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Introduction 

Over the course of the last few years, the author of 

this report has developed a technique of searching for optimal 

designs. The method is general enough to apply to discrete 

or continuous data from time series, whether stationary or not, 

vector data, or scalar data and can be used in finding good 

designs for estimating any linear functional of interest. 

A basic characteristic of this technique is that a companion 

variational problem is identified which, although not neces-

sarily easily solved, is at least devoid of any considerations 

involving measures. The interplay between the design problem 

and the variational problem has led to the solution of several 

sample problems. Each new statistical design problem 

results in a new variational problem. Reported below are the 

results of this program applied to the extrapolation of 

derivatives and to the interpolation of functions. As can 

be seen below these results are almost complete; only the case 

of non-parametric interpolation deserving further study. 

The first chapter contains the results pertaining to 

extrapolation of derivatives and at the end contains the key 

theorem validating the technique of search in the case of 

scalar observations. 

Chapter two deals with interpolation and employs the 

polynomials developed in chapter three. For more information 

on these see also De Boor and Rice (1982), Lebedev (1968), 

Achiezer (1956) and Spruill (1987). 
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Optimal Extrapolation of Derivatives 

1.1. Introduction  

For estimating the k th derivative of a mean function out- 

side the interval on which observations can be taken the 

following generalized Hoel-Levine procedure is investigated. 

Let the experimenter have control over the values x within 

the interval [-1,1] at which the observations can be taken 

and let c > 1 if k > 0 or c > 1 if k = O. To estimate 

0 (k) 
 (c) (c) take observations only at the m > k+1 distinct points 

3 	 ' x. = -cos( (j-1)7 ) allocating a proportion m-1 

(k) 
()x

i 
(c) 

E 	143)(ck) (c)1  

i=1 	i 

	

polynomiZls. Estimate e 	(c) by 

unbiased estimation of 0 (k) (c) when the observations are 

uncorrelated, E[Y(x)] = e(x), Var(Y(x)) is constant on [-1,c], 

and 0 is a polynomial of degree m-1. Furthermore, if 6 is 

through -[(x.,10: .))}i=1 evaluated at c, where y(xi ) is the 

arithmetic mean of the observations at x.. 

derivative of the polynomial of degree m-1 passing 

1  

	

(xi ))} i=1 

i=1 	1 x 

m 
E 	Y ( x.)cp (k) (c), 

i 

the kth 

1 
The given procedure is shown to be optimal for the 

1 

at xj , j = 1,...,m. Here (I)x4 are the Lagrange interpolation 

(k) J 

not a polynomial, but close, then the given procedure performs 

nearly as well as an optimal estimator in terms of maximum 

mean square error. 



For example, suppose the observations {Y(x l ),...,Y(xN )} 

are uncorrelated, where Y(x) = 8(x) + y, E(y) = 0, E(y 2 ) = 1, 

and 0 is essentially a polynomial of degree three in the 

5 . sense that f 11  (e
(4)  (t)) 2dt < 6

2 = 1. The optimal estimator 

of 0(1.5) has maximum mean square error over 110 (4) 11 2 	1 

of (81.157)/20 when N = 20. The procedure suggested is not 

optimal here, but to this degree of accuracy, it has the 

same maximum mean square error (mmse). The optimal estimator 

of 0 (1) (1.5) has mmse (578.250)/20 which compares with 

(578.251)/20 for the suggested procedure. In estimating 

(2) e 	(1.5) the optimal mmse is (1308.811)/20 while that of the 

suggested is (1308.818)/20. The suggested procedure has 

mmse (601.951)/20 for estimating e (3) (1.5) while the optimal 

is (601.945)/20. 

These maximum mean square errors indicate the potential 

folly of extrapolation to a point as far as one fourth of 

the length of the observation interval. Only a slight 

improvement occurs when the model is known to be correct and 

a polynomial of degree 3, for the optimal variances are then 

81 	576 	1296 	576 	 (0) 
20' 20 ' 	20 ' and 
	respectively in estimating 	(1.5) 

through 8 (3) (1.5). Even for a sample size of 1000 the esti-

mator of the second derivative has an optimal mmse of 1.921, 

the suggested an mmse of 1.936 and, if the third degree model 

is correct, an optimal variance of 1.296. 

In the example, and generally, if c were closer to 1, 

or E were smaller, or if u 2 were larger then the suggested 

3 
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procedure would compare even more favorably with the optimal, 

both performing better on an absolute scale as c 1. 

Spruill i1984, 1985] has previously investigated in some 

depth the case k= 0 and we proceed in our analysis here by the 

same techniques. Our conclusions are similar; when esti-

mating the kth derivative of 0 the generalized Hoel-Levine 

procedure yields estimates which are locally model robust. 

1.2. Optimal Minimax Extrapolation  

Let Y(x1N) be uncorrelated, Y(x ) = e(x)+ y 

E(y i ) = 0, and E(y i ) = 1 for i = 1,...,N. If the function 0 

is in the Sobolev space 14,211 [-1,c] and E > 0 is arbitrary then 

k) there is a linear estimator k'1Y of e ( (c), k < m satisfying 

sup 	E (ZIY-0 (k)  (c))  2 < 	sup 	Ee(Z, 	(k) y—e 	(c)) 2 

	

II e (m)  112<E 	
1 	 Ile 

 (m) 112 

for all constant N-vectors Z. Speckman [1979] developed 

these estimators and showed among other things that ZiY has 

the same value as 8 (k) (c), where 6 E W2 [-1,c] minimizes the 

form 

	

I 	(y (xi )- 0 ( xi )) 2 	f 	(0 (m) (t)) 2dt 

	

i=1 	 E -1 

It follows from [Wahba, 1978] that Speckman's estimator is 

a limit of Bayes rules if y i  are i.i.d. N(0,1). 

The mmse of Speckman's estimator is N ld(U employing 

	

the design 	where 



ir 
y=x 

R2 	(k),  d 2 = Hh 	= f (h (k) (t)) 2 dt, c 	2 -1 

= 	E 	1 4) (

x

k) (c) i .  

i=1 	i 

dn k  (C) = sup 
(k) ce 	(c) 2 
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1 	 C 	 / \ 

f e 2
(x)dC(x) + n f (8 k 	(x)) 	2dx  

-1 	 -1 

 

n = (NE2 -1 , and the supremum is over those elements 8 of 

W2 [-1,c] for which the denominator does not vanish. The 

design C o  is called optimal (in the approximate theory) if 

C o  is a Borel measure and for all other such measures 

dn,k 0 (C ) < dn,k  ().  

Let k E {0,...,m-1} be fixed, where m > 1 is also fixed. 

The Lagrange interpolation polynomials to the points 

-1 < x1 < x2 < 	< xm f- 1 are denoted by cp x  (x), j = 1,...,m. 
J 

Define for x and t E [-1,c] 

(x-t) m-1  (x.-t) m-1  
1 	+  

	

hx (t) -  	iE 
1 
 (15 	(x) (m-1)! 	x. 	(m-1)! =1 

let 

kh (t) 
h (k) (t) = 	Vk 3y 

and 

Let n > 0 be fixed and 

m 	 c ( 
6(x) = (11Q 2+R2 ) -1 [nQ 

j  E 1 
 (-1) j- In g) x (x) + I hc

k)  (t)hx (t)dt]. 
= 	 -1 

Also introduce the extremal problems 
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Pn k : minimize 	2 	(m)  11 2 
2  11 11 	+ n 11 0 	over all 0 E W2 [-1,c1 

00 

such that A (k)  (c) = 1. 

Here and below 

Heli! = 	sup 	I 0 (x)  12 and 	II A (m)  Il  2  = CI (A (m)  (t) ) 2dt. 2 - 1 

Theorem .1.2.1.  There is an optimal design C o  for estimating 

(k) 0 	(c) whose support is -1 < x 1  < x 2 < 	< xm 	1 if and  

only if the corresponding S equioscillates at the points 

fx1 ,...,xml in the sense that for i = 1,...,m 6(x i ) = 

(-1) 1-m  11611 a  If there is such an m point optimal design 

C o  then 

0 (x.3  ) = 	 

	

E 	I4)(xk)  (c) i=1 	. 

C o  is unique among m point optimal designs, and 6 solves 

ri,k" 

In Figure 1.1 can be found plots of the functions S asso-

ciated with the optimal designs for m = 3, c = 1.5, and 

n = .005. Typically the solutions are found, as were the 

S's there, numerically. When m = 2 and k = 1 the solutions 

can be found analytically and are as follows for estimating 
3 a  e (1) (c) from the interval [a,b], b< c. If n> (b-  

24
)  then 

x1  = a and x 2  = b. Otherwise, x i  = b-2(3n) 1/3 and x 2 = b. 

We have previously discussed in [Spruill, 1984] the estimation 

of 6(c). When m = 1 it is easy to show that all observations 

(k) 
(c)I x j  
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should be taken at b. 

The proof of Theorem 1,2.1 can. be carried out utilizing 

the program established in [Spruill, 1984] paralleling that 

of Theorem 4.1 therein and employing instead Theorem 1.2.2 

below, whose proof is given in the appendix. Denote the 

support of C by S'(E). 

Theorem 1.2.2. Suppose there is a function S o  in the set 

(k) 
A = ie E Wm [-1,c]: 8 	(c) = 1} and a probability measure 

on the Borel subsets of [-1,1] such that 

i) S(y c 	16 0 (x)I = 	max 	1(5 0 (x)11, 
[-1,1] 2 ii) there is an a > 0 such that for all 8 E Wm [-1,c] 

1 
-1 e(x)d o (x)d o (x) + n 1 
	0 

(m) (x) (m)  (x)dx = ae (k)  (c) , 
- 

and 

1 
iii) I e

2 (x)dE 0 (x) + n I (A (m) (x)) 2dx = 0 
-1 	 -1 

entails 8 (k)  (c) = 0. Then E
0 
 is optimal for estimating 

8 (k) (c) and 

iv) S o solves P n,k .  

Furthermore, if there is a Borel probability measure 

	

o such that dn,k0  ) = inf d n,k 	< co then there is a solu- 

tion o to Pn,k  satisfying i) - iv). 

The course from here to a proof of Theorem 1.2.1 following 

[Spruill, 1984] is clear except for the following fact which 

corresponds to Lemma 3.1 there and leads to the proof of 

Theorem 1.2.3 below. Let f.(x) =xj, j = 0, . . . ,m-1 and a <b < c. 



= 

fk (x) 

f 0 (x) 

- 
- 

f
m-1

(x)  

fk (T
0

) 

f 0  (T 0  ) 
. 
. 
• 

fm-1 (T 0 )  

... 

... 

. 
• . 

fk (T
m-1

) 

f 0 (Tm-1 ) 
. 

' 

fm-1
(T
m- 1

)  
MXM 

Lemma 1.2.1.  If 0< k < m-1 and 

(k) f. 	(c) 
g. 00 = f . (x)   fk (x) 3 	7 	f 

k 
(k) (c) 

m-1 j 	k then fg i l j=0,jk , except possibly for the sign of one 

of them, is a T system on [a,b]. 

Proof:  Let a < T < T
1 

< 	< T
k-1 

< T
k+1 

< 	< 	< b — 0 	 Tm-1 — 

be given and form the determinant 

D = 

g 0  ( T 0 ) 	g0 (T1)--- 	go(Tm -1) 
.  

• • 
. 	 . 	. 	. 
. 	 . 	. 

 

1(k) (c), 
fk 

 

gm— i( To) 	
... 	

gm-1 (1'111—i )  m -lxm -1 

    

where 

Suppose we have chosen T o ,...,Tm_ i  to make D vanish. Then 

(k) (c) = O. Since iji has m-1 zeros in [a,b] it follows that 

(k) has m-l-k in (a,b) and hence at least m-k in [a,c]. 

Since q) is of degree m-k-1, i E 0 on [a,c]. This contradicts 

the fact that {x0 ,x1 ,...,xm-1 } is a T system on [a,c] and 

proves the assertion. 	 ❑ 

Now one can prove the following. 
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Theorem 1.2.3. The problem P ri,k  has a solution e o  E Wm [-1,c]. 

If n > 0 it is unique and there are points -1 < x 1  < 	
< 

xm+r — < 1 and a q = 0 or 1 such that 

e (x.) = (-1) i-1-(4  He 11 
0 	a. 	 0 co 

i = 1,...,m+r. 

For c fixed, as fl 	co the optimal designs are always 

m point designs. Furthermore, the design points and masses 

approach those of the generalized Hoel-Levine designs. The 

proof of this statement can be obtained as in [Spruill, 1985] 

utilizing the fact, which follows for example from [Rivlin, 

1969] Theorem 1.10, that the unique polynomial p of degree m-1 

minimizing subject to p (k) (c) =1 is Tm-1 
 /Tm(k) (c), where 00  

Tm-1 
is the m-1st Chebyshev polynomial of the first kind. 

For n fixed, as c+ 1 there are asymptotic optimal 

designs. Let us first consider the case k = 0. We require 

the following lemmas. 

Lemma 1.2.2. Let f and g be continuous functions on an inter-

val I whose right endpoint is b E I. If for points x l  < 

x 2  < ...<xm  in I, f(xj ) = (-1)j -m , and for points y i  < y2 

 ym in I, g(y,) = (-1) j-m , and if xm = ym = b, then 

sup If(x)I= sup Ig(x)1 = 1 entails at least m zeros of f-g 
xEI 	xEI 
in I. 

The proof is left to the reader. From Lemma 1 of [Spruill, 

1985] we know that if 
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( II 	!_f To  (m) 	) 
k(c) = 	inf 	 2 

eElqm  

	

2
[-1,c] 	11811 [-1,c] 

then k(c) > 0 for every c > 1 where 

	

m 	c 	
(i)(t)) 2

dt. 

	

-1
2 	= E 	f (8  HeH[,c] 	i=0 -1 

Lemma 1.2.3. lim k(c) > 0. 
c+1 

Proof: First transform to the interval [-1,1] linearly so 

that 1 maps to B = (3-c)/c+1. Consider 

1 ( sup 	iffx)1 2 	n 	(f (m) (x)) 2dx) 

	

1 	' 
K (B) = 	inf 	 -1  

2 
fEWm2[-1,1] 	

1 1 f   
11  [-1,1] 

The linear transformation is z = ux + v from [-1,c] to [-1,11, 

u = 2(c+1) -1 and then 

	

u2m-1k(c) < K(B) 	2m k(c)• 

Now if B 2 > B 1  then K(B 2 ) > K(B 1  ) so if u < 1 

2 2m-1k  (c) 	 (c1+1) 2m 1  0 < 	 < Kay < lim K(B) < lim k(c) 
(c +1) 2m1 	• 	B+1 	c4,1 2 2m 

1 

	

and lim k(c) > 0. 	 0 
c4-1 

Fix n, let cn  4- 1 as n + co, En  be the optimal design 

for Speckman's estimator for extrapolation from [-1,1] to 

	

cn , e n  minimize p n (e) = 1161103[-1,1] 	n Il e (m)  11 2  2[-1,cn ] 



n  

1I 
f (0 (m)  (t) ) 

2dt ÷ 0 
-1 

 

It follows that aGI 

11 

- m over 0 E Wm [-1,cn] such that 8(cn) = 1, and { x j } j=1 be the 

Chebyshev points in [-1,1]. 

Theorem 1.2.4. For n sufficiently large 

i) S( n)= {x m 	where -1 < x 	< 	< x 	< 1 and nj j=1' 	 - nl 	 - 
ii) lim xnj = R 	j = 1,...,m. 

n±co J 

Proof:  We first claim that 8 n (1)1 as n 	03. Since 

II 0 n  11 	< Pn  (0 ) < p (  Tin-1   ) =  H T
m_.1 

n - n T
m-1

(cn ) 	2 Tm-1 (cn )  

lim 8 n (1)< 1. If lim 8 n (1)< 1 then for some c > 0 and 
n4-00 	 n÷ co 
subsequence nv  we have 

Iv 
 
0n  c 	0n (cn ) - 6n (1) = I

nv 

n 6' (t)dt 	1/cn -1 ( I 	. (t))
2
dt)

1/2 

v v 	v 1 	1 	 v v 	 1 	v 

which implies Hen II [-1,c ] 	.. By Lemma 

	

v
this implies pn  (On  ) 	co. But 

v v 

T2 	(1) 

	

Pn (en ) <  2 
m-1 
	4- 1 	so 	lim n (1) ?- 1. 

Tm-1 (cn ) 	 n÷co 

as n co and therefore that He n' 	P 11  co[-1,1] 	0 for some 
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polynomial p of degree m-1 and some subsequence n'. Now, 

using the equioscillation of e
n' 

and arguing as in Theorem 

1 of [Spruill, 1985] we conclude that p satisfies p(y i ) = 

(-1) 1-m  for m points -1 < y1  < y 2  < 	< ym  < 1 and 

11131100[-1,1] =1. 	It now follows from Lemma 1.2.2 that p=T m-1 

and the assertions are an immediate consequence. 	 ❑ 

We know that as c+ 1 the optimal designs for estimating 

0(c) converge to the Hoel-Levine design. This is no longer 

true when estimating 0 (k)  (c) for k > 0; there are asymptotic 

designs but they depend upon n. The function solving 

2 	
11 110(m) 1122 [--1,1] ) min 	( 11811,0[-1,1] +  

2 Wm [-1,1] 

subject to e (k) (1) = 1 equioscillates, for n sufficiently 

large, at precisely m points and these are the points of 

support of the asymptotic design with weights determined as 

usual. However, this equioscillation does not take place 

at the Chebyshev points, as one can verify by considering 

the function 6. One case, estimating 6(m-1)  (c), has the 

property that the designs do not depend upon c, so that these 

asymptotic designs are actually appropriate for every c > 1. 

1.3. Comparison with the Polynomial Case  

Theorem 1.2.2 remains valid for n = +00 interpreting 

(+00)(0) = 0 so if fl = +co then 6 0  is a polynomial of degree 

m-1 which minimizes ileH op  subject to 6 (k)  (c) = 1. As is 

(k) well known the unique solution is Tm_ 1 (x)/Tm-1 (c). Conse-

quently, the optimal design points are the Chebyshev points 
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when Speckman's estimator is used. From (1.1) we see that 

this is just the usual least squares estimator and hence 

we have the following theorem. Let {Y(x 1 ),...,Y(xN )1 satisfy 

Y(xi ) = e (x i ) + e i , E(c i ) = 0, E(E iC i ) = a 2 S ii , and 0 E 

Pm-1" 

Theorem 1.3.1.  For the minimum variance linear unbiased 

estimation of 8 (k)  (c) the optimal design is supported on 

x. = -cos(  m 1 ) 	i = 1,...,m 

and assigns masses 

( 	 ( 
Ci = 14)x. 

k) 
 (c)1/ E 	x.k) (c) j=1 	3 

at these points. 

These are the designs and estimation procedures described 

in the opening paragraph which we have called generalized 

Hoel-Levine designs. Since for a design C on m points for 

which :n. cc Icp (xk) (c)1, we have 

N-1   mmse = N-ld n,k ' t  ,.. = N-,.. [( E 	I A, 
n 

 (k) 
i (c) i 

) 2 + 1 ii h (k) H2 1  

i=1 '' 1 ' 	 c 	' ' "2' 

it follows that the mmse is continuous in the design points 

and hence that in the asymptotics above (n =) we also have, 

besides convergence of the design points, convergence of the 

maximum mean square errors. Therefore, because the esti-

mators are both least squares for n large, the generalized 

Hoel-Levine procedures are locally, as measured by 11 = a 2/Ne 2 , 

robust against departures from the model. 
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The tables exhibit the supports of optimal designs. 

Entries labeled ommse are N times the maximal mean square 

error of Speckman's estimator for the optimal choice of 

points. The entries gmmse are N times the maximal mean square 

errors of the generalized Hoel-Levine procedure described 

in the introduction. Since for estimating e (m-1) (c) the 

designs are independent of c no value of c is indicated for 

those entries. 

The tabled values support the observation that as 

co the optimal designs for Speckman's estimator converge 

to the generalized Hoel-Levine designs and that their maximum 

mean square errors converge to the variance of the associated 

least squares estimator for the polynomial model. They also 

suggest that the convergence is rapid, for though the theorems 

are stated to hold as n ., for apparently small values 

of n the asymptotic behavior is seen to be very nearly 

realized. Actually, these values which appear small are not 

surprising. Let a 2 and N be given and suppose the observa-

tions are used to test H 0 : 8 E Pm-1 against HA : e E Pm 

instead of in the estimation of e(c), where P r  is the col-

lection of polynomials on [-1,1] of degree r. Then for the 
A 

test which rejects H 0  when lem i is large, p(x) = E Vx j , 
j=0 3  

and is of size a the optimal assignment of observations is 

at the m+1 Chebyshev points x i  = -cos(ip, i = 0,1,...,m, 

with the usual weights. The power against p(x) = ex m , 

x E [-1,11 in terms of n is 



P(n) = 1 - [(1)(z 

where 

E = 	( 	lx. -x.1) -1 . 
m 	j=0 ij 	3 1  

The values of Em are 4, 24, and 192 respectively for m = 2, 3, 

and 4. Consulting [Spruill, 1985] we find, for example, that 

when m = 3, c = 1.5 and k = 0 the Hoel-Levine and optimal 

procedures perform much the same for n > .01. Since 

P(.01) = .0503 when a = .05 it should not be surprising 

that this is so, for whenever e is a polynomial of degree m 

satisfying 1
1 ce (m)  (t)) 2dt < E 2 , 	= a 2/NE 2 , and n > .01 

the power is no more than .0503. Thus the data cannot 

distinguish such a 8 from a polynomial of degree m-1 and 

we see that in fact .01 is a "large" value of n. When 

m = 4, c = 1.5, and k = 0 the n value is 5x 10 -4 and 

P(5 x 10 -4 ) = .05 so again this is a "large" value. In all 

cases the ri values at which asymptotic behavior is essen-

tially obtained for derivatives are larger than those for 

k = 0 so similar statements apply. The same sort of argu-

ments do not apply to explain the transition from m to 

m+1 points as n decreases. 



A 

k=0 .17- 

+1 

rn 

-.17- 
Figure 1.1. Solutions to P 	for n = .005, m = 3, c = 1.5, k = 0, 1 and 2. 



TABLE I. 

Optimal Locations for m = 3, k = 1. 

n x1 x2 x 3 ommse gmmSe 

.5 1.25 -1 .005821 +1 25.496 25.497 

.1 - - .028793 - 27.447 27.489 

.05 - .056575 - 29.813 29.979 

.01 - .226283 - 46.359 49.897 

.005 - - .342289 - 63.291 74.795 

.001 - -.669655 .555829 - 155.194 273.979 

.5 1.5 -1 .006588 +1 37.080 37.083 

.1 - 

i 

.032653 - 41.339 41.417 

.05 - .064243 - 46.527 46.834 

.01 - .253256 - 83.606 90.171 

.005 - - .375663 - 123.132 144.342 

.001 - -.593443 .577075 - 357.122 577.714 

17 
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TABLE II. 

Optimal Locations for m = 3, 	k = 2. 

x1 
x2 x3 ommse gmmse 

.5 -1 .010436 +1 18.530 18.533 

.1 - .052204 - 28.580 28.667 

.05 - .102979 - 40.987 41.335 

.01 - .364450 - 135.364 142.679 

.005 -.948596 .484811 - 246.705 269.358 

.001 -.412302 .626601 - 1031.659 1282.792 



TABLE III. 

Optimal Locations for m = 4, k = 1. 

n x
1 

x
2 x 3 x4 ommse gmmse 

.5 

.1 

.05 

.01 

.005 

1.25 -1 -.499962 

-.499811 

-.499623 

-.498116 

-.496229 

.500048 

.500244 

.500489 

.502429 

.504820 

+1 248.119 

248.347 

248.632 

250.902 

253.723 

248.119 

248.347 

248.632 

250.912 

253.761 

.001 

5x10-4 

10-4 

5x10-5 

10 -5 
- -1 

-.730681 

-.481073 

-.462065 

-.320988 

-.193678 

.086434 

.522627 

.541891 

.627155 

.669966 

.746349 

275.645 

301.584 

470.874 

631.742 

1410.121 

276.558 

305.055 

533.026 

817.990 

3097.702 

.5 

.1 

.05 

.01 

.005 

.001 

5x10-4 

10-4 

5x10-5 

10-5 

1.5 -1 

-.658454 

-.499954 

-.499770 

-.499540 

-.497698 

-.495387 

-.476652 

-.452823 

-.277606 

-.135323 

.126388 

.500060 

.500303 

.500606 

.503012 

.505973 

.527844 

.551033 

.645202 

.687775 

.758829 

+1 576.225 

577.125 

578.250 

587.225 

598.383 

685.339 

788.817 

1481.064 

2168.709 

5843.933 

576.225 

577.125 

578.251 

587.259 

598.519 

688.596 

801.193 

1701.965 

2827.931 

11835.658 



TABLE IV. 

Optimal Locations for m = 4, k = 2. 

x x 2 x3 x 4 ommse gmmse 

.5 1.25 -1 -.499941 .500078 +1 900.632 900.632 

.1 - - -.499704 .500394 - 903.163 903.164 

.05 - - -.499409 .500787 - 906.324 906.328 

.01 - - -.497039 .503908 - 931.552 931.642 

.005 - - -.494057 .507738 - 962.926 963.285 

.001 - - -.469545 .535624 - 1207.791 1216.428 

5x10-4 - - -.437834 .564126 - 1499.973 1532.856 

10-4 - - -.219296 .664968 - 3477.730 4064.281 

5x10-5 - - -.070944 .705025 - 5492.423 7228.563 

.5 1.5 -1 -.499935 .500086 +1 1297.281 1297.281 

.1 - - -.499679 .500434 - 1302.407 1302.409 

.05 - - -.499358 .500867 - 1308.811 1308.818 

.01 - - -.496778 .504304 - 1359.934 1360.090 

.005 - - -.493528 .508520 - 1423.561 1424.180 

.001 - - -.466637 .539069 - 1921.992 1936.904 

5x10-4 - - -.431550 .569877 - 2520.982 2577.808 

10-4 - - -.194599 .673714 - 6692.122 7705.043 

5x10-5 - -.987601 -.045008 .712990 11124.502 14114.086 



TABLE V 

Optimal Locations for m = 4, 	k = 	3. 

n x1 x2 x 3 x4 ommse gmmse 

.5 -1 -.499910 .500127 +1 578.595 578.595 

.1 - -.499550 .500634 - 588.974 588.975 

.05 - -.499100 .501268 - 601.945 601.951 

.01 - -.495467 .506282 - 705.616 705.755 

.005 - -.490854 .512411 - 834.956 835.511 

.001 -.451468 .565649 - 1860.073 1873.557 

5x10
-4 - -.398388 .595989 - 3119.381 3171.115 

- 4  10 - -.092491 .704666 - 12653.569 13551.576 

21 
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1.4. Key Theorem  

Theorem 1.2.2 follows, as a special case, from Theorem 1.4.2 

below. We assume that for each distinct set of points 

{xl ,...,xk },k < co, in some factor space X and for each set of 

positive integers {n1 ,... I nk } an experiment can be run, 

resulting in the uncorrelated observations fY i (x1 ),Y 2 (x1 ),..., 

Yn (xk )). Here Y(x) = (mx
,6) + E, where E(c) = 0, E(E 2 ) = a

2
, 

k 
 

6 is an 'unknown element of the Hilbert space 0,mx  E 0 for 

each x E X, and (•,•) is the inner product on 0. There is 

an auxiliary separable Hilbert space H and a bounded linear 

operator T from 0 into H. We seek the linear estimator MY 

of (T,6), where T is some fixed known element of 0, for which 

	

sup 	En (V Y-(T,6)) 2  = V(Z,T) is minimized. Here c > 0 

	

!pre II H 	1/4:1  
is also fixed. The extrapolation problem above can be put 

into this framework with 0 = Wm [-1,c], H = L 2 [-1,c], 

(T,6) = 6
(k) (c), and X = [-1,1]. In the general case 

Speckman has found the estimator 2,6Y and its maximum mean 

square error V(2, 0 ,T) = d(T). Of course this quantity 

depends upon the points x i  and numbers n i  and we emphasize 

this in the notation by writing d(T,E). One can show 

that d(T,E) =1■1-1 (T,M# (E)T) where 4E) is the Moore-Penrose 

inverse of the operator M (E) which we now describe. 

Let V= RxH and introduce the inner product (,) v  on 

V by (v,w) v  = v1w1  + (v2 ,w2 ) H . For each Borel probability 

measure E on [-1,1] let L 2 (E) denote the class of V-valued 
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measurable functions on S(C) with inner product 

( f , g ) 	= f[ fi( x ) gi ( x ) 	(f2 ( x) , g2(x ) )0d(x ). 

Let L : 0 	L
2 (E) be defined by L e(x) = [(mx ,e),Te] for 

x E S(E). Then M(C) = L*
E
L . 

Introduce the set 

R= ilLx0x)dC(x): E E E,4 E F} 

where E is the Borel probability measures on [-1,1], and F is 

the collection of measurable functions from X into V with 

Hcp(x)II v 	1. One can use the arguments of [Spruill, 1980], 

replacing mx  there by 	and and prove the following theorem. 

Certain assumptions are needed. 

(Al) 	For every 8 E 0 and C E E the functions (mx ,0) are 

measurable on S(C). 

(A2) For all E E E, fs(E) 	
2  dE(x) < 

(A3) For each E E E, L is bounded and the range of L 

. is closed in L2  

(A4) There is a proper closed supporting hyperplane to 

R at each of its boundary points. 

(A5) For each 0 	0 sup HLx 	> 0. 

Let vo = inf d(T,E). 

Theorem  1.4.1. Under assumptions (A1)-(A5) if T E R(M(C)) for 

some E E E then d(T,C o ) = v0 and E o E E if and only if there 

is a function (I) E F such that Hox) H y  E 1 and fL*(p(x)dE (x) 

is i) proportional to T and ii) in R n BR. 



One can also show that 

(T,M# (VT) = sup 	(T,e)  
eEN filLx eri v dc(x) 

where N = N(C) = {e: f 11,x 0H 2d(x) > 0}. Let A = {6 E 0: 

(T, 0) = 1} . 

Theorem 1.4.2. Suppose there is a point (5 E A and a design 

0 E E satisfying 

i) S( 0 ) c {x: 	 = sup H Llc C o v  , 
X 

ii) .I'LLx (S o d o (x) = aT for some a > 0, and 

iii) dyx) = 0 entails (T,e) = 0. 

Then C o  satisfies d(T, 0 ) = inf d(T, C) and 

iv) inf sup Hy ,2 =sup HI, 6 	• 
2 

Hv .x 	x0v 

The conditions required are (Al) and (A2). Conversely if 

(Al) - (A5) hold and there is a E 0  E E satisfying d(T,E 0 ) = 

v0  < co then a point S O  E A may be found satisfying conditions 

i) through iv). 

Proof.  Assume i) through iii), (A1), and (A2). We have 

for 	E 

and since 

a(T,E) > [ inf filLx 0 
OENnA 	- 

ii27d(x) ] -1 

inf filL 2 	< inf sup H 	2 Lx 	< sup HLx 0 2 H 	s, 
NnA 	 NnA X 	 X 

we have d(T,) > s -1 . Now, using ii) 

24 

2 

2 

A X 
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a-2
[I(L 0,L 6 ) dE (x)] 

2 
x x v 0 

d(T,E
o
) = sup 

N IHLx eli v2 dE 0 (x) 

a
-2 ( 	ell aE (x)) 2 

	

x 	0 	-2 	-1 
< sup S < sa 	= s 	. 

N 	I IlL x 0 11 2  clE 0  (x) 

Since s
-1 

 = d(T,E ) > [inf sup HL x ell 2 ] -1 we have for 
NnA X 

0 E N n A, 

sup HLx
2 

> inf sup H 	2 
Lxell 	> sup H 	

2 
Lx 6 0 11 	. 

X 	 NnA X 	 X 

By iii) A = N n A so we conclude that d(T,E 0 ) = inf d(T,E) 

and iv) holds. 

Now assume Al) -A5) and that d(T,E 0 ) = inf d(T,E) < 00 

By Theorem 1.4.1.there is a function c: X 	IRx H such that 

110x)11 	E 1, 

flACP(X)dC 0 (X) = (3T, 

and T E DR. By (A4) there is a A # 0, A E 0, such that 

(A,r) < W ■ ,r) for all r E R. Since by (A5) sup IILXAII > 0 
X 

we can find a sequence of points {x il } in X satisfying 

HL
xn 	

t sup HL
xAil and HL

xn
All > o. Set 

X 

rn = L* 
xn HLx n 

Then r
n 

E R for all n and since (A,r) < W,,r) for all r, 

lim HL All < f(LV(x),A)dE o (x) < sup Hlix All 
xn 	 X 

with strict inequality unless HL xAll = sup HLxAH a.e. E o • 
X 

Lx A 
n 

• 
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Set 60 	(T A) 
= 	 ((T,A) 	0 since 13(T,A) > 0). Clearly i) is 

,  

satisfied. From above we also conclude that q(x) = k xy 
A 

a.e. C o' This in turn implies that c( x) = 	 E0* HLxxAll a.e.  

Therefore 

fLV(x )d E 0 (x) = ( fL3*cLx 6 ody x ) ] [s up H Lx XII ] -1  
X 

and we see that ii) is also satisfied. If iii) is not 

satisfied then there is a sequence A n  such that 

1111xn 11 2  dC 0  (x) 	0 and (T,An ) 	t ¢ 0. This implies 

d(T,C 0 ) = +00 which contradicts our assumptions. We conclude 

that iii) is satisfied and consequently that iv) also is 

satisfied. 0 

One can find the appropriate arguments to prove the next 

theorem in [SprUill, 1980]. 

Theorem 1.4.3. If assumptions (Al) and (A2) hold and if there 

is a constant p > 0 such that for all e 

sup 111,x6H v  > p Hell 
	

(1.2) 

then (A4) and (A5) hold. 

Spruill [1985a] proves that for the extrapolation problems 

2 with X = [a,b], 8 =
m
[a,c], the inequality is satisfied. 
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Optimal Designs for Interpolation 

2.1. Introduction  

Much is known about the extrapolation of an unknown 

function from an interval when the observed values are sub-

ject to random errors. If the function is a polynomial of 

known degree then the variance of the estimated value is 

minimized by measuring the function's value at certain points 

determined by a Chebyshev polynomial. See Hoel and Levine 

(1964) and Karlin and Studden (1966). Even when the unknown 

function is not a polynomial, but close, this is a good 

choice of points and similar statements apply to the 

extrapolation of derivatives. See Spruill (1984, 1985a, 

1985b). 

The topic of concern below is interpolation. Roughly 

speaking, the optimal designs for polynomial interpolation 

are obtained like those for extrapolation. There is a 

collection of polynomials which play a role similar to the 

Chebyshev polynomials in the extrapolation problems, deter-

mining the supports of the optimal designs at their points 

of proper oscillation. The optimal masses are determined by 

these points. Again, even when the function is not a 

polynomial, but close, these designs perform well. 

2.2. Optimal Designs for Polynomials  

The value 6(c) of an unknown polynomial B of degree 

m-1 is to be estimated based upon uncorrelated observations 



{Y(xi )}T=I takenwiththerestrictionthatthex.'s lie 

in the set X = [A,B] u [D,E], where B < c < D, Y(x i ) = 

0(xi ) + y i  for i = 1,...,N and the y i  are zero mean errors 

of constant variance a
2 . The variance of the least squares 

estimator of 0(c) depends upon the selection of points xi 

 in X and it is their optimal selection which is the subject 

of this paper. All but a few proofs are omitted below since 

the methods above apply. 

Let the m-1 st degree polynomial pc solve the problem 

P
m-1 (c,X): minimizeco,X  over all polynomials of 

degree m-1 such that p(c) = 1, 

where HPm  H co,X = maxipm (x)I. In Chapter 3 below it is xEX 
shown that the solution ip li  to Pm_1 (c,X) is unique and that 

there are at least m points 

A 5 x1 < x2 < 	< xL 
5 B, 	D 5 xL+1 < 	< xm 5 E, 

and numbers q R  and qs  in {0,1} for which 

q,-i 
( - 1) I‘ 	11Pinclico,x 	i = 1,...,L 

  

-1)
qS-1 

Hprcj w,x  i = L+1,...,m. 

 

We say that pm  oscillates properly at the points x l ,...,xm . 

It is also shown that these points do not depend upon the 

point c and sufficient information is there discovered to 

enable the rapid identification of the solutions p icri  by a 

28 
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computer. In the case of symmetric intervals, B-A = E-D, 

formulas are given for these polynomials involving the 

trigonometric functions. The importance of these polynomials 

is that the optimal design's support is contained in the set 

of proper oscillation points. 

Theorem 2.2.1. The optimal design E c  for estimating e(c) 

using the least squares estimator is supported at the proper 

oscillation points of p c , a set of either m or m+1 points, 

independent of c, and containing B, D and at least one of 

A and E. If there are m points x l  < x 2  < 	< xm then the 

optimal proportions are 

m 
c ( xi )  = lax  (c) 1/ E 	jcp_ ( c )1, 

1 =1 'j 

where {fix  } j=1 are the Lagrange interpolation polynomials of 

degree m-1 to the points {x1 ,...,xm}. If there are m+1 

points then every optimal design is a convex combination of 

the two m point designs formed as above from fx1 ,...,xm 1 

and {x 2 ,...,xm+1 }. 

Methods of proof previously employed yield the m point 

case without difficulty. To see the m+1 point case utilize 

the fact that for allpolynomials E P , fpc (x)0(x)d c (x) E 
M-1 

ye(C) for some y > 0. This implies that for constants c uv 

 and y, depending only on the points xl ,...,xm+1 , we have 

cik E c (x j ) + ckjc (xk ) E y so that E c (xm+1 ) determines the 

remaining weights. Now it is easily seen that the largest 
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mass assigned by an optimal design to xm+1  is assigned by 

the one which places zero mass at x 1 . This verifies the claim. 

For m = 1 or 2 one can see that p m (x) E 1. All designs 

are optimal for m = 1 while for m = 2 any design E for which 

fxd E (x) = c is optimal. When m = 3 or 4 the optimal masses 

are determined from the supports in the usual way. For 

m = 4, the support is {A,B,D,E}. When m = 3, if B-A > E-D 

then the support is {A,B,D}, while if E-D > B-A it is 

{B,D,E}. Some illustrative optimal designs, their variances, 

and plots of pm can be found in Figures 2.1 through 2.3. 

When B-A = E-D and m > 2 explicit formulas for the 

optimal designs are available below. They are a consequence 

of the fact found below that for m even, m 2, A = -1_= -E, 

B = -D, 

p
o
(x) = MmSm/2 (x), 

where for x E X = 	 u [D,1] 

2 	2 
Sk (x) = cos((2k-2)tan

-1 (( x -D2 )
1/2

)) . 
1 - x 

One can also find there the facts that 

	

m  - 1 	m  - 1 1+D 7 	1-D 7 
]
-1

, m M = Hp 	= 2 [ ( 1=f) m co X 1+D )  

and for all x, Sk (x) satisfy the difference equation 

Sk+1 (x) + Sk-1 (x) = 2Sk (x)S 2 (x), 	k = 2,3,..., 	(2.1) 

where s 1 (x) E 1 and 
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2x 2 1+D 2 
S 2 (x) - D2 - 1 	1-D2 • 

A simple transformation can be made from [A,E] to [-1,1] 

so assume A = -1 = -E and let m > 2. 

Corollary 2.2.1. For m even the unique optimal design for 

estimating 0(c) is supported on the set I m = {-xm/2 	1 
2 	2 xl ,...,xm/2 } where x j  = ((z j  + D 2  )/(z i  + 1) ) 1/2  and 

z = tan( (-1
2)7T ), for j = 1,...,m/2. The masses are deter- m- 

mined as usual and the resulting variance is 

2 -1 2 , 	N-1a 2 	- 1 	- 1 
v
m

= a N Sm/2 tc)   LP +

7 	
P 
7 	2  

4 

where p +  = S2(c) ± (S2(-) - 1)
1/2

. 

For m odd let v1 < 	< vm+1 be the points of I m+1 . 

The optimal designs are convex combinations of the two 

obtained as above from {vl'".'  vm  and {v2''vm+1 and 

the variance is Vm+1* 

Proof. The only part which requires some explanation is the 

_c11
co  ,
- formula for Vm . Since Vm = 

a 2N-1 ii 	and pcm 	m 	m(x) = p° (x)/p () (c) 1 i ern  1 1 	
2 
x  

we have Vm = a 2 N-1 S
m/2 (c). Solving the difference equation 

(2.1) yields the formula claimed. 	 0 

2.3. Optimal Minimax Designs  

In this section it is assumed that the mean function 

8 is an unknown member of the set of functions W 2 [A,E] 

having absolutely continuous m- 1 st  derivatives and square 

integrable mth  derivatives 0 (m) . It is assumed that for 



32 

A 
E 2 . A linear estimator 2 0Y is employed to estimate e(c) 

which minimizes the maximum mean square error 

mmse = sup E (2,'Y - e(c)) 2  , 

	

e 	e 

where the supremum is over the set of A's described above. 

The reader is referred to Speckman (1979) and Spruill (1984, 

1985a, 1985b) for some further information about these 

estimators. If E = 0 then the set of mean functions e is 

the polynomials of degree no more than m-1 and the estimator 

becomes the usual least squares estimator. Let A s x < 	< 1 

XL B and D 	xL+1 < 	< xm 5_ E. Define the associated 

function 

6(x) = [R2 +1-1Q 2 ] -1 [nQ( E 	(-1) L-i cp x  (x) + 	E 	(-1) L+1-i (P x. (x)) 

	

i=1 	 i 	i=L +1  

E 
+ I h (t)h (t)dt] 

	

A  c 	x 

where 

m 
(m-1)!hx (t) = (x-t)

m-1 - E (I)
x 
 (x)(x.-t) m1 

	

. 
	(xi 	+ 	' i=1 	1 

Let 

R2 = 11hc 2  11
2

, 	and = 	E 	ix(c)l- i=1 	1 

11 = a 2/NE 2 
E (0,w). 

Theorem 2.3.1. There is an optimal m-point design 	for 

estimating 0(c) if and only if the function 6 determined 

H some fixed known 6 > 0 and all A He (m) 2 
2 = f (0 (m)  (t) 2  dt 
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by the support of n,c 
 oscillates properly at the points x.. 

In that case 

m 

il,c (xj_ )= 1 4) :<. (c)  1/ 	 (c)1 
1 	j=1 	j 

for i = 1,...,m, n ,c 
 is unique among m point optimal designs, 

and (5 minimizes 

P( 0 ) = 	11 0 11.20 , x  + n He (m)  11 22 

2 among all functions 	E W
m
(A,E] which satisfy 0(c) = 1. 

In the symmetric case X = [-1,-D] u [D,1], c = 0, 

there can be no m point optimal minimax designs if m is odd. 

This can be seen in the following way. Introduce the prob-

lems 

P : minimize p(0) over 0 E 147,11 [-1,1] such that 

0(c) = 1. 

It can be shown that P has a unique solution 0  and it 

oscillates properly in at least m points. In the symmetric 

case 6
0 
 (-x) solves P if 0 0  does, so 0 0 (x) E 6

0 
 (-x) and 

0 0  must oscillate an even number of times numbering at 

least m+1. However, since every optimal design's support 

is contained in
0 's oscillation set, the reflection of any 

m point optimal design being optimal entails the identity 

d im) 	E ( 
2
m)  (X)  E ( S im)  (x) of the two associated ,5 func- 

tions, an identity which one can easily determine to be 

impossible. In the symmetric case whenever m is odd the 
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following theorem can be used. Let x1 < 	< xm+1 be 

points of X. Define the function f x (t) by 

(m-1)Ifx (t) = (x—t)T-1 — E i±1 cp x. (x)(x. — t) m-1  
1 + 

where fcp x l in are the Lagrange interpolation polynomials 

of degree m to xl ,...,xm+/ . Taking Q = E im+1  1 1(p_ (0)1 and 

R2 = ilf0 11 22  , the associated function 6 is 
m+1 	m+1 
2-7- i  

6(x) = [nQ 2+R2 ] -1 [flQ( E 	(-1) 	(1) 	(x) 
i=1 	 xi 

m+3  4 M+
E
l 

(-1)
2-  .L.

(I)x (x) ) + f
1 

+ 	 fo(t)f x(t)dt]. .  m+3 	 1 	-1 
i - -7- 

Theorem 2.3.2.  There is an optimal design on m+1 points 

{x11 . .,xml_ 1 } if and only if the associated function 6 

oscillates properly at these points. If 6 oscillates at 

{x i
}
i
m+1

1 then xm+2-i = -x i for all i, the unique m+1 point 

optimal design 	places masses 

m+1 
101 (xi ) = 14x. (0) 1/ E 	1(1)x. (0) If 

i 	j=1 	3 

for i = 1,...,m+1, 6 solves P , and the mmse for the optimal 
2 

design is lir  [Q 2 + ri-1 R2 . 

The proof of Theorem 2.3.2 can be carried out in the 

same way as that of Theorem 4.1 of Spruill (1984). The key 

facts in proving the present theorem are first, that for 

all 0 E Wm [-1,1] 

m+1 	 1 
0(0) = 	E 	(1)x  (0)0(x.

1
) + f f,,(t)e) (m) (t)dt 

i=1 	i 	 -1 u  
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and second, that, because of the symmetry, (5 (m) (x) = f o (x). 

In the preceeding theorems, the design C o  is optimal 

if d (C 0  ) is the minimum value of 

A 2 (c)  d (C) = sup(  2  (m) 	2 0  
.1. 8 (x)dC(x) + nf(0 	(t)) dt 

over all Borel probability measures on X. For exact designs 
2 	 2 

N 	

a 
C the mmse of Speckman's estimator is 	dn (c), so 	dn ( 0 ) 

is approximately the smallest possible mmse. The characteri-

zations given in the theorem can be used to find optimal 

designs, and were used to find those listed in Figures 2.4 

through 2.7. 

One can show that as n + co the optimal minimax designs 

are always m or m+1 point designs and that there is some 

optimal design C for polynomial interpolation which performs 

nearly as well as the optimal in that d 	- d (C 	) 	0 

	

n 	fl ,C 
as 11 -- co. This just means that when 11 is sufficiently large 

the optimal interpolation procedure for a polynomial mean, 

using the least squares estimator, will perform nearly as 

well as the optimal procedure, where knowledge of E and 

a is required. 

Similar behavior is exhibited as c converges to B 

(or D) when n is fixed, there being optimal designs C c  for 

polynomial interpolation for which d (E c  ) - do  (C n,c
) 	0 

as c + B. 

0Z. •!,,j".. , --"r 
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2.4. Implementation  

Suppose one is interested in interpolating a function 

8 whose behavior is basically that of a polynomial of 

degree m-1, but some protection is desired against 

deviations from this model, say He(m)H2 	E. Compute the 

optimal designs for polynomial interpolation whose supports 

will always contain B and D, take the approximate proportions 

of obsrvations (see below also) required at these two points, 

and use them to estimate a 2
. Now find the optimal minimax 

design for the estimated value of 	We cannot at present 

prove that the optimal minimax design will include both B 

and D in its support even for c small, but we have never 

found it to be otherwise computationally. If B and D are 

in the support then, since for E small the masses assigned 

to B and D will not differ greatly from those already employed, 

the remaining points of the minimax design can be observed 

in their required proportions. 

The optimal designs given in Sections 2 and 3 are only 

approximate. Their utilization in constructing actual experi- 

ments can be accomplished as described below, following 

Fedorov (1972). Let be any design on r < N points. 

Define a design ' obtained from as any one obtained in the 

following way. With [x] = smallest integer greater than or 

equal to x, first assign [(N-r)(x i )] of the N observations 

at x i , i = 1,...,r, then assign the remainder in any manner 

and call the resulting design Z. 

I 
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The inequalities (2.2) show that the exact design 

constructed from the optimal minimax design performs well 

in comparison to the optimal exact design, a fact which in 

the polynomial case is a consequence of Fedorov's arguments. 

Let 7 -N  be the exact designs supported on N or fewer points 

of X. An optimal exact design is C N (n,c) satisfying 

do  (C
N 
 (n,c)) = min d (C). The inequalities are 

-N 

0 < 1 - d (C (n,c))/d (Z 	) 
fl N 	n n,c 	N 

and 

0 < 1 - d (E 	)/d (C (n,c)) 	Nn 11,c 	n N 
	 (2.2) 

whenever C 	is supported on m points. They are a conse- n,c 

quence of the obvious inequalities d n (C n,c ) < d n (CN (71,c)) 

dn n,c ) and the following lemma. 

Lemma 2.4.1. Let be any discrete design supported on r < N 

points. Then 

do 	- < 	N (1 - 	n (E). 

Proof. The function d is well defined for any positive 

Since si7T = 	+ i  where 4) > 0 we have d (C) > 	
N 

Borel measure. If 4) 1  and 4) 2  are two such measures and k > 1 

is a constant then kd 	1 ) > do  (4) 1  ) and do  (IP 1  ) > do 1  +4) 2  ). 

(1 - )d n 

As c tends to B or as n 	co we should be able 

N 
 

N 

> 

❑ 



to use the designs C c . How does C c  compare with C N (n,c)? 

Assume C c and C n,c 
 are supported on m points, otherwise 

replace m by m+1 where appropriate. 

Lemma 2.4.2. dn ac)-dn (CN (n,c)) < y
2d n  (C  c  ) - yd n 

 (C 
n
,c) 

N
) -l . -1 where y = (1 - fq7 	. 

Proof. If e = do  (C n,c )/dn  (C c ) then 

d
1-1 
ac )  < yd 	C ) 	" 	e 

_) 	
e 

< 	d (C (n,c)) 
- 	 -  

S O 

d( c ) - dn (C N (n,c)) < 	e 	1)d n  (EN  (n c)) -  

Since d(CN (n,c)) < yd (C 
11,c), 

 one has 

()do 	- d(CN
(n,c)) < y2dn  (E c  ) - yd n (C n,c ). 

When n is large or c is close B or D Cc  will be nearly as 

good an approximation to CN (n,c) as C 	Even for rea- fl, 

sonable values of N the bound can be small. For example, 

when m = 5 and n = 10 -5  with N = 20 we find that for 

X = [-1,0] u [.7,1], c = .3, d (C c ) = 3.06 so the following 

design Vi c, 1 at -1, 2 at -.62, 7 at 0, 5 at .7 and 2 at 1 

with 3 anywhere has a resulting estimator whose maximum 

mean square error over He (m) 11
2  < 70.71 is dn c )/20 < -  

(n,c))/20 + .068. dn ( 20 
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Figure 2.1. A plot of pm for m = 5, c = .3, and X = [-1,0] u [.7,1]. Oscillation 

points are xi  = -1, x2  = -.62, x 3  = 0, x 4  = .7, and x 5  = 1. The 

variance for estimating 0(.3) is 2.99 a 2 /N and the optimal design 
places masses .03, .13, .44, .31, and .09 at x i  through x5. 



Figure 2.2. A plot of ID. E1  for m = 6, c = .3, and X = [-1,0] u [.7,1]. Oscillation 

points are xl  = -1, x 2  = -.82, x 3  = -.36, x 4  = 0, x 5  = .7, and x 6  = .95. 

The variance for estimating 8(.3) is 9.36 0 2 /N and the optimal design 
places masses .05, .12, .25, .41, .13, and .04 at x l  through x6. 
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Figure 2.3. A plot of 41  for m = 5, c = 0, and X = 	 u [.2,1]. Oscillation 

points are x l  = -1 = -x6 , x2  = -.72 = -x 5 , and x 4  = -.2 = -x 4 . The 

variance for estimating 0(0) is 1.82 0 2 /N and optimal masses are 
.03, .11, .50, .34, and .02 at x l  through x 5 . With equal weight on 

this and its reflection through 0 one obtains the unique optimal 
.design for m = 6. 
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x 3 	 x4 	 5  x
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Figure 2.4. A plot of the optimal design's 6 for m = 5, c = .3, X = [-1,0] u [.7,1], 

and n = 10-5 . Oscillation points are x l  = -1, x 2  = -.61, x 3  = 0, 

x 4 = .7, and x 5 = 1. For estimating 8(.3) mmse = 3.06 a
2 /N and the 

optimal masses are .03, .13, .45, .31, and .08. 



xl 	 x2 	 x3 	 x4  

Figure 2.5. A plot of the optimal design's (5 for m = 4, c = 0, X = [-1,-.2] u 

and n = 10-5 . Oscillation points are x l  = -x 4  = -.85 and x 2  = -x 3  = -.2. 

For estimating 0(0) mmse = 1.43 a 2 /N and the optimal masses at x l  and x 2 

 are .03 and .47 with those at x3 and x 4 determined by symmetry. 



Figure 2.6. A plot of the optimal design's 6 for m = 3, c = 0, X = [-1,-.2] u [.2,1], 

and n = 10-4 . Oscillation points are x i  = -x 4  = -1 and x 2  = -x3  = -.2. 

For estimating 0(0) mmse = 1.43 0 2 /N and the optimal masses at x 1  and x 2 
are .03 and .47. 
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Figure 2.7. A plot of the optimal design's d for m = 3, c = 0, X = [-1,-.2] u [.2,1], 

and n= 5x10 -5 . Oscillation points are xi  = -x 4  = -.83 and x 2  = -x 3  = -.2. 

For estimating 6(0) mmse = 1.66 1:1 2 /N and optimal masses for x i  and x 2  are 
.03 and .47. 
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Some Chebyshev-Like Polynomials 

3.1. Introduction  

A Chebyshev polynomial Tm-1 (x) = cos((m-1)arcos(x)) has the 

property (see Rivlin (1974)) of being proportional to the solu-

tion, whenever X = [-1,1] and c X, to the problem P m_1 (c,X): 

minimize over polynomials p of degree no more than m-1, and 

subject to the constraint p(c) = 1, the quantity suplp(x)i = 
x€ X 

11P% X• This feature is of interest for other reasons, but 

our interest is due to the following fact. In the extrapola-

tion of an unknown polynomial f of degree m-1 to the point 

c X, based on observations of f's value at points x in X, 

which observations are subject to random zero mean error, 

the optimal x's at which to observe f's value are those for 

which the solution p to Pm-1(c,X)  attains its maximum absolute 

value= X  . In the case X = [-1,1], c 	X, 

those points are -cos( (3 ;1 17 ], j = 1,...,m, the oscillation 

points of Tm_ i . Is there a correspondingly simple determina-

tion of optimal points in the case of interpolation to a 

point c E (B,D) when X = [A,B] u [D,E]? We find the answer 

in the affirmative if B-A = E-D and a set of polynomials S k 

 which play a role analogdus to the Tk 's. In addition, the 

polynomials Sk share other properties. For example, the 

S
k
's are orthonormal with respect to a certain equilibrium 

measure (see Geronimus (1977) and Hille (1973)), they satisfy 

a similar three term recurrence, and they are proportional, 

when the degree is even, to the monic polynomials minimizing 



In this case consider 

2 n-1  i;(x) = a(x-c) 	II 	(x-z.) 
j=1 

f ( xL+1 ) 	17" ( xL+1 ) . 
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Even when the two intervals are not of the same length 

the solutions, which are shown to be cosines of elliptic 

integrals, can be characterized by their oscillation proper-

ties providing a reasonably rapid method, not involving 

quadratures, for numerically finding solutions. Solutions 

to the monic minimizer of 11 q 11 00 
X for odd degrees are also 

characterized. 	

, 

3.2. Equioscillation  

Consider the problem, for a given continuous function f 

on X = [A,B] u [D,E], Z m_ 1 (f): find 17) E Fm_ l  minimizing 

Ilf- 13 11.,x • Here Fm_ 1  = { p E Pm_ / : p(c) = 0}, Pm_ l  is the 

collection of polynomials of degree no more than m-1, and 

B < C < D. Let m > 1. 

Lemma 3.2.1.  There is a solution p to Z
m-1 (f). Furthermore, 

for any solution there are subsets R c [A,B] and S c [D,E] 

with #(R) + #( S) 	in qR ,qs  each in {0,1}, and points 

X
1 
 < X

2  < 
	< x

L 
in R and xL+1 < 	< x

m 
in S such that 

3-cIR (-1) 	Ilf-Pilcox 
ciS 	

, 
f(x.) - P(x.) = 	j- (-1) 	ilf-P11,, ,x , 

J E {1,...,L} 
(3.2.1) 

J E fL+1,...,1111 

Proof.  Existence of the solution p is clear. The full proof 

then proceeds by examining the several possible cases, two of 

which are presented here. Assume #(R) + #(S) = n < m. 

The first case has #(R)#(S) > 0 and f(xL ) - P(xL ) = 
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where x < z 1 
< x

2 
< 	< z

L-1 1 	
< X

L  < C < XL+1 
 < ZL+1 	< 

- 
xn and z 1 ,...,zn_ i  are zeros of f-p. Then p E Fm_ i  and 

choosing a so that the sign of p(x l ) is the same as f(x l ) - 

5.(xl ) shows that for e > 0 sufficiently small Ilf-(1746)11 00,x  < 

The contradiction eliminates this case. 

In the second case #(R)#(S) > 0 and f(x ) - p(x ) = 

-(f(xL+1 ) - F)(xL+1 )). Set 

- 	 n-1 
p(x) = a(x-c) 	II 	(x-zi ), 

i=1 
i#L 

where the 	's are again zeros of f-P z j . Again, for e > 0 

sufficiently small, p + ep does better than p and is in 

Fm-1' 	 0 

Henceforth, we shall refer to the oscillation described 

by(2.1)asproperoscillationandthepointsx.at which 

IP(x) I = 	 as oscillation points. When m = 1 or 2 

the solutions are p (x) = p 2 (x) = 1. Let m > 2. 

Theorem 3.2.1.  There is a unique solution pm E Pm-1 to the 

problem Pm_ 1 (c,X). Furthermore, p is the solution if and 

only if p oscillates properly on X in at least m points, p(c)=1 

and has B and D among the oscillation points with p(B) 

P(D) = 	11Pil w, x • 

Proof.  Consider the solutions p to Zm-1(f).  They form a 

convex set and must oscillate properly in at least m points. 

It follows that they all share at least m common points of 

oscillation and therefore that any two agree in at least m 
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• 

points. The solutions to Zm-1(f)  are thus unique. It is 

clear that solutions to Pm_ 1 (c,X) exist. Let p be one and 

consider the solution p to Zm_ / (p). We must have 

5-17)11 .,x  = 511. ,x  and P-17) oscillating properly. We also 
have 0 solving Z m_ 1 (P) so that 175 = 0 and p oscillates properly 

in at least m points. By the same arguments that applied to 

the solutions to Zm-1(f)  it follows that g is unique. 

It is easy to see that at least three of {A,B,D,E} are 

in the oscillation set; otherwise p l!ti  would have at least 

m-1 zeros in [A,E] which is impossible since m > 2. 

Assume that B is not in the oscillation set. Then 

has at least m-1 zeros in [A,E] unless p m (xL ) = - lipm li .,x 

 and pm (D) = lipm 11. ,x  . There are now two possibilities; 

either pm  has precisely m oscillation points or has m+1. If 

it has m then the proof of the second case in Lemma 3.2.1 shows 

we need pm (xL ) =IIPr ^ Ic,X=  pm (D); otherwise we obtain a 

contradiction to the definition of p m. We conclude that if 

D only is in, then pm  oscillates at precisely m+1, since it 

can certainly oscillate in no more. Now there are several 

cases. Considering them each shows, as we show for just one, 

that each is impossible, and hence that B and D are both in 

the oscillation set. The case we show is that for which m 

is even. Then the oscillation pattern exhibited by p m , 

where M = 	 and for #(R) even and #(S) odd, is 
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+M..., +M, -M; +M, -M,...,+M, 

where the semicolon separates the two intervals [A,B] and 

[D,E]. We see that pm  has at least m-1 zeros and so must be 

degree m-1. Since this is odd it forces another zero so that 

pm  has at least m zeros. This is not possible. 

Completing the scheme above shows that p m  must oscillate 

properly, have pm (c) = 1, and pm (B) = pm (D) = 11Pli co, x • If 

a polynomial p satisfies p(c) = 1, and p(B) = p(D) = 

then (see Lemma 1.2.2) it follows that p-pm  has at 

least m+1 zeros on [A,E], so p = p m . 	 0 

Using this characterization we found p m 's numerically 

for several cases. Graphs of these can be found in Figures 

3.1 through 3.4. 

3.3. Differential Equations 

When m > 2 the solutions to Pm_1 (c,X) for different 

values of c must be scalar multiples. This is a consequence 

of the fact that if y j  solves Pm_ 1 (c j ,X), j = 1,2, then 

ayi (B) = y2 (B) for some a > 0 and the characterization then 

shows ay1-y 2 has at least m zeros in [A,E]. If p m-1  

Hp
M d( 	

p , then pm-1 	11-1  for m > n, and since p 2 < 1 
co 

p' has a zero in (B,D). Henceforth, when we write p m we 

shall mean the solution to the problem P
m-1 (c,X), where c 

has been chosen so that p i'll (c) = 0. Let m > 2. 

Theorem 3.3.1.  For some K, M, F, G, and Q, p m  satisfies one 

of the equations 
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(p;11) 2 (x-v) (x-B) (x -D) (x-F) = K(M
2
-p

2
)(x-c)

2
, 	(3.3.1) 

where v = A and F > E or v = E and F < A, or 

(p1)2(x-A)(x-B)(x-D)(x-E)(x-F)(x-G) = K(m2_13,211)(x_ c) 2 (x-Q) 2 ,  

(3.3.2) 

whereE<Q<F<GorG<F<Q< A. 

Proof.  The complete proof proceeds by consideration of 

several cases. Two are presented below, the remainder being 

handled similarly. Certainly m-2 < deg(pm) < m-1. 

If deg(pm) = m-2 and m is odd, then M
2-p 2 must have 

simple zeros at A, B, D, and E. If L = #(R) is odd and 

U = #(S) is even, then the sign pattern is 

+M,..., -M, +M ; +M, -M,...,-M 

and pm (±co) = Too (the case L even and U odd is similar). It 

2 follows that M 2  -pm , where M = Hprti ll., ,x , has 2(m-4) + 4 zeros 

2 and pi; has L - 2 + U - 2 + 1 = m-3. Therefore, (M 2 -
pm)(x-c)

2 
 

has 2m-2 and (prin ) 2 (x-A)(x-B)(x-D)(x-E) has 2m-6+4 = 2m-2. 

Each is of degree 2m-2 and their zeros agree, so for some 

constant K, pm  satisfies (3.3.1) with v = A and F = E. 

When deg(pm) = m-2 and m is even one can again show 

2 that M2-pm has simple zeros at A, B, D, and E and that p m 

satisfies (3.3.1) with v = A and F = E. 

Similarly, if deg(pm) = m-1 and M2 -pm has simple zeros 

at precisely A,B,D or B,D,E, then (3.3.1) is satisfied. 

When deg(pm) = m-1 and M2-p1211  has simple zeros at A, B, 
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D, and E, then, as we show in the case m odd, p m  satisfies 

(3.3.2). 

In the case m odd, deg(pm) = m-1, and M2 -p1.2(1  with simple 

zeros at A, B, D, and E we have in case L is odd and U is 

even, the sign pattern 

+M,..., -M,+M ; +M, -M,..., -M. 

Since pm  is of even degree, either p m (±03) = +03 or pm (±c0) = 

Only the former case is treated since the argument for the 

latter is the same. In this case clearly pm+M has a zero at 

F > E, pm-M a zero at G > F, and pr'll  a zero at Q E (E,F). 

Then M2 -p
2
m  has 2(m-4) + 4 = 2m-2 zeros, p' has L - 2 + U - 

2 + 2 = m-2 zeros, and the polynomials on both sides of (3.3.2) 

have 2m+2 zeros, are of degree 2m+2, and their zeros coincide. 

The equality, for some K, follows. The remaining subcases 

again show that pm  satisfies (3.3.2). 	 0 

We remark here that none of the cases listed in the 

theorem can be eliminated; all can be shown computationally 

to be possible depending on the configuration determined 

by A, B, D, and E. It also follows from the form of the 

equations that the solutions pm  can be expressed as cosines 

of elliptic integrals. 

In general, the equations (3.3.1) and (3.3.2) seem to reveal 

little useful information since they contain several unknown 

quantities. An exception occurs in case B-A = E-D as will 

now be shown. We can assume A = -1, B = -D, and E = 1, where 
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D E (0,1), and it is not difficult to prove that in this case 

the special choice c = 0 leads to p 1;1 (c) = 0, pm (c) = 1. 

Let k > 2. 
	

Ipr,,..; 	. _x 

Lemma 3.3.1.  If m= 2k-1 then pm =pm±i  and deg(pm+1 ) =2k-2. 

Proof.  Surely, if pm+1 (x) is a solution then so is pm+1 (-x). 

Uniqueness shows pm4.1 (x) - pm1_ 1 (-x) = 0 and since p 	(x) = m+1 

amx
m  + am-1 

xm-1 + 	+ a
0  we see that the coefficients of 

all odd powers vanish. Therefore deg(pm+1)<  2k-2. Since 

pm+i (x) has at least m+1-2 zeros and p m+1 (0) = 1, deg(pm+1 ) > 

2k-2. 	 ❑ 

It now follows that for m even, m > 2, p m  is of degree 

m-2 and must satisfy (see the proof of Theorem 3.1) 

(10,111 )
2
(1-x

2
)(x2-D2 ) = K(M2  -pm )x

2  . 

It follows by integrating this that p m (x) = MSm (x), where 

2 

2 2 
Sk (x) = cos((2k-2)tan

-1 	-D

x
2) ) 

for x E [D,1). 

1- 
 

Since Sk satisfies the three term recurrence 

Ski_ 1 (x) + Sk-1(x) = 2S k (x)S 2 (x), 	k = 2,3,... 

on [D,1), S1  (x) E 1, and 

2x 2 1+D 2 
S 2 (x) = 

D2 -1 	1-D2 

there, we can extend the Sk 's to (-0.,+co) where they can be 
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seen to be polynomials. For m even, determining M m  so that 

Mm  S m
(0) = 1, and using the oscillation characterization, 

2 
confirms that pm 

= Mm  Sm  solves Pm-1 (0,X). Using the three 

2 
term recurrence shows 

2-1 	,-1 -1 
1+D 	1-D M = 2[(1-D) 	(I;T)m 

Like the Chebyshev polynomials, the polynomials iS kItl 

form an orthogonal collection; specifically, 

1. I S, (x) S k , (x)    = dkk' X 	 1 	

IxIdx 

(1-x2) (x2-D2 ) 

whenever k and k' are in (1,2,-1. The polynomials S k are 

also related to the monic minimizers q of 11 q 11 . ,x  . Some 

details are given in the next section. 

3.4. The Approximation Problem  

For an arbitrary X = [A,B] u [D,E], what are the monic 

polynomials q which minimize 111q11.,x,  and what is their 

relationship to the solutions of the problems P m_1 (c,X)? 

Introduce the problems, for f an arbitrary continuous func-

tion on [A,E], 

Am_ 1 (f): minimize 	 over all 

polynomials p E Pm-1' 

The proof of the following lemma parallels that of Lemma 3.2.1. 

Lemma 3.4.1.  There is a solution p to Am_1 (f). For each solu-

tion p there are subsets R c [A,B] and S c [D,E] such that 



55 

#(R) + #(S) > m+1, points qR  and qs  in {0,1}, and points 

• < x
L 

in R and xL+1 < 	< xm 1 in S, such that X
1 
 < X

2 
 < . 

jqR (-1) 	 j = 1,...,L 
f(x.) 	P(x.) = 	j-q S 	1 	-II (-1) 	 j = L+1,...,m+1 . 

This proper oscillation at m+1 points again guarantees the 

uniqueness of the solutions to Am-1(f).  The monic minimizer 

q of interest is a solution, where m > 2, of 

MPm-1 : minimize  11q11co,X  over. all polynomials 

q(x) = xm-1 - v(x), such that v E Pm-2' 

A solution q to MPm-1 satisfies q(x) = x
m-1 - v(x), where 

v solves Am-2 (xm-1 ), so q must oscillate properly in at 

least m-2+2 = m points. Again this implies the unicity of 

the solution. The following can be proven using no new 

techniques. 

Theorem 3.4.1.  The monic polynomial q of degree m-1 solves 

MPm-1 if either 

a) q

- 

 oscillates properly at m+1 points or 

b) q 

- 

oscillates properly at m points, A and E are in the 

oscillation set, and q(x
L) = -q(xL+1 ). 

Conversely, if q solves MPm-1 then q satisfies either a) 

or b). 

We note that if a monic polynomial q EPm_ l oscillates 

properly at m+1 points then, necessarily, m is odd and both 

B and D are in the oscillation set. This implies that if m 
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is odd, qm  solves MPm-1' and qm oscillates properly at m+1 

points then qm  is a multiple of 	the the solution to Pm-1 (c). 

If m is even then the solutions to MPm-1 and  Pm-1(c)  cannot 

be multiples since their oscillation patterns are unlike. 

One can prove as in Theorem 3.3.1-that the minimizer q m  must 

satisfy one of the equations 

(qm' ) 2 (x-A) (x-E) = K (M
2 
 -qm ) 
	

(3.4.1) 

or 

(q;) 2 (x-A) (x-E) (x-D) (x-E) (x-H) (x-1) = K(m 2 -cd) (x-F) 2 (x-G) 2  

(3.4.2) 

for some values K,M, and B < F < H < I < G < D. Even in the 

symmetric case we have no explicit solution for m even. 

When m is odd however we know that pm  = pm+i  so that pm 

 oscillates m+1 times and B and D are in the oscillation set. 

Using that fact and the three term recurrence one can prove 

the following. Let m > 3 be odd. 

Lemma 3.4.2.  The solution qm of MPm-1 satisfies 

m-1 
1 	4   

qm (x) = 2  ( 2  ) 2 Sm+1 (x) 	x E 

D -1 

and 

2 m-1  Hq H 	2( 1-D 	2 
m .,x 	4 ) 

Standard recurrence formulas for orthogonal polynomials 

generate odd degree polynomials to complete the q set. 

However, we cannot show that they are qm 's for m even. 

2 
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The last lemma shows that the logarithmic capacity for 

two intervals of equal length L separated by a distance A 

is 1 
 ✓

L(L+A). In case the intervals are [-1,-D] u [D,1] 
2 

-  this is Vl2D2  , a value which is known and can be found in 

(VI.33) of Geronimus (1977). There also the measure (see also 

11.15 of Geronimus) 

I x Idx 

(1-x2 ) (x2 -D 2 ) 

occurs as a potential theoretic equilibrium distribution. 

am indebted to Professor J. Geronimo for informing me 

of the connections with potential theory. 

\ I 

• 

1 jl 



Figure 3.1. Plot of pm  for m = 7, X = [-1,-.55) u [.7,1]. Oscillation points 

are xi  = -1, x 2  = -.907, x 3  = -.688, x 4  = -.550, x 5  =.7, x 6  = .834, 

x 7 = 1. 



X:2 	 X5 "3 

Figure 3.2. Plot of pm  for m = 6, X = [-1,-.55] u [.7,1]. Oscillation points 

are xi  = -x6  = -1, x2  = -.787, x 3  = -.55, x4  = .7, x5  = .868. 



Fijure 3.3, Plot of pm  for m = 6, X = [-1,0] u [.7,1]. Oscillation points 

are xi  = -1, x2  = -.819, x 3  = -.362, x4  = 0, x5  = .7, and x6  = .948. 



Figure 3.4. Plot of pm , m = 5 for X = [-1,-.2] u [.2,1]. Oscillation points 

are x
6 
= -x

1 
 = 1, x

5 = -x2 = .721, x4-3 = .2. 



Figure 3.5. Plot of qm  for m = 6, X = [-1,0] u [.7,1]. Oscillation points are 
x1 = -1, x2 = -.823, x 3 = -.374, x 4 = 0, x5  = .839, x 6 = 1. 



Figure 3.6, Plot of gm  for m = 6, X [ - 1, - .4] u [.4,1]. Oscillation points are 
x6 = -x1  = 1, x5  = -x2 = .81 3

, x
4 = -x 3 = .4. 
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