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Rocket exhaust nozzles utilizing steep inlet cone angles and 

tight throat contours to produce high acceleration of the gas flow have 

several advantages over conventional nozzles. Nozzles of this type are 

shorter and lighter, have smaller surface area, and have fewer heat 

transfer problems. Detailed design and performance analyses on steep 

inlet (<j£>0 > 30°) rocket nozzles have been virtually impossible din the 

past. Severe two-dimensional effects in the inlet cone and throat 

regions of these nozzles have invalidated classical one-dimensional 

analysis. A general two-dimensional solution of the entire flow field 

is required before detailed analysis can be initiated. 

This work develops a computational technique and a computer 

program for fast and accurate solution of flow fields in severely con

toured axisymmetric nozzles. An asymtotic time-dependent finite-differ

ence method developed by Moretti and Abbett is used in the solution of 

the governing fluid flow equations. The method is not restricted to a 

simplified thermodynamic model, and the technique presented can be 

extended for solution of the complete Navier-Stokes equations. The 

importance of boundary condition analysis is discussed. Computational 

techniques consistent with the goals of this report are used in%the 

development of the boundary regions. 

The program developed can construct a flow field for isentropic 



axisymmetric nozzles with severe wall curvature. It is demonstrated 

that the solution constructs flow fields for not only transonic but also 

subsonic and supersonic conditions. Solutions are compared with experi

mental data for several axisymmetric nozzles. 
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SUMMARY 

Rocket exhaust nozzles utilizing steep inlet cone angles and 

tight throat contours to produce high acceleration of the gas flow have 

several advantages over conventional nozzles. Nozzles of this type are 

shorter and lighter, have smaller surface area, and have fewer heat 

transfer problems. Detailed design and performance analyses on steep 

inlet (<j(>o -^30 ) rocket nozzles, have been virtually impossible in the 

past. Severe two-dimensional effects in the inlet cone and throat 

regions of these nozzles have invalidated classical one-dimensional 

analysis. A general two-dimensional solution of the entire flow field 

is required before detailed analysis can be initiated. 

This work develops a computational technique and a computer 

program for fast and accurate solution of flow fields in severely con

toured axisymmetric nozzles. An asymtotic time-dependent finite-differ

ence method developed by Moretti and Abbett is used in the solution of 

the governing fluid flow equations. The method is not restricted to a 

simplified thermodynamic model, and the technique presented can be 

extended for solution of the complete Navier-Stokes equations. The 

importance of boundary condition analysis is discussed. Computational 

techniques consistent with the goals of this report are used in the 

development of the boundary regions. 

The program developed can construct a flow field for isentropic 

axisymmetric nozzles with severe wall curvature. It is demonstrated 

that the solution constructs flow fields for not only transonic but also 



subsonic and supersonic conditions. Solutions are compared with experi

mental data for several axisymmetric nozzles. 



CHAPTER I 

INTRODUCTION 

Nature and Purpose of the Problem 

Flows through supersonic nozzles are of interest in design and 

development and in basic research. In application, nozzles are used in 

jet and rocket engines and in measuring flow rates. In research they 

are used in wind tunnels and in the study of non-equilibrium effects (1). 

This study was initiated to develop a computational technique and a 

computer program for the solution of two-dimensional flows through 

nozzles by applying new techniques to the solution of the two-dimensional 

flow equations. Prediction of the flow is basic to the study of other 

effects such as chemical reactions and heat transfer. 

During the last three decades, a major emphasis has been placed 

on understanding the aerodynamic design and performance of converging-

diverging exhaust nozzles. Investigators have been hindered, however, 

by intrinsic difficulties associated with the flow solution. One of the 

major problem areas has been the solution of the transonic region. 

Emphasis in this paper is therefore placed on the throat region of the 

nozzle where the flow is transonic. Several interesting phenomena 

associated with the transonic region of the flow field have been noticed 

which have important ramifications for the design of rocket exhaust 

nozzles. 

One of the critical factors in the design of exhaust nozzles is 

the containment of high-temperature gases. The cooling requirements may 
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be the limiting factor in the design of rocket exhaust nozzles. A 

method for reducing the heat transfer, then, could have for-reaching 

benefits. Numerous investigators (see References 1-4) have noticed that 

the heat transfer from the gas to the wall in a nozzle throat is appre

ciably less than a standard heat transfer correlation predicts. This 
i 

phenomenon has been found to be dependent on the Reynolds number and the 

convergent half-angle, i.e., the acceleration of the flow. It was found 

that in the region of the throat of a supersonic nozzle, a reduction of 

as much as 50 per cent in heat transfer below that typical for turbulent 

boundary layer could be obtained by increasing the convergent half-

angle (1,2). This suggests advantages in utilizing nozzle designs 

creating high acceleration of the flow. There are other factors, however, 

which must be considered before this can be done. 

To achieve high accelerations in nozzles, steep (<̂>0 ̂  30°) inlet 

cone angles and tight throat contours (Rt ^ 1.5) are required. Con

siderable deviations in pressure measurements from classical one-

dimensional isentropic flow behavior have been observed in the transonic 

region of such nozzles. Pressure! measurements have shown that deviations 

of as much as 30 to 45 per cent from that for one-dimensional flow occur 

just down stream of the throat (1,5). These deviations result from 

radial velocity components caused by the taper and curvature of the 

nozzle (6). Similar deviations have been observed where measurements 

were made in the divergent region of conical nozzles (1). Other investi

gators have observed this phenomena in the convergent (7) and throat (8) 

regions of converging-diverging nozzles. 

Thus a nozzle using a steep inlet: angle and a tight throat contour 
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to produce high acceleration of the gas flow has several advantages. 

Also, nozzles of this type are shorter, weight less, have smaller sur

face area and fewer of the problems associated with heat transfer from 

hot exhaust gases. To design and build a nozzle of this type, however, 

a heat transfer correlation at the wall is required. To theoretically 

evaluate the heat transfer, the boundary layer acceleration must be 

known. This, in turn, is dependent upon the velocity of the flow in 

the neighborhood of the nozzle wall. A solution for the free stream 

flow conditions, then, is required for use in solving the boundary 

layer flow. It has been shown, however, that the classical one-dimen

sional analysis is no longer valid for nozzles with high entrance angles 

and tight throat, contours. A general two-dimensional solution of the 

entire flow field is therefore necessary before a boundary layer in

vestigation can be initiated. 

A solution is needed for two-dimensional isentropic flow which 

is valid throughout a supersonic nozzle. The literature reveals that 

such a solution is virtually non-existent (1). The reason lies in the 

varying mathematical character of the equations describing the flow 

through the nozzle. The equations for subsonic, sonic and supersonic 

flow are elliptic, parabolic, and hyperbolic respectively. Existing 

studies, therefore, usually entailianalysis in three different flow 

regions; namely, the subsonic or convergent region, the transonic or 

throat region, and the supersonic or divergent region. The solutions 

are then coupled to describe the entire flow field. 

The solutions of the three regions, however, are not independent. 

There is a definite order in which the regions should be solved. The 
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subsonic and transonic solutions are interdependent and should be solved 

simultaneously. The subsonic-transonic solution then provides the bound

ary conditions for the supersonic solution (9). In the following para

graphs the character of each of the three nozzle flow regimes is briefly 

discussed. 

In the subsonic region the governing equations are of elliptic 

type. The solution is classified as a boundary value problem of poten

tial theory. When either the stream function or the velocity potential 

is considered as the dependent variable for incompressible inviscid 

subsonic flow, the governing equations reduce to Laplace's equation. The 

solution must satisfy Laplace's equation everywhere within the interior 

of the flow. At the boundaries either the Dirichlet condition (the de

pendent variable specified), the von Neuman condition (the normal deri

vative of the dependent variable specified), or a combination of these 

conditions must be satisfied by the solution (10). This simplicity does 

not carry over to the transonic region. 

The equations controlling transonic flow must describe the transi

tion from subsonic to supersonic conditions. The resulting equations are 

a set of non-linear partial differential equations with variable coeffi

cients which cannot be solved in closed form. This region therefore, is 

the most difficult of the three flow regimes to solve. In the absence 

of an exact solution, investigators have been forced to make simplifying 

assumptions and solve the resultant equations numerically. Numerical 

methods, capable of solving the steady state transonic equations have been 

developed for irrotational flow in nozzles. These methods have been 

successful only for the solution of flow fields in nozzles with moderate 



5 

wall curvature. They have severe limitations when applied to the analy

sis of rocket nozzles. The presence of extremely large velocity gradients 

in the nozzle throat give rise to numerical instabilities in the calcula

tions. This causes the accuracy of the solutions to rapidly deteriorate. 

The solution is also erroneously uncoupled from the subsonic region. 

In the supersonic region, the system of equations is hyperbolic. 

The solution is generally obtained by the method of characteristics, 

which uses a set of given data along an initial starting line to solve 

the equations of motion at a discrete set of points on an adjacent line. 

This is accomplished by transforming the governing partial differential 

equations into a characteristic ̂ coordinate system and numerically inte

grating the resulting system of ordinary differential equations along 

predetermined characteristic lines. This procedure is then repeated 

until the desired portion of the supersonic flow field is constructed 

(11). Solution of the two-dimensional supersonic equations by the 

method of characteristics is well developed but the flow conditions 

must be specified on a line upstream of the region to be solved. This 

boundary condition can be obtained only by solving the transonic region. 

The problem then, is to develop a two-dimensional solution tech

nique for the subsonic-transonic region of a conical converging-diverging 

nozzle with a steeply inclined entrance cone and a tight throat contour. 

This solution can then provide the boundary conditions necessary for the 

solution of the supersonic region by the method of characteristics. 

In the following sections the techniques available for the solution 

of the combined subsonic-transonic region are presented. Their relative 

merits and disadvantages are discussed and the method of solution is 
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selected. The problems associated with the chosen technique are then 

analyzeid to determine the most promising technique for solution of the 

entire flow field. 

Previous Related Studies 

The early studies of transonic two-dimensional and axisymmetric 

flow involve velocity perturbations about the* sonic velocity. The con

tinuity equation can be re-written in terms of a velocity perturbation 

potential and its partial derivatives. Meyer (12) first obtained a sol

ution to this equation by expanding the perturbation potential in a 

power series and assuming a linear velocity distribution along the nozzle 

axis. Lighthill (13) made use of the series solution to make a qualita

tive analysis of the behavior of the flow near the sonic line. The 

method can be applied conveniently only to the indirect (or design) 

problem. That is, the flow field is developed dependent upon the assumed 

centerline velocity distribution. Any streamline may be a wall and, 

therefore, once the solution is obtained, the flow field for the stream

line contour produced is known. Application of the method to the direct 

(or performance) problem is cumbersome and time-consuming because the 

centerline velocity distribution which will produce a given wall contour 

is not known. 

The direct»problem for symmetric two-dimensional and axisymmetric 

flow was first solved by Taylor (14) and Hooker (15) respectively. Using 

a double power series, Taylor evaluated the velocity perturbation poten

tial up to and including fourth order terms. This involved the simultan

eous solution of eight equations for the eight unknown series coefficients. 

The perturbation solutions are fundamental in their approach. The 
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evaluation, however, of a double power series expansion for the general 

equations of motion is a major effort even for the simple case of a 

linear axial velocity distribution. The complexity cannot be justified, 

especially when the method cannot be conveniently utilized for perfor

mance analysis of nozzles. To overcome this drawback various authors 

have simplified the equations of motion and obtained approximate sol

utions for transonic flow in a nozzle. 

Sauer (68) was the first to make a major simplification to the 

equations of motion. He wrote the governing equations in terms of the 

velocity perturbation potential. Then noting that several of the terms 

approached zero in the vicinity of the throat, he retained only the first 

order factors in these terms. This produced a series solution which was 

the first three terms of Meyer's solution. The technique was found to be 

applicable for nozzles with low inlet cone angles only. Several attempts 

have, therefore, been made to improve Sauer!s original solution. Yur'ev 

(16) obtained a solution by including an extra term and Sims (17) ex

panded the power series solution to five terms. Mendelson (18) extended 

Meyer's power series solution by formulating recurrence relationships for 

the general series coefficients in terms of the velocity distribution 

specified along the nozzle axis. In-all these cases no substantial 

improvement was made in accuracy over Sauer"s original solution. 

Oswatitsch and Rothstein (19) in an effort to eliminate the need 

to specify the axial velocity distribution, developed an iterative solu

tion based on successive approximations to the flow field. Although 

Oswatitsch (20) later showed that the numerical technique was unstable 

when applied to nozzles with steep inlet cone angles, their work became 
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the basis for many investigators. 

The most significant factor that influences the transonic flow 

pattern is the wall radius curvature in the throat region. Realizing 

this, Hall (21) produced a. technique for symmetric nozzles. Using a 

perturbation technique, he wrote the series expansion in inverse powers 

of Rt, the ratio of throat radius of curvature to throat radius. Subse

quent studies typified by the works of Moore and Hall (22) and Quan and 

Kliegal (23) have extended Hall's original solution to two-dimensional 

and annular nozzles with arbitrary profiles and dual gas flows. The 

solutions have shown favorable results, however, only for slender 

nozzles ($Q ̂  30°, Rt ^ 1.5). Increase the accuracy of the method for 

Rt less than one, Kliegel and Levine (24) reformulated the series ex

pansion to inverse powers of (R^ +1). The method solved only the tran

sonic flow region. The interdependancy of subsonic and transonic 

solutions was not taken into account. 

The streamline procedure developed first by Friedrichs (25, 26) 

is an attempt to improve on the perturbation methods. The procedure 

utilizes the full nonlinear partial differential equations of motion for 

inviscid, irrotatipnal, isentropic transonic nozzle flow. The equation 

of continuity for steady, axisymmetric flow is expressed in terms of 

the stream function and the velocity potential. A transformation is 

then made using the velocity distribution along the nozzle axis. The 

resulting system of partial differential equations is then solved by a 

series expansion of the stream function. The method determines the 

flow field in both the subsonic and supersonic regions. 

The streamline procedure has been adapted to the two-dimensional 
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problem by Liepman (27). Gray (28) generalized the technique to allow 

any curve in axisymmetric or two-dimensional flow to be selected as the 

reference line along which the velocity distribution is specified. 

Hopkins and Hill (29, 30) and Thompson (31) have utilized the method in 

the study of asymmetric, two-dimensional annular plug, expansion-

deflection type nozzles and two-dimensional curved channels. 

Other procedures using a streamline technique have been for

mulated which numerically iterate the equations of motion across the 

flow field. The results of an iteration are used to approximate the 

partial derivatives in the axial direction for the next iteration. 

Utilizing a given velocity distribution along the axis Pirumov (32) 

constructed the transonic solution in a converging-diverging nozzle. 

Zupnik and Nilson (33) generalized the approach to solve the direct 

problem in two-dimensional and axisymmetric nozzles. 

A variety of flows was analyzed by Emmons (34, 35) using a 

modified version of the classical relaxation technique discussed by 

Southwell (36). Hyperbolic nozzles were examined for a range of flows :" 

extending from the fully subsonic flow case to the shock free subsonic-

supersonic flow case. The relaxation method was not as formalized as 

other methods and success was often dependent on the skill, intuition 

and problem knowledge of the practitioner. 

A much-used procedure in the Soviet Union is the method of 

integral relations (39, 40). The method applies to problems in two-

dimensional isentropic mixed flow. The computational region is first 

divided into a number of axial strips. The governing differential 

equations are then numerically integrated across these strips; while 
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the method of characteristics is used to find disturbance movements 

between strips. 

A geometrical technique was developed by Ringleb (41, 42) which 

uses piecewise circular arcs to approximate the streamlines and equi-

potential lines. Using the infinite series expansion of Oswatitsch and 

Rothstein (19), Ringleb constructed the flow field in two-dimensional 

and axisymmetric nozzles. His procedure was later extended by Chou 

and Mortimer (41) by including an iterative boundary point computational 

technique which reduced the amount of specified information required 

to solve the flow. The method has been shown by Holt (42) to be 

numerically limited to nozzles with small inlet cone half-angles. 

Selection of the Method of Solution 

As is shown in the previous section, many methods have been 

developed which are capable of solving the steady-state equations for 

near-sonic conditions. These methods do not, however, completely 

couple the subsonic flow to the sonic flow and cannot solve the sub

sonic flow field. They also cannot handle rotational non-isentropic 

flows and are not considered in this paper. An alternate approach 

which does not have these restrictions and which may be used to solve 

the complete Navier-Stokes equations considersathe mixed flow problem 

as an initial value problem in time. Presently only two solution methods 

for this approach are feasible: (1) the method of characteristics and 

(2) direct substitution of finite-difference approximations for the 

partial derivatives in the equations. 

The inclusion of time in the basic flow equations as a third 



independent variable alters the nature of the equations such that they 

are of the hyperbolic type throughout the flow field. The method of 

characteristics can therefore be used to solve the time dependent 

equations of motion for the entire nozzle. This is accomplished by 

deriving the compatibility equations from the basic equations and 

numerically integrating these equations along characteristic curves. 

This is a three-dimensional characteristic problem and results in 

numerous complex computer programs for the solution of the flow. Al

though the method of characteristics appears to be the most accurate 

method available, the time to write and execute these massive programs 

severely limits the utilization of the method for nozzle design or 

performance analyses. 

The direct substitution of finite differences for the partial 

derivatives in the flow equations also has several problem areas which 

impede development of a general working technique for application to 

nozzle mixed flow solutions. The major problems associated with the 

approach are the proper treatment of boundary conditions and numerical 

stability of the difference equations. These problems are of a tech

nical nature, however, and a well developed computational technique 

should be able to overcome these obstacles. The approach contains none 

of the fundamental errors associated with the methods discussed in the 

preceding section. Much work has therefore been done in this area in 

an effort to iron out the problems associated with the computation of 

mixed flows by the time-dependent finite-difference method. 

The approach was originally suggested by von Neumann and 

Richtmyer (43). Lax (44) implemented their technique by writing the 
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equations in divergence-free form (conservation form) and replacing 

space and time derivatives with center and forward differences, re

spectively. He was successful in obtaining solutions for unsteady one-

dimensional flows with shocks. Lax and Wendroff (45) extended the 

technique to include syst€»ms of equations in three independent vari

ables. Their technique is referred to in the literature as the Lax-

Wendroff one step method. They also developed the Lax-Wendroff two-

step method to reduce computer storage and execution time requirements. 

Berstein (46, 47) applied the technique to the solution of several 

multi-dimensional flow problems. Crocco (48), Fromm (49) and Thommen 

(50) have devised time-dependent finite-difference methods for solving 

the Navier-Stok.es equations in various forms. These methods are 

formidable, however, due to the complex nature of these equations. 

Steger and Lomax (51) suggested using a time-dependent relaxa

tion technique. In the implementation of their suggestion, however, 

it was found that the relaxation technique required much refinement 

before it could effectively be used to solve transonic flow problems. 

Prozan (37, 38) developed the error minimization technique to improve 

on the existing relaxation methods. In this method the governing 

equations are rewritten in terms of a residual error. The set of 

differential equations are solved simultaneously and the residual 

reduced until the desired flow field is developed. 

Many other techniques have been devised to obtain solutions by 

the time-dependent method, Several authors (52-56) have compared these 

numerical techniques on the basis of ease of coding, spatial and 

temporal resolution and execution time. The results of these compari-

Navier-Stok.es
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sons indicate that a divergence form of the Lax-Wendroff one-step 

method originated by Moretti and Abbett (54) shows the most promise 

for the solution of the problem at hand. Some of the desirable char

acteristics of this method are: 

(1) It is a direct method in the sense that the nozzle 

geometry is prescribed and controls the subsequent computation. 

(2) The desired accuracy of the solution is set by the 

spatial grid size and not by a reformation of the analysis. 

(3) The method is not restricted to a simplified thermo-

dynamical model. 

(4) It requires a relatively short execution time on a high 

speed computer. 

(5) The computer storage required is relatively small. 

For these reasons the time-dependent finite-difference method of 

Moretti and Abbett appears to be the best technique for obtaining a 

rapid, accurate solution to the transonic flow problem in an axisym-

metric, rapidly converging-diverging nozzle. In the development of 

this method for solution on a high-speed computer, the following guide

lines were used: 

(1) The computer program should not require excessive execu

tion time. 

(2) The computational methods should be adaptable to the most 

general flow problem. 

(3) Boundary point computational techniques should not be 

strictly mathematical in nature but should be chosen on the basis of 

physical considerations of the flow. 
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Experimental Studies 

Early experimental investigations of gas flows through conical 

nozzles show the two-dimensionality of the flow but do not provide data 

for nozzles with high entrance cone half-angles or tight throat con

tours. Scheller and Bierlein (73) and Campbell and Farley (74) made 

measurements in the divergent region of conical nozzles. Fortini and 

Ehlers (7) recorded wall static pressure measurements in the convergent 

region and Stanton (8) measured velocity distributions in the throat 

region. 

Nozzles of the type considered in this paper were studied by 

Back et al. (1, 4, 6, 69-71). The experimental measurements were made 

primarily on two severely contoured nozzles. The nozzles have a 15 

degree divergent cone half-angle and 45 and 30 degree convergent half-

angles with R. equal to 0.625 and 2.0 respectively. They present 

static pressure measurements at the centerline, wall and various radii 

for axial stations along the axis of the nozzles. Mach number distri

butions are detailed and heat transfer and boundary layer data are 

presented. Shelton (72) made static pressure measurements in a conical 

nozzle with 30 degree convergent and 15 degree divergent half-angles 

for Rt ranging from 0.35 to 1.0,. These reports represent the extent of 

experimental research on severely contoured conical nozzles. 
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CHAPTER II 

TECHNICAL DISCUSSION 

Treatment of Boundaries 

The equations governing fluid flow are called the indefinite 

equations of motion. That is, the equations apply to any fluid flow 

problem in general, but do not define a. specific problem. A proper 

set of boundary and/or initial conditions is required before a specific 

problem can be solved. For each problem there are a number of neces

sary and sufficient boundary conditions. In treatment of the equations 

by numerical techniques it is all too easy to overspecify boundary con

ditions. Equally disasterous, but not as common, is the under-specifi-

cation of these conditions. But this difficulty is not reserved to the 

numerical investigator. Proper treatment: of boundary conditions is the 

outstanding problem area for all the transonic flow solution techniques 

discussed in the introduction. In numerical techniques, however, the 

difficulties are compounded by the absence of a mathematical analysis 

of stability at the boundaries. Moretti (57) has indicated that the 

oscillations associated with numerical methods are generated at the 

boundaries and are not a fault of the numerical technique. Prozan (37) 

makes a special effort to point out that treatment of boundary con

ditions is the foremost problem associated with numerical solution of 

the flow field in a converging-diverging nozzle. This area must be 

studied extensively before any rewarding results can be obtained by 
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numerical techniques. 

Subsonic Entrance 

The entrance region offers a perplexing problem for the analyti

cal investigator of Laval nozzle flow. In numerical solutions, the 

flow field is overlayed with a grid where intersection points on the 

grid are assumed to represent the area surrounding the point. The 

numerical approximation approaches the exact solution as the grid point 

spacing is reduced. The use of the grid requires that an entrance line 

be defined somewhere upstream of the area of interest where flow prop

erties are known. This entrance must accurately represent the charac

teristics of the flow entering the nozzle. But the location of the line 

must not be so far upstream as to make the computational region exces

sively large. This increases computer execution times. Since the, 

entrance flow is constant, one might choose an entrance line based on 

grid size considerations and assume constant values on it. In subsonic 

flow, however, any point is affected by all the other points in the flow. 

Changes in the downstream subsonic computational region create disturb

ances which propagate upstream. These disturbances must pass through 

the entrance plane (57) ., On an arbitrarily set computational entrance 

line, then, values must be up-dated in accord with the propagating wave. 

An arbitrary truncation of the subsonic flow field with constant flow 

properties assumed at the entrance cannot be used to model flow con

ditions at the entrance to a nozzle. Several authors have used this 

technique (37, 59) presumably under the assumption that the effect of 

wave propagation is negligible. Their results, however, are poor. The 

authors who have devised methods for computing the entrance flow with 
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some physical insight are briefly discussed in the following paragraphs. 

Laval (60) utilizing the Lax-Wendroff two-step method for numer

ical solution of transonic flow, uses a parabolic extrapolation from 

the downstream flow on an arbitrarily assigned entrance plane. The 

value of the axial component of velocity is then corrected by assuming 

that the mass flow rate through the entrance section at time t + At is 

equal to the mass flow rate through the throat section at time t. 

Migdal, et al. (61) use a stretching of the axial coordinate 

which places the entrance at a station an infinite distance upstream 

from the throat. By using a constant angle inlet cone, the area at this 

point is infinite. The flow variables at the entrance, therefore, re

main constant with time and equal to their stagnation values. Dis

turbances generated at the throat cannot reflect from an entrance plane 

of this type. This is also the procedure used by Prozan and Kooker 

(38) with their error minimization technique. 

Serra (62) , using the Lax"-Wendrof f one-step method, developed a 

technique utilizing a two-dimensional method of characteristics analy

sis to evaluate the flow variables on an arbitrarily assigned subsonic 

entrance plane. Three of the four dependent variables are specified a 

priori at each entrance grid point and the remaining parameters are 

determined by reducing the inviscid flow equations to normal form and 

employing a modified characteristics construction. The value of the 

fourth parameter is used to calculate values for remaining variables 

and the procedure is repeated until convergence is obtained to the 

values at advanced time. 

The coordinate stretching was chosen as the best method for 
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treatment of the entrance region for the present problem. Although the 

method of Serra appears to be a valid technique, the execution time 

required for an iterative characteristics construction is not justifi

able. The coordinate stretching method has the accuracy of the 

characteristics technique and much smaller execution times. Care must 

be taken, however, to supply enough upstream, 'buffer', grid stations 

to prevent the flow from abruptly changing from an infinite reservoir 

to a finitetcrossection. If the buffer region for a particular problem 

is found to require an excessive number of grid stations, the execution 

time may also be excessive. Under these conditions the Serra technique 

may become the more acceptable method for computation of the values on 

the entrance plane. 

Wall Points 

In numerical solution of a flow field, information is transmitted 

from point to point via computation of finite-differences. Boundary 

grid points influence their neighbors and boundary condition information 

is transmitted into the flow field. At each computational step, there

fore, the values of normal velocity, tangential velocity, and pressure 

must be calculated at the nozzle wall. The only proper boundary con

dition on the wall is the vanishing of the normal component of velocity. 

A wall point computational method must evaluate the boundary values 

using the boundary condition and information from interior points. 

Authors vary considerably in their treatment of this problem. 

Laval (60) and Prozan et al. (37, 38) use a simple parabolic 

extrapolation from interior points to obtain values for wall points. 

These extrapolated values are used for the next time step and extrapo-
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lation repeated. Errors are therefore compounded as the computation 

progresses. Such a procedure does not model the physical behavior of 

the flow. The wall partial derivatives obtained are dependent on the 

geometrical nature of the extrapolation curve rather than the physical 

properties of the flow. 

Lapidus (59), using the Lax-Wendroff two-step method, devised 

an interesting technique for treatment of wall points. Property values 

at several points surrounding a particular wall point are averaged and 

the change in properties through the region are calculated. The cal

culated change is then used to up-date the wall point in such a manner 

as to make the momentum vector parallel to the wall. Although the 

physical characteristics of the flow were considered in the development 

of this technique, it has not yielded acceptable results. 
i 

Several authors (10, 46, 64) use the same difference equation at 

the wall as is used in the interior of the flow. This is accomplished 

by use of the reflection technique. That is, a virtual grid line is 

assumed beyond the wall. The values along this line are assumed to 

be a mirror image of the internal grid line immediately adjacent and 

parallel to the wall. This causes the normal derivatives of all 

dependent variables to vanish at the wall. This is legitimate only 

for the normal velocity. Forcing the remaining partials to zero is 

physically wrong. 

Moretti and Abbett (63), recognizing that two-dimensional time-

dependent equations are hyperbolic, utilize a quasi-one-dimensional 

method of characteristics to evaluate the flow parameters on the nozzle 

wall. Initially, first order Taylor series are used to obtain provi-
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sional values at the wall. A point on a characteristic line which lies 

in the interior at the old time step is located by an iterative process. 

The values of the flow parameters are interpolated from the surrounding 

grid points. The compatibility equation is then integrated along the 

characteristic line to obtain the value of the pressure at the new 

time. This value is then compared with the value generated by the 

Taylor series and a correction made dependent; on the difference in the 

two values. The procedure is repeated until convergence is obtained 

to the new time values. This method has been used by several authors 

(64, 65) with favorable results. The technique was programmed for 

evaluation of wall points for the axisymmetric nozzle problem of the 

present study. The iterative computation was found to double program 

execution times. The severe two dimensional effects in the nozzles of 

this study make the one-dimensional nature of the characteristics con

struction unjustifiable. The method was therefore discarded in favor 

of a simpler technique. 

In this work, wall points are computed by evaluation of the 

governing equations in their reduced form at the wall. The equations 

are transformed to a normal-tangential-coordinate system and the normal 

component of velocity is set equal to zero. Central and backward 

differences are substituted for the derivatives in the axial and radial 

directions respectively. This method is consistent with physical 

behavior at the wall and reduces execution time substantially. 

Centerline 

Due to symmetry at the nozzle centerline, the behavior of the 

flow is characterized by the vanishing of all radial partial derivatives. 
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In numerical methods, several techniques are available for imposing 

this condition. In terms of computational accuracy, the centerline 

techniques are approximately equivalent. The' choice of a method for 

the present problem therefore depends on the execution times required 

by each method. 

The use of the reflection technique, discussed earlier, is 

completely valid for this case. The technique automatically sets all 

derivatives in the direction of the reflection equal to zero. The 

same difference equations applied in the interior can be utilized at 

the centerline. However, special consideration must be given the term 

V/r-[rsee equation (16)] . By 1' Hopital's Rule this term is zero and 

can be simply deleted from the governing equations at the centerline. 

Otherwise the equations remain unaltered., This approach requires the 

largest execution time of the techniques considered. 

Alternately, the governing equations may be reduced by setting 

radial partial derivatives and V/r to zero. If the computer program is 

coded using the reduced equations, execution times are reduced since 

the routine does not evaluate radial derivatives at the centerline. 

The method used in this paper for computation of property values 

at the centerline, reduced execution times still farther. By utilizing 

a series expansion approximation for each variable on the centerline in 

powers of the radial coordinate the condition of symmetry is imposed 

with minimal execution time. 

Supersonic Exit 

Since the flow equations for supersonic flow are hyperbolic, 

disturbances can only travel in a downstream direction. The upstream 
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flow solution is therefore insensitive to the method used for com

putation of the flow properties at the exit boundary. The general 

procedure for computation of this boundary is to use a simple linear 

extrapolation from upstream points. 

Stability 

It is an unfortunate fact that many times an attempt to solve a 

partial differential equation by a finite-difference technique leads 

only to a result which is completely unacceptable. The difference 

equation may have a rapidly growing and oscillating solution which 

bears no resemblance to the solution expected from the original dif

ferential equation. This results from computational instability (66). 

Von Neumann (43) proposed a method utilizing Fourier components 

which could define the computational stability limits for a linear 

difference equation with constant coefficients. Courant, Friedricks, 

and Levy (74), recognizing that a "domain of dependence" exists in 

hyperbolic equations, derived the familiar restriction 

C j£ ^ 1 (1) 
A* 

Where: 

c = constant 
At = time increment 
Ax = space increment 

Their computational stability condition, often called the "Gourant 

condition," restricts the distance a wave travels in one time increment 

to less than one space increment. Lax and Wendroff (45) analyzed their 

numerical method using a similar Fourier technique. The resulting 
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linearized stability condition is used consistently by the numerical 

investigators cited. For the present case this condition states that: 

Ax AY  
At ^ /ToTTlo and At ^ /s (v + a) (2) 

The equations describing motion of a fluid, however, are a set 

of coupled, nonlinear, partial differential equations with variable 

coefficients. Hirt (66) points out that Fourier stability analysis 

cannot predict instabilities in this type equation. Fourier analysis 

neglects several terms which contribute to instabilities. As reported 

by Lax and Wendroff (45), however, Burstein (46) found stability for 

values of t larger than those permitted by equation (2). The linear

ized stability analysis would then appear to be conservative for the 

variable coefficient problem. Equation (2) is therefore used as the 

stability condition in this paper. 

Initial Conditions 

Time-dependent methods require initial values of flow quantities 

at all points. The choice of initial conditions is somewhat arbitrary. 

The solution is .asymptotic and apparently the flow will eventually 

approach steady-state conditions no matter what initial data is assumed. 

If the initial conditions come close to representing the steady state 

flow, however, a faster convergence to the final solution will be ob

tained. An initial guess which is substantionally distant from the 

steady state values may produce an initial flow which is too violent. 

This may cause the computations to become unstable. This is an example 

of non-linear instability. For linear systems, stability is not in-
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fluenced by the size of the initial data (59). The Lax-Wendroff 

schemes and the Moretti and Abbett technique are non-linear systems 

and therefore could become unstable given initial data which is far 

from the steady state solution. The general procedure for the two-

dimensional and axisymmetric solution is to use the one^dimensional 

solution as initial conditions for the time-dependent difference equa

tions . 

In this study the one-dimensional solution used for initial con

ditions is altered to make the velocity vector parallel to the nozzle 

wall. The radial velocity is caused to decrease linearly across the 

nozzle to zero at the centerline. This places the initial conditions 

somewhat closer to the expected steady state solution; execution time 

is reduced and instabilities are avoided. 
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CHAPTER III 

ANALYTICAL DEVELOPMENT 

Coordinate Systems 

Interior Points 

A cylindrical coordinate system, fixed in the nozzle, is used in 

formulation of the governing equations in the physical plane (Figure 1). 

The axial coordinate is the centerline of the nozzle. The origin is 

situated at the nozzle throat with r representing the radial coordinate. 

Because a time-dependent finite-difference technique is used to 

compute properties at interior points, a uniform mesh grid is desired 

for simplicity in formulating expressions for partial derivatives. By 

means of a coordinate transformation the physical plane of Figure 1 

can be mapped into a rectangular region as shown in Figure 2. The 

region can then be divided into various constant Y and Z intervals. In 

the transformed plane (Figure 2) the radial coordinate varies between 

zero and one. That is 

Y - r 

?1 . (3) 

In order to prescribe subsonic boundary conditions at the nozzle entrance 

(Line AB, Figure 1), such that disturbances are not reflected, it is 

necessary to consider the entrance plane as infinitely far from any 



Figure 1. Physical Plane Axial-Radial and Normal-Tangential 
Coordinate Systems 
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source of disturbances. The transformation 

z = 1 + exp (-2/XQ) 

1 + exp (-2x/X0) (4) 

places the nozzle entrance (Line AB, Figures 1,2 and 3) at X = 1. A 

rectangular grid on the transformed plane (see Figure 2) appears as an 

exponentially spaced grid on the physical plane (Figure 3). This 

allows the computational plane to extend to upstream infinity where 

flow parameters take on their stagnation values while permitting a 

closely spaced grid in the throat region (-1 < X < 1) where the greatest 

accuracy is required. The relative number of axial grid divisions 

falling within the throat region is controlled by the value of the 

stretching parameter, XQ. Notice in Figure 4 that for equal divisions 

on Z, the corresponding number of divisions or X falling within the 

throat region decreases as X_ is increased. 

Wall Points 

Since the normal component of velocity at the nozzle wall vanishes, 

a coordinate transformation from the cylindrical, x-y, coordinate system 

to a system in which the coordinate directions lie normal and tangential 

to the wall is desirable. A coordinate system is chosen in which the 

tangential coordinate is positive in the direction of the flow and the 

normal coordinate is positive inward (Figure 1). The origin resides at 

the particular wall point at which the properties are being computed. 

The new coordinate system, therefore, moves from wall point to wall 
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Figure 3. Finite Differencing Grid in the Physical Plane 
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point as the flow calculation develops. Therefore, 

T = (X -• Xm) cos <p + (r - r«n) sin <£ (5) 

T\ = (X - X<n) sin 0 - (r - r<n) cos <fi (6) 

and 

X = X~ + T cos cf> + 7] sin $ (7) 

r = r~ + T sin 0-7] cos $> (8) 

where x and y are the coordinates of the wall point under consideration. 

The angle cf> is the inclination of the 7]-T coordinate system with respect 

to the axial directibn which is also equal to the wall inclination angle, 

Non-dimensionalization Procedure 

All coordinates and flow properties must be non-dimensionalized 

so that results are applicable to more than one particular nozzle-flow 

situation. This process should be carried out in such a manner as to 

leave the governing equations essentially unaffected with regard to 

their form. The area of particular interest lies in the transonic flow 

region. The significant length parameter is therefore taken to be the 

radius of the nozzle at the throat, r£. All length parameters are non-

dimensionalized with respect to this significant radius. Pressure and 

density are non-dimensionalized with respect to their values at the 

nozzle entrance, (p0,QQ) . The nozzle entrance is situated at an 

infinite distance upstream where the values of pressure and density 

remain constant at their stagnation values. The square root of the 

ratio of p to p is a measure of the speed of sound at the inlet and 

is used in non-dimensionalization of all velocity parameters. The 
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actual speed of sound at the inlet, (jp' p')'! was not used because it 

complicates the form of the non-dimensionalized flow equations. Time, 

which has the units of a length divided by a velocity, is therefore 

non-dimensionalized with respect to r'/(p?/p')2. If any of the English 

Engineering systems of units is used the gravitational constant must be 

included in the expressions for velocity and time. 

The non-dimensional parameters are defined as follows: 

X = X ' / r t 

y = y • / r ; 

.11 = T] vr; 
T = T K 
P = P !K 
P = P 

1 » 
H o 

U = U /<pyp;>% 

V = V /(pyp;>% 

a = a nv0/p-0)
h 

Y = Y 'WP'/2 

a = a 'WSJ* 
t = t rV(pVp;) 

Development of Governing Equations 

The working fluid is referred to as a perfect gas. By this is 

meant that surface effects, magnetic effects, electrical effects and 

chemical effects are not significant. The gas can be considered a pure 

substance which remains in a single phase. The specific heats are 

constant. The gas is non-viscous and obeys the ideal gas equation of 
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state: 

P' = p1 RT1 (10) 

The thermodynamic state of the system is, therefore, defined by 

any two independent properties. The remaining properties are related 

by the equation of state. With the inclusion of velocity as a third 

dependent variable the flow field is completely defined. Since the 

flow is defined by three dependent variables,, three independent equa

tions must be utilized to solve the flow,. Assuming the flow to be 

reversible and adiabatic. with negligible body forces, these equations 

are 

conservation of mass 

£ | + PA.V = 0 ( n ) 

conservation of momentum 
.-* 

p2I +Ap = 0 (12) 

conservation of energy 

Dh _ Dp 

Dt" Dt~ 
P — r~ (13) 

The equations of conservation of mass and momentum are expanded 

into cylindrical coordinates, assuming axisymmetric flow. The equations 

are non-dimensionalized as indicated previously. The expression re

lating pressure and density from the conservation of energy equation is 

utilized to eliminate pressure from the equations. For convenience 

R = In p (14) 
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is defined. As a result. 

a2 = G = T exp [(T - 1) R] (15) 

Using the newly defined parameter R and the resulting expression for 

the governing equations is non-dimensional form are ' 

conservation of mass 

ffi+DM+T6R + S2+«!U.V =0 (16) 
&t £)X fcr &x £>r r v 

conservation of axial momentum 

fi+vffi+^V + o f f i - 0 (17) 
6t 5r fcx ^ x 

conserva t ion of r a d i a l momentum 

£ + I | I + v £ V + G M . 0 (18) 
6t fcx fcrftr v ' 

Interior Points Coordinate Transformation 

Using the coordinate transformations 

Y • - £ 
(19) 

and 

Z = 1 + exp (-2/Xp) 
1 + exp (-2x/X0) (20) 

the governing equations are rewritten in the transformed plane. It is 

necessary to relate the fluid properties in the physical plane to those 

of the transformed plane. Any fluid property g(x,r,t) in the physical 

plane is related to a fluid property g(Z,Y,t) in the transformed plane 
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through the following equations: 

bg.= Rbg + cbg 

Where 

bx bZ b^ ..(21) 

&& = n M 
bt bx (22) 

bg = bg 
bt bt (23) 

Zx 

K = &5. = 2 Z e xP ("XQ) 
bx X .[i + exp (-|*)] Ao 

C = ̂  = - I i- (r ) (24) 
fcx r dx • n 

• ^ n 

D - ax . i -
br r n (25) 

The transformation equations [equations (21), (23) and (23)] are used in 

conjunction with the governing equations for the physical plane [equations 

(16), (17) and (18)] to produce the governing equations for the trans

formed plane. These equations are 

conservation of mass 

& * + B^ + A E + K & H + C ^ + D ^ + H V = 0 
b t bZ &Y &Z bY &Y 

P 

conservation of axial momentum 

(26) 

SE + BSE+ASE + L S E + F S - O 
b t bZ bY bZ bY (27) 

conserva t ion of r a d i a l mementum 

&Z + £L + A E + E ^ = 0 
b t bZ &Y ftY (28) 
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Where 

A == uc + VI) 

B =: UK 

E = DG 

F == CG 

L =: GK 

G == 
2 

a 

H = P/Y 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

Nozzle Wall Points Transformation 

As discussed previously, a normal-tangential coordinate system 

is a convenient: choice for calculation of the wall points. Any flow 

property g(T,T|,t) in the mobile wall fixed coordinate system is related 

to the flow property g(x,r,t) in the stationary nozzle fixed coordinate 

system by the relations 

M = &I cos A + £I sin <̂> 
b* 6T ^ Ml (36) 

M = M s i n 0 - M c o s 0 
br 6T blfii (37) 

6g = bg 
bt bt (38) 

The components of velocity in the respective coordinate systems are 

related by 

U = v cos <p + a s i n <p (39) 

V. = v s i n <f> - a cos <p (40) 
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Using equations (26), (27) and (28) in conjunction with equations (36), 

(37), (38), (39), and (40) yields the governing equations for the 

mobile wall fixed coordinate system; 

conservation of mass 

M + v ^ + o ^ + ' 5 2 '+ fiS + I - o 
&t 6T bl\ bin 6T r (41) 

conserva t ion of t a n g e n t i a l momentum 

^ + £L . + o ^ + Ĝ S = 0 
fct fcT 6T| 6T (42) 

conservation of normal momentum 

*1 + J* + Qb£ + G ^ = 0 
.£t 6T Ml Ml (43) 

For points on the nozzle wall the normal coordinate of velocity, 

a, is zero. The governing equations for the wall points can therefore 

be simplified further. Setting a = 0 in equations (41), (42), and 

(43), yields 

conservation of mass 

M + * + v&* + ^ .+ I v sin* = 0 
St 5T| • 6T 6T ' r (44) 

conservation of tangential momentum 

by . vbv p£R n 

&t + V % U (45) 

conservation of normal momentum 

» . 0 

em <46) 
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For computational convenience equations (44), (45) and (46) are 

transformed into the rectangular Y - Z coordinate system. This trans

formation simplifies the merging of the interior and wall points 

solutions. 

Keeping in mind the facts that 

£ (y= tan * (47) 

and 

r at wall = r^ (48) 

the equations can be derived relating any property g.(-T,T|,t) in the 

mobile wall fixed coordinate system to the property g(Z,Y,t) in the 

rectangular transformed plane. These equations are 

M = K sin<i> M - J L • &I 
bTl bZ cos<£ bY (49) 

£l = K cos0 5i 
bT ^ bZ (50) 

te.t bg 
bt &t (51) 

Using equations (49), (50), and (51) with equations (44), (45), and (46) 

yields the governing equations for points on the nozzle wall in the 

rectangular Y - Z coordinate system. These equations are: 

conservation of mass 

bR , v • A. bo D 5a , v , bR , 
— + K sin© —- — + K cos <z> — + 
bt - bZ cos0 fcY ^ &Z 

bR K cos(i ^ + - 1 sinc6 = 0 
bZ r 
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conservation of tangential momentum 

*L + v K cos 6 % + GK cos<£ ^ = 0 
fet ^ 6Z 6Z (52) 

conservation of normal momentum 

K sin<£ M - JL. M == 0 
\ 6Z cos<^bY (53) 

by substitution of equations (39), (40) and equation (36-38), equations 

(51), (52) and (53) could be written in the alternate forms: 

$5 + B^ + .K&E.+ {*£.+ M + HV = 0 
bt bZ &Z b* b* 054) 

bt bz bz bY (55) 

&Z + B6V + EbR 
bt bt b^ (56) 
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Numerical Technique 

The interior region of the flow field is calculated using the 

method of Moretti and Abbett (63). The technique consists of expanding 

the fluid properties in a Taylor series in time. Lax and Wendroff 

(45), the principal investigators of this method, found that the term 

containing the second derivative was a. necessary condition to insure 

convergence of the series. The method therefore uses the variable 

(a fluid property) and the first and second derivatives of the 

variable at time tQ to compute the value of the variable at time 

tQ + At. Written mathematically this statement is 

g(t„ + it) = g(to) + M At + j£§ < ^ 

where g represents a fluid property (R, U or V). The first time 

derivative of g is obtained from equations (26) through (28). Dif

ferentiation of equations (26) through (28) with respect to time pro

duces the second time derivatives of g as follows: 

&2R = . - B ^ * - £ * M „ A6^R _!!^bR _ Kb
2U 

bt7 bz^t &t bz: b^bt &t ̂ Y bZbt 

6*6t 6Y6t 6t (57) 

&2u = - B ^ £ - 5H:5!L - A ^ H -PA^L _ L62R -
6t* 6Z6t 6Z 6t 6Y6t bt 6Y bZfct 

6£6R _.F6_R „^£b^ 
&t-6t fcYfct ^t 6Y (58) 
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&2 v = B ^ - ^ - ^ - A ^ - ^ - ^ 
fct7 bZfet fet ftZ frYfct It ftY 

Eb R b£bR 
bYbt fct bY (59) 

Equations (57) through (59) contain crossed time and space derivatives. 

Interchange of theoorder of differentiation is valid for these functions 

Equations (26) through (28) are therefore differentiated with respect 

to Y and Z to express the crossed time - and space - derivatives in 

terms of space-derivatives only. These terms are: 

62R = _Bb
2R bB_ bR Ab

2R &A bR 
bzbt eyz7 bz bz bYbz bz bY 

Kb
2u dK _bu _ Gb^u ' _ b£ bu _ pb

2v 
bz1 dz bz bYbz bz bY bYbz 

dD bV _ HbV vbH 
dz bY bz bz (60) 

b2R = _Bb^R bB bR _ Ab
2R bA bR 

bYbt " bZ6Y " bY bZ bY2 " bY bY 

Kb2u _ c b 2 u _ be b£ _ ^ v _ Hbv 
bzbY bY7 " bY bY bY7 bY (61) 

bzbt 
- B * E 2 -

bz2 
&B. bU 

bz bz 
k ^ •-

bYbZ 

bA bU 

bz bY 

Tb
2R V " bL bR bz bz bYbz 

bF bR 

bZ bY (62) 



42 

b2u = Eb
2u bB_ b£ .b2u bA b£ 

bYbt " bZbY " bY bz " bY7 " bY bY 

Lb R _ bL bR _ pb R bF bR 
bZbY bY bZ " bY7 " bY bY (63) 

b2v = _B6
2v _ bB bv _ Ab

2v bA bv 
bzbt bz 7 bz bz bYbz bz bY 

Eb
2R bE bR 
bYbz bz bY (64) 

b2v = _ B^y 6B bv Ab
2v bA bv 

bYbt 5YbZ bY bZ " bY2 " &Y bY 

b2R bE bR 
bY1 bY bY (65) 

The first and second space derivatives occuring in the equations for 

the second time derivatives [see equations (57) through (65)] can be 

closely approximated by finite differences. A standard central finite-

difference scheme has been used for evaluating the partial derivatives, 

The first and second space-derivatives of g in finite difference form 

are 

M(i,j) = [g(i + 1, J) - g(I , 1, J)]/2AZ (66) 
bz 

||(I,J) - [g(I, J +..1) - g(I, J - 1)]/2£:Y (67) 
bY 
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.2 
^-|(I,J) = [g(I + 1, J) - 2g(I,J) + g(I - 1, J)]/ 

(AZ)2 (68) 

2 
|-|(I,J) = [g(I, J. + 1) - 2g(I,J) + g(I, J - 1)]/ 

(AY)2 (69) 

.2 
^ I , J ) = [g(I -hi, J + 1) - g(I + 1, J - 1) -

g(I - 1, J + 1) + g(I - 1, J + 1) + g(I>- 1, J - 1)/ 

4AZAY (70) 

Where I and J refer to the grid point under consideration as shown in 

Figure 2. The remaining terms are evaluated as follows: 

— = R2. lEri 
dZ " K~ dX (71) 

6H = 6 D / Y 

6Z dZ (72) 

M. K I 
dZ 2(Z " X0> (73) 

-&C = yrdC drm D cfe, 
&Z lvdZ dx T KdpH (74) 



44 

&A _ T T S £ + c S 2 + V i £ + D b v 
bZ ~ U bZ 6Z- V dZ bZ (75) 

bB 
bZ 

= u M bU 
u bz + K bz-

bG 
bz = ^ ^ 1 

z 
= G dD + D b G 

dZ 0 Z 

fil 
bZ 

r 

bz + L bz 

hk 
bz bz + K bz 

be 
bY = - D d r n 

dx 

££ 
bY 

D 

bA 
bY = u|£+ c^u-

©Y ° bY 

fcL 
bY " K b Y 

!£ 
bY 

= G(Y - 1) | | 
0 1 

bE 
bY 

= D ft£" 
bY 

hi 
bY 

r 0C bG 
" G b Y + bY 

(76) 

(77) 

(78) 

(79) 

(80) 

(81) 

(82) 

(83) 

(84) 

(85) 

(86) 

(87) 
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6L = „ 6G 
bY 6Y (88) 

bt L bt + u bt (89) 

.£! = K M 
bt bt (90) 

f - G(Y " »f (91) 

J £ = D ^ 
bt bt (92) 

i£ = c ^ 
bt 6bt (93) 

bt bt (94) 

The first and second derivatives of rn with respect to x are calculated 

from the nozzle wall function r =• f(x). 
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As discussed in Chapter II, the initial conditions for two-

dimensional numerical methods are usually taken to be the one-dimen

sional solution for the geometry under consideration. In this study the 

one-dimensional flow solution is altered in order to decrease execution 

time by bringing the initial conditions nearer to the final two-dimen

sional solution. The total velocity used for initial conditions is 

assumed equal to the one-dimensional value, that is, constant across 

the nozzle. Radial and axial components are calculated to make the 

total velocity parallel to the wall. The radial velocity is then 

assumed to vary linearly from this wall value to zero at the centerline. 

The axial component is then calculated from the known total and radial 

velocities. 
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CHAPTER IV 

RESULTS 

The equations developed in Chapter III are coded in the Fortran 

V language for implementation on a Univac 1108 digital computer. A 

listing of this program appears in the Appendix. 

The program solves the flow field for a convergent-divergent 

conical nozzle. The entrance and exit cones are connected by a cir

cular arc of radius rt (see Figure 1). The nozzle geometry is described 

to the computer program by the input of the entrance and exist half-

angles (̂ 0»̂ *x) and Rt, the ratio of throat radius of curvature rc, to 

the nozzle radius of the throat, rt. 

The computational grid (see Figure 4) is described by the input 

of the number of axial and radicil grid lines and the stretching param

eter, XQ (see equation 4). 

Three nozzles are analyzed in the results. Two nozzles with 

entrance half-angles of 30° have exit half-angles of 15 . They differ 

in that one has an Rt ratio of 0.35, the other, Rt = 0.55. The third 

nozzle has an entrance angle of 45 and an exit of 15° with Rt = 0.625>; 

The results are discussed intterms of computer runs involving these 

three nozzles. 

The grid spacing used for these runs consists of 51 axial and 11 

radial grid lines. A fine grid spacing produces very accurate approxi

mation of derivatives by finite differences. This at the expense of 

. ) 
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increased computation times. Fifty-one divisions axially was found to 

be necessary to damp out oscillations initiated by the change from an 

infinite to a finite nozzle crossection at the entrance. Eleven grid 

lines in the radial direction was found to be minimal for accurate 

representation of radial derivatives. The values of the stretching 

parameter, XQ, used are those which, after experimentation, yielded the 

best results as compared with experimental data. 
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Run 1 : Initial Check-out 

To check, out the computer program an essentially one-dimensional 

flow situation is solved. The entrance and exit cones for this nozzle 

have half-angles of three degrees. The cones are connected with a 

circular arc throat section with Rt equal to 100. The axial coordinate 

is stretched using XQ equal to 10.00. The initial conditions for this 

nozzle should be very close to the steady state solution. Table 1 

compares the axial Mach Number distribution at the nozzle wall for the 

initial conditions (N=0) and after 12 time steps (N=12). The steady 

state solution is seen to vary a maximum of 0.06% from the initial 

conditions. The program is thus considered operative. 
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Table 1. Comparison of Initial Conditions and Final 
Solution for an Essentially One-dimensional 
Nozzle (<j>Q = -3, <£x = 3, N = 51, Rt = 100, 
X0 = 10, N = 11) 

:/r N = 0 N = 12 Deviation 

6 

11 

16 

21 

26 

31 

36 

41 

46 

51 

•14 .221 

•10.455 

• 8 . 1 0 9 

• 6 . 3 3 0 

• 4 . 8 4 9 

• 3 .543 

• 2 .344 

• 1.209 

• 0 . 1 0 3 

• 1.00 

0.2310 

0.3076 

0.3801 

0.4590 

0.5539 

0.6567 

0.7624 

0.8726 

0.9888 

1.1130 

0?2310 0.00 

0.3076 0.00 

0.3801 0.00 

0.4590 0.00 

0.5541, 0.03 

0.6568 0.01 

0.7627 0.04 

0.8730 0.05 

0.9894 0.06 

1.1130 0.00 
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Run 2 : 30•- 15 Nozzle, Rf- = 0.35 

Static pressure ratio distributions calculated using the computer 

program developed for this,paper are presented for a conical nozzle 

having convergent and divergent half-angles of 30 and 15 degrees respec

tively. The nozzle has a ratio of throat radius of curvature to throat 

radius of 0.35. Distributions are calculated along the axis and wall 

of the nozzle. The wall pressure distribution is compared with the 

experimental measurements of Shelton (72). The coordinate stretching 

parameter for this run was set at 6.0. The results appear in Figure 5 

for the 180th time step (N=180). The execution time for the run was 

3.66 minutes on an Univac 1108 digital computer. 

Good agreement is observed between the numerical and experimental 

pressure ratio distributions along the nozzle wall, except in the 

supersonic region. This region can more accurately be described by 

two-dimensional steady state characteristics method using the present 

transonic boundary conditions. 

The considerable two-dimensionality of the flow in the vicinity 

of the throat is clearly demonstrated by the extreme divergence between 

the wall and centerline pressure ratios in Figure 5. 



PMIPM 

o 
»r^ 
• p 

• c d 

a) 
u 
to 
CO 
Q) 

PM 

0.8 

0 . 6 

0.4 

0.2 

0.0 

Experimental 

Theory: 

wall 

Centerline 

30-15° Nozzle 

N = 180 

Rt "= 0.35 

X0 = 6 

JL _L 

-2.0 -1.5 -1.0 -0.5 0.5 1.0 

Axial Distance from Throat, •=— 

Figure 5. Static to Stagnation Pressure Ratio Distribution in a 30-15° Conical Nozzle 



53 

Run 3 : 30 - 15 Nozzle, Rt = 0.55 

Figure 6 presents the results of Run 3. The computer program 

was set up, as on Run 2, for a 30 - 15 degree conical nozzle. On this 

run a curvature ratio of 0.55 was used (Rt = 0.55). A slightly less 

severe stretching was used (XQ = 3.0). The wall and centerline pres

sure ratio distributions appear in Figure 6 compared with the wall 

pressure measurements of Shelton (72). The execution time for this , 

run was 3.87 minutes for 200 time steps. 

Very good agreement is observed within the transonic region of 

the flow field. As on Run 2, the theoretical curve dips well below 

the experimental in the supersonic region. Close examination reveals 

a deviation within the subsonic region. This deviation is oscillatory 

in nature and increases near the centerline. 
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Run 4 :• 45 - 15 Nozzle, Rt = 0.625 

Run 4 investigates a more severely contoured nozzle. A 45 

degree inlet half-angle is used with a 15 degree exit angle. A 

stretching parameter value of 3.0 is used. The computation is allowed 

to march for 180 time steps. Figure 7 presents the numerical results 

for the Mach Number distributions along the wall and centerline of the 

nozzle. These are compared with the experimental observations of Back 

et al. (75). This run required a 3.76 minutes of computer time. As 

in the 30 - 15 nozzles, deviations from the experimental are observed 

in the subsonic and supersonic regions. Very good results are evident 

within the transonic region. 

Mach line distributions for Run 4 appear in Figure 8. Experi

mental data is that of Back et al. (75). 

The progression of the solution to steady state is indicated in 

Figure 9. Notice that within the transonic region (p = 0.292) the 

time marching routine has reached steady state by the 150th time step. 

Just upstream of the throat (f"f. = 1.119) the routine requires 300 time 

steps to obtain steady state conditions,. Near the nozzle entrance 

-X 

Crt = -4.906) within the subsonic region, the routine does not reach 

steady state. This indicates an error generating source within the 

subsonic region. If left to accumulate, this error could destroys She 

accuracy of the time marching routine, throughout the flow field.; 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

The computational method developed in this thesis permits the 

solution of flows over a regime which includes subsonic, transonic and 

supersonic flows. The computer program requires only the input of 

nozzle geometry parameters for solution of the flow field. The numer

ical technique is written in the Fortran V language. The program can 

be implemented on any large scale digital computer. Batch processing 

or demand facilities may be used with equal ease. 

The results show excellent agreement with experimental measure

ments within the transonic region. Deviations from experimental values 

within the subsonic and supersonic regions indicate that an error 

generating source exists near the nozzle entrance region. 

With sufficient feel for the progress of the time marching 

technique, effective values of the stretching parameter and grid 

spacing can be obtained. This does not: insure that the chosen values 
r 

are those that will yield the most accurate results or the most rapid 

convergence. The effect of the stretching parameter and grid spacingt 

for varying inlet cone half-angles and throat: contours on convergence 

and stability in the numerical technique has not yielded to mathematical 

correlation. The optimum parameter values for a given nozzle cannot be 

known before the initial execution. This is a disadvantage of the 

method as presented. Additional study is required to correlate these 
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parameters. 

It is concluded that the numerical technique developed in this 

report must be restricted to flow field solutions in the throat region 

of converging-diverging nozzles. Accurate results can be obtained for 

transonic flows but not for flows in the subsonic or supersonic regions 

using this method. The transonic flow solution generated can be used 

as boundary conditions for a method of characteristics solution in the 

supersonic region. The errors generated within the subsonic region, 

however, have the capability of destroying the results for the entire 

flow field. 

It is recommended that a study be implemented to determine the 

nature and extent of error generation within the finite-difference 

equations. Emphasis should be placed on determination of the effects 

at the nozzle boundaries and entrance region. Subsequently the choice 

of grid size and stretching parameter should be correlated for opti

mization of accuracy and execution time. Only after these studies are 

completed can the numerical technique developed herein be considered 

reliable for the solution of two-dimensional flow fields. 

5 
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APPENDIX 

A listing of the computer program written to utilize the numeri

cal technique developed for this thesis follows. This program may be 

executed on any large scale ditital computer. It contains logic for 

both batch and demand processing. Plotting routines written for the 

Typagraph Demand Terminal are also included- Comments are included 

within the listing. This makes the program essentially self-explana

tory. 



THIS PROGRAM COMPUTED INITIAL CONDITIONS 

INPUT DATA CARDS: 
(1) 
<2> 
(3) 
U) 
(5) 
(6) 
(7) 

OUTPUT FILE: 10 

LOCATION OF 
VARIABLES: 

NX (INTEGER) 
NR (INTEGER) 
XO '•'. CREAL) 
RC (REAL)" 
RT (READ 
AGLIN (REAL* DEGREES) 
AGLOUT (REALr DEGREES) 

D( 
D( 
D( 
D( 
D( 
D( 
D( 
D( 
D( 
D(10 
D(ll 
D(12 
D(13 
D(m 
D(15 
D(16 

= I 
= X 
Z 
YN 
DYNDX 
D 
K 
PHI 
PHI 
SIN 
COS 
DKZ 
DDZ 
DCZDY 
DCY 
D2YNDX 

(RADIANS) 
(DEGREES) 
(PHI) 
(PHI J 

REAL K 
DOUBLE PRECISION XO»DELZ»DELY»YN1 
COMM0N/BLK7/U(51P51)»R(51r51) 
C0MM0N/BLK6/YNK51) 
DIMENSION D(16r51)»C(51»51)»H(51»5l)fV(51#51)»THA(51#51)rHX(5l>51) 

1000 FORMATO 
1001 FORMATP ENTER NUMBER OF AXIAL GRID POINTS') 
1002 FORMAT(• XO = ? ») 
1003/' FORMAT.(• ARC RADIUS = ?•) 
lOOf FORMAT(» THROAT RADIUS =?•) 
1005 FORMAT Cr ENTRANCE ANGLE = ?• ) 
1006 FQRMAK* EXIT ANGLE '='?••') 
• 10-07' FORMAT (• ENTER NUMBER OF RADIAL GRID POINTS') 

X(Z) = (X0/2.)*(ALOG(Z)-ALOG(l+EXP(-2./XO)-Z)) 
K(Z)'••= ( ( (2.*Z)/X0 )'•* EXP( (•-2.*XCZ))/X0 ) 
1 ( 1 * EXP( (-2.*X(ZH/X0 ) ) 
WRITE(bflOOl) 
READ C5t1000) NX 
WRITE (6rl007) 
READ <5>1000) NR 
WRITE (6rl002) 
READ(5»1000> XO 
WRITE<5>1003) 

) / 



READ(5»1000) RC 
WRITE(6»100f) 
READ(5rl000) RT 
WRITE«b»1005) 
READ(5»1000) AGLIN 
WRITEC6»1006) 
READ(5rlOOO> AGLOUT 
CONV = 57.2957795 
AGLIN =. AGLIN/COMV •'• 
AGLOUT = AGLOUT/CONV 
PI = 3.mi5927 
RC = RC/RT 
TI = RC*5IN(AGLIN) 
TO = RC*SIN(AGLOUT) 
TNI = TAN(AGLIN) 
TNO = TAN(AGLOUT) 
DZ = l./(NX-l) 
DY = l.Z(NR-l-) 
DELZ •=. 1.000/(NX - 1.000) 
XO = DBLE(XO) 
DELY = 1.0D0/(NR-1.0DO) 
GAMMA = l.H • 
D(l»l) = 1.0 
D(2»l) = •- 1.0E10 
D(3*l) = 0.0 
DUrl) = 1.0E10 
D(5rl) = -1.0 
D(6»l) = 0.0 
D(7»l) = 0.0 
DO 10 I = 1»NX 

10 C(I»1) = 0.0 
DO 110 J = 1VNR 
H(1»J) = 0.0 

10 C(1»J) = 0.0 
DO 20 I ='. 2f NX 
Z = ( I -1 ) * DZ 
D(lfl) = 1 
D(2rD = X(Z) 
D(3»I) = Z 
IF ( D(2»I>.- TI ) 11» 11»; 12 

11 D(4rl) = D(2rl) * TNI + 1 + RC - RC/C0S<AGLIN) 
D(5rl) = TNI 
0(16*I) =0.0 
GO TO 15 

12 IF ( D(2»I) • - TO ) 14r 13, 13 
13 DUrl) = D(2»I) * TNO + 1 + RC - RC/COS(AGLOUT) 

D(5rl) = TNO 
D(16rl) = 0.0 
GO TO 15 

1M- DU»I) = RC + 1 -SQRT(RC**2HD(2»I)**2> 
D(5»I) = D(2rl) / SORT ( RC**2 - D(2«-I)**2 ) 
D(16»I) = ( SORT •( RC **.-.2 - D(2* J >• • **..2 ) • D(5 

& / ( RC ** 2 - D(2fl) ** 2 ) 
15 YNl(I) = DBLE( D(4rI) ) 



D(6»I)"=< 1.0 / DU«>I) 
D(7rIJ = K(Z) 
D(8»I» = ATANC D(5»I> ) 
D(9»IJ = D(8»I) * CONV 
D(10rl) = SIN( D(8»I> ) 
D(11»I) = COS( 0(8*1) ) 
D(12»I) = 2 * ( D(7»I> / D(3PI) - 1 / XO > 
D(13»I) = - D(6>I> ** 2••* D'<5«I>. / DCTi-l) 
0(14*1) = D(13»I> * D(5»D + D{6rl3 * D (16» I) / D(7» I) 
D(15»I) = • - D(5fD * DC6»I) 
DO 20 J = 2» NR 
Y = ( J - 1 ) * DY 
• C(IrJ) = -1 * D(5rD'* D(6»l) O f 

20 H(I»J> = D(6»I) / Y 
CALL ONEOIM(XOffDELZ»DELY) 
DO 30 I = 2»NX 
HX(IrlMR) = U(IfNR) 

30 V(I»NR> = HX(I»NR> * O(lOtl') ' 
DO t*0 I = 2»NX 
DO t*0 J = 1»NR 
Y = (J-l) * DY 
HXCIrJ) = HX(IfNR) 
V(I»J> = V(I»NR? * Y 
U(I»J) = SQRT ( HX(I»J)**> - V(I».J>**2'T ' 
THA(IrJ) = ATANC V (I»J)/U (I ».J> ) -*CONV 

«f0 R(I rj>'= (1/ CGAMMA-1) > >ALOG (1-t (HX M r J) **'2>*CGAMMA-1) ) 
1 Y(2*GAMMA)) 
AGLIN = AGLIN * CONV ' 
AGLOUT = AGLOUT * CONV 
WRITE (10) NX»NR#XQrRC*RTrAGLXNiA6L0UTrD^ 
END FILE 10 
REWIND 10 
STOP 
END 

FUNCTION FDERIV(K) 
C0MM0N/BLK5/0MACHQ5Q) 
DOUBLE PRECISION FDERIVrOMACK 
FDERIV = (0.83333 + 0.16667*0MACN([K)**2) **2 -
1 (0.83333 + 0.16667*OMACH(K)**e)**5 / 0MACH(K)**2 
RETURN ." 
END: 



SUBROUTINE ONEDIMtXO»DELZ»DELYi 
DOUBLE PRECISION AREA*X»DELZ*DELY*XOfYN1»Z»AMACH 
C0MM0N/BLK7/U ( 51» 51) »R (51»51) • •.. 
C0MM0N/BLK6/YNH51) 
N = l.O/DELZ 
J = l .O /DELY 

. .; N = N • 1 /••••••.• 

J = J • 1 
DO 20 I = 2»N»1 
Z = ( I - 1)*DELZ 
X = ( -X0/2. )*DL0G<( 1 . + DEXP(-2«/XO) - Z) / Z) 
AREA = Y N 1 ( I ) * * 2 
CALL XMACHCAREAi-X^AMACH) 
U(1»I) = (1.18322*AMACH) V DSQRT-C • 1.. • 0.2*AMACH**2) 

20 R(lrl) = -DLOSCd. + 0.2*AMACH**2> **2.5) 
DO 40 L =" 2»N»1 
DO 40 K = 1»J»1 
U(L»K) = U(1#L) 

40 R(L»K) = R(1»L) 
DO 50 K = 1»J 
U(1»K) =0.0 
R(1»K> =- 0.0 ..-.'".'• . 

50 CONTINUE 
RETURN 
END 

SUBROUTINE'XMACHiAREArX?AMACH) ! 
COMM0N/BLK5/OMACH(150) j 
DOUBLE PRECISION FDERIV*AMACH»OMACH»F»X»AREA 
IF(X)100»100»105 ! 

100 OMACH(l) =0.01 | 
IF ( AREA .GE. 55) OMACH(l) = ll.OD-3 
GO TO 110 | 

105 OMACH(l)..-=• 3.0 
110 K = 1 
120 IF(K - 74)130»130»140 
130 OMACHCK + 1) = OMACH(K) «F(K»AREiU / FDERIV(K) 

IF(DA3S(0MACH(K+1) - OMACH(K) ) LLE«, O.OOOOOODGO TO 140 
K = K f 1 
GO TO 120 

140 AMACH = OMACHU + D 
RETURN 
END. 
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MAIN PROGRAM 

INPUT DATA CARDS: 
(1) FC 
(2) NE 
(3) NSK 

INPUT FILE: UNITS lo»li 
OUTPUT FILE: UNIT :LO 

OPTIONS: 

(REAL) 
(INTEGER) 
(INTRGER) 

(GENERAL) 
(OPTION J) 
(OPTION P) 

BATCH CHECK OPTION K ( ICK = 1 ) 
BATCH INITIAL CONDITIONS OPTION I ( II = 1 ) 
BATCH R U N •: .•• OPTION B ( IBR = 1 ) 
START OPTION S ( ICS = 1 ) 
RUN NE TIME STEPS OPTION J ( U N = 1 ) 
BATCH PRINT ALL EVERY NSK OPTION P ( ISP = 1 ) 
BATCH BRIEF LIST OPTION C ( BRIEF ) 
BATCH LONG LIST OPTION L ( LONG ) 
BATCH LONG FINAL LIST OPTION F ( FINAL ) 

REAL LrM 
DATA QR r GU>QVr QTHA » QHX» QM , QP/ • R • » • U'f r • V • t 

• •THA»r •HX'» r»M« r • P..» / 

LOGICAL NDPTr OPr BRIEF» FINAL* LONG 

DIMENSION C(51r51)r H(51r51)» S(2»51l» 
+ UX(51.'51>' VI(5l»51)p RX (-51*51) r< HXK51) 

COMMON /3LK1/ R(51»51)r U(51»51)r V(51r51)» THA(51»51)» 
+ '-HX(51r51>» M(51»51)» P(51r51)r GAMMA 
COMMON /BLK2/ RTr D<16»51)r NF»LOT# DY 
COMMON /3LK3/ NXr NR ;• j;.-:! 
COMMON /BLK1/ Nr Ir J 

DTT(XrY»ZrR)=(X-Y)/(DEMN*(Z+GAMMA*EXP((GAMMA^l)*R))) 
• • " ' ' . • ' . • . • . • ' • . . ' . . " • ' , - . . • : ' ' ' , ' . ' • ! , 

1 F0RMAT(lHl»lXrlHlr7XrlH2r7XrlH3r6XrlKtfr6XrlH5r8^rlH&r8X/ 
1 lH7r9Xr lHaraXrlH9#8Xr2Hl0»7Xr2Hll»7x»2Hl;2j»7Xr;2H13r6Xr2Hl^V 
2 //2XrlHIr7X»lHXr7X»lHZr5Xr2HrNr6X»5HDYNDXjr6XrlHDr8XrlHK>8X;» 
3 3HPHI r6X»3HPHlrHXf8HSlN(PHIIrlXr3HC0S(PHl!) »:3X»3HD.KZ»6X"»t-.^U"; 
U 3HDDZr5X»5HDCZDY) 

2 F O R M A T Q H A 1 X » F3. 0 rF10.5»F6.2r FB.^f FlQ.Sr 2F9.5rF10.5rF9.3»;; 
1 F10.5»F8.<fr3F9,5) 

3 FORMAT (lXr«N =«rIi+r3Xr»I =»rI3r3X»»J r'rlSrSXr'TFQ = » » m ) 
'•'«• FORMAT •(•-•' NS=1'flUr» NE=«PI«*) 
000 FORMAT(///v MINIMUM DTJ N =«»I«*) 
001 F0RMAT(lXrA3r • ( «r12r»r•rI2r•) =»rF8oC|D 
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1002 F O R M A T ! » D T = •PF8,«»> 
1005 FORMATC N =»rI5r« I LOOK = l'» 
1006 FORMAT() 
1007 FORMAT!' HOW MANY TIME STEPS ?•> 
1008 FORMAT!' STOP = 1«> 
1009 FORMAT!5X»'IS THE PILOT SWITCH OFF ?•) 
1010 FORMAT!• ENTER 1 FOR A LOOK AT THE INITIAL CONDITTONSr N ^ V I S ) 
1011 FORMAT(lH.lplOXr»l"»8X#»15»»llX»»16»//llX»«I'»7X> 

a»DCY.'»9X»f02YNDX»./) • 
1012 FORMAT (9X»F3.0 »5XPF6.if »7X»F6.^/> 
1013 FORMAT(» F C = r») 
1014- FORMAT!' FC = ? NO CHG. = NEG.«> 
1016 FORMATS DT PRINT = IT) 
1017 FORMAT!• TIME = »elPE10.«O 
1018 FORMATS SAVE IT ? ENTER I'D 
1019 FORMAT! • N=» fIH» • DT=» »1PE9.3* • RTM=« t lPE9*3t » 0TSD2= •#1PE9«3> 
1020 FORMAT!' FC = » »1PE9'.3» • NEs,#I«*-»» M S K = » r m ) 
1021 F0RMAT!lXrA3*9(3Xi>lPE9.3)) 
102<f FORMAT ( / / • N = r » l 4 f 2X» I2» • t«» I 2 ' 8 ( 7 X » I 2 P • r »> 12 ) »«+X» «RTM=»>1PE9.3> 
1025 FORMAT!* NX= • f I2«-» NR= »»I2f.» X0= »«>F4 .1 / 

. • • RT= •• »F5»2» •• RC= • » F 5 . 2 / 
.•.•.••••"••'•• AGLIN= *rF6.2»» AGLOUT= •»F6.2> 
1026 F0RMAT(1H1///3X»'STRETCHIwG PARAMETER =»tF7.2/3Xt 

••ENTRANCE ANGLE =»fF7.2/3x»«EXIT.ANGLE =»»F7.2/3X» 
•'••'THROAT CONTOUR PARAMETER =• rF6*3/3Xr • GRID SIZE : f*I3# 
•M X»»I3/3X>»TIME STEP «»#I5»/////) 

1027 F0RMAT(///3Xr »J =;» »13//) 
1028 FORMAT («fX» »I•»10X» *R» * 15X» • U'»*15X» »V' * l*fX# 'THA* r m x ^ * H X f » 

+lfX>'M,»15X»'P»/) 
1029 F0RMAT(3XrI2»lP7El6.5) -

c • • . ' • . . - . • • • • 

c . 
IF ( OP('K») ) ICK = 1 
IF ( OP(•I' • ) ) II = 1 
IF ( OP!•B t) ) 13 R = 1 
IF I OP!»S*> ) ICS « 1 
IF ( OP!VJ») ) UN = 1 
IF ( OP!»P») ) ISP := 1 
IF ( OP(»C f) ) BRIEF — •TRUE. 
IF ( OP!'LM ) LONG = « TRUE. 
IF I OP!»F») ) FINAL — .TRUE. 

V. 

C CONSTANTS 
C 

GAMMA'= m 
DEMN = SQRT(8.) 

C 
C READ VISCOSITY PARARMETER 

IF ( IBR .NE. 1 ) PRINT 1013 
READ !5#1Q06) FC 

c 
C START OPTION 
C 

IF ( ICS .NE. 1 ) GO TO 10 

jT\ -A 



READUO); LNXfNR»XOfRC»RTrA6LlNr-AGLOUTrD» Cr H. R» U» Vr THAf HX 
REWIND 10 

• N = 0 
DY = l./CNR-l) 
DTM =10,0 
DO 8 J : 2rNR 
DO 8 I = 2»NX 
DTX•= DTT(D(2fI) »D<2<> 1-1) »U( I» J) »R(I » J> ) 
Y = (J-l) * DY * D (** p-1 > 
YM = (J-2) * DY * D(H»I) 
DTY = DTT'(YfYM-»V-(IrJ)rR(I#J)) 
DTS = AMINKDTXrDTY) 
IF ( DTS .GT. DTM ) GO TO 8 
DTM - DTS 
IMX = 1 
JMX = J 

8 CONTINUE 
DT = 0#98 * DTM 
TT = »DTM» 
WRITE (6*1001) TTrXMX«'JM'X>DTM 
WRITE (6tl002) DT 

9 CONTINUE 
NSKCTR = 0 
RTM = 0'«0' 
GO TO 11 

CONTINUATION OPTION 
10 READ (10) NX»NR»X0tRC»RTi»A6LlNrAGLOUT>D»C»H 

READ (11) N»DTfRTMiR*U»V»THA*HX 
REWIND 10 
REWIND 11 
NSKCTR = 0 

CONSTANTS 
11 DZ = l./(NX — 1 ) 

DY = l./(NR-l> 
NT = NX -•- 1 
NTJ = NR - 1 
GGMO•=• GAMMA - 1 
TZ = 2 * DZ 
TY = 2 * DY 
DZ2 = DZ ** 2 
DY2 = DY ** 2 
F Y Z . =•«*• •* D Y * D Z ' :y:-Hm 

" TYZ = 2 * DY * DZ 
DYZ2 = TY * DZ 3•'•̂ ••V; 
•RC = R C * R T • .' ' ••• ."iif"-"':.-
WRITE 16»1025) NX» NRt X0P RT» RC» A G L I N P AGLOUT 
RC •'= RC/RT -^J?" 
IF ( ICK .EQ. 1 ) 

+CALL CHECK(»GGMOftGGMOr»TZ »rTZ I'IY »#TY r«0Z2 f»DZ2 f 
''• »DY2 »>DY2 »«FYZ «»FYZ t I ) 



: .' u = :((Nx-i)*3)/Jcll » ••< • ; ." *"'" ̂ J W 
12 = ' U N X - 1 ) * 7 ) / 1 0 , 
1 3 = NX-JL . •• « , ". , ' * • ' , > i -f 
J l = 1 ' . ''• , 
J2 = (NR-1 '1 /2 
J 3 ••= NR 

C 
C READ TIME STEPS PER RUN 

I F ( U N .EQ. 1 ) READ(5#1006) NE 

c 
C READ OUTPUT SPACING 

IF (ISP .EQ. 1 ) REAb(5#l006J NSK 
IF ( IBR .NE. 1 ) GO TO 20 
WRITE (6P 1020) FC#NiE*NSK 

C 
C PRINT INITIAL CONDITIONS (BATCH OPTION) 
C ' 

IF ( II «NE. 1 ) GO TO 20 
C •• 

WRITE (6»1) 
DO 12 I = 2»NX 
WRITE (6P2> (D(JrI)»J=l»ltf) 

12 CONTINUE 
WRITE (6*1011). 
DO 13 I = 2rNX 

•.:'.•• WRITE .(6rl012) D(l»I>»D(15»I>»D(16»I) 
13 CONTINUE 

CALL TABLES(C.f'Nrlf'CM 
CALL TABLES(HrNr2#»HM 
CALL TABLESCR»Nr3r»RM 
CALL TA3LES(U»N»4r!U«) I r1 

CALL TA3LE5(VrNr5»»Vf) 
CALL' TABLES(THArNr^f^-THA'r) 
CALL T.ABLES(HX»N»7»,'HX*>. 
GO TO 1022 

C ' • . ; > ! : , • ' 

C PRINT INITIAL CONDITIONS (DEMAND* : 
C : • •• • ; : . •• : \ : ] : :. 

20 IF ( IBR .EQ. 1 ) GO TO 23 
PRINT lOlOr N 
READ 1006* INITCN 
NSV = 1 
IF ( INITCN .NE. 1 ) GO TO «*05 

1022 DO 22 J = 1»NR 
DO 22 I = 1>NX 
P(I#J) .= EXP(GAMMA*R(I»J) ) 
M ( I » J ) = HX( I»J) /SQRT(GAMMA*EXP(GGMO*R(I#J>>) 

22 CONTINUE 
C 
C PRINT P AND M (BATCH) 
C 

IF ( IBR . N E . 1 ) GO TO 1 0 2 3 
CALL TABLES ( M r N r B t ' M M 
CALL TABLES ( P # N r 9 r » P M 
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GO TO 23 
. L023 NPLTN = 1 

GO TO »*05 

c 
£ * * * * * * * * * * * * * * * * * * * * * * * * * 

c 
23 NS = N • 1 

I F ( U N .EQ. 1 >. .NE 
I F ( U N • NE. 1 ) NE 
I F ( ICK • EQ. 1 • ) CA 

PROPERTY COMPUTATIONS ********************* 

N + NE 
NS 

CALL Ctt£CK(.»RTMf »RYMr •pr'•DTr•NT~•WFLOAT<NT)»• 
'•+,N,»FLOAT<N> » »NS« M-LOAT (NS) *. ,,NE» #FLOAT(NE> »1> 
2«* NSV = 0 

DTM = 1.0 
25 DO 100 N = NS»NE 

DTM = 1.0 
RTM =• RTM + DT 
YTT = DY * DT 
DTSD2 = DT ** 2 / 2 
IF ( ICK .EQ. I •) WRITE (6»1019) - N*DT»RTM»'DT'SD2 

C 
C RETAIN NORMAL VELOCITY AT NR-1 
C . - • • ' . . . .. 

J = NR 
DO 29 I = 2>NX 
S(lrl) = U(I»J-1J * D(10»I) - 'V(I»J'-i) .* D(11»I) 

29 CONTINUE 
c 
c 
c 
c 

c 

c 

c 

INTERIOR ".. * * * * * * * * * * * * * * * , , • ; • > . . . ' . . - • 

c 
c 
c 
c 

c 

c 

c 

DO 50 J = 2»NTJ 
Y = ( J - - 1 ) * DY 
YSO = Y * * 2 
DO 40 I - 2»NT 

• • . - . : ' '• ; :"-:• ." \ ; ; j IS 

c 
c 
c 
c 

c 

c 

c 

A = U ( I » J ) * C ( I » J ) + V ( I » J ) 
B = U M i J ) * D ( 7 » I ) 
G = GAMMA * EXP < GGMO * R ( I 
E = D ( 6 » I ) * G 
F = C ( I r J ) * G 
L = D ( 7 » l ) * G 

;* t)W^I> j 

>J) -l I: 

. = • * : . ; v •• 

c 
c 
c 
c 

c 

c 

c 

I F ( ICK .EQ. 1 ) 
+CALL CHECK('A •»A »»B 
• » F r ' F •» ' ,L 

• »B t " G 
»#L t 3 

•»G 
) 

DRZ = ( R C I + l r J ) » R ( I - l f j ) 
DUZ = I U f l + l r J ) - U ( I - l r j ) 
DVZ - (• V ( I + ' 1 » J ) " - V ( . I - l f J : ) 
DRY •= . ( R ( I r J + l ) - R ( I r J - l ) 
DUY = ( U ( I f J + l ) - . U ( I » J - 1 ) : 
DVY• - ( V:( I» 'J+1) - V < I » J - 1 ) 

) • • • / T Z 

).• / TZ 
) / TZ 
) / TY 
) .'/• TY 
) / TY 

. • ' • • : : . 

»E 

IF ( ICK .EQ. 1 ) 
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•CALL CHECK(•DRZ • r'DRZ ••••DUZ. »»DUZ f"*QVZ ' * D V Z • •DRY ' i D R Y r 
• •'••.. «DUY «*DUY • •DVY ' »OVY » ^ } 

GGMG = G6M0 > G . 

DRT = - B * DRZ.'- A * DRY - D(7»I) * DUZ;- CClrJ)• "* DUY 
1 - D(6»I> * DVY - H<I»J) * V(IPJ) 

DUT = - B * DUZ - A * DUY - L * DRZ - -F ' • DRY 

DVT = - 3 "* DVZ - A * DVY - E * DRY 

ORZZ 

DUZZ 

R ( i + i » j ) -
U(I+1»J) -

R(IfJ) 
U(I»J) 

+ R(.I-I»"J-I 

+ U(I-ltJI. 

DZ2 
DZ2 

IF ( 

•CALL 

DVZZ 
DRYZ 
DUYZ 
DVYZ 
DRYY 
DUYY 
IF ( 

•CALL 
+ 
DVYY 
DHZ : 
DCZ = 
DAZ = 

ICK . E Q . 1 J 
CHECK(»GGMG*rGGMG»,DRT »fDRT »«DUT eoQLJT 

•DRZZ«»DRZZ» »DUZZ» »DUZZr 5 ) 
V ( I + 1 » J ) - 2 . .* V ( I » J ) + V ( I - 1 » J > 

'•-. R U + 1»J»1) 
' - U ( I + 1 » J » 1 ) 
- V ( I + i » J - l ) 
2 * R ( I f J ) + 
2 * U ( I » J > «• 

= ( 
= • ( 

= : " ( • 

= '••• ( 

= ' . ( • 

= ( 
ICK 

R ( I + 1 » J + 1 > 
U ( I + 1 » J + 1 ) 
V ( I + 1 » J + 1 ) 
R C I » J + l ) -
U ( I » J + 1 ) -

EQ. 1 ) 

• I - " / 

- R(I-1#.J+D-
- U ( I - l t J * l ) 

: - V ( I - i » J + l > 
R U r J - l - l 1 /'• 
U ( I r J - i ) J / 

t 'DVT 'rDVT » 

OZ2" - ' \ - ;^v ' -V :••* ' 
•• R t l - l f J - D ) / FYZ 
+ U ( l - l r J - D ) / FYZ 
• V ( I - l f J - l ) > / FYZ 
0Y2 
DY2 

I / 0Y2 

DBZ 
DGZ 
IF 

CHECK ('• DVZZ» r DVZZ» • DRYZ• »DRYZ» •DUYZ• PDUYZ* •DVYZ* rDVYZ* 
•DRYY»»DRYY» «DlJYY»»DUYY» 6 ) 

=... ( V ( I r J + l ) - .-2 * V ( I » J ) *• V(T# J - i r 
D ( 1 3 » I ) / Y 
D l l t f I ) * Y 
U ( I » J ) * DCZ '*Sk%t\*M':.&'•$&'•• 

* DVZ\^J,$ ;.i!;!i|;::;l;:,,; 
* D( i2 j ! H\S* l lD?f i l ! taOD# 
DRZ 

1 ) 
l*i>lE)HZ' 

•DBZ UDBZ•<•**$$£:f-tMZ-
6 ( 1 3 » I ) . • • D(6VlJ? * DGZ 
DCZ + C(I»j).v-*:^D!S]Z.:rf i4^': 

' D « 6 » I ) 
: U Q f J ) 
: GGMG * 
ICK «EQ. 

it 

+C ALL CHEC K ( • D V Y Y • »DVf if-#!'D/lpZ; 
+ """ """ll 

G 
G 

* V ( I i 'Jf ; . ' # • • D f I 3 * I ) 

buz' " < ; ; • . . - ' ' ^:'V-'\:i 

i»i*nc'z 
V 7 •;] * 

! ' . • •• " 

DCZ If 'pAZ • f D A Z • 

G * D ( 1 2 » I ) + i D C 7 V I f 
. - ' D ( 6 » I ) ' / YSQ 'j:;j-' •,:-:v-|:iî J 

m-M 

DEZ 
DFZ 
DLZ 
DHY 
DAY = UCI»J ) * D(15<Kfit 
DBY - D ( 7 r l ) * DUY ! f| 
I F ( ICK . E Q . 1 ) ;;] 

•CALL CHECK<»DEZ •• »DEZf! •! 
+ ''..'• •• »DAY »»DA:Yfl» 
DGY = GGMG * DRY 
DEY = DC6»I) * DGY M 
DFY = G * D(15#I) +i 
DLY = D(7»I) * DGY 
DAT = C(Ii J J * DUT -.* 
D3T = D(7»IJ * DUT 
IF ( ICK .EQ. 1 ) 

+CALL CHECK(•DGY •»DGY 

+ "DAT «»DAT 
DGT = GGMG * DRT 

:*ii;QBZ. 

liliM^PP 
|ii!: li.i ii fit 
m , •: 

^«!'fD!BY 

*'BjP •DLZ «PDLZ 
8 . ) : • • - • . . • • 

»^DHY •rDHY» 

M\ »J•) * DGY 

D(6»I) * DVT 

'DEY 
1D3T 

•rDEY 
•»DBT 

•DFY •fDFY 
— 9 • ) • :;:.;:'^ 

••DLY >>DLY » 



DET : 
DFT : 
DLT : 
DRTZ 

DRTY 

IF ( 
+CALL 
+ 
D.UTZ 

: D(6»X) * DGT 
: C(I»J) '• DGT 
: D(7»I) * DGT 
= - B * DRZZ,- DBZ * DRZ - A 
- D(7»I) * DUZZ - D(12»I) * 
- DCZ * DUY -• D(6»IJ * DVYZ 
- V<I»J> * DHZ 

= - B * DRYZ - DBY * D R 2 - A 
- D(7»I) * DUYZ - C(I»J) * DUYY - D(15»D * DUY 
- D(6»I) * DVYY - H(I>J) * DVY - V<I»J> * DHY 

ICK .EQ. 1 ) 
CHECK(«DGT ' »D.GT t•GET'- »»DET r»OFT *»DFT »»DLT »»DLT * 

*DRTZ»rDRTZ»,DRTY«»DRTY» 10 ) 
* DUZZ - DBZ * DUZ - A * 

•DRYZ - DAZ * DRY 
DUZ - C M'»-J) * DUYZ 
- 0(13*1") * DVY - H(I»J),*.QVZ 

* DRYY - DAY * DRY 

DUTY = -

DVTZ = -

DVTY 

DRTT 

IF ( 
+CALL 
+ 
DVTT 

DRZZ 
DUYZ 
DRYZ 
DVZZ 
DRYZ 
DVYZ 

DUYZ 
DRYZ 
DUYY 
DRYY 
DVYZ 

DAZ * DUY 
DFZ * DRY 
DAY * DUY 
DFY * DRY 
DAZ * DVY 

* DRZZ - DLZ * DRZ - F * 
* DUYZ..- D3Y * DUZ - A * 
* DRYZ •- DLY '•*•• DRZ - F * 
* DVZZ -DBZ •*• DVZ - A * 
* 
*. 

DAY 
B * DRTZ -• DBT * DRZ - A * DRTY - DAT * DRY 

- D(7»I) * DUTZ - C(I»J) * 
- H(I»J) * DVT 

DUTT = - B * DUTZ - DBT * DUZ - A 
- L * DRTZ » DLT * DRZ - F 

ICK .EQ. 1 ) 
CHECK (• DUTZ* # DUTZ»»DUTY »»DUTY» •DVTZ*»DVTZ»•DVTY*»DVTY* 

.•DRTT•»DRTT*•DUTt'fBUTTt 11 ) 
- - B * DVTZ - DBT * DVZ - A * 

- DAT * DVYv- E * DRTY - DET 

A * DVYY 
DEY * DRY 

* DRTY - DAT * 
DUTY - D(6#I) * DVTY 

* DUTY - DAT * DUY 
* DRTY - DFT * DRY 

RI(I» 
UKIr 
VI (I» 
IF ( 

+CALL 
+ 

HO CONTI 
50 CONTI 

J) = R(I»J) ••'+ DT * DRT + DTSD2 
J) = U(I»J) + DT * OUT + DTSD2 
J) = V(I»J) + DT * DVT + DTSD2 
ICK .EQ. 1 ) 
CHECK(•DVTT•»DVTT»«R 

DVTY 
* DRY 
* DRTT 
*• DUTT 
* DVTT 

•*R(I'rJ;) »»U»#U(I»J) t »V»»V(I»J)t 
•Y 

NUE 
NUE 

CENTERLINE 

J = 1 
DO 51 I = 
RI(I»J> = 
UI(I»J) = 
VI(I»J) = 

51 CONTINUE 

WALL 

J = NR 

• r Y »»YSQ•.•••.»Y5Q • 12 ) 

* * * # * * * * * 

2#NT 
( 4 * 
( <+ * 
0.0 

R'HLi j+l)< 
U I ( I » J H ) 

R K I P J * 2 ) 
U I ( I » J + 2 ) 

* * * * * * • # * * 

COMPUTE NORMAL VELOCITY FnR NEW TIME AT NR-1 
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DO 55 I = 2»NX 
S(2.rl) = U(IfJ-l) •'* D(10»X)- - VtI»J-U * D(li»U 

55 CONTINUE 

DO 60 I = 2»NT 

DRZ = •( R(I+1»JJ - RCl-lrj) ) / TZ 
DNZ = ( HX(I+lrJ) - HX(I-1»JJ ) / T2 
DSY = ^ S(lrl) / DY 
G = GAMMA * EXP ( GGMO * RtlVJJ ) 
GGMG '=•GGMO * G 
DRZZ = ( RCI+irJ) - 2 * R (I»J) + R(I-IPJ) ) / DZ2 
IF (ICK .EQ. 1) CALL CHECK(*DRZ»tDRZ»"DNZ*»DNZ»»DSY»»DSY» 

+'G«»Gi«GGMG'rGGMG»»DRZZ*»DRZZ»13) 
DNZZ = < HX(I+1»J) " 2 * HX(IffJ) + HXd~l»J> ) / DZ2 
DSYZ = ( S(lrl-l) — 5(lr[+l) ) / TYZ 
DGZ = GGMG * DRZ 
DRT =- ( D(6rl) / DClld) ) * DSY - D(lOrl) * HX(I#J) * H(IrJ) 

- D(7rl) * D(11»D * ( HX(IrJ) .* DRZ * DNZ ) 
DST •= GGMG * DRT 
DHZ = D(13»I) 
IF (•• ICK .EQ. 1 ) CALL CHECK dDNZZ'»DNZZ» •DSYZt »DSYZ» 

+ ,DGZ»»DGZ»»DRT» rDRT«- »DGT» ,DGTi> »DHZ« »DHZ» 1U) 
DNT = •- D(7»I) * D(11»I) * ( H'X(-I»J) * DNZ + G * DRZ ) 
DRTZ = ( i / EHll'I)' ) * ( D(6»I) * DSYZ + D(l3d) * DSY > 
• - D(10»I) * ( HX(lVj) * DHZ + H(I»J) * DNZ > 
. - D(11VI) *.:'(• ( HXdVJJ * DRZZ + ONZ * DRZ • DNZZ ) * D<7»I) 
. + D(12»I» * ( HX(IrJ) * DRZ + DNZ ) ) 
DNTZ = - DClld) * C 0'<7>I) * ( HX(IrJ) * DNZZ + DNZ ** 2 
. . + G * DRZZ•+ DGZ * DRZ ) + Dd2*I) * ( HX(I»J) 
. * DNZ • G * DRZ ) ) 
DSTY = ( SU»I) » S(2rl) ) / YTT 
DRTT = D(6rl) * DSTY / DUlfl) - DdO»I> * H(I»J) * DNT - D<7»I) * 

D(11»I) *•( .HX(I'rJ) ••* DRTZ + DNT * DRZ + DNTZ > 
DNTT •=.- D(7rl) * D(llrl) * { HXdfJ) * DNTZ + DNT * DNZ 

+ G * DRTZ + DGT * DRZ ) 
IF ( ICK .EQ. 1) CALL CHECK (»DNT,»DNT»'DRTZ,*DRTZ;»! 

+»DNfZ»»DNTZr•DSTY'^DSTYr•DRTT"»DRTT»»DNTT»»DNTTrl5)j 
Rid »J') = R(I»J) + DT * DRT + DTSD2 * DRTT • 
HXKI) = HX(KJ) + DT * DNT :-+ DTSD2 •* DNTT 
Ul(IrJ) = HXICI) * D(llrl) 
V K I r J ) = H X K I ) * D ( 1 0 » ' D 

60 CONTINUE 
/.'SUPERSONIC BOUNDARY/ 

. I = NX- • 
DO 70 J = 1»NR 
R K K J ) = 2 * R ( N X - - l r J ) - R (NX-2»J ) I I 
U I ( I » J ) = 2 * U ( N X - - l r J ) - U ( N X - 2 r J ) 
V K I r J ) •. = • 2 * V(NX»1»J) - V ( N X - 2 r J ) 

70 CONTINUE 



74 

DO 75 I = 1»NX 
DO 7 5 J =• 1»NR 
R ( I » J ) = R I ( I » J ) 
U ( I » J ) = U I ( I » J ) 
V ( I » J ) = V I ( I » J ) 

75 CONTINUE 
C 

c 
C MINIMUM DT SEARCH 
C . • • ' : ' ' • . • . • • " ' • • • . • . • • • ' • , • : . 

DO 90 J = 2»NR 
DO 80 I '=. 2»NX 
DTX = DTI ( D(2»I>» D(2»I-1)> U d r j l ^ Rfl>jl ) 
Y = (J-l>*DY*DUeI) 
YM = (J-2)*DY*DU»I) 
DTY = DTT(Y»YM»V(I»J) rR(I» J) I.;--... • 
DTS = AMINKDTXrDTY) 
IF ( DTS .GT. DTM ) GO TO 80 
DTM = DTS 

• ••• I M X :•=•• I 
JMX = J 

\ '\1F ( ICK .EQ. 1 > CALL CHECK I »DTW*..*'DTM> •DTY*»DTY» «DTX«rOTX» 
1'DTS'rDTSf°Y»rY». •YM f»YMr92>' Q*** CHECK 9 2 **** 

80 CONTINUE 
90 CONTINUE 

C 
C COMPUTE THA»HX»MSP FOR FC=0,0 
C • •• . : 

81 IF ( FC .GT. X.OE-3 > GO TO 335 
DO 331 I = IrNX 

••• • • DO 331 J = 1#NR . . '; '\\ ['$*•"'.: • 
331 CALL ANGLE : N !i; i 

9 GO' TO .551 ,-;;i i' !!-
C .-. [ , | \ 
C ARTIFICIAL VISCOSITY ******<MMt*J 
C 

335 DO 500 J•.= i»NR 
• DO 500 I •= 2»NX •..•.ilHi-M.i----' •>' 

UTM = A9S(• U ( I i J ) . - U ( I - l r J ) ):•••••• / 
R K I r J ) = UTM * ( R ( I i J ) -• • •RCi- l tJ l - l - . ' : ' : • • ' - . ..f.,,..;! .,.„...,.„.. 
U I U » J > = UTM'*-< .udr j ) v:uci-i»jj-J---v-;•:;.:ir-si^i--'''t:"'f,*:' V l U f J ) = UTM--.* • ( . V ( I » J > — V ( I - l r J ) I. : 'v M'" « # K ' : 

IF ( ICK .EQ. 1) CALL CHECK<•RIT»Ri:(T*iJ.TP-r ^^i||iftoM» JVr 
R • VI « » VI ( I r J) » • R••• i R (I r J) t • UTM* » UTM t * V" » V itk J f | 13) B*** CHECK 1 3 ;*•*•• 

500 CONTINUE 
DO 515 J = 1»NR 
DO 510 I = 2»NT 
Y ..= <J-1)*DY 
FF = FC*<i-D(3rI)>*Y f 
R(I»J) = R(I»J) + FF * ( RltI+l,J> - Rl(IrJ»4) 
U U » J > = u i i f j ) + FF * ( U I < I + I » J > •— u n i M i j ) 
V ( I r J ) = V ( I r J ) •-+ FF * ( V l M + l r j ) •';.:- V X C I r j f j ) 
I F ( ICK .EQ. 1 ) CALL CHECK ( M ^ » R £ E * J l r « l ! l ^ » U ( T f U > » 

& » V» r V ( I t J l# *R I • rR I ( I r J) r »Ul VrU IC I r j > # " V I • *¥l i It J ) »!**) Q***CHECK I * 
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510 CONTINUE '# *«!« *•* k'-: "•;•/ ••* i^'$'& lit 
R(NXrJ) = 2 •••• R<NX-1»J> » RlNX-2»J) 
U(NXrJ) - 2 * U<NX-1VJ> -• U(NX-2»jJ* v » i ;''! 

• • V(NXrJ) = 2 */VCNX"%VjT'- V<NX-*2V^ 
IF ( I C K .EQ. 1.) CALL CHECK t fR»»R{I*J)*•U«>U<I»J)r 

&»V» rVQr J) r »FF» rFFV^|M%fUTM^NX^*J?L^^ (3*** CHECK 15 **• 
515 CONTINUE. " •••*•<•-.» *,: ., .•.•,•«•.•..» ,• 
.. DO 525 I = 2»NX 

DO 520 J = 2»NR 
UTM = A3S( V ( I » J ) - V ( I r J - l ) J 
R K I r J ) = UTM * ( R ( I r J ) • - R ( I r J - l ) > 
U K I f J ) " U T M * C UCI»J ) - U ( I r J - l ) J 

. 'vrc. i ' j ) = UTM * ( v d r j ) - v(i»j-i)•• ' .)• 
.•••'•. I F . ' ( ICK .EQ. 1 > CALL CHECK ( » R I * * R I ( 11 J ) > • U I * r U I ( I » J ) v 

&•VI» r V I ( I r J ) t » UTM* * UTM r•R » tR(I r J ) * • V» r V C I * J * » 1 6 ) 0 * * * CHECK 1 6 * * 
520 CONTINUE 

R l ( l V l ) = ( 4 * R l ( I r 2 ) - R I ( I r 3 ) ) / 3 
UTU»1) = < 4 * U l ( l V 2 ) - U I ( I r 3 ) > / 3 

• • • . • • ' • - v i ( i » i ) = 0 . 0 • • • " • • • 

525 CONTINUE 
DO 535 I = 2»NT 
DO 530 J •=. 2rNTJ 
Y = <J-1)*DY 
FF = FC*(1-D<3>I)>*Y 
R ( I r J ) r . R ( I r J ) + FF * ( R l ( I r J * l I - R I ( 1 1 J l I 
U ( I » J ) = U ( I » J ) •+ FF * ( UTCltJHf-li) - I J I ( I » J > ) 
V ( I » J ) = V ( I » J ) + FF•.* ( v K l r J * i J - V K I f J ) I 
I F ( ICK .EQ. 1 ) CALL CHECK:' ( , : uR^R(iV'J)Vi lu^*.Wtl>.-JJL»..-, : ' • 

& « V » » V ( I » J ) r , R I « > R I ( I # J ) r V u I ' V U I C I ^ J ^ J ^ V l i r ^ l t i r J ) * ! ? ) 0 * * CHECK 17 
526 CONTINUE %k,'M : / -

530 
J ' • • = 1 

R ( I r J + l ) 1 - R C l r J + 2 ) > . / ' 3 
U( I .»J+1) I - Utir.J+2-:>. > ' / . .3 ' 

I F ( ICK .EQ. 1 J CALL CHECK ( * R f » R ( I » J ) » » U « r U < I *J>»*V»» 
fiV(I» J ) r^DTS* »DTSr ' I M X 1 rFL0ATClMX)ir»Jf4X" »FL0AT(JMX)>19) 3 * CHECK 1 9 

532 CONTINUE 

535 
I = NX 
DO 5H0 J -. = • I r N T J 

• R ( I - 2 » J ) 
• U ( l - 2 r J ) -
• V ( I - 2 P J ) 
CHECK ( * R»1 R i l r J i 9* \J* e U C I » J ) r»V4tf. 

S V ( l r J ) » r 'DTS* »DTSr» rMX<»FLDATClMXl* :^JMX«>FLOATl-JMX> j* iO'r- ; l i ;^-l^t.CK'-2b-
536 CONTINUE . 

-• CALL ANGLE. H' 
5 fO CONTINUE . • • • • ' •J j : 

J . = N R • . '•'!>' 

DO 550 I = 2>NT 
H X ( I » J ) = SQRT( U C I » J ) * * 2 •; V « I i > J ) * * 2 1 

CALL ANGLE 
CONTINUE 
J = 1 
R(I»J) =• (. H * 
U(I»J) = ( <+ * 
V(I»J) = 0 . 0 

CALL ANGLE 
CONTINUE 
I = NX 
DO 5H0 J -. = • 1 rNTJ 
R(IrJ) = 2 * R(I-1»J) 
U(IrJ')-•=• 2 * U(I-lrJ) 
V(I»J) = 2 * V(I-1»J) 
IF ( ICK .EQ • .1 •) CAL 



U M » J ) = H X ( I r J ) * DC11»I» 
V M » J ) = H X ( I r J ) *i?Di(10Ml'} 
CALL ANGLE » 

« * t i> . " M J W I ¥ 550 CONTINUE 
I = NX . * »* 

' H X M r J ) = 2 * ' H X ( I - l f J ) - H X M - 2 » J > 
U ( I » J ) = HX'CItJ) * D C l l » I J 
V ( I » J ) = HX M r J) * D M 0 H ) 
CALL ANGLE 

' . 1 = 1 ' . . 
DO 1550 J = 1»NR 
CALL ANGLE 

1550 CONTINUE 
C 

551 DT = 0.98*DTM 
C 
C PRINT DT (OPTION) 
C 

IF ( LONG ) 60 TO 556 
IF (BRIEF ) GO TO 390 
IF ( ISP .EQ. 1 ) GO TO 360 
I F ( I P R T . N E . 1 ) GO TO 350 

3«*0 WRITE ( 6 * 1 0 0 0 ) N 
TT = »DTM« 
WRITE (6*1001) TT#IMX»JMX#DTM 
WRITE (6*1002) DT 

C 
C OUTPUT 
c • ' . • . • • • . . . 

350 IF ( LONG ) GO TO 556 
IF ( IBR .NE. 1 ..) GO TO 390 
IF ( NDPT ) GO TO 380 

360 NSKCTR = NSKCTR + 1 
IF ( ISP .NE. 1 ) GO TO 370 
IF ( NSKCTR .NE. NSK ) GO TO 390 
NSKCTR = 0 .--

370 CONTINUE 
IF ( ISP .NE. 1 ) GO TO 380 
NDPT =•.TRUE. 
GO TO 340 

380 NDPT = .FALSE. 
CALL TABLES ( R» N# 16-r »R» ) 
CALL TABLES ( U» N»17r »U« ) 
CALL TABLES ( V» Nrl8> «V» ) 
CALL TABLES (HXVNrl9r«HX») 
CALL TABLES (THA»N»20r«THA') 
CALL TABLES (M»N»21#•M») 
CALL TABLES (PrN»22»°P«) 

e ,.. 
C LONG LIST OPTION 
C 

556 IF ( .NOT. LONG » GO TO 390 
IF ( ISP .NE. 1 ) GO TO 557 
NSKCTR = NSKCTR 4- 1 



IF ( NSKCTR .NE. NSK ) GO TO 390 
NSKCTR = 0 • 

557 CONTINUE 
WRITE (6»1026) X0»AGLIN»AGLOUTfRCfNX»NR»N 
DO 554 J = 1»NR 
WRITE (6»1027> J 

•• • WRITE (6»1028) ,^ ; ;..̂  •::?;*•.. •' ::,:•>- ;u 
DO 553 I = IrNX 

553 WRITE (6rl029) I > R CI t J) » U U * Jl» V (I r J) »THA( I»J) »HX (I» J) * 
+ M(I»J> »P(ItJ) 

554 CONTINUE 
GO TO 400 
BRIEF LIST OPTION 

390 I F ( .NOT. BRIEF ) GO TO 400 
WRITE ( 6 » 1 0 2 4 ) N » I l » J l » I 2 » J l > I 3 » J l f l l * J 2 » I 2 » J 2 » I 3 » J 2 f 

• I i » J 3 f 1 2 » J 3 » I 3 r:-J3»RTM 
WRITE ( 6 » 1 0 2 I ) GRr R ( I . l r . J l ) r R (12 f J I > » R (13? J I > » 

-• ' • • - . R ( I l r J 2 ) r R ( I 2 » J 2 ) i > R ( I 3 » J 2 ) » 
•:•' " f R ( I l t J 3 ) » ' RCl '2" tJ3)» ' R ( I 3 » J 3 ) 

WRITE ( 6 f f l 0 2 1 ) QU> U ( I l f J l ) . U ( I 2 r J l ) » U ( I 3 » J 1 > » 
• ' • ' • . • • ' • ' ' U ( I l » J 2 ) r U ( I 2 > J 2 ) » U ( I 3 » J 2 ) » 

• •',. U ( I 1 » J 3 > » . U( ' I2 '»J3)» U ( I 3 » J 3 ) 
WRITE 1 6 » 1 0 2 D QV* V d l ' t J D ' r V( I2<»J1)» V ( I 3 » J l ) r 

• -f ' V d l t J 2 ) » V ( I 2 » J 2 ) » V ( I 3 r J 2 ) » 
• • ' • : ' • ' V( I1»J3 )» • : V ( I 2 » J 3 ) » V ( I 3 » J 3 ) 

WRITE (6»1021> QTHA» T H A d l f J D r - T H A ( I 2 » J l ) » T H A ( I 3 » J l > » 
••: " . • ' . . • ' T H A C l l » J 2 ) » T H A ( I 2 » J 2 ) » T H A ( I 3 f J 2 > » 

• • • • ' . . T H M l l . » J 3 > * T H A ( I 2 » J 3 ) » T H A ( I 3 r J 3 ) 
WRITE ( 6 * 1 0 2 1 ) QHXr H X ( I 1 » J 1 ) » H X M 2 ( p J l ) . H X ( I 3 » J 1 ) » 

• • ' . ' + - • • ' ' • ' • ' . 
H X ( I 1 » J 2 ) » H X d 2 » J 2 ) » H X ( I 3 » J 2 ) » 

' • . • + • ' . H X ( l i » J 3 ) » H X d 2 » J 3 ) f H X ( I 3 » J 3 ) 
WRITE ( 6 » 1 0 2 1 ) QMt H ( I 1 » J 1 J » M ( I 2 f J l ) f M ( I 3 » J 1 ) » 

' • ' • • + • 
M ( I l » J 2 ) r ••M'(I .2»j2)» M d 3 » J 2 ) * 

• ' • . • ' . • M ( I l f J 3 ) » H ( I 2 » j 3 ) r (4 (13»J3) 
WRITE ( 6 r 1 0 2 1 ) QPf P d l r J D r p ( I 2 » J l ) » P ( I 3 » J 1 ) » 

' • • • P d l f J 2 ) » P d ' 2 » J 2 ) » P ( I 3 » J 2 ) » 
4 - • . " • < • P d l » J 3 ) » P d 2 » j 3 ) » P ( I 3 » J 3 ) 

400 CONTINUE 
N = NE 

DEMAND MODE ONLY 

IF ( IBR .EQ. 1 ) GO TO 421 
PRINT 1017»RTM 
PRINT 1005*N 
READ lOObfNPLTN 

405 IF ( NPLTN .EQ. 1 ) CALL PLOT 
PRINT 1008 
READ lU0o» NSTGO 
IF ( NSTGO .NE. 1 ) GO TO 410 
IF ( NPLOT .EQ. 1 •"•) PRINT 1009 



GO TO 420 
410 PRINT 1007- m ̂  »,« p t a ftu | M to 

READ 1006» NOSTPS7' ' J' '* l ? , s '' 
NS = N • 1 *J 

NE = NOSTPS + N 
PRINT 1014 
REAO 1006* CHGFF 
IF ( CHGFF .GE. 0.0 > FC = CHGFF 
IF ( IBR .NE. 1 ) PRINT 1016 
READ 1Q06»IPRT 
IF < NSV .EQ. 1 > GO TO 24 
GO TO 25 

C ' 
420 PRINT 1018 

READ 1Q06»NSVE 
IF ( NSVE .NE. 1 ) GO TO 422 

C 
C LONG FINAL LIST OPTION 
C 
421 IF ( .NOT. FINAL > 60 TO 425 

WRITE (6»1026) XO » AGLIN* AGL0UT»RONXf NRf N 
DO 424 J' = 1»NR 
WRITE <6>1027) J 
WRITE (6»1028) 
DO 423 I -- 1»NX 

423 WRITE C6fl029) I »RC I .• J) f U( I # J) * V( I»J) '»'T.HA <I ' J) » HX( It J) V 
+ MdtJ) rPCXVj)' 

424 CONTINUE 
C 
c . • • ' • • • • 

425 WRITE (11) N»DT»RTM*R»Ur\/pTHA»HX 
END FILE 11 
REWIND 11 

422 CONTINUE 
STOP 

•. END 

FUNCTION F(X»AREA) 
COMMON/BLK5/OMACH(150) 
DOUBLE PRECISION FVOMACHrAREA 
F = (0.83333 + 0.16667*OMACH(K)**2)**3 / OMACH(K) - AREA 
RETURN 
END 



SUBROUTINE PLOT 
-' 'REAL 'M -v. 

DIMENSION X(51)»Y(51> 
COMMON /BLK1/ R(51»51>r UC51»5i)» V|5l*51)-*" THA<51»511» 

• HX(51r51)f M < 5 1 P 5 I ) I PCJ>1»51)» GAMMA • 
COMMON /BLK2/ RTr D<16r51)» N P L O T V D Y " 
COMMON /BLK3/ NX» NR 
COMMON /BLK<*/ N» 1* J 

1 FORMAT*' CODE LIST = t»> 
1001 FORMAT(•/• PARAMETER CODES: •» 

+/• RADIAL: l/Rr 2/U» 3/V» •. «*/HX» ••• 5/THA# 6/P» 7/M»*7 
+2X» •AXIAL: 8/R» 9/Ur 10/Vr 11/HX* 12/THA t I3/Pr 1^/MM 

2 FORMAT ( I . 
3 FORMATC WHICH COLUMN ? M 
<+ F O R M A T ( / / / ' N = ' r I « + r U X » « I = * » I 3 / f ,J : f <'7X» A3» 10X> • Y» ) 
5 F0RMAT<lX»I2r2(3X<> lPE9.3>> 
7 FORMATC POINT L I S T = 1*> 
8 .>6RMAT ! (y / * lX f 'A3r»FOR- ' ' -M=- f >I^»* -# . l=* * " i2 / / / . ) : 
9 F0RMAT(//33X» 'TOTAL VELOCITY VS »''•Al «• '*. FOR N=**I«*» lx.» Al» •-•»12///) 

10 F0RMAT(//20X»'VELOCITY ANGLE IN DEGREES VS *»Al» • FOR .N=TV.I«M>-
+lX»Alt•• = •'• 12»///) • 

11 FORMATC PLOT = 1") 
12 FORMAT!'• MORE LOOK = 1 « ) 
13 FORMATC WHICH ROW ? •) 
l«r F0RMAT(//25XCPRESSURE RATIO VS X FOR N =* * I4» » » J =• 113///1 
15 FORMATC/' N =•• r 14 »fX» ' J ='»J3/ f I »»7.X'* A3»9X* »Xf > 
16 F0RMAT(//28XCMACH NUMBER VS X FOR N- » » I«M•»,J=» »I2»///X 

1016 F0RMAT(//33X*A3C VS X FOR N=*»It"« J~*»I2*///1 
1017 FORMATS ENTER CGDEf> 
1018 FORMATC COME AGAIN ?•) 

PRINT 1 
READ 2»NPRCD 
IF ( NPRCD .EQ. 1 > PRINT 1001 

217 PRINT 1017 
218 READ 2-tI'TX 

IF ( ITX .LE. 1«* *AND* I T X * G E » 1 I GO TO 2X9 
PRINT 1018 
GO TO 218 • 

219 IF ( ITX .EQ. 1 .OR. ITX ,EQ« 8 ) m '" *R% 

IF < ITX .EQ. 2 .OR. ITX .EQ. 9 ) A» := *U* 
IF I ITX .EQ. 3 .OR. ITX .E&. 10 > AR = «V» 
IF ( ITX .EQ. M .OR. ITX .EQ. 11 > AR = •HX» 
IF ( ITX .EQ. 5 .OR. ITX .EQ. 12 ) m ~ 'THA* 
IF ( I T X .EG. 6 .OR. ITX .EQ. 13 > AR = «P» 
IF ( ITX .EQ. 7 .OR. ITX .EQ. 1H > AR = »M» 

: IF ( 'ITX .LE. 7 > GO TO 18 
• PRINT 13 . • ' '•:•-v.-;.N̂  

300 READ 2»IRW 
IF ( IRW .LE. NR .AND. IR« »GE« 1 J SO TO 19 
PRINT 1018 

. GO TO 300... 
IB PRINT 3 

220 READ 2rICL 
IF ( ICL .LE. NX .AND. ICL .GE. I ) GO TO 19 



PRINT 1018 
GO TO 220 

1 9 PRINT 7 
READ 2 » I T 
GO TO (2Q#^0r60#60f 1 lQ0 1 # 1 1110»1120 < »1117 ,r 1 l l 

+ l . l < t » 1 1 6 ) »ITX ? ' > « ' 
2 0 DO 3 0 I =•1»NR 
3 0 X ( D = R ( I C L » I ) 

GO TO 120 
tfO DO 50 I = 1»NR 
50 X(I) = U(ICL»I) 

GO TO 120 
60 DO 70 I = 1»NR 
70 X(I> = V(ICLrl) 

GO TO 120 
80 DO 90 I = 1#NR 
90 X(I> = HX(ICLrl) 

GO TO 120 
100 DO 110 I = lr-NR 
110 X d ) = THA(ICLrl) 

GO TO 120 
1 1 1 0 DO 1 1 1 1 I = IrNJR 
1111 X d ) = P(ICL»D 

GO TO 120 
1120 DO 1121 I = 1»NR 
1121 X(I) = M(ICLrl) 

GO TO 120 
112 DO 113 I = 2rNX 
113 X(I) = DC2'I)*RT 

X(l) = X(2) 
GO TO 118 

lit DO 115 I = 2>NX 
115 Y d ) = PCIflRW) 

Y(l) = YC2) 
GO TO 112 

116 DO 117 I = 2rNX 
117 Y(I) = M(l»IRtf) 

Y d ) = Y(2) 
GO TO 112 

1117 DO 1116 I = 2»NX 
1118 Y d ) = R(IrlRW) 

Y d ) = YC2) 
GO TO 112 

1119 DO 1200 1 = 2*NX 
1200 Y(I> = U-CIrl'Rtf) 

Y d ) = Y4 2) 
GO TO 112 

1210 DO 1220 I = 2»NX 
1220 Y d ) = Vtlrl'RW) 

Y(l) = Y(2) 
GO TO 112 

1230 DO 121*0 I = 2rNX 
12»*0 Y(I) = HX(IrlRW) 

Y(l) = Y(2) 



GO TO 112 
250 DO 1260 I = 2rNX 
260 Y(I>•= THACIvIRW) 
• • 'Ytl) = YC2) 

GO TO 112 
118 IF ( IT oNE. 1 ) 60 TO 150 

PRINT lSoNflRWrAR v 
DO 119 I = 2»NX 

119 PRINT 5»l»Y(I)rX(I) 
GO TO 150 

120 DO 130 I = 1»NR 
130 YCI) = Q-l) * DY * DU>ICL> * R T 

IF ( IT .NE*. 1 ) GO TO 150 
PRINT 4»NrICL»AR 
DO 1H0 I = 1»NR 

m O PRINT 5 > I t X m » Y Q ) 
150 PRINT 11 

READ 2»NPLOT 
IF ( NPLOT -.NE. 1 ) GO TO 210 
IF ( ITX ..LE. 7 ) NIG - NR 
IF ( ITX .GE. 8 ) MG = NX 
CALL EZ5UB<X»Y»NS) 
GO TO (160»160rl60»l70rl8o»160rl60 

•181»132) /ITX 
160 PRINT 8»ARtN»ICL 

GO TO 200 
170 AY = »Y» 

AC = *!• 
PRINT 9#AY»N»AC»ICL 
GO TO 200 

180 AY = »Y» 
AC =.'. VI» 
PRINT lD>AY»N»ACrICL 
GO TO 200 

181 PRINT mrNrlRW 
GO TO 200 

182 PRINT 16»NfIRW 
GO TO 200 

183 PRINT 1016rARrN»IRW 
GQ TO 200 

18f AX = •*• 
AC - 'J' 
PRINT 9#AX»N»AC»IRW 
GO TO 200 

185 AX-•= »X» 
AC = »JV 
PRINT 10>AXrNrACrIRW 
GO TO 200 

200 CONTINUE 
210 PRINT 12 

READ 2rM0RE-
IF ( MORE .EQ. 1 ) GO TO 2L7 
RETURN 
END 



SUBROUTINE ANGLE 
.REALM. 
COMMON /BLKl/ R (51»51 >' # ' U (51 r 51)» V <51 r 51) » THA(51 P 51)» 

•»• HX(51»51)-t ,M(5l»5i)» P*5U*5l>» GAMMA 
COMMON /BLK3/ NX» NR ^ ^ 
COMMON VBLK<*/ N» I» J 
THA(I»J)=0.0 
IF<U(I»J> .EQ. 0.0) GO TO 1 
IF(V(I»J) .EQ. 0.0) GO TO 2 
THA(I>J)=ATAN(V(IrJ)/U(I»J)) 
THA(I»J)=THA(I»J)*57o295779 
IF (U(1»J) .LT. 0.0) THA(I»J)=THA(I»J)+180.0 
GO TO 3 
IF(VCIrJ) .EQ. 0.0) GO TO 3 
IF(V(I»J) .LT. 0.0) THA(I»J)=-90.0 
IF(V(I»J) .GT. 0.0) THA(I»J)= 90.0 
GO TO 3 
IF(U(I»J) .LT. 0.0) THA(ItJ)=180.0 
HX(I»J)=5QRT(U(I>J)**2+VCt»J)**2) 
M (I r J) = HX (I r J)VSQRT IGAMMA*EXP I (GAMM*-D<*'R C I» J) ) > 
P(IrJ) ='EXP(GAMMA*R(I»J).) 
RETURN 
END SUBROUTINE OPTR(OfLET*TF> 
LOGICAL TF»LOG 
TF=.FALSE. 
N=FLD(0»6»LET)-5 
L0G=B00L(FLD(9+N»1»0)) 
IF(LOG)TF=.TRUE. 
RETURN 
END 

FUNCTION OP(LIT) •.••'••' 
IF(L)2» »2 
CALL DEMOPT(A) 
L=l 
CONTINUE 
CALL OPTR(A»LIT»OP) 
RETURN 
END 



83 

SUBROUTINE TABLES ( TBLMTXr N» NUMBr TABLE > 
C 
C TO PRINT TABLES FOR NG = 11,21»31 »<*1» OR 51 
C '• . . . .• 

C TBLMTX = ARRAY NAME 
C N = TIME STEP NUMBER 
C NUMB = TABLE NUMBER 
C TABLE = TABLE NAME 
C 

DIMENSION TBLMTX(51»5l) 
COMMON /BLK3/ NXr NR 
NJ = ( ( NR - 1) / 2 ) 4 1 
NHJ = ( NR - NJ I / 5 
NHI = ( N X — 1 ) / 10 
NI = NJ - NHJ 
NK =• NJ + NHJ 
WRITE (6»1) NUMB» TABLE* N 

1 FORMAT ( lHlf 61X» 6HTABLE * I2r2H» rA3» // 65X» 3HN =»I3 // 
. 1 ;••.• 67X» 1HI / )••-. 
WRITE (6r2) ( Ir I = lrNXrNHI > 

2 FORMAT -'.(• "1H V 2X«> 11111 ) 
DO 30 J = 1»NI»NHJ 
WRITE (6»3)J» ( TBLMTX(IrJ)p-•• I = - l»NX»NHl > 

3 FORMAT ( 1H / 5Xi> I2» 1P11E11.3 / ) 
30 CONTINUE 

WRITE ibtH) HJt (. TBLMTX(I»NJ)» "I - l»NX»NHl ) 
«* FORMAT ( ' 1H / 2Xt 1HJ» 2X» 12? 1P1IE11.3/ ) 

DO tO J = NK»NR»NHJ 
WRITE (6»5) J» ( TBLMTX(I»J)r IrltNXrNHl ) 

5 FORMAT ( 1H / 5X» I2» 1P11EU«3/ > 
HO CONTINUE 

RETURN 
. . E N D • .-••• 

SUBROUTIME CHECK <Ml »V1' N2 * V2»N3tV3»W*• V4»N5VV5'f<N6r.V6rCRN > 
COMMON /3LK4/N» I» J 
-WRITE<6Yl>- N»I'J'Nl»Vl»N2»V2»N3»V3»N4»VUrN5»V5#N6»V6tCHN 

1 FORMAT (1H r2HN=i-I3»2Xr2HI = »I2»2X»2HJ=iFl2>6(2X»A«fflH=»lPE9«3)r 
1 3X»lHWrI2) 
RETURN 
E N D • - ' ^ i v -



84 

BIBLIOGRAPHY 

Back, L. H., Massier, P. F. and Gier, H. L., "Comparison of 
Measured and Predicted Flows Through Conical Supersonic Nozzles 
with Emphasis on the Transonic Region," American Institute of 
Aeronautics and Astronautics Journal, August, 1965. 

Graham, R. W. and Deissler, R. G., "Prediction of Flow-Acceleration 
Effects on Turbulent Heat Transfer," Transactions of the American 
Society of Mechanical Engineers, Journal of Heat Transfer, Vol. 89, 
Series C, No. 4, pp. 371-372, November, 1967. 

Bartz, D. R., "Turbulent Boundary-Layer Heat Transfer from Rapidly 
Accelerating Flow of ELocket Combustion Gases and of Heated Air," 
in Advances in Heat Transfer, Ed. by Irvine, T. F., Jr. and Hartnett, 
J. P., Vol. 2, Academic Press, 1965. 

Back, L. H., Massier, P. F. and Cuffel, R„ F., "Some Observations 
on Reduction of Turbulent Boundary-vLayer Heat Transfer in Nozzles," 
Jet Propulsion Laboratory, California Institute of Technology, 
Pasadena, California, National Aviation and Space Administration. 
Contract No. NAS 7-100, 1965. 

Back, L. H., Cuffel, R. F. and Massier, P. F., "Influence of Con
traction Section Shape on Supersonic Nozzle Flow and Performance." 
Jet Propulsion Laboratory California Institute]of Technology, 
Pasadena, California, NASA Contract No. NAS 7-100, 1971. 

Back, L. H., Massier, P. F. and Gier, H. L. "Convective Heat 
Transfer in a Convergent-divergent Nozzle," International Journal 
of Heat and Mass Transfer, Vol. 7, pp. 549-568, 1964. 

Fortini, A. and Ehlers, R. C , "Comparison of Experimental to 
Predicted Heat Transfer in a Bell-shaped Nozzle with Upstream 
Flow Disturbances," NASA TN D-1743,, August, 1963. 

Stanton, T. E., "The Variation of Velocity in the Neighborhood of 
the Throat of a Constriction in a Wind Channel," British 
Aeronautical Research Council Reports and Memoranda No. 1388, 
May, 1930. 

Shelton, S. V., "A Study of Two-Dimensiorial Nozzle Flow," Unpublished 
report, 1971. 

Serra, R. A., "The Determination of Internal Gas Flows by a Transient 
Numerical Technique," Ph.D. Thesis, Renesselar Polytechnic Institute, 
Troy, New York, June, 1970. 



85 

11. Shapiro, A. H., The Dynamics and Thermodynamics of Compressible 
Fluid Flow, Vol. I, The Ronald Press Company, New York, N. Y., 
1953. 

12. Meyer, Th., "Uber zweidimensionals Bewegungsyorgange in einen Gas, 
das mit Ueberschallgeschwindigkeit stromt," V.D.I. Forschungshef t -t 

Vol. 62, 1968. 

13. Lighthill, M. J., "The Hodograph Transformation in Transonic 
Flows," Royal Society of London, Proceedings, Series A, Vol. 191, 
pp. 323-351, November, 1947. 

14. Taylor, G. I., "The Flow of Air at High Speeds Past Curved Surfaces," 
Aeronautical Research Council Reports and Memoranda No. 1381, 1930. 

15. Hooker, S. G., Aeronautical Research Council Reports and Memoranda 
No. 132, 1930. 

16. Yur'ev, I. M., "On the Design of Nozzles," American Rocket Society 
Journal, Vol. 30, No. 4, pp. 374-375, April, 1960. 

17. Sims, J. L., "Calculation of Transonic Nozzle Flow," NASA TM 
x-53081, October, 1964. 

18. Medelson, R. S., "A General Transonic Flow Analysis for Axially 
Symmetric Rocket Nozzles," Technical Report No. HSM-R037, Space 
Division, Chrysler Corporation, Huntsville, Alabama, February, 
1964. 

19. Oswatitsch, K. and Rothstein, W., "Flow Pattern in a Converging-
diverging Nozzle," NACA TM 1215, March, 1949. 

20. Oswatitsch, K., Gas Dynamics, Translated by G. Kuerti, Academic 
Press Inc., New York, 1956. 

21. Hall, I. M., "Transonic Flow in Two-Dimensional and Axially-
Symmetric Nozzles," Journ. Mech. and Applied Math., Vol. XV, 
pp. 487-508, 1962. 

22. Moore, A. W. and Hall, I. M./"Transonic Flow in the Throat Region . 
of an Annular Nozzle with an Arbitrary Smooth Profile," Aeronautical 
Research Council Reports and Memoranda No. 3480, January, 1965. 

23. Quan, V. and Kliegel, J. R., "Two-Zone Transonic Flow in Nozzles," 
AIAA Journal, Vol. 5, No. 12, pp. 2264-2266, December, 1967. 

24. Kliegel, J. R. and Levine, J. N., "Transonic Flow in small Throat 
Radius of Curvature Nozzles," AIAA Journal, Vol. 7, No. 7, pp. 
1375-1378, July, 1969. 



86 

25. Friedricks, K. 0., "Theoretical Studies on the Flow Through Nozzles 
and Related Problems," Applied Mathematics Panel Report 82-lR 
AMG^NYU No. 43, Applied Mathematics Group, New York University, 
April, 1944. 

26. Friedricks, K. 0., "On Supersonic Compressors and Nozzles," 
Applied Mathematics Panel Report 82-2R, AMG-NYU No. 77, Applied 
Mathematics Group, New York University, October, 1944. 

27. Liepman, H. P., "An Analytic Design Method for a Two-Dimensional 
Asymmetric Curved Nozzle," J. Aero. Sci., Vol; 22, No. 10, pp. 701-
709, October, 1955. 

28. Grey, F. C , "Annular Throat Rocket Nozzle Design," Masters Thesis, 
Massachusetts Institute of Technology, June, 1961. 

1 • 

29. Hopkins, D. F. and Hill, D. E., "Effect of Small Radius of Curvature 
on Transonic Flow in Axisymmetric Nozzles," AIAA Journal, Vol. 4, 
No. 8, pp. 1337-1343, August, 1966. 

30. Hopkins, D. F. and Hill D. E., "Transonic Flow in Unconventional 
Nozzles," AIAA Journal, Vol. 6, No. 5, pp. 838-842, May, 1968. 

31. Thompson, P. A., "Transonic Flow in Curved Channels," ASME Paper 
No. 67 FE-11, ASME Fluids Engineering Conference, Chicago, 111., 
May 8-11, 1967. . 

32. Pirumov, U. G., "Calculation, of the Flow in a Laval Nozzle," 
Doklady Akademii Navk USSR, Vol. 176, No. 2, pp. 287-290, 
September, 1967. 

33. Zupnik, T. F. and Nilson, E., "Users Manual for Subsonic-Transonic 
Flow Analysis," Report: PWA-2888, Pratt and Whitney Aircraft 
Division, United Aircraft Corporation, East Hartford, Connecticut, 
June, 1967. 

34. Emmons, H. W., "The Numerical Solution of Compressible Fluid Flow 
Problems," NACA TN 932, May, 1944. 

35. Emmons, H. W., "The Theoretical Flow of a Frictionless, Adiabatic, 
Perfect Gas Inside of a Two-Dimensional Hyperbolic Nozzle," NAC^yTN 
1003, May, 1946. " '."'"v 

36. Southwell, R. V., Relaxation Methods in Theoretical Physics, Vol. 1, 
Oxford University Press, London, 1964. 

37. Prozan, R. J., "Transonic Flow in a Converging-Diverging Nozzle," 
Lockheed Missiles and Space Company, Contract NAS7-743, Huntsville, 
Alabama. 



87 

Prozan, R. J. and Kooker, D. E., "The Error Minimization Technique 
with Application to a Transonic Nozzle Solution," J. Fluid. Mech., 
Vol. 43, Pt. 2, pp. 269-277, 1970. 

Belotserkovskii, 0. m. arid Chushkin, P, I., "The Numerical Solution 
of Problems in Gas Dynamics," Vol. I of Basic Developments in Fluid 
Dynamics t Edited by M. Holt, Academic Press, New York, 1965. 

Godunov, S. K., "Estimate of Errors for Approximate Solution of 
Simplest Equations of Gas Dynamics," AIAA Journal, Vol. 2, No. 1, 
pp. 208-214, January, 1964. 

Chou, P. C. and Mortimer, R. W., "Numerical Integration of Flow 
Equations Along Natural Coordinates," AIAA Journal, Vol. 4, No. 1, 
pp. 26-30, January, 1966. 

Holt, M., "Numerical. Solution of Non-linear Two-Point Boundary 
Problems by Finite Differerice Methods;" Assn. Computing Machy.-
Communications, Vol. 7, No. 6, pp. 366-373, June, 1964. 

von Neumann, J. and Richtmyer, R. D.,, "A Method for the Numerical 
Calculation of Hydrodynamic Shocks,,"* Journal of Applied Physics, 
Vol. 21,. pp. 232-237, March, 1950. 

r 

Lax, P. D., "Weak Solutions of Non-linear Hyperbolic Equations and 
their Numerical Computation," Communications on Pure and Applied 
Mathematics, Vol. VII, pp.. 159-193, 1954,, 

Lax, P. D. and Wendroff, B., "Difference Schemes with High Order 
of Accuracy for Solving Hyperbolic Equations," Comm. on Pure and 
Applied Mathematics, Vol. XVII, pp., 381-398, 1964. 

Burstein, S. Z., "Numerical Calculations of Multidimensional 
Shocked Flows," AIAA, Journal, Vol. 2, No.. 12, pp. 2111-2117, 
December, 1964. 

Rubin, E. L. and Burstein, S. Z., "Difference Methods for the 
Inviscid and Viscous Equations of a Compressible Gas," Journal 
of Computational Physics, Vol. 2, pp.. 178-196, 1967. 

Crocco, L., "A Suggestion for the Numerical Solution of the Steady 
Navier Stokes Equations," AIAA Journal, Vol* 3, No. 10, pp. i8?4-~ 
1832, October, 1965. 

Fromm, J. E., "The Time-Dependent Flow of an Incompressible Fluid," 
Methods in Computational Physics, Vol. 3, Academic Press, New York, 
1964. 

Thommeni H. W., "Numerical Integration of the Navier-Stokes 
Equations," Zeitschrift fur angewandte Mathematik and Mechanik, 
Vol. 17, 1966. 



88 

51. Steger, J. L. and Lomax, H., "Generalized Relaxation Methods 
Applied to Problems in Transonic Flow," International Con
ference on Numerical Methods in Fluid Dynamics, 2nd, University 
of California, Berkeley, California, Proceedings pp. 193-198, 
September 15-19, 1970. 

52. Richtmyer, R. D. and Morton, K. W., Difference Methods for Initial 
Value Problems, Interscience Publishers, New York, 1967. 

53. Richtmyer, R. D., "A Survey of Difference Methods for Non-Steady 
Fluid Dynamics," NCAR Technical Notes 63-2, 1962. 

54. Emery, A. F., "An Evaluation of Several Difference Methods for 
Inviscid Flow Problems," Journal of Computational Physics, Vol. 2, 
pp. 306-331, 1968. 

55. Moretti, G. and Abbett, M., "A Fast, Direct, and Accurate Technique 
for the Blunt Body Problems," General Applied Science Labs., 
Westbury, N. Y., GASL TR-583, 1966. 

56. Lomax, H., "An Analysis of Finite-Difference Techniques Applied to 
Equations Governing Convective Transfer," Personal Correspondance, 
1970. 

57. Glasgow, E. R. and Diveta, J. S., "Analytical and Experimental 
Evaluation of Performance Prediction Mejthods Applicable to Exhaust 
Nozzles," AIAA Paper No. 71-79, June, 1971. \; 

58. Moretti, Gino, "The Importance of Boundary Conditions in the 
Numerical Treatment of Hyperbolic Equations,!" Polytechnic Institute 
of Brooklyn, PIBAL Report No. 68-34, November, 1968. 

59. Lapidus, Arnold, "A Detached Shock Calculation by Second-Order 
Finite Differences," Journal of Computational Physics, Vol. 2, 
pp. 154-177, 1967. " '":•'" 

60. Laval, Pierre, "Time-Dependent Calculation Method for Transonic 
Nozzle Flows," International Conference on Numerical Methods in 
Fluid Dynamics, 2nd, University of California, Berkeley, California, 
Proceedings, pp. 187-192, September, 15-19, 1970. 

61. Migdal, D., Klien, K. and Moretti, G», "Time-Dependent Calculations 
for Transonic Nozzle Flow," AIAA Journal,, Vol. 7, No. 2, pp. 372-374, 
February, 1969. 

62. Serra, R. A., "The Determination of Internal Gas Flows by a Transient 
Numerical Technique," AIAA 9th Aerospace Sciences Meeting, AIAA Paper 
No. 71-45, January, 1971. 



89 

63. Moretti, Gino and Abbett, Michael, "A Time-Dependent Computational 
Method for Blunt Body Flows," AIAA Journal, Vol. 4, No. 12, pp. 
2136-2141, December, 1966. 

64. Hooie, J. W., Thomas, T. J., Tatom, F. B. and Williams, J. C , 
"Numerical Solution of Flow Fields Surrounding Saturn Type Vehicles, 
Nortronice-Huntsville Technical Report No. 382, TR-792-8-306, 
N68-28309, Huntsville, Alabama, June, 1968„ 

65. Moretti, Gino and Bleieh, Gary, "Three-Dimensional F-ow Around 
Blunt Bodies," AIAA Journal, Vol. 5, No. 9, September, 1967. 

66. Bohachevsky, I. 0. and Rubin, C. L., "A direct Method for Computa
tion of Non-Equilibrium Flows with Detached Shock Waves," AIAA 
Journal, Vol. 4, pp. 600 and 776, 1966. 

67. Hirt, C. W., "Heurtistic Stability Theory for Finite-Difference 
Equations," Journal of Computational Physics, Voli 2, pp. 339-355, 
1968. 

68. Sauer, R., "General Characteristics of the Flow Through Nozzles at 
Near Critical Speeds," NACH TM 1147, 1947. 

69. Back, L. H., Massier, P. F. and Gier, H. L., ''Comparison of 
Measured and Predicted .Flows Through:Conical Supersonic Nozzles 
with Emphasis,on the Transonic Region," AIAA"Journal, Vol. I, No. 9, 
pp. 1606-1614, September, 1965. 

70. Back, L. H.. and'Cuffel, R. F., "Detection of QbMque Shocks in a 
Conied Nozzle with a Circular -Arc Throat, AIAA Journal, Vol. 4, 
No. 12, pp. 2219-2221, December, 1966. 

71. Back, L. H., Cuffel9 R. F. and Massier, P. F., "Transonic Flow 
Field in a Supersonic Nozzle with Small Throat Radius of Curvature," 
AIAA.Journal, Vol. 7, No. 7, pp. 1364-1366, July, 1969. 

72. Sheltoh, S. V., Jet Propulsion Laboratory, Pasadena, California, 
1967. 

73. Scheller, K. and Bierlein, J. A., "Some Experiments on Flow 
Separation in Rocket Nozzles," American Rocket Society Journal, 
Vol. 23, pp. 28-32, 1953. 

74. Courant, R., Friedrichs, K. 0. and Lewy, H., "Ueber die Partiellen 
Differenzengleiehungen der Mathematischen Physik," Math. Ann., 
Vol. 100,, p. 32, 1928. j 

75. Back, L. H,,, Massier, P. F. and Cuff el, R. F., Personal Correspondf-
ance, 1967. 


