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SUMMARY 

Presently available pneumatic jackhammers do not meet the long 

range Federal Noise Level Standards for 197^. A definite need exists 

for a long-term solution to decrease the noise pollution by such â :{̂ > 

device. This study examines a closed hydromechanical system to 

alleviate the problem. 

A dynamic analysis of the hydromechanical components is 

performed with linear approximations adopted for most parts. The 

resulting system is examined with"special attention to the working 

specifications of existing pneumatic jackhammer systems. 

The non-linearity in the system due to the switching effect 

of the valve is included in the dynamic analysis. Stability aspects 

of the non-linear behavior are examined by the Describing Function 

method. Computer simulations of the. system eire performed. It has 

been shown that the proposed system, will operate; but great care must 

be kept in assigning values to design parameters in order to assure 

stability; also fluid momentum effects are present, due to the switch­

ing motion of the piston. A continued investigation in this latter 

point was recommended, in order to measure the degree of pressure 

surge due to stoppage of fluid, and establish its direct effects on 

the system performance. 
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CHAPTER I 

INTRODUCTION 

1.1 The Problem of Noise Reduction 

It has been established that noise and vibration does affect 

the population in a number of ways and it may, if sufficiently loud 

or intense, damage hearing or health; interfere with work tasks and 

adversely affect speech communication. It also can affect interr.o.om 

privacy, course general annoyance and interrupt sleep. 

Noise reduction can be achieved by controlling its source, its 

path of propagation, or by the combination of the two. 

The first method is the most effective measure for products 

still in the design stage and also the least expensive in the long 

run. The second is a corrective measure for an existing noise control 

problem utilizing changes in the path of sound propagation by diverting 

or absorbing sound. The third method is employed when a complete 

redesign of the existing product is too expensive to accommodate. 

The alternative is to make minor inexpensive changes or additions to 

the actual design in conjunction with manipulation of the sound 

propagation path. Important considerations in adopting the specific 

scheme for noise reduction are the demands of the receiver, which are 

subject to individuals, and their reasons for reducing noise in a 

particular environment„ 

In the case of the pneumatic jack hammer, it is at best 

questionable if noise levels emanating from this tool used presently, 
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does comply with the current government regulations. Readings taken 

on typical jackhammers used for road construction in the metropolitan 

Atlanta* area and data from other documents [13] show that the exhaust 

sound level does exceed government standards and although public 

opinion would call for its silencing, but as the jackhammer is not a 

consumer product, companies could hold back on redesigning expenses. 

Currently available jackhammer designs have been modified both from 

the point of view of controlling the amount of noise propagation as 

well as some control at the source level via modified designs. This 

study concentrates on a more fundamental change at the source of the 

noise generation from such a tool. 

1.2 A Review of Previous Work 

There does not exist a large volume of information on a valve-

piston combination used as an impact device.- In fact, an extensive 

literature search revealed no significant analytical or experimental 

work on the subject matter. On the other hand not much can be added 

to the vast literature available on servovalves in particular and 

hydraulic fluid power control technology, in general. So a short 

account of what has been done to reduce noise caused by a conventional 

pneumatic jackhammer will perhaps be of help in establishing the 

need for this work. 

In the late 1950's, people were already concerned about noise 

pollution by such devices as pneumatic jackhammers; this, as mentioned 

before, not being a consumer product, little attention was given to the 

:• •;;-':-'"\.̂ See:;.App.eM;ix.-A. 



problem. Pneumatic contractor's tools were mentioned by the Wilson 

Committee [7] noise report in 196.3<• Later on the Building Research 

station of the Ministry of Technology of the United Kingdom concluded 

that noise by these devices was unnecessary. It was thought then 

that this would entice legislation restricting the use of unsilenced 

breaker and other similar annoying pneumatic tools. A report carried 

out by the Building Research Station [7] shows a comparative analysis 

of noise, work, output and performance of •unsilenced and muted 

breakers. Currently in effect, noise is restricted as set forth by 

the U.S. Government Occupational Safety and Health Act of 1970. It 

is a foregone conclusion that regulations against noise pollution will 

get progressively stiffer and, consequently, permissible noise levels 

will be lowered, whereby manufacturers will have to comply with new 

regulations. 

The Environmental Protection Agency is at present preparing 

a report regulating every apparatus, vehicle and device on the market 

as well as those already in use. This report will be concluded soon 

and is expected to be enforced by the latter part of 197̂ -. 

The Building Research Station of the Ministry of Technology 

performed their tests employing four different techniques to bring 

down the noise level in current pneumatic concrete breakers. These 

are: 

1. Use of strap-on mufflers, 

2. Redesigning of the pneumatic jackhamuier body to integrate 

muffling, 



3. Diverting exhaust through existing compressor mufflers, and 

k. Putting an acoustic screen around the breaker. 

The strap-on muffler has been applied by several manufacturers, 

Ingersol-Rand being one of them. Several makes of mufflers are 

currently available. A typical design is a light, durable, "inexpen­

sive (average cost $30.00) device that fits over the body of the tool. 

Excessive loss of working efficiency can result from a badly designed 

muffler. For example, the base of the muffler has to be designed to 

release the exhaust air, but inevitably the muffler sets up some 

degree of back pressure and it is thus which is more than likely to 

impair performance. Typical noise reduction with the use of a strap 

on muffler is moderate at seven decibels, and power loss is approxi­

mately between 20 percent and hl) percent. It seems that" any further 

government restrictions would necessitate a complete redesigning of 

the pneumatic tool at a considerable expense,, 

The integrated muffler design tried out by several manufacturers 

achieves a sound reduction of about 25 decibels, but is more expensive 

(average 25 percent more over total, cost) and power losses fluctuate 

between 30 percent'and -̂0 percent. 

Diverting the exhaust air back to the compressor muffler has 

an advantage in that it uses a larger muffler, but also at considerable 

power loss. 

In other words, muffling has brought down sound levels. In 

general terms, the best mufflers can offer a 50 percent total sound 

reduction but provide only an adequate short-range solution to the 

problem. 



The fourth and last method, employed for noise reduction is the 

acoustic screen around the tool and compressor. Clearly this detracts 

in no way the efficiency of the "breaker. The only drawback of this 

method, (apart from the cost of the screen material which includes 

a three sided light weight structure, with two inch thick internal 

lining of polyurethane foam) is that it has to be portable to follow 

the job progress. The combined effect of the muffler and enclosure 

can reduce the sound level by as much as 20 decibels, or 75 percent 

total noise reduction with the corresponding trade-off in power loss 

due to silencer. There is also the inconvenience of moving the 

enclosure. 

Back pressure created by the muffler causes extra loading on 

the compressor for a specific work output which increases compressor 

noise levels and which have been established to be as significant as 

20 percent over normal use. 

The actual breaking of concrete contributes approximately 0.1 

percent* to the total noise created by the tool and compressor. It 

is thus quite important to consider a complete redesign of the jack-

hammer. 

Ingersol Rand has at present on the market their new "Hobgoblin" 

impulse breaker which mounts on a back-hoe or fork lift. This 

blockbuster employs hydraulic fluid, to move the hammer and piston of the 

tooi-̂ hich'.in„ turn compresses nitrogen gas at a high pressure. At a 

pre-set hydraulic pressure the emergy stored in the compressed gas is' 

*See Appendix A, Figure A.l. 



released causing the hammer to strike the tool. The work-blow 

delivered by the tool can be varied between 135 (ft-lb) to 1200 (ft-lb). 

1.3 Statement of the Problem 

The object of the present study is to examine a closed hydro-

mechanical system employing a hydraulic pump to supply energy to an ' 

impact breaker. It is proposed to incorporate the conventional 

combination of a servo valve and piston respectively^employed as the 

oscillating device and hydraulic power element. 

Hydraulic losses due to friction, valving and leakage from the 

pump to the power piston must be determined in order to evaluate their 

influence on the :overall design. The basic approach will be to 

assume a constant supply pressure and to develop governing equations 

for each component. Solutions of such equations will render the 

dynamic characteristics of the system. Also pressure-flow curves 

will be obtained. Due to the mathematical complexity of the problem, 

it is anticipated that linearization must "be adopted for most parts. 

The two most important characteristics of employing hydraulic 

fluid as a measure of energy transmission: "Stiffness and pressure" 

will be exploited to best advantage. 

Temperature rises occurring due to friction and shearing upon 

o o •' 
the oil can be as high as 120 to 180 F. for large velocities. 

Since one of the characteristics of a hydraulic fluid power system is 

to dissipate excessive heat from the power source by the fluid stream 

itself; inclusion of an adequate heat exchanger in the sump or in 

another appropriate location keeps the oil at a reasonable working 



temperature. Hence temperature rises will not be considered in this 

work. 

Finally, stability which probably is the most important 

performance characteristic of a servo system, will be analysed by 

comparing various methods for determining absolute stability of a 

system. The non-linearity present in the system due to the switching 

effect of the valve will be examined by the Describing Function 

technique and by graphical methods. 



CHAPTER II 

SYSTEM CONFIGURATION 

2;. 1 Basic Considerations 

Conventional demolition tools,, such as concrete breaker 

utilize compressed air to displace a piston., which acts as a hammer, 

to strike a tool or chisel with a high impact energy. This impact is 

transmitted through the tool to the concrete. It has been established 

by manufacturers that the energy per impact for small portable type 

pneumatic concrete breakers is between 100 - 200 Ft-lb [l, 2,l4]. The 

total energy output can be varied by controlling the frequency of 

impact. 

This analysis adopts some of the working specifications such as 

blows per minute and power output per stroke of the existing pneumatic 

system. However, the physical parameters, specifically; piston weight, 

piston stroke and cylinder bore of the power element, need to be 

modified to suit hydraulic system design criteria. In a pneumatic 

system part of the stroke is used to compress the air, whereas in a 

hydraulic system the entire piston stroke goes into moving the piston. 

As a result the hydraulic system needs a considerably shorter piston 

stroke to attain a specified maximum velocity for the piston. This 

can be further supported by using the continuity equation to write 

expressions of velocity of the piston in the hydraulic and pneumatic 

case. These are: 



Liquid: Y p . ^ X ^ , (2.1.1) 

and 

dxp ir dP 
G a s : V

P = « + p « » 

where: 

V = velocity of piston, 
p 

X = displacement of piston, 
p 

p = fluid density,, 

p. = fluid density a/t zero pressure, 

J3 = bulk modulus of elasticity, and, 

P = fluid pressure 

It may be noted that the isothermal bulk modulus of elasticity 

of a perfect gas equals its pressure, whereas for liquids it is 

independent of pressure. Therefore piston velocities as given by 

Equation 2.1.1 are reached at a much faster rate than the correspond­

ing values from Equation 2.12. The gas behaves like a nonlinear 

spring compared to the linear spring characteristic of a liquid. 

This can also be seen in Figure 1. Appendix B contains details of 

development of the equations for piston velocities. 

Inherently, the shorter stroke considered in this analysis 

cuts down the volumetric flow rate. This is of considerable impor­

tance since it directly affects the choice of the hydraulic pump.^ 

which provides the power element with the necessary fluid energy. 

So far as the power element is concerned, several configurations 

(2.1.2) 
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Figure 1. Maximum Velocity of Piston. 



are possible. Basically, it consists of a main "body which encloses 

the cylinder where the piston is displaced up and down, striking the 

tool when the piston reaches its lowest position. It is necessary 

to have a controlling element to switch the fluid flow from one end 

of the cylinder to the other to produce the oscillatory piston motion. 

Several schemes of achieving this need to be considered to find the 

most appropriate one. 

2.2 Possible Configurations 

A qualitative as well as a quantitative analysis must be per­

formed for a number of possible schemes as candidate configurations 

to achieve oscillatory piston motion. This leads to a criterion to 

select the appropriate method compatible with the specifications 

desired per impact. Special attention must be paid to the kinetic 

energy of impact with a minimum, of power consumption and adequate 

response time. 

The primary difference between the basic configurations shown 

in Figure 2, is that in Figure 2.1 the piston is displaced down by 

the supply pressure P and is returned by a spring force, whereas in 
s 

Figures 2.2 and 2.3 the piston is driven by the supply pressure in 

both directions. The energy stored in the spring at the end of the 

full fo^a£dS^jg^er"Sf configuration 2.1 would have to meet the 

specifications at impact. 

The following mathematical analysis will consist of obtaining 

the equations of motion for the total cycle for each of configurations 

2.1, 2.2, and 2.3. It will further consist of finding suitable 
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expressions which relate these dynamic equations to the total kinetic 

energy delivered at impact. Next̂ jla power consumption equation, 

together with expressions for potential and kinetic energies, all in 

terms of a nondimensionalized time, will "be obtained. Through the 

aid of adequate substitutions these expressions will be combined to 

form a canonical relation describing the response of the system. 

Haturally such a relation will be in terms of the potential energy 

the nondimensional time and the work done during the cycle. Work 

being the function to be minimized, the Hamiltonian principle of 

dynamics can "be applied,, and a nondimensionalized plot can "be con­

structed containing the minimum nondimensional work values correspond­

ing to different values of the nondimensionalized time. Such a plot 

will yield a criteria for minimum work consumption per impact, to be 

used toward optimization of candidate configurations. 

It may be noted that as far as power consumption is concerned, 

.configurations 2.2 and 2.3 are identical. The only difference between 

configurations 2.2 and 2.3 concern the switching time, which will be 

examined later.' 

2.2.1 Power Consumption Analysis for Configuration of Figure 2.1. 

The preliminary analysis consists of obtaining a simplified for­

ward and return dynamic equations for configuration 2.1. 

For small piston motion, i.e., with |A X « V , where V is 
' ' p p1 o o 

the volume of forward chamber, A the piston cross sectional area 
p 

and x the piston displacement; and for negligible leakage, the load 

flow rate may be written as 



V = V P + T : & L ' (2-1) 

vhere 

q = load .flow 
J_i 

p = load pressure; the dot indicates the time rate of change 
Li 

In Laplace transformed notation thus becomes 

V 
QT = A s.X + ~ s P_ , (2.2) 
L p p 3 L _ ' 

where s, is the Laplace operator. 

For a spring-mass system, the simplified equation of piston 

motion is 

A PT = Ms'~X + ~ A '~sX + kX , (2.3) 
p L p Pg p p K J' 

where, 

M = total piston mass, 

P = supply pressure, 

Q = supply flow, and 
vD 

K = spring constant,. 

If the pressure output is assumed linear and if line dynamics 

as well as delay due to length of line are neglected, then 



It has been shown in Appendix B that pressure losses due to 

friction and changes in cross sectional area of lines in this systems 

are very small and added to the fact that the length of the lines v^-P. 

connecting the valve and ram are very short, (three to five inches) it 

is justifiable to use Equation 2.k. 

Combination of Equations 2.2, 2.3 and 2.k gives the forward 

stroke dynamic Equation of the system as 

P A 
Ms2X + ^ (A2X + -^ V P_,)s + KX = A P (2.5) 

p ~;.Q \ p p 3 o L./ p p s \ " 

For very large bull: modulus, 3, of the fluid, A V /{3 « 0, which 

simplifies Equation 2.5 to 

A P 
X = E_B _ ( 2 > 6 ) 

s(M~ + ?~ A' s.+.K£ 
\ S <3 p .*•;./ 

At the instant of impact of the piston with the tool, i.e. at 

t = T, x = X , the position of the piston is fed back either mechani-
p p 

cally or by electrical impulses to the actuating servovalve which in 

turn connects the drain port to the cylinder chamber, which releases 

the pressure on the piston and: returns it to its original position by 

the energy stored in the compressed spring,, 

The return motion is described by 

Ms2X + KX = 0 , X(T) := 0 (2.7) 

t ;> T 



Since the duration of the impact is very short it is reasonable 

to assume an inelastic impact. 

The constraint requiring a specified energy of impact can be 

described relating the potential energy an.kinetic energy at impact 

to the dynamic equations of the forward and return motion of the 

piston. 

The kinetic energy HE and the potential energy PE at t = T are 

respectively given by 

KE = » MV? , (2.8) 

PE = ~ Kx~ . (2.9) 
c- P 

From Equation 2.8 

/2KE = /MX: = z(t) ., (2.10) 
s~ 

where z( t ) i s a function of time. 

Equation 2.10 in Laplace transformed notation i s 

X = ~ ^ (2.11) 
P &M 

Substitution of Equation 2.11 into Equation 2.6 yields 

A P /M 
Z(S) = -£s 9 (2.12) 

P q P 
Ms" + TT A's + K 
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The inverse Laplace Transform of Equation 2...12 evaluated at 

t = T, for the case of complex roots gives [See Appendix D for details] 

P A2, 

\2Q M/1 2 ? 
A P e " / J? PT 

# = V S r - oo' 'iln/l " G£® T ' (2'13) Z, , 
2 2 

£ A 

^ V i "GlrS) 

where T is the time for the forward stroke,. Equation 2.12 can also he 

evaluated at t = T for the case of real and equal roots, "by first 

noting that critical damping occurs when 

P A 2 

_̂ JP =: 2 / - . (2 Ik) 
Q M . V M -K^-^J s 

Use of Equation 2.1.4 i n t o 2.12 y i e l d s 

A P 
P s 

z ( s ) =" ^L_ (2.15) 
2 _ / K K 

s + 2 A / M S + M 

Inverse transform of Equation 2.15 yields at t = T, for critical 

damping 

/K-
PAT >^ : T 

z(T) ==— ̂ - • e " ' (2.16) 
/M 

For the case of real and unequal roots of Equation 2.12, the 



following conditions must hold 
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2 2 
.P A _ 
s P 

..Q M. s 
(2.17) 

The Inverse Laplace Transform of Equation 2.12 with condition 

2.17 gives the overdamped response evaluated at t = T, as 

i(T) = 

,P A<\ 
_ (-l-P-Vr 

\ Q^M/ P A e 
s p ;inh 'K. 

M 

2 2-
P A ,t 

(' s P 
V Q M 

(2.18) 

Equations 2.13, 2.1.6 and 2.1.8 are piston responses for the for­

ward stroke evaluated at t = T. These equations can be examined more 

conveniently in terms of a total response time, or can be expressed in 

terms of a nondimensionalized time, j which is the ratio of the total 

cycle response time T_ to the forward stroke response time, T. This 

rslgmrplification can be achieved by several straight forward substitu­

tions as outlined in the procedure that follows: 

Define 

where 

T1 — T - T 
s " 1T ' 

Tq = return stroke time,,> 

T™ = total time per cycle, and 

T = forward stroke time. 

(2.19) 

Obtain the solution to the return stroke equation as 

K X (tfe) = X (T)Cos ± t 
pv s' pv ' • V M i (2.20) 



where ts is the instantaneous return stroke time. T < t < Tm. 
s T 

Let t = t - T and evaluate'Equation 2.20 at t = T to give 
S J_ 

Xp(TT-T) 4=: Xp(T)Cos y | (TT-T) . (2.21) 

Note that t = T , X (Tr ) = 0. Equation 2,21 will admit this only when 

U _ /K ( V T ) • (2-22) 
2 ". V M 

Equation 2.22 can "be expressed as 

T=§¥/|:+1' (2-23) 

where 

TT == TT . (2.24) 

Before Equations 2.13., 2.l6 and 2.18 can "be expressed in terms 

of the dimensionless time;, 7, it is necessary to express the cycle 

work in terms of T.> since it is "desired to minimize the energy con­

sumption at the same time delivering a specified energy per impact. 

The power supplied to the piston is 

HP =P0-Q_ k , • (2.25) 

where k is a conversion factor to express lb-in/sec in horsepower, HP. 

For one complete cycle the work done., W, is 

¥ = P s Qs T (2.26) 
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Use of Equation 2.24 into Equation 2.26 yields 

¥ = Pe Q. TT (2.27) 
o o 

At this point it needs to be pointed out that Equation Jlh27 

must be optimized subject to a fixed energy described by Equation 

2.8, as well as the response dynamics of the forward stroke given by 

Equation\2.12 and that of the return stroke given by a suitably 

modified form of Equation 2.20. 

To perform this optimization the forward stroke response, 

Equations 2.13, 2.l6 must be manipulated to incorporate the cycle 

work, W, and the dimensionless time, j. This is attained through the 

use of Equation 2.27 in the response equation, resulting in the expres­

sions 

,P A2. ... 
• / • s p \ W 

A P e s s o I kd * 

<T) = J L ! L _ _ _ _ sin /§ - ^ = 4 - (2.28) 

* /l-6i) 
M V2Q M/ P A T s s 

for the underdamped case, 

(-fi w \ - • y / i 
, , ̂  P Q TV 

P A W e '' s^su 

Z(T) = - ^ (2.29) 
^ P,QST 

for the critically damped case, and' 



VQ M 7 
A ' ¥ 

P,.Q_T 
P A e " ~ S / „ P A2 2 

S T> . . / K T S I • ' - ' ° , p , „,•, - y i - c # ) * ( 2 - 3 °» 
/M h- - P^V 

for the overdamped case. 

These expressions for the response must be further manipulated 

to incorporate the potential energy, PE, and the kinetic energy, KE. 

This is attained by substituting suitable modified combination of 

Equations 2.8, 2.9> 2.23 and 2.27 into the Response Equations. 

Development of such a combination proceeds as follows: 

The force upon a spring is given by 

F = X K . (2.31) 
p v ' 

This same force, F, in terms of pressure and area yields 

P A = X E . (2.32) 
s p p 

By substituting X from Equation 2.32 into Equation 2.9> an 

expression for potential energy is obtained as 

2 2 P A 
2PE =~YR • (2.33) 

The kinetic energy given by Equation 2.8 can be written intro­

ducing the substitutions, 

X p - ~ , (2.3*0 
P 



which combined into Equation 2.8 results in 

2 
MQ 

2KE ==-7r . (2.35) 
A 
P 

Equations 2.23, 2.27, 2.33 and. 2.35 c a n "be combined to give 

K E = ^ - ^ - . (2.36) 
nc' PE, T 

Equation 2.36 is a very useful relation in that it shows the 

functional relationship between kinetic and potential energies, the 

work done per cycle and the ratio of total time for one cycle to its 

forward stroke time. Substitution of Equation 2.36 into Equation 2.28 

gives for the underdamped case 

TT PE T 

( ) (HO* e ^ ( T - D ^ :-• Z 2 2 * 

(T) = t^MiWf""£in ^ -̂L - s & i ? J (2-3T) 

^ SW^T-I)2^ 

Equation 2.37 'is a function of three variables W, PE and i, so 

2.37 can be rewritten as follows 

JL. 

F(W,PE,T) = M ^ e-H sin ̂ j L y - z(T) , (2.38) 

where 

M = , (2.39) 

^W(T-I) 



and 

* = [i-- iLus^f. . (2.,0) 

Similar analysis can be performed on Equations 2.29 an(3- 2.30 

for the critically damped and .overdamped cases respectively. 

For the critically damped case this gives 

2¥ 
PET 

i— e 
(PE)2"T 

F(¥ ;PE j T)=-^i-e - Z(T) , . , (2.In) 

"where the relation (PE)2 = 2(KE)2 for relating potential and kinetic 

energies at critical damping has been utilized. 

For the overdamped case 

I, 

F(W,H3,T) = &&. e-H sinh: J^IS^] . Z(T) , (2.42) 

where 

-i 

E = (^)^~^l) . (2 A3) 
^ ( T - I ) 1 

Equations 2.38, 2.̂ -1 and 2.̂ 2 represent expressions for work 

and potential energy and it can be seen from these equations, that ¥ 

is a function of PE for specific values of the nondimensional time T. 

To find the minimum for the function W for a specific value of KE, the 

criteria 

dPE " 2F/W - ° ' (*-*V 



must be applied to Equations 2.38, 2.41 and 2.42. In other words, for 

minimum work. 

m = 0 ,. or (2.1+5) 
dPE 

'dF = 0 , (2.46) 
BPE 

and 

f = U , (2.4T) 

where U is a finite positive value different from zero. 

Differentiation as indicated by Equations 2.46 and 2.47 c an be 

performed on Equations 2.38, 2.41 and 2.42., After suitable rear­

rangement this gives, respectively, for df/3PE = 0 

tan T^TT = — 3 — - i ( 2. 48) 
2 U " 1 > ) l6ir( T-D

3S 4W(T-1)S 2 ( T - 1 ) 

n 3(PE) 2
T
2 " P E ^ + -S 

representing the underdamped case, 

4W 
PEr 

= 1 (2.1+9) 

for the critically damped case, and 

tanh pv^yy = ~ 5- (2.50) 
^W(T-1)H 1 6 ^ ' ( T - 1 ) J H 2 ( T - 1 ) 

^ ^ ~ n3CPE)2 r + la 

for the overdamped condition. 
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For df/dW = U, the corresponding r e s u l t s a re 

dF e~ J Jn2(PE)3 / /2T T . TTS P E T . nS 

* =
 s » w Lslnjr̂ ry - ̂  - 2 îy 

PETTT nS 
+ 2W(T-1)S COS 2(7-11 

for the underdamped solution, 

= U , (2.5.1) 

g . e" W; [_^,^_i|_l = y , (2.52) 
"(PIO^'-T (EE) J /1-T 

for the c r i t i c a l l y damped case , and 

dF e~F T T 2 ( P E ) 3 / 2 T p . , TTH , PET . , TTH 

w^aAr-if L ^ ^ iA ^ ^ 

PETTT , nH 
2W(T-l)H C o s h 2Tf^iyj 

= U . (2.53) 

for the overdamped case. 

Numerical values for the underdamped and overdamped cases are 

obtained "by a combined numerical and graphical procedure. Both sides 

of Equations 2.48 and 2.50 are functions of PE/W. Values for PE/W 

that satisfy Equations 2.48 and 2.50 for different values of T are 

found graphically. Table 2.1, for different values of T and corre­

sponding values for PE/W, is constructed from this graph. The values 

from this table are subsequently substituted into Equations 2.39; 
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2.̂ -0 and 2.̂ 3 "to obtain solution for IT, S and'̂ H, respectively. 

Consequently these values of N, S and H are substituted into Equations 

2.38 and 2.^2 to obtain PE for the underdamped and the overdamped case 

as a function of j . By use of Table 2.1 the values for ¥(Siir)*/ ./r:;.;f. 

different values of T are obtained as a function of z(t), and plotted 

in Figure 3. The expression for minimum work for the critically damped 

case is: 

W(min) = [Z(T)] 2 e-T (2.55) 

This equation has been obtained by combining Equations 2.27, 2.33 and 

2.35 and substituting into Equation 2„16 together with the expression 

of Equation-2.^9• Details of development of Equation 2.55 are pro­

vided in Appendix D. 

The term T in Equation 2.55 can be found by combining Equations 

2.23 and 2.27, which yields 

TT PE T _ /„ r/\ 
T =—W + 1 • (2-56) 

By substituting Equation 2.^9 into Equation 2.56, j becomes 

T = rr + 1 (2.57) 

Finally Equation 2.57 is .substituted into Equation 2.55, to 

give 

W(min) =11.256 [z(T)]2 (2.58) 

for critical damping. 

It is quite simple to demonstrate that Equation 2.̂ -7 is 



satisfied. Substitution of Equations 2.49 and 2.57 into Equation 2.52 

yields the expression 

3F _ .146 
3W = : s& 

PE is always a finite number consequently, Equation 2.47 is 

satisfied. When similar manipulations are performed on Equations 

2.51 and 2.53 it is easy to show that the basic Equation 2.47 is again 

satisfied. 

The results of Equations 2.48, 2.50 and 2.58 are plotted in 

Figure 3j> where it can be observed that there is a minimum value 

for ¥ at a corresponding T = 2.8. This indicates an underdamped 

region. No real values are obtained from Equations .2.48 and 2.50 in 

the range 3»6 < T < 5J> which indicates a transition range between the 

two extreme values of damping. 

The values plotted in Figure 3 are nondimensional and can be 

employed for any configuration similar to Figure 2.f^Tojqbtain the 

dimensional value of work, ¥, say in lb-in., the corresponding value 

of dimensionless W(min) fe'om the plot of Figure 3 must be multiplied 

2 
by [z(t)] , which, in turn is obtained from Equation 2.10. 

2.2.2 Power Consumption Analysis for Configurations 2.2 and 2.3. 

Similar analysis as performed on configuration 1 is developed 

in order to optimize the work consumption per impact. 

Neglecting friction, flow coefficients and fluid compressibil­

ity, an equation of motion for configuration represented in Figure 2.2 

is 



Table:2.1. Underdamped Case. 

T FE/W (FE/W) 2 

1.6 .36 . 1296 

1.8 .23 .0529 

2.0 .33 . IO89 

2.2 .53 .2809 

•2^k .57 .32^9 

2.6 • 59 .3^81 

2.8 .75 .5625 

3.0 .80 .6^-00 

Table 2.2 Underdamped Case., 

1 
l~1 

0 N (PEP 

.567 1.96 -̂.07 

.913 .79 2.06 

.855 .81 2.27 

.6k6 •99 2.33 

.6kk .855 2.29 

.660 .732 2.27 

. 409 .79 •2.1*3 

.3^1 .738 2.75 
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P A 2 

M x + — ^ x = p A , (2.59) 
p q s p s p 

with initial conditions 

x(0) = 0 

x(0) = 0 (2.60) 

This case reflects the fact that the piston is driven in both 

directions by P(s), from which is concluded that for a full cycle 

T = 2 and from Equation 2.27 

W.= 2P,Q T , (2.6l) 
s s 

which is the function to be minimized solution of Equation 2.59 gives 

PA2 

S ' P m 
Q '. 

z(T) =VMj?- ( l , - .e s ) • : , (2.62) 
P • ' 

where 

z(T) = M xp(T) (2.63) 

Substitution of 2.6l and 2.35 into Equation 2.62 yields 

_W_ 
2 

z(T) = R - R e 2 R , (2.64) 

where 

R = */§al (2.65) 
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From Equation 2.6^ it can be shown that 

W = t o d ^ T (2.66) 
2R2 ^ R-Z(T 

Due to simplicity of Equation 2.66. Minimizing W with respect to the 

dW 
function R, — = 0, 2.67 gives 

dK 

2 to [~rirT7R3 = I - Z(T)/R " x > < 2 - 6 8 ) 

From which a value for Z(T)/R can very easily be obtained with 

the aid of Numerical calculations, and results in 

^ = .655 (2.69) 

Substituting 2.69 into Equation 2.66, a nondimensional solution 

as a function of [z(T)] is obtained for the minimum value of W for 

configurations of Figures 2.2 and 2.3 as 

W(min) =M^'te(T)] 2 (2.70) 

This corresponds to a value which is 6l percent of that for 

configuration 2.1. 

2.3 Selection of Configurations 

It is apparent from Figure 3 that from minimum power require­

ments point of view, configurations of Figures.2.2 and 2.3 are 

superior to that of Figure 2.1,, the former resulting in an approximate 

saving of 39 percent energy consumption over the latter. For 
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Configuration of Figure 2.1, T is varied, which implies varying;'the 

return stroke time for a given forward stroke time. In Configuration 

2.2, T is a constant as it is assumed that forward stroke time is 

equal to the return stroke time. This corresponds to a singular 

point at T = 2. 

Other considerations such, as dynamic performance of Configura­

tion 2.1 versus that for Configurations 2.2 and 2.3 should also be 

taken into account. 

The spring effect in Configuration 2.1 will undoubtedly intro­

duce frequency lags which will, slow down the systems response. This 

aspect will be further examined in the next chapter. 

The only difference between configurations shown in Figures 2.2 

and 2.3 is in the number of lands of the spool value. It can be seen 

that in the three land configuration flow to the piston will be 

reversed as the spool moves half way between the extremes. For the l̂ r:̂  

scheme shown in Figure 2.3 flow reversal occurs at the end of each 

stroke of the spool. It may be noted parenthetically that the prac­

tical convenience of Configuration 2.3 over Configuration 2.2 will 

become apparent later when the type of feedback to perform the switch­

ing on the spool valve displacement is.considered. Therefore, for 

the purpose of performing the dynamic analysis either, Configuration 

2.2 or 2.3 might be equivalently employed,. 

2.k Selection of Switching Configuration 

Selection of an appropriate scheme for feedback from the piston 

to the servovalve to reverse the displacement of the piston itself, 



Figure h. Switching Configurations. 
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must be baised on such practical considerations as that it be of simple 

construction and inexpensive. Four different configurations are shown 

in Figure k. Cases "a" and "b" with kinetmatic linkages as feedback 

elements provide a weak design against fatigue failure. This parlp^u-

larly so, due to the high frequency at which the system oscillates. 

Following McAdams [l6], a quantitative estimate of the fatigue strength 

of the pins can be obtained. McAdams [l6] performed various tests on 

carbon and alloy steels to determine the relation between energy per 

blow and number of blows necessary to cause fracture. He used a modi­

fied Charpy method supporting specimens of different diameters as 

beams fixed at the ends. He then subjected these to repeated impacts 

by a falling hammer. Using various hammers at different heights of 

drop the number of blows necessary to cause fracture could be varied 

from about 500 to several millions. He thus plotted curves of "Energy ;p"e:-

per blow" (ft-lb) against the number of blows to fracture. Some of his 

results using a 0.5 inch diameter high carbon showed that at impact of 

200 ft-lb., one blow was sufficient for rupture; at an impact of 10 

ft-lb. rupture occurred approximately after 100 blows. At an impact 

of 0.1 ft-lb. for a similar specimen, fracture was evident after 

approximately 10,000,000 blows. These results can be related to the 

pins supporting the connecting arm between the piston and spool valve 

of Figures -̂.a and l̂-.b., If the pins are subjected to an impact force 

of O.98 ft-lb. at the end of each piston stroke. Referring to 

McAdams graph; again for an 0.5 inch diameter pin, this corresponds 

to approximately 100,000 blows at rupture, which means the pins sup­

porting the feedback arms would have to be replaced every 69 minutes. 



Case C employs limit switches or solenoids activated by the 

piston at its extreme positions. The resulting pulse is fed to an 

amplifier activating an actuator to displace the servovalve to the 

left or to the right. 

By keeping in mind that the hydraulic jackhammer for which 

this analysis.is performed demands a highly abrasive field|use, such 

a precise and expensive scheme to generate its oscillations appears 

to be very inappropriate. 

Finally, Case d appealed mostly because of the ample possi­

bilities of design using the same fluid media as a feedback from the 

piston to the spool. This last case where simplicity of construction 

and low cost are at a great advantages when comparing it to Case C; 

seems to be the likeliest candidate to be considered. However, 

several design changes need to be made to make it suitable for thevj^,., 

present application and the final configuration "can be seen in Figure 5 

2.5. Operation of Selected Configuration 

Referring to Figure 5> when main spool 9 is ported to 1, supply 

pressure P displaces piston 11 to the top of the cylinder. As piston s 

reaches the end of its top stroke, the feedback access 15 ports supply 

pressure P s to 8. Thus displacing spopl 9 ^o right (positive direc­

tion) which closes port P to Po and opens it to drain port P . At 

the same time port Pp is opened to P and closed to drain port P™. 

As main spool is being displaced in positive direction by P ^ enter­

ing 8; oil from space 7 is drained. When piston 11; seven is con­

nected through shaft drain passway four to PnQ „. 



Figure 5- General Valve and Ram Configuration. 



LEGEND FIGURE MO. 5 

1 Lower chamber 

2 Upper chamber 

3 Valve actuation drain line 

k shaft drain passway 

5 supply line for actuating left displacement of valve 

6 supply line for actuating right displacement of valve 

7 right valve chamber 

8 left valve chamber 

9 valve body 

10 tool 

11 piston (RAM) 

12 hammer 

13 tool lock in pins 

1̂ - feedback access-valve to left 

15 feedback access-valve to right 

16 drainport 



With P ported to chamber 2 and piston in top stroke position. 
s 

The flow into chamber 2 displaces piston to bottom of cylinder. When 

feedback shaft 17 is moving down, both chamber 8 and 7 are sealed 

off to pressures P ,_, P r and drain P^^. Thus the main spool main-

* s5 so r»3 

tains a fixed position until reaches opposite end stroke and con­

nects through the corresponding ports. As piston reaches bottom, 

stroke position, hammer 12 strikes the tool 10. Just prior to the 

impact, feedback shaft 17 ports P ,(-> five through 14- to chamber 7> 
sp 

displacing main spool 9 "to left (negative direction). At the same 

time feedback-shaft 17 ports chamber 8 which must drain by connecting 

eight through four to P-piV ^ r o m here the process described is ̂ -T̂ k̂  

repeated producing an oscillating action. 

Not considered in this analysis, a three way spool valve 

manually operated valve located before the main spool, series to divert 

flow of oil back to sump when system is not in use. 

All connecting lines are sufficiently short allowing friction 

losses, log to be considered negligible. 
2.6. Hydromechanical Components 

A brief summary of the details of the hydromechanical compon­

ents of the optimized configuration for the oscillator is provided 

here for ready reference. 

With reference to Figure 5 a four way - four land spool valve 

hydraulically operated 9, with the following specifications: A 

maximum displacement of 1.0 in. + 0.001 inch in either direction, 

minimum flow of 38 G.P..M. and rectangular ports of area equal to 
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.785 in • The pressure-flow characteristics are as in Figure C.2, 

Appendix C. It may "be noted that symmetry is most important as it 

improves*the linearity characteristics of the spool valve. 

2 
The piston is a reversible ram with an effective area of 3 in , 

ram length 1 in., and a one inch, stroke. 

] 



CHAPTER III 

DYNAMIC ANALYSIS AND PERFORMANCE OF THE SYSTEM 

3.1. Scope of the Ana.lysis 

A dynamic analysis of the valve-piston configuration arrived 

at in Chapter II can he performed "by considering the continuity equa­

tion, Newton's second law of motion., and the Pressure-Flow Relation 

for the valve. In what follows, a linearized, lumped parameter 

description of the system is obtained,. Various system parameters as 

well as valve coefficients are determined, together with a "brief 

analysis of the rationale for a linearized analysis. Pressure transi­

ents due to sudden stoppage of fluid masses are also analyzed. 

The latter part of this chapter is devoted to the dynamic sta­

bility analysis of the valve-piston configuration based on the Bode 

and Nyquist criteria for stability of linear systems. The stability 

analysis also incorporates the Describing Function analysis for non­

linear components. 

3.2. System Governing1,Equations 

A two-land, four-way, critical-center valve is considered in 

this analysis on account of its linear flow gain characteristics as 

shown in the sketch. 

The high precision employed in the manufacture of spool valves, 

with optimized performances and minimal losses with reference to the 

overall volumetric flow and working pressure, allows the following 
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Two-land, Four Way Critical Center 
Valve Characteristics 

simplifying assumptions commonly adopted in hydraulic analyses [̂ -]: 

a. Radial clearance between the spool valve and valve body is 

taken to be zero, and metering edges are taken to be perfectly sharp 

and oriented. 

b. The flow through each orifice.is assumed to be based on 

steady state value of valve coefficients, and all flow changes are 

assumed to take place instantaneously with variations in either 

orifice area or in pressure drop across the orifice. 

c. Connecting lines are considered, short enough in length and 

large enough in diameter to result in negligible inertial effects. 

d. Friction losses in connecting lines are considered neg­

ligible. 

e. Leakage flow past the piston is assumed to be laminar. 

f. Supply pressure and fluid bulk modulus are assumed constant 

throughout. 

g. System discharge is considered to be at atmospheric pressure. 



PL = Fl' 1" 

Figure 6. Flow and Pressure Drop in Piston. 
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3.2.1 Dynamic Analysis iifor the Piston 

Consider Figure 6, which is a simplified modification of the 

piston-cylinder configuration of Figure 5 for the purpose of identi­

fying the different variables in this analysis. The continuity of 

flow through chambers 1 and 2 may "be expressed respectively, as, [4] 

and 

dAV AV dAa 

^ - c.pA(Pl-p2) - >c e pAP l ,= - ^ + — f^, (3.D 

dAVp AV0 dApp 
Cip ^ * l V ' CeP

Ap2 " *2 = "IF + ~f "dT > <3.2) 

where C. and C are, respectively, internal and external leakage 
lp ep ' J- J to 

coefficients, P and cp, respectively, represent pressure and flow, the 

subscripts 1 and 2, respectively refer to the forward and return 

chamber and the A indicates a change of the variable it precedes. It 

is seen that 

AVn = V + A Ax , and (3.3) 
1 o p p v ' 

AVQ = V - A Ax', (3.4) 
2 o p p v ' 

where V is the volume and the subscript 0 represents the volume of 

either chamber at will. 

Equations 3.1 and 3-2 can be combined with help of the relation 



2 Vo = V l + 2 = VT ' (3.6) 

and 

dAVn ' dAV, 
1 

d t 
2 

dt~ ' 
(3.7) 

t o ob t a in , 

Aq + Aq2 - 2C A ( P l - P 2 ) - C A f p ^ ) 

dAv. dAvn v ,dApn dAp0 

1 • 2. _o A .rl ___2\ 
dt . ~ dt ' + "p \ dt '" dt J 

V x p /^P_i ^ \ , 
+ 3 I" dt " + dt / ' (3.8) 

Since the load flow and pressure are given by 

AqL = 
Aq, + Aq, 

_L c (3.9) 

and 

A pL = A pl " Ap2! ' (3.10) 

Equation 3.8 ^aJ w r i t t e n as 

dAx V 
A*L = A p L l C i p + 2 j + Ap " d T + 

_dAPl 

p d t 23 L d t 

-dAp dAp^ 
_*=± . _. £ 

A Ax 
P P 

" ^ 2 3 - ^ L d t ir d t 

=0 

(3 .11) 



Since 

dAp dAp0 

dt "' dt ' vo 

the last term in 3.H vanishes. 

The Laplace transfoî m of Equation 3.11 is 

A QL = ^ L (
C i p + C-¥) > V AXP + 5 S ̂ L • 0 

The upper case variable indicating Laplace transformed. 

Substitution of Equation 3• £> into Equation 3-13 yields 

i QL = A P L C T P + A p f A X p + l | S A P L ' O 

"where . • 

C T P = C i p + : | E • (3 

Next, a force balance on the piston gives 

2 
d Ax dAx 

A& = ^ T y + E - d t E + K t o p + AfL ' (3 
dt'-

a l so , 

A f g = V p L • ( 3 

The Laplace t ransform of Equation 3»l6 g ives 

AF = M^S'-AX. + B S AX + KAX + AFT , (3 
q T? p p p L ' x 
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where 

F = force on piston, 
g 

]VL = total mass of piston and.shaft, 

B = viscous damping coefficient, 

K = spring constant, and 

FT = external load. 

Equation 3-1^- relates the load pressure with load flow through 

pertinent parameters. Equation.3.1$, which represents a force balance 

on the piston, together with Equation 3-1^- form the basic dynamic 

model for the piston. 

3.2.2. Linearized Analysis for the Spool Valve 

In order to complete the basic dynamic model of the piston-valve 

arrangement, linearized equations describing the pressure-flow curves 

for the spool valve must be developed,. In steady-state, the load 

flow to the valve is a function of the load pressure and the valve 

position. In other words 

Q L = Q L < V PL> • (3-19) 

A linearized version of equation 3'«19 about the operating point is 

or 

dQT dQT 

AQL = a ^ A ^ + ^ ^ L ' ( 3 ' 2 0 ) 

AQL = Kq AXy - KCAPL , (3.21) 



•where 

Kq = ~ = is the flow gain, (3.22) 
Sxv 

and 

Kc = - ^ , , (3.23) 

,is the flow pressure coefficient. 

For any valve configuration'dQT/dPT is negative. This can be 
1J 1J 

shown by differentiating the orifice equation, which describes the 

flow through orifices with respect to the load pressure P . 
Li 

A combination of dynamic Equations 3-1^ and 3«l8 for the 

piston, and Equation 3-23 for the valve yields, 

A Xp = V?% "\ r& M, BVT7" "IK W, Z T~K K3.2^) 
H „3 ce t t W s + L~x~ +^u~f' + hr-•+ w~ + A

P p p p p p 

o Lce t ce 
S + " A -

P 

where K = K + C. + C /2, total losses coefficients. 
ce c lp ep 

For the purpose of simplifying notation the A of Equation 3-

is dropped from here on. It must be kept in mind though, that in 

linear dynamic system analyses, it is a standard procedure to analyze 

a system with respect to deviations of its variables from an equi­

librium point or null position of its components. Equation 3.2^ is 

the dynamic equation for piston position for variable valve positions 
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and load force functions for predominantly inertia type load. The 

first term in the numerator is related to the no load speed and the 

second term to the speed reduction due to load. Since the load does 

not include a mechanical spring., the quantity (KV^/hfiA ) in Equation 

3.2k vanishes. Furthermore, it also may "be noted that 

BK 

—1£ « 1 = 0(A ). 
A p 

P 

With these assumptions, Equation 3-2^ can he reduced to the form. 

K*\ - ~F i1 * Air- e>i 
y _iL £f? 1- (o 0^\ 

P ~ V A 3 *?W^ * W A . "" ^ 
W s + L _ r _ + igA- s + V 

P P P" 

or 

- K q X H _ ' ^ A + _ ! ^ ^ f f i 

p -- A K ce 

V = rVT 2
P ^ " BVt 7 - ( 3'26) 

1 P s • + p ~ + — - p - s + 1 ' 
r -̂8 A L A î pA 

P P P 

Considering the inelasticity of the piston impact against the 

tool without rebound, and that the switching of the piston takes place 

at /the instant of impact, it is reasonable for the purpose of dynamic 

stability analysis of the system, to disregard the influence of the 

load disturbance on the piston displacement. Thus the effective equa­

tion for further analysis and design is 



Kq 
X A 
_P P. 

v taw,- 26 
(3.27) 

v/sT 26 , \ 

U) 

where 

;4PA; 
CD ivA ' (3.28) 

and 

ce / M_T B / ;. T , , 

p */ T p y M 7T 

It may be noted that cu is the undamped natural frequency, and 6 

is the damping ratio. 

3.3 Valve and Piston Coefficients 

i) Expressions for Null Value of Valve Coefficients 

It must be pointed out that most critical values of various 

valve coefficients from the stability standpoint are defined at Null. 

It is, therefore, appropriate to analyze the system dynamics in terms 

of null values of Kq and K , namely Kq and K , respectively. 

Earlier the flow gain, Kq, was defined as 

3QT 
K q = ^ - . (3.22) 

v 

dQT/dx is obtained by differentiating the general pressure-flow 
Li V 
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equation [Equation d2, Appendix C] for a four way critically centered 
x 
v 

valve. This yields, for -TT~T = -*-> 

K^ = ca wVi ( lV PL) • (3.30) 

Evaluating at null position [Q = P-r == x = 0] yields the null flow-

gain coefficient as, 

K% = C*VJT ' (3-31) 
where 

C = discharge coefficient;, 

W = area gradient, and 

p = means density 

The 0 subscript indicates', value at valve null position. 

It may "be noted that leakage flow in the general pressure-flow 

equation has "been neglected in order to simplify the analysis. This 

does not alter Equation C-l as QL/Q.-, , » 1, Q leakage "being of the 

-3 
order of 10 units. Furthermore, the leakage at null position of 

the spool valve is constant "because P is constant and P = 0. Its 
S J_i 

partial derivative with respect to x is zero which makes Equation 

3.31 accurate. 

The flow-pressure coefficient, K , was earlier defined as 
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Figure 7. Valve and Piston Configuration. 
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dQT 
K c = " 3 P 7 ' (3.23) 

1 J 

By differentiating Equation C.2 (Appendix C) and evaluating at 

null yields, K = 0 which is an unacceptable value. It may be noted 

that since Q is zero at null position of a critically centered spool 

valve, the leakage flow becomes quite significant. 

Thus, the null expression for the flow-pressure coefficient 

can be obtained after the leakage flow is specified. An expression for 

leakage flow can be obtained by considering laminar flow through a 

sharp-edged rectangular orifice,, 

With reference to Figure 7.A and J.B, the leakage flow equation 

is given by 

I rrr'~W P 
C C B (3.32) 
2 ~ 32M- 2 > 

where 

and 

rc « 1 , 

AW »r- , 
c 

Equation 3-32 describes the flow through a sharp-edged orifice 

formed by the radial clearance, r v, when the spool valve is at null 

position. The pressure drop and leakage flow in a four way spool 

valve configuration are P /2 and Q /2, respectively, for each orifice, 

where Q is the leakage flow when the spool, valve is at null position. 
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Differentiation of Equation 3•32 "with respect to P and use of 
s 

the definition, BQ /dP = K , yields 
s s c 

TT ¥ ^ 

Keo=-32iT£' (3-33) 

where 

K = null pressure-flow coefficient, and 
CO 

W = — — = area gradient. 
dx ° 
v 

The pressure sensitivity at null is the ratio of the null 

flow-gain coefficient over the null flow-pressure coefficient. A 

numerical estimate of the value of pressure sensibility can be made 

by assigning typical numbers to various parameters. For petroleum 

base fluids, the fluid density and viscosity are.[4], approximately, 

-k 2 t k 
p =0.78 * 10 lb sec /in , and 

• jj, = 1.8 • 10 lb sec/in2 . 

For sharp-edged orifices, regardless of the specific geometry, 

the discharge coefficient [4] is, approximately, 0.60. A typical 

_4 
value for radial clearance in hydraulic spool valves is about 2V• 10 

inches. 

Thus 

/P_ ^_ 
Kq C^W,W-, C,S2u/P 

K = - ^ = ̂ f ~ = . ^ H L _ - 31,800 ̂  . (3. 3k) 
po K. TT d ~d r— s 
* CO TT W r TT * # /p 

c c 
32[i 
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For a supply pressure of 1000 Psi, it isn't unusual to 

obtain pressure sensitivities of the order of 10 psi/in. This is an 

important coefficient/ as it indicates the ability of a particular 

value to overcome STICTION forces. The higher the pressure sensitiv­

ity, the quicker the response. It may be noted, parenthetically, 

that the null pressure sensitivity is independent of value area 

gradient, and, therefore, independent of valve size. 

ii) Expression for Leakage Coefficients for Piston (C. and C ) 
' * _ N ip ep' 

The leakage coefficients are obtained by assuming leakage flow 

linearly proportional to pressure drop across the piston. With 

reference to Figure 7C the flow through an annulus:is 

TTD hJ 

12|j,L Lr 

o 

or 

^ ° (3.35) 
Cip Q

 TT Dh3 

Note that C. is the annulus internal leakage coefficient. 
ip 

Equivalently, with reference to the Figure 7C, external annulus 

leakage through the shaft and walls is given by 

AZ _ _L _ 1§M£ 
Q ~ C " ^3 

ep ndh-, 
(3.36) 



iii) The Viscous Damping Coefficient for the Piston 

By definition, 

TA 
1_ B. 

V f a v > (3'38) 
P P 

where 

I = viscous force, 

B = viscous damping coefficient, 

V and A are the piston velocity and cross sectional area, 
P P 

respectively, and 

T = M* + > (3.39) 

where 

T = sheai? stress, and 

ty = viscous strain rate,. 

The viscous strain rate is defined as 

m v 
•«l£"l? • O.to) 

Note that h is the radial clearance of the piston. By com­

bining Equations 3*38, 3»39^ an(^ 3.^0 an 'expression for viscous 

damping is obtained as 

3 = |i TT I) , (3Al) 
P P 

where D = piston diameter. 
P * 



Similarly, for the shaft 

B s = |j. rr d , (3.^2) 

where 

B q = viscous damping coefficient of the shaft, 

and 

d = shaft diameter. 

Referring to Figure 7c the total damping coefficient for the piston 

and shaft is 

B = B + B fa. ̂ 3) 
p o 

3. k-. Numerical Estimates for Values 
of Various Systems Parameters 

In order to perform, a frequency response analysis of the 

dynamic transfer function., 

Kq 
x A 
_E JL 

v /s 25 
• V 2 u) 

0) 

(3.27) 

it is necessary to assign numerical values to u) and 5> respectively 

defined by Equation 3*28 emd 3«29« Since it is intended to compare 

the performance of the present hydraulic oscillator with the more 

commonly available pneumatic device, typical values of the physical 

dimensions of the pneumatic piston cylinder arrangement are taken 

from reference [l̂ -l. It may be observed from Equations 3.28 and 3*29 
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that in order to obtain numerical values of these expressions it is 

necessary to have the physical values of various parameters of the 

system, including various valve and piston coefficients and fluid 

properties. 

From Reference [l̂ -];> some of the dimensions chosen are (See 

Figure 7c) the area of the piston, A = 3 inches, length of the piston 
• P 

L = 2 inches, mass of the piston M™ =: k lbin., diameter of the shaft, 

d = 1 inch, and length of the shaft passage, -£ = 2 inches. 

The fluid properties for.:.,a typical hydraulic fluid are taken 

from Reference [̂ +], and in addition to the values for mass density, p, 

and absolute viscosity, \i, quoted previously, it is necessary to 

include the bulk modulus, 3, a fluid property that affects both u) and 

6 in Equations 3.28 and 3.29. A typical value of 3 for hydraulic 

5 2 
fluids including entrapped air is, 3 ='10 lb/in . The discharge 

coefficient, C , is approximately 0.6o and the area gradient, ¥, is 

taken as 0.785 in /in because this particular value multiplied by the 

full displacement of the value (x = 1 in.) yields a cross sectional 

2 
area of O.785 in , "which is consistent with that used in Reference [1̂ -]. 

Substituting these numerical values,, into Equations 3•31* 3*33* 

3.35* 3.36 and 3.̂ 3 yields 

O 

Kq = 3/765 in /sec/in, 

K = 68-10"'̂  in3/-^ [with v = 2-10"3 in], co m u c J' 

-1 en m-3 in3/ . 
c. = .159*10 /psi, 
ip ^ sec' •* 

-^ in / C = .073-10 - --—-/psi, ep sec'"' ' 
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and 

B = 18.1-10" lb-sec/in. 

Furthermore, use of the definition 

K = K +C. -I- C , (3.^) 
ce co lp ep ' 

gives the total value coefficient as 

• 3/ 9 
K = 0.007•—.—- ["with r = 2U0'5 in] ce in *- c J 

Determination of the hydraulic natural frequency (o>) and the 

dimensionless damping ratio is performed, by simply substituting the 

preceding numerical values into Equations 3.2.8 and 3.29/ respectively. 

From Equation 3*33 -it can be seen that K is directly propor­

tional to the square of the radial clearance r . An increase in r 

c c 

increases the damping 2.-atio, since K a is linearly relates to K as 

seen from Equation 3.^. Furthermore, K a is directly proportional 

to 6 (Equation 3.29). 

Variation of 6 as a function of T.. , is plotted in Figure 6a. 

and these values "will be determining the solution of Equation 3.27 as 

a function of 6. 
The hydraulic natural frequency thus obtained is 

cu = 10,766 rad/sec/ 

The damping ratio varies as a function of the parameter- r . 

This is seen in Figure 8. Discussion of the use of Figure 8 in :, 

J 
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Effects of Parameter Variations on the Characteristic Transfer 
Function. 

D) 
C 

*(/) $P (D 
L. 
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c 

where 

M t 

V t 

XP 

AP 

K ce 

T 

T = l /ci>, : 

8 = K c e / A p ( P M t / T t ) Vs 

v.'' T, K AF 

ll l\ 

1 
\ i 

t - . ill . f 
1 I t i • 

1 t i 

.. 

, t i \ 

K.„ =K /A , 
Af ce ' p ; 

and 

T l = V ^ K c e -



calculating system response is postponed until a later section. 

3.5. Effects of Variation of Parameters on the 
Characteristic Equation 

It is of considerable interest to determine how different 

parameters affect the system characteristic equation. This is 

explained via a scheme illustrated in Chart 1. It is seen from this 

chart, for example, that as the total volume, V^, is increased, the '••:: 

period of oscillation, T, increases and the damping ratio, 6, decreases, 

Also coefficient T, in Equation 3«26 increases, whereas there is no 

influence on coefficient K ;„ of Equation 3.26. In a similar fashion 

the influence of variation of other system parameters on the system 

characteristic function may be ascertained from the chart. 

3.6 Validity of Linearization 

Up to this point the analysis of the servovalve and piston com­

bination has been made assuming very small displacement of the valve. 

Also the valve coefficients Kq and K are evaluated at null as this 
c 

is the operating point at which stability is most critical. The 

validity of such a linearization remains to be established. This 

may be accomplished by first deriving the more accurate equation of 

motion for the valve-piston system. 

A simple lumped mass load representation of the piston motion 

as in Equation 2.3 thus neglecting the spring motion term gives 

o 
d "x 

P L A p = M T - i ; - (3.H) 
dt 

Combination of Equations 3-1^ and C.2 (Appendix C) and 



subst i tut ion of P from 3 . ^ yields 
-U 

xv ^1 d x v ^ 2 Cd / P s a / 2 . 

¥F \f) MXvV- ~ |x I P A _.2 , P k I v1 s p d t 

UgA2«3 A V d t 

P P 

(3.*5) 

This i s a nonlinear d i f fe ren t i a l equation describing the valve 

piston system. The pressure flow equation for the valve piston system 

[Equation C.17] i s derived in Appendix C and i s also plot ted in Figure 

C.2. A f i r s t look a t t h i s figure indicates that these charac te r i s t i c s 

are highly nonlinear. However, a closer look a t Figure C2 indicates 

a l inear operating range which corresponds to PT /P a < 2 /3 . This i s 
L b — 

in fact, the design condition for maximum power transfer (Reference 

[^]). If it is assumed that P-r/Pg < 1 then 

\r PTAV2 

t1 * KF & = °̂ " %m ^ (3^6) 

where 0[ ], indicates of the order of. 

Subsequently, Equation 3«^5 becomes 

c^ /p vV2 
? 

_ .. d x 0 „ dx _ 
d 

L- 2 , . 2 h a) dt + XJ dt L- 2 , . 2 h a) dt + XJ (3.^7) 

In Equation 3.̂ -7* CD remains the same as that defined for the linear 

model by Equations 3.27 and 3.28, whereas the damping ratio is 

redefined as 
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6 
-C^ Wlx I /P _ ., 

This is the equation of motion valid for the operating range of 

2 
the valve-piston system, namely P s; — P . 

L j o 

It can be observed from Equation 3«28 that the hydraulic 

natural frequency is fixed by four parameters;, namely 3J A > V , and 
p t 

3VL; and is in no vay affected by the operating point of the valve. 

Thus a) is independent of the operating point defined by the valve 

position. This is not the case for the damping ratio, which depends 

strongly on x . In order to simplify the nonlinear Equation 3.̂ -7 it is 

necessary to obtain an effective value for X . Toward this end, first 

consider a sinusoidal motion of the valve, defined by 

Xv = A sin u)t . (3.^9) 

The effective displacement of the motion is defined as 

Xveff = l f , (3.50) 

where the overline indicates the time average. Since the time 

average of the squared sine wave is j~, Equation (3-50) simplifies to 

X eff =-- . (3.51) 
v y/2. 

Equation 3.52-can be used to replace |x | in Equation 3.^7. 

This modifies Equation 3.^7 "to yield 
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Kg A , _ _d 
/2A "dt" 

P 

? 
d x dx 

1 
f2 
ai 

P 

dt" 
>F-

U) 
••« 3? 

dt 
H- •1A (3.52) 

where 

s ^ 
1/2 

Kq = WĈ 'i;—J , as defined earlier. 

The Laplace Transform of Equation 3*52 for zero initial condi­

tions is 

Kq 
V A 
• ^ z = - — - ^ . (3.53) 

A//2 s/s +gA a. X 
\2 u) / 
(JO 

Concluding, the quadratic representation of the hydraulic power system 

may "be used over a large range of operation which validates the pre­

viously performed approximate linear analysis. The hydraulic natural 

frequency is independent of valve piston motion, "but the damping ratio 

varies with valve position., Thus the validity of linearization is 

justifiable. Furthermore, the system stability analysis shows that the 

linearized model satisfies more stringent stability criteria than the 

actual nonlinear system.. 

3•T• Dynamic Response of Three-way Vis-a-vis 
Four-way Valve s 

As has "been pointed out earlier in section 2.2, the four way 

valve configuration offers a better switching design characteristic 

for the present system. A simple comparison of the natural frequency 



and damping ratio for a three-way valve with those for the four-way 

valve must be considered to confirm this observation. 

The undamped natural frequency and the damping ratio of a 

three-way valve controlled piston for constant supply pressure can be 

derived by considering the valve flow equation developed in section 

3.2.2. For the three-way valve P == P™ = head pressure on piston, 
If J.l . -

giving; 

lT == KqX - K L . (3-5*0 
L v c H x ' 

Use of the continuity equation to the control volume of 

Figure 9J yields 

dAV dAp 
AqL + Ci A(PS-P-.) == — + AVH --^ , (3.55) 

where 

C. = leakage coefficient, and 

V = head chamber volume. 
IX 

The head chamber volume i s given by 

V^ = V + A Ax , (3.56) 
H o p p ' x ' 

where 

V = initial head chamber volume, and 
o 

A = head side area. 
P 

Combination of Equation 3-55 and 3• !56 with |A x | « V , gives after 



rCj(l|-e> 

Figure 9* Three-way Valve Configuration. 
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Laplace transformation and dropping the A before the variables, 

'l + ClPS=ApM, + C i P H + f s P H • (3-57) 

The force balance on the piston gives 

V p = V B - %g2 X
P ' < 3 - 5 8 > 

"where 

A. = area on shaft side of piston. 
s ^ 

Combination of Equation 3-5^-> 3«57 an^ 3-58 results in the system model, 

Kq 
X A " 
P P 
v s 26 2 

~- + — S + S; 
3 u> 

U) 

(3.59) 

where 

K.„ / VMy 
6 = 2A~ I T ~ ' and (3*60) 

CO 

V o 

7 vo^" ' 
(3.61) 

The corresponding expressions for a four-way valve controlled 

piston, respectively given by Equations 3-28 and 3-29» are: 



n—? 
/ ' p A p 

It can "be seen that "both ci) and 5 for the three-way valve 

controlled piston are lowered "by a factor of —-. as against those for 

M 
the four-way valve. This is "because in a three-way valve only one 

line is controlled, leading to a single volume and oil spring. This 

is vis-a-vis two lines in a four-way valve. The four way valve also 

controls two volumes and oil springs. Keeping all other parameters 

constant, the dynamic response of a four-way valve controlled piston 

is superior, because the cu of four-way valve is greater, which in 

turn makes the period, T, shorter. 

3*8. Stability of the Linearized iSystem 

The linearized system .stability may "be examined through the 

dynamic Equation 3.27. This equation was solved on a digital computer 

for a damping ratio varying between O.Ôt- and 1.2 with the valve near 

the null position. These results are shown in Figure 13 as Nyquist's 

plots. Figure 15 shows the same results in the form of Bode plots. 

It can be seen that for 6 = O.Ôt- numerator dynamics has a pro­

nounced effect on the resulting Nyquist plot leading to a very 

unstable system. As the damping ratio is increased the effect of 

numerator dynamics.decreases and the system stabilizes. This can be 

seen from the curve for 6 = 0.6. 

The same conclusion may be made from the Bode diagram of 

Figure 15. For a damping ratio of 8 =: 0.Ôt- it can be seen that the 

magnitude ratio decreases from + 80 db at UJ = 0.1 rad/sec to - 10 db 



at co = 5,00.0 rad/sec. At an cu =: 10.,500 there is a pronounced peak. 

At the same time the phase angle drops sharply from - 90 to - 270 . 

It can also he seen that the phase angle curve crosses the magnitude 

ratio curve at an angle,;,less than - 180 and at the magnitude ratio 

greater than 0 dt>. Thus indicates that the system is unstable. This 

point also corresponds to the - 1 < - l80 critical point of the 

Nyquist diagram as expected. It is seen from the Bode diagram that 

the crossover frequency tu is approximately equal to the velocity 

constant, that is 

Wc »Kq/Ap' . (3.62) 

Furthermore, it is also noted that the resonant peak of the quadratic 

occurs at approximately 10.500 rad/sec, which corresponds to the 

hydraulic natural frequency cu. By definition, the gain level of the 

asymptotic curve is co /cu, or using Equation 3.62 the gain level is 

Kq/A /co at the frequency, co. Also by definition, the amplification 

factor for the quadratic, at resonance is ~ . 
Kq/A, 

This means that the gain level at resonant peak is 

which must he less than unity for stability. This yields 

26u) ' 

Kq/A 
— £ < 2 6 . (3.63) 

This result can also be obtained by taking the equation 

1 + G( j(A)) = 0 , (3.6*0 

and performing the Routh test for stability. 



Equation 3*62 sets a rule for a permissible crossover 

frequency. It can also be noted from this, that large velocity con­

stants, Kq/A , require large hydraulic natural frequencies and also 

large damping ratios. It is -worth noting that values of thus computed 

damping ratios are only slightly lower than those measured experi­

mentally. 

The Bode diagrams of Figure 15 were constructed with the vari­

ous damping ratios. As mentioned previously, the effects of numera­

tor dynamics disappear completely for 8 > 0,6, but is still noticeable 

for 6 = 0.4. 

It is definitely not desired to choose damping ratios higher 

than 6 = 0.6 as these values correspond to operating points close to 

null position of the valve. At full displacement of the valve the 

damping ratio is larger, and since it is not desired to have a slow 

responding system, damping ratios in the range 0.4 < 8 < 0.6 are 

appropriate for this system. The value 8 = 0.6 will be used in the 

subsequent text. 

The damping ratio in this analysis was varied by changing the 

values of the leakage through the valve. This ensured no changes in 

other system parameters, as would be the case if lapping of the servo-

valve lands had been varied to adjust the damping ratio (see Figure 8 

and section 3«4). It was also noticed in section 3«3> that use of 

different viscosity and density values (different oils), had little 

or no effect on the systems damping ratio. 

The system stability at off-null position is automatically 

guaranteed if the system is stable at lull position. This is due to 
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the fact that the damping ratio at an operating point away from the 

null position is higher in proportion to the distance of valve move­

ment. For example, in Figure 1̂-,, a 6 == 1.0 at null, corresponds to a 

6 = -̂.8̂ - at x =0.5 in. This renders the system very stable but too 

stiff to be useful.- Therefore, if the system is stable for very 

small valve displacements from null, the system will be stable for 

all other operating position. 

The magnitude of the system's open loop gain constant Kq/A , 
sr 

for which this system is critically stable, is readily found by con­

sidering the system transfer function 

Kq 
A 

G(s) = • — ^ 

s,(~ + 26ULS + 1 

(3.27) 

n 
Ui n 

Separation of the imaginary and real parts gives 

G(jtt)) = 

Kq 
A 
_J2. 

2\2 
;.-.2SVT + {---2 J 

3,2:3 • (3.65) 

The phase angle is 

= - tan 

r- ' MS 
•• .".. -4' 

-If 7KI-

t 2'Sug^J (3.66) 

For marginal stability 0 == - 180 and ou = OJ . Thus Equation 3.66 

becomes 



or 

with 

5 = 0.6, and 

%. 
10.766 rad/sec 

Equation 3.68 yields 

U) = 10.766 wc 

For marginal stability G = 1 
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- 180 = - tan - 1 

2 
1 - *«-

2 
• <V 

L-26(A)nU)J 
(3.67) 

1 -• 

0 = -

ut-

"h 
- 26 tU UJi n 

(3.68) 

i . e . [°o3 

Kq 
A 

P 

[ ( . 2 6 ^ ) " + (uru>3/a£)2]2 
= 1 (3.69) 

By substitution of the value yj = 1.0,766 for cu in Equation 

3.69 yields 

f = 1.2 • 1012 

p 
(3.70) 

Therefore, it can be concluded that the system is stable for 



Kq/A < 1.2 • 1012. 

3•• 9• Describing Function Analysis 

A canonical transformation of the system block diagram of 

Figure 10 is shown in Figure 11. This may be represented in mathe­

matical form as 

C(.1ai) N(a) * G(,JM)) , > 

SOS) " i + N(5T* o f e • (3-71) 

For the present problem this may be written as 

xv " 1 + NTSF-I T G Q I J ' u * T 2 j 

where the linear frequency dependent Gr(ju)) is of the form described by 

Equation 3.27- ^ae nonlinear part of the transfer function may be 

represented by a relay with hysteresis of the form N(a) S- ft. Note 

that the latter is, of course, amplitude dependent and has a phase lag 

due hysteresis. 

Stability of this system is examined by considering different 

methods. Stability from the Nyquist plot is based on the character­

istic equation which is obtained by equating the denominator of Equa­

tion 3.71 to zero. Thus 

1 + (N(a)^0) G (ju,) = 0 . (3.73) 

A polar plot of G(JOD) we a )4!£h„ 0 must be examined with reference 

to the critical point -1 + jo. Rearrangement of Equation 3-73 in "the 
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form 

G(jui) = - ̂ 7 ^ - 0 > (3.7*0 

separates' the linear-transfer function factor from the non-linear 

factor. G(jcu)' and - l/N(a')^s0 are plotted on the same plot obtain­

ing a frequency locus and an amplitude locus. If these loci inter­

sect, there exists a sustained oscillation in the system described as 

a limit cycle. It can be added that a stable limit cycle is one which 

after being subject to a disturbance will return to its original 

frequency of sustained oscillations. On the other hand, an unstable 

limit cycle is one which after an applied disturbance, will either 

increase its frequency of oscillation to infinity or decrease and 

eventually die out. The nature of this systems limit cycle will be 

examined through a gain-phase describing function plot. 

From Figure 12 the relay characteristic may be represented by 

. h = - sin — , a > h , 
a . — 

_T, . k-M . . - 1 h 
I B == — ;;„£=_ Sin — , v ' Tia rrr- a ' 

(3-75) 

where 

M - a sin ujt 

The Describing Function Equation 3»T'+ becomes 

1 1 •• . - 1 h f ,* 

W^'M'^- i ' ( 3-T 6 ) 

rra 
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or 

as 

= jjg (cos 0 -- i sin 0) . (3.77) 

Substitution of Equation 3-75 into 3*77 yields 

lib = m [A2 - h2 + i h ] • (3.?8) 

Equation 3*78 can he divided into the real and imaginary parts 

•^ == w •' a n d 

Re=l>2-h2 • 0.79) 

From here the solution is ohtained by graphical methods. f'rFrom 

physical characteristics of the systems varia'bles maximum displace­

ment x and x < The relay is defined "by h =0.5 and M = 1. Thus gives 

- i ̂  h == - i 0.3927 • (3.80) 

A line drawn parallel to the real axis at a distance on the 

negative imaginary axis of 0.392? units intersects with the Nyquist 

diagram at 0.1 units from the negative real axis for 6 = 0.6 (See 

Figure 13.A), 

Thus, 

- £ fa2 - h2 =- 0.139 , (3.81) 
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or 

a = 0.5159 V (3.82) 

and 

» = ̂ 350f|f . (3.83) 

The range at which the imput amplitude "a" varies with respect' 

to 6j is found to be .5159 ^ a £-.6782, which happen to be very small. 

In summary, from the describing function analysis, it can be mentioned 

that the system will oscillate at an amplitude of a = 0.52 and a 

frequency of ou = ̂ -350 rad/sec. 

Figure l8 shows a gain-phase plot as well as the relay charac­

teristics drawn to the same scale. The gain phase curve is obtained 

directly from the Bode diagram (.Figure:-15) and the describing function 

curve for the relay characteristic, is obtained from Figure 17* which 

has been reproduced from Reference [10]. The intersection of,both 

curves yields the amplitude and frequency of oscillation of the 

systems limit cycle, which corresponds approximately to the amplitude 

range and frequency obtained by the describing function method. It 

can be seen from this figure that as the damping ratio is increased, 

the amplitude is also increased. The direction of the arrows indicate 

increasing values of M/a and to, respectively. At the intersection of 

the two curves, the arrows are pointing in the same direction, thus, 

indicating a stable limit cycle (Reference [1.1]). 
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CHAPTER TV 

ANALOG COMPUTER SIMULATIONS 

h.1 Introduction 

Computer simulations of the system described by the block 

diagram of Figure 11 to verify the validity of the linear part with 

respect to stability and to reproduce the complete systems output 

were performed on a Systron Downer SD 10/20 AnaJlog Computer. The 

simulations response to step, •disturbances and the complete system 

output was displayed on. an oscilloscope; additionally, for permanent 

record, an x-y plotter was hooked up to the computer's output. 

It is often necessary to time and magnitude scale, the real 

system variables before programming into the analog computer. Because 

the real time solution of this particular system would be too fast for 

the computer output display units to respond adequately, it is neces­

sary to slow down the computer solution. Also, it is necessary to 

magnitude scale this configuration to increase the value :6'f the 

small voltages that represent the system real variables, to levels 

where computer noise and error are minimized. The amplifiers for the 

SD 10/20 admit voltages within the range of + 100 ; volts. 

h.2Dynamic Stability 

The system described by the block diagram in Figure 11 was 

taken as the model for the computer simulation. The general form 

for the closed loop linear block is 
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K 
a x + a,x + a x + a x = — - x (t) o p 1 p a p a p A vv ' ( ^ . i ) 

where a , a , ap and a are the systems coefficients and the dot over 

the variable x denotes the order of the derivative of the variable 

with respect to time (i.e. x* third order, x second, etc.). Rear-
P P 

rangement for analog computer programming, together with the 

corresponding time and magnitude scaling yields 

x . .= -
P 

— 10 T x + — 10 T x + - 1 1 0 T 3 x 
.aQ c p aQ c p aQ c p 

K T q c 
3 

A v x (t ) A Xa v cy 
p o 

(̂ .2) 

where T = time scale constant, 
c 

X = Magnitude scale constant, and, 

t = computer time. 

In order to determine a suitable T ,. The following two criterias are 
c to 

employed. 

a) 

T £ K — 
c o a. 

T <; 
\ o a0 

a Nl/2 

(M) 

1/3 

c \ o a..,/ 



"where 

K = gain cons tan t o 

and 

1 :> K £ 100 and f K3) 
o 

b) A sinusoidal forcing function of frequency OD (Rad/sec) is 

x (t ) = a sin U)(T t ) (k.5) 
V C C C 

For 

CD T = 1, and u> = ^356 - f t , (k.6) 
O ScC 

this gives 

T = .23 • 10~3 . (k.j) 

This value of T should also be consistent "with the criterion c 

described by Equation 4.3. 

Since 

a = 86-10"10 

a1 = aab/u^ 

(̂ .8) 
an = 1 

^ s ' 
a3 = ^ + 1 . 
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Substituting the corresponding values into equations 4.3 and taking 

K = 7. This yields 

a -̂  
K — = .539 ' 10-:J, for 5 = 0.6 o a, 

(K — ) = .246 • 10" , and (4.9) 
\ o ap/ 

• a V3 
(Epif) =-363-lO-j. 

The smallest value is .246 • 10 , from the second equality of 

Equations 49. The variation of the variation of the damping ratio, 6, 

in the first equality of Equations 4.9* which is included in the term 
a 

a • "between 0.1 < 6 < 1.4 yields values of K — that fluctuate "between 1' o a 

3.24 • 10 for a .6 = 0.1, gradually decreasing to 0.231 • 10 J for a 

-3 value of 6 = 1.4. Therefore it is acceptable to use T = 0.23 • 10 

sec. 

The final scaled equation becomes 

x = - [49.76b xp + 61.6 xp + 17.5 xp - 1.75 *v(^c)] (̂ -9) 

The first term to the right of the equality sign of Equation 4.9 

contains the damping ratio which can be varied conveniently via a 

potentiometer on the computer. 

Substituting numerical values in Equation 4.5 yields 

x (t ) = .5 sin t . (4.10) 
vN c' c v ' 
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Figure 25. Percent Overshoot as a Function of 6. 
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This forcing function equation needs to be scaled for reason 

1 , 
already mentioned. A convenient magnitude scale factor is X = -. po . 

This yields 

cp = 30 sin t c , • 

cp = 30 cos t , and ;) (4.11) 

cp == - 30 sin t = - cp » 

The analog computer setup for Equation 4.9 and the generation 

of the sinusoidal forcing function is shown in Figure 19. Equation 

4.9 set up is subjected to a step disturbance in order to determine 

the closed loop stability conditions. The results are plotted in 

Figures 20 through 24 for various damping ratios. The experimental 

results seem to substantiate the response obtained by the analytical 

methods in Chapter III. From these figures a plot of percent overshoot 

versus damping ratio, .6, is constructed and can be seen in Figure 25. 

4.2 System Simulation 

A relay is incorporated to the system as originally described 

in Figure 11 in order to examine the switching effect of the piston. 

A forcing sinusoidal signal with amplitude a = 0 . 5 ; and frequency of 

0) = 4,356 '£=£?£ respectively, is fed into the system. This sinusoidal 
ScL 

signal is integrated as it passes through the system and activates the 

relay which in turn switches the direction of the voltage. 

It may be noted that the systems response to switching is 

highly dependent on the mechanical characteristics of the relay being 
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employed. In this case it was noted that the relay was slow in 

reacting to changing in voltage, probably due the physical gap between 

the relay contacts. The output desired was displayed on the oscil­

loscope. 

With adequate scaling, it was recorded via the x-y plotter. 

The original recording can be seen in Figure 26. The damping ratio used 

for this display was,, 6 = 0.6. One inch displacement of the plotter 

marker in x direction corresponds to 0.5[in] of the real magnitude; 

similarly, one inch displacement in the t^ direction corresponds to 

1.6 real seconds. From this same figure it can be seen that switch­

ing occurs within approximately 0.02228 real seconds. Considering 

that maximum return transient peak pressure due to sudden stopping of 

piston, occurs approximately at TT/2cu[sec] after the valve is closed 

[̂ -], or in this system 0.15 • 10 (sec); it is evident that peak 

transrent pressure would present in the system. The peaks that can 

be seen at the end of the vertical strokes of the plotter marker are 

attributed plotters mass inertia and in no way should be confused 

with pressure surges, as the plot represent x displacement only. 

In order to avoid transient pressures in the cylinder, the 

valve should reverse the flow in the lines at 

* < S 5 <^12> 

Controlling deceleration to reduce the peak pressure is not 

practical. The only other solution, if switching time requirements 

can not be met, would be to install a relief valve between lines. 
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This would operate just above the supply pressure, P . The relief 
s 

valve can serve to by-pass the flow back to the drain port in the 

event of a sudden pressure surge, and at the same time prevent 

cavitation on the opposite side of the piston. 
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CHAPTER V 

CONCLUSIONS AND RECCitfENDATIONS 

An extensive literature search turned up little or no 

information on any study on hydraulically powered oscillator systems 

to drive construction equipment or even to drive light weight tools. 

On the basis of this study, however, it is found to be quite feasible to 

implement such a device using hydraulic fluid to drive the tool. In 

the meantime, it has been established that the need to design quieter 

tools has never been greater. 

The conclusions drawn from this analytical investigation are: 

1. A hydraulically operated jackhammer system can attain 

higher evergies per impact and thus increase the overall performance 

of the device. 

2. The overall physical size of such a device can be decreased 

by at least 30 percent due to the shorter stroke needed by the piston 

to attain a maximum velocity. 

3. The pneumatic system employs the potential energy stored 

in a spring for the return stroke of the piston, whereas the proposed 

hydraulic configuration uses the supply pressure, P for the forward 
s 

and the return stroke of the piston. It is shown that the latter, 

controlling two oil lines to the cylinder employed only 6l percent 

of the work energy used to perform the same cycle by the one line 

spring-return system. 
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k. Response time in the hydraulic system is increased by a 

factor of /2 over the conventional pneumatic system. 

5. The damping;Vratio, 6 is the most significant and important P-:V-;;-

parameter in this hydraulic system as it directly controls stability 

characteristic of the hydraulic device. This must be kept in mind in 

the design of any hydraulic valve piston configuration. It is shown 

that other parameters affect the system stability to lesser degree 

since very large gain constants are necessary to jeopardize the 

system stability. 

6. The system stability analysis shows that the linearized 

approximation satisfies more rigid stability criteria than the actual 

nonlinear model. 

On the basis of the study carried out in this investigation it 

is recommended that further work be conducted along the following 

lines: 

1. A scaled laboratory model of the system analysed needs to 

be tested for purposes of verifying the analysis, as well as to develop 

parametric design criteria. 

2. This paper increased the leakage through the valve in order 

to stabilize the system by varying the damping ratio. Investigation 

towards other methods of optimizing the system performance should be 

developed, such as valve design, or even an entirely different method 

of producing the oscillating effect desired. Leakages should be kept 

small to prevent unnecessary power losses. 

3. The computation of transient response due to load was 

omitted, because in system, design it is not critical and of particular 



interest, as it cannot be modified appreciably by design. Furthermore 

it does not affect system stability. Pressure transients due to sudden 

stoppages of fluid by the piston might be an interesting topic to 

develop. The alternate occurrence of high pressure on one side of 

the piston and cavitation on the other, leading to deterioration on the 

corresponding components, can be examined. The analysis of these peak 

pressure transients can be analysed on an Analog Computer, by solving 

the pressure-flow equations for each line to the piston. In reference 

[6] a superficial analysis of these pressure transients are performed, 

and may be of help as comparison data.. 

h. It may be of interest to examine the adaptability of this 

type of hydraulic servo-valve and piston combination to other present 

pneumatic tools, such as nail driver, tool stripper, etc. 

5. There is no doubt that the sound pressure level emanating 

from the hydraulic version of a jiackhammer will be considerably lower. 

It would be interesting to determine just how much indefinite figures, 

and compare with actual figures. (Appendix: A) 

6. A different mathematical model to represent the switching'" 

effect of system might be used and examined, such as the relay used in 

this paper, but including a deadband characteristic. Saturation might 

also be another alternative. 

7. Finally, adding to recommendation 1, the laboratory model 

subjected to different loads (asphalt, concrete, etc.) would enable 

to determine how these loads affect the frequency of oscillation of 

the system. Presence of subharmonics could also be determined and 

analysed as to its effects on the systems performance. 



APPENDIX A 

FIELD DATA OF SCUM) PRESSURE LEVELS ON 
EXISTING PNEUMATIC JACKHAMMERS 

In taking the necessary SPL measurements on the pneumatic 

jackhammer, the codes set fourth by Reference 1 "were followed. The 

instrument used was a portable sound-level meter (Bruel and Kjaer) 

with octave-band filter set. Readings In db-A were taken in the 

mear field, at approximately 3-5 feet from the source. Two different 

measurements were taken, one with the jackhammer actually breaking 

concrete, and the other with tool, held in suspense. The measurements 

were recorded in Tables 1 and 2, respectively, and all plotted in 

Figure A.l. It may be noted that no corrections were performed on 

the original readings to account for background sound or environmental 

considerations. 

The jackhammer was located in an unobs.tructive space area 

setting aside any possibility of the meter picking up reflected sound 

waves. There is little or no difference in S.P.L. noted between the 

jackhammer breaking concrete and just in suspense. This goes to show 

that the main source of noise €?manates from the air exhaust from the 

tool. 
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Tattle A . l . Typica l SPL of Pne-omatic Jackhammer 
Breaking Concrete . 

HZ OBSPL 
A 

CORRECTIVE RESPONSE 

31.5 90 - • 39.4 51.6 

63 94 - 26 72 

125 95 . - 16.1 79-9 

250 95 - 8.6 82.4 

500 100 - 3.2 98.8 

1000 101 0 101 

2000 104 + 1.2 105 

4000 102 + 1 . 103 

8000 97 1..1 75.9 

« Total 109f9 dBA. 

Maximum Exposure to this SPL approximately 45 minutes. 
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Table A.2 . Typica l SPL of Pneuimatic Jackhammer 
No Load. 

H£> 0J3PL CORRECTIVE RESPONSE 

31.5 89 - 39A 50.5 

63 92 - 2.6 66.0 

125 9h - 16.1 77.9 

250 96 - 8.6 87.^ 

500 97 " 3'2 93.8 

1000 97 0 97.0 

2000 100 + 1.2 101.2 

4ooo .10k + 1 105.0 

8000 103 - 1.1 101.9 

T o t a l 108.7 dbA. 
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APPENDIX B 

ESTIMATE OF SUPPLY PRESSURE REQUIREMENTS 

The Flow Reynolds Number 

For a total volume, V , of the cylinder with N blows per minute, 

the volumetric flow rate, Q, is 

Q = VT • N (B.l) 

3 For the" present configuration V™ = 6 in and there are 1,̂ -50 

blows per minute; this gives a flow rate of 3766 gal/min. The mean 

velocity in the hose is given by 

V = 0.408 -~ , (B.2) 

where 0 is the hose diameter in inches and Q is in gpm. 

Thus, the average velocity in the one inch diameter hose is 

15.38 ft/sec. This gives the flow Reynolds number (@90F°) of 

Re = 8,. 000 , (B.3) 

indicating turbulent flow. 

The supply pressure at the pump exit must provide for the 

losses in the system. The total pressure at the pump, referring to 

Figure B.l, is given by 

PT = APf + APy + AP '+ APL , (B.M 
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where P = total required supply pressure at pump, 

AP„ = pressure drop due to frictional losses, 

AP = pressure drop across the valve, 

AP = pressure drop across the piston, and 

APT = pressure drop across the load. 
J_i 

At the Re of 8000 in the smooth hose, the friction factor, f, 

from the Moody chart is 0.03̂ -. For a hose of 50 feet length this 

gives a pressure drop of 

APf = ^ ; = 27.1psi (B.5) 

The pressure drop due to the valve arrangement is estimated by 

considering a sudden expansion from a hose diameter 0 of one inch to 

the valve diameter dv of tvo inch, and a contraction back to the hose 

diameter. 

k 'v: 
AP = p ~ — , (B.6) 
v t,u 2g 

where the loss coefficient K for expansion is given by 
s 

<2 2 / c s 

K e _ 
dv' 

T9. = ( l - ^ ) • (B.T) 

-D 

This g ives for an o i l d e n s i t y of 0.0301 l b i n / i n , a p r e s s u r e 

l o s s of 

AP = O.Tj48 p s i , (B.8) 
v l 
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for a sudden expansion, and 

AP 
V, 

0.32 psi , (B.9) 

for a sudden contraction, where the expression for the loss coefficient 

K for a sudden contraction is given by 
s 

s cont - 2 vL W (B.10) 

In addition to the losses due to sudden area changes, there is 

a pressure drop across the valve due to:flow forces. Let this "be 

denoted "by AP ?... This can "be examined with reference to the follow­

ing sketch 

2 A V2 

P, 

1 
i 

e 

FT 

A "balance of forces yields 

Fn = 2 C,C A (P - P j c o s 0 , 
1 d v o 1 2 ' 

(B . l l ) 

where 

C, = discharge coefficient , and 



C = velocity coefficient. 
v ° 

The force F.. is also given by 

F, = - F. cos 0 , 
1 J 

(B.12) 

where F. is the jet force, which acts normal to the plane of fluid at 
J 

the vena contracta. This force can also be written as 

° CO 
(B.13) 

where 

A =: w • x , 
o v (B.HO 

and w is the area gradient of the rectangular port of the valve. 

port 

By s u b s t i t u t i n g Equation B.13 i n t o B.12 and combining wi th 

Equat ion B . l l y i e l d s 

P£ 
' 1 2J „ .2 (B.15) 

C A2C-C 
c o d v 



where 

Ce - ^ • (B-l6) 
V 

Assigning the values 

Cd = 0.61.1 and C . = O.98 (B.1T) 

give s 

C = 0.62 . (B.18) 
c 

Equation (B.15) thus "becomes 

.78 • 10 1S5" n ri l"b - (Pl-P2) = _ . _ ^ ^ - _ ^ i _ _ ^ - . . = 3.64 i ^ (B.19) 

0.62 • VO.785" • 2 • 0V6.l.-v.0v98;. m 

Thus AP = 3-64 psi, and;, hence 

AP = AP + AP + AF = 4,. 708 psi . (B.20) 
• v vx v2

 u v ' ' 

Pressure drop due to leakage through valve is negligible as it 

is of the order 0(0.l) and does not affect AP significantly. 

Simular calculations of pressure drops due to sudden changes in 

cross sectional area in the piston yields 

AP = 0.843 psi , (B.21) 

for sudden expansion from connecting hose, of diameter, 0 = 1" to the 



cylinder diameter D = 292". Also for contraction from the cylinder to 

the hose'; 

AP = 0.328 psi . (B.22) 

Losses due to leakage flow through piston and cylinder must 

"be considered. The flow configuration is similar to a fully developed 

laminar flow "between two parallel, plates, the "bottom plate moving at 

a uniform velocity while the top plate remains stationary, as shown 

"by the sketch. 

P(P + dP) 

/ / / / / / L£ ' / / / / / / / / 

V, 

For h/D « 1, 

the equation of motion i s 
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\ 

integrating with respect to y and assuming velocity of fluid, at the 

boundary equal to the velocity of the moving plate, the conditions 

v = V @ ;y = h, and 
(B.24) 

v = 0 @ y = 0. 

The velocity profile is obtained as a function of dP/dx as 

yx = ¥ - i £ ^ - ^ > (B-2?) 

where |i = fluid viscosity, 

x = distance along passage, 

h = height of passage, 

L = passage length, 

V = velocity of piston, and 
p 

V = velocity of fluid. x 

The flow rate through the passage is 

Q=jhvxay=^.^f (B.a6) 

The instantaneous velocity of the piston, V , is determined approxi­

mately assuming no losses in velocity due to friction. This yields 

V = Q/A = 48.3 in/sec. Assuming a working pressure of 2000 psi, 
ir ir 

L = 2 inches, and piston circumference 
o 

C == TTI) == 6.9 in. , (B.27) 
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Equation B.26 yields 

}n n = 0 . l 4 8 — (B.28) 
leakage sec ' 

It is now necessary to determine the pressure drop through the 

clearance. Use of Equation 

i= ^ — — , . (B.29) 

• I f l a , 3 I ; 1 + x-5{$). 

which describes a steady flow in annulus "between circular piston and 

cylinder. Assuming, e, the eccentricity to he zero, Equation B.29 

"becomes "by the use of Equation B.28 for Q, 

„ f ! = 463^=r • (B.30) 
in 

The shearing stress "between two moving plates separated "by a 

small clearance is given "by 

-T =M.^ + | F > (B-3D 
s h 2 dx \ ~> t 

dP 
Taking — from Equation B.30 and substituting into Equation B.31 and 

CL^C 

taking numerical values gives 

- T = 0.318 psi (B.32) 
s 

Thus AP ~ = 0 .3 l8 p s i , and hence 

APp = AP p l + APp2 + Ap3 = 1 . ^ 9 Ps i (B.33) 
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To calculate the pressure requirement at the load, it is 

necessary to estimate the energy per impact. 

The numerical values for the following calculation are taken 

from Reference 2. For an impact energy of 200 ft-lb, with, a piston 

2 
displacement of x = 1 inch, and piston area of A = 3 in . The load 

P P 

pressure is 

PL =T^r'= 8QO p s i • ( B - 3 4 ) 

PJ-P 

To determine the maximum power transfer to the load with a 

servovalve controlled actuator, consider a critically centered valve, 

where the flow rate is given by 

v=Cd w xv [i (ps -
 PL> ] • (B-3 5> 

The horsepower delivered at the load is 

1/2 P 

LT,---"VLi>-S -I.>] - P S P : ' (B-36> 
hP = PTQT = CdWx - (P. - P, 

S 

the maximum of which is found by taking the derivative of Equation 

B.36 with respect to PT and setting; it equal to zero. This yields 
.L 

P L = | P S , (B.3T) 

provided that the load is relatively constant over the complete 

cycle. Although it is possible that high acceleration rates during 

sudden transients can cause P to exceed 2/3 Pc, these conditions are 
-Li fc> 
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most likely for short duration and need not be taken into considera­

tion. 

Therefore, the required supply pressure is obtained by com­

bining Equations B.37 and B.j'A to yield 

Ps = 1200 - ~ . (B.38) 
in 

In summary the major l o s s e s in p r e s s u r e a re &P = 27.15 —p> 

rt> l n 

the minor losses, or losses in valving, AP = 4.7 -r^?; and losses in 
' v *••-'<?• 

lb i n ' 
p i s t o n , AP = 1.^-9 J~~n • •l^ie t o t a l r equ i red supply p r e s s u r e a t the 

•^ i n 

pump e x i t i s , t h e r e f o r e 

P s = 1200 + 27.15 + ^ 7 + 1.^9 = 1233.4 - ^ | • (B.39) 
•P -^ • i n 



APPENDIX C 

DEVELOPMENT OF PRESSURE-FLOW CURVES FOR THE SERVO-VALVE 

Pressure-Flow Curves 

The general form for the orifice equation is obtained by 

combining.Bernoulli's and continuity equation to yield 

= C,A .,/- p - P , ( c . i ) 
d o v p o ' v ' 

"where 

C = discharge coefficient., 

A = vena contracta area, 
o 

P = pressure upstream, 

P = pressure downstream, and, 

p = mass density. 

Referring to Figure C.l and applying Equation C.l, the general 

equation for the pressure-flow curves of a four "way ideal critical 

center valve with matched, symmetrical orifices and rectangular 

ports is: 

i ,-
•L = cd W x W ? l p s - "FT P d •' ( c - 2 ) 

where w = area gradient for each port. 



QcR 

I 
^ >N^3 

-̂ rH 
RAMT-->P; 

\ 

/7V777 
Figure C-1. Piston-valve; Configuration. 
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In order to develop a more suitable nondimensionalized 

equation for the pressure-flow relationship and plot in a coordinate 

system, the following analysis need to be performed. From Figure C.l 

FL = P l " P 2 ' a n d ' (C*3) 

P S = P 1 + P 2 ( d o 

Solving Equations C.3 and C„k simultaneously to yield 

Pq + PT 

P 1 = ^ - ^ , ( C 5 ) . 

P - P 
P 2 = ^ - 2 - - , ( C 6 ) 

and expressing P in terms of Pq and Pp to yield 

P L = P S " 2 P 2 >• ( C ' T ) 

i 

which is the expression sought. In order to express Equation C.7 

terms of Pq and a flow through the valve orifice, the followingT
:J. ;̂  . : 

equations are obtained referring to Figure C.l. 

\ = Vi Jf&i - V > < c - 8 > 

"2 B ca*2 y ? < p s - pi> ' ( c-9) 

Q3 =CaA3 y f " ( P a - P0) , (CIO) 
P ° 



88 C A i f f e " P J > and> (c-l:L) ^ - "d^^ p< 

usually the drain pressure P is zero. 
o 

By multiplying and dividing the second term to the right of 

fkr 

P 
yield 

the equality sign in Equation C.7 by A^C, / — , and rearranging to 

•x. . — , 2 

PL = Pg - 2 ̂ ! A i O _ | 4 - .,. (c-12) 

Substituting the expression of Equation C.ll into Equation C.12 

to get 

2 

PT " Pe " p > (C13) 
Ij ° (cHr 

where 

C H = C / V f ' (C'14) 

Nondimensionalizing Equation C.13 "by using 

P J 
( P L = ~ , and, (C.15) 

o 

dropping the subscription on Q 
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ft ' ~ - - • (C16) 
J-l * S : ''V 

cdAoVpYs 

Substituting Equations €.15 and C.l6 into Equation C.13 to 

obtain 

9.
2 

(PL = 1 - ̂ | , (C.17) 

where 

,. ¥ X 

Y - f — * - • (CIS) 
' A wx 

o max 

Equation C.17 represents a family of parabolas. A computer 

program for solutions to Equation C.17 is written up, and the results 

can be seen plotted on Figure C.2. 
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-.5 0 +.5 
pressure, (PL 

Figure C-2. Pressure Flow Curves. 
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APPENDIX D 

DEVELOPMENT OE EQUATIONS 

C. Details of Derivation of Equations 2.13, 2.16 and 2.55. 

Equation 2.12 gives the Laplace transform of the piston 

Z(s) = Hi 
/M P A" 

s p k 
-L —*- S 4- — 
• Q M +" M 
s 

(D.l) 

This may be rearranged as 

Z(B) = 

P A s p 1 
r- ? ? 

VM P A -
(S +2(^M"J + 

m 
2 2 

/ p A \ -
V2Q.M/ 

s 

(D.2) 

and further rearrangement 

P A 
Z(s) = - ^ 

y/M 

'K ( s p \ 

s 

f
T. ,-P A 
K _ f_s_E\ 
M \2Q M/ 

p A 2 2 /h 
;'_S_P_Nj !fK 

•s + 'sQ^y + - & 

P A 

UQW J 
5 

(D.3) 

This equation can be transformed by use of the Laplace transform 

tables according to the form 



f(s) = 1 — — , F(t) :== e"'2t sinkt . (V.k) 

(s^f +k" 

or 

P A 
_JLP w / 2

 2 

P A 2Q M iL P A . -

g(t)-—-^L—e
 S

 siny|.^) T (D.5) 
PA". S 

*-*W 
s 

ii. Derivation of Equation 2.l6 taking Equation 2.15 

rearranging 

A P / / M 
Z ( B ) = ILiL_ , ( D . 6 ) 

A.P.. 
Z(s) = ^ . —± ^ . (|.T) 

ICA ^ - 2 

xB^f$ 

Taking the Laplace t ransform according t o the form 

f ( s ) S L _ . f ( t ) = t n
e

a t , (D.8) 
( s - a ) n+1 

where n = 1/2,3'- ••••• • 

This y i e l d s 



A P - / — T 
z ( T ) = ^ . T e ' ^ M . (D.9) 

iii. Development of Equation 2.55. 

A combination of Equations 2.27, 2.33> 2.35 in terms of the 

time T at impact yields, 

T = . (D..10) 

/ P E 2 ^ T 7 | 

Substituting Equation D.IO and 2.33 into Equation D.9> and 

squaring yields 

p 2¥ 
,2 W [z(T)] = — e •PE2KET . (.D.ll) 

T'"2KE 

Using the fact, that for critical damping the expression 

^S"-=rJ2iglS: , (D.12) 

and by further combining with Equation 2.4-9 to simply Equation D.ll 

to yield 

[z(T)f = f e'1 . (D.13) 
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APPENDIX E 

COMPUTER PRINTOUT 

Computer Print Outs and Programs are available upon request 

to Dr. P. V. Desai, Room 20̂ 4-, Space Science Technology Building #1. 

1 



132 

<3 

BIBLIOGRAPHY 

1. "CAGI-PNEUROP Test Code for the Measurement of Sound from 
Pneumatic Equipment", Compressed Air and Gas Institute, 19^9 • 

2. The Complete Buyer's Guide, Ingersol Rand, 1969. 

3. "Flow of Fluids Through Valves, Fittings and Pipes", Technical 
Paper #+09, Crane Company, May 19^2. 

k. Merrit, H. E., Hydraulic Control Systems, John Wiley and Sons, 
Inc., 1967. 

5. Black"burn, J. F., G. Reethof, J. L. Shearer, Fluid Power Control, 
Massachusetts Institute of Technology, 19&9-

6. Rausch, R. G., "The Analysis of Valve-controlled-Hydraulic 
Servomechanisms", The Bell System Technical Journal, November 
1959, PP. 1513-15^9." 

7. B.R.S., "Concrete Breaker Must be Quieter", Engineering, June 
1967. 

8. Koche"burger, R. J., "A Frequency Response Method for Analyzing 
and Synthesizing Contactor Servomechanism", Trans. AIEE, Vol. 69, 
Part I, 1950, pp. 270-281+. 

9. Johnson, E. C , "Sinusoidal Analysis of Feedback-Control Systems 
Containing Non-linear Elements", Trans. AIEE, Vol. 71; Part II, 
Application and Industry, 1952, PP« I.69-I8I. 

10. Graham, D., and I). McRuer, Analysis of Nonlinear Control Systems, 
Dover, 1971. 

11. Thaler, G. J., R. G. Brown, Analysis and Design of Feedback 
Control Systems, McGraw-Hill Book Company, i960. 

12. Takahashi, Y., M. J. Rabius, D. H. Auslauder, Control and 
Dynamic Systems, Addison-Wesley, 1970. 

13. Harrison, Lee (editor), "New Equipment and Procedures Cope with 
Toughest Noise Regulations", Construction Methods Equipment, 
Vol. 5̂ +, No. 8, August 1972, pp. 40-̂ -2. Construction Equipment, 
Noise Abatement, etc. .' 

Ik. "Chicago Rieumatics", Demolition Tools Catalog, 1971. 



15. McAdams, M., "Endurance Properties of Steel", Proc. Amer. Soc. of 
Testing Materials, Vol. 23, 1923, p. 56. 

16. Moore, H. F. and J. B. Kommers, The Fatigue of Metals, McGraw-
Hill Book Company, New York, 1927. 

17. O'Brien, M. P. and G. H. Hickox, Applied Fluid Mechanics, 
McGraw-Hill Book Company, 1957. 

18. Wurst, ¥., "Stromung durch Schietz-und Lochbehanden bei Kleinen 
Reynolds-Zahlen", Ingenieur Archiv., No. 22, 195^, 357-367. 

19. Cooke, C , "OptiELum Pressure for a Hydraulic System", Product 
Engineering, May 1956, p. l62-l68. 



REFERENCE VAIUE OF PARAMETERS 

A 
0 

= .785 

A 
P = 3. 

B.P.M. = 1^50 

B 
P 

B 
s 

= 12v^-. 

5.66 * 

ID"6 

ID"6 

B = 18.1 * ID"6 

D = 2.2 

E = 200 

K c 
0 

= variable 

K c e 
K 
Po 

= 

Variable 

1.1 * 10 

K 
qo 

= 3,766 

L 
0 

= 2. 

*T = h 

P 
s 

= L.:200 

Q = 37.66 

v T = 3 

g = 386.4 

h = 
-3 

10 J 

r c = 0.0002 (standard) 

¥ = .785 

X 

P 
= 1 

[in2] 

[in2] 

[ l b - s e c / i n ] 

[ l b - s e c / i n ] 

[ l b - s e c / i n ] 

[ i n ] 

[ f t - l b ] 

[ p s i / i n ] 

[ i n / s e c / i n ] 

[ i n ] 

l b . in 

[ l b / i n 2 ] 

GPM 

[ i n 3 ] 

[ i n / s e c ] 

[ i n ] 

[ i n ] 

[ i n 2 ] 

[ i n ] 



135 

3 = 100.000 

*P = O..T8 • 10 

*n . = 1.8 • i o " 6 

UJ = 10,766 

[lb/in2] 

[lb-sec /in ] 

2 
[lb-sec/in ] 

[Rad/sec] 

•̂ Values taken from Reference k. Petroleum base fluids. 

i •' 


