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Abstract

Understanding and interpreting a large data source is an important but challenging op-

eration in many technical disciplines. Computer visualization has become a valuable tool

to help capture and portray characteristics of large data sets. In software visualization,

illustrating the operation of very large programs or programs working on very large data

sets has remained one of the key open problems. Here, we introduce an approach that

uses semantic zooming to depict large program executions. Our method utilizes abstract,

clustered graphics to portray program operations on the entire data set. Then, by interact-

ing with the presentation, a viewer can zoom in to examine details and individual values.

At this \magni�ed" level, the presentation adjusts to re
ect displays common in existing

algorithm animation and program visualization systems.



1 Introduction

Software Visualization is the use of visualization and animation techniques to help people

understand the characteristics and executions of computer programs[SP92, PBS93]. By

facilitating program understanding, one can assist students who are learning new program-

ming methodologies, and software developers who are testing, debugging, maintaining, and

optimizing their code. Recent advances in software visualization systems coupled with wider

availability of computer graphics hardware have helped to broaden the application of soft-

ware visualization and to illustrate how software visualization can contribute to program

comprehension.

Software visualization systems can present a wide range of attributes about programs

including views of data structures[Mye83, SI91], system functionality[Rei85, KRR94], al-

gorithmic operations[Bro88, Sta90, Bro91], performance measures[HE91, SG93, RWJ93,

HM94], and even software engineering metrics[ESSJ92, DPHKV93]. Although much of the

focus in software visualization has been on serial programs, recent interest in visualizing

the operation of concurrent programs has grown[KS93] as well.

One of the key open problems in software visualization, and a valid criticism of the area,

is that most software visualizations are of smaller, laboratory-created programs[PBS93].

That is, software visualizations do not scale up well, and they poorly portray large systems

or program executions on large data sets. Recent research has begun to address this issue,

however.

The Seeplex system by Couch[Cou93] provides scalable execution views for parallel pro-

grams, ones that do not change in size or meaning as the number of processors increases.

Graphical elements portray categories of processors which are grouped by behavior. Di�er-

ent categories are depicted using color and texture. Users also can create new categories by

interactively selecting portions of views.

Leban has developed the notion of a representative view[Leb93], one in which both the

elements and the behavior of a program are mapped many-to-one to a relatively small num-

ber of graphical elements. In other words, graphical objects in a view represent collections

of values or operations in a program. A scripting language is provided to describe how data

values in a program should be mapped to their visual depictions.

Hackstadt, Malony, and Mohr have presented visualization techniques for illustrating

large data-parallel program executions[HMM94]. They list four techniques to help create

scalable visualizations:

� adaptive graphical representations

� reduction and �ltering

� spatial arrangements

� generalized scrolling

The program views utilized in this work di�er from those used by Couch and Leban in

that these use 3-D graphics. In particular, the views were created using the IBM Data

Explorer scienti�c visualization environment. Techniques like this allow software visu-

alizers to leverage the large body of work already existing in the scienti�c visualization

community[Fre88, DBM89, R
+
94].
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Also taking a 3-D approach, Stasko and Wehrli have developed views that can portray

large data sets manipulated by large parallel programs[WS93, SW93].

All the work mentioned above was developed in the context of visualizing concurrent

programs. This is not unexpected, since one of the primary advantages of a parallel com-

puter is to facilitate computation on extremely large data sets. Research on visualizing

large serial programs also exists, however.

The SeeSoft system[ESSJ92] provides a columnar representation of source �les in which

one line of pixels on a display corresponds to one line of source code. In this way, thousands

of lines of code can be presented succinctly on one display. By using di�erent color mappings,

the system can present a number of software engineering metrics about the code: who last

modi�ed a line, when was it modi�ed, has there been a bug on the line, how many times

was the line encountered during an execution, etc.

Strata-Various uses tabular and chart views to portraymany di�erent levels of a program

execution including hardware, operating system, user libraries and the program itself[KRR94].

The system provides a variety of views and coordinated navigation techniques to facilitate

viewer inspection of what a program did during a particular execution.

Our work builds on all this prior research. Our particular focus herein is on 2-D, color

graphical displays. This makes it potentially useful to a large number of software developers.

Like Couch[Cou93], we choose not to fallback on the use of scrolling and scrollbars to address

scale. Like Leban[Leb93] and Hackstadt, et al[HMM94] in particular, and characteristic of

all work in this area, we use graphical images to represent abstractions or clusters of values

from a program. In particular, we utilize the notion of semantic zooming, a visualization

and interaction technique with three key components:

1. Particular graphical objects in views can represent individual values or they can rep-

resent cumulative, clustered data about a program.

2. A visualization begins by showing the global computation (with all data captured in

some manner) then the viewer can focus or zoom in on particular details.

3. Viewers navigate between abstracted and detailed views by interacting with the graph-

ical objects on the display.

We seek to provide generalizable views and techniques that are suitable to many di�erent

types of programs. Given any particular program, it is not too di�cult to create abstract,

global views that capture its essence. But doing this on a program-by-program basis is sim-

ply too application-speci�c and not suitable as a debugging aid. We seek general techniques

that can easily be adapted to many di�erent programs.

In the remaining sections of the article, we elaborate on the concept of semantic zooming

and we provide example visualizations that use the technique. We also describe some of the

graphics and system support utilized to create these views.

2 Semantic Zooming

All of the visualizations of program executions on large data sets that we have created utilize

the concept of semantic zooming. In brief, semantic zooming allows the viewer to zoom
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in/out or focus on a particular portion of the program or data set. But rather than using

straightforward magni�cation and demagni�cation to zoom in and out, the presentation

style of the view adjusts at the di�erent zoom levels. When looking at a view of the entire

data set, the viewer may see graphical objects that portray cumulative summaries of large

chunks of the data and the program execution. When looking at a very detailed view of a

small portion of the program data, the viewer may see individual values or elements. Most

importantly, these two views may not look anything alike, but they should be built to be

as informative and to convey as much information as possible at that level.

A variety of di�erent systems have utilized the general notion of semantic zooming

recently. The AGE Graphical Environment[SKA94] uses semantic zooming to show more

detail of objects in pen-based computing environments. The Galaxy of News system[Ren94]

helps support navigation through a large news article information space by providing se-

mantic zooming operations to the viewer. Pad[PF93] and Pad++[BH94] provide general

information visualization environments where semantic zooming is the primary presentation

and navigation metaphor. When the user selects an object to examine, the view zooms in

on that object. The zooming typically begins as a normal magni�cation, but the rendering

of the object often changes as it grows larger and larger.

In the context of software visualization, we de�ne semantic zooming as having the fol-

lowing principles:

� All visualizations begin showing a view of the entire data set of the program, usually

at an abstract level due to the data size.

� At some level, all of the program data should be visible without falling back on the

use of scrolling and panning. That is, the presentation of all program data should �t

within one window.

� Viewers interact with a view and zoom in on a portion of the program data by inter-

actively selecting a graphical object representing that portion of the data.

� Di�erent zoom levels or perspectives on the program data can either be shown in the

same window or in separate windows.

� At the lowest, most detailed view level, the visualizations should use recognized algo-

rithm animation or program visualization presentation styles.

� All views update concurrently and always portray the current state of the program

execution.

In the next section we provide examples of program visualizations that utilize these

principles of semantic zooming.

3 Animation Examples

This section discusses two examples, sorting and graph programs, and shows how we use

semantic zooming to present large data sets in these domains.
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Figure 1: Our abstract blocks oriented view caught near the beginning of a sorting program.

3.1 Sorting Programs

Literally hundreds of animations of sorting programs exist, with perhaps the best known

being the seminal video Sorting Out Sorting[BS81] by Ron Baecker. Virtually all of these

existing animations, however, are of programs running on at most a few hundred data

elements. What would a program animation of a sort of 5,000 or even 500,000 values look

like?

We have developed such a visualization|it uses semantic zooming to portray all the

data in one compact window without requiring any scrolling. The particular sorting al-

gorithm shown here is quicksort, but the visualization itself can be applied to any sorting

algorithm that uses comparison and exchange. The visualization begins by capturing all of

the program's data in a block-oriented view as shown in Figure 1.

In this view, the data values are divided into i blocks (10 blocks in this particular case)

based on their proximity to each other. That is, if there are n elements in a list to be sorted,

the �rst n=i elements will comprise block 1, the second n=i block 2, and so on. Each block

is displayed as a rectangle; The rectangles are organized in a horizontal row. The minimum

value within a block determines the bottom y-coordinate of its corresponding rectangle, and

the maximum value within a block determines the top y-coordinate of the rectangle. These

y-coordinates can range from the bottom of the view (corresponding to the absolute smallest

value in the entire data set) to the top of the view (largest data value). The average of all
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Figure 2: This view shows the blocks view at the end of the sorting algorithm when the list

is completely sorted. Note that the 10 blocks are mutually exclusive and totally black.

the elements in a block is computed and represented as a bright horizontal line dividing the

rectangle. Following an idea of Leban[Leb93], the shade or �ll pattern of a block indicates

how \sorted" the block is. The shade of a completely unsorted (data values in reverse sorted

order) block is shown as white and the shade of a totally sorted block is shown as black. As

a data set moves from being totally unsorted to sorted, we use increasingly darker levels of

gray �ll to represent just how sorted the set is.

This blocks view provides a good overview of the sorting process. When the program

begins and its data is in a scattered random permutation, the blocks are all tall (they each

contain at least one very large and very small value on average), they are a moderate gray

color or �ll (about halfway sorted on average), and they all start with a similar average

value around the median of all data values. Such a con�guration is shown in Figure 1.

Conversely, at the end of the program when the elements are sorted, the blocks are all black

and do not overlap (Figure 2).

At any point in time in the middle of the program execution, the blocks view gives a

good indication of the composition of the set of elements being sorted. For example, in

Figure 3, the average value of block 1 is near the bottom of its corresponding rectangle,

indicating that this section consists mostly of elements with small values. The block is still

quite tall, however, indicating that at least one very large data value is still stored in this

section. Most importantly, however, the blocks view can be used to represent any amount
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Figure 3: This blocks view is from part way through the sorting program. The �rst block

of elements on average has small values but it still has at leat one very large value.

of data without loss of any of the above information.

The particular sorting program shown in our �gures is actually a parallel program

running on a KSR-1 machine. We utilize the color bar at the bottom of the blocks view

(row of short rectangles) to additionally indicate the processor that last accessed an element

in the block.

The minimum, maximum, average, and sortedness values for each block typically are

not directly available from the sorting program being visualized, so they must be computed

by the animation at run-time. Also, since the blocks are divided based on proximity (ar-

ray position), the elements which de�ne a block are continuously changing as values are

swapped during the program's exchange operations. As a result, the attributes of a block

are continuously changing. Ideally, we would like to compute the changes to the attributes

of a block incrementally in constant time after each exchange in the sorting program.

Changes to the average value of a block can be done in an incremental fashion and are

computed easily in constant time with respect to each exchange. We simply maintain the

sum of all values in a block and recompute this total after an exchange. The average is easy

to calculate from there.

Computing changes to the minimum, maximum, and \sortedness" values of a block

are more challenging, however. Whenever a new data value is swapped into or out of a
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block, the minimum or maximum value might change for the block, and we may need to

recompute the new minimum or maximum value from scratch. (This assumes we do not

keep a sorted copy of all the elements in each block. Clearly, this would be too expensive.

We do maintain the minimum and maximum values in each block, however, so we do know

when a new minimum or maximum occurs.) If a new minimum or maximum is swapped

into a block, our work is easy. If a minimum or maximum value is swapped out of a block,

recomputing a new one has a complexity of O(m), where m is the number of elements in

each partition (m = n=10 in our case). In general, on any particular exchange operation,

the probability that a minimum or maximum value is swapped out of a block is fairly small,

so this O(m) cost does not occur too often.

Computing the sortedness of a block is also tricky, especially without a formal de�nition

of sortedness. In our implementation, we use sortedness to indicate the relative number of

values in order at any given instance. That is, we compute the sortedness of a block as the

sum of the lengths of all continuously increasing sub-sequences with length of at least 2. For

example, the sortedness for the sequence 1; 2; 9; 5; 4; 6 will be 5 since it has two continuously

increasing sub-sequences 1; 2; 9, and 4; 6, of lengths 3 and 2, respectively. The sortedness of

a completely sorted sequence of numbers will be equal to the length of the sequence, and the

sortedness of a completely backwards sequence of numbers will be 0. This method allows

us to calculate the sortedness of a series of numbers in time linear to the length of the series

at start-up. Once this original linear calculation is performed, however, we can recalculate

the sortedness of a block after an exchange in constant time. We simply examine the local

e�ect of a new value by examining both the old and new values with respect to their left

and right neighboring values.

In summary, recalculating the average and sortedness value of a block requires constant

time after an exchange operation. Recalculating the minimum or maximum also takes

constant time, except when a minimum or maximum value is swapped out of a block. In

that case, time linear to the size of the block is required. In general, for this particular

sorting animation, we do not update the display after each exchange. That would be too

costly (slow) on the extremely large data sets it uses. Rather, we only update the display

after some number of exchanges occur. (This value can be set through a parameter, we

often use 10.) In that case, we also cache minimum and maximum exchanges out of a block,

and we only perform the linear recalculation once, if necessary, when the display is updated.

The blocks view as described so far provides a good overview of all the data, but what

if a viewer needs to examine individual data values too? We overcome this problem using

semantic zooming. In essence, each block representing a section of the program's data is an

active object which can itself become the \active focus." By simply selecting a block with

the pointing device, the viewer makes it the focus and it expands to become the entire view.

The chosen block is sub-divided into i blocks just as was done initially. Now, however, a

smaller portion of the entire data set is shown, only the section of interest to the viewer.

The same abstractions for minimum, maximum, average, and sortedness are used just as

before. Figure 4 shows a \zoom" onto the �rst block of Figure 3. This is the �rst 10% of

the entire array. As we can see, the �rst 90% of this segment has small values, but some

very large value still exists near the end of this segment.

This focusing operation can be carried out recursively and the view maintains the ab-

straction of blocks as long as the number of elements in a block is too large to be displayed

as individual elements. Once the viewer has focused enough to be able to portray all the
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Figure 4: This view shows the contents of the �rst 10% of the entire area. The viewer has

chosen to look at this segment by selecting with the pointer the �rst block in the global

view. The slanted line(s) and darkened rectangle near the top help indicate to the viewer

what segment of the entire array is being examined.
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Figure 5: The view transforms its presentation when a small enough set of elements are

to be shown in the display. Here, a traditional algorithm animation scatter plot sorting

presentation is used where the x-dimension corresponds to position in the array, and y-

dimension encodes the relative value of an element (smallest at bottom and biggest at top).

data values of a block adequately within the view, the display format of the view changes

to better represent the individual items. For example, Figure 5 shows the same program

executions portrayed in the prior �gures. Here, however, we have zoomed in far enough

so that the data values shown can be depicted in the classic scatter-plot dots algorithm

animation viewing technique[BS81]. Alternatively, the individual data elements could be

shown in any other traditional algorithm animation or program visualization style, such as

height-scaled bars[BS85]. At this level, detail about particular elements now is available.

To move back out a level (focus on a larger portion of the set again) the viewer simply

selects the \Previous Screen" option at the top of the view or clicks the right mouse button

anywhere in the view.

3.2 Graph Programs

Another domain of algorithms that frequently operates on very large data sets is the domain

of graph algorithms.
1
As with sorting, building scalable visualizations of graph programs is

1Here, we assume that the graphs utilized in programs are planar graphs with x; y coordinates on the

vertices.
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challenging because viewers may need to see both an overview and the details. One possible

solution is to use �sheye view techniques[SB94]. This approach alleviates the problem to

some extent, but it will break down on a graph with a very large number of vertices, too

many to properly �t within a display window. In our implementation, we solve this problem

by using semantic zooming and two views of the graph data, one which shows an overview

of the entire graph, and the other which shows details. The two views are a blocks grid

view and a zoomed vertex-edge view, respectively.

The blocks view is an abstract view. Abstraction is achieved by proximity similar to the

sorting visualization. The di�erence is that proximity in this case is two dimensional. The

graph is assumed to consist of blocks in a grid as shown in Figure 6. All blocks have equal

width and height. This grid corresponds to the 2-D geometry of the graph from a \zoomed

out" perspective. That is, consider the window's view to be pulled back enough so that all

the vertices and edges of the graph �t inside. Then, all the nodes and edges that fall within

a block comprise that block.

But rather than trying depict vertices and edges, we use summary blocks to portray

information about all the vertices and edges in that region of the graph. In particular, a

variety of visual encoding techniques communicate information about the di�erent regions

of the graph. For example, the shade of a block can indicate something about the nodes

and/or edges which comprise the block. In a depth �rst search algorithm, the shade of

the block might be used to indicate the number of nodes that have been visited, and in

a minimum spanning tree algorithm, the shade might be used to indicate the number of

edges in the block that belong to the tree. Similarly, the blocks can be colored to indicate

some value, or small rectangles in a corner of each block (not shown in our example) can

be used to represent some other attribute of the algorithm. The borders of a block also can

be highlighted to indicate an attribute of the program execution, such as the region of the

graph containing the vertex that the algorithm is processing at a given time. The usefulness

of the visualization depends on the set of attributes being mapped and the mapping itself.

Like the sorting visualization, this graph visualization provides a semantically zoomed

view (Figure 7). It shows the vertices and edges of a small region of the graph in complete

detail. At this level, we can see the speci�cs of the algorithm's operation on the individual

nodes and edges that may change color, 
ash, and change �ll, as often seen in traditional

algorithm animations. By picking on a spot in the blocks view, the viewer chooses a region

to focus on and show in this zoomed view. Like the sorting visualization, when the data

being presented is small enough to �t in a window, the view adjusts to show this detailed

view. We also have found it useful to introduce a mode where the detailed view is always

present and it automatically follows the focus of the algorithm.

4 Support Environment

The visualizations shown in this article were built using the Polka animation system[SK93].

Polka provides an object-oriented framework for building animations, including individual

windows or Views in which animations occur. Within a View, graphical objects (called

AnimObjects) such as lines, rectangles, circles, text, etc., can change position, size, color,

and so on, thus presenting an animation. These changes are called Actions in Polka. Because

Actions on AnimObjects are scheduled independently of other Actions and AnimObjects,

it is easy to synchronize animation activities and build concurrency into a View or Views.
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Figure 6: The graph overview visualization. Each block summarizes some cumulative at-

tribute or attributes of all the vertices and/or edges lying within that region of the graph.
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Figure 7: The more traditional zoomed view of a graph visualization that depicts individual

vertices and edges of interest.
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For animations such as the graph example shown earlier in which the di�erent semantic

zoom levels are shown in di�erent physical Views (windows) on the display, the basic Polka

framework was su�cient. But in the animations where the di�erent levels are always shown

in the same window (earlier sorting visualization), we needed to extend Polka. We added

the concept of a Portal which corresponds to a window on the display. Portals then support

the notion of presenting di�erent independent Views within them. (The concept of one

particular View being tied to a window was broken). This was necessary because semantic

zooming frequently generates a completely new and di�erent set of graphical objects from

zoom one level to the next. Each zoom level now corresponds to a View.

More speci�cally, a Portal can have any number of animation Views associated with it.

Only one of those Views, however, can be the Active View, that is, the one currently visible

in the Portal window. All other Views are considered to be hidden o�screen. O�screen

Views can have animation Actions scheduled and executed, however, so they can be kept

up-to-date. Then, if the viewer returns to a level via a sequence of zoom operations, that

View will re
ect the current proper state of the computation.

Typically, in the animations we have built, we use a lazy View instantiation process.

That is, we only create a new zoomed View when the viewer asks for it. Once the View is

created, however, we do keep the View up-to-date whether it is the active View or not. If a

View is created and becomes active, then goes inactive or o�screen and subsequently returns

active again, we simply re-install the View rather than instantiating all of its graphical

objects again.

In order to allow viewers of the animations to select or pick AnimObjects as the impe-

tus of a zoom, Polka provides the concept of AnimObject callback routines. All graphical

objects in a View can have an associated callback function that is invoked whenever an an-

imation viewer selects that object with the mouse. Inside the callback routine, we typically

determine which AnimObject was selected, how much of the data will be presented at the

next zoom level, and whether we need to instantiate a new View or re-install an existing

one. Zooming back out, which is usually done by selecting the special zoom-out box, is

easier because we know that the View to be shown must already exist.

5 Conclusion

We have presented an approach for visualizing program executions on very large data sets.

This approach utilizes semantic zooming and allows a viewer to adjust the level of detail

presented in the display. If an overview of all the data is desired, values are clustered

into a few graphical objects that portray large sections of the data. In particular, we

introduce a blocks view technique where graphical attributes of the blocks (geometry, �ll,

color) map to attributes of the data. To focus on more details, a viewer can interactively

select these clustered graphical objects. This changes the focus of the display to be the

desired smaller portion of data. Once a view is zoomed enough so that all the elements of a

focus region can adequately �t within the display window, the data presentation adjusts to

re
ect a traditional program visualization or algorithm animation presentation style. Our

approach uses descriptive graphical encodings and navigation 
exibility to facilitate a focus

and context software visualization strategy.
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