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CHAPTER 1

INTRODUCTION

Synthetic Aperture Radar (SAR) is an active coherent imaging sensor that offers all-

weather, day-night, high-quality imagery. SAR is a mature but actively researched technol-

ogy. Although much of the early work was aimed at military applications such as the detec-

tion and tracking of moving targets, the potential for utilizing this instrument as an imaging

sensor for scientific applications was widely recognized. Applications include crop or for-

est condition assessment, flood and sea ice monitoring, ship and oil slick detection, land

cover mapping, height mapping, and change detection. SAR has also found applications

in disciplines such as forestry, geology, hydrology, oceanography and bathymetry. All

SAR applications are aimed at terrain mapping or target imaging as shown in Fig. 1.1.

Terrain consists of objects that cover large areas, such as fields, forests, lakes, rivers, and

roads. A target is a specific object of interest that the radar illuminates. The typical tar-

get is man made and consists of multiple scattering centers. A typical SAR system has

a RF/microwave front-end, front-end signal processing and back-end signal processing as

shown in Fig. 1.2. The Front-end signal processing block houses the SAR focusing algo-

rithm where as back-end processing is used for image enhancement such as speckle noise

reduction. The back-end processing block may also include functionality such as automatic

target recognition (ATR).

SAR imaging is not just described by a bunch of formulae; rather it stands on the

shoulders of giants as any other evolved discipline of our age. SAR imaging shares the

Huygens-Fresnel principle along with ultrasonic imaging, seismic imaging, and Fourier

optics to name a few. The Green’s function for SAR is identified by a cylindrical phase

function. Various approximations of this Green’s function have been in use, dictated by the

processing technology of the time.
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Figure 1.1. (a) Terrain mapping. (b) Target imaging.
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Figure 1.2. SAR system level block diagram.

In chapter 2, basic principles of SAR imaging are introduced including fast-time imag-

ing and slow-time imaging. After a brief historical perspective, this chapter then delves

straight into the Huygens-Fresnel principle and the resulting Green’s function. The slant-

plane SAR Fourier integral is analyzed from both a mathematics and physics stand point.

The mathematical tools offered by complex analysis are applied to solve the integral as

these tools are known to solve Laplace integrals and some Fourier integrals. This research

is followed by asymptotic expansion from Harmonic analysis. It is shown that the differen-

tial equation governing SAR wave propagation is an elliptic equation and finite difference

methods used to compute such equations are also discussed.

In chapter 3, the outcome of the asymptotic expansion is extended to two-dimensional

(2-D) aperture synthesis, and thorough analytical development of SAR imaging with 2-D

aperture synthesis is presented. The simulation results of both rectangular and circular

apertures are compared to the Fraunhofer diffraction patterns from Fourier optics. Various

options for filling in Fourier components are explored next, including beam raster-scanning,

multi-pass imaging, sparse array imaging, and circular SAR imaging.

Chapter 4 is the heart of this dissertation where the fast circular synthetic aperture

radar (CSAR) algorithm is formulated. Fourier analysis based CSAR imaging involves

multidimensional aperture synthesis supplemented by fast-time imaging techniques to fill

in Fourier components. This investigation in computationally efficient CSAR methods is

a sequel to prior research on multidimensional aperture synthesis. A required condition

for asymptotic expansion of 2-D aperture synthesis was earlier investigated that defined a

circular support region in the Fourier domain. It has been shown that a circular synthetic
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aperture is easily executed by a roll maneuver of an airborne platform carrying a SAR

sensor; this is in contrast to challenges in creating alternate aperture shapes encountered

both in Fourier optics and array processing. Our study of the Fourier optics discipline

revealed results that are equally applicable to SAR imaging; that the point-spread-function

(psf) is merely a Fourier transform of the aperture shape. Moreover, sparse array shapes like

Very Large Array (VLA) in radio astronomy do not qualify as candidates for 2-D aperture

synthesis in SAR imaging because such arrays involve an observation time of several hours

to fill in Fourier components.

Linear SAR, in both stripmap and spotlight SAR modalities, typically measures a target

SAR signature only over a limited aspect angle. CSAR, on the other hand, is a method of

SAR imaging capable of obtaining measurements of up to a full 360◦ rotation or a partial

segment of a circular flight path. The concept of CSAR may also be extended to space

borne SAR imaging utilizing the motion of a satellite in an orbit accurately modeled as

a circular trajectory. Following are the various techniques that employ slant-plane CSAR

imaging.

1. The first ever CSAR processing was outlined using plane wave approximation of

spherical wave function titled range-Doppler imaging of rotating objects. The resul-

tant Polar Format Algorithm (PFA) was later used for spotlight imaging modality of

SAR.

2. CSAR may also be interpreted as a tomographic reconstruction problem and ana-

lyzed using the projection-slice theorem from computer-aided tomography.

f (x, y) ∗ ∗�θ[δ(x)1(y)] ↔ F(u, v)�θ[1(u)δ(v)] (1.1)

The signal recorded at each SAR transmission point is modeled as a portion of the

Fourier transform of a central projection of the imaged ground area. Reconstruction

of an SAR image may then be accomplished using traditional algorithms not based

on Doppler shifts.
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3. The approximation free, Fourier Analysis based CSAR approach is a recent develop-

ment based on Fourier decomposition of the multidimensional shift-varying impulse

response or slant-plane Green’s function. This type of CSAR computes ground-

plane CSAR from a projection of the slant-plane CSAR phase history data into a

ground-plane phase history for further matched filtering-based target area reconstruc-

tion. An approximation to ground-plane CSAR is achieved by taking the hermitian

transpose of the near-orthogonal system slant-plane-to-ground plane phase history

projection model. The alternate approach involves the computationally expensive

pseudo-inverse of the linear shift-varying system.

4. The back-projection CSAR algorithm correlates measured CSAR data with the an-

alytical signature of a unit reflector at each pixel point on the desired spatial recon-

struction grid to form the CSAR image of the target area.

Householder transform based processing has recently been shown to have improved

error bounds and stability as an underdetermined system solver. This transform may also

be applied to ill-conditioned systems with speed unmatched by any other solver. This pa-

per proposes the use of the Householder transform to process Fourier analysis based CSAR

data, thus circumventing the need for explicitly computing a pseudo-inverse in CSAR imag-

ing.

Results presented in chapter 5 are a spin-off of our earlier research in SAR 2-D aper-

ture synthesis. This research utilizes the methodology of the SAR 2-D aperture synthesis

algorithm, a two dimensional variant of the ω − k algorithm, to refocus out-of-focus im-

ages. Refocusing of images may be necessary in machine vision as a preprocessing step

before edge detection or image segmentation in the imaging and manipulation of three di-

mensional (3-D) objects. The SAR 2-D aperture synthesis algorithm generates a complex

amplitude distribution and the corresponding psf in a manner similar to Fraunhofer diffrac-

tion distribution model and its psf as seen in Fourier optics. The matched filter utilized in

the SAR 2-D aperture synthesis algorithm has a focus-in-altitude interpretation and may be

5



varied to increase or decrease the radius of out-of-focus blur associated with a particular

psf of scatterers of various heights. This research demonstrates focusing of a line object

L = (1 : x = y − 64 ≤ x ≤ 63,−64 ≤ y ≤ 63). Although a rectangular aperture is used in

the refocusing process, other apertures may also be used such as circular or Gaussian.

In optical imaging, the imaging system is first focused and then data are collected. In

SAR imaging, data are first collected and then focused through signal processing. Hence, a

SAR signal processing algorithm is necessarily a focusing algorithm. Conventional slant-

plane SAR employs two entirely different methodologies for target area image formation: a

pulsed fast time imaging technique is used perpendicular to the flight path, and a “Doppler”

induced slow time imaging technique is used along the flight path. The use of ω − k al-

gorithm for slow time signal processing of slant plane SAR data is a new trend. The key

concept in the SAR 2-D aperture synthesis algorithm is the extension of the one dimen-

sional slow-time imaging technique based upon ω − k algorithm to two dimensions. In

coherent optics, spherical wave illumination of an aperture produces a complex amplitude

distribution proportional to the Fourier transform of the aperture transmittance function,

scaled by the wavelength times the convergence distance. This is the most important result

reached in the development of Fourier optics. The two dimensional variant of ω − k al-

gorithm exposes similar complex amplitude Fraunhofer diffraction distributions as seen in

Fourier optics. The matched filter has a focus-in-altitude interpretation. This work delves

into this inherent focusing ability of matched filter to refocus data to one distance parameter

that has been previously focused to another distance parameter. In this sense, the method

provides an approach to refocus defocused images.

In machine vision, processing tasks such as edge detection, image segmentation, etc.,

are easier for focused images than for defocused images of 3-D scenes. However, the

image of a camera is not identically focused for all objects in the camera scene. The target

object and those objects at the same distance as the target object will be focused. All other

objects at distances other than that of the target object will be blurred by different degrees
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depending on their distance from the camera. The amount of defocus blur also depends

on the camera parameters such as lens position with respect to image detector, focal length

of the lens, and diameter of the camera aperture. Two blurred images of the same camera

scene are usually used in the refocusing process. Initially, a blur parameter “sigma” is

estimated, then one of the two blurred images is deconvolved to recover the focused image.

This refocusing may be done with or without the knowledge of the camera psf.

In chapter 6, work done in SAR back-end processing in a terrain mapping application

is presented. SAR image classification for late season rural land cover estimation is inves-

tigated. A novel, tree structured, nearest neighbor–like classifier is applied to polarimetric

SAR intensity image pixel blocks. The novel tree structure, called a σ–tree, is generated

by an ordered summation of unweighted template refinements. Computation and memory

costs of a σ–tree classifier grow linearly. The reduced costs of σ–tree classifiers are ob-

tained with the trade–off of a guarantee of nearest neighbor mappings. Causal–anti–causal

refinement template design methods, combined with causal multiple stage search engine

structures, are shown to yield sequential search decisions that are acceptably near neigh-

bor mappings. The performance of a σ–tree classifier is demonstrated for rural land cover

estimation with detected polarimetric C–band AirSAR pixel data. Experiments are con-

ducted on various polarization/pixel block size combinations to evaluate the relative utility

of spatial–only, polarimetric–only, and combined spatial/polarimetric classifier inputs.

Nearest neighbor classifier implementation costs, in terms of required memory and

computational resources, grow in proportion to the number of exemplars available as pat-

tern matching templates. Conventional tree structured nearest neighbor classifiers reduce

computation, but increase memory requirements. A novel tree structure called a σ–tree

is investigated that simultaneously reduces both computation and memory requirements.

This tree structure is derived from a collection of multiple stage successive approximation

templates.

7



Data processing can often be formulated in terms of “successive refinement,” “incre-

mental refinement” or “approximate signal processing”. A progressive formulation of data

processing and data representation allows for the possibility of trading accuracy or opti-

mality of results for the consumption of resources such as system cost and complexity.

Successive approximation source codes provide an architectural framework and strategy

for image content classification, and are at the heart of the σ–tree concept. The type of suc-

cessive approximation source code proposed here for data classification is based on direct

sum data structures. This template–based classifier search engine uses direct sum structures

for building efficient, data–adaptive, reduced–degree–of–freedom digital representations of

target class exemplars. The σ–tree classifiers are applied in the pixel space of detected po-

larimetric SAR images for late season (November in southeastern United States) rural land

use estimation.

The primary purpose of this research is to introduce and investigate the utility of the

direct sum form of data representation in SAR image classification problems. C–band Air-

SAR data sets of opportunity (images and ground truth) provide us late season crop classi-

fication as the corresponding application–of–opportunity. The earlier work in this area ad-

dressed crop classification with polarimetric C–band AirSAR data for crop classification.

The image sets used in this work were obtained in the early to mid stage of growth (June).

They examined full complexity neural–networks, pruned complexity neural–networks, and

maximum likelihood algorithms. Their data analysis show that polarimetrics should be a

key discriminator, and they are able to achieve good classification results with field–based

(not pixel–based) polarimetric signature classification. Their proven expectation is that po-

larimetrics is a key discriminator for early to mid season growth stage crops. This is due to

crop canopy and ground bounce interactions, especially in cross polarizations. However,

in late season classification problems, the crop canopy is usually sparse or absent, so a

question addressed in this research is “can a spatial extension of the classifier’s input space

compensate for lack of polarimetric discriminators in late season land cover estimation?”
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Our classifier is a pixel based classifier that runs a sliding window through a polari-

metric SAR intensity (detected) pixel image, and extracts multiple layered snippets for

classification. The stride of the sliding window is one pixel in both x and y directions. For

example, if a block size of 9 × 9 is used for classification, the sliding window moves just

one pixel to the right for the next block (or starts at the head of the next row if the end of a

row is reached). This allows the classifier to assign a class label to every pixel. The stride

of the sliding window can be increased to reduce the runtime of the σ–tree classifier.

Experiments are conducted for three cases: 1) with combined polarimetric/spatial blocks

with 9× 9 pixels and HH, VV and VH layers, 2) with polarimetric–only blocks with single

pixel spatial extent and HH, VV and VH layers, and 3) with spatial–only blocks with 9× 9

pixels of a single AirSAR “total power” (TP) layer. Results show that inclusion of both

polarimetric and spatial information gives good classification results for feature classes of

1) unharvested cotton (85% correct), 2) cut corn stubble / picked and cut cotton / plowed

areas (90% correct), 3) pasture and dried soybean areas (99% correct), 4) young pine stands

(74% correct), 5) mature pine stands (100% correct) and 6) a catch–all–else “other” class.

The system is less successful separating unpicked cotton with foliage (79%) from unpicked

defoliated cotton (52%), and separating dried soybeans (67%) from pasture (47%). Exper-

iments show that the inclusion of spatial content into the σ–tree classifier’s input space is

helpful for all classes, and that the inclusion of polarimetric content is useful for small plant

ground cover (unharvested cotton and young pine trees).

Finally, a summary of the ideas and results are presented in chapter 7. Topics for further

research are also discussed in this concluding chapter.
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CHAPTER 2

MATHEMATICAL METHODS FOR SAR DATA FOCUSING

2.1 Origin and History
2.1.1 Slant-plane SAR Imaging

In the remote sensing context, an SAR system makes an image of the Earth’s surface from

a spaceborne or airborne platform [9]. It does this by pointing a radar beam approximately

perpendicular to the sensor’s motion vector, transmitting phase-encoded pulses, and record-

ing the radar echoes as they reflect off the Earth’s surface. To form a high-resolution image,

intensity measurements must be taken in the slant-plane along two orthogonal directions

[10], [11], [12]. In the SAR context, one dimension is parallel to the radar beam, called

range or fast-time, as the time delay of the received echo is proportional to the distance

or range along the beam to the scatterer. By measuring the time delay, the radar places

the echo at the correct distance from the sensor, along the image’s x-axis. The second

dimension of the image, termed cross-range or slow-time, is given by the travel of the

sensor itself. As the sensor moves along in a nominally straight line above the Earth’s sur-

face, the radar beam sweeps along the ground at approximately the same speed. The radar

system emits pulses of electromagnetic energy, and the echoes received from the pulses

are processed and placed in the image’s y-axis, according to the sensor’s current position,

creating an image with geometric coordinates. The y-dimension is also called azimuth or

along-track.

2.1.2 Fast-time Imaging

Slant-plane SAR fast-time imaging is most commonly based on a signal processing tech-

nique called pulse compression. Pulse compression is a type of spread spectrum method

designed to minimize peak power, maximize signal-to-noise ratio, and obtain fine resolu-

tion of the sensed object. The pulse is linearly frequency modulated (FM) such that the

instantaneous frequency is a linear function of time. In the time domain, an ideal linear FM
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(LFM) signal or pulse has a duration of T seconds with a constant amplitude, and K is the

LFM rate in Hertz per second (2.1). The phase is a quadratic function of time (2.2) and the

frequency is a linear function of time (2.3). The signal bandwidth is defined as the range of

frequencies spanned by the significant energy of the chirp or the frequency excursion of the

signal and is given by the product of chirp slope and chirp duration (2.4). SAR fast-time

imaging is shown in Fig. 2.1.

s(t) = rect(
t
T

) exp( jπKt2) (2.1)

φ(t) = πKt2 (2.2)

f = Kt (2.3)

BW =| K | T (2.4)

There are alternate approaches to fast-time imaging. One such approach transmits a

band of frequencies and employs matched filtering for target reconstruction. The point

spread function then depends on the spectral shape of the radar signal. For instance, when

| P(ω) |= 1 within the radar bandwidth, that is, ω ∈ [ωc − ωo, ωc + ωo], the point spread

function is a sinc:

ps ft(t) = exp( jωct)sinc(
ωot
π

) (2.5)

Discrete phase and frequency codes are useful in special situations such as RCS mea-

surement facilities and low probability of intercept (LPI) applications. Phase codes may

be binary codes with only 0 and π radians phase levels or more general polyphase codes.

Binary codes include Barker codes and pseudo-random phase codes [13].

2.1.3 Slow-time Imaging

Slow-time imaging, the signal processing technique that SAR employs to achieve fine az-

imuth or cross-range resolution, is the feature that distinguishes SAR from other imaging

radars. Moreover, slow-time imaging is firmly rooted in the concepts of scalar diffraction

theory.
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Figure 2.1. SAR fast-time imaging.
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2.1.3.1 Scalar Diffraction Theory

Diffraction is the study of the relationship between the complex amplitude distribution of

a propagating wave at one plane that the wavefront passes through and the complex ampli-

tude distribution of the same wavefront at a subsequent plane. The terms interference and

diffraction refer to the same basic phenomenon. The term interference is usually chosen for

the interaction of a finite number of wavefronts such as when the source consists of a finite

number of point sources. The term diffraction is preferred for the general situation such as

when there is an uncountable infinity of interacting wavefronts. Scalar diffraction theory

is a mathematical formulation of diffraction that provides a satisfactory description of the

physical phenomenon of diffraction for scalar waves such as acoustic waves. Scalar diffrac-

tion theory usually gives satisfactory results even for vector waves, such as electromagnetic

waves, especially if the significant dimensions in the problem are large in comparison to

a wavelength. There are rare cases, however, where scalar diffraction theory is inadequate

and fails to describe the physical phenomenon. Then, a richer theory, known as the vector

diffraction theory, must be used. The scalar diffraction theory is precisely described by the

Huygens-Fresnel principle, which describes a wavefront, s(x, y, z), on the x, y plane at z = d

in terms of that wavefront on a previous x, y plane at z = 0.

2.1.3.2 Timeline

In 1678 Christian Huygens wrote on the wave theory of light, expressing the intuitive con-

viction that if each point on the wavefront of a disturbance at time t were considered to

be a new source of a secondary spherical disturbance, then the wavefront at a later instant

t+∆t could be found by constructing the envelope of the secondary wavelets, as illustrated

in Fig. 2.2.

In 1804, Thomas Young strengthened the wave theory of light by introducing the critical

concept of interference. Later in 1818, Augustin Jean Fresnel was able to calculate the dis-

tribution of light in diffraction patterns with excellent accuracy. In 1860 Maxwell identified

light as an electromagnetic wave, a step of enormous import. But it was not until 1882 that
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Figure 2.2. Huygens’ envelope construction.
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Gustav Kirchoff put previous ideas on a firmer mathematical foundation by showing that

the amplitudes and phases ascribed to the secondary sources by Fresnel were indeed logical

consequences of the wave nature of light. Kirchhoff’s theory was based on simplifications

and approximations. Most important, light is treated as a scalar phenomenon, neglecting

the fundamentally vectorial nature of the electromagnetic fields. However, scalar theory

yields accurate results if two conditions are met: (1) the diffracting aperture must be large

compared with a wavelength, and (2) the diffracting fields must not be observed too close

to the aperture. In principle, the diffraction of electromagnetic waves should be explained

directly from Maxwell’s equations, which give a complete description of electromagnetic

fields. However, there may be mathematical difficulties when starting from first principles

because there may be concerns about how to model a given problem or how to specify a

consistent and accurate set of boundary conditions. It may be difficult to formulate the

boundary conditions at a level of detail needed to apply Maxwell’s equations, while the

weaker conditions needed for diffraction theory may be readily apparent. This is why the

theory of diffraction is formulated as distinct, but subservient to, electromagnetic theory.

In 1948, Dennis Gabor based his wavefront reconstruction theory, also called hologra-

phy, on the scalar wave theory. This theory is the principal foundation of many imaging

systems in optics, geophysics, and diagnostic medicine. Gabor recognized that when a

suitable coherent reference wave is present simultaneously with the light diffracted by or

scattered from an object, information about both the amplitude and phase of the diffracted

or scattered waves can be recorded. In 1962 E. N. Leith and J. Upatnieks modified Ga-

bor’s original technique by the offset-reference hologram and applied it to SAR proposed

by Carl Wiley in 1951 [14], [15], [16], [17]. However, the lack of fast computing machines

and advanced digital signal processing algorithms at that time prevented the development

of wavefront reconstruction-based SAR imaging methods. The early SAR systems were

based on the optical processing of the measured echoed signal using the Fresnel approxi-

mation for image formation. This SAR processor, in the analog form or its digital version
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which was introduced for the space borne SAR in the late 1970s, is also known as rang-

Doppler imaging (RDI). In the 1970s another SAR imaging method, known as polar format

processing (PFA), was introduced for high-resolution spotlight SAR systems. This method

was based on plane wave approximation. The first digital signal processing-based methods

for SAR image formation via the wavefront reconstruction theory were introduced in the

late 1980s to early 1990’s.

2.1.3.3 Huygens-Fresnel Principle and Green’s Function

The scalar diffraction theory is precisely described by the Huygens-Fresnel principle, which

describes a wavefront, s(x, y, z), on the x, y plane at z = d in terms of that wavefront on a

previous x, y plane at z = 0. Moreover, h(x, y) is known as the Huygens-Fresnel point

spread function (2.6) [18]. The signal processing term point spread function may be called

a Green’s function in the study of wave propagation, though the term Green’s function

usually refers to the kernel of a three-dimensional convolution rather than that of a two-

dimensional convolution [19], [20].

s(x, y, d) = h(x, y) ∗ ∗s(x, y, 0) (2.6)

The Green’s function satisfies the following differential equation [21] called Helmholtz

equation:
∂2

∂x2
h(x, y) +

∂2

∂y2
h(x, y) + k2h(x, y) = −δ(x, y) (2.7)

where k wavenumber is a constant and δ(x, y) is the impulse input. Equation (2.7) can be

written as a linear operator on h(x, y) as follows:

[
∂2

∂x2
+
∂2

∂y2
+ k2]h(x, y) = −δ(x, y) (2.8)

where ∂2

∂x2 +
∂2

∂y2 ≡ ∇2 is called the Laplacian operator. The differential equation (2.8) is

commonly written in the following form:

[∇2 + k2]h(x, y) = −δ(x, y) (2.9)
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Taking the two-dimensional Fourier transform of both sides, we get

[−k2
x − k2

y + k2]H(kx, ky) = −1 (2.10)

or equivalently,

H(kx, ky) =
1

k2
x + k2

y − k2
(2.11)

A similar principle also exists for the three-dimensional spatial domain (x, y, z). The im-

pulse response h(x, y) is known as the free-space Green’s function. This signal is the ra-

diation pattern of an ideal point source that emits a wave at temporal frequency ω in a

homogeneous medium with propagation speed c, and k = ωc is called the wavenumber. For

two-dimensional geometries, the Green’s function is

h(x, y) = jπHo(k
√

x2 + y2) = jπHo(kr) (2.12)

where Ho(.) is the zero-th order Hankel function of the first kind, and r =
√

x2 + y2. It can

be shown that

limkr→∞Ho(kr) ≈
√

2
πkr

e− j π4 exp( jkr) (2.13)

The asymptotic expression (2.13) is a valid approximation for the Green’s function when

r � λ ≡ 2π
k . The Green’s function in the three-dimensional spatial domain for diverging

spherical-wave solution to Helmhotz equation is

h(x, y, z) =
exp( jkr)

r
(2.14)

where r =
√

x2 + y2 + z2. In SAR imaging problems, the distances are sufficiently large

such that the phase functions of the two-dimensional and three-dimensional Green’s func-

tions both behave as exp( jkr). Moreover, their amplitude functions vary very slowly

with respect to their phase functions and do not play an important role in the imaging

problem. Therefore, Green’s function is identified with the cylindrical phase function

exp( jk
√

x2 + y2) and the spherical phase function exp( jk
√

x2 + y2 + z2).
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2.1.3.4 Slant-plane SAR Green’s Function

The Green’s function for the SAR-specific scenario, for synthetic aperture position u along

y − axis, may be written as exp( jk
√

x2 + (y − u)2 + z2). This three-dimensional Green’s

function is simplified into the two-dimensional slant-plane SAR Green’s function by syn-

thesizing the linear aperture as follows:

exp( jk
√

x2 + (y − u)2 + z2) = exp( jk
√

x2
slant + (y − u)2) (2.15)

where x2
slant = x2 + z2. The subscript slant will not be explicitly mentioned in all future

references to slant-plane SAR Green’s function. Moreover, if Xc is the scene center along

the range dimension, we may rewrite Green’s function as exp( jk
√

(Xc + x)2 + (y − u)2).

2.1.3.5 Fresnel Approximation

It is known from fast-time imaging that the instantaneous frequency of a chirp signal is a

linear function. Similarly, the Fresnel approximation of SAR’s slant-plane Green’s function

yields a chirp that is quadratic in phase so that the instantaneous spatial frequency is a linear

function. This is achieved by a Taylor series expansion, assuming (y − u)  (Xc + x), and

neglecting the higher order terms to obtain

exp( jk
√

(Xc + x)2 + (y − u)2) ≈ exp[ jk(Xc + x) + j
k(y − u)2

2Xc
] (2.16)

Although implementable via optical analogue signal processing techniques of the time, the

Fresnel approximation later proved unsuitable for high-resolution SAR imaging. The Fres-

nel approximation results in significant phase errors and degradations in the reconstructed

SAR image. SAR imaging based on a Fresnel approximation was termed range-Doppler

imaging (RDI) and the initial space-based systems employed a Fresnel approximation [22],

[23], [24].

2.1.3.6 Plane-wave Approximation

Suppose that the center of the target area is (Xc, Yc), then

√
(Xc + x)2 + (Yc + y − u)2 ≈

√
X2

c + (Yc − u)2 + cosθo(u)x + sinθo(u)y (2.17)
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where θo(u) = arctan(Yc−u
Xc

) is the aspect angle of the radar with respect to the center of

the target area at the slow-time synthetic aperture position u. The name “polar format

processing” given to a plane wave approximation-based reconstruction stems from the fact

that the samples of the SAR signal are mapped into polar samples of the target function in

the spatial frequency domain. This approximation neglects the wavefront curvature in the

spherical PM signal and results in spatially varying smearing and shifting of the targets in

the imaging scene. For the validity of this approximation, certain conditions must be met

in terms of the size of the target area, the radar frequency, and the extent of the synthetic

aperture u. Polar format processing is also used in conjunction with narrow-beam width

and narrow-bandwidth approximations

2.1.3.7 Slant-plane SAR Fourier Integral

The purpose of the Fresnel approximation as well as the plane-wave approximation is to

solve the following Fourier integral:

∫ ∞

−∞
σn exp(− j2k

√
x2

n + (yn − u)2) exp(− jkuu)du (2.18)

where σn is the nth target reflectivity and ku represents the slow-time spatial frequency

domain.

2.2 Mathematical Methods
2.2.1 Complex Analysis

Complex analysis is the branch of mathematics investigating functions of complex vari-

ables. Cauchy’s residue theorem, a crucial tool in solving certain indefinite integrals, was

explored as a possible solution to the slant-plane SAR Fourier integral.

2.2.1.1 Residue Theory

Let C be a simple closed contour, described in the positive sense. If a function f is analytic

inside C except for a finite number of isolated singular points zk(k = 1, 2, ..., n) inside C,
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then [25] ∫
C

f (z)dz = 2πi
n∑

k=1

Resz=zk f (z) (2.19)

An isolated singular point zo is the point at which function f fails to be analytic and there

is a deleted neighborhood 0 <| z − zo |< ε of zo throughout which f is analytic. The

counterclockwise direction is considered positive in the above stated theorem. In turn,

Cauchy’s residue theorem is based on Cauchy’s integral formula. When zo is an isolated

singular point of a function f , there is a positive number δ such that f is analytic at each

point z for which 0 <| z − zo |< δ. Consequently, f (z) is represented by a Laurent series

f (z) =
∞∑

n=0

an(z − zo)
n +

b1

z − zo
+

b2

z − zo

2

+ .... (2.20)

where the coefficients an and bn have certain integral representations for n = 0, 1, 2....

an =
1

2πi

∫
C

f (z)dz
(z − zo)n+1

(2.21)

bn =
1

2πi

∫
C

f (z)dz
(z − zo)−n+1

(2.22)

where C is any positively oriented simple closed contour around zo and lying in the punc-

tured disk 0 <| z − zo |< δ. When n=1 this expression for bn can be written as∫
C

f (z)dz = 2πib1 (2.23)

The complex number b1 is called the residue of f at the isolated singular point zo. The

following theorem provides an alternative characterization of poles and another way of

finding the corresponding residues. An isolated singular point zo of a function f is a pole

of order m if and only if f (z) can be written in the form

f (z)dz =
φ(z)

(z − zo)m
(2.24)

where φ(z) is analytic and nonzero at zo. Moreover, Resz=zo f (z) = φ(zo) for m=1. In

calculus, the improper integral of a continuous function f (x) over the semi-infinite interval

x ≥ 0 is defined by means of∫ ∞

0
f (x)dx = limR→∞

∫ R

0
f (x)dx (2.25)
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When the limit on the right exists, the improper integral is said to converge to that limit. If

f (x) is continuous for all x, its improper integral over the infinite interval −∞ < x < ∞ is

defined by writing

∫ ∞

−∞
f (x)dx = limR1→∞

∫ 0

−R1

f (x)dx + limR2→∞

∫ R2

0
f (x)dx (2.26)

When both of the limits here exist, the integral converges to their sum. The Cauchy princi-

pal value (P.V.) assigned to the above integral is

P.V.
∫ ∞

−∞
f (x)dx = limR→∞

∫ R

−R
f (x)dx (2.27)

2.2.1.2 Laplace Transform

Laplace transforms are important in solving both ordinary and partial differential equations.

Suppose that a function F of the complex variable s is analytic throughout the finite s plane

except for a finite number of isolated singularities. Then, let LR denote a vertical line

segment from s = γ − iR to s = γ + iR, where the constant γ is positive and large enough

that the singularities of F all lie to the left of that segment, as shown in Fig. 2.3. A new

function f of the real variable t is defined for positive values of t by means of

f (t) =
1

2πi
limR→∞

∫
LR

estF(s)ds (t > 0) (2.28)

This expression is usually written as the Bromwich integral as

f (t) =
1

2πi
P.V.

∫ γ+i∞

γ−i∞
estF(s)ds (t > 0) (2.29)

The function f (t) is the inverse Laplace transform of F(s) and can be retrieved by means

of the above equation. The choice of positive number γ is immaterial as long as the singu-

larities of F all lie to the left of LR. Applying residue theory, the function f (t) is obtained

as follows:

f (t) =
∞∑

n=1

Ress=sn[e
stF(s)] (t > 0) (2.30)
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Figure 2.3. Isolated singularities inside closed contour.
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2.2.1.3 Improper Integrals from Fourier Analysis

Residue theory is useful in evaluating convergent improper integrals of the form∫ ∞

−∞
f (x) sin axdx or

∫ ∞

−∞
f (x) cos axdx (2.31)

where a denotes a positive constant, and f (x) = p(x)
q(x) , where p(x) and q(x) are polynomials

with real coefficients and no factors in common. Integrals of this type occur in theory and

application of the Fourier integral:∫ R

−R
f (x) cos axdx + j

∫ R

−R
f (x) sin axdx =

∫ R

−R
f (x)e jaxdx (2.32)

The modulus | e jaz |=| e ja(x+ jy) |=| e jaxe−ay) |= e−ay is bounded in the upper half plane

y ≥ 0. Residue theory is successfully used to compute Fresnel integrals of diffraction

theory. However, the slant-plane SAR Fourier integral cannot be computed with residue

theory, as the integrand function has no singularities and is not meromorphic:∫ ∞

−∞
σn exp(− j2k

√
x2

n + (yn − u)2) exp(− jkuu)du (2.33)

In fact, all functions of the form ez are holomorphic as they are analytic everywhere and are

also termed entire functions. This can also be confirmed by Cauchy-Riemann equations

ux(x, y) = vy(x, y) uy(x, y) = −vx(x, y) (2.34)

2.2.2 Harmonic Analysis

Fourier analysis involves the linear operation that transforms a function into the coefficients

of sinusoidal basis functions and is rooted in the Huygens-Fresnel principle. The original

concept of Fourier analysis has been extended over time to apply to more and more abstract

and general situations, and the general field is often known as harmonic analysis. All SAR

algorithms involve Fourier analysis, either explicitly or implicitly. In fact the imaging

problem in nature in biological organisms is also solved using Fourier analysis by the use

of a lens that is shown to be a Fourier transformer. The “method of stationary phase” is the

central analytical tool used for the asymptotic expansion of Fourier integrals.
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2.2.2.1 Asymptotic Expansion

The slant-plane SAR Fourier integral may be written as [26]∫ ∞

−∞
σn exp(− j2k

√
x2

n + (yn − u)2 − jkuu)du (2.35)

The asymptotic expansion as ku →∞ of integrals of the form

I(ku) =
∫ a

b
exp( jkuφ(u)) f (u)du (2.36)

with φ real. The critical or stationary point c may be computed as dφ(u)
du = 0. Then, the

asymptotic expansion may be written as

I(ku) ≈ exp( jkuφ(c)) f (c)

√
2π

ku | φ′′(c) | exp(
π jµ
4

) (2.37)

where µ = sgnφ
′′
(c). The result may be written as

σn
exp(− jπ/4)√

4k2 − k2
u

exp(− j
√

4k2 − k2
u xn − jkuyn) (2.38)

for ku ∈ [−2k, 2k] and zero otherwise. The amplitude does not play an important role in

our analysis. For notational simplicity we suppress this amplitude function to give more

prominence to the phase term exp(− j
√

4k2 − k2
ux− jkuy). The SAR algorithm based on the

above development is often called the range migration algorithm or ω − k algorithm [27],

[28], [29].

2.2.3 Finite Difference Methods

The field of computational electromagnetics uses finite difference time-domain and finite

element frequency-domain methods to determine electric and magnetic fields residing on

conducting and dielectric surfaces using integral and differential equations [30]. If we recall

following equations from chapter 1

∂2

∂x2
h(x, y) +

∂2

∂y2
h(x, y) + k2h(x, y) = −δ(x, y) (2.39)

where k wavenumber is a constant and δ(x, y) is the impulse input. Equation (2.39) can be

written as a linear operator on h(x, y) as follows:

[
∂2

∂x2
+
∂2

∂y2
+ k2]h(x, y) = −δ(x, y) (2.40)
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where ∂2

∂x2 +
∂2

∂y2 ≡ ∇2 is called the Laplacian operator. The differential equation (2.40) is

commonly written in the following form:

[∇2 + k2]h(x, y) = −δ(x, y) (2.41)

The possibility of solving SAR imaging problem using the above-mentioned second-order

partial differential equation (PDE) by employing finite difference time-domain methods

was also explored. The PDE governing SAR wave propagation is elliptic. The general

form of an elliptic PDE is

AUxx + 2BUxy + CUyy = f (x, y,U,Ux,Uy) (2.42)

The coefficients A, B and C may be functions of x, y and U provided that B2 − AC < 0.

Specifically, this equation may be written as the Poisson equation

∇2U = − f (x, y) (2.43)

Firstly, finite difference techniques are used to solve localized problems like heat trans-

fer on a body and secondly, some sort of boundary conditions are also required, Dirichlet

or Newmann. SAR is a problem in the far-field and the extent of the SAR imaging scene

renders finite difference methods unfeasible. On top of this, the SAR imaging problem has

unknown boundary conditions. Moreover, the imaging problem in nature is solved using

Fourier transformation as mentioned in section 3.3.4. Nevertheless, finite difference tech-

niques may play a role in the post-processing or image enhancement block of the SAR

system depicted in Fig. 1.2. There has been a lot of work in recent years in both finite

difference and finite element techniques. This area may prove to be of interest for future

research into numerically viable SAR reconstruction techniques. We will have to dive into

the knowledge base called inverse problems, contributed primarily by physicists and math-

ematicians, with our understanding of SAR mathematical problem as well as numerical

PDE solving techniques.
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CHAPTER 3

SAR WITH TWO-DIMENSIONAL (2-D) APERTURE SYNTHESIS
[1], [2], [3]

SAR imaging is not just described by a bunch of formulae. Rather it stands on the

shoulders of giants as any other evolved discipline of our age. SAR imaging shares the

Huygens-Fresnel principle along with ultrasonic imaging, seismic imaging, and Fourier

optics to name a few. The Green’s function for SAR is identified by a cylindrical phase

function. Various approximations to this Green’s function have been in use, dictated by the

processing technology of the time.

The preliminary research, presented in the previous chapter, was based on the slant-

plane SAR Fourier integral. This integral was analyzed from both a mathematics and

physics perspective. The mathematical tools offered by complex analysis were applied

to solve the integral, as these tools are known to solve Laplace integrals and some Fourier

integrals. This research was followed by asymptotic expansion from Fourier analysis. In

this chapter, the outcome of the asymptotic expansion is extended to two-dimensional (2-

D) aperture synthesis, and a thorough analytical development for SAR imaging with 2-D

aperture synthesis is presented. The simulation results of both rectangular and circular

apertures are compared to the Fraunhofer diffraction patterns from Fourier optics. Various

options for filling in Fourier components are explored next, including beam raster scanning,

multi-pass imaging, sparse array imaging and circular SAR imaging.

3.1 Asymptotic Expansion for 2-D Aperture Synthesis

The preceding results may now be extended to two-dimensional aperture synthesis to com-

pute the dominant term of the asymptotic expansion [31], [32]. The Fourier transform may

be written as:

∫ ∫ ∞

−∞
σn exp(− j2k

√
(xn − u)2 + (yn − v)2 + z2

n − jkuu − jkvv)dudv (3.1)
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where u is the range synthetic aperture and v is the cross-range synthetic aperture. The

corresponding asymptotic expansion may be written as:

≈ σn exp(− jkuxn − jkvyn − j
√

4k2 − k2
u − k2

vzn) (3.2)

for
√

k2
u + k2

v ≤ 2k, and zero otherwise; ku is the range spatial frequency and kv is the

cross-range spatial frequency.

3.2 SAR with 2-D Aperture Synthesis

The analytical development for SAR imaging based on 2-D aperture synthesis is presented

next [2]. There are certain SAR signal processing aspects ignored in order to simplify the

SAR mathematical model, including losses resulting from free space propagation, antenna

radiation pattern, squint imaging issues, and frequency-dependent target reflectivity. More-

over, the mathematical formulation is done for an infinite synthetic aperture so as to present

the results with minimum mathematical complexity.

3.2.1 Target Area

Figure 3.1 shows a 2-D target area in the x-y plane of an otherwise 3-D cartesian coordinate

system. The stationary point target in this imaging scene is located at (xn, yn, 0) and the

coordinates of center of target area are at (Xc, Yc, 0) such that Xc = Yc = 0 for broadside

imaging. The ideal target function in the x − y plane may then be defined as

fo(x, y) =
∑

n

σnδ(x − xn, y − yn) (3.3)

where σn is the radar cross-section or target reflectivity of the nth point target in the imaging

scene. The spatial Fourier transform of the ideal target function is

Fo(kx, ky) =
∑

n

σn exp(− jkxxn − jkyyn) (3.4)

where kx and ky are spatial frequency in the Fourier domain corresponding to x range and y

cross-range, respectively.
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Figure 3.1. SAR 2-D aperture synthesis geometry.
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3.2.2 Radar Echo and Baseband Conversion

The transmitted signal p(t) is a single frequency ω such that p(t) = exp( jωt), where t is the

fast-time. Let the position of radar at any instant be given by coordinates (Ux,Uy,Uz) [33],

[34], where Uz is the position of the SAR along the z − axis and a known parameter. Then,

the radar distance from the point target located at (xn, yn, 0) is given as

Rn(Ux,Uy) =
√

(xn − Ux)2 + (yn − Uy)2 + U2
z (3.5)

The received or echoed signal may be written as

ss(t,Ux,Uy) =
∑

n

σnp(t − 2
c

√
(xn − Ux)2 + (yn − Uy)2 + U2

z ) (3.6)

where c is speed of light, or

ss(t,Ux,Uy) = exp( jωt)
∑

n

σn exp(− j2kω
√

(xn − Ux)2 + (yn − Uy)2 + U2
z ) (3.7)

where the wavenumber kω = ω
c . After fast-time baseband conversion implemented in the

hardware,

S s(ω,Ux,Uy) =
∑

n

σn exp(− j2kω
√

(xn − Ux)2 + (yn − Uy)2 + U2
z ) (3.8)

3.2.3 2-D Fourier Transform

The Fourier transform of the baseband converted signal is

S S (ω, kux, kuy) =
∫ ∫ ∞

−∞
S s(ω,Ux,Uy) exp(− jkuxUx − jkuyUydUxdUy (3.9)

To evaluate the Fourier transform of the above 2-D phase modulated (PM) signal, the lead-

ing or dominant term of this Fourier integral is determined by asymptotic expansion using

the method of stationary phase (MSP), to obtain

S S (ω, kux, kuy) =
∑

n

σn exp(− jkuxxn − jkuyyn − j
√

4k2
ω − k2

ux − k2
uyUz) (3.10)

for
√

k2
ux − k2

uy ≤ 2kω and zero otherwise. kuy is the range synthetic aperture spatial fre-

quency corresponding to Ux and kux is the cross-range synthetic aperture spatial frequency
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corresponding to Uy. We can rewrite this Fourier transform as

S S (ω, kux, kuy) =
∑

n

σn exp(− jkuxxn − jkuyyn − jkuzUz) (3.11)

where the 2-D SAR spatial frequency mapping is

kx = kux ky = kuy (3.12)

Note that Stolt interpolation is not required for the 2-D target grid in the x-y plane because

the spatial frequency domain for range and cross-range is a direct mapping of the spatial

frequency domain of the 2-D synthetic aperture. The identity

kz =

√
4k2
ω − k2

x − k2
y (3.13)

is known as Stolt transformation [35], [36]. Finally, we can separate out the target infor-

mative part as

S S (ω, kx, ky) = exp(− jkzUz)
∑

n

σn exp(− jkxxn − jkyyn) (3.14)

In practice, the Fourier transform is computed using the fast Fourier transform (FFT) algo-

rithm [37].

3.2.4 Reconstruction by Matched Filtering

The reference signal for the scene-centered matched filter may be written as

S so(ω,Ux,Uy) =
∑

n

σn exp(− j2kω
√

(Xc − Ux)2 + (Yc − Uy)2 + U2
z ) (3.15)

and the Fourier transform as

S S o(ω, kx, ky) =
∑

n

σn exp(− jkxXc − jkyYc − jkzUz) (3.16)

since the scene center is the origin of the coordinate system in the broadside imaging case.

Therefore,

S S o(ω, kx, ky) =
∑

n

σn exp(− jkzUz) (3.17)
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Figure 3.2. Block diagram for SAR 2-D aperture synthesis.

From equations (3.15), (3.16) and (3.17), we obtain

S S (ω, kx, ky) = S S o(ω, kx, ky)Fo(kx, ky) (3.18)

Hence, the matched filtering

F(kx, ky) = S S (ω, kx, ky)S S ∗o(ω, kx, ky) (3.19)

where ∗ denotes complex conjugate. Finally, we obtain

F(kx, ky) =
∑

n

σn exp(− jkxxn − jkyyn) (3.20)

3.2.5 2-D Inverse Fourier Transform

Finally, the inverse Fourier transform is computed for the output of the matched filter as

F(kx, ky)
F−1→ f (x, y) (3.21)

f (x, y) =
1

(2π)2

∑
n

σn

∫ ∫ ∞

−∞
F(kx, ky) exp( jkxx + jkyy)dkxdky (3.22)

f (x, y) =
1

(2π)2

∫ ∫ ∞

−∞
exp(− jkxxn − jkyyn) exp( jkxx + jkyy)dkxdky (3.23)

Ideally,

f (x, y) =
1

(2π)2

∑
n

σnδ(x − xn)δ(y − yn) (3.24)

Figure 3.2 is the overall block diagram of the SAR 2-D aperture synthesis technique.
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Figure 3.3. Bessel functions of first kind.

3.2.6 Point Spread Function (PSF)

The condition
√

k2
x − k2

y ≤ 2kω and zero otherwise signifies a disk shaped limited spa-

tial Fourier support for kx and ky. Therefore, the resulting psf would not be an ideal 2-D

separable impulse function. Instead, it would be a composite function of a non-separable

first order Bessel function of the first kind J1 [38] of Fig. 3.3, called Sombrero or Besinc,

depicted in Fig. 3.4.

f (x, y) =
∑

n

σn(2kω)
2 J1(2kω

√
(x − xn)2 + (y − yn)2)

2kω
√

(x − xn)2 + (y − yn)2
(3.25)

3.2.7 Novel Aspects of SAR 2-D Aperture Synthesis

1. The ω−k or range migration algorithm (RMA) requires a 1-D interpolation known as

Stolt interpolation that compensates the range curvature of all scatterers by an appro-

priate warping of the wavenumber domain backscatter data. This Stolt interpolation

is the most computationally difficult step in the algorithm [39] and an approximation
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Figure 3.4. Sombrero or besinc point spread function.
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called reconstruction by range stacking may be done to avoid it. SAR 2-D aperture

synthesis is computationally efficient as it does not involve a numerically intensive

Stolt interpolation. The spatial frequency domain for both range and cross-range is a

direct mapping of the spatial frequency domain of the 2-D synthetic aperture (3.12).

2. As is evident from the block diagram in Fig. 3.2, after baseband conversion in the

hardware, only 2-D FFT, scene-centered matched filtering based on platform alti-

tude, and 2-D IFFT operations are needed for image formation. SAR digital signal

processing for 2-D aperture synthesis is merely focusing the target area as per plat-

form altitude, with the avionics providing the requisite height information Uz for this

focusing.

3. A single frequency can be used for SAR imaging instead of wide bandwidth LFM

or chirp. This laid the foundation for stand-alone passive SAR [2]. Fig. 3.5 shows

slow-time or cross-range imaging for single and multiple point targets. As evident

from the figure there is no information as to the point-target position along range or

cross-track dimension. Therefore, this one-dimensional slow-time imaging needs to

be supplemented by a fast-time imaging technique to clearly resolve the point-targets

in both along-track and cross-track dimensions. On the other hand, Fig. 3.6 shows

reconstructions for single and the multiple point-targets. Fig. 3.7 is the top view of

multiple point-targets reconstruction shown in Fig. 3.6.

3.3 Fraunhofer and Fresnel Diffraction Patterns

SAR slow-time processing and imaging stands on the shoulders of giants as any other mod-

ern discipline. SAR signal processing is believed to bear a strong resemblance to Fourier

array processing and imaging. However, SAR has benefited over the years from a lot of

spin-offs resulting from extensive research in optics in general and Fourier optics in par-

ticular. Fourier optics-based analog SAR signal processing was used for image formation

in Fresnel approximation-based algorithms. Some of the significant optics contributions to
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Figure 3.5. Slow-time or cross-range imaging for single and multiple point targets.
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Figure 3.6. 2-D aperture synthesis based reconstruction for single and multiple point targets.
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Figure 3.7. Top view of 2-D aperture synthesis based reconstruction for multiple point targets.
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the SAR evolution are as follows:

1. Projection-slice theorem used in tomographic formulation of spot-light SAR imaging

modality:

f (x, y) ∗ ∗�θ(δ(x)1(y))↔F(u, v)�θ(1(u), δ(v)) (3.26)

2. Chirp-Z transform that works well for motion compensation or “mocomp” to a point

concept in SAR signal processing:

(( f (x) exp− jπx2
) ∗ exp jπx2

) exp− jπx2
= F(x) (3.27)

(( f (x) exp jπx2
) ∗ exp− jπx2

) exp jπx2
= exp j π4 F(x) (3.28)

3. Fresnel transform, which is a convolution with quadratic phase factors:

f̂α(x) = f (x) ∗ 1√
jα

exp j π4 x2
(3.29)

Simulations with 2-D aperture synthesis has revealed the same Fraunhofer and Fresnel

diffraction patterns as seen in Fourier optics [40], [41]. A comparison at this level has

not been done earlier. This is because the underlying theoretical principle, namely, the

Huygens-Fresnel principle combined with scalar diffraction theory, is commonly shared

by SAR imaging and Fourier optics imaging. Therefore, the two imaging phenomena are

mathematically analogous. The Huygens-Fresnel point spread function of SAR imaging is

merely replaced by the complex amplitude transmittance function of Fourier optics as seen

below:

s(x, y, d) = h(x, y) ∗ ∗s(x, y, 0) s(x, y, d) = t(x, y) ∗ ∗s(x, y, 0) (3.30)

When an optical wave passes through an aperture, it is in general modified both in magni-

tude and phase. The complex amplitude transmittance is defined as the ratio of transmitted

complex amplitude to incident complex amplitude t(x, y) = Utran(x,y)
Uinc(x,y)

. The complex transmit-

tance function t(x,y) allows us to represent mathematically many commonly used apertures.
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For example a square aperture of width w can be represented by t(x, y) = rect( x
w ,

y
w). In op-

tics, the converging spherical wave illumination of an aperture produces, centered on the

nominal point of convergence, a complex amplitude distribution proportional to the Fourier

transform of the aperture transmittance function, scaled by the wavelength times the con-

vergence distance. This result is one of the most important reached in the development of

Fourier optics. It plays a central role in the theory of image formation by spherical lenses,

and it also leads to many of the important signal processing applications of optical systems.

SAR 2-D aperture synthesis-based imaging offers a unique opportunity to compare SAR

signal processing with Fourier optics, as both employ 2-D spatial variables in the Euclidean

space and exhibit Fraunhofer and Fresnel diffraction behavior [1].

3.3.1 Rectangular Aperture

The Fraunhofer diffraction pattern for rectangular aperture synthesis is shown in Fig. 3.8.

The cylindrical Green’s function is clearly seen in the simulated signal. Moreover, the

Fourier domain support corresponds to the shape of the aperture. The reconstructed psf is

2-D sinc in this case. A 2-D sinc is mathmatically given by the product of sinc function

along x axis times sinc function along y axis.

3.3.2 Circular Aperture

The Fraunhofer diffraction pattern for circular aperture synthesis is shown in Fig. 3.9,

followed by Fresnel diffraction patterns in Fig. 3.10 generated by matched filtering with

incorrect SAR height Uz. The psf in this case is sombrero or besinc (3.25).

Fig. 3.11 shows image reconstruction for multiple point targets using circular aperture

and rectangular aperture and Fig. 3.12 is the top view of these reconstructions.

3.3.3 Optimality of Circular Aperture

It is pertinent to point out the optimality of circular aperture. Earlier, it was mentioned

that the condition for 2-D asymptotic expansion is
√

k2
x − k2

y ≤ 2kω and zero otherwise,

signifying a disc-shaped spatial Fourier domain support. As seen from the simulations
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Figure 3.8. Fraunhofer diffraction pattern for rectangular aperture synthesis.

Figure 3.9. Fraunhofer diffraction pattern for circular aperture synthesis.
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Figure 3.10. Fresnel diffraction pattern for circular aperture synthesis.

of 2-D aperture synthesis for circular aperture, the circular Fourier domain support fully

utilizes all available Fourier support region. The same is not true for rectangular aperture

as there are unfilled Fourier components in the allowable Fourier support region.

3.3.4 Ophthalmic Optics

The focusing in altitude interpretation of SAR 2-D aperture synthesis algorithm makes it

an analogy of Fourier optics in general and ophthalmic optics in particular. The pupil of

the human eye is a circular aperture for imaging at optical frequencies and the crystalline

lens performs focusing by an accommodation mechanism that, according to Helmholtz the-

ory, adjusts the power of the crystalline lens to allow objects to be in focus on the retina

[42]. The difference of course is that the human eye is an incoherent sensor because of

a multitude of cones and rods used for photo reception operating in the visible spectrum

frequencies, whereas SAR is necessarily a coherent imaging system at radar frequencies. It
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Figure 3.11. Multiple point-target reconstructions for (a) Circular aperture, (b) Rectangular aperture.
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Figure 3.12. Top view of multiple point-target reconstructions for (a) Circular aperture, (b) Rectangu-
lar aperture.
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is clear from our understanding of the analytical development of SAR 2-D aperture synthe-

sis that the human eye is an optimum sensor as it fully utilizes mathematically allowable

Fourier support region.

3.4 Data Collection for 2-D Aperture Synthesis

Various options for filling in Fourier components are explored next and summarized in

Table 3.1. In all data collection schemes, SAR is assumed to be flyover.

3.4.1 Beam Raster-scanning Based Imaging

[3] Beam raster-scanning reaps the advancements in antenna beam pointing and scanning

technology. Beam raster-scanning is by no means a new concept to radar engineering, as

airborne pulse Doppler radars have been using it for a while. Airborne pulse Doppler radar

has a narrow antenna beam width so that it can resolve two close airborne targets. Con-

sequently, the narrow antenna beam is made to zig zag for greater spatial coverage during

search mode. This type of scanning is commonly referred to as beam raster scanning. The

data collection for beam raster-scanning SAR is depicted in Fig. 3.13 [3]. The drawback

of scan-SAR imaging modality is that it employs beam scanning to extend the target range

swath, thereby degrading azimuth resolution.

3.4.2 Multi-pass Imaging

In some applications, SAR makes multiple passes to image the target area. SAR multi-pass

imaging is employed for coherent change detection (CCD) [43]. A large number of air-

borne flyovers would be required for 2-D aperture synthesis, undermining the feasibility of

such a technique. However, multi-pass imaging would be feasible for the internal imaging

of buildings termed as through-the-wall imaging or for mine detection applications where

SAR may be mounted on rails.
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Figure 3.13. Beam raster-scan.
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3.4.3 Sparse Array Imaging

Sparse arrays like the very large array (VLA) are used in radio astronomy [44]. The use of

a sparse array would reduce the number of passes required for imaging. But sparse array

does not qualify as a candidate for 2-D aperture synthesis in SAR imaging, as such an array

involves observation time of several hours to fill in the Fourier components [45], as shown

in Fig. 3.14.

3.4.4 Circular SAR Imaging

Linear SAR, in both stripmap and spotlight SAR modalities, measures the target SAR sig-

nature over a limited aspect angle of ±45◦. Circular SAR is a method of imaging from the

slant-plane data collected by synthetic aperture radar over the full 360◦ rotation or a partial

segment of a circular flight path. Circular aperture is easily executed by a roll maneuver

of airborne platform carrying SAR. The concept of circular SAR may also be extended to

spaceborne SAR imaging, utilizing the motion of a satellite in an orbit accurately mod-

eled as a circular trajectory. Following are the various techniques that employ slant-plane

circular SAR imaging:

1. The first ever circular SAR processing was outlined using a plane wave approxi-

mation of the spherical wave function termed as range-Doppler imaging of rotating

objects [46], [47].

2. Circular SAR may also be interpreted as a tomographic reconstruction problem and

analyzed using the projection-slice theorem from computer-aided tomography. The

signal recorded at each SAR transmission point is modeled as a portion of the Fourier

transform of a central projection of the imaged ground area. Reconstruction of a SAR

image may then be accomplished using traditional algorithms not based on Doppler

shifts [48], [49], [50].

3. The Fourier analysis-based circular SAR approach is a recent development based on

the Fourier decomposition of the multidimensional shift-varying impulse response or
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Figure 3.14. VLA and Fourier components for 8 hour tracking period.
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Table 3.1. Data Collection Methodology.
Method Remarks
Beam raster scanning range resolution limited by beam width
Multi-pass imaging feasibility undermined by large number of passes
Sparse arrays unfilled Fourier components, inappropriate psf type
Circular aperture mathematically optimal, ease of execution by roll manoeuvre

slant-plane Green’s function. This type of circular SAR computes the ground-plane

circular SAR from the slant-plane circular SAR data for further matched filtering-

based target area reconstruction. An approximation to ground-plane circular SAR

is achieved by taking the hermitian transpose of the near-orthogonal system model.

Mathematically, the pseudo-inverse of the linear shift-varying system needs to be

computed [51], [8], [52].

4. The back-projection circular SAR algorithm correlates measured circular SAR data

with the analytical signature of a unit reflector at each pixel point on the desired

spatial reconstruction grid to form the circular SAR image of the target area.
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CHAPTER 4

FAST CIRCULAR SAR (CSAR) IMAGING [4], [5]

Fourier analysis-based CSAR imaging involves multidimensional aperture synthesis

supplemented by fast-time imaging techniques to fill in Fourier components. This inves-

tigation in computationally efficient CSAR methods is a sequel to prior research on mul-

tidimensional aperture synthesis [1], [27], [29], [28], [32]. A required condition for an

asymptotic expansion of a two-dimensional aperture synthesis was earlier investigated that

defined a circular support region in the Fourier domain [2], [26], [31]. It has been shown

that a circular synthetic aperture is easily executed by a roll maneuver of an airborne plat-

form carrying a SAR sensor. This is in contrast to challenges in creating alternate aperture

shapes encountered both in Fourier optics and array processing [40], [42], [44]. Our study

of the Fourier optics discipline revealed results that are equally applicable to SAR imaging,

mainly that the psf is merely a Fourier transform of the aperture shape. Moreover, sparse

array shapes like the Very Large Array (VLA) in radio astronomy do not qualify as candi-

dates for 2-D aperture synthesis in SAR imaging because such arrays involve observation

time of several hours to fill in Fourier components [45].

Linear SAR, in both stripmap and spotlight SAR modalities, typically measures target

SAR signature only over a limited aspect angle. CSAR, on the other hand, is a method

of imaging SAR capable of obtaining measurements of up to a full 360◦ rotation or a

partial segment of a circular flight path. The concept of CSAR may also be extended to

spaceborne SAR imaging utilizing the motion of a satellite in an orbit accurately modeled

as a circular trajectory [52]. Following are the various techniques that employ slant-plane

CSAR imaging:

1. The first ever CSAR processing was outlined using a plane wave approximation of

the spherical wave function, and was called the range-Doppler imaging of rotating

objects [46], [47], [13]. The resultant Polar Format Algorithm (PFA) was later used
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for the spotlight imaging modality of SAR shown in Fig. 4.1.

2. CSAR may also be interpreted as a tomographic reconstruction problem and ana-

lyzed using the projection-slice theorem from computer-aided tomography

f (x, y) ∗ ∗�θ[δ(x)1(y)] ↔ F(u, v)�θ[1(u)δ(v)] (4.1)

The signal recorded at each SAR transmission point is modeled as a portion of the

Fourier transform of a central projection of the imaged ground area. Reconstruction

of a SAR image may then be accomplished using traditional algorithms not based on

Doppler shifts [48].

3. The approximation free, Fourier analysis based CSAR approach is a recent devel-

opment based on a Fourier decomposition of the multidimensional shift-varying

impulse response or the slant-plane Green’s function as shown in Fig. 4.2. This

type of CSAR computes ground-plane CSAR from a projection of the slant-plane

CSAR phase history data into a ground-plane phase history for further matched

filtering-based target area reconstruction. An approximation to ground-plane CSAR

is achieved by taking the hermitian transpose of the near-orthogonal system slant-

plane-to-ground plane phase history projection model. The alternate approach in-

volves a computationally expensive pseudo-inverse of the linear shift-varying system

[51], [8].

4. The back-projection CSAR algorithm correlates measured CSAR data with the an-

alytical signature of a unit reflector at each pixel point on the desired spatial recon-

struction grid to form the CSAR image of the target area [8].

Householder transform-based processing has recently been shown to have improved

error bounds and stability as an underdetermined system solver [53]. This transform may

also be applied to ill-conditioned systems with speed unmatched by any other solver [54],

[55], [56], [57]. This research proposes the use of the Householder transform to process
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Figure 4.1. T-72 target mapping using Polar Format Algorithm (PFA) [8].
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Figure 4.2. T-72 target mapping using Circular SAR (CSAR) Algorithm [8].
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Fourier analysis based CSAR data, thus circumventing the need for explicitly computing a

pseudo-inverse in CSAR imaging.

4.1 Measurement Model

The top and side views of the imaging system geometry are shown in Fig. 4.3. The radar

carrying aircraft moves along a circular flight path with radius R on the plane z = zo with

respect to the ground-plane. The coordinates of the radar in the spatial domain as a function

of the slow-time are (x, y, z) = (R cos θ,R sin θ, zo), where θ ∈ [−π, π) represents the slow-

time domain. As the SAR traverses a circular flight path the radar beam remains spotlighted

on a disk of radius Xo; denoted as D : Xo, centered at the origin of the spatial (x, y) domain

on the ground plane. This (x, y) ∈ D : Xo and zero otherwise is also called target region’s

support. The reflectivity function in the target region is denoted by f (x, y). The slant-range

Ro, slant-angle θz and along-track target-angle are defined as:

Ro ≡
√

R2 + z2
o (4.2)

θz ≡ tan−1(
zo

R
) (4.3)

±θx ≡ sin−1(
±Xo

R
) (4.4)

The along-track target-angle θx is defined here for a planar radar aperture and is a de-

creasing function of fast-time frequency.

4.2 CSAR Mathematical Development

Assuming a transmitted signal p(t) and speed of light c, the measured SAR signal in the

slow-time and fast-time domains (θ, t) may be defined as follows:

tθ =
2
√

(x − R cos θ)2 + (y − R sin θ)2 + z2
o

c
(4.5)

s(θ, t) =
∫ ∫

f (x, y)p[t − tθ]dxdy (4.6)

After applying a Fourier transform with respect to fast-time t and matched filtering, we
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Figure 4.3. CSAR imaging geometry.
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Figure 4.4. CSAR simulated signal s(θ, t) for point target at center of target area.

obtain

s(θ, ω) =
∫ ∫

f (x, y)gθ(x, y, ω)dxdy (4.7)

where the CSAR imaging system’s shift varying impulse response gθ(x, y, ω) also called the

slant-plane Green’s function for slow-time angle θ and fast-time frequency ω, is defined for

wavenumber k = ωc as

gθ(x, y, ω) ≡ exp[− j2k
√

(x − R cos θ)2 + (y − R sin θ)2 + z2
o] (4.8)

for (x, y) ∈ D : Xo, and zero otherwise. For notational simplicity, the radar signal’s Fourier

transform P(ω), which appears on the right side of equation (4.7), is ignored in subsequent

discussion. CSAR image formation processing is based on linear shift-varying system

theory. So instead of being able to use convolution integrals, one may use a generalized

Parseval’s theorem.
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4.2.1 Slant-plane CSAR Green’s Function

In order to obtain the spatial Fourier transform of slant-plane Green’s function we first

rewrite equation (4.8) for θ = 0 as

g0(x, y, ω) ≡ exp[− j2k
√

(x − R)2 + y2 + z2
o] (4.9)

It is evident from equation (4.9) that the Green’s function for θ = 0 is shifted (in x−dimension

by R) and space-limited (to D : Xo) form of

h(x, y, ω) ≡ exp[− j2k
√

x2 + y2 + z2
o] (4.10)

The 2-D signal in equation (4.10) is a circularly symmetric function in the spatial (x, y)

domain. Thus, it can be expressed via the following:

h(x, y, ω) ≡ hp(r) (4.11)

where

hp(r) ≡ exp[− j2k
√

r2 + z2
o] (4.12)

with r =
√

x2 + y2.

The 2-D spatial Fourier transform of the signal h(x, y, ω) is also a circularly symmetric

function that may be written as

h(kx, ky, ω) ≡ Hp(ρ) (4.13)

where

Hp(ρ) ≡
∫

rhp(r)H0(ρr)dr (4.14)

and H0(ρr) is a Hankel function.

Substituting hp(r) in the above equation yields

Hp(ρ) =
∫

r exp(− j2k
√

r2 + z2
o)H0(ρr)dr (4.15)

which can be evaluated to produce

Hp(ρ) = exp(− j
√

(2k)2 − ρ2zo) (4.16)
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with ρ ≡
√

k2
x + k2

y

Consider g0(x, y, ω), shifted in x−dimension

g0(x, y, ω) = h(x − R, y, ω) (4.17)

where the right hand side is the Green’s function. Then the spatial Fourier transform of the

Green’s function at θ = 0 is

G0(kx, ky, ω) = H(kx, ky, ω) exp(− jkxR) (4.18)

or

G0(kx, ky, ω) = Hρ(ρ) exp(− jkxR) (4.19)

We may also rewrite the above equation as

G0(kx, ky, ω) = exp(− j
√

4k2 − ρ2zo − jkxR) (4.20)

It is also known that g0(x, y, ω), besides being shifted version of free space Green’s

function h(x − R, y, ω), is also a space-limited or windowed version of Green’s function.

Since the free space Green’s function is also a phase-modulated (PM) signal, using the

properties of PM signals we can write the following equation:

G0(kx, ky, ω) = W0(kx, ky, ω) exp(− j
√

4k2 − ρ2zo − jkxR) (4.21)

where W0(kx, ky, ω) is a window in the spatial-frequency domain corresponding to the win-

dow in the spatial domain.

We can also write the phase function as

γ(x, y, ω) ≡ 2k
√

(x − R)2 + y2 + z2
o (4.22)

In order to compute window W0(kx, ky, ω) we need to determine the first partial deriva-

tives of the above mentioned phase function

kx(x, y, ω) ≡ ∂γ
∂x

(4.23)
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which is obtained as

kx(x, y, ω) = 2k
x − R√

(x − R)2 + y2 + z2
o

(4.24)

Similarly,

ky(x, y, ω) ≡ ∂γ
∂y

(4.25)

is obtained as

ky(x, y, ω) = 2k
y√

(x − R)2 + y2 + z2
o

(4.26)

The spatial-frequency support band of the Green’s function G0(kx, ky, ω) or W0(kx, ky, ω)

is dictated by the set

(kx, ky) ∈
[(
∂γ

∂x
,
∂γ

∂y

)
; (x, y) ∈ target area

]
(4.27)

As pointed out earlier the target area is limited to the disk of radius X0 such that D : X0,

in the spatial (x,y) domain. Let

φ ≡ tan−1
ky

kx
(4.28)

then the polar spatial-frequency domain (φ, ρ) of the Green’s functionG0(kx, ky, ω) or W0(kx, ky, ω)

may approximately be written as

|ρ − 2k cos θz| ≤ 2k sin2 θz sin θx (4.29)

|φ| ≤ θx (4.30)

Thus, in the polar spatial frequency domain (φ, ρ), the window function W0 may be

written as

W0p(φ, ρ, ω) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1, |ρ − 2k cos θz| ≤ 2k sin2 θz sin θx and |φ| ≤ θx;

0, otherwise.

(4.31)

The window function W0p(φ, ρ, ω) can easily be rewritten as a product of two 1-D func-

tions as

W0p(φ, ρ, ω) = W1(φ)W2(ρ, ω) (4.32)
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where

W1(φ) ≡

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1, |φ| ≤ θx;

0, otherwise.

(4.33)

and

W2(ρ, ω) ≡

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1, |ρ − 2k cos θz| ≤ 2k sin2 θz sin θx;

0, otherwise.

(4.34)

We know that gθ(x, y, ω) is the θ−rotated version of g0(x, y, ω) in the spatial (x, y)

domain. Thus, Gθ(kx, ky, ω) is also the θ−rotated version of G0(kx, ky, ω) in the spatial-

frequency (kx, ky) domain. Therefore, we can use the Fourier transform properties to write

the Fourier transform of equation (4.8) as

Gθ(kx, ky, ω) = Wθ(kx, ky, ω). exp
[
− j

√
4k2 − ρ2zo − j(kx cos θ + ky sin θ)R

]
(4.35)

which simplifies to

Gθ(kx, ky, ω) = Wθ(kx, ky, ω) exp
[
− j

√
4k2 − ρ2zo − jρR cos(θ − φ)

]
(4.36)

where Wθ(kx, ky, ω) is the θ−rotated version of W0(kx, ky, ω) in the spatial-frequency (kx, ky)

domain. Using equations (4.32), (4.33) and (4.34) the window function Wθ can be rewritten

in the polar frequency domain as follows:

Wθp(φ, ρ, ω) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1, for |ρ − 2k cos θz| ≤ 2k sin2 θz sin θx and |φ − θ| ≤ θx;

0, otherwise.

(4.37)

Since Wθp(φ, ρ, ω) is the θ−shifted version of W0p(φ, ρ, ω) in the φ−domain, we can

write

Wθp(φ, ρ, ω) = W0p(φ − θ, ρ, ω) (4.38)

or

Wθp(φ, ρ, ω) = W0p(θ − φ, ρ, ω) (4.39)
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Finally,

Wθp(φ, ρ, ω) = W1(θ − φ)W2(ρ, ω) (4.40)

The Green’s function Gθ(kx, ky, ω) has a spatial-frequency spread around the circle of

radius ρ = 2k cos θz. For the ground-plane case of slant angle θz = 0, the only existing

waves are evanescent in nature and have no significance to SAR imaging. For slant-angle

θz > 0 we can write the corresponding resolutions from equation (4.29), (4.30) as follows:

∆ρ ≡ ±2k sin2 θz sin θx (4.41)

∆φ ≡ ±θx (4.42)

4.2.2 Slant-plane CSAR Inversion

Next, we utilize the Fourier properties of the slant-plane Green’s function to develop an

analytical solution for CSAR reconstruction. Consider the CSAR signal model in the ω, θ

domain

s(ω, θ) =
∫ ∫

f (x, y)g∗θ(x, y, ω)dxdy (4.43)

Using the generalized Parseval’s theorem, this CSAR system model can be rewritten

via

s(ω, θ) =
∫ ∫

F(−kx,−ky)G
∗
θ(kx, ky, ω)dkxdky (4.44)

For notational simplicity, we can replace F(−kx,−ky) by F(kx, ky), which results in a

rotation of the target function by π. Making variable transformations from the rectilinear

spatial frequency (kx, ky) domain to the polar spatial frequency (π, ρ) domain in equation

(4.44) we get

s(ω, θ) =
∫ ∫

ρFp(ρ, φ)G
∗
θp(ρ, φ, ω)dρdφ (4.45)

where the subscript p denotes polar spatial coordinates.
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Figure 4.5. System kernel Λ(ω,ωg) (real part).

Using the analytical expression for the slant-plane Green’s function in the above model

yields

s(ω, θ) =
∫ ∫

ρFp(ρ, φ)W1(θ − φ)W2(ρ, ω) exp
[
− j

√
4k2 − ρ2zo − jρR cos(θ − φ)

]
dρdφ

(4.46)

Finally, the system model is written as [51], [8]

s(θ, ω) =
∫
Λ(ω,ωg)Γ(θ, ρ)dρ (4.47)

where

Λ(ω,ωg) ≡ W2(ρ, ω) exp(− j
√

4k2 − ρ2zo) (4.48)

The function Λ(ω,ωg), called the system kernel, is a 2-D windowed phase modulated

signal in the ω spatial domain as depicted in Fig. 4.5.

Also

Γ(θ, ρ) ≡ ρ
∫

Fp(φ, ρ)W1(θ − φ) exp
[− jρR cos(θ − φ)] dφ (4.49)

In discrete form, this system model may also be expressed as linear model

S θ = ΛΓθ (4.50)
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where Γθ is the discrete version of sg(θ, ωg). The inverse of this linear model provides

means for computing the ground-plane CSAR phase history Γθ from slant-plane CSAR

signal-space phase history S θ. Hence, the inverse of the system kernel Λ−1 may be written

as

Γθ = Λ
−1S θ (4.51)

An approximate method for solving the above linear system transfer function assumes

Λ to be near-orthogonal, hence the inverse is approximated by the hermitian transpose

Λ−1 ≈ ΛH (4.52)

A Fourier domain CSAR image formation algorithm requires formation of the ground-

plane CSAR signal phase history Γθ to obtain the target function’s phase history. The

relationship between the slant-plane CSAR signal-space phase history S θ = s(θ, ω) and the

ground plane CSAR signal phase history sg(θ, ωg) as a linear shift-varying filter is shown

in Fig. 4.6. In the digital implementation of a Fourier based CSAR image formation algo-

rithm, the inverse system kernelΛ−1(ωg, ω) as depicted in Fig. 4.7 is computed numerically

via the pseudo-inverse of the system kernel. Subsequently presented work utilizes a House-

holder transform to compute the ground-plane CSAR phase history from the slant-plane

CSAR phase history, as will be described in the following sections.

ΛΓθ = S θ then Γθ = Λ
†S θ (4.53)

4.3 Underdetermined Behavior

The detailed analysis of Λ ∈ Cm×n dense matrix in equation (4.50) revealed the underdeter-

mined nature of this system of equations. The inequality m < n was predominantly true in

the entire operating regimen of CSAR. The five variables that contribute to the dimensions

of this matrix are the carrier frequency fc, signal bandwidth f0, radius of target area X0,
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Figure 4.6. Block diagram of linear shift-varying system for generating slant-plane CSAR signal from
ground-plane CSAR signal.

Figure 4.7. Block diagram of inverse linear shift-varying system for generating ground-plane CSAR
signal from slant-plane CSAR signal.

slant range to the center of target area R0, and elevation angle θz. These five parameters

were varied and the difference between number of columns and number of rows n −m was

plotted in Fig. 4.8.

1. The carrier frequency fc was varied from 0.5 to 20.5 GHz. The system model was

underdetermined for the entire range of fc as n − m > 0. Moreover, m was constant

and n increased linearly resulting in n − m also increasing linearly with increase in

fc.

2. The signal bandwidth f0 was varied from 100 to 600 MHz. The system model was

underdetermined for the entire range of f0 as n − m > 0. Additionally, both n and m

increased linearly and the difference n − m remained constant with increasing f0.

3. The radius of target area X0 was increased from 5 to 105 m. The system model was

underdetermined for the entire range of practical values of X0 as n − m > 0. It was

observed that the size ofΛmatrix and difference n−m rapidly increased with increase
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Figure 4.8. Underdetermined behavior of system model.

in X0.

4. The slant-range to the center of target area R0 was varied from 0.1 to 10 Km. The

system model was again underdetermined for the entire range of practical values

of R0 as n − m > 0. However, the difference n − m showed a decreasing trend

asymptotically approaching zero.

5. The elevation angle θz was varied from 15◦ to 85◦. The system model remained

underdetermined for the entire range of θz. The difference n − m increased rapidly

because m decreased and n increased with increase in θz.

4.4 Pseudo-inverse as Minimum Norm Solution

The problem of computing a minimum norm solution Γθ to an underdetermined system of m

linear equations ΛΓθ = S θ for Λ m-by-n complex dense matrix with m ≤ n occurs as a sub-

problem in optimization algorithms. An underdetermined system either has no solution or

has an infinity of solutions. This suggests that we strive to minimize ‖ ΛS θ−Γθ ‖p for some

suitable choice of p. Different norms render different optimum solutions. Minimization in
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the norm-1 and norm-∞ is complicated by the fact that the function f (Γθ) =‖ ΛS θ − Γθ ‖p
is not differentiable for these values of p. In contrast to general norm-p solution, the least

squares (LS) problem ‖ ΛS θ − Γθ ‖2 is more tractable for following reasons:

• φ(Γθ) = 1
2 ‖ ΛS θ − Γθ ‖22 is a differentiable function and so the minimizers of φ

satisfy the gradient equation ∇φ(Γθ) = 0. This turns out to be an easily constructed

symmetric linear system which is positive definite if Λ has full column rank. The

method of normal equations is based on this concept. However, the method of normal

equations breaks down for ill-conditioned Λ.

• The norm-2 is preserved under orthogonal transformation. This means that we may

determine an orthogonal Q such that the equivalent problem of minimizing ‖ (QHΛ)S θ−
(QHΓθ) ‖2 is easier to solve. Householder transformation is based on this approach.

The pseudo-inverse is a useful mathematical concept, but one would not usually incur

the complexity to compute the pseudo-inverse explicitly in the process of searching for a

solution to a least-squares problem. A classical method for solving the normal equations is

based on the Cholesky decomposition.

4.5 Householder Transform

As an efficient computational approach to obtaining a pseudo inverse, the Householder

transform has the numerical stability characteristic of orthogonal transforms. A House-

holder transform generates a matrix of the form P = I − 2uuH where Householder vec-

tor u has unity norm-2. It is easy to see that matrix P generated by Householder trans-

form is symmetric: P = PH and orthogonal: PPH = I. Px reflects an arbitrary vector

x in the plane through the origin perpendicular to vector u. This transformation can be

viewed geometrically as a reflection in (m − 1)-dimensional subspace, S , orthogonal to

the vector u. Given a vector x, a Householder transform may be determined such that

Px = [c, 0, 0, . . . , 0]H = ce1 for any complex constant c, where e1, e2, e3, . . . , en are the
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canonical basis for n-dimensional space. Thus u is a linear combination of x and e1:

u =
1

2uHx
(x − ce1) (4.54)

Such a vector u must be parallel to the vector

ũ = x± ‖ x ‖2 e1 so that u =
ũ
‖ u ‖2 (4.55)

In vector form,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 + sign(x1) ‖ x ‖2
x2

x3

.

.

xm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where, sign(x1) =
x1
|x1 | is defined for complex number x1. As an example, the Householder

transform of a hermitian transposed system model Λ ∈ Cm×n for m = 4 and n = 5 may be

computed as shown in the next section.

4.6 Householder Transformation of System Model

Applying Householder Transform to Λ ∈ Cm×n for m = 4 and n = 5, where

ΛH =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

x51 x52 x53 x54

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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we obtain

x1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11

x21

x31

x41

x51

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, ũ1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 + sign(x11) ‖ x1 ‖2
x21

x31

x41

x51

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Computing u1 =
ũ1
‖ũ1‖ 2, choose P1 = I − 2u1uH

1 so that

Λ1 ≡ P1Λ
H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 x12 x13 x14

0 x22 x23 x24

0 x32 x33 x34

0 x42 x43 x44

0 x52 x53 x54

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Now,

x2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x22

x32

x42

x52

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, ũ2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x22 + sign(x22) ‖ x2 ‖2
x32

x42

x52

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Computing u2 =
ũ2
‖ũ2‖ 2, and P

′
2 = I − 2u2uH

2 , we then choose
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P2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 1 0

0 P
′
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

so that

Λ2 ≡ P2Λ1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 x12 x13 x14

0 x22 x23 x24

0 0 x33 x34

0 0 x43 x44

0 0 x53 x54

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

x3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x33

x43

x53

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, ũ3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x33 + sign(x33) ‖ x3 ‖2

x43

x53

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Computing u3 =
ũ3
‖ũ3‖ 2, and P

′
3 = I − 2u3uH

3 , we then choose

P3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0

0 1 0

0 0 P
′
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

so that
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Λ3 ≡ P3Λ2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 x12 x13 x14

0 x22 x23 x24

0 0 x33 x34

0 0 0 x44

0 0 0 x54

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Finally,

x4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ x44

x54

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , ũ4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ x44 + sign(x44) ‖ x4 ‖2
x54

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Computing u4 =
ũ4
‖ũ4‖ 2, and P

′
4 = I − 2u4uH

4 , we choose

P4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 P
′
4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

so that

Λ4 ≡ P4Λ3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 x12 x13 x14

0 x22 x23 x24

0 0 x33 x34

0 0 0 x44

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The iterative product of Householder matrices P1P2P3P4 . . . for the CSAR system model

is depicted in Fig. 4.9. It is interesting to see the main diagonal’s diffusion over the iter-

ations. Fig. 4.10 shows the corresponding iterative transformation of the system model.

Finally, Fig. 4.11 shows the inverted system kernel.

4.6.1 Computational Cost

The cost of computing the Householder transform is 2n2m − 2
3n

3, where m is the length of

the vector and n is the number of vectors in the matrix undergoing Householder transform.

The subsequent cost of back-substitution is O(mn). The normal equations are twice as fast

in computing the pseudo-inverse but are numerically unstable for an ill-conditioned system

model Λ. A singular value decomposition (SVD) based pseudo-inverse technique has a

higher computational load than the Householder transform based pseudo-inverse.

4.6.2 Q-Method

Once the Householder transform is computed, for further processing assume that Λ ∈ Cm×n

with m ≤ n has full rank. Then,

ΛH = Q

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ R

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where Q ∈ Cn×n is orthogonal and R ∈ Cm×m is upper triangular. We have

S θ = ΛΓθ = [RH0]QHΓθ = RHy1 (4.70)

where

y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ y1

y2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = QHΓθ
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Figure 4.9. Iterative product of Householder matrices P1P2P3P4 . . . shows a diffusing main diagonal.
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Figure 4.10. Transformed system model during the iterative process.
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Figure 4.11. Inverse system kernel Λ−1(ω,ωg) (real part).

If Λ has full rank then y1 = R−HS θ is uniquely determined and all solutions of S θ = ΛΓθ

are given by

Γθ = Q

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ y1

y2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
y2 ∈ Cn−m

The unique solution ΓθLS that minimizes ‖ Γθ ‖2 is obtained by setting y2 = 0. This

yields

ΓθLS = Q

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ R−HS θ

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Hence,

ΓθLS = QRR−1R−HS θ = QR(RHR)−1S θ (4.74)

Substituting ΛH = QR, for an orthogonal matrix Q: QQH = I we get

ΓθLS = Λ
H(ΛΛH)−1S θ = Λ†S θ (4.75)

It follows that whenΛ has full rank the pseudo-inverse ofΛ solving an underdetermined

system is given by

(Λ)† = QR−H (4.76)

The orthogonal matrix Q is the first four columns of the product P1P2P3P4 and the

upper triangular matrix R is the first 4 rows of Λ4, in the example presented in section 4.5.

It is pointed out that the systematic use of orthogonal transformations to reduce matrices

to simpler form was initiated by Givens [58] and Householder [59]. The application to the

linear least squares problem is due to Golub [60].

4.6.3 Further Processing

The further processing steps in CSAR reconstruction are matched filtering in the ground-

plane followed by interpolation. The target function is reconstructed from the CSAR

ground-plane signal via the following matched filtering in the frequency domain of θ, des-

ignated here as ξ:

Fρ(ρ, ξ) = S g(ωg, ξ)S
∗
g0(ωg, ξ) (4.77)

for | ξ |≤ ρR0(ω), where the asterisk signifies the complex conjugate operation. The subse-

quent target spectrum in the polar spatial frequency domain is formed by an inverse Fourier

transform with respect to ξ. Finally, the target function in the rectilinear spatial frequency

domain is obtained by interpolation defined as follows:

kx(ω, θ) = ρ cos θ (4.78)

ky(ω, θ) = ρ sin θ (4.79)
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The two-dimensional inverse Fourier transform of this signal is the desired target image

f (x, y).

4.6.4 Error Bounds and Stability

The method used for obtaining the ground-plane CSAR signal using a Householder trans-

form is referred to as the “Q-method”. It computes a minimal norm-2 solution to an un-

derdetermined system of type Ax = b of full rank. It has been shown that the computed

solution x̂ from the Q-method satisfies

‖ x̂ − x ‖2
‖ x ‖2 ≤ c1uκ2(A) + O(u2) (4.80)

for a condition number κ2(A) =‖ A†A ‖2. c1 denotes a modest constant depending on

matrix dimensions m and n, and u is the unit roundoff. For instance the unit roundoff

for Matlab is u ≈ 2.2 × 10−16. This result was shown to further strengthen significantly

by employing component wise analysis. Existing error analysis shows that the norm-wise

error is bounded to first order by cκ2(A)u. These error bounds can be strengthened by

replacing κ2(A) by the potentially much smaller quantity cond2(A) =‖| A† || A |‖2 which

is invariant under row scaling of A. This form of condition number reflects the sensitivity

of the minimum norm solution x to row-wise relative perturbations in the data A and b.

The Householder Transform based processing has guaranteed stability. The Q-method is

forward stable in the row-wise sense and “almost” row-wise backward stable.

4.6.5 Simulation and Results

The intermediate results of the Householder transformation were already presented in Fig.

4.9 and Fig. 4.10. Fig. 4.12 shows reconstruction using Householder transform for an

omni-directional reflector located in the center of the target area (xn, yn) = (0, 0). Fig.

4.12 consists of three images where the first image is the Fourier domain support or CSAR

spectrum Fn(kx, ky). The CSAR spectrum signal is a constant within the ring-shaped band.
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The second image is the corresponding psf determined by the equation:

fn(x, y) = ρmax
J1(rρmax)

r
− ρmin

J1(rρmin)
r

(4.81)

where r =
√

x2 + y2, J1 is the Bessel function of the first kind, first order [38], and

ρmax = 2kmax cos θz and ρmin = 2kmin cos θz (4.82)

The third image is just the top view of the second image.

Fig. 4.13 presents an out-of-focus reconstruction brought about by taking a hermitian

transpose during the Householder transformation. The hermitian transpose introduces a

phase error in CSAR phase history data analogous to an altitude mismatch between the

CSAR signal and the matched filter signal. The out-of-focus reconstruction underscores

the three dimensional character of CSAR imaging.

4.7 Conclusion

The CSAR signal was processed using a Householder transform. The ground-plane CSAR

signal was computed from slant-plane CSAR data collected from an omni-directional re-

flector located in the center of the target area. Each column vector of the system model

was reflected in the plane through the origin perpendicular to the vector u. Later, the Q-

method was applied to transformed matrices to obtain the ground-plane CSAR signal. The

computational cost of the Householder transform was shown to be 2n2m − 2
3n

3, where m is

the length of the vector and n are the number of vectors. The Q-method was also shown to

have improved error bounds and stability.
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Figure 4.12. Ring-shaped Fourier domain support and target reconstruction.
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Figure 4.13. Out-of-focus ring-shaped Fourier domain support and target reconstruction.
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CHAPTER 5

REFOCUSING OF DEFOCUSED IMAGES [6]

This research utilizes the methodology of the SAR 2-D aperture synthesis algorithm,

a two dimensional variant of the ω − k algorithm, to refocus out-of-focus images. Refo-

cusing of images may be necessary in machine vision as a preprocessing step before edge

detection or image segmentation in the imaging and manipulation of 3-D objects. The

SAR 2-D aperture synthesis algorithm generates a complex amplitude distribution and the

corresponding point spread function in a manner similar to Fraunhofer diffraction distri-

bution model and its psf as seen in Fourier optics. The matched filter utilized in the SAR

2-D aperture synthesis algorithm has a focus-in-altitude interpretation and may be varied

to increase or decrease the radius of out-of-focus blur associated with a particular psf of

scatterers of various heights. This paper demonstrates focusing of a simple line object

L = (1 : x = y − 64 ≤ x ≤ 63,−64 ≤ y ≤ 63). Although a rectangular aperture is used in

the refocusing process, other apertures may also be used such as circular or Gaussian.

In optical imaging, the imaging system is first focused and then data are collected. In

SAR imaging data are first collected and then focused through signal processing as depicted

in Figures 5.1, 5.2 and 5.3 using a back-projection focusing algorithm. Hence, SAR signal

processing algorithm is necessarily a focusing algorithm. Conventional slant-plane SAR

employs two entirely different methodologies for target area image formation: a pulsed fast

time imaging technique is used perpendicular to the flight path, and a “Doppler” induced

slow-time imaging technique is used along the flight path. The use of ω − k algorithm for

slow time signal processing of slant plane SAR data is a new trend [29], [28], [8], [15], [16],

[17], [39], [32], [13], [51]. The key concept in the SAR 2-D aperture synthesis algorithm

is the extension of the one dimensional slow time imaging technique based upon ω − k

algorithm to two dimensions [2], [1], [26], [31], [52], [38]. In coherent optics, spherical

wave illumination of an aperture produces a complex amplitude distribution proportional to
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the Fourier transform of the aperture transmittance function, scaled by the wavelength times

the convergence distance. This is the most important result reached in the development

of Fourier optics [40], [18]. The two dimensional variant of ω − k algorithm, exposes

similar complex amplitude Fraunhofer diffraction distributions as seen in Fourier optics.

The matched filter has a focus-in-altitude interpretation. This work delves into this inherent

focusing ability of the matched filter to refocus data to one distance parameter that has been

previously focused to another distance parameter. In this sense, the method provides an

approach to refocus defocused images.

In machine vision, processing tasks such as edge detection, image segmentation, etc.,

are easier for focused images than for defocused images of 3-D scenes. However, the

image of a camera is not identically focused for all objects in the camera scene. The target

object and those objects at the same distance as the target object will be focused. All other

objects at distances other than that of the target object will be blurred by different degrees

depending on their distance from the camera. The amount of defocus blur also depends

on the camera parameters such as lens position with respect to image detector, focal length

of the lens, and diameter of the camera aperture. Two blurred images of the same camera

scene are usually used in the refocusing process [61]. Initially, a blur parameter “sigma” is

estimated then one of the two blurred images is deconvolved to recover the focused image.

This refocusing may be done with or without the knowledge of the camera psf.

5.1 SAR with 2-D Aperture Synthesis

The SAR with 2-D aperture synthesis algorithm is a two dimensional variant of the conven-

tional 1-D slant-plane SAR and, as the name signifies, involves two dimensional aperture

synthesis. The shape of the aperture may be rectangular, circular, etc. The analytical devel-

opment of SAR with 2-D aperture synthesis is based on 3-D Cartesian coordinate system

with distance to nth point target located at (xn, yn, 0) in the x-y plane expressed as follows:
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Figure 5.1. Refocusing of SAR data for 5 point targets : snapshots 1, 2 and 3.
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Figure 5.2. Refocusing of SAR data for 5 point targets : snapshots 4, 5 and 6.
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Figure 5.3. Refocusing of SAR data for 5 point targets : snapshots 7, 8 and 9.
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Rn(Ux,Uy) =
√

(xn − Ux)2 + (yn − Uy)2 + U2
z (5.1)

The distance measure of conventional linear SAR is given as follows for quick compar-

ison:

Rn(Uy) =
√

(xn − Ux)2 + U2
y (5.2)

The position of the radar at any instant is given by coordinates (Ux,Uy,Uz), with

Uz =constant as the height of the SAR in meters and a known parameter. The received

echo after base-band conversion S s(ω,Ux,Uy) is a function of transmitted frequency ω in

radians, radar position on x−axis Ux, and radar position on y−axis Uy, as shown in Fig.

5.4(a). A rectangular sampling grid was used from the signal-processing stand point. A

two-dimensional Fourier transform of S s(ω,Ux,Uy) is computed to obtain S s(ω, kux, kuy),

where kux and kuy are the Fourier domain variables corresponding to Ux and Uy, respec-

tively, depicted in Fig. 5.4(b).

The matched filtering in the 2-D Aperture Synthesis algorithm has a focusing-in-height

interpretation that extracts the target informative part of the phase history for inverse Fourier

processing. The output of a matched filter F(kx, ky) is shown in Fig. 5.4(c). The simulation

height was kept at 1000 m. The 2-D aperture aynthesis algorithm is interpolation free as

Fourier domain variables can be equated as kux = kx and kuy = ky [35]. Finally, the target

area reconstruction fxy is achieved by an inverse Fourier transform of the matched filter

output shown in Fig. 5.4(d). The psf in this case is called a besinc function, and is also

called sombrero function. The psf function is determined by the aperture shape (circular

was used in these simulations).
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Figure 5.4. (a) Simulated echoed signal S s(ω,Ux,Uy), (b) Simulated echoed signal S s(ω, kux, kuy), (c)
Matched filter output F(kx, ky), (d) Reconstruction fxy.

5.1.1 Matched Filtering with Incorrect Altitude

An analysis of the 2-D aperture aynthesis algorithm when used for refocusing is performed

next by matched filtering with incorrect altitudes to see out-of-focus target area reconstruc-

tions. The simulation altitude is 1000 m. Fig. 5.5(a) shows the reconstruction where the

focusing filter is also matched to 1000 m. Fig. 5.5(b) shows the reconstruction for an er-

ror in altitude of ±10 m in the matched filter. Fig. 5.5(c) shows the reconstruction for an

error in altitude of ±50 m. Fig. 5.5(d) shows the reconstruction for an error in altitude of

±100 m. Fig. 5.5(e) shows the reconstruction for an error in altitude of ±200 m. Finally,

Fig. 5.5(f) shows the reconstruction for an error in altitude of ±900 m. The radius of the

blur circle increases with the extent of height-mismatch in the focusing filter. The blur

function shape corresponds to the aperture shape, which was circular in this case. Con-

centric side lobe rings are apparent in all the defocused psfs, as characteristic of besinc or

sombrero function. The intensity of such a complex amplitude distribution is called an Airy
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Figure 5.5. (a) Matched filter at 1000 m, (b) Error of ±10 m, (c) Error of ±50 m, (d) Error of ±100 m,
(e) Error of ±200 m, (f) Error of ±900 m.

disk in Fourier optics.

5.1.2 Fourier Optics Analogy

In optics, converging spherical wave illumination of an aperture produces a complex ampli-

tude distribution proportional to the Fourier transform of the aperture transmittance func-

tion. This distribution is centered on the nominal point of convergence and is scaled by

the wavelength times the convergence distance. This is a pivotal result in Fourier optics: it

plays a central role in the theory of image formation by spherical lenses and leads to many

of the important signal processing applications of optical systems. CSAR and 2-D aperture

synthesis imaging algorithms offer a unique opportunity of comparing SAR signal process-

ing with Fourier optics as both sets of algorithms employ 2-D spatial variables in Euclidean

space and exhibit Fraunhofer diffraction behavior. SAR has benefited from contributions

from optics, and optical signal processing has been used for SAR image formation prior
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to the advent of digital signal processing. But a comparison at the level of Fraunhofer

diffraction patterns has never been done prior to this work.

5.1.3 Defocused Image

Well focused images contain more information (detail) than defocused images. Perceived

sharpness of an image enables a human observer to determine if an image is in focus. If

one observes the frequency components when the image is blurred, then their amount will

increase as the image is near in focus. This phenomenon can be understood theoretically

by considering simple image formation example shown in Fig. 5.6. In this figure, f is the

focal length, do is the distance between object-plane and the lens, and di is the distance

between the lens and the image-plane. Variations in any of these three parameters will

impact the image formation in this simple lens imaging system. In Fig. 5.6 since the object

P is focused in front of the image plane, the resultant image will be out-of-focus or blurred.

According to Fourier optics, the image of point object P has the same shape as the lens

aperture. If a lens is ideal, its ability to produce an ideal point source is limited only by

diffraction. The response of the camera lens system to an ideal point source is then called

the psf, analogous to the impulse response in linear system theory. The psf of an ideal lens

is defined as

hideal(x, y) = hideal(r) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1
πR2 , if r < R;

0, otherwise.

(5.3)

where r2 = x2 + y2. R is the radius of the blur circle. The optical transfer function corre-

sponding to the preceding point spread function is

Hideal(u, v) = Hideal(ρ) = 2
J1(Rρ)

Rρ
(5.4)

where the radial spatial-frequency ρ2 = u2 + v2 and J1 is the first-order Bessel function of

the first kind. The optical transfer function is simply the Fourier transform of the psf and
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Figure 5.6. Lens imaging.

provides information on how an electro-optical system affects the spatial frequency ampli-

tudes and phases. Fig. 5.7 shows cross sections of the optical transfer function Hideal(ρ) for

various values of R.

The psf of non-ideal multiple lens systems can be modeled as

he f f ective(x, y) = h1(x, y) × h2(x, y) × h3(x, y) × · · · × hn(x, y) (5.5)

Since it is challenging to determine the psf of each of the individual elements of the

lens system, the generalized psf of the camera system will be assumed to be Gaussian. The

Gaussian psf is defined as

hGaussian(r) =
1√
2πσ

exp(− r2

2σ2
) (5.6)

where σ is the blur parameter and is the standard deviation of the distribution of the psf,

and therefore is the only parameter that needs to be determined for this simple model.

Moreover, σ is proportional to R in both circularly symmetric and Gaussian psfs
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Figure 5.7. The cross sections of Hideal(ρ).

σ = kR (5.7)

where k is proportionality constant which is approximately equal to 1√
2

for circularly sym-

metric psf and equal to 1 for Gaussian psf. The optical transfer function is again computed

by Fourier transforming hGaussian(r) and is also Gaussian as shown in Fig. 5.8.

HGaussian(ρ) = exp(−R2ρ2

4
) (5.8)

The defocusing operation of a lens may be interpreted as the low pass filtering of the

scene data with a variable cutoff frequency. The cutoff frequency is highest when the lens

is in the focused position and decreases as the lens goes into a defocused position. The

main difference between the two optical transfer functions Hideal(ρ) and HGaussian(ρ) is that

there are no side lobes associated with the Gaussian optical transfer function.
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Figure 5.8. The cross sections of HGaussian(ρ).

5.1.4 Image Focusing using SAR 2-D Aperture Synthesis Algorithm

The 2-D aperture synthesis algorithm has the ability to produce two dimensional distribu-

tions similar to Fourier optics. The 2-D aperture synthesis algorithm also performs con-

trolled defocusing of the psf. Moreover, the 2-D aperture synthesis algorithm being an

invertible or bidirectional algorithm, defocused psf can be refocused.

5.1.5 Aperture Shape

As mentioned earlier, various aperture shapes may be employed in the refocusing process

including circular, rectangular, ring or Gaussian. It is pointed out that a commonly used

model for the generalized psf of the camera system is Gaussian. This research uses rectan-

gular aperture in the refocusing process. In practice, the refocusing aperture shape needs

to match the data acquisition aperture.

5.1.6 Autofocus Measures

Since high frequency components determine the sharpness of the object image, the image

gradient equation (5.9) may be employed for a measure of focus [62]. Image gradients

90



are based on the first partial derivatives and therefore they have high pass filter proper-

ties. Among many spatial gradient operations, Robert’s gradient is most common. The

Sobel gradient is a slightly more complicated gradient operation. The focus measure which

utilizes the Sobel gradient is commonly referred to as the Tenengrad function [63]. The

mathematical Laplacian is also used for focus measure equation (5.11). Besides partial

derivative based focus measures, the image energy may also be used for a focus measure

per Parseval’s theorem equation (5.13). Let g(x, y) is the N × N grey scale image. We

shall use 1
N×N

∑
x
∑

y |g(x, y)| in our focus measure. This measure suffices the recovery of

the simplistic image of line L = (1 : x = y − 64 ≤ x ≤ 63,−64 ≤ y ≤ 63).

FMgrad =
∑

x

∑
y

(∇g(x, y))2 =
∑

x

∑
y

(G2
x +G2

y) (5.9)

where,

∇g(x, y) =
[
Gx Gy

]T
=

[
∂g
∂x
∂g
∂y

]T

(5.10)

and,

FMLap =
∑

x

∑
y

(∇2g(x, y))2 =
∑

x

∑
y

(

[
∂2g
∂x2

∂2g
∂y2

]T

)2 (5.11)

where,

∇2g(x, y) =

[
∂2g
∂x2

∂2g
∂y2

]T

(5.12)

and,

FMenergy =
∑

x

∑
y

|∇g(x, y)|2 (5.13)
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5.2 Implementation of Refocusing Algorithm and Simulations
5.2.1 Blurred Image for Simulations

The blurred N × N image g(x, y) required for simulations was obtained by randomly defo-

cusing the line object L = (1 : x = y − 64 ≤ x ≤ 63,−64 ≤ y ≤ 63) with the rectangular

aperture 2-D aperture synthesis algorithm, and taking the absolute value of the result. This

blur height is unknown to the 2-D aperture synthesis algorithm performing subsequent re-

focusing.

5.2.2 T : R2 → C2 Mapping of g(x, y)

The SAR 2-D aperture synthesis algorithm works on complex data in the unitary space C2.

This requires attaching phase history information to real images in R2 space for mapping

into C2 space. Let g(x, y) be the N × N defocused image such that g(x, y) = 0. Then, there

exists a complex amplitude distribution a+ jb corresponding to N×N arbitrarily defocused

unit amplitude point targets such that |a + jb| = 1 processed through the SAR 2-D aperture

synthesis algorithm. T : R2 → C2 mapping of g(x, y) is simply the element by element

product as given below:

Tg(x, y) = g(x, y)
[
a + jb

]
(5.14)

5.2.3 Convergence of Refocusing Algorithm

The convergence of the refocusing algorithm may be written as in equation (5.15), where

FMµ is the focus measure at some matched filter variation µ and FM0 is the focus measure

of a fully focused image. It is also pointed out that the matched filter variation µ is in fact

the error in the matched filter varying the blur circle. The convergence of the refocusing

algorithm is depicted in Fig. 5.9(a) and (b). Fig. 5.9(c) is the refocused image of line object

L = (1 : x = y − 64 ≤ x ≤ 63,−64 ≤ y ≤ 63). The convergence curve is presented in Fig.

5.10.
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Figure 5.9. (a) Convergence at µ1, (b) Convergence at µ2, (c) Refocused image.

∥∥∥FMµ − FM0

∥∥∥→ 0 as µ→ 0 (5.15)

5.2.4 Refocusing Algorithm

1. Choose µ1 and µ2 defocus parameters.

2. Tµ1 : R2 → C2 mapping of g(x, y).

3. Tµ2 : R2 → C2 mapping of g(x, y).

4. 2-D aperture synthesis processing.

5. Compute focus measures FMµ1 and FMµ2.

6. Determine direction of convergence based upon comparison of FMµ1 and FMµ2.

7. Increment defocus parameter µ in the direction of convergence.

8. Tµ : R2 → C2 mapping of g(x, y).
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Figure 5.10. Convergence curve for refocusing algorithm.

9. 2-D aperture synthesis processing.

10. Compute focus measure FMµ.

11. End if image is focused otherwise loop back to step 7.

5.2.5 Gaussian Aperture

The circular and rectangular apertures create suboptimal diffraction patterns in optical

imaging. Scattered light in a telescope and the diffraction pattern of the telescope’s aperture

limit the contrast. The Gaussian aperture shown in Fig. 5.11 is considered to be a good

candidate for high contrast telescopic imaging in astronomical planetary search [64]. It is

considered to be in a class of apodized apertures. This is coupled with the fact that a com-

monly used model for the generalized psf of the camera system is Gaussian. It would be

interesting to explore refocusing of defocused images employing a Gaussian aperture with

the SAR 2-D aperture synthesis algorithm and may be undertaken as future work. It is also

pointed out that camera psf cannot be characterized with adequate accuracy using simple

94



Figure 5.11. Gaussian aperture for R=0.00625.

mathematical models such as Gaussian or cylindrical functions. A better technique would

be to measure experimentally the actual psf of the camera for different degrees of image

blur using the measured data and then model this psf in the SAR 2-D aperture synthesis

signal processing.

5.3 Conclusion

This research work utilized the inherent focusing ability of the SAR 2-D aperture synthesis

algorithm, a two-dimensional variant of the ω−k algorithm, to refocus out-of-focus optical

images. Refocusing of images may be necessary in machine vision as a preprocessing step

before edge detection or image segmentation. The SAR 2-D aperture synthesis algorithm

generates a complex amplitude distribution and psf similar to Fraunhofer diffraction dis-

tribution and psf as seen in Fourier optics. The matched filter in the SAR 2-D aperture

synthesis algorithm has a focus-in-altitude interpretation and may be varied to increase

or decrease the radius of blur associated with a particular psf. This paper demonstrated

focusing of a simple line object L = (1 : x = y − 64 ≤ x ≤ 63,−64 ≤ y ≤ 63). Al-

though a rectangular aperture was used in the refocusing process, other apertures may also
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be used such as circular or Gaussian. Moreover, actual psf of a camera system may also be

accurately modeled in the refocusing algorithm.
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CHAPTER 6

LATE SEASON RURAL LAND COVER ESTIMATION WITH
POLARIMETRIC SAR INTENSITY PIXEL BLOCKS AND σ-TREE

STRUCTURED NEAR NEIGHBOR CLASSIFIERS [7]

6.1 Introduction

SAR image classification for late season rural land cover estimation is investigated. A

novel, tree structured, nearest neighbor–like classifier is applied to polarimetric SAR inten-

sity image pixel blocks. The novel tree structure, called a σ–tree, is generated by an or-

dered summation of unweighted template refinements. Computation and memory costs of

a σ–tree classifier grow linearly. The reduced costs of σ–tree classifiers are obtained with

the trade–off of a guarantee of nearest neighbor mappings. Causal–anti–causal refinement

template design methods, combined with causal multiple stage search engine structures,

are shown to yield sequential search decisions that are acceptably near neighbor mappings.

The performance of a σ–tree classifier is demonstrated for rural land cover estimation with

detected polarimetric C–band AirSAR pixel data. Experiments are conducted on various

polarization/pixel block size combinations to evaluate the relative utility of spatial–only,

polarimetric–only, and combined spatial/polarimetric classifier inputs.

Nearest neighbor classifier implementation costs, in term of required memory and com-

putational resources, grow in proportion to the number of exemplars available as pattern

matching templates. Conventional tree structured nearest neighbor classifiers reduce com-

putation, but increase memory requirements. This research investigates a novel tree struc-

ture called a σ–tree that simultaneously reduces both computation and memory require-

ments. This tree structure is derived from a collection of multiple stage successive approx-

imation templates.

Data processing can often be formulated in terms of “successive refinement,” “incre-

mental refinement” or “approximate signal processing” [65]. A progressive formulation

97



of data processing and data representation allows for the possibility of trading accuracy or

optimality of results for the consumption of resources such as system cost and complex-

ity [66]. Successive approximation source codes provide an architectural framework and

strategy for image content classification [67], and is at the heart of the σ–tree concept. The

type of successive approximation source code proposed here for data classification is based

on direct sum data structures [68]. This template–based classifier search engine uses direct

sum structures for building efficient, data–adaptive, reduced–degree–of–freedom digital

representations of target class exemplars. In this research, σ–tree classifiers are applied in

the pixel space of detected polarimetric synthetic radar images for late season (November

in southeastern United States) rural land use estimation.

The primary purpose of this research is to introduce and investigate the utility of the

direct sum form of data representation in SAR image classification problems. C–band

AirSAR data sets of opportunity (images and ground truth) provide us late season crop

classification as the corresponding application–of–opportunity. The work of Frate, et al.

[69] addresses crop classification with polarimetric C–band AirSAR data for crop classi-

fication. Their image sets were obtained in the early to mid stage of growth (June). They

examined full complexity neural–networks, pruned complexity neural–networks, and max-

imum likelihood algorithms. Their data analysis show that polarimetrics should be a key

discriminator, and they are able to achieve good classification results with field–based (not

pixel–based) polarimetric signature classification. Their proven expectation is that polari-

metrics is a key discriminator for early to mid season growth stage crops. This is due to

crop canopy and ground bounce interactions, especially in cross polarizations. However,

in late season classification problems, the crop canopy is usually sparse or absent, so a

question addressed in this research is can spatial extension of the classifier’s input space

compensate for lack of polarimetric discriminators in late season land cover estimation?

Our classifier is a pixel based classifier that runs a sliding window through a polari-

metric SAR intensity (detected) pixel image, and extracts multiple layered snippets for
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classification. The stride of the sliding window is one pixel in both x and y directions. For

example, if a block size of 9 × 9 is used for classification, the sliding window moves just

one pixel to the right for the next block (or starts at the head of the next row if the end of a

row is reached). This allows the classifier to assign a class label to every pixel. The stride

of the sliding window can be increased to reduce the runtime of the σ–tree classifier.

Experiments are conducted for three cases: 1) with combined polarimetric/spatial blocks

with 9× 9 pixels and HH, VV and VH layers, 2) with polarimetric–only blocks with single

pixel spatial extent and HH, VV and VH layers, and 3) with spatial–only blocks with 9× 9

pixels of a single AirSAR “total power” (TP) layer. Results show that inclusion of both

polarimetric and spatial information gives good classification results for feature classes of

1) unharvested cotton (85% correct), 2) cut corn stubble / picked and cut cotton / plowed

areas (90% correct), 3) pasture and dried soybean areas (99% correct), 4) young pine stands

(74% correct), 5) mature pine stands (100% correct) and 6) a catch–all–else “other” class.

The system is less successful separating unpicked cotton with foliage (79%) from unpicked

defoliated cotton (52%), and separating dried soybeans (67%) from pasture (47%). Exper-

iments show that the inclusion of spatial content into the σ–tree classifier’s input space is

helpful for all classes, and that the inclusion of polarimetric content is useful for small plant

ground cover (unharvested cotton and young pine trees).

The rest of this chapter is outlined as follows. Section 6.2 introduces the mathematical

structure ofσ–tree classifiers. Section 6.3 describes theσ–tree classification decision rules.

Section 6.4 discusses the Parzen–window like structure of σ–tree classifiers. Section 6.5

describes the SAR experiments. Section 6.6 presents conclusions, and Section 6.7 is an

appendix that gives a σ–tree design algorithm.

6.2 σ-Tree Near Neighbor Classifiers

Let x0 represent a subblock or tile of a possibly multilayered SAR image that contains n

pixels. Let {x0(l), l = 1, 2, . . . , L} be a collection of SAR image tiles that contain examples

99



of a land cover type of interest. Conceptually, the elements of {x0(l)} can serve as exemplars

in a nearest neighbor classifier with the asymptotic risk of the classifier never being worst

than twice the Bayes risk as L becomes large [70]. Practically, this approach is not feasible

for large n because the memory and computational capacity required to utilize {x0(l)} as a

set of nearest neighbor exemplars grows with L.

This research uses a set {x̂0(i)} of structured examplars formed from direct summations

[68] that approximate the {x0(l)} in a novel type of “near” (not necessarily “nearest”) neigh-

bor classifier [67]. The set of directly summed templates {x̂0(i)} is not stored statically, but

its elements are built, as required, “on-the-fly” from additive refinement or residual tem-

plate sets. A tree structure called a “σ–tree” can be associated with each ordered permuta-

tion of the collection of residual template sets [71]. Hence the name: σ–tree classifier (“σ”

indicates “summation”) [72].

A σ–tree classifier consists of a collection of residual template sets {y p(ip)}, with the

level or stage index p ∈ {1, · · · , P} and the stage template index ip ∈ ZM = {0, 1, . . . ,M−1}.
An algorithm for generating residual template sets is described in the appendix of this chap-

ter. Using a local nearest neighbor rule at each stage, the σ–tree near neighbor classifier

searches the sets of residual templates {yp(ip)} in a sequential manner (p = 1, 2, . . . , P) and

successively adds the selected stage refinement template, on–the–fly, to form a direct sum

template

x̂0(iP) =
P∑

p=1

yp(ip) (6.1)

where ip is the index of the selected nearest neighbor template at the pth stage, and where

a composite P–tuple index iP = (i1i2 · · · iP) indicates the selected terminating node x̂0(iP) of

the σ–tree. The composite P–tuple index iP belongs to the P–element cartesian product of

M–ary index sets,

iP ∈ ZM × ZM × · · · × ZM︸�������������������︷︷�������������������︸ = ZP
M

P elements
(6.2)

Tree structured nearest neighbor classifiers are a standard approach in nonparametric
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decision systems. Standard tree structures reduce computation costs at the expense of an

increase in memory costs. The advantage of σ–tree structures over conventional tree struc-

tures is that both memory and computation are reduced. The baseline implementation costs

of an n–dimensional σ–tree classifier is specified by two parameters, M (the number of

branches at each node of the σ–tree = the number of stage templates) and P (the number of

levels in the σ–tree = the number of stage residual sets). Since the descendant nodes that

branch from each node at a given level of the σ–tree are constructed by additive template

refinements, each selected from a common, level–specific, residual refinement template set,

the computation and memory required for σ–tree template storage and template search is

proportional to

n × M × P (6.3)

This cost function indicates that computation and memory grow linearly with classifier

dimensionality n, grow linearly with branch multiplicity M, and grow linearly with the

number of tree levels P. Compare this low rate of growth in costs to the exponential rate of

growth of the number of σ–tree terminating nodes

L̂ = MP (6.4)

Each of these is a possible outcome in a near neighbor search in the σ–tree classifier.

Practically, there can be many (L̂ � L) terminating nodes in the σ–tree structure, where

one or more {x̂0(i)} are near neighbors of each {x0(l)}.

6.2.1 Comparison with Basis Function Representations

The direct sum template formulation

x̂0(iP) =
P∑

p=1

yp(ip) (6.5)

is similar to a standard basis function synthesis system:

x̂0(Γn) =
n∑

j=1

γ jφ j (6.6)
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where Γn = (γ1, . . . , γn) is a vector of basis weights. The differences between the two sys-

tems is the direct sum template system is nonlinear, i.e., a functional form y p(ip) instead

of a linear form ipyp, and P is not upper bounded by the dimensionality of the x0. Thus,

(6.5) gives a single mathematical structure for data representations that may be under–

determined (P < n), critically determined (P = n), or over–determined (P > n). This span

from under, critical and over is all within a common block data representation architecture,

and is a key factor in the ability to form successive approximations within and across fea-

ture subspaces, and does not force a system to acquire successive approximations by only

adding basis from orthogonal subspaces. The direct sum formulation also differs from basis

function synthesis system in that i p ∈ ZM (compared with γn ∈ �n) – this is one source of

implementation efficiency.

6.2.2 Comparisons with other Classifiers

A σ–tree classifier essentially performs an unsupervised clustering of training data, and

uses the dominant label of the training data within each cluster to assign labels to new data

blocks. This is a standard approach in pattern recognition. For a recent example, Kersten,

et al. [73] explore the use of different distance metrics in both fuzzy clustering and expecta-

tion maximum clustering algorithms for SAR images. Their work explores the use of both

complex pixel and intensity pixel information, and they show that l p norms may be less

effective in clustering because an lp norm will allocate new clusters by splitting up high–

energy clusters. The risk of having clusters inappropriately “split” is due in part to the use

of relatively small number of cluster centers–which is not a concern with large (many stage)

σ–tree cluster sets under a l2 norm. A high number of cluster centers is possible in practice

with σ–trees because of the computational and memory efficiency of imposed structural

constraint. Unlike support vector machines, which seek to populate a decision space with a

few vectors near decision boundaries [74], a σ–tree classifier populates the decision space

with many cluster centroids. These centroids are dense in probable regions and sparse in

less probable regions of the decision space [75]. Furthermore, the practical achievement of
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high dimensionality in the σ–tree classifier allows the asymptotic equipartition property of

high dimension [76] to mitigate the constraints on cluster exemplar placement imposed by

the structure of the σ–tree.

6.2.3 σ-Tree Nearest Neighbor Decisions

The functional operation of a P–stage, sequential search, σ–tree classifier is indicated by

σP(x0) = x̂0(iP). The pth stage intermediate decision of the σ–tree sequential search engine

is σp(xp) = x̂0(ip), where the input to the pth stage nearest neighbor search engine is the

pth stage causal residual

xp = x0 − σp−1(xp−1)

= x0 − x̂0(ip−1) (6.7)

= x0 −
p−1∑
ρ=1

yρ(iρ)

for p ∈ {2, . . . , P} and where ip−1 is a partial P–tuple index.

The σ–tree near–neighbor search engine mapping σ(·) can be functionally decomposed

into an indexing function I(·) and a template lookup function T (·), such that σ(·) = T (I(·)).
The sequence of σ–tree search engines is embedded in that the composite indices output

by the stage search engines are nested in this way

i1 = (I1 (x0))

i2 = (I2 (x1) , i1)

... (6.8)

iP = (IP (xP−1) , iP−1)

103



A successive refinement sequence is formed by the corresponding template lookup func-

tions

T1 (i1) = T1(i1)

T2 (i2) = T1(i1) + T2(i2)

... (6.9)

Tp

(
ip
)
= T1(i1) + T2(i2) + · · · + TP(iP)

= y1(i1) + y2(i2) + · · · + yP(iP)

thus yielding the direct sum of (6.1).

Given a distance metric d(·), such as squared error, each stage search engine makes a

local nearest neighbor decision between the causal residual input xp and its stage’s residual

template set:

σp(xp) = x̂0(ip, ip−1) iff d
(
xp, yp(ip)

)
≤ d

(
xp, yp( jp)

)
(6.10)

for all jp ∈ ZM , and where an arbitrary rule may be used in case of ties. Although a nearest

neighbor rule is used locally at each stage to identify the best i p, there is no guarantee with

this classification rule that the collective decisions represented by i p = (ip, ip−1) provide the

nearest possible x̂0(ip) for a given x0. Hence, the description of this system as a “near”

neighbor classifier, not a “nearest” neighbor classifier. That is, even if (6.10) is satisfied for

all p for a given x0, it does not necessarily follow that

d (x0, x̂0(iP)) ≤ d (x0, x̂0(jP)) (6.11)

for all jP ∈ ZP
M .

6.2.4 σ-Tree Residual Template Design

A collection of SAR image tiles {x0(l)} is used as a training set to design the classifier’s

stage residual template sets {yp(ip)}, and by association, the set {x̂0(iP)}. The design objec-

tive is to minimize the overall empirical training set distortion∑
l

d (x0(l), x̂0(iP)) =
∑

l

d (x0(l), σ(x0(l)))) (6.12)
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where enough training samples are used to provide a good approximation of source statis-

tics to allow the template set to approach the overall objective of minimization of the ex-

pected distortion

E {d (x0, σP(x0))} (6.13)

for the underlying data source distribution f (x0) of the SAR block pixel intensities, which

is assumed to be stationary and ergodic. Details of the residual template design process are

given in appendix at the end of this chapter.

6.2.5 Template Design Algorithm

Using methods presented in [77] for designing residual template sets for multiple stage vec-

tor quantizers, the empirical training set distortion (6.12) can be made as small as desired

by increasing the number of stages produced by the design process. A design objective

obtained by the methods of [77] is that the sequence of reconstructions provides

E
{
d
(
x0, σp(xp)

)}
< E

{
d
(
x0, σp−1(xp−1)

)}
(6.14)

for p = 2, . . . , P. Thus the sequence of template functions provide a successive refinement

with respect to expected source distortion, given sufficiently large training sets. Note there

is no guarantee that deterministic successive approximation will be achieved, i.e., it does

not follow from (6.14) that the following is satisfied:

d
(
x0, σp(xp)

)
< d

(
x0, σp−1(xp−1)

)
(6.15)

for each and every member of {x0(l)}. That is, successive refinement is only achieved in a

stochastic sense.

6.2.6 Curse of Dimensionality and Overtraining

The efficiencies of σ–trees allow classifiers of SAR image blocks with many pixels to be

practically implemented. Our SAR pixel classification experiments use fused negative and

positive versions of polarimetric SAR image blocks of 6 layers (positive HH, VV, HV; and
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negative HH, VV, HV), and a spatial block size of up to 9 × 9 pixels. Hence, the largest

σ–tree classifier feature space dimensionality tested in this paper is 486 dimensions.

Two problems often plague classifiers with high dimensionality [78]:

1. Challenge of generating a large number of templates with clustering algorithms with

limited training data.

2. Challenge of classifier robustness when data are encountered that are not well repre-

sented by a limited amount of high–dimensional training data.

6.2.6.1 The Curse of Dimensionality in the Design Phase

The template generation design phase problem is related to the degrees–of–freedom that

must be dealt with when training a classifier. Often, the number of degrees–of–freedom

expands exponentially as the dimensionality of the classifier increases. This is where σ–

trees have an advantage, the number of terminating nodes in the σ–tree grow as L̂ = MP,

but the number of degrees–of–freedom of each stage of the σ–tree structure grows only

linearly as nM.

Conventional nearest neighbor classification systems require minimum training set sizes

on the order of 10–100 training vectors for every template [79], [80]. The use of multiple

stages of small sets of templates reduces the amount of training data required to generate

templates for high dimensional feature vectors. The design process of [77] requires that

only one stage of the direct sum templates be generated (or improved) at a time – thus, the

entire training set need only be partitioned between the small number of additive succes-

sive refinement basis functions that exist at a single stage (a number that typically ranges

from 2 to 16 in our research). Thus, to design a σ–tree with 16 stage residual templates

(16 branches at each tree node), the rule of thumb would require about 100 × 16 training

examples. A training set size of 17,681 SAR blocks is used in the experiments of this

chapter.
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6.2.6.2 The Curse of Dimensionality in the Run Phase

There are limits to how much information can be gleaned for a classification process from

limited training data, even if the design phase version of the curse of high dimension is

avoided via multiple stage structure. A potential problem with a σ–tree structure is that not

all of the combinatoric direct sum exemplars may be utilized in the classification process,

especially if large numbers of refinement stages are generated. This is related to the over–

training problem. This problem can be dealt with by limiting the number of σ–tree levels

that are used during classification processing. A stage depth decision rule restricts the

search for near distance decisions over a subset ofσ–tree stages. That is, instead of searches

over the stages indexed by p with p ∈ {1, . . . , P}, the search is performed over only a subset

of stages p ∈ {Pmin, . . . , Pmax} with 1 ≤ Pmin and Pmax ≤ P. This restriction appears useful

for reducing false alarm rates, and allows control over classifications with over–trained

templates (those stages deep in the multiple stage system). In this research the number

of allowed stages starts at stage one, and is limited to no more than eight stages. The

sequential search process may terminate before the eighth stage if no stage templates of

the next stage provide a refined representation of the input SAR block. That is, failure to

satisfy (6.15) is used as a “stop searching” criteria.

6.3 σ-Tree Classifier Decision Rules

Two σ–tree decision rules are employed. First, a minimum distance (near neighbor) rules

for template similarity comparisons; and second, a Parzen window–like maximum posterior

probability rule for land cover class assignments.

6.3.1 Near Neighbor Normalized Distance Decision Rules

A normalized mean–squared distance measure called a signal–to–mismatch–noise ratio

(indicated by S NRmm) is used to quantify “nearness.” This metric is defined as

S NRmm = 10 log

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑n

j=1

(
x j − x̂ j(i)

)2
∑n

j=1 x2
j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (6.16)
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where xj is the jth element of the n–tuple data vectors. There are two different conceptual

approaches for σ–tree classification systems. The first uses multipleσ–trees, the other uses

only one.

6.3.1.1 Multiple σ-Tree Systems

A supervised, labeled set of training data are separated into multiple sub–training sets,

where each sub–training set is used to design a σ–tree specifically for that class label. The

classification system searches each σ–tree to find it’s best near neighbor mapping and it’s

associated minimum distance. One possible classification decision rule is to choose the

class label of the decision tree that gives overall minimum distance.

6.3.1.2 Single σ-Tree System

A mixed, labeled training set is used to design a single σ–tree. The labels of the best

near neighbor mappings are used for posterior probability estimation and class label as-

signments. This is analogous to a conventional nearest neighbor or k–nearest neighbor,

tree–structured classification system.

There is a drawback with the single σ–tree approach–increased implementation costs.

Since labels of the terminating nodes are used in the single σ–tree system, the implementa-

tion costs of theσ–tree classifier are proportional to the training set size. (but not dependent

on the dimensionality of the classifier). Thus this approach looses the linear cost growth

characteristic, but does not require the design of post near neighbor mapping classification

decision logic sometimes required to fuse a decision from multiple σ–tree classifiers. The

second approach is utilized in this research.

6.3.2 Bayesian Decision Rules

Let p(ω j|x0) be the posterior probability of class ω j given observation of a data block x0.

Some nearest neighbor classifiers would find the training set exemplar x0(l) that x0 is closest

to and use either the label of x0(l) for a classification decision, or for Bayesian estimation

would use a stored value p(x0(l)|ω j) and a prior probability estimate p(x0) to estimate the
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posterior p(ω j|x0).

The σ–tree classifier of this research uses a variation on this theme. A near neighbor

x̂0(ip) of x0(l) is first discovered by the σ–tree sequential search engine. The class label’s

relative frequency counts of the subset of x0(l) mapped to x̂0(ip) by the σ–tree design pro-

cess are used to generate posterior estimates p(ω j|x̂0(ip)), and the class with the largest

posterior probability is assigned. For example, let p(ω j|ip) = p(ω j|x̂0(ip)) be the posterior

probability of class ω j within the near neighbor region of x̂(ip) where ω j is the class label

j ∈ {1, . . . , J} and ip is the partial p–tuple index of a particular partial σ–tree exemplar x̂p.

The word “partial” is used in this context to emphasize that p may be less than P. (The

posterior probabilities are not necessarily monotonically increasing with p.)

The σ–tree maximum posterior decision rule is to choose the class label ω∗j and σ–tree

depth p∗ that maximizes

p
(
ω∗j |ip∗

)
= arg

⎧⎪⎪⎨⎪⎪⎩max
(p,ω j)

p(ip|ω j)P(ω j)∑J
j=1 p(ip|ω j)P(ω j)

⎫⎪⎪⎬⎪⎪⎭ (6.17)

over p ∈ {1, . . . , P} and ω ∈ {1, . . . , J}, and with P(ω j) the prior probability of class ω j.

The maximum posterior probability (MAP) values can be estimated from the training

data in a conventional manner [70]. Let N(ip) be the number of training vectors in the

Voronoi cell of σ–tree exemplar x̂0(ip). Let kω be the subset of this N exemplars that

belong to class ω. Given equal prior probabilities over the class labels ω, the MAP estimate

of p(ω|ip) is kω/N(ip).

6.4 Successive Refinement Parzen Windows

The multiple stage formulation of the σ–tree structure induces a sequentially refined par-

titioning (sub–clustering) of training data, and when combined with a near neighbor rule,

induces a sequence of partition refinements of the classifier’s input space. For example, the

nearest neighbor regions of a the partial path σ–tree exemplars {x̂0(ip−1ip); ip = 1, . . . ,M}
form an M–way partition of the nearest neighbor region of the σ–tree exemplar x̂0(ip−1).
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The progressive partition refinements of the classifier’s input space x0 ∈ �n provides an

opportunity for the design of a sequential Bayesian classification system with progressively

refined (localized) near neighbor class estimates over progressively smaller Parzen–like

windows (exemplar’s Voronoi regions). When a σ–tree classifier is viewed as an estimator

of class posterior class probability given an observation of x0, this progressive partition

refinement structure of a σ–tree classifier allows a controlled trade–off between large win-

dow, smoothed Parzen probability estimates and small window, local estimates of poste-

rior probabilities in high–dimensional decisions spaces. This progressive Bayesian Parzen

windowing proceeds in lock step with pixel intensity successive approximations–both pro-

cesses guided by the σ–tree structure.

6.5 SAR Pixel Data Experiments
6.5.1 Test Site and Land Cover Ground Truth

A multipolarization AirSAR image set of a rural area in south Georgia of the United States

is used to assess the performance of σ–tree classification of SAR pixel data for rural land

use estimation. The data were measured 1 November 1998. These data provide an oppor-

tunity to make assessments of land cover late in the growing season during harvesting and

post–harvest fallow preparations. The crops and land cover present during ground truth

collection were cotton in three harvest states (foliage–unpicked, defoliated–unpicked and

defoliated–picked–cut), corn in two post harvest states (cut stubble and stubble plowed

under), pasture, fallow fields, soybeans (dried/unpicked), pine plantations, and pine trees

planted for regeneration. Figure 6.1 shows example images taken of land use during on–site

ground truth assessments. Figure 6.2 shows the locations of ground truth sites of different

land cover classes in the particular SAR image used in these experiments. Each field iden-

tified in the ground truth is known to contained only one type of the crop class or tree class

of that truth label.

110



Figure 6.1. Examples of late season rural land use images taken during ground truth assessments. (a)
Mature green cotton. (b) Defoliated cotton, unpicked. (c) Cotton harvested and cut. (d) Dry soybeans.
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Figure 6.2. AirSAR image acquired 1 November 1998 near Alma, Georgia. Ground truth sites for land
use classes shown by arrows.
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6.5.2 AirSAR Training Data

This AirSAR data set was measured by a multiple polarization C–band radar and was fo-

cused to a resolution of about 1 meter in azimuth and 1.875 meters in range. The polariza-

tion layers of HH, HV and VV were fused into a multilayer SAR image set. A total power

(TP) version of the scene was also measured and returned as a single layer SAR version of

the scene.

A total of 17,618 image tiles of labeled training data were extracted from three polari-

metric layers (HH, HV, VV) for both polarimetric–only and combined polarimetric/spatial

experiments. Single layer image tiles were extracted from the same 17,618 training sample

locations using only the total power layer (TP) for spatial–only classification experiments.

The image tiles were expanded by including a negative version of the detected (magni-

tude) SAR image pixel blocks. The combined use of positive and negative pixel inten-

sities provides a simple approach for image block energy normalization. Blocks of size

9 × 9 × 6 = 486 pixels were extracted for the combined polarimetric/spatial experiments.

Blocks of size 9 × 9 × 2 = 162 pixels were extracted for the spatial–only experiments.

Blocks of size 1 × 1 × 6 = 6 pixels for the polarimetric–only experiments. Additional

image tiles from unlabeled regions of the SAR image were extracted to form examples of

a “other” label set not included in the known types of ground cover.

6.5.3 Classifier σ–Tree Parameters and Templates

Aσ–tree was grown for each experiment (polarimetric/spatial, polarimetric–only and spatial–

only) with the labeled AirSAR training set. Each stage of the σ–tree has 16 templates. A

total of 8 stages were designed in each case with the design method described in the ap-

pendix. Hence, the set of possible near neighbors has L̂ = 168 elements to approximate, to

one degree or another, the training set with L = 17, 618 elements.

The different polarization layers of the σ–tree polarimetric/spatial template sets are

shown in the first three images of Figure 6.3. The last of the four images in Figure 6.3

show the spatial–only total power (TP) σ–tree templates. All templates, except those of the
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Figure 6.3. Two examples of eight additive successive refinement template sets (first three images show
VV, VH and HH layers of the polarimetric/spatial σ–tree, the last shows the spatial–only total power
σ–tree).
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first stage, tend to have positive or negative sample values. The first stage template pixels

are usually all positive amplitudes. The intensity levels of the refinement templates shown

in Figure 6.3 have been normalized to better show texture detail. The actual intensity levels

decrease with increasing stage index. Note that the spatial characteristics of the additive

refinements progress from basically block mean values with some course structure, to in-

creasing refinements of texture granularity. There is also significant polarimetric variability

between the HH, HV and VV layers.

Shown in Figure 6.4 are four exampleσ–tree successive approximation sequences from

the spatial–only experiment for a sample training block input from the corn stubble, cotton

with foliage, pine and young pine classes. There are eight rows for each example that come

from the eight residual stages of the σ–tree template set. The right most column contains

the block–to–be–classified (repeated at each of the eight rows). The left most column is the

best template greedily selected at each stage (shown with intensity normalization to show

texture detail). The center column is the direct sum formed by adding the templates in the

left column. Note the σ–tree classifier is able to provide a reasonable approximation of

each input block, but does not seem to fully approximate the speckle content of the input

block. (The negative version of the corn and cotton blocks are displayed because of the

low energy returns from these land cover classes.) Further inspection shows that as the

spatial extent of the blocks is reduced, the fidelity of the σ–tree approximation’s of speckle

content increases when the σ–tree parameters (number of stages and templates) are held

fixed.

We note that the design process was interrupted at the eighth stage, but could have been

permitted to progress until enough stages are generated that all 17,618 training blocks are

represented with an arbitrarily high degree of intensity fidelity. Although this is possible, it

leads to a severely overtrained classifier. But from another point of view, the σ–tree clas-

sifier could be viewed as an index generation system capable of providing unique content

driven indexes iP for all image tiles contained in a training set or data warehouse, regardless
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Figure 6.4. Example direct sum successive approximations. (Corn stubble. (b) Cotton with foliage. (c)
Pine. (d) Young pine.)
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of the number of examples in the training set. This technical capacity may have application

in a number of image inventory and data mining applications [81], [82], [83], [84].

6.5.4 Accuracy Assessment

Classification experiments were performed using sequestered testing data not used for train-

ing. The test data were extracted from the same fields of the training data, but were not

coincident with the training examples. Although this is not the most desirable separation

of training and testing data, it is reasonable approach due to limited SAR data.

A error (confusion) matrix is used to assess the classification error and specify pro-

ducer’s accuracy and user’s accuracy [85]. The probability of a reference pixel being cor-

rectly classified is the producer’s accuracy, i.e., a measure of omission error. This is the

number of pixels correctly classified as a land cover class divided by the total number of

reference pixels for the class. The probability that a pixel classified in the image is really

that land cover class is the user’s accuracy, and this indicates the reliability of the classi-

fier. The user’s accuracy is calculated as the number of pixels correctly classified as a class

divided by the total number of pixels that were assigned in that land cover class.

The classification results are shown in Tables 6.1–6.4, and a detection map from the

polarimetric/spatial σ–tree classifier is shown in Figure 6.5.

The user’s accuracy level for unharvested cotton with foliage is 79 percent, and drops to

about 52 percent when defoliated but unpicked. These two classes are often confused, but

when viewed as a superclass of “unpicked cotton,” the user’s accuracy is about 85 percent.

The user’s accuracy levels for picked and cut cotton, fallow fields, and corn plowed over

are in the range of 20 to 37 percent. The accuracy level for corn stubble is about 58 percent.

All of these classes are often confused with each other. When viewed as a superclass of

“harvested fields,” the producer’s and user’s accuracy for the composite superclass is about

90 percent.

The user’s accuracy level for pasture is about 47 percent. The user’s accuracy level for

dried, unharvested soybeans is about 67 percent. These two classes are often confused.
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When viewed as a superclass of “grassy fields,” the user accuracy is 99 percent.

The user’s accuracy level for young pine trees is 81 percent for the producer, and 74

percent for the user. For mature pine trees these numbers change to 71 percent for the

producer, and 100 percent for the user.

The classification results obtained with only polarimetric, single pixel inputs is shown

in Table 6.3. There is a significant drop of about 15 to 60 percent in the user accuracy levels

when spatial information is not provided to the σ–tree classifier.

The classification results obtained with only spatial, total power pixel inputs are shown

in Table 6.4. The classes of unpicked cotton and young pine stands have a user accuracy

drop by 10 to 14 percent. The other classes do not change significantly.

6.6 Conclusion

The σ–tree classifier has been demonstrated as a feasible and practical approach to SAR

pixel data classification for rather specific target classes as those in late season rural land

use estimation. These results indicate that the polarimetric/spatial σ–tree classifier is able

to separate the C–band radar data into five late season land use classes: unpicked cotton,

harvested fields, grassy fields, young pine stands and mature pine stands with an average

user’s specificity estimated to be about 90 percent, and to be no lower than about 74 percent.

There is no significant loss in classifier performance for the harvested fields, grassy fields

and mature pines when polarimetric information is not available. This is believed to be due

to the lack of ground–canopy polarimetric interaction for these land use classes. Spatial

inputs to a σ–tree classifier are required to segment these classes. On the other hand, loss

of polarimetric information from spatial blocks of unpicked cotton and young pine stands

significantly degrades classifier performance. This is due to the significant ground–canopy

polarimetric interactions for these land cover classes.
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Figure 6.5. Classification map produced by the polarimetric/spatial σ–tree classifier. Grey scale col-
ormap class code: black=“other” class, darkest gray=pine, darker gray=young pine, gray=fallow/cut
cotton/cut corn, lighter gray=unharvested cotton, white=pasture/dried soybean.
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Table 6.1. Multipol AirSAR 9x9 Pixel Block Rural Land Use Classification Accuracy

Class Name Producer’s User’s
Accuracy Accuracy

Cotton, Green, Unpicked 73.88% 78.84%
Cotton, Defoliated, Unpicked 69.51% 51.71%
Cotton, Defoliated, Picked 24.99% 30.04%
Fallow Fields 30.68% 19.85%
Corn, Plowed Under 32.72% 36.81%
Corn, 6” Stubble 54.52% 57.56%
Pasture 48.84% 47.14%
Soybeans, Dry, Unpicked 56.90% 67.12%
Young Pine Stands 80.76% 73.97%
Mature Pine Stands 70.64% 100.00%

Table 6.2. Multipol AirSAR 9x9 Pixel Block Rural Land Use Classification Accuracy

Composite Producer’s User’s
Class Name Accuracy Accuracy

Unpicked Cotton 83.73% 84.83%
Harvested Fields 90.96% 90.38%
Grassy Fields 92.00% 98.99%
Young Pine Stands 80.76% 73.97%
Mature Pine Stands 70.64% 100.00%

Table 6.3. Multipol AirSAR 1x1 Pixel Block Rural Land Use Classification Accuracy

Composite Producer’s User’s
Class Name Accuracy Accuracy

Unpicked Cotton 37.59% 42.11%
Harvested Fields 58.54% 61.63%
Grassy Fields 60.82% 63.41%
Young Pine Stands 24.94% 14.38%
Mature Pine Stands 37.69% 85.33%
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Table 6.4. Total Power AirSAR 9x9 Pixel Block Rural Land Use Classification Accuracy

Composite Producer’s User’s
Class Name Accuracy Accuracy

Unpicked Cotton 78.90% 74.43%
Harvested Fields 88.51% 89.46%
Grassy Fields 89.86% 99.59%
Young Pine Stands 61.34% 60.62%
Mature Pine Stands 67.77% 100.00%

6.7 Appendix: Design Algorithm

As described in ([77] p. 238), two different, but closely related residual template sets

are generated during the design process to form a single σ–tree. One residual template

set, called the encoder set, is used to design greedy, stage–sequential nearest neighbor

mappings. The other residual template set, called the decoder set, is designed to satisfy a

non–causal (non–greedy) joint optimality condition across all decoder stage template sets.

Only the encoder set is used in the runtime of the σ–tree classifier. The decoder set is

discarded once the design process is completed.

Two interlaced fixed point descent updates are used to design the σ–tree residual tem-

plate sets. One fixed point process (called the outer process) is used to improve the sequen-

tial search performance of the encoder stage sets by testing the use of newly designed de-

coder stage sets in a candidate encoder to see if sequential search performance is improved.

These new decoder stage sets satisfy a causal–anti–causal residual centroid condition (a

condition necessary for non–greedy minimum mean squared error approximations formed

from direct sum template sets [68]). A joint optimization of the decoder stage sets occurs

in an inner Gauss–Sidel descent process driven sufficiently near a fixed point.

The σ–trees of this chapter, as described in ([77] p. 251), use a Type I variable block

rate exit strategy in the sequential search encoding of classifier input blocks. A Type II
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(variable stage entry strategy) is not required here because the normalization procedure of

combining negative and positive versions of pixel blocks into a composite block causes all

blocks to have the same mean level. If there is no residual template in the current encoder

stage that provides a refined representation, the σ–tree search process for that input block

is terminated. If at least one residual template stage provides a refined representation, then

maximum a posteriori classification proceeds for that input block based on the utilized

subset of residual template stages.
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CHAPTER 7

CONCLUSION AND FURTHER RESEARCH

7.1 Conclusion

The major contribution of this research is the development of a fast imaging method for

circular aperture synthesis. This method should prove to be a powerful tool for informa-

tion processing in surveillance and reconnaissance radar systems. The Householder trans-

form is used to obtain a ground-plane circular SAR (CSAR) signal phase history from the

slant-plane CSAR phase history by inverting the linear shift-varying system model, thereby

circumventing the need for explicitly computing a pseudo-inverse. The Householder trans-

form has recently been shown to have improved error bounds and stability as an underde-

termined and ill-conditioned system solver, and it is computationally efficient. The Fast

CSAR algorithm is a high-resolution and high-speed algorithm that may find applications

in diagnostic medicine, leading, for example, to earlier tumor detection. Because of the

high-speed nature, the imaging algorithm can make ultrasonic imaging up to hundreds of

times faster than current commercial ultrasound systems without a trade-off in resolution,

an important issue in imaging dynamic targets, such as the human heart.

The research in harmonic analysis-based 2-D aperture synthesis was used to asymptoti-

cally expand the Green’s function-based Fourier Integral. Simulations revealed an analogy

with the Fourier optics discipline. The diffraction patterns from simulations corroborated

our experimental results. A Circular aperture was found to be the only practical aperture

shape for airborne SAR out of various aperture shapes found in the Fourier optics disci-

pline. The optimality of the circular aperture was also discussed.

The refocusing of defocused images was a spin-off of our research into 2-D aperture

synthesis. Refocusing of images may be necessary in machine vision as a preprocessing

step before edge detection or image segmentation in the imaging and manipulation of 3-D

objects. The 2-D aperture synthesis generates a complex amplitude distribution and the
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corresponding psf in a manner similar to the Fraunhofer diffraction distribution model and

its psf as seen in Fourier optics. The matched filter utilized in the 2-D aperture synthesis

has a focus-in-altitude interpretation and may be varied to increase or decrease the radius of

out-of-focus blur associated with a particular point spread function of scatterers of various

heights.

Lastly, the σ–tree classifier has been demonstrated as a feasible and practical approach

to SAR pixel data classification for rather specific target classes as those in late season rural

land use estimation. These results indicate that the polarimetric/spatial σ–tree classifier is

able to separate the C–band radar data into five late season land use classes: unpicked

cotton, harvested fields, grassy fields, young pine stands and mature pine stands with an

average user’s specificity estimated to be about 90 percent, and to be no lower than about

74 percent. There is no significant loss in classifier performance for the harvested fields,

grassy fields and mature pines when polarimetric information is not available. This is

believed to be due to the lack of ground–canopy polarimetric interaction for these land

use classes. Spatial inputs to a σ–tree classifier are required to segment these classes. On

the other hand, loss of polarimetric information from spatial blocks of unpicked cotton

and young pine stands significantly degrades classifier performance. This is due to the

significant ground–canopy polarimetric interactions for these land cover classes.

7.2 Further Research
7.2.1 Elliptic Aperture Shape

An ellipse is a generalization of a circle. There is evidence of elliptic aperture shape in

Fourier optics and the associated mathematical development is also available for study. An

elliptic aperture shape is a flyable airborne SAR aperture, unlike triangular or rectangular

aperture shapes. Therefore, elliptic aperture synthesis may be studied as a topic of future

research as a generalization of circular aperture synthesis. Elliptic aperture synthesis would

come in handy during reconnaissance and surveillance when the target to be imaged is

asymmetric along one of the two orthogonal axes.
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7.2.2 More Mathematical Tools
7.2.2.1 Differential Geometry

SAR imaging appears to be a problem in geometry rather than electromagnetics. We know

from our understanding of 1-D SAR that for a linear flight path SAR image reconstruction

is done in the Cartesian coordinate system. In 2-D SAR for a circular flight path CSAR

image reconstruction is done in the polar or cylindrical coordinate system. Therefore, the

choice of coordinate system is dictated by the flight trajectory. On the other hand, differen-

tial geometry is a mathematical discipline that uses the methods of differential and integral

calculus to study problems in geometry and has grown into a field concerned more gener-

ally with geometric problems on differentiable manifolds. It appears that in solving more

challenging SAR ω − k image reconstruction problems like non-linear manoeuvring SAR,

passive SAR and bistatic SAR, we may have to rely on mathematical tools in differential

geometry.

7.2.2.2 Finite Difference and Finite Element Methods

A lot of work has recently been done in developing finite difference and finite element

methods. These mathematical methods have found applications in computational electro-

magnetics, image processing, computer graphics, heat transfer, diffusion and aerodynamics

to name a few. SAR imaging is a study in inverse problems. A wealth of knowledge base

exists in this area of inversion and experts from all imaging related disciplines including

medical imaging, seismic imaging, sonar imaging, etc., tap this knowledge base. Equipped

with these recent mathematical tools, research into numerically viable techniques needs to

be done as future work. We will have to dive into the knowledge base of “inverse problems”

contributed primarily by physicists and mathematicians with our understanding of the SAR

problem.
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