6.1.2, these 16 benchmarks are divided into 2 groups according to

their potential power saving when ideal power gating technique is applied. As the proposed

SMX Occupancy Bubble-based power saving optimization will affect the performance of

the application which may change the total execution time, the subsequent section uses

energy savings instead of power saving as the metric to evaluate the energy efficiency of
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Figure 38: Energy Savings and Performance Loss for the SMX Occupancy Bubble-base
Power Optmization (P = 500 cycles)

the applications.

6.3.2 Energy Savings and Performance Impact

Figure 38 shows the energy savings and performance loss of the proposed power saving

optimization for DTBL. The average energy savings is 15.9% for the applications in group

1, which indicates the effectiveness of the optimization in using the SMX Occupancy Bub-

ble with DVFS, and thereby improving the overall energy efficiency. Recall that the energy

savings with an ideal power-gating technique is 24.5%. The application join_gaussian has

the highest energy savings 24.9% which is only 4.6% lower than its ideal counterpart. This

is due to the fact that 1) join_gaussian has high occurrence of SMX Occupancy Bubbles
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(45.7%) which has been proven to lead to great energy savings in the ideal case and 2) the

SMX Occupancy Bubbles are concentrated and therefore can last for a relatively long pe-

riod which facilitates the application of DVFS without introducing too much transition time

overhead. In contrast, although the application bht has relatively high SMX Occupancy

Bubble occurrence (27.7%) and therefore 18.0% ideal energy saving, the actual simulated

energy savings for the proposed optimization is only 2.5%. A close look at the bht reveals

that it has fast-changing execution phase behavior, i.e. the SMX Occupancy Bubbles are

short and distributed. It also requires frequent SMX Resuming shortly after TB Diver-

sion as workload intensity recovers quickly after the SMX Occupancy Bubbles. Therefore,

the effective time of the SMX under the lowest P-state is short, leading to limited energy

saving.

The average performance loss for group 1 applications is 6.7%. As discussed in the ear-

lier sections, the performance loss comes from the fact that relocating TBs may cause some

of the SMXs to have longer execution tails than the others, leading to the execution time

increase of the entire kernel. The DVFS transition time is also a major contributor to longer

total execution time. The benchmark bfs_citation and bht are the benchmarks with the least

and the most performance loss (1.5% and 17.4%), respectively. In fact, they demonstrate

the impact of SMX Bubble Occupancy patterns on the performance. For benchmarks such

as join_gaussian and bfs_citation, the concentrated SMX Occupancy Bubbles result in not

only longer time an SMX could be set into the lowest P-state, but also fewer DVFS tran-

sitions with less transition overhead. On the other hand, the benchmark bht suffers from

long overall DVFS transition time which could introduce substantial performance over-

head. Note that the longer execution time also has a negative impact on the total energy

efficiency, which is another cause that bht has the lowest energy savings among the all.

Recall that there are very few SMX occupancy bubbles in the second group of appli-

cations due to multiple reasons, therefore, the proposed optimization only has a limited

impact on both the energy savings (average 1.0%) and performance loss (average 0.5%).
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Figure 39: Energy savings degradation and extra performance loss for off-chip DVFS regu-
lator with the 10000 cycle transition time compared with on-chip DVFS regulator with the
fast 500 cycle transition time

6.3.3 Sensitivity of DVFS Transition Time

As the DVFS transition time could affect the energy efficiency, this section performs a

sensitivity analysis of the transition time. Figure 39 illustrates the extra energy savings

degradation and performance loss of group 1 applications when using a off-chip DVFS

regulator with the 10000 cycle transition time.

The result shows that the average energy savings degradation is 1.2% with an average

performance loss of 0.6%. The long DVFS transition time reduces the effective time that the

idle SMX is under the lowest P-state while also prevents it from processing more dynamic

work as the TB Diversion is turned on, which may cause oversubscribing of the remaining

SMX and the decrease of overall energy efficiency. However, it is also worthwhile to

notice the performance gain for bht (4.5%) compared with the case where a faster DVFS

regulator is used. The long transition time actually makes it impossible to capture every

SMX Occupancy Bubble during its execution, which effectively reduces the overhead of

TB Diversion and Resuming and results in shorter execution time.
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Figure 40: Extra Energy savings and extra performance loss when SMX Draining is turned
off (P = 500 cycles)

6.3.4 Impact of SMX Draining

When SMX Draining is turned off during the proposed optimization, DVFS can be applied

immediately after TB Diversion starts, which could lead to extra power saving. How-

ever, DVFS on non-idle SMX also leads to longer execution time for the active TBs and

overall performance loss. Together they affect the energy efficiency as shown in Fig-

ure 40. All the group 1 applications benefit from extra energy savings except for amr

and join_gaussian with 3.2% and 1.2% energy savings degradation, respectively. Both ap-

plications are compute-bound with TBs that can execute for a long time. Applying DVFS

without SMX Draining results in substantial loss in performance (7.9% and 4.4%) and

energy efficiency.

6.3.5 Insights

The above experiments results and analysis show that there are various aspects that could

affect the effectiveness of the proposed power saving optimization. Some of the insights

are as follows:

• Both the occurrence percentage and phase behavior of SMX Occupancy Bubbles

have major impact on the energy savings and performance. Concentrated and long
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SMX Occupancy Bubbles result in better energy efficiency while distributed and

short SMX Occupancy Bubbles could introduce high overhead that negates any po-

tential benefits of the proposed optimization.

• The DVFS Transition time may tradeoff between achieving better power saving and

catching the fast-changing SMX Occupancy Bubbles phase behavior. Further opti-

mizations can be proposed to accommodate different DVFS transition time, such as

introducing the minimal time the DVFS should be active once it is enabled.

6.4 Summary

This chapter presents an optimization for the DTBL execution model from the power dissi-

pation perspective. The concept of SMX Occupancy Bubble is introduced and demonstrated

through the comparison between the execution phase behavior between the DTBL and the

PT models to reveal the potential power saving opportunities for DTBL applications. The

SMX Occupancy Bubble-base power saving optimization is then proposed to incorporate

a dynamic TB diversion and scheduling strategy followed by a flexible DVFS application

scheme to reduce both the dynamic and leakage power during the SMX Occupancy Bubble

and achieve better energy efficiency. Experiments on a set of irregular applications with

DTBL implementation show the proposed optimization is able to achieve an average of

15.9% energy savings with 6.7% performance loss.

120



CHAPTER VII

CONCLUSION

This thesis seeks to address an important question of how to efficiently map the emerging

data-intensive applications with irregular data structures onto the GPUs that employ the

regular BSP execution model. These applications, represented by graph processing, rela-

tional computing and machine learning, are characterized by their unstructured control and

memory behavior which would lead to low compute utilization when implemented on the

GPU. This thesis concludes that an extension to the current GPU execution model with

the capability of dynamic thread block launching augmented by a set of optimizations in

improving the scheduling and energy efficiency is an effective and efficient solution for the

GPU implementations of the irregular applications with fine-grained dynamic parallelism.

This conclusion is demonstrated by the presentation of the following research problems,

their results and important insights.

First, a set of irregular CUDA applications are evaluated to present and characterize

Dynamically Formed Pockets of Structured Parallelism (DFP). This is performed through

GPU implementations with the CUDA Dynamic Parallelism (CDP) features introduced by

recent generations of NVIDIA GPUs. DFP has three important features of dynamic paral-

lelism in irregular applications: high dynamic workload density, low compute intensity and

workload similarity. The characterization study shows that a GPU execution model that

supports dynamic workload generation would potentially benefit the irregular applications

with DFP in terms of better control flow and memory behavior as well as higher produc-

tivity. It also shows that the implementations with dynamic kernel launches through CDP

suffer from low GPU utilization and high kernel launching overhead which would negate

any performance benefit and impose a challenge in utilizing the dynamic parallelism exe-

cution model.

Second, the Dynamic Thread Block Launch (DTBL) extension to the current GPU
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execution model is proposed and evaluated. The major achievement of DTBL is a light-

weight, efficient programming model and corresponding microarchitecture/runtime support

for DFP. The ability of launching fine-graind TBs from a GPU thread on demand instead

of heavy-weight GPU kernels helps address the most two important performance issues in

support of dynamic parallelism on the GPU: increasing SMX execution efficiency and min-

imizing launching overhead. Through careful design of the DTBL semantics and the inno-

vative TB coalescing strategy, the proposed new execution model extension demonstrates

its capability of supporting fine-graind dynamic parallelism in DFP with significantly re-

duced overhead compared with CDP.

Third, the LaPerm memory locality-aware TB scheduler is proposed as an optimiza-

tion to the DTBL model. The motivation of such a scheduler is that there is a new type

of memory reference locality relationship in dynamic parallelism between the parent TBs

and the child TBs as well as the sibling child TBs in terms of substantial data reuse. The

current round-robin TB scheduler fails to catch such locality as it is designed for appli-

cations implemented with non-dynamic parallelism execution models. The LaPerm TB

scheduler introduces three-level decisions to utilize the memory hierarchy such as L1/L2

caches for the parent-child and child-child locality to improve the overall memory system

performance. As an optimization to the original DTBL model, LaPerm demonstrates it

effectiveness in further increasing the performance of irregular applications when imple-

mented with dynamic parallelism.

Fourth, the DTBL model is evaluated from a power dissipation perspective and a new

energy saving optimization is proposed. The evaluation compares the DTBL implementa-

tion with the PT implementations that employ the regular GPU BSP models and concludes

that there exists larger SMX Occupancy variance in the execution of DTBL applications

due to the generation of dynamic workloads. The existence of SMX Occupancy Bubble

where the SMX occupancy falls below a threshold can be potentially utilized to reduce en-

ergy consumption for the DTBL applications. The proposed optimization employs a new
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dynamic TB diversion and scheduling strategy to turn the SMX Occupancy Bubbles into

SMX idle periods, followed by an opportunistic DVFS scheme to further reduce the dy-

namic power and leakage power, which eventually leads to the increase of overall energy

efficiency for the DTBL execution model.

In summary, the rapid-growing irregular application domain results in an urgent de-

mand for new GPU execution models to address the newly raised challenges and issues in

performance, energy, reliability, etc. This thesis takes a step towards this end by proposing

the DTBL execution model along with the associated optimization in memory scheduling

and energy efficiency to accommodate the dynamic parallelism that is observed in irregu-

lar applications. While DTBL demonstrates its efficiency in various aspects, there are still

many questions to be answered. Exploring further opportunities in supporting dynamic

parallelism on the GPU is both promising and imperative.
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