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SUMMARY

In recent years, the number of processor cores on a single chip has increased rapidly,

ranging from hundreds of cores in server processors to tens of cores on mobile processors.

The abundant number of processing cores have led to application developers investing in

parallelizing applications in order to extract the maximum performance from many-core

processors. However, ensuring the continuous scaling of parallel applications is challeng-

ing on many-core processors, due to the complex relationship of available parallelism in

application and the limited shared on-chip resources.

Two main bottlenecks that limit the scalability of parallel applications are synchroniza-

tion and memory bandwidth. Synchronization increases with the number of threads, due to

the high lock contention from threads accessing the same lock-protected data that causes

increase lock contention, whereas barrier operations ensure each parallel thread are within

the same computation phase which limits the available thread-level parallelism. The in-

crease in number of threads also puts more pressure on the memory subsystem in order to

provide sufficient memory bandwidth for each active thread.

With this thesis, I propose both statistical models to mitigate the bottlenecks and soft-

ware/hardware solutions to improve and address the scalability bottlenecks. First, I pro-

pose MiSAR, a minimalistic synchronization accelerator (MSA) that supports all three

commonly used types of synchronization (locks, barriers, and condition variables), and a

novel overflow management unit (OMU) that dynamically manages its (very) limited hard-

ware synchronization resources. The OMU allows safe and efficient dynamic transitions

between using hardware (MSA) and software synchronization implementations. This al-

lows the MSA’s resources to be used only for currently-active synchronization operations,

providing significant performance benefits even when the number of synchronization vari-

ables used in the program is much larger than the MSA’s resources. Because it allows a

safe transition between hardware and software synchronization, the OMU also facilitates
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thread suspend/resume, migration, and other thread-management activities. Finally, the

MSA/OMU combination decouples the instruction set support (how the program invokes

hardware-supported synchronization) from the actual implementation of the accelerator,

allowing different accelerators (or even wholesale removal of the accelerator) in the future

without changes to OMU-compatible application or system code.

Second, I propose a new performance model that captures program characteristics of

multi-threaded applications, allowing it to use few-threaded runs along with small input sets

to predict performance of many-threaded runs with large input sets. First, we partition the

program execution into barrier phases, and model the scaling trend of the total instruction

count and its distribution among threads for each barrier phase in order to account for

parallelization overheads. Second, we subdivide each barrier phase into small intervals,

and model the cache miss rate of each interval by utilizing the regular shifting of concurrent

reuse distance (CRD) profiles. Applying the CRD analysis to small intervals allows the

CRD profile to capture behavior and model performance of each phase of the program

individually, rather than trying to model the aggregate behavior of potentially many phases

that may differ widely in terms of cache capacity and memory bandwidth demand. Third,

we use a simplified DRAM model to capture the impact of the memory subsystem on the

total execution time. Finally, we model how the number of barrier phases and the model

parameters (instruction count and CRD) changes with input size to predict across different

input sets.

Last, I propose a PC-based profile and modeling technique to predict the increase of

lock contention when scaling the number of threads. Our lock contention model consists

of 4 parts. First, we divide the program execution into parallel phases separated by global

synchronization (barrier, fork-join, etc.). Second, we collect statistics that represent the

synchronicity of thread arrival (lock arrival rate) as well as the functionality of the corre-

sponding critical section (size of the critical section) for each lock PC. Third, we approx-

imate the rates into well-known statistic models (eq. exponential distribution, gaussian

xv



distribution, etc.) in order to reduce the parameters required to model the lock contention.

Last, we use regression models to predict how the parameters will change when varying

the number of locks and input size.
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CHAPTER 1

INTRODUCTION

1.1 Multi-core Era and Parallel Applications

In recent years, the number of available cores in a processor is increasing rapidly while the

pace of performance improvement of an individual core has been lagged. As a result, appli-

cations are now required to extract more parallelism and leverage the abundant number of

cores to ensure continuous speedup of their applications. However, ensure application scale

well over many threads is a challenge task, mainly because scalability bottlenecks such as

synchronization will saturate the performance gain if not managed carefully. In addition,

finding the optimal thread count to balance the overhead and benefit of parallelization be-

comes even more critical.

To tackle the challenge of ensuring the scaling of parallel applications, in this work

I propose both a synchronization accelerator and performance models to address the is-

sue. The synchronization accelerator reduces the amount of synchronization overhead,

specifically handoff overhead. This would allow the efficient execution of synchronization

operations such as lock and barriers, while minimizing the overhead. Second, I propose

two performance models to predict the scaling trend of an application. This allows appli-

cation developers to estimate the potential speedup for a given system and identify rather

the application would be memory-bound, compute-bound, or synchronization-bound.

1.2 Scalability challenges

1.2.1 Synchronization operation overhead

Synchronization latency is critical for achieving scalable performance on many-core pro-

cessors. Numerous hardware mechanisms for low-latency synchronization have been pro-
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posed [1, 2, 3] and even used in prototype and commercial supercomputing machines [4, 5,

6, 7, 8, 9, 10]. As general-purpose processors have shifted their focus from solely increas-

ing single-core performance to providing more cores, there has been a renewed interest in

hardware support for synchronization [11, 12, 13, 14, 15], this time for a much broader

range of systems, programmers, and users. Examples of recently proposed hardware syn-

chronization mechanisms include utilizing a small buffer attached to the on-chip memory

controller to perform synchronization and allow trylock support [15], incorporating a lock

control unit to both the core and memory controller to allow efficient reader-writer lock

[14], or leveraging low latency signal propagation over transmission lines for lock and

barrier synchronization [11, 12, 13].

Because previous research on hardware supported synchronization mostly focused on

how to reduce synchronization latency, most such work assumed that a sufficient amount of

hardware resources is available, with only limited consideration on how to handle limited

hardware resources. This, however, limits the adoption of hardware synchronization accel-

erators both because of high cost (many applications use a large number of synchronization

addresses for which resources would be needed) and correctness (some applications can ex-

ceed the resources that were considered sufficient at hardware design time).

Most prior work tackles limited hardware resources using one of the following three

mechanisms. The simplest mechanism is to have an a-priori partitioning of synchroniza-

tion addresses into hardware-supported and software-supported ones. Programmers will

thus use hardware synchronization instructions for some and software library calls for other

synchronization variables. However, this places a heavy burden on programmers because:

1) they must decide which synchronization approach to use for which synchronization vari-

able, 2) debug problems that occur when a synchronization variable erroneously mixes

synchronization implementations, and hardware resources are oversubscribed. Another

mechanism is to simply stall the synchronization operation until resources are available.

Although this does not require any programmer intervention, it can result in great perfor-

2



mance loss, or even deadlock if resources are not sufficient. The third mechanism is to

treat the insufficient hardware resources as an exception. The exception handler will then

decide to wait and try again or use a software synchronization mechanism. Such fallback

mechanism results in significant performance penalty, so sufficient resources are needed to

keep the number of the fallbacks very low. Furthermore, naively falling back to a software

implementation can break the synchronization semantics, and additional overheads (and

possibly additional hardware mechanisms) are needed to prevent such problems.

Also, previous proposals have focused on only accelerating (supporting) one type of

synchronization. This would result in significant hardware cost/complexity to support the

overall synchronization needs of real workloads, where different applications (or even the

same application) may use locks, barriers, and/or condition variables. Each hardware syn-

chronization mechanism (e.g. one for locks and another for barriers) may have its own

software interface and its own verification complexity, which complicates adoption by both

hardware architects and by programmers.

Therefore, in this thesis, I propose a minimalistic synchronization accelerator (MSA).

The MSA is a distributed synchronization accelerator for tile-based many-core chips. It fol-

lows the POSIX pthread synchronization semantics and supports all three common types

of synchronization (locks, barriers and condition variables) but has very few entries in each

tile. We also propose a novel hardware overflow management unit (OMU) to efficiently

manage limited hardware synchronization resources. The OMU keeps track of synchro-

nization addresses that are currently active in software, so we can prevent these addresses

from also being handled in hardware. The OMU also enables the accelerator to rapidly

allocate/deallocate hardware resources to improve utilization of its (few) entries. Finally,

we propose ISA extensions for hardware synchronization. These ISA extensions facilitate

adoption by allowing synchronization libraries to only be modified once (to support the

new instructions) and then used with any hardware synchronization implementations that

support the ISA’s fallback semantics – including trivial implementations with no actual

3



hardware synchronization support.

1.2.2 Thread Count

With the commercialization of many-core processors, such as Intel’s Xeon Phi [16] and

Tilera [17], a single-node system can easily exceed hundreds of processing cores. This

raises a critical question of how many cores/threads to use in order to obtain close-to-

optimal performance for a particular application. Prior work has shown that simply using

the same number of threads as cores may not yield the optimal performance, since increases

in parallelization overheads can exceed performance gains from additional parallelism [18,

19].

One approach to predict performance scaling is to explore different system configura-

tions using detailed simulators, then use regression methods to build a statistical predictor

[20]. However, training a regression model for accurate results require thousands of data

points, which is time consuming and therefore cannot quickly identify the scalability trends

of an application. Others have proposed methods that dynamically manage the number of

active threads at runtime [19, 18], typically by starting with few threads, predicting the

thread count that will saturate an available resource (eq. memory bandwidth), and adjust-

ing the thread count accordingly. However, these prediction mechanisms often assume

that each thread has identical working-set size and program behavior[19], which does not

take into account load imbalance. Furthermore, most dynamic approaches can only pro-

vide performance prediction up to the number of available cores, which precludes their

use for estimating performance gains that might be obtained with higher-core-count pro-

cessors (e.g. to determine if performance gains would justify upgrading the processor to a

higher-core-count one).

Profiling tools have also been used for identifying potential scalability bottlenecks [21,

22], typically by utilizing hardware performance counters to account for various microar-

chitectural events such as last level cache (LLC) misses, high-latency instructions, etc., and
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then components of the execution time that are particularly detrimental to scaling. Such

profiling approaches are typically very helpful in situations where the profiled execution is

already experiencing substantial performance degradation, but do not provide much insight

into how performance will eventually degrade at significantly higher thread counts.

For applications that scale well, the total amount of work and its distribution among

threads becomes the dominant factor for efficient scaling. Most prior work assumes a con-

stant total instruction count as the thread count increases[23, 19, 18], i.e. that there is

no per-thread work that must be done by each thread regardless of how many threads are

used. However, even a small amount of per-thread work becomes important when using

many threads. For example, Figure 1.1 shows how the total instruction count scales for the

Splash-2 benchmark Cholesky. While the total instruction count is close-to-constant for

low thread counts, it rapidly increases when using many threads, so that a 128-thread exe-

cution executes 9X the number of instructions executed by the single-threaded execution.

This means that modeling of the per-thread overheads is very important when trying to

predict performance scaling of some applications. Figure 1.1 also shows the ratio between

the maximum and average instruction count among threads, and also the maximum-to-

minimum per-thread instruction count. We observe that this ratio increases as the thread

count increases, i.e. at higher thread counts the application will experience higher load

imbalance. Predicting this load-imbalance can become important when trying to predict

overall application performance at higher thread counts.

One challenge for using statistical models to predict performance is the complexity

of the model and the required number of data points. Naively predicting the program

characteristic would require large amount of data points in order to correctly capture the

complex program behavior. However, prior work have shown that synchronization barriers

are a natural boundary for a program phases, and consists of homogeneous behaviors across

and within barrier phases [24, 25]. Our work extends upon this concept and shows that

barrier phase characteristic are also homogeneous across different input, and by leveraging
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Figure 1.1: Per-thread/Total instruction trend for Cholesky

such program structure, we can not only reduce the complexity and required data points to

achieve better accuracy for modeling program characteristics, but also predict how program

scales across larger input sets. Figure 1.2 shows how the accuracy of predicting the total

instruction improves by subdividing the prediction on each barrier phase verses over the

whole program.

Contention for memory resource is another main bottleneck for application scalability.

Increasing the number of active threads increases the demand for data movement bandwidth

(both in the on-chip interconnect and in the memory channels), degrades cache locality in

shared caches (which further increases memory bandwidth demand), and often increases

the total memory footprint by increasing the total amount of tread-private data (which ad-

ditionally degrades cache performance and results in even more memory bandwidth pres-

sure). Several prior works have studied how thread-count degrades memory locality [26,

27] and increases pressure for off-chip memory bandwidth [21]. However, these works only

target a single architecture feature (cache miss rate, memory bandwidth utilization), and do
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not address the problem of predicting overall performance scaling in general, especially

when multiple performance-limiting factors are present and their effects are compounded.

To illustrate how one factor is unlikely to provide a good picture of overall parallel

performance, Figure 1.3 shows the overall parallel speedup and MPKI of Splash-2 [28]

benchmark FFT as the number of threads increases. As shown, MPKI increases by 2X

when scaling from 1 thread to 256 threads. However, the parallel speedup peaks at 64

threads, which is beyond the point where MPKI starts to degrade. Beyond 64 threads the

MPKI continues to increase, while the parallel speedup degrades. This speedup degrada-

tion is actually caused by compounding the effects of cache hit rate degradation (which

is accounted for in the MPKI) and the saturation of memory bandwidth (which is not ac-

counted for in the MPKI). Note that cache hit rate degradation alone would be expected

to only reduce the slope of the performance growth curve, while the bandwidth saturation

alone would be expected to cause saturation of the parallel speedup (making it asymp-

totically approach a constant value). However, with both effects present simultaneously,

bandwidth saturation prevents any parallelism-related gains from thread-count increases

while cache hit rate degradation causes each thread to slow down, resulting in degradation
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in performance as the thread-count increases.

To predict the interaction between cache hit/miss performance and the limited band-

width in the memory system, we adopt a mechanism proposed by M.-J. Wu et al. [26] that

uses an augmented Reuse Distance (RD) analysis to better account for how cache hit/miss

performance changes with the thread count. In addition, we also account for bandwidth-

related considerations (memory access burstiness) and instruction-count trends to model

and predict the interaction among these performance-limiting factors. We note that RD

analysis was originally applied to sequential programs, and that several works have ex-

tended RD analysis to analyze how core-count scaling affects multi-program workloads

[29] and parallel programs [30]. However, these studies mainly focus on how the total

number of cache miss changes but neglect the changes in the burstiness of cache misses

and the overall parallel speedup.

In result, I propose a performance prediction model that consists of 4 main components.

First, I partition the program execution into barrier phases, and model the scaling trend of

the total instruction count and its distribution among threads for each barrier phase in order
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to account for parallelization overheads. This identifies how the total work changes and

how work distribution among threads changes as the thread count increases. Second, we

predict the cache miss rate at small intervals by utilizing regular shifting of concurrent

reuse distance (CRD) profiles. By applying the CRD analysis to small intervals, we could

associate CRD profile with program phases and capture bursts of memory requests. Third,

we use a simplified DRAM model to capture the memory subsystem slowdown and its

effect on the total execution time. Last, we model how the number of barrier phases and

the model parameters (instruction count and CRD) changes with input size to predict across

different input sets.

1.2.3 Lock Contention

Many-core processors, some with 10s or even 100s of processing cores, have become ubiq-

uitous in all sections of computing, ranging from handheld mobile devices [31], to acceler-

ators [16, 17]. As many-core processors become ubiquitous, parallel applications are also

gaining increasingly prevalent as developers and users desire to fully utilize the abundant

processing power available across the cores in a single system. However, as the number of

cores increases, developers and users expect the performance to scale, i.e. the amount of

useful computation achieved per unit time should increase with the number of cores used

for that computation. Unfortunately, good performance scaling is difficult to achieve in

practice, mainly because of various bottlenecks that can each limit performance scaling.

One of the common performance scaling bottlenecks is lock contention, which effectively

forces serialization of execution and thus prevents all the cores from concurrently doing

useful computation.

Prior work have proposed methods to combat the increase of lock contention when

scaling applications. Hardware solutions have been proposed to reduce the overhead for

performing lock operations, such as a dedicated hardware accelerator for course-grain [32]

or fine-grain [15] locking, or micro-architectural features which predicts and opportunisti-
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cally executes the critical section in order to reduce serialization [33]. Software solutions

such as runtime systems to change the scheduling policy have also been proposed to re-

duce the contention on lock variables [34][35][36]. However, these approaches mainly

focuses on reacting to the serialization of lock contention and does not identify or address

the fundamental problem in the program.

Various performance analysis and profiling techniques have been proposed in order to

identify and remove the fundamental problem of serialization in the original program. Chen

and Stenstrom proposed a mechanism to identify the longest critical path from an execution

trace file in order to attribute the cause of the scaling bottleneck [37]. Bois et al. proposed

a new criticality metric in order to capture the severity of lock serialization [38]. Others

have also proposed light weight mechanisms to identify lock contention [39] and to catego-

rize various type of bad synchronization [40]. Commercially available tools such as Intel

vTune[41] and Concurrency Visualizer in Microsoft Visual Studio [42] allows program-

mers to debug and identify performance bottlenecks in the system. They do not, however,

provide insight into if or when a bottleneck would occur in other runs, e.g. if more cores

were used.

Analytical models have also been proposed to model lock contention in various sys-

tems. Yu et al. [43] proposed a database performance model that assumes a Poisson arrival

rate of transactions, with each transaction accessing a set of locks what have uniform ac-

cess probability. Thomasian [44] generalized such model to incorporate multiple class of

transactions, each with different distribution of lock access probability. However, database

systems fundamentally differ from homogeneous multi-threaded applications in that, for

database systems, transactions arrive independently of each other as a result of external

requests, so their arrival rate which can be modeled as a Poisson distribution and their lock

contention is a good match for a traditional queuing model. In contrast, in multi-threaded

applications threads tend to be, at least to some degree, in lock-step with each other, and

therefore threads are not necessary arriving independently. In addition, during the lifetime
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of a threads, it will access various lock variables during different program phases, which

behavior is different than database systems.

To provide insight into the scaling of multithreaded applications, Eyerman and Eeck-

hout [45] proposed extending Amdahl’s law to model the increase in serialization due to

scaling. However, the model simply assumes random arrivals to critical sections, which

prevents the model from providing accurate quantitative performance predictions. Boyd-

Wickizer et al. [46] proposed a lock contention model for ticket locks by using Markov

models in order to calculate the expected number of idle cores. However, their model only

considers a single lock, with no discussion on how the model can be applied to applications

with multiple locks.

In general, one of the main drawbacks of prior lock contention model is the assumption

of uniform and random access of lock variables during the whole application. However,

these assumptions are violated by many real programs, e.g. because different program ex-

ecution phases can have very different lock-related behaviors. To illustrate this, Figure 1.4

shows the number of lock access over time for Radiosity. As shown, the lock accesses are

more prevalent early in the application and, when lock accesses do occur later in the appli-

cation, they are clustered together (the peaks at several points in the execution timeline).

To model and predict the lock contention of applications, we propose to model the

lock contention separately for each static location in the code (PC address) at which the

lock is acquired. Our intuition is that the overall lock-related behavior of the application

is a combination of behaviors in different program phases. Furthermore, even within each

program phase the overall behavior can be a combination of different behaviors as different

data structures may be protected by different sets of locks that can substantially differ in

locking behavior. Intuitively, we expect that each of these individual behaviors can be

modeled more simply and accurately than the entire application, and that these individual

models can be combined in a relatively straightforward way into a model for the entire

application that will be more accurate than a model that considers the entire application
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Figure 1.4: Number of lock accesses over 1M cycles (1K data points) for 128-thread exe-
cution of Radiosity

as a homogeneous whole. Since the PC of the lock operation is correlated with both the

current program phase and with the set of locks that is used, PC-specific modeling of lock

behavior should help capture these individual behaviors.

Additionally, we observe that after global synchronization, such as a barrier, threads

tend to have a high degree of synchronicity, i.e. they are close to being in lock-step with

each other, and this makes lock contention much more likely than when threads arrive to

critical sections randomly.

Figure 1.5 shows the lock access over time for each lock PC. As shown, we can see

that during the first peak of lock access, the “‘red” PC (PC1) is the dominant source of lock

accesses, while later in the execution the “green” PC (PC2) is dominant. This is because of

during a single parallel phase, threads execute in different regions of code, therefore exhibit

different phase behavior. Furthermore, the “green” lock accesses come in bursts, which is

the result of threads executing in relatively similar code regions, therefore would access

the same lockPC in synchronicity. This shows that lock PC is a useful proxy to capture to
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Figure 1.5: Per-PC Lock access over time

phases of thread’s lock access. In addition, the characteristic of each lockPC also displays

a structural change, such that it allows us better to predict the arrival rate or lock histogram.

In summary, our lock contention model consists of 4 parts. First, we divide the program

execution into parallel phases separated by global synchronization (barrier, fork-join, etc.).

Second, we collect statistics that represent the synchronicity of thread arrival (lock arrival

rate) as well as the functionality of the corresponding critical section (size of the critical

section) for each lock PC. Third, we approximate the rates into well-known statistic models

(eq. exponential distribution, gaussian distribution, etc.) in order to reduce the parameters

required to model the lock contention. Last, we use regression models to predict how the

parameters will change when varying the number of locks and input size.

1.3 Thesis Statement

With the accelerating technology improvements, the number of available cores in a proces-

sor steadily increases. As a result, it is necessary for application developers to exploit

parallelism for better application performance. However, mitigating the parallelization
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overhead while also determining the optimal thread count is a challenging task. Various

scalability bottleneck may occur when scaling application on many-core processors, such

as limited parallelism in the application design, poor synchronization algorithm, or even

limited memory bandwidth to support all the necessary data movements from all the active

threads.

This thesis proposes a performance model to understand the potential scaling trend for a

given application, as well as a hardware accelerator to mitigate the scaling bottleneck. The

thesis proposes the following statement: Statistical models and hardware techniques

can help understand and improve the scaling of parallel applications on many-core

processors

1.4 Thesis Overview

Chapter 2 provides the background and related works on synchronization accelerator de-

sign, performance modeling techniques, and lock contention analysis methods. Chapter 3

explains MiSAR, a hardware synchronization accelerator that reduces the synchronization

overhead. Then, in Chapter 4, a new statistical model technique is proposed to model how

application scales with thread count, and determine the optimal thread count for maximum

parallel speedup. Chapter 5 discusses a PC-based statistical lock contention model in order

to model and predict how lock contention scales with thread count. I conclude in Chapter

6.
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CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Synchronization Accelerators

Hardware support for synchronization generally improves synchronization in two ways.

First, by implementing the synchronization semantics in hardware, which avoids the inef-

ficiencies in updating the synchronization state in software. Examples include accelerators

for barriers [47, 48, 49] that track barrier’s arrival state and detect the all-arrived condition

without the overhead of updating the arrival count variable in a critical section. Lock ac-

celerators [50, 47, 49, 15] maintain the lock’s owned/free state in hardware and thus help

arbitrate which requestor is the next to get the lock once it is freed.

The other way is to improve synchronization latency by directly notifying the waiting

threads to avoid the coherence “ping-pong” involved in software-only synchronization. For

example, a software-only implementation of lock handoff involves sending an invalidation

when releasing the lock, waiting for that invalidation to reach all the sharers (typically all

cores waiting for that lock), a cache read miss on (at least) the next-to-acquire core, a trans-

fer of the lock’s block into that cache, and then sending an upgrade request (invalidation)

when actually acquiring the lock. In contrast, a direct-notification lock accelerator [12, 51,

2, 14] typically involves sending a single message from the releasor to the next-acquirer. A

similar flurry of coherence activity is involved in signaling barrier release in software, and

is avoided in hardware accelerators [11, 1, 13] by directly signaling the barrier release to

waiting cores.

Synchronization support has also been used in distributed supercomputer systems, e.g.,

efficient broadcast networks have been used to accelerate barrier operations [9, 52], and

fetch-and-add operations have been used for efficient barrier counting [5, 7, 10]. Our work
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focuses on more tightly coupled many-core systems, and provides support for all three

common types of synchronization.

In addition to improving synchronization latency, most hardware synchronization ac-

celerators also have to handle what happens when hardware resources of the accelerator

are exhausted. Several solutions have been adopted in prior work, such as requiring pro-

grammers to manually partition synchronization variables [11, 51, 1, 50, 13] into those that

always use software and those that always use hardware, using the memory as a resource

buffer [14], or switching to a software exception handler [15]. Unfortunately, programmer-

implemented partitioning is not portable to architectures that have fewer resources, use of

main memory complicates the implementation and adds latency, and software exception

handlers are difficult to implement correctly and can incur large overhead when fallbacks

are too frequent. Utilizing the memory as a resource buffer can reduce the amount of

software exception events [14], however, still requires the exception handler to resize the

resource table. In addition, going to main memory to access the resource buffer increases

the overall synchronization latency. In contrast, our approach uses a small OMU local

to each tile to efficiently and correctly fall back to an existing (e.g. pthreads) software

implementation when needed, while also improving utilization of the (very limited) hard-

ware synchronization resources. A more detail discussion of our scheme verses software

exception handler will be discussed in Section 3.1.2.

Table 2.2 summarizes the prior proposals for multi-core synchronization: which syn-

chronization types they support, whether they provide direct notification, the hardware cost

(in terms of added state), whether a specialized network is required, and how hardware re-

sources overflow is managed. For resource overflow, SW corresponds to simply falling back

to a software handler when resources are exhausted, whereas HW resolves it in hardware.

For LCU [14], it will first fallback to the memory and only if memory overflows will it

require a software handler, thus we mark it HW/SW.

In general, accelerators that provide direct notification support only one type of syn-
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chronization (e.g. only lock or only barrier), and direct-notification barrier proposals mostly

rely on dedicated networks. Also, many of the mechanisms require recording state infor-

mation that is proportional to the number of locks or barriers in the system - potentially

many different locations, especially for programs that use large arrays of locks. In addi-

tion, so far no barrier accelerator has tackled the problem of resource overflow. In contrast,

our proposed approach supports all three types of synchronization (locks, barriers, and con-

dition variables), with direct notification over the existing on-chip interconnect, and with

O(Ncore) hardware resource overhead.

2.2 Performance Modeling

Various regression modeling techniques have been applied to performance modeling. B.C. Lee

et al.[20] applied regression modeling technique to develop a non-linear model for reducing

the work of design space exploration. The proposed regression model uses 4000 sample

points to derive an architectural-application predictor. B.J. Barnes et al. [53] also uses

regression modeling to predict the scalability of applications. This model separates com-

putation and communication and then fits the data points into a linear regression model.

More general regression models, such as artificial neural networks, were applied by E.

Ipek et al. [54] for performance prediction. However, these models do not directly attribute

the degradation in speedup to the factors that cause it (per-thread overhead and imbalance,

cache hit/miss degradation, and bandwidth limits) nor provide an intuitive model for how

these factors interact to produce the overall performance trend.

In addition to regression models, optimization techniques have also been applied to per-

formance modeling. W. Wang et al. [55] use integer programming for optimal core/node

placement for NUMA systems by collecting local and inter-node bandwidth usage, along

with DRAM bandwidth and contention. Unfortunately, in such schemes the number of

input parameters grows exponentially with the number of cores. In contrast, our approach

leverages program characteristics to reduce the number of model parameters, uses model
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parameters that can directly be used to attribute/explain which program and microarchitec-

tural factors are responsible for degradation in application speedup, and can use parameters

obtained at lower core counts to predict performance on larger core counts.

Several works have also been proposed to predict the memory subsystem performance

by using a detailed analytical DRAM model. DraMon [56] predicts memory bandwidth

usage by modeling memory issue rate and row buffer hit/miss/conflict ratio using probabil-

ity models. The probability for co-running threads to access the same rank/bank/channel

is calculated from memory traces and assume that all threads have the same probability.

However, this work only predicts memory bandwidth utilization and does not account for

its interaction with other factors or its impact on overall execution time. ANATOMY [57]

proposed a 3-stage queueing model for memory system performance. The model assumes

an arrival rate with exponential distribution and mean 1/λ, with memory banks and data

bus as M/D/1 queues. To model the processor performance, it utilizes the CPI stack, which

assumes the ideal memory CPI and then add the penalty by the memory subsystem. In con-

trast, our work uses a relatively simple memory bandwidth model, but also uses a model of

per-thread overheads and a model of cache hit/miss behavior to predict how these factors

jointly affect overall performance of a parallel application.

Dynamic runtime systems have been proposed to determine the optimal number of

threads on the fly. FDT [19] predicts the optimal number of threads by first sampling the

program characteristic in serial (using only 1 thread). It assumes the program will be either

memory bound or synchronization bound, and collects the time spent in critical section

and memory utilization to determine if either memory or synchronization is limiting the

performance scaling.

CRUST [18] predicts the performance for clustered cache architectures. By sampling

the miss rate for different active-cores-per-cluster during the end of each parallel section,

it is able to correlate the number of threads with cache miss rate. With such information,

it predicts the optimal thread count for each cluster by calculating the number of threads
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needed to saturate the total memory bandwidth.

M. Kim et al.[23] predict the potential speedup with a non-parallelized serial code That

approach predicts DRAM access overheads by assuming that performance can be decou-

pled into computation and memory, that work is equally partitioned among threads, and

that the LLC miss rate will not change when parallelizing the application.

2.2.1 RD analysis

Multicore reuse distance analysis has been applied to study the cache behavior of parallel

application. Ding and Chilimbi [30] discussed the construction of concurrent reuse distance

(CRD) from per-thread RD by statistically interleaving memory accesses from different

threads. It requires modeling each thread’s sharing behavior to statically determine the

interleaving behavior of memory accesses. M.-J. Wu et al. [26] simplified CRD analysis by

leveraging the symmetry of threads for loop-based parallel programs. It utilizes reference

group to predict how the CRD profile shifts and scales when increasing thread count. Our

work applies CRD analysis to shorter intervals, which allows it to consider not only how

the cache size and thread count affect the overall cache miss rate but also how the cache

misses are distributed over time and how they interact with memory bandwidth to affect

the parallel performance of each interval and, by combining the resulting performance of

all the intervals, of the entire application.

D. Chandra et al. [29] and G.E. Suh et al. [58] looked at how CRD analysis can be

applied to multi-programing workloads. While our work mostly considers parallel appli-

cations, some of our insights, e.g. combining CRD analysis with considerations for cache

miss burstiness and memory bandwidth, may be applicable in that domain.

2.2.2 Tools for Analysis of Performance Scaling

Many tools have been developed to identify scaling bottlenecks in multi-threaded applica-

tions. S. Eyerman et al. [22] proposed using speedup stack and breakup the performance
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slowdown into synchronization and resource sharing. W. Heirman et al. [59] proposed

using cycle stack to attribute which microarchitecture structure is limiting parallel scaling.

Several other commercial profiling tools, such as Intel VTuneTM [41] or HPCToolkit

[60], identifies scalability bottlenecks by profiling the application’s execution. Although

these tools offer scaling bottleneck analysis beyond just the memory subsystem, they re-

quire executing the application on the target system with the target thread count to identify

the scalability bottleneck(s). Hence, does not provide prediction mechanism on when a

bottleneck would occur when scaling up thread count.

In summary, Table 2.2 summarizes the prior work on predicting the performance scaling

of a parallel program.

2.3 Lock Contention Analysis

2.3.1 HW/SW lock contention reduction mechanism

Various hardware/software mechanisms have been proposed to reduce the severity of lock

contention. Hardware solutions such as MiSAR [32] and SSB [15] utilizes on-chip hard-

ware accelerators to reduce the overhead for performing lock operations. These propos-

als rely on implementing the lock functionality directly in hardware in order to improve

the lock access latency. Other proposes such as Lock Elision [33] utilizes speculation

techniques to optimistically execute critical sections concurrently, even when the critical

sections are protected by the same lock variable. In case of mis-speculation, rollback is

performed to ensure the correct execution of conflicting critical sections.

Software techniques have also been proposed to reduce the severity of lock contention

based on runtime systems to dynamically controlling the number of active threads. FDT [34]

samples the time spent in a critical section for a single threads, and then assumes each

thread spends the same amount of time in critical section for each loop iteration, and sched-

ule enough threads to fill the loop iteration with critical sections. Sridharan et al. [35]

utilizes a modified Amdahl’s law model to take into account serialization caused by lock,
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and then sample the execution runtime with various degree of threads in order to obtain

the parameters for the modified Amdahl’s law. Cui et al. [36] monitors the time spend on

waiting for locks, and use empirical data to determine a threshold for determining when to

stop scheduling more threads.

In summary, these proposals focus on reacting to the increase of lock contention and

try to reduce the severity of such contention either through microarchitecture features to

accelerator lock operations, or simply reduce the amount of active threads. Note, however,

they do not provide a means to predict when a contention will happen, nor do they reveal

why such contention exists.

2.3.2 Lock profiling tools

Various performance analysis and profiling techniques have been proposed in order to iden-

tify and remove the fundamental problem of serialization in the original program. Chen and

Stenstrom [37] proposed using critical lock analysis to identify the longest critical path in

order to contribute the cause of the scaling bottleneck. They proposed mechanism first col-

lects the trace of all lock events, and then calculating backwards from the end of program

execution to determine the longest critical path. Tallent et al. [39] discussed how to profile

and attribute performance loss due to lock contention by recording the number of waiting

threads when a lock is released, and attributing the lock holder for the idleness of each

waiting threads.

Bois et al. [38] proposed a new criticality metric (Criticality stack) in order to model

the severity of lock serialization. The criticality of each thread is calculated as the ratio of

how many work is done verses how many threads are idle. The more threads are waiting,

the more critical a thread is. Hence, the criticality stack can represent the criticality of

each thread and identify the possibility of improving performance by accelerating the most

critical thread. Alam et al. [40], categorizes lock usage in various applications, and identify

why some lock are creating high contention verses the others. They also proposed methods
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to improve the locking scheme in order to reduce lock contention, such as using atomic

instructions for critical sections that only contain simple integer operations.

Commercially available tools such as Intel vTune [41] and Concurrency Visualizer in

Microsoft Visual Studio [42] also allows programmers to debug and identify performance

bottlenecks in the system. These tools profile the runtime behavior, and reports statistics

such as how many active threads are concurrently running, what do the lock wait time, etc.,

in order to let the programmer better understand the scaling of the application. However,

these tools mainly focus on identifying the bottleneck when it actually occurs and does not

provide insight into if or when a bottleneck would occur.

2.3.3 Lock contention models

Very few works have tackled the problem of modeling and predicting the scaling of mul-

tithreaded applications. Boyd-Wickizer [46] proposed a lock contention model for ticket

locks by using Markov models in order to calculate the expected number of idle cores.

However, their model only looked at a single lock, and does not discuss how the model can

be applied to applications with multiple locks. In addition, their model also did not address

how to predict the lock contention when scaling the number of threads.

Eyerman and Eeckhout [45] extended the Amdahl’s law model to include the increase

in serialization due to lock contention while scaling the number of threads. Their model

assumes the execution runtime is either limited by the slowest thread, or the average be-

havior of all threads, and take the slowest prediction of the two. Since their model focus

more on the general scaling behavior of an application, it assumes critical sections happen

randomly and uniformly across the whole program execution. In result, their work cannot

be used as an accurate quantitative performance prediction.

22



2.3.4 Lock contention modeling for database systems

In addition to multithreaded applications, prior works have also studied how to model

lock contention for database and transactional memory systems. Yu et al. [43] proposed a

database performance model that assumes a Poisson arrival rate of transactions, with each

transaction accessing a set of locks that have uniform access probability. Thomasian [44]

generalized such model to incorporate multiple class of transactions, each with different

distribution of lock access probability. However, database systems differ from homoge-

neous multi-threaded applications in one fundamental way such that for database systems,

transactions are independent of each other. This results in a arrival rate which can be mod-

eled as a Poisson distribution, and that lock contention is can be modeled with a queueing

model. On the other hand, multi-threaded applications tend to execute in lock steps, there-

fore threads are not necessary arriving independently. In addition, during the lifetime of

a threads, it will access various lock variables during different program phases, which be-

havior is different than database systems.

Xiao et al. [62] discussed how to use a queuing model to analyze the performance

for transactional memory systems. Their model assumes transaction arrive and commits

according to a linear model, with the probability increases with time. In addition, their

model also considers a transaction can abort and retry when a conflict is detected. A conflict

is detected when two threads access the same data element, which assumes a uniform

distribution of access probability of all data elements. While their works focus on a detail

analytical model of a transactional memory system, their model requires many different

parameters in order to properly model the system behavior, thus increases the complexity

of using it as a performance prediction model when the parameters are unknown.
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CHAPTER 3

MISAR: MINIMALISTIC SYNCHRONIZATION ACCELERATOR WITH

RESOURCE OVERFLOW MANAGEMENT

In this chapter, I propose MiSAR, a minimalistic synchronization accelerator (MSA). The

MSA is a distributed synchronization accelerator for tile-based many-core chips. It fol-

lows the POSIX pthread synchronization semantics and supports all three common types

of synchronization (locks, barriers and condition variables) but has very few entries in each

tile. We also propose a novel hardware overflow management unit (OMU) to efficiently

manage limited hardware synchronization resources. The OMU keeps track of synchro-

nization addresses that are currently active in software, so we can prevent these addresses

from also being handled in hardware. The OMU also enables the accelerator to rapidly

allocate/deallocate hardware resources to improve utilization of its (few) entries. Finally,

we propose ISA extensions for hardware synchronization. These ISA extensions facilitate

adoption by allowing synchronization libraries to only be modified once (to support the

new instructions) and then used with any hardware synchronization implementations that

support the ISA’s fallback semantics – including trivial implementations with no actual

hardware synchronization support.

3.1 Design of MiSAR

Our proposed MSA is designed for a tiled many-core chip, where each tile contains a

core and its local caches, a network-on-chip (NoC) router, a slice of the last-level cache

(LLC) and coherence directory, and a slice of the synchronization accelerator. However,

it can be adapted for use in other settings, e.g. those with broadcast interconnects (buses),

centralized instead of distributed LLCs, etc.

A single slice of our synchronization accelerator is shown in Figure 3.1. It contains a
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(small) number of synchronization entries, and each entry tracks synchronization state of

a single synchronization address. An entry in the MSA is a global “clearing house” for all

synchronization operations for that particular address. To simplify interactions with coher-

ence, we distribute the entire MSA according to the coherence home of the synchronization

address: if an MSA entry is associated with a synchronization address, that entry must be

in the LLC home tile of that synchronization address.

Each MSA entry contains the synchronization address it is associated with and a valid

(V) bit. It also contains what type of synchronization it is currently used for, a bit vector

(HWQueue), and an auxiliary information field. The HWQueue utilizes one bit per core to

record which cores are waiting on that synchronization address, and also the lock owner in

case of locks. The use of the auxiliary field depends on synchronization type, as will be

explained later. Here we assume that each core runs only one thread. To support hardware

multi-threading, the HWQueue would be augmented to have 1-bit per hardware thread.

Note that, even with 64 cores and 2 threads per core, the overall state of a single-entry

MSA would be less than 264 bits (33 bytes) in each of the 64 tiles.

Software interacts with the MSA using a set of 6 instructions, each corresponding to a

synchronization operation (LOCK, BARRIER, COND WAIT, etc.). Each instruction has a

return value that is either SUCCESS, FAIL, or ABORT. The instruction returns SUCCESS

when the synchronization operation was successfully performed, FAIL when the operation

cannot be performed in hardware, and ABORT when the operation was terminated by MSA

due to OS thread scheduling. A more detailed discussion of ABORT, and how it differs

from FAIL, is provided in Section 3.2. To simplify integration into the processor pipeline

and to simplify interaction with memory consistency, each synchronization instruction acts

as a memory fence and its actual synchronization activity begins only when the instruction

is the next to commit. We fully model the resulting pipeline stalls in our experiments and

find that they are negligible in most applications.
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3.1.1 Allocate/Deallocate MSA Entry

An MSA entry is allocated (if available) when a synchronization “acquire” request (LOCK,

BARRIER, or COND WAIT) is received by the home of the synchronization address. The

entry is evicted when its HWQueue becomes empty, i.e. when no thread waits for or owns

the lock, when the barrier is released, or when no thread waits for a condition variable.

As indicated earlier, if no MSA entry is available, the MSA simply returns FAIL, which

results in using software implementation for the synchronization operation.

The MSA does not allocate a new entry for “release” requests (UNLOCK, COND SIGNAL

and COND BCAST), so they fail if a matching entry is not found. This helps ensure

that, if an acquire-type operation used a software implementation (LOCK, BARRIER, or

COND WAIT returned FAIL), a release will also “default-to-software”.

3.1.2 Overflow Management Unit (OMU)

The Overflow Management Unit (OMU) ensures correct synchronization semantics when

an MSA entry is not available. The OMU keeps track of the synchronization addresses that

currently have waiting (or lock-owning) threads in software. The OMU consists of a small

set of counters indexed (without tagging) by the synchronization address. Once a thread’s

acquire-type synchronization operation falls back to software, the counter that corresponds

to the synchronization address will be incremented. The counter is decremented when the

operation completes (for locks, when the lock is released). When an acquire-type operation

does not find an MSA entry, we find the OMU counter for that address to check if an MSA

entry can be allocated for it (OMU counter is zero), or if the operation must be done in soft-

ware to maintain correctness (OMU counter is > zero). Note that this requires the entering

and exiting of the synchronization operation to be visible to the OMU. For locks, the en-

tering and exiting results in attempting LOCK/UNLOCK instructions (which FAIL because

that lock is handled in software). For barriers and condition variables, entering is similarly

exposed to hardware (a FAILed BARRIER or COND WAIT instruction). However, barrier
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and condition wait that complete in software would normally not be visible to hardware, so

we add the FINISH instruction at the end of software barrier and condition wait to inform

the OMU that the operation has completed (so it can decrement the corresponding counter).

The accelerator only grants new hardware resources (allocates an MSA entry) for an

“acquire” request when there is no already “active” (waiting or lock-owning) synchroniza-

tion on that address in software. To illustrate why this is necessary, consider a synchroniza-

tion accelerator that has already FAILed several LOCK requests for a given address because

MSA resources were not available. As a result, the lock is currently owned by a thread and

multiple threads are waiting for it in software. Meanwhile, an MSA entry becomes avail-

able. Then a new LOCK request for the same variable would allocate an MSA entry. As

far as the MSA knows, the lock is free so it would be granted to this thread, thus breaking

lock semantics – two threads are in the critical section, one granted entry by the software

fallback and one by the MSA. The OMU prevents this situation because the counter that

corresponds to the lock is non-zero as long as any thread is owning or waiting for the lock

in software. When a new request is made, the non-zero counter in the OMU steers the

request safely to software. Only when the thread becomes free (no thread owns it or waits

for it) in software will it become eligible for MSA entry allocation when the next request

is made. For high-contention locks, this may keep the lock in software for a long time.

However, in all the benchmarks we used, such continuous-requests activity eventually has

a “lull” in requests that allows the software activity to drain out, allowing the MSA to be

used on the next burst of activity. In our evaluation we have only seen one application that

shows noticeable performance degradation from this problem. In most of the cases, bursts

of activity on the same lock, even when steered to software, usually “drain out” relatively

quickly and allow the lock to be given an MSA entry (if one is available).

Since the OMU uses a small number of counters without tagging them, different syn-

chronization addresses may alias to the same counter. This potentially affects performance

– a synchronization variable may unnecessarily be steered to software instead of granted an
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MSA entry. This can be avoided by using enough OMU counters, or even using counting

Bloom filters instead of simple counters. However, the aliasing in the OMU does not affect

correctness – the variable that is unnecessarily steered to software cannot have any MSA-

handled operations already in progress. This is because a synchronization request always

first checks the MSA. If an entry is found, the operation proceeds in hardware (no OMU

lookup). The OMU lookup occurs only when the MSA entry is not found. Therefore, a

synchronization address that already has an MSA entry will continue to use the MSA until

the HWQueue becomes empty and the MSA entry is freed. This makes it possible for a

synchronization variable to keep owning an MSA entry by continuously making acquire

requests on that variable. Just like for software-steered streaks of requests, this is not a

correctness problem and in the benchmarks we used it is also not a significant performance

problem.

Note that one could eliminate OMU entirely by simply allocating/deallocating when an

entry is initialized and destroyed. However, this significantly reduces the coverage of the

accelerator, since from our evaluation, some applications will use more then thousands of

locks. In addition, the problem becomes even more problematic when there are multiple

applications. An application may end up occupying all the entries while being suspended,

thus leaving active applications with no hardware resources to use.

Several proposals have opted to use a software handler solution for hardware resource

overflow [14, 15]. They utilize two bits (FBIT/SBIT) to record the status of each slice of

accelerator. FBIT is set/cleared when the accelerator is full/empty, and SBIT is set/cleared

when there are active entries in the software. In order to provide atomicity, the software

handler must acquire a per-slice lock first. In addition, the status of the accelerator needs to

be re-checked because, by the time the software handler acquires the lock, the accelerator’s

state may have already been changed. This adds latency to each lock operation when no

matching entry is found in hardware, so resource overflow needs to be very rare. Addition-

ally, special instructions are required to let the software handler insert an entry back into
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hardware, which adds complexity and requires message exchange between the core and the

accelerator. In contrast, our OMU resolves resource overflow locally, and provides graceful

performance degradation when resources overflow.

3.2 Synchronization Primitives

3.2.1 Lock Synchronization

Lock acquire/release is requested by a program through LOCK/UNLOCK instructions. The

LOCK instruction results in sending a request to the MSA in the home tile of the synchro-

nization address. If an MSA entry is already allocated for this address, or if an entry can be

allocated, the HWQueue bit for the requesting core would be set to 1. If no other HWQueue

bit is one, the accelerator returns a SUCCESS message, and the LOCK instruction returns

SUCCESS, which indicates that the requesting core has acquired the lock. If the lock is

currently held by another core, the HWQueue bit for that other core would be 1 and the

requesting thread would not be granted the lock. In this case, the MSA simply delays

the response. This prevents the requesting core’s LOCK instruction from being committed,

stalling its core until the lock is obtained.

An UNLOCK instruction also sends a message to the accelerator, which clears the cores’

bit in the HWQueue and checks the remaining bits. If any other bit is set, one of them is

selected and MSA responds to that core with a SUCCESS message. That core’s LOCK

instruction now returns SUCCESS (it acquired the lock) while the others in the HWQueue

continue to wait. To ensure fairness, the MSA in each tile maintains one (for the entire

MSA, not for each entry) next-bit-to-check (NBTC) register. When more than one waiting

core is found in the HWQueue after an UNLOCK, the next core to release is selected starting

at the NBTC position and the NBTC register is updated to point to the bit-position after the

released one.
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MSA/OMU State Diagram:

Figure 3.2 shows the state diagram of the synchronization accelerator for lock/unlock oper-

ations. Once a LOCK request is received, it first checks if a matching entry exists in MSA.

A hit in MSA will result in handling the lock operation in hardware. A miss, however, will

result in querying the OMU. If the MSA is not full and the OMU counter is zero, then a new

entry is inserted into MSA and thus result in utilizing the hardware accelerator. Otherwise

the OMU counter is incremented and the request is responded with a FAIL message.

For UNLOCK, if a matching MSA entry is found, then the UNLOCK operation is per-

formed by MSA. Otherwise the OMU counter is decremented and the request is responded

with a FAIL message.

Thread Suspension, Migration, and Interrupts:

When the core is interrupted for context-switching (or any other reason) while the instruc-

tion at the top of the ROB is a LOCK instruction, a SUSPEND request is sent to the lock’s

MSA. Upon receiving the SUSPEND request, the MSA clears the corresponding bit in the

HWQueue, dequeueing the core from the lock’s waiting list. When the thread is resumed

on this (or another) core, it re-executes the LOCK instruction. Recall that a LOCK instruc-

tion that is not at the head of the ROB has not sent its request to the MSA yet, so it is simply

squashed and, when the thread continues execution, re-executed.

The situation is slightly different when the thread that owns the lock is suspended. In

this case, the MSA will not be notified because the LOCK instruction has already completed

(retired). Other threads in the HWQueue continue to wait (because the lock is still held by

the suspended thread). When the thread is resumed, eventually it executes an UNLOCK in-

struction that sends a message to the MSA. If the thread resumes on the same core, the MSA

will behave correctly – it clears that core’s bit in HWQueue and signals the next waiting

core. However, if the thread resumes on another core, the UNLOCK request will come from

a core that does not have the HWQueue bit set. In this scenario, the MSA does not know
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which core originally issued the LOCK request – it is one of the cores whose HWQueue bits

are 1, but we do not know which one. To resolve this situation, the MSA simply replies that

the UNLOCKwas successful, then replies to all cores in the HWQueue with an ABORTmes-

sage, frees the MSA entry, and increments the OMU counter by the appropriate amount.

This causes all waiting threads to fall back to a software lock implementation. Note that at

this point the lock is free and has no threads waiting in hardware, so it is safe to fall back

to software. Since our proposed mechanism has very little overhead when falling back to a

software lock, this sacrifices the opportunity for hardware acceleration but does not incur a

noticeable overhead beyond that.

Lock(*lock) {
1 result = LOCK lock ; /* execute HW lock inst */
2 if result==FAIL —— result==ABORT then
3 pthread mutex lock(lock)
4 end
5 }

6 Unlock(*lock) {
7 result = UNLOCK lock ; /* execute HW unlock inst */
8 if result==FAIL then
9 pthread mutex unlock(lock)

10 end
11 }

Algorithm 1: Modified Lock/Unlock Algorithm

Algorithm:

Algorithm 1 shows the lock algorithm adapted to use the MSA. We execute the LOCK in-

struction first. If this instruction succeeds, the lock was obtained in hardware and the thread

proceeds into the critical section. If the LOCK instruction returns FAIL (or ABORT), we fall

back to the software lock algorithm. For this fall-back, we simply use pthread mutex lock

algorithm, but any other software lock algorithm can be substituted. The unlock operation

is adapted similarly to first try to use the MSA and fall back to software if the hardware

UNLOCK fails.

Interestingly, this ISA can trivially be supported by failing all LOCK/UNLOCK instruc-

tions, with little overhead (see Section 4.2) compared to code that uses the software-only
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pthread implementation directly. This always-fail possibility is an important feature of

our approach - it allows our ISA and synchronization library changes to be implemented

without committing the processor designers to perpetual future MSA/OMU (or any other)

support for synchronization.

3.2.2 Barrier Synchronization

When the BARRIER instruction is executed, similarly to the LOCK instruction, a request is

sent to the MSA home tile and the corresponding HWQueue bit is set if an matching MSA

entry is found. This request contains the barrier’s “goal” count, which the MSA entry

stores in the AuxInfo field. When the “goal” number of bits are set in the HWQueue, all

those cores are sent SUCCESS responses. If the barrier cannot be handled in hardware1,the

accelerator immediately returns FAIL and the requesting core must fall back to a software

implementation of barrier synchronization.

As with locks, hardware and software are prevented from simultaneously implementing

the same barrier. Without this, a few arriving threads may be handled in software (e.g.

because no MSA entry is available), and the rest of the arriving threads may be handled

by the MSA (an entry became available). In this scenario, neither the software barrier

implementation nor the MSA would ever reach the barrier’s target count, which would

deadlock all the threads that participate in that barrier.

MSA/OMU State Diagram:

Figure 3.3 shows the state diagram of the synchronization accelerator for the barrier op-

eration, which is similar to the diagram for lock operation. When it receives a BARRIER

message, the MSA checks for a matching entry. If such an entry is found, the correspond-

ing HWQueue bit is set and, if enough HWQueue bits are set, the barrier is released (send

SUCCESS to all participating cores). If no matching MSA entry is found, the OMU is

1Because no MSA entry is available, or because the OMU indicates that other threads have already arrived
in software
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queried and we either allocate a new MSA entry or return FAIL.

Thread Suspension, Migration, and Interrupts:

When a thread is interrupted while waiting at the barrier, the BARRIER instruction would

be at the top of the ROB which results in the core sending a SUSPEND request to the MSA

tile. However, unlike locks which will simply dequeue the requesting core, for barriers we

send FAIL (or ABORT) responses to all participating cores, i.e. we force the barrier to fall

back to software.

We note that it might be possible to handle thread suspend/migration in a more efficient

way. An additional counter would be added to count inactive-but-arrived-to-barrier threads,

and this counter would also need to be decremented when the thread resumes execution.

Another source of complexity would be to ensure that all threads are correctly notified

when the barrier is released – even those threads that are absent (suspended) when the last

thread arrives to the barrier. This requires the hardware accelerator to keep track of which

threads have been signaled and which have not yet been signalled. The approach we use

(fall back to software) reduces both hardware cost and its verification complexity.

Barrier(*barr) {
1 result=BARRIER barr, goal count ; /* execute HW barrier inst */
2 if result==FAIL —— result==ABORT then
3 pthread barrier wait(barr) ;
4 FINISH barr ; /* notify OMU of exiting barrier */

5 end
6 }

Algorithm 2: Modified Barrier Algorithm

Algorithm:

Algorithm 2 shows the barrier code adapted to use the hardware accelerator. Like for

locks, the modification involves trying the hardware synchronization first and falling back

to software if that fails. The only major difference is that, once the software barrier imple-

mentation exits, we send a FINISH request to the OMU in the barrier’s home node. This
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ensures the OMU to keep track of how many threads remain within the software barrier

code. This FINISH instruction was not needed for locks because the exit notification was

provided by the UNLOCK instruction. For barriers, a failed BARRIER instruction only in-

dicates the entry into the software implementation, but the exit from the software barrier

can be many cycles later (when all threads have arrived).

3.2.3 Condition Variable

Condition variables are supported through COND WAIT, COND SIGNAL, and COND BCAST

instructions. We follow standard POSIX condition variable semantics, where a wait opera-

tion waits for signals/broadcasts but also temporarily (while waiting) unlocks the associated

lock.

A COND WAIT request involves sending an UNLOCK request to the lock’s home tile

while enqueueing the core in the HWQueue for the condition variable. The enqueueing of

a core is accomplished by setting the corresponding bit in the HWQueue. No response is

sent until the core is released (by COND SIGNAL or COND BCAST). When no MSA entry

is available for the condition variable, a FAIL response is sent back, so the COND WAIT

instruction returns FAIL, and the condition variable wait must be implemented in software.

A COND SIGNAL instruction sends a message to the MSA home of the condition vari-

able. If a matching MSA entry is found, SUCCESS is returned to the signaling thread,

and one of the waiting cores from the HWQueue is selected for wakeup and its HWQueue

bit is cleared. The next step is to re-acquire the lock that was released when that core

began waiting, so we send a LOCK request to the lock’s home on behalf of the waiting

core. The lock home tile will then respond to the waiting core with a SUCCESS message

when it eventually acquires the lock, and the COND WAIT instruction on that core returns

SUCCESS.

The COND BCAST instruction is similar, except that it results in waking up all cores in

the HWQueue, not just one. This results in multiple LOCK requests to the lock’s home tile
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where each has to wait to actually be granted the lock.

In our hardware condition variable implementation, the condition variable’s home tile

sends the LOCK request and the lock’s MSA responds to the waiting core only when the

lock is acquired. The associated lock address is thus stored in the AuxInfo field when re-

ceiving the COND WAIT request. The advantage of this approach is that the COND WAIT

instruction, if successful, completes the entire condition wait operation. Another option

would be to separate the condition wait into the “release lock and wait for signal/broadcast”

and ”re-acquire the lock we released”, i.e. to have the condition variable’s home respond di-

rectly to the waiting core with SUCCESSwhen the signal/broadcast is received, and require

the lock to be re-acquired by executing a LOCK instruction. We do not use this alternative

to avoid including “under the hood” workings of synchronization implementation in the

ISA definition.

If no MSA entry is found for the condition variable, the home responds to the COND SIGNAL

and COND BCASTmessages with a FAIL response. When the corresponding signal/broadcast

instruction completes with a FAIL result, the thread implements the signal/broadcast op-

eration in software.

MSA/OMU State Diagram:

Figure 3.4 shows the state diagram of MSA for handling a condition wait operation. Once

a COND WAIT request is received, it first checks if a matching entry exists in MSA. A hit

in the MSA will result in handling the condition variable operation in hardware, whereas a

miss in will result in querying the OMU.

For OMU access, additional lock state information is used to determine the OMU re-

sponse. If both the lock and the condition variable can be handled in hardware, a new

entry is allocated for the condition variable. This ensures that, if a condition variable is

implemented in hardware, its associated lock is also implemented in hardware. If the lock

is handled in software, then condition variables that uses that lock will be handled in soft-
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ware, too. This avoids the relatively complex corner case when the condition variable is

handled in hardware but its lock is handled in software. The implementation of the condi-

tion wait in this case would require additional synchronization (using an auxiliary lock) to

ensure correctness, which would in turn require breaking up the COND WAIT instruction

into sub-operations such as “non-blocking enqueue” and “wait for signal/broadcast” and

additional complexity to handle the potential failure of each such instruction.

In Figure 3.4, the OMU indicates “HW” when it is safe to insert a new entry into the

MSA. To make this decision, it needs to know whether the lock has (or can get) an MSA

entry in its own home tile. Recall that for COND WAIT requests, the condition variable’s

home sends an unlock request to the lock’s home, and that an MSA entry for a condition

variable is allocated when a COND WAIT message is received and no MSA entry already

matches it. Thus, when the condition variable’s home gets a COND WAIT request with

no already-matching MSA entry, it first checks if an MSA entry is available. If not, it

responds with FAIL. If an entry is available, it is reserved (but not yet allocated), and

a special “unlock and pin entry” (UNLOCK&PIN) message is send to the lock’s home.

When it receives the UNLOCK&PIN message, the lock’s home performs a normal UNLOCK

attempt. If it fails, a FAIL response is sent to the condition variable’s home, which frees

the reserved MSA entry and returns FAIL for the COND WAIT operation. If the UNLOCK

succeeds for the UNLOCK&PIN request, the lock’s home pins the lock’ MSA entry so it

cannot be deallocated (even if its HWQueue is empty) as long as the condition variable

has an MSA entry, and then returns SUCCESS in response to the UNLOCK&PIN request.

When the response is received by the condition variable’s home, it changes the reserved

MSA entry into an allocated one and continues with its COND WAIT operation normally.

When the condition variable’s home releases a core from its HWQueue, recall that this

results in sending the lock’s home a LOCK request to re-acquire the lock that was released

when entering the COND WAIT operation. If this was the last core in the HWQueue, the

condition variable’s MSA entry becomes free. To notify the lock’s home that the condition

38



variable no longer requires the lock to be pinned to its MSA entry, the LOCK request sent

to the lock’s home in this situation is changed into a special LOCK&UNPIN request. When

this request is received by the lock’s home, it decrements the lock’s AuxInfo counter and

then processes the LOCK part of the request.

The pinning of lock MSA entries is implemented by tracking (in the lock’s AuxInfo

field) how many condition variables are currently “pinning” this lock. This counter is incre-

mented when the UNLOCK&PIN request succeeds and is decremented when the LOCK&UNPIN

request arrives. Note that the LOCK&UNPIN request always succeeds because, when the

request arrives at the lock’s home, the lock is pinned (AuxInfo is non-zero) to its MSA

entry.

Thread Suspension, Migration, and Interrupts:

When a thread is interrupted while waiting at the condition variable, it returns without re-

acquiring the lock. First, the core will send a SUSPEND request to the home MSA of the

synchronization (condition variable) address. Upon receiving the SUSPEND request, the

MSA removes the thread from its HWQueue and sends an ABORT response back. Note

that this is very similar to releasing a waiting thread, except that we respond directly to the

requestor without obtaining the lock. The fallback for the ABORT result of a COND WAIT

instruction is to re-acquire the lock (using Algorithm 1) and then execute a FINISH in-

struction. Note that the suspended/migrated/interrupted thread completes the COND WAIT

instruction and only continues to execute the fallback code when it begins to run again.

If no signal/broadcast events have actually occurred by the time the thread re-acquires

the lock and exits its condition wait library call, the end result is a spurious wakeup of

that thread. However, spurious wakeups of cond wait are allowed by its POSIX se-

mantics for very similar reasons to ours – a thread that needs to handle a signal (like

SIGQUIT, SIGTERM, and other interrupt-like events, not cond signal) needs to exit

pthread cond wait prematurely and thus has a spurious wakeup. The spurious wakeup
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possibility requires use of a while loop that re-checks the condition when the condition wait

returns. If the re-check fails, recall that it still holds the lock that it re-acquired when exit-

ing the spuriously-successful condition wait. Thus the thread can safely call the condition

wait again. The essential property of this is that a condition signal/broadcast must wake up

thread(s) that is waiting for it, but a thread can also be woken up even if no signal/broadcast

has occurred.

Interestingly, it is possible to implement condition variables in software in such a way

that eliminates the possibility of spurious wakeups. A common implementation of this

approach uses timestamps to track when the last broadcast and the last “wasted” signal

(no thread woken up) occurred. It is possible to use our COND WAIT instruction under

such semantics, but it requires the reading of these timestamps prior to attempting to do a

condition wait in hardware (COND WAIT instruction). When the instruction is aborted and

the condition variable’s associated lock is re-acquired, the timestamps would be checked

again to see if we should succeed and return (signal/broadcast did occur since our wait

originally began) or go back to waiting.

Algorithm:

Algorithm 3 show the modified condition wait and condition signal/broadcast. Similar to

barriers, if the condition variable is handled in software and a thread has been signalled,

it also needs to send a FINISH message to MSA to decrement the OMU counter. Unlike

locks and barriers, condition variables handle the FAIL and ABORT cases separately. As

described in Section 3.2.3, an ABORT results in re-acquiring the lock and (possibly spuri-

ously) returning control to the application.

We use “sw cond wait” as our software fallback algorithm instead of the original pthread

function pthread cond wait. This is because the pthread function internally calls the

software lock operations. Our sw cond wait implementation is identical to pthread cond wait,

except that the lock operations it calls are the hardware-with-software-fallback lock/unlock
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CondWait(*cond, *lock) {
1 result = COND WAIT cond, lock ; /* execute HW cond wait inst */
2 if result==FAIL then
3 sw cond wait(cond, lock) ;
4 FINISH cond ; /* notify OMU of exiting condition variable */

5 end
6 else if result==ABORT then
7 LOCK(lock) ;
8 FINISH cond ; /* notify OMU of exiting condition variable */

9 end
10 }
11 CondSignal(*cond) {
12 release = COND SIGNAL cond ;
1414 if release==FAIL then
15 sw cond signal(cond)
16 end
17 }
18 CondBroadcast(*cond) {
19 release = COND BCAST cond ;
2121 if release==FAIL then
22 sw cond broadcast(cond)
23 end
24 }

Algorithm 3: Modified Condition Variable Algorithms

functions from Algorithm 1. This is needed because, while we prevent a condition variable

from using the MSA if its lock is implemented in software, it is possible for the condition

variable to be implemented in software while its lock is implemented in hardware. There-

fore, the software implementation of cond wait needs to use the Lock/Unlock function

defined in Algorithm 1.

3.3 Optimization

Programs access the MSA through a set of synchronization instructions that send requests

to the synchronization address’s home tile. In the event of the operation cannot be per-

formed in hardware, this will add an on-chip round-trip latency before it falls back to soft-

ware synchronization.

For barriers and condition variables, this round-trip overhead is small compared to the

overall latency of the software implementation. For locks, however, the software fallback

can have low latency if the lock variable was previously owned by the same core and still

resides in the core’s private (e.g. L1) cache. In that case, the lock can be acquired in soft-

ware without any coherence traffic. In such cases, the added round-trip latency to consult
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the home’s MSA/OMU adds an overhead that is not negligible relative to the latency of the

software fallback alone. A potential optimization would be to profile the application and

identify locks that are both low-contention and acquired quickly (L1 hit), and not attempt

to use the hardware for such locks at all. However, we prefer solutions that avoids placing

additional burdens on application programmers (our modified synchronization algorithms

only require changes to the synchronization part of the runtime library). Therefore, we

propose an optimization that allows skipping many doomed-to-succeed MSA/OMU checks

transparently to both synchronization library and application programmers.

The optimization uses the presence of a (writable) cache block that contains the syn-

chronization address as an proxy for “can acquire the lock without informing the home”.

When the hardware accelerator grants the lock ownership to a core, along with replying

the request with a “SUCCESS” message, it also grants the core an exclusive ownership (E

state in the MESI protocol) of the cache block, invalidating any other cached instances of

this block.

Upon receiving the cache block and (successfully) completing the LOCK instruction,

the core will put the block in its L1 cache and set the “HWSync” bit (a new bit that is

added to each line in the cache) for its cache line. This bit indicates that the core was the

last one to successfully complete a hardware lock operation for that cache line. In contrast,

a normal read or write request will bring in the cache block without setting the “HWSync”

bit. Note that, since the synchronization accelerator resides with the home node of the

cache block, it can easily retrieve the cache state information of a particular cache block

and cause the block to be sent along with the response.

The UNLOCK instruction does not clear the HWSync bit. When that core issues the

next LOCK request, if its L1 cache still has the cache block with “HWSync” equal to one,

the core can send a LOCK SILENT notification to the home tile of the lock but its LOCK

instruction can return “SUCCESS” immediately. This notifies the MSA that the core has

re-acquired the lock, allowing the MSA entry to be updated, but avoids adding the round-
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trip latency if the lock is quickly re-acquired by the same thread that held it previously.

3.4 Evaluation

We evaluate synchronization approaches using SESC [63], a cycle-accurate architectural

simulator. We model 16-core and 64-core processors, with 2-issue out-of-order cores and

private IL1 and DL1 caches. The L2 cache is a distributed shared last-level cache, so each

core has a slice of the L2 cache and a router for the packet-switched 2D mesh network-on-

chip (NoC). We model the NoC using Booksim [64], a cycle-accurate NoC simulator that

we integrated into SESC.

In our evaluation MSA/OMU-N models our hardware synchronization with anN -entry

MSA and a four-counter OMU in each slice. We also evaluate MSA-0 configuration, which

does not have any hardware synchronization support and trivially implements our instruc-

tions by always returning FAIL (without sending a message to the home node). This con-

figuration is used with the same modified synchronization library, so it shows how much

overhead would be added by these modified algorithms in a machine that does not pro-

vide actual MSA/OMU hardware, e.g. if the new instructions are adopted to exploit our

MSA/OMU hardware and then this hardware is eliminated in some future versions of the

processor. Another configuration we evaluate is MSA-inf where we model a MSA with

an infinite number of entries (so no OMU is needed). This configuration provides insight

into how much performance is lost due to limited MSA size.

The benchmarks we use are the (entire) Splash2 [28] and PARSEC [65] benchmark

suites. All benchmarks are complied with the GCC 4.6.3 compiler suite using -O3 opti-

mization. For non-baseline runs, we replace the pthread synchronization library calls with

more advanced software implementations (MCS lock and tournament barrier [66]), syn-

chronization library that utilizes algorithms discussed in Section 3.2, along with different

types of MSA (MSA-0/inf , or MSA/OMU), depending on the synchronization approach

used in that run.
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3.4.1 Raw Synchronization Latency

Figure 3.5 shows the raw cycle count directly attributable to synchronization, excluding the

waiting time that would be present even with an ideal (zero-latency) synchronization. Note

that this figure uses a logarithmic scale.

We model the no-contention case for locks using disjoint sets of locks in different

threads, and measure the time between entering and exiting the lock() function. All syn-

chronization approaches perform similarly in this case, except for MSA/OMU-2; because

for no-contention, our HWSync-bit optimization scheme results in most LOCK instructions

to succeed without waiting for the MSA’s response. This avoids both the overheads of

software implementations and the round-trip latency of a non-optimized hardware imple-

mentation. The high-contention case is modeled by having all threads access the same

lock. Lock handoff is measured from the cycle in which a thread enters unlock() to

the cycle in which the released lock() exits. In this case, pthread mutexlock and spin-

lock have high handoff latency with a poor scaling trend (from 16 to 64 cores). The more

scalable MCS lock has a faster handoff and scales better than the pthreads lock implemen-

tations. With high contention, our MSA/OMU-2 configuration does not benefit from the

HWSync-bit optimization, but nevertheless has the lowest handoff latency and best scaling

trend because the MSA implements lock handoff efficiently.

For barriers we measure latency from the time that the last-arriving thread enters barrier()

to the time all threads have exit. Our MSA/OMU approach provides an order-of-magnitude

improvement over the best software implementation (tournament barrier).

For condition variables, the latency is measured from entering cond signal() or

cond broadcast() to the exit from the released cond wait(). The MSA/OMU-2

configuration improves significantly over the software-only implementation. Part of the

reason for this improvement is from improving the latency of condition variable notifica-

tions, but another reason for the improvement is that MSA/OMU-2 also provides quick

handoff of the lock associated with the condition variable.
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In all these cases, MSA-0 incurs a minimum overhead compared to the baseline (pthread)

scheme. This shows that our modifications to the synchronization library do not result in

significant overheads when using the fallback path, i.e. if a processor does not have hard-

ware support, it can trivially implement our ISA extensions and use the same hardware-

capable synchronization code. This may be an important consideration for processor man-

ufacturers - after adding the synchronization instructions and our MSA/OMU hardware, the

processor manufacturer can drop MSA/OMU support in future generations of the processor

without breaking compatibility with software that uses the new instructions.

3.4.2 Benchmark Evaluation

Figure 3.6 shows the overall application speedup, relative to the pthread baseline, for Splash

and PARSEC. The averages shown are for all 26 benchmarks in Splash and PARSEC suites,

but to reduce clutter we show in the figures only those individual applications where Ideal

synchronization shows at least 4% benefit compared to the baseline.

The MSA-inf results are on average within 3% of the Ideal (zero-latency) case. Where

differences are noticeable, they mostly come from message latencies to and from the syn-

chronization variable’s home. The difference is largest in 64-core execution of radiosity,

where lock synchronization is frequent, but with many low-contention locks. Furthermore,

each lock tends to be used by different threads, so our HWSyns-bit optimization hides the

round-trip communication latency for only 20% of lock acquire requests. For fluidanimate,

the difference between MSA-inf and Ideal is 8%. This application also has frequent oper-

ations on low-contention locks, but each lock tends to be used by the same core, allowing

our HWSync-bit optimization to hide round-trip communication for 90% of lock requests.
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Interestingly, Ideal synchronization in ocean-nc with 16 threads performs worse than

the software baseline. We verified that the time spent on synchronization is dramatically

improved (only the necessary waiting time remains) in Ideal, but the non-synchronization

code executes with a lower IPC, primarily due to increased burstiness of cache misses (all

threads leave the barrier in the exact same cycle). This “better is worse” effect is also

present (to a lesser degree) in other synchronization-accelerated configurations.

Among realistic hardware implementations, MSA/OMU-1 configuration achieves aver-

age performance within 6% of the MSA-inf , and MSA/OMU-2 performs similar to MSA-

inf . We conclude that, with the OMU, few MSA entries are needed to achieve most of the

hardware-synchronization performance potential.

The MSA-0 results are within 1% of the baseline software implementation. This con-

firms that our synchronization library and the ISA modifications can be implemented across

entire processor families, even if some processors in those families have no actual MSA/OMU

hardware. Another interesting point is for radiosity and raytrace, MSA-0 actually shows

speedup compared to the baseline. For radiosity, the speedup comes from the reduction of

empty task queue searches, which results in 47% decrease of lock accesses. For raytrace,

the amount of lock access did not show any signification changes. However, the average

lock handoff latency for the most-contented lock was reduced by 2X. This difference comes

from the changes in lock acquire order, which would affect the lock handoff latency under

our distributed shared last-level cache with non-uniform cache-to-cache transfer latency.

Finally, MCS-Tour benefits applications with high-contention locks or frequent bar-

rier operations. For fluidanimate, MCS-Tour shows some performance loss because MCS

locks have larger overhead for no-contention locks. On average, MCS-Tour shows a 24%

speedup, but MSA/OMU achieves an additional 19% speedup over this advanced software

implementation.
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3.4.3 Coverage Improvement from OMU

Figure 3.7 shows the percentage of synchronization operations, averaged across all Splash-

2 and PARSEC benchmarks, handled by the MSA with and without the OMU. Without the

OMU, MSA entries cannot be safely deallocated, so the very first synchronization variables

that are used by the application are the ones that get MSA entries (and keep them “forever”).

We observe a significant increase in coverage of synchronization operations with the OMU.

For 64-tile MSA-2, for example, the OMU allows 93% of operations to utilize the MSA,

compared to only 56% without the OMU. More importantly, the OMU naturally handles

the transition from using one set of variables to another, e.g. when one application ends and

another begins. Without the OMU, a separate mechanism would be needed to inform the

MSA when the synchronization variable address that allocated an entry is no longer used

for synchronization.

3.4.4 Lock Optimization

Figure 3.8 shows the speedup achieved in fluidanimate with and without the HWSync-

bit optimization. Recall that the optimization allows a core to acquire a lock which it

previously held (if its block is still in the L1 cache) without waiting for the lock home’s

response. fluidanimate uses many locks, but has low lock contention because each lock

tends to be acquired by the same thread repeatedly. Without the HWSync-bit optimization,

it is often the case that the software lock (that hits in the L1 cache) has lower latency than the

hardware one (request to MSA, wait for response). This increased latency cancels out the

gains which is provided by MSA/OMU, which leads to a slowdown in a 64-core machine.

With the HWSync-bit optimization, the hardware locks are uniformly lower-latency than

software implementation, so MSA/OMU performance shows a speedup versus a software

implementation, and this speedup increases with the number of cores.
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3.4.5 Synchronization Breakdown

Figure 3.9 shows the speedup for supporting only one type of synchronization (locks or

barriers) by the MSA in a 64-core machine. For barrier-intensive applications such as

ocean/-nc and streamcluster, the speedup is lost when MSA only supports locks. For lock-

intensive applications, such as radiosity and fluidanimate, most or all of the speedup is lost

when only supporting barriers. Interestingly, raytrace is a lock-intensive application, but

it shows a lower speedup for MSA-LockOnly than for MSA-BarrierOnly. This is because,

in MSA-LockOnly, the absence of barrier handling results in different allocation of MSA

entries, causing one of the more contented locks to suffer more software fallback. However,

the speedup becomes similar to MSA/OMU when we increase the MSA entries from 2 to 4.
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Figure 3.4: State Diagram for the Condition Wait Operation
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CHAPTER 4

PARALLEL SPEEDUP PREDICTUON FOR MULTI-THREADED APPLICATION

VIA STATISTICAL MODELING OF PROGRAM CHARATERISTICS

In this chapter, I present a new performance model that captures program characteristics of

multi-threaded applications, allowing it to use few-threaded runs along with small input sets

to predict performance of many-threaded runs with large input sets. The model classifies

the application scaling into memory-bound or compute-bound, by predicting how the cache

miss rate would change and how the DRAM memory subsystem would react to the change

in memory bandwidth requirement.

4.1 Model Structure

To account for different parts of the application having different per-thread instruction

count overheads, different cache behaviors, and different memory bandwidth demand, we

partition the program execution into barrier phases and model performance scaling of each

barrier phase. Subsequently each barrier phase is then subdivided into smaller intervals in

order to capture the burstiness of program phases. This is illustrated in Figure 4.1, where

an actual barrier phase execution with N threads is divided into M intervals, where the

i-th interval lasts Xi cycles, has Yi,total instructions, and a ratio of memory instructions to

all instructions is mi = Yi,memory/Yi,total (we call this the memory instruction ratio). Each

interval represents 100/M% of the total instructions in the barrier phase. Our method pre-

dicts how each interval’s execution time scales when increasing the number of threads to

some larger number N ’, then puts the intervals back together to predict the barrier phase

execution time with N ’ threads. This allows the parallel speedup for N ’-thread execution

to be computed and, by computing the speedup for various desired values of N ’, to predict

the overall performance scaling trend for that application. Finally, we model the barrier
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Figure 4.1: Performance Modeling for Program Intervals

phase change across different inputs and predict how barrier phase scales across different

input sets.

We first classify each interval as either compute-bound or memory-bound. First, we

model how the overall pro- gram characteristic changes when increasing the number of

threads. Two important features in this step are the number of all instructions and the

number of memory instructions. This allows us to model how the total work changes

and how work is distributed with increasing number of threads. Second, we model how

memory locality changes with increased thread count. This captures how the per-thread

number of memory requests changes with the number of threads. Then, we evaluate how

the memory subsystem affects the overall performance scaling. Last, we model how the

barrier phase program characteristics change across input sets. Note that a possible im-

provement would be to extend interval classification to include other types of intervals, e.g.

lock-synchronization-bound intervals. In our evaluation, we do see applications that would

benefit from including lock-synchronization-bound classification, and is one possible im-

provement for future.

4.1.1 Instruction count

Instruction count is the first-order approximation on how the application’s overall amount

of work scales with increasing number of threads. Ideally, as the thread count increases
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while the input remains unchanged (strong scaling), the same total amount of work is

equally divided among the threads. This implies that the total amount of work is constant as

the thread-count changes, and this has been the assumption made in prior works on perfor-

mance prediction in parallel applications. This assumption holds relatively well for some

applications. For example, in FFT and Barnes from the Splash-2 suite, when scaling from

2 threads to 256 threads the change (increase) in total instruction count is <10%. However,

this assumption is substantially “broken” for other applications, for example in Cholesky,

where the 2-to-256 thread-count scaling causes the total instruction count to increase by

17X. This is because a non-negligible part of the overall work must be performed by each

thread. As the thread count increases, each thread gets the same amount of per-thread work

along with a ever-smaller portion of the work that can be divided among threads. This

is mostly equivalent to having a serial section in the application, and the first-order effect

of having a constant per-thread section of the work can be captured by applying Amdahl’s

law to this scenario. One important difference between this and the traditional serial-section

scenario, however, is that in the serial-section scenario one thread is active while the others

are waiting (idle) so the execution time of the serial section is largely independent of the

thread count, while in the constant-per-thread-work scenario the threads are all active, con-

suming power, and producing cache capacity and memory bandwidth demand. Thus, the

increase in instruction count, when present to a significant degree, can dramatically affect

the overall performance of the application and is very important to model.

Prior work also makes the assumption that work is evenly distributed among threads.

Although this can greatly simplify the overall performance model, it removes the effect

of load imbalance on overall performance. Unfortunately, in some applications this as-

sumption deteriorates as the thread count increases. Figure 4.2 shows the ratio between

per-thread-maximum and per-thread-average instruction counts, as well as total instruction

counts for Cholesky and Blackscholes. For Cholesky, in addition to an 18-fold increase

in total instructions, we observe an increase in the maximum-to-average ratio (by a factor
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Figure 4.2: Per-Thread Max/Avg Instruction Ratio

of 1.26X). This shows that, in addition to having to do more work at higher core counts,

this work is also less evenly distributed, i.e. as the core count increases the fraction of

time that will be spent at a barrier, thread-join, or other synchronization will increase. For

Blackscholes, the total instruction remains constant, but the maximum-to-average ratio in-

creases from nearly 1X (almost-perfect work balance among threads) to 1.35X. To capture

the effect of deteriorating work balance among threads, we include the dispersion of in-

structions(work) among threads in our model.

To model the total work and the distribution of this work among threads, we first gather

the per-thread instruction count profile for several low-thread-count executions (in our eval-

uation we use 1-, 2-, 4-, 8-, and 16-threaded executions). The instruction count can be

collected using hardware performance counters, profiling tools such as PIN [67], or a func-

tional simulator which can efficiently record the number of dynamic instructions. In our

evaluation, we use the frontend simulator1 of the SESC [63] simulator to record the number

of instructions executed by each thread. We model the instruction scaling as either a linear

1The front-end simulator is a functional (ISA-level) simulator, i.e. it only models the effect of the instruc-
tion on the architectural state, but not the timing and microarchitectural state, of the system
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model (yn = a/n+b) or a power model (yn = a∗nb) and select the model with the highteset

R-squared value. Here, yn is the instruction count for a thread in n-threaded execution and

a and b are parameters to be obtained through regression. For linear model, a corresponds

to the amount of work that can be equally divided among threads, and b corresponds to the

amount of per-thread work; for power model, a corresponds to the amount of work that

can be equally divided among threads, and b corresponds to the degree of distribution of

per-thread work. To account for load imbalance, instead of modeling the average instruc-

tion count among threads, we model the maximum instruction count among threads, i.e. in

each execution we select the highest-instruction-count thread, use regression to fit a and b

to that.

In order to further model the impact of the memory subsystem, one might argue to

model the change of memory instructions, or more specifically, the trend of load and store

instructions. In our study, we found that the percentage of memory instruction remains

stable across different thread count, which lead us to only predict the per-thread-instruction

change and assume the per-thread memory instruction follows the same trend. This simpli-

fies the model such that mi = mj , for i 6= j.

4.1.2 Memory request

RD analysis is a powerful tool to analyze how the cache size affects the overall memory

accesses. By recording the number of distinct cache lines accessed between two accesses to

the same cache line, one can construct a reuse distance histogram and calculate the number

of cache misses for a given cache size (assume LRU replacement policy). However, with

parallel applications, the interleaving of memory instructions from different threads will

change the temporal locality while scaling the number of threads [26].

Two main effects occur when memory streams are interleaved, dilation and intercept.

When two threads are accessing private data, the interleaved memory streams will dilate

each other, resulting in an increase in the reuse distance. This is known as dilation. On
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the other hand, when two threads access the same cache line, they will shorten each other’s

reuse distance for that line, which is called an intercept.

Prior works have studied how to apply reuse distance analysis for multithreaded ap-

plication, including constructing the concurrent reuse distance (CRD) profile from each

thread’s local reuse distance profile [30], or predicting the profile change of CRD [26].

M.J. Wu et al. [26] noticed that for loop-based multithreaded applications, the CRD pro-

files either shifts to larger RD or spread out with thread count scaling. Hence, they propose

to utilize reference groups in order to predict the CRD profile change.

We adopt a similar approach by M.J Wu [26] to predict the number of memory requests,

which utilizes the shifting and spreading property of CRD when scaling the number of

threads. By constructing the accumulated CRD profile and predicting the shifting behavior

for each percentage of memory access, we can predict how the cache miss rate increases

with thread count scaling. We further extend the work of M.J Wu [26] to include cold miss

predictions (∞-reuse distance), and we combine it with the instruction count and memory

bandwidth modeling to predict the overall parallel performance rather than only the number

of memory requests.

To summarize the approach for spreading and shifting the CRD profiles, Figure 4.3

shows the actual accumulated CRD profile normalized to the total memory access for

Barnes. As shown, the CRD profiles shifts with increasing number of threads, this is

the behavior of dialtion, which increases the reuse distance when memory accesses from

different threads are interleaved. Hence, we can learn the shifting amount (δ1,2,3,4) from

the training runs shown as solid lines (1-16 threads), and then predict the CRD when the

number of threads increases (dotted lines). This is performed for each sampled interval

and for each percentage of access. For simplicity, we assume the shifting amount (δN ) fol-

lows a linear model. By using CRD profile prediction, we can predict how the cache miss

rate changes when scaling the number of threads. This is denoted as CMR($Size, N
′
thread).

Together with instruction count prediction, we can predict the overall number of memory
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Figure 4.3: Accumulated concurrent reuse distance profile for Barnes

accesses under thread scaling.

Equation 4.1 shows the equation for predicting the number of memory requestN ′
i,memory.

First, the instruction count for interval-i (Y ′
i ) is calculated using the per-thread-average in-

struction model discussed in Section. 4.1.1 and multiplying it by the number of thread

N ′(Eq. 4.1a). Then, assuming the memory instruction mix mi does not change under

thread scaling, we can calculate the number of memory accesses using the cache miss

rate (CMR($Size, N
′
thread)) from CRD profile prediction (Eq. 4.1b)

Y ′
i = (aavg/N

′ + bavg) ∗N ′ (4.1a)

N ′
i,memory = Y ′

i ∗mi ∗ CMR($Size, N
′
thread) (4.1b)

Note that CRD profile only captures the effect of cold and capacity miss, which ignores

the additional conflict miss traffic to the memory. For conflict misses, J.S. Harper [68] pro-
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posed an analytical model for predicting cache misses on set-associative caches. However,

in our evaluation the LLC has sufficient set associativity to make conflict misses a very

small fraction of all misses regardless of thread-count, so we avoid over-parametrizing the

overall model by omitting the modeling of cache associativity.

4.1.3 DRAM latency

CRD profile prediction allows us to obtain the number of memory accesses for each sam-

pled interval. Therefore, the next step is to evaluate how the memory subsystem consumes

the burst of memory request. Various DRAM model has been proposed in the past to ex-

plore the design space of the memory subsystem. Methods such as using an M/D/1 queue-

ing model [57] to estimate memory latency or probability model [56] to predict bandwidth

utilization. These models use statistical parameters which requires a stable and long ex-

ecution to collect such information. However, since we sample and predict the program

in short intervals, execution behavior would not achieve a stable condition for statistical

modeling.

Instead, we propose a simple linear DRAM service time model to estimate the average

service latency within a given interval. Figure 4.4 shows the average memory queue length

verses average service time for Barnes and Cholesky. For short memory bursts, since not

enough memory level parallelism (MLP) is available for overlapping memory requests,

the service rate is simply the average time of row buffer hit and row buffer miss latency.

As the memory burst length increases, more MLP results in shorter average service time

and in result achieves the maximum throughput. Hence, the DRAM service time can be

approximated using the average queue length to determine the average service time.
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The overall service time can be calculated as follow:

T (Nq) =


Tmax =

Thit + Tmiss

2
, if Nq < Nmin.

Tmin = Tburst if Nq > Nmax.

a ∗Nq + b, otherwise.

(4.2a)

a =
Tmin − Tmax

Nmax −Nmin

(4.2b)

b =
(Nmax −Nmin − 1) ∗ Tmin + Tmax

Nmax −Nmin

(4.2c)

, where Thit and Tmiss represents the row buffer hit/miss latency and Tburst is the mem-

ory bus bandwidth. Nmin and Nmax represents the queue length threshold, which in our

evaluation are 0.5 and 3.5, respectively. Note that here we assume that memory requests

are evenly divided memory channels, and that the effect of bank level parallelism (BLP)

and row-buffer-hit ratio is reflected in Nmin and Nmax. As with other potential refinements

of the model, we chose whether to refine the model based on whether there was sufficient

evidence that the lack of model refinement is causing systematic errors in several applica-

tions, and concluded that modeling of the imbalance among memory channels and detailed

BLP modeling had little impact on our results and thus choose to simplify the model by not

including more detailed models of these memory-system considerations.

4.1.4 Cycle-Count Prediction for an Interval

The overall prediction of the number of execution cycles needed for an interval is achieved

as follows. First, we compute the expected cycle-count assuming the interval is compute-

bound, i.e. that the IPC of each thread is constant under thread scaling. Thus the compute-

bound cycle-count X ′
i,compute scales linearly with instruction count scaling and can be es-

timated as in Equation 4.3. Eq. 4.3a predicts the per-thread-maximum instruction using

the regression model discussed in Section. 4.1.1. Together with the assumption that CPIi
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remains identicaly, we can predict the cycle-count X ′
i,compute as in Eq. 4.3b.

Y ′
i,max = amax/N

′ + bmax (4.3a)

X ′
i,compute = Y ′

i,max ∗ CPIi (4.3b)

Second, we predict the expected cycle-count assuming the interval is memory bound.

We first estimate the number of memory accesses by estimating 1) the number of memory

instructions and 2) the change in cache miss rate due to CRD scaling and the increase in

memory footprint (cold misses). We then combine this with the estimated number of cycles

from instruction-count scaling to calculate the expected memory queue Nq using Liitle’s

Law, assuming the worst-case DRAM service time Tmax. Equation 4.4 shows the equations

for predicting the expected cycle-count for a memory-bound interval. First, we use the the

number of memory accesses, N ′
i,memory in Equation 4.1 to estimate the expected memory

queue length(Eq. 4.4a). Then, we predict the memory-bound execution time (in terms of

number of processor cycles) as in Eq. 4.4b where fcore is the frequency of the processor

core.

N ′
i,q = N ′

i,memory/X
′
i,compute ∗ Tmax (4.4a)

X ′
i,memory = N ′

i,memory ∗ T (N ′
i,q) ∗ fcore (4.4b)

Last, the predicted execution time for interval i is taken as the worse among the two

(memory-bound and compute-bound):

X ′
i = max(X ′

i,compute, X
′
i,memory) (4.5a)

63



0

20

40

60

80

100

120

140

0 1 2 3 4 5 6

DR
AM

	s
er
vi
ce
	ti
m
e	
(c
yc
le
s)

Memory	queue	length

Avg.	memory	queue	length	vs	service	rate barnes-16-thread barnes-64-thread cholesky-16-thread cholesky-64-thread

Piecewise linear	modelTmax

Tmin

Nmin Nmax

a*Nq+b

Figure 4.4: Average memory queue length vs average service time

4.1.5 Synchronization Latency

One major performance scaling limiter is barrier synchronization, whose overhead can be

broken down into barrier wait (load imbalance) and barrier latency [69]. Our proposed pre-

diction scheme tackles load imbalance by modeling the maximum-instruction-count among

threads. For barrier latency, prior work has shown that it increases linearly with the num-

ber of threads in log scale, so we use a linear model for it [70]. The overall cycle-count

prediction for the application under thread scaling is shown in Eq. 4.6

M∑
i=1

X ′
i + barrier delay(N ′) (4.6a)

4.1.6 Cross-Input Prediction

For cross-input prediction, we model how the number of instances for each barrier phase

changes with input size, as well as how model parameters in each instance of a barrier phase

change with input size. Figure 4.5 shows how the number of barrier phase instances and the
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per-barrier-phase-instance instruction count change in Lu as its input changes. An instance

of a barrier phase starts at some barrier X (or thread-create) and ends at some barrier Y (or

thread-join), and we use letters A through E to represent the PC-addresses of the barriers in

this application. As shown, when the input size increases, the number of instances increases

for some barrier phases, while for others it remains constant. Additionally, the per-instance

instruction count can change across instances of the same barrier phase during one run in

a significant but predictable way, and the parameters needed for predicting this change can

have their own relation to input size. Thus, we model how the number of instances for

each barrier phase increases with input, and how instruction count and other parameters

of each barrier phase evolve over instances in a single run, and how the input size affects

this evolution. We only consider simple models, e.g. constant, linear, etc. because they

have few parameters, so they only need a few data points to estimate those parameters. For

example, in Lu our mechanism identifies the lineal model (y = ax+b) to be the best-fitting

one for how the per-instance instruction count changes, and estimates the slope (a) and

intercept (b) parameters for each input size. It then considers the model for each parameter

as input size changes, finding that the slope (parameter a) is best modeled as a constant

while the intercept (parameter b) is directly proportional to input size (b = c ∗ input size).

The resulting overall model has only two parameters (a and c) and yet predicts the per-

instance instruction count very accurately for various input sizes.

4.2 Evaluation

We evaluate our performance prediction technique using SESC [63], a cycle-accurate ar-

chitectural simulator. To accurately model the memory system, we replaced the simple

memory model in SESC with DRAMSim2 [71], a cycle-accurate detailed memory simu-

lator. We evaluate core setting from 1-core up to 256-cores, with a 16KB instruction/data

L1 cache per core. The L2 cache is a distributed shared last-level cache, so each core has a

slice of the L2 cache and a router for the packet-switched 2D mesh network-on-chip (NoC).
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Figure 4.5: How barrier phase scale with input for Lu

We model the NoC using Booksim [64], a cycle-accurate NoC simulator that we integrated

into SESC. Table 4.1 list the overall configuration for our evaluation.

4.2.1 Speedup prediction

We selected 17 applications from both the Splash [28] and PARSEC [65] benchmark suites.

All benchmarks are complied with the GCC 4.6.3 compiler suite using -O3 optimization.

All applications are evaluated using 3 inputs: SimDev, SimSmall, and SimMedium input,

and only changing the number of threads parameter for each run. We omitted FMM and

Facesim due to very long execution times (note that our evaluation requires a number of

simulations for each benchmark), and Freqmine was omitted because the way it uses the

66



Table 4.1: Summary of system configuration
Cores frequency 2.66GHz
Cores 1/2/4/8/16/32/64/128/256
Issue width 2
L1 inst/data-cache 16KB/16KB
L2 cache size 8MB (total)
NoC Network Mesh
NoC Router 3-stage
NoC Link 128 bits
Number memory channel 4
DRAM DDR3-1333
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Figure 4.6: Average speedup prediction error

OpenMP programming model was causing our simulations to not complete due to limita-

tions in the simulator’s system-call emulation infrastructure.

For all performance prediction models, we collected data for 1-, 2-, 4-, 8-, and 16-

threaded runs and used that to train the prediction model, and then we use the resulting

trained model to predict parallel speedups for 32-, 64-, 100-, 128-, 196- and 256-thread runs

and compare the predicted speedups to speedups obtained from cycle-accurate simulation.

We divide each barrier phase into intervals such that each interval contains at most 1% of

the total instruction. These results are shown as Predicted Inputs. A prediction has two

main sources of error: the error introduced by using model parameter values from lower-

thread-count runs in high-core-count predictions, and the error introduced by the model

itself. This includes the fact that the model may not capture the exact relationship between
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the model parameters and execution time, and the fact that the model may not even include

some parameters and effects that do affect actual performance. To distinguish between

these two sources of error, we also show the accuracy results for Oracle Inputs, where the

model is allowed to use instruction counts and memory requests from the same simulation

run whose performance it is trying to predict. This removes the error that comes from

parameter value prediction and leaves only the error introduced by the model itself.

Figure 4.6 shows the average prediction error for all the studied benchmarks. In ad-

dtion, we also show the average error for 32 to 256 threads and the overall average error.

For benchmarks that require the number of threads to be a power of 2 (Ocean, FFT and

Radix), we omitted 100-threaded and 196-threaded speedups from the average for these

benchmarks. On average, our proposed model results in an average error of 27%, where

15% error is caused by the simplicity of the model itself and the rest of the error is at-

tributable to imperfect prediction of model parameters. We consider this to be a good

result, given that the model is using runs with up to 16 threads to predict performance of

runs up to 256 threads, i.e. the performance prediction is for a 16-fold increase in thread

count.

For memory intensive application such as FFT, Ocean, Radix, and Canneal, our model

was able to achieve an average error of less than 24%, with only 13% error with Oracle

Inputs. This indicates that our simple DRAM model is still effective in predicting the

memory system’s congestion.

For compute-intensive applications, such as, Barnes, Cholesky, Water, Blackscholes,

and Volrend, our model produces an average error of 18%. Without accounting for the

scaling of per-thread instruction count this error would be much larger. Additionally, by

modeling the per-thread-maximum rather than average per-thread instruction count, we

were able to take into account the uneven distribution of instructions among threads - the

change in the max-to-average ratio of instructions per thread ratio varies from 1.1X to

32X in these applications, which underlines the importance of accounting for the work
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imbalance among threads. Our model does so by modeling the max-instruction-per-thread.

Finally, several applications that are neither memory- nor compute-intensive: Lu, Stream-

cluster, Radiosity, Raytrace, Bodytrack, Fluidanimate, and Vips. These applications are ei-

ther barrier-intensive or lock-intensive applications. For barrier-intensive applications such

as Lu, and Streamcluster, our model with Oracle Inputs takes into account the increase de-

lay of barrier operations, which benefits the prediction accuracy. However, Lu suffered an

accuracy loss due to load imbalance, which was not shown in small thread counts. Other ap-

plications that are lock-intensive does not perform well since our model does not directly

model the overhead of lock contention, it performs sub-optimally for these applications.

Note that Fluidanimate performs relatively well compared to other lock-intense applica-

tions. This is although because although Fluidanimate are lock intensive, it has very little

lock contention. On the other hand, the barrier wait time increases due to imbalance work-

load distribution among each thread, which our per-thread-maximum instruction trend was

able to capture.

4.2.2 Estimation of Optimal Thread-Count for an Application Performance

One of the uses for an application’s parallel speedup predictor is to estimate the optimal

thread count for maximum performance. To produce such an estimate, we utilize the ex-

tended Amdahl’s law [72] model, which assumes the program can be divided into a serial

section Pserial, a parallel section Pparallel = 1−Pserial, and overhead Poverhead. For simplic-

ity, we assume the overhead is linear with the number of threads, thus the overall parallel

speedup for N threads can be modeled as

Speedup(N) =
1 + Poverhead

Pserial + (1− Pserial)/N + Poverhead ∗N
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and the optimal thread can be predicted using

Noptimal =

√
1

Poverhead

− Pserial

Poverhead

. We obtain the parameters for this extended Andahl’s law model using nonlinear least

square regression fitting of parallel speedups, and then we obtain the optimal thread count

by solving for the maximum on the extended Amdahl’s law curve.

As an “ideal” reference, we first obtain the extended Amdahl’s Law curves and the

corresponding optimal thread counts for Actual, which uses speedup points obtained from

1-thread to 256-thread simulations. Another reference we use is Actual[1:16], which uses

speedups from 1-thread to 16-thread simulations to perform the extended Amdahl’s law

curve fitting – this reference corresponds to using the extended Amdahl’s law itself as the

model that is trained at low thread counts and then used to predicting speedups at larger

thread counts. Finally, Predicted Input which uses actual speedups from 1-thread to 16-

thread simulations, trains our model using data obtained from those same (1-to-16-thread)

simulations, and then uses our model to predict the speedups for the remaining thread

counts (32-to-256-thread).

Figure 4.7 shows the actual and our model’s predicted speedups, as well as the three

fitted extended Amdahl’s law curves, for the Radix benchmark from Splash-2. As shown,

naively fitting the extended Amdahl’s law using low-thread-count points data results in

significantly over-estimating the potential speedup, mainly because the Poverhead value pro-

duced by regression at these low-thread-count points is grossly underestimated. In contrast,

from these same low-thread-count runs our parallel performance prediction scheme is able

to produce relatively accurate speedup estimates for high-thread-count configurations, al-

lowing extended Amdahl’s law curve regression to much more accurately predict the thread

count at which the parallel speedup peaks.

Figure 4.8 shows the error for Noptimal estimate. Naively predicting the optimal thread
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with Actual[1:16] result in an average error of 90%. For compute and memory intensive ap-

plication, the average error ofNoptimal using our scheme is only 23%. However, the predic-

tion error is larger, 46% on average, when we include applications that are synchronization-

bound. Since our prediction model does not model synchronization overheads, it over-

estimates the speedup on these applications and thus under-estimates Poverhead.

4.2.3 Error breakdown

Figure 4.9 shows the breakdown of the speedup prediction error of our approach. The

error is broken down into four components: Model, which is the error that results even

when using oracle parameters in our model, ErrorAccu. which is the accumulation of

the error due to using parameter estimates obtained by thread-counts that are more than
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single thread-count-doubling removed from the one we are trying to predict, InstPredict

is the error introduced by imperfect prediction of the per-thread instruction count, and

MReqPredict is the error introduced by imperfect prediction of the number of memory

requests (LLC misses).

While no single component of the error is strongly dominant, the largest component of

the error is the Model, which contributes a 9.8% error on its own. This error is a conse-

quence of the model’s simplicity of the model, e.g. its lack of explicit modeling of memory

level parallelism(MLP), synchronization overheads, etc. The next largest contributor is

ErrorAccu, which contributes an additional 8.3% error. This error is a consequence of ac-

cumulation of error when the core counts of training and prediction differ a lot – recall that

we train using 1-to-16-thread runs and then predict performance of 32-256-thread runs, i.e.

there is a 16-fold difference in the number of threads between the training runs and pre-

dicted runs. Note that radiosity shows the largest error caused by this accumulation. Both

the model and the accumulation error in this application are mainly caused by not modeling

lock contention - lock contention increasingly degrade performance as the thread count is

increased in this application. Training at a thread count that includes some synchroniza-

tion overhead allows the model to capture some of the effects of synchronization overhead.
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Figure 4.9: Breakdown of speedup prediction error

However, as the prediction is removed further (in thread-count) from training, these effects

become more prominent. Since our model absents an explicit model of synchronization

overheads, it fails to capture that which results in a large accumulation error.

The next error component in terms of magnitude is InstPredict, which contributes an

additional 8.3% error on average. The largest instruction-count prediction error is in ra-

diosity, where the application utilizes work queue and allows work stealing from different

threads, which prevents the instruction count from following its normal trend. Finally,

MReqPredict contributes an additional 6.3% of error. The largest contributor to this error

component is FFT, where this error is caused by the CRD stops shitting at 128-threads. The

stopping of CRD shifting after certain thread count was also noticed by prior work[29].
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4.2.4 Interval Analysis

To understand how the number of intervals affect our performance prediction model, we

vary the number of intervals used in each application from 100% (entire barrier phase is one

interval) to 10% and then to 1% per interval per application run. Figure 4.10 shows how

the average prediction error changes as the number of intervals per application changes.

For clarity, we only show benchmarks that have at least 3% improvement when increasing

the number of intervals, but the average shown is across all benchmarks.

On average, the prediction error is reduced by 5% when using 1%-intervals compared

to using a single interval for each barrier phase. For memory intensive applications, such as

FFT and Radix, the prediction accuracy increases with the number of intervals. Intuitively,

with more intervals each interval is shorter and thus more likely to capture a homogenous

behavior in terms of the memory request rate. Conversely, longer intervals are more likely

to include both bursts of memory accesses and “quiet” periods, where the memory access

time estimates that are based on the interval’s average memory access rate fail to capture the

dramatic increase in memory contention during bursts. For compute-intensive applications,

however, prediction accuracy is largely unaffected by the number of intervals. Interestingly,

for Cholesky, the error actually increases when increasing the number of intervals. This is

due to the over-partitioning of the application phase behavior.

4.2.5 Input Scaling

Figure 4.11 shows the average prediction error changes when only using small threads (1-

thread to 16-thread) and small input (SimDev, SimSmall) results, to predict large threads

(32-threads to 256-threads) with large input (SimMedium). On average, the prediction error

only increases by 2% on average when compared to only performing thread scaling predic-

tion. This shows the effectiveness of leveraging the structural change in barrier phases to

predict across different input size. For Water, the performance degraded significantly un-

der input scaling. This is because the instruction scaling trend were not able to be sampled
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Figure 4.10: Number of intervals on the effect of average prediction error

correctly with just two data points (SimDev and SimSall), since with two data points we

can only model the instruction scaling trend with a linear model. We believe with more

sample points; the prediction result will improve with better prediction on the instruction

scaling trend.

4.2.6 Core Frequency Scaling

In previous evaluation, we have assumed the same core frequency when scaling the number

of cores. However, core frequency is often reduced when increasing the number of cores

due to a limited power budget. Hence, we want to study how our scaling prediction scheme

can be applied in the context of core frequency scaling. We evaluate the prediction scheme

when training with 1 to 16 cores, with each core running at 2.66GHz, and then predicting

performance for 32 to 256 cores with each core running at only 1.33GHz.

In order to account for frequency scaling, the only parameter we need to modify is

fcore in Equation 4.4b. Note that T (Nq) ∗ fcore represents the expected DRAM service

time in terms of the number of core cycles, therefore, when clocking the cores at half the

75



0

10

20

30

40

50

60

Er
ro
r	(
%
)

Prediction	error	under	input	scaling thread-scaling input-thread-scaling

Figure 4.11: Average error for thread scaling and input-thread-scaling

frequency, the DRAM latency in core cycles is cut in half. Figure 4.12 shows the average

prediction error in this scenario. For simplicity, we only show individual-application results

for memory-intensive and compute-intensive applications, but the average is still calculated

over all benchmarks. The results show that the error is very similar to the error observed

without frequency scaling. This implies that our model is sufficient to account for the

effects of core frequency scaling, without introducing a significant additional error.
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CHAPTER 5

LOCK CONTENTION PREDICTION USING PC-BASED STATISTICAL

MODELING

In this chapter, I present a lock contention model that records statistics for each static lo-

cation in the code (PC address) at which the lock is acquired and predict how the lock

contention for each static lock function call will increase when scaling the number of

threads. The model captures program characteristics of multi-threaded applications from

few-threaded runs, builds a statistical model and predicts how the model would change

with thread count.

5.1 Model Structure

5.1.1 PC-based prediction model

To account for different parts of the application having varying lock access pattern and

critical section behavior, we propose to model the lock contention for each lock function

call (lockPC) separately. In addition, we partition the program execution into parallel sec-

tions and model the lock contention scaling of each lockPC, separately. In this paper, we

consider a parallel section to be the part of the program that executes between one global

synchronization (e.g. a barrier, fork create/join) and the next one. Note that each static

parallel section (code that follows a static PC where barrier() is called) can have multi-

ple dynamic instances. For simplicity, we will refer to each dynamic instance of a static

parallel section as “parallel section”, and explicitly state a static parallel section otherwise.

Figure 5.1 illustrates how we perform lock contention prediction. For each parallel sec-

tion, we first identify all lockPCs (Lock#). Then, we collect statistics (inter-arrival rate, crit-

ical section size, etc.) and use well-known statistical models to approximate each lockPC
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characteristics. To predict the lock contention when scaling the number of threads, we first

collect statistical behaviors using small thread counts, and then build a regression model to

predict how each variable change with increasing number of threads. We then predict the

lock contention for each of the lockPC, separately, and aggregate the total lock contention

to calculate the average lock wait time for a single thread. Note that each lock/unlock pair

represents a critical section, and that we do not distinguish between nested locks or not.

One might argue that lock contention happens due to multiple threads acquiring the

same lock variable, therefore why not mode the lock contention for each lock variable. The

reason is twofold. First, the amount of lock variables changes with the number of threads

and input size. Therefore, it is much difficult to model the scaling of lock contention when

the number of locks variable varies. In order to do so, it would require grouping the locks

into similar behavior, and then predict the scaling trend of each group of locks. Luckily,

using the lockPC to group lock behavior together is a very feasible mechanism to identify

similar behavior on different lock variables. For lockPC that uses a thread-indexed lock

array, it will be easier to predict how the lock contention will scale. Second, in order

to take into account threads accessing the same lock variable from different lockPCs, we

propose a model refinement (Section 5.2) which merges lockPCs that accesses similar sets

of lock variables and model the lock contention together.

5.1.2 Arrival rate

Arrival rate is the first-order representation of how often threads arrive to a certain lockPC,

it also is one of the important contributing factor in how severe the lock contention is.

When threads enter a parallel section, either from thread create or from the release of a

barrier, they often begin in sync and tends to execute in similar code regions. Once threads

have been executing longer in the parallel section, their execution will be less in-sync and

thus the arrival rate will then be dictated by the control paths of the program. Either way,

the end result is thread arrival rate often correlates with the lockPC.
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Figure 5.2 shows the average inter-arrival time for different lockPCs, with the y-axis in

log scale. As shown, different lockPCs experiences dramatically different inter-arrival rate,

with a difference up to 1000x. In this example, PC1 is the first lockPC each thread will

encounter after leaving the barrier, therefore threads end to arrival in bursts. For PC3/6, it

is within a for loop with large loop body, therefore have a larger inter-arrival time.

To collect the arrival rate, we profile the application by recording the cycle time and

PC address before a thread enters the lock function call. The profiling can be done locally

to each thread in order to reduce the profiling overhead. Then, the per-thread lock arrival

timestamp from all active threads are aggregated in order to create the overall sequence

of thread arrival to a particular lockPC. With that, we can calculate the inter-arrival time

between each thread arrival and create the histogram of inter-arrival time, which is used as

the inter-arrival time probability model for determining the lock arrival rate.

To predict the changes to the inter-arrival rate when scaling the number of threads, we

first identify a suitable statistical model to represent the inter-arrival time. Prior works for

database systems have often assumed a Poisson arrival rate, which results in an exponential

distribution model for inter-arrival time. Our evaluation shows that for some lockPC, expo-

nential distribution model does match the inter-arrival time histogram, with others needing

more complex models such as the inverse-chi-squared model. For simplicity, we will as-

sume the exponential probability model. Since the exponential probability model can be

represented with just one parameter (rate parameter λ), we can now use regression models

to model the change of the rate parameter λ with varying thread count. Figure 5.3 shows

the actual and predicted rate parameter for a particular lockPC. As shown, the predicted

model (a Power trendline) can predict how the rate parameter will change with increasing

thread count. Note that the main advantage of representing the inter-arrival histogram with

a well-known probability model is to reduce the model parameter space. Therefore, we

can reduce the large histogram to just 1 or 2 parameters that can be easily predicted using

limited data points.
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5.1.3 Critical section

Critical section size represents how long a thread will hold a particular lock and is often

one of the main contributing factor in how severe the lock contention is. The longer the

critical section is, the more likely a thread will arrive to the lockPC to access a contended

lock. Therefore, it is critical to model the critical section length in order to properly model

the lock contention.

While prior works have also taken into account the importance of modeling the critical

section, their model often assume a constant latency for each critical section. In addition,

prior model often assumes all critical section are equal, meaning they tend to model how

likely critical sections conflict simply by looking at the total amount of time a thread spends

in a critical section. However, simply assuming a constant critical section latency for all

critical section is not accurate. Figure 5.4 shows the critical section length for various

lockPC. As shown, different lockPC will exhibit different degree of critical section size,

with some in 10s of cycle and others in 10000 cycles. The large magnitude different in

critical section length emphasis the importance of modeling each lockPC separately, in

order to accurately capture the effect of critical section size on the lock contention.

Second, the minimum and maximum of critical section size can vary up to an order

of magnitude, therefore, using a constant model underestimates the severity of lock con-

tention. In order to better model the critical section size, we propose to utilize a prato dis-

tribution to model the critical section for each lockPC. One important aspect of prato distri-

bution is the long tail of probability. This allows us to model the sudden increase in critical

section length with an exponentially decreasing probability. Note that although most criti-

cal section have a constant number of instructions (eq. increment a shared counter), some

do have varying instructions for each instance. One example is when updating a tree struc-

ture, the amount of work needed to before is data-dependent. For such PCs, we proposed

to utilize a gaussian distribution to model the critical section size. This is the case for

lockPC5 in Figure 5.4. As shown, the average latency of the critical section sits relatively
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in the middle of the distribution, instances are equally likely to increase or decrease in la-

tency. In summary, our critical section latency model can be categorized into two cases, as

shown in Eq. 5.1

CSmodel =


CSTavg ∗ Prato(α), CSinst constant.

gaussin(CSTavg, CSTstd), otherwise.
(5.1a)

To profile the critical section for each lockPC, we propose to collect both the cycle

count and instruction count when we first enter a critical section (after acquiring the lock),

and also before we exit the critical section (before unlocking). Note that this too, can be

done separately for each active thread. Hence, profiling can be done locally to each thread

in order to reduce the profiling overhead. One could also reduce the overhead for profiling

by sampling the behavior of each lockPC, simply by only recording for a certain number

of instances.

To predict the changes to the critical section size, we propose to use regression model-

ing technique to model the change of the parameter for either the PratoDistribution model,

or the gaussian distribution mode. Both models have 2 paraments, one representing the

average, and the other represents the spread, either through the α parameter for prato dis-

trubtion or the σ for the gaussian distribution model.

5.1.4 Lock access histogram

One of the main benefit of modeling lock contention for each lockPC is the easiness of

predicting the lock access histogram. Lock access histogram represents the number of

accesses on each lock variable. For lockPC that access a single lock variable, the lock

access histogram is simply 100% on 1 lock variable. However, for programs that uses

fine-grain locking technique to reduce lock contention, the number of lock access is spread

across multiple lock variables, with varying distribution.
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Figure 5.5 shows the lock access histogram for various lockPCs. As shown, some

lockPC have a single lock variable, thus shows a spike of 100% at the beginning. Other

lockPC have varying degree of spreading of lock accesses, such as a hot-spot histogram

with 1 lock accounting for the majority of lock accesses, or a uniform histogram where

lock accesses are spread evenly across various lock variables.

One important aspect of this is that the lock access histogram is inherently a result of

the program characteristic. Therefore, lock access histograms tend to change in a structural

manner. For example, for program that uses lock array and is indexed with thread id, the

histogram tends to be uniform access histogram and the number of lock variables scales

with the thread count. On the other hand, lock histogram with 1 hot lock variable will also

tend to exhibit the same behavior while scaling the number of threads.

In addition to histogram, the total number of lock access also scales with thread count

in a structural manner. For lockPC that have the number of lock access associated with

input size, the total lock access remains constant when scaling the number of threads. On

the other hand, for lockPC that have a constant per-thread access rate, the total lock access

will then scale according with thread count.

We propose a two-way lock access histogram prediction scheme which leverages the

structural change of the total lock access count and lock access histogram. First, predict

how the total number of lock access and the total number of lock variables scales with

thread count. Note that due to the structural behavior of lock access count, simple linear

or power model is sufficient to model the scaling of total lock access and lock variable. To

model the histogram change, we directly predict the profile change when scaling the num-

ber of lock variables. Figure 5.6 shows how the histogram prediction scheme works. By

modeling the shifting of histogram through the scaling of lock variables and the envelope

change, we are able to track how the lock histogram profile shifts with thread count.
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5.1.5 Lock handoff model

Liang [32] have shown that lock handoff latency increasing with thread count, whereas

Boyd-Wickizer [46] have discussed the importance of modeling lock handoff latency when

attempting to model lock contention. There are two take away for lock handoff latency.

First, lock handoff latency strongly depends on the lock algorithm. The latency profile

for MCS locks and spin-locks exhibits dramatically different characteristics when the lock

contention increases with thread count. Second, the increase in cache-to-cache transfer

latency also exasperates the lock handoff latency.

While prior works have discussed how to model the lock handoff latency, we proposed

to utilize simulation technique to model and predict the average lock handoff latency. By

utilizing a simulation model, our model can easily adopt the lock handoff latency to dif-

ferent types of system and lock algorithm. Note that unlike running simulation for a full

benchmark, running simulation on a small kernel which evaluates the lock handoff latency

incurs relatively low overhead.

5.1.6 Overall model

In summary, our PC-based lock contention model predicts the overall lock contention by

modeling the lock contention for each lockPC separately. For each lockPC, we predict the

lock contention with a probability model that consists of 4 paraments - inter-arrival rate,

critical section latency profile, lock access histogram and average lock handoff latency.

For inter-arrival rate and critical section latency, we first profile and collect the statistical

profile for the two parameters and match it to a well-known mathematical model such as

exponential distribution. Then, we utilize a regression model to predict how the model

parameter changes with increasing thread count. For lock access histogram, we utilize

regression models to predict the total number of lock access and total number of lock

variables, then predict the profile change with increasing thread count. For average lock

handoff latency, we utilize a detail simulator to extract the average handoff latency when
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increasing the number of threads.

To calculate the lock contention, we utilize Monte-Carlo simulation technique to simu-

late the average lock wait time for each lockPC along with the predicted probability model

for each lockPC characteristics. Using Monte-Carlo simulation enables us the flexibility

to have different probability models for various input parameters, such as lock access his-

togram. Although closed-form solution can quickly calculate the expected average latency,

it requires each parameter to be represented as a well know mathematical model, which in

result limit the accuracy of the prediction. Note that since we are using Monte-Carlo sim-

ulation to calculate the expected lock contention, our model can easily incorporate various

lock scheduling scheme such as first-come-first-server which represent queue-based lock

algorithm, or a random scheduling scheme which matches a spin-lock algorithm.

5.2 Model Refinement

5.2.1 Merge lockPC

One of the challenge for using PC-based lock contention model is that lock contention hap-

pens not on lockPCs, but on lock variables. Hence, even if threads access the same lock

variable from different lockPC, it still results in lock contention. For example, Raytrace

has 1 for loop with 3 lockPCs, each accessing a single and common lock variable. There-

fore, threads arriving to either one of the 3 lockPCs will result in accessing the same lock

variable.

To handle lock variables being accessed from different lockPCs, we refine our model to

identify and merges lockPCs that have a significant overlap in terms of which lock variable

they are using often into a single unified lockPC. For each lockPC, we define lockSignature

as the set of top used lock variables that accumulatively accounts for 95% of lock accesses.

In result, two lockPCs that have the same lockSignature are considered mergeable (they

mostly access the same set of lock variables). Note that we use a empirical threshold of

95%, which can be tuned to adjust how aggressively to merge lockPCs. Figure 5.7 gives

85



an illustration of how MergePC works. As shown, since Lock2 and Lock3 have the same

lockset, we merge the two lockPC together.

Note that for lockPCs that are grouped together, their corresponding statistical model

are still considered separate, but instead are evaluated together as a whole. Figure 5.8 shows

how we evaluate the lock contention for lockPCs that are grouped together. Each lockPC

still maintains its own statistical model for various parameters (#lock access, inter-arrival

rate, etc.). However, whenever a thread releases a lock, it will determine the next lockPC

to arrive at according to the distribution of total number of lock access (N1 +N2) for each

lockPC. Once the next lockPC is determine (eq. Lock2), all related stats (inter-arrival time,

critical section length, etc) are determined according to the histogram of that particular

lockPC.

One advantage of keeping the statistics of each lockPC separate is to simplify the pre-

diction of model parameters. Since each lockPC behavior changes with thread count in a

structural way, predicting the model parameters separately and merging them in the simu-

lation allows us to continue to use simple regression schemes to predict the model change

while still achieving good accuracy.

5.2.2 Merge Parallel Section (PS)

Statistical modeling and prediction relies on sufficient data to properly represent the under-

lying behavior. For lock contention modeling, this means for each lockPC, there are suf-

ficient amount of lock accesses. For lockPC that are within For loops, this is not an issue

since the for loop ensures each thread participate in lock access multiple rounds. However,

for lockPC that are not within a for loop, the number of lock access are not sufficient since

the number of lock access only scales with the number of threads.

To obtain sufficient data points, we propose to combine the statistical behaviors of par-

allel sections that are from the same static parallel section in order to increase the available

data points for statistical modeling. Since we are combining dynamic parallel sections
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from the same static parallel section, each dynamic parallel section can be considered as

a sample of the intrinsic behavior of the static parallel section. This is particular useful

when evaluating with small thread count, since our model relies on capturing the statistical

behavior using small thread counts, mergePS is critical to improve the accuracy of lock

contention prediction. Note that for some application, the same static parallel section may

have multiple code path and depending on the loop iteration (eq. the first or last iteration),

threads will take a different code path. For these cases, we do not merge the parallel sec-

tions that differs drastically (eq. the number of lock access, instruction count, etc.), but

instead leave them separate.

Figure 5.9 shows the inter-arrival time for Ocean. As shown, since the lockPC is ac-

cessed once by each thread within each phase, there are not sufficient data points to provide

a good statistical modeling for the inter-arrival histogram. However, if we merge data points

from different parallel sections, we can obtain enough data points to capture the statistical

behavior.

5.3 Evaluation

We evaluate our performance prediction technique using SESC [63], a cycle-accurate ar-

chitectural simulator. To accurately model the memory system, we replaced the simple

memory model in SESC with DRAMSim2 [71], a cycle-accurate detailed memory simu-

lator. We evaluate core setting from 1-core up to 256-cores, with a 16KB instruction/data

L1 cache per core. The L2 cache is a distributed shared last-level cache, so each core has a

slice of the L2 cache and a router for the packet-switched 2D mesh network-on-chip (NoC).

We model the NoC using Booksim [64], a cycle-accurate NoC simulator that we integrated

into SESC. Table 5.1 list the overall configuration for our evaluation.

We selected 7 applications from both the Splash [28] and PARSEC [65] benchmark
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Table 5.1: Summary of system configuration
Cores frequency 2.66GHz
Cores 1/2/4/8/16/32/64/128/256
Issue width 2
L1 inst/data-cache 16KB/16KB
L2 cache size 8MB (total)
NoC Network Mesh
NoC Router 3-stage
NoC Link 128 bits
Number memory channel 4
DRAM DDR3-1333

suites that either shows a sufficient amount of lock contention or has many lock access. All

benchmarks are complied with the GCC 4.6.3 compiler suite using -O3 optimization. All

applications are evaluated using SimSmall input, and only changing the number of threads

parameter for each run.

For all performance prediction models, we collected data for 2-, 4-, 8-, 16- and 32-

threaded runs and used that to train the prediction model. Then we use the trained model to

predict the lock contention for 64-, 100-, 128-, 196- and 256-thread runs and compare the

predicted lock contention to the lock contention obtained from cycle-accurate simulation.

5.3.1 Benchmark summary

To understand how each benchmark provide a different lock access scenario, Table 5.2

summarize the lock access pattern and lock contention for the benchmarks that we evalu-

ated.

Raytrace shows the highest lock contention among all applications, which on average

spends 71% of execution time waiting for lock. The application has 7 lockPCs, with 2 of

them accounting for 70% of lock contention, and 2 other accounting for the rest of 30% of

lock contention. The main reason for lock contention is simply due to the average inter-

arrival time is roughly similar to the average critical section time plus the lock handoff

latency. Therefore, the service rate and arrival rate are equal in such cases. Interesting, the

2 most contented lockPC actually access the same lock variable, therefore our MergePC
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refinement was able to capture and model the reduction in inter-arrival rate.

Volrend shows the second highest lock contention among all applications, which on

average spends 48% of execution time waiting for lock. The application has 4 lockPCs,

with 1 of them accounting for 86% of lock contention. Interesting, the lockPC is not

the most accessed lockPC, but created a large lock contention due to the small average

inter-arrival rate, which is the result of threads arriving to the lockPC synchronously. In

addition, the lockPC also shows a large critical section size, which also exasperates the

lock contention.

Radiosity experiences on average 34% of lock contention. With 101 lockPCs in the

application, most of the lock contention are generated from 2 lockPCs, which accounts for

96% of lock contention. These two lockPCs represents the addition and deletion of work

from a shared work queue.

Barnes have 4 static parallel sections, with two of them containing lock accesses.

Among the two parallel sections that have lock accesses, 1 parallel section dominates the

majority of lock contention and accounts for 7% of execution time. The reason for lock

contention is due to the short inter-arrival time, which is a result of having a lockPC within

a tight for loop. The two parallel sections have 2 lockPCs and 1 lockPCs, respectively. Un-

like other applications where the majority of lock contention is generated from a lockPC

with a single lock variable, the hot lockPC actually uses an array of lock variable. However,

the lock access histogram exhibits a hot-lock pattern, therefore majority of the lock access

are to 1 single lock variable.

Cholesky have 5 static parallel section, with two of them containing lock accesses.

Among the two parallel sections that have lock accesses, 1 of them dominate the majority

of lock contention and accounts for 18% of execution time. The reason for lock contention

is due to large critical section size, with each thread accessing only 1 time. Interestingly,

with other lockPCs that have more lock access, the lock contention is very low due to the

usage of lock array and the relatively smaller critical section length when compared to the
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inter-arrival rate.

Ocean have 5 lockPCs within the application, however, no one lockPC dominates the

lock contention. All of these lockPCs, however, exhibits lock contention due the syn-

chronous arrival of threads. Therefore, the difference in lock contention is a direct result

of the varying inter-arrival rate for different lockPCs. Note that all of these lockPCs only

have 1 access per thread in each parallel section. Hence, MergePS was able to aggregate

statistics from different dynamic parallel sections and build a more reliable model.

Canneal have 4 static parallel sections, with 1 parallel section containing lock. The

parallel section has 1 lockPC and 1 lockAddr, and each thread accesses this lockPC once.

Lock contention can achieve as high as 18% of execution time, due to the large critical

section that creates high lock contention.

5.3.2 Model prediction result

Figure 5.10 shows the lock contention for all the benchmarks that we evaluated, as well

as the predicted lock contention for our PC-based prediction model. The percentage rep-

resents the amount of average lock contention that is experienced by each thread for all

the parallel sections. Actual represents the experienced lock contention wait time for the

evaluated runs. Model(OracleParameters) uses the histogram collected from each run and

represent it has a well-known statistical model as input arguments into our lock contention

model. This reflects how accurate our model is at predicting lock contention.

In result, our model was able to predict the lock contention within 7% of actual lock

contention. For Barnes, our model was not able to capture the relatively small lock con-

tention. This is because we use a lock access histogram to predict which lock variable

each thread will access; however, this does not fully represent the behavior of lock vari-

able access experienced in the actual run (there are correlations between accesses of lock

variables). Raytrace shows the largest error, with 22% of difference to actual lock con-

tention. However, since the lock contention is fairly high for Raytrace (up to 70%), our
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PC-based model predicted the lock contention as 50%, which clearly captures the large

lock contention.

Model(PredictedParameters) uses data points collected from small thread count runs,

and uses regression model to predict how each input argument will scale when increasing

the thread count. This represents the most common use-case our proposed PC-based lock

contention model, which allows us to predict how the lock contention will change with

thread count. As shown, our prediction scheme was able to achieve prediction accuracy

within 13% on average. Radiosity and Raytrace contributes to most of the error, which both

over-predicts the lock contention due to the rebound of interArrival time. For small thread

count, the inter-arrival time follows a power trendline and continues to decrease, however,

for large thread count, the inter-arrival time stops scaling and also slightly increases. This

non-linear behavior is hard to predict when the training data for the regression model does

not exhibit such behavior.

5.3.3 Error breakdown

To understand which component contributes to the increase of error in our prediction mode,

Figure 3.9 shows the breakdown of error contribution of each factor for our model. Simpli-

fied Model represents the error created due to the behaviors not modeled by our PC-based

histogram prediction model. This includes errors such as the correlations of lock variable

accessed between each lock access. Approximated Histogram represents the error due to

transforming the actual histogram into a paramterized mathematical model. Regression

Fitting represents the error due to using simple regression model to capture the correlation

of thread count and model parameter. Last, Insufficient Training Data represents the error

due to using only small threads count as training data for our regression model.

On average, our base model contributes about 3.2% of error in our lock contention

prediction scheme, which is also the largest component. These errors are the result of using

statistical models to determine the inter-arrival time, lock access, etc. A more sophisticated

91



model can be used, such as incorporating correlation between previous accesses in order

to build a more accurate statistical model. However, this will significantly increase the

model complexity, which we believe we strike a good balance between complexity and

accuracy.Insufficient Training Data contributes the second largest error, which is simply

the result of using small thread-counts to train the regression model. In our evaluation, we

are using data points up to 32-threads to predict performance for 256-threads. Note that

this is an 8X increase in thread count, which results in some characteristic not shown in

small thread-count runs.

5.3.4 Refinement analysis

Figure 5.12 shows the lock contention prediction accuracy with and without MergePC and

MergePS refinement. For simplicity, we only show applications that have at least 15%

difference in prediction accuracy. For Ocean, using MergePS was able to increase the

prediction accuracy by 8%. This is because for Ocean, each thread only access the lock

variable once in each barrier phase. Therefore, it is hard to acquire an accurate statistical

model with just little of data. However, with MergePhase, we were able to aggregate data

points from different barrier phases to construct a better statistical model, hence improve

the prediction accuracy. Note that MergePhase not only increases the accuracy for some

applications, it also reduces the simulation time since each barrier phase only needs to be

simulated once, and the lock contention can simply be multiplied by the number of dynamic

phases.

For Raytrace, MergePC was able to greatly improve model accuracy. This is due to the

fact that for Raytrace, there is a nested loop with 3 different lockPC, each accessing the

same lock variable. Hence, these 3 lockPC needs to be aggregated and modeled together,

since threads arriving at either one the of the lockPC will incur the same contention on the

same lock variable.
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5.3.5 Extended Amdahl’s Law

Figure 5.13 shows the lock contention prediction accuracy that extends Amdahl’s law to

incorporate lock contention modeling [45]. As shown, the simplified model cannot accu-

rately predict the lock contention. For Volrend and Radiosity, the model over simplifies

that lock access arrives uniformly within the parallel section, thus under estimate the lock

contention. For Canneal, it assume a constant critical section size, however, the critical

section length decreases due to each thread given less work when scaling the number of

threads.

5.3.6 Model application

In addition to using our model as a performance prediction tool, it can also be used as a per-

formance debugging tool. Since our model predicts the lock contention for each lockPC, we

can easily identify which lockPC is contributing to the most lock contention. In addition,

because our model breaks down the lock contention into inter-arrival rate, critical section

length, lock access histogram, and lock handoff latency, one can use such information to

identify which component is the main culprit for the increase in lock contention.

For example, in Volrend, there are 3 lockPCs, with 1 lockPC contributing to 95% of

lock contention. After examining the model parameters, we were able to identify that the

lock contention is not caused by large and frequent amount of lock access, but instead is

due to large critical section length. Thus, we were able to identify the main contributor in

lock contention, and suggest that in order to reduce such lock contention, one would need

to reduce the work done in the critical section
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Figure 5.1: Parallel section/LockPC prediction scheme
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Figure 5.10: Average per-thread lock wait time over total runtime
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CHAPTER 6

CONCLUSION

In recent years, the number of available cores in a processor is increasing rapidly while the

pace of performance improvement of an individual core has been lagged. As a result, ap-

plications are now required to extract more parallelism and leverage the abundant number

of cores to ensure continuous speedup of their applications. However, ensure application

scale well over many threads is a challenge task, mainly because scalability bottlenecks

such as synchronization will saturate the performance gain if not managed carefully. In ad-

dition, finding the optimal thread count to balance the overhead and benefit of penalization

becomes even more critical.

In Chapter 3, I presented MiSAR, a minimalistic synchronization accelerator (MSA)

that supports the three commonly used synchronizations, along with a small and efficient

overflow management unit (OMU) that safely and dynamically manages the MSA’s limited

hardware resources. Our results indicate that in a 64-core processor, the OMU allows a 2-

entry-per-tile MSA to service 93% of synchronization operations on average, achieving an

average speedup of 1.43X (up to 7.59X in streamcluster!) over the software (pthreads)

implementation, and performing within 3% of ideal (zero-latency) synchronization.

In Chapter 4, I presented a new performance model that captures program characteris-

tics of multi-threaded applications, allowing it to use few-threaded runs along with small

input sets to predict performance of many-threaded runs with large input sets. First, we

partition the program execution into barrier phases, and model the scaling trend of the to-

tal instruction count and its distribution among threads for each barrier phase in order to

account for parallelization overheads. Second, we subdivide each barrier phase into small

intervals, and model the cache miss rate of each interval by utilizing the regular shifting

of concurrent reuse distance (CRD) profiles. Applying the CRD analysis to small inter-

103



vals allows the CRD profile to capture behavior and model performance of each phase of

the program individually, rather than trying to model the aggregate behavior of potentially

many phases that may differ widely in terms of cache capacity and memory bandwidth

demand. Third, we use a simplified DRAM model to capture the impact of the memory

subsystem on the total execution time. Finally, we model how the number of barrier phases

and the model parameters (instruction count and CRD) changes with input size to predict

across different input sets. Overall, our model has only a 27% error when predicting par-

allel speedup for 32- to 256-core runs when model parameters are extracted from 1- to

16-core runs. Our model’s prediction of the performance-optimal number of threads for an

application is within 40% or the actual optimum, compared to a 200% error when using a

simple model based on the extended Amdahl’s Law.

In Chapter 5, I presented a new PC-based lock contention model that leverage the struc-

tural change in program characteristics to predict the lock contention by modeling how the

lock arrival rate, the critical section, and also the lockPC-to-lockAddress mapping changes

under thread-scaling and input-scaling. Our lock contention model consists of 4 parts. First,

we divide the program execution into parallel phases separated by global synchronization

(barrier, fork-join, etc.). Second, we collect statistics that represent the synchronicity of

thread arrival (lock arrival rate) as well as the functionality of the corresponding critical

section (size of the critical section) for each lock PC. Third, we approximate the rates into

well-known statistic models (eq. exponential distribution, gaussian distribution, etc.) in or-

der to reduce the parameters required to model the lock contention. Last, we use regression

models to predict how the parameters will change when varying the number of locks and

input size. Overall, our model was able to predict within 7% of lock contention when using

oracle parameters for our model, and an additional 6% error using predicted parameters

using training data from 1- to 32-thread runs. This shows the effectiveness of our PC-based

lock contention model and enables application developers to better understand and predict

how the application’s lock contention will scale when increasing thread count.
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The trend of increasing amount of processing cores will emphasize the importance

of modeling, predicting, and mitigating the scalability bottlenecks. By using statistical

modeling techniques, we can better identify and predict any scalability bottleneck that may

occur and react accordingly. By using hardware accelerators, we can mitigate the severity

of the synchronization bottleneck, thus allowing the application to perform better with

increasing number of threads. This dissertation serves as a starting point to investigate

techniques to better model, predict, and mitigate the scaling of parallel applications in

order to fully utilize the abundant amount of processing cores on future processors.
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[2] A. Kägi, D. Burger, and J. R. Goodman, “Efficient synchronization: Let them eat
qolb,” in Proceedings of the 24th annual international symposium on Computer ar-
chitecture, ser. ISCA ’97, Denver, Colorado, United States: ACM, 1997, pp. 170–
180, ISBN: 0-89791-901-7.

[3] J. T. Robinson, “A fast general-purpose hardware synchronization mechanism,” in
Proceedings of the 1985 ACM SIGMOD international conference on Management
of data, ser. SIGMOD ’85, Austin, Texas, United States: ACM, 1985, pp. 122–130,
ISBN: 0-89791-160-1.

[4] A. Agarwal, R. Bianchini, D. Chaiken, K. L. Johnson, D. Kranz, J. Kubiatowicz, B.-
H. Lim, K. Mackenzie, and D. Yeung, “The mit alewife machine: Architecture and
performance,” in Proceedings of the 22nd annual international symposium on Com-
puter architecture, ser. ISCA ’95, S. Margherita Ligure, Italy: ACM, 1995, pp. 2–13,
ISBN: 0-89791-698-0.

[5] G. Almási, C. Archer, J. G. Castaños, J. A. Gunnels, C. C. Erway, P. Heidelberger,
X. Martorell, J. E. Moreira, K. Pinnow, J. Ratterman, B. D. Steinmacher-Burow, W.
Gropp, and B. Toonen, “Design and implementation of message-passing services for
the blue gene/l supercomputer,” IBM Journal of Research and Development, vol. 49,
no. 2.3, pp. 393 –406, 2005.

[6] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, and B. Smith,
“The tera computer system,” in Proceedings of the 4th international conference on
Supercomputing, ser. ICS ’90, Amsterdam, The Netherlands: ACM, 1990, pp. 1–6,
ISBN: 0-89791-369-8.

[7] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph, and M. Snir,
“The nyu ultracomputerdesigning a mimd, shared-memory parallel machine (ex-
tended abstract),” in Proceedings of the 9th annual symposium on Computer Archi-
tecture, ser. ISCA ’82, Austin, Texas, United States: IEEE Computer Society Press,
1982, pp. 27–42.

[8] J. Laudon and D. Lenoski, “The sgi origin: A ccnuma highly scalable server,” in
Proceedings of the 24th annual international symposium on Computer architecture,

106



ser. ISCA ’97, Denver, Colorado, United States: ACM, 1997, pp. 241–251, ISBN:
0-89791-901-7.

[9] C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R. Feynman, M. N. Ganmukhi,
J. V. Hill, D. Hillis, B. C. Kuszmaul, M. A. St. Pierre, D. S. Wells, M. C. Wong, S.-W.
Yang, and R. Zak, “The network architecture of the connection machine cm-5 (ex-
tended abstract),” in Proceedings of the fourth annual ACM symposium on Parallel
algorithms and architectures, ser. SPAA ’92, San Diego, California, United States:
ACM, 1992, pp. 272–285, ISBN: 0-89791-483-X.

[10] S. L. Scott, “Synchronization and communication in the t3e multiprocessor,” in Pro-
ceedings of the seventh international conference on Architectural support for pro-
gramming languages and operating systems, ser. ASPLOS-VII, Cambridge, Mas-
sachusetts, United States: ACM, 1996, pp. 26–36, ISBN: 0-89791-767-7.

[11] J. Abellán, J. Fernández, and M. Acacio, “A g-line-based network for fast and ef-
ficient barrier synchronization in many-core cmps,” in Parallel Processing (ICPP),
2010 39th International Conference on, 2010, pp. 267–276.

[12] ——, “Glocks: Efficient support for highly-contended locks in many-core cmps,”
in Parallel Distributed Processing Symposium (IPDPS), 2011 IEEE International,
2011, pp. 893 –905.

[13] J. Oh, M. Prvulovic, and A. Zajic, “Tlsync: Support for multiple fast barriers using
on-chip transmission lines,” in Computer Architecture (ISCA), 2011 38th Annual
International Symposium on, 2011, pp. 105 –115.

[14] E. Vallejo, R. Beivide, A. Cristal, T. Harris, F. Vallejo, O. Unsal, and M. Valero, “Ar-
chitectural support for fair reader-writer locking,” in Proceedings of the 2010 43rd
Annual IEEE/ACM International Symposium on Microarchitecture, ser. MICRO ’43,
Washington, DC, USA: IEEE Computer Society, 2010, pp. 275–286, ISBN: 978-0-
7695-4299-7.

[15] W. Zhu, V. C. Sreedhar, Z. Hu, and G. R. Gao, “Synchronization state buffer: Sup-
porting efficient fine-grain synchronization on many-core architectures,” in Pro-
ceedings of the 34th annual international symposium on Computer architecture,
ser. ISCA ’07, San Diego, California, USA: ACM, 2007, pp. 35–45, ISBN: 978-
1-59593-706-3.

[16] A. Sodani, R. Gramunt, J. Corbal, H. S. Kim, K. Vinod, S. Chinthamani, S. Hut-
sell, R. Agarwal, and Y. C. Liu, “Knights landing: Second-generation intel xeon phi
product,” IEEE Micro, vol. 36, no. 2, pp. 34–46, 2016.

[17] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay, M. Reif,
L. Bao, J. Brown, M. Mattina, C. C. Miao, C. Ramey, D. Wentzlaff, W. Anderson,

107



E. Berger, N. Fairbanks, D. Khan, F. Montenegro, J. Stickney, and J. Zook, “Tile64
- processor: A 64-core soc with mesh interconnect,” in 2008 IEEE International
Solid-State Circuits Conference - Digest of Technical Papers, 2008, pp. 88–598.

[18] W. Heirman, T. E. Carlson, K. V. Craeynest, I. Hur, A. Jaleel, and L. Eeckhout, “Un-
dersubscribed threading on clustered cache architectures,” in 2014 IEEE 20th Inter-
national Symposium on High Performance Computer Architecture (HPCA), 2014,
pp. 678–689.

[19] M. A. Suleman, M. K. Qureshi, and Y. N. Patt, “Feedback-driven threading: Power-
efficient and high-performance execution of multi-threaded workloads on cmps,”
in Proceedings of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS XIII, Seattle, WA,
USA: ACM, 2008, pp. 277–286, ISBN: 978-1-59593-958-6.

[20] B. C. Lee and D. M. Brooks, “Accurate and efficient regression modeling for mi-
croarchitectural performance and power prediction,” in Proceedings of the 12th In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS XII, San Jose, California, USA: ACM, 2006, pp. 185–
194, ISBN: 1-59593-451-0.

[21] X. Liu and B. Wu, “Scaanalyzer: A tool to identify memory scalability bottlenecks
in parallel programs,” in Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis, ser. SC ’15, Austin, Texas:
ACM, 2015, 47:1–47:12, ISBN: 978-1-4503-3723-6.

[22] S. Eyerman, K. D. Bois, and L. Eeckhout, “Speedup stacks: Identifying scaling bot-
tlenecks in multi-threaded applications,” in 2012 IEEE International Symposium on
Performance Analysis of Systems Software, 2012, pp. 145–155.

[23] M. Kim, P. Kumar, H. Kim, and B. Brett, “Predicting potential speedup of serial code
via lightweight profiling and emulations with memory performance model,” in Pro-
ceedings of the 2012 IEEE 26th International Parallel and Distributed Processing
Symposium, ser. IPDPS ’12, Washington, DC, USA: IEEE Computer Society, 2012,
pp. 1318–1329, ISBN: 978-0-7695-4675-9.

[24] S. Demetriades and S. Cho, “Barrierwatch: Characterizing multithreaded workloads
across and within program-defined epochs,” in Proceedings of the 8th ACM Interna-
tional Conference on Computing Frontiers, ser. CF ’11, Ischia, Italy: ACM, 2011,
5:1–5:11, ISBN: 978-1-4503-0698-0.

[25] T. E. Carlson, W. Heirman, K. V. Craeynest, and L. Eeckhout, “Barrierpoint: Sam-
pled simulation of multi-threaded applications,” in 2014 IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS), 2014, pp. 2–
12.

108



[26] M. J. Wu and D. Yeung, “Coherent profiles: Enabling efficient reuse distance anal-
ysis of multicore scaling for loop-based parallel programs,” in 2011 International
Conference on Parallel Architectures and Compilation Techniques, 2011, pp. 264–
275.

[27] M.-J. Wu, M. Zhao, and D. Yeung, “Studying multicore processor scaling via reuse
distance analysis,” in Proceedings of the 40th Annual International Symposium on
Computer Architecture, ser. ISCA ’13, Tel-Aviv, Israel: ACM, 2013, pp. 499–510,
ISBN: 978-1-4503-2079-5.

[28] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The splash-2 pro-
grams: Characterization and methodological considerations,” in Proceedings of the
22nd annual international symposium on Computer architecture, ser. ISCA ’95, S.
Margherita Ligure, Italy: ACM, 1995, pp. 24–36, ISBN: 0-89791-698-0.

[29] D. Chandra, F. Guo, S. Kim, and Y. Solihin, “Predicting inter-thread cache con-
tention on a chip multi-processor architecture,” in 11th International Symposium on
High-Performance Computer Architecture, 2005, pp. 340–351.

[30] C. Ding and T. Chilimbi, “A composable model for analyzing locality of multi-
threaded programs,” Tech. Rep., 2009.

[31] Mediatek. (). Mediatek helio x30.

[32] C.-K. Liang and M. Prvulovic, “Misar: Minimalistic synchronization accelerator
with resource overflow management,” in Proceedings of the 42Nd Annual Inter-
national Symposium on Computer Architecture, ser. ISCA ’15, Portland, Oregon:
ACM, 2015, pp. 414–426, ISBN: 978-1-4503-3402-0.

[33] R. Rajwar and J. R. Goodman, “Speculative lock elision: Enabling highly concur-
rent multithreaded execution,” in Proceedings of the 34th Annual ACM/IEEE In-
ternational Symposium on Microarchitecture, ser. MICRO 34, Austin, Texas: IEEE
Computer Society, 2001, pp. 294–305, ISBN: 0-7695-1369-7.

[34] M. A. Suleman, M. K. Qureshi, and Y. N. Patt, “Feedback-driven threading: Power-
efficient and high-performance execution of multi-threaded workloads on cmps,”
in Proceedings of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS XIII, Seattle, WA,
USA: ACM, 2008, pp. 277–286, ISBN: 978-1-59593-958-6.

[35] S. Sridharan, G. Gupta, and G. S. Sohi, “Adaptive, efficient, parallel execution of
parallel programs,” in Proceedings of the 35th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, ser. PLDI ’14, Edinburgh, United
Kingdom: ACM, 2014, pp. 169–180, ISBN: 978-1-4503-2784-8.

109



[36] Y. Cui, Y. Wang, Y. Chen, and Y. Shi, “Lock-contention-aware scheduler: A scal-
able and energy-efficient method for addressing scalability collapse on multicore
systems,” ACM Trans. Archit. Code Optim., vol. 9, no. 4, 44:1–44:25, Jan. 2013.

[37] G. Chen and P. Stenstrom, “Critical lock analysis: Diagnosing critical section bot-
tlenecks in multithreaded applications,” in Proceedings of the International Confer-
ence on High Performance Computing, Networking, Storage and Analysis, ser. SC
’12, Salt Lake City, Utah: IEEE Computer Society Press, 2012, 71:1–71:11, ISBN:
978-1-4673-0804-5.

[38] K. Du Bois, S. Eyerman, J. B. Sartor, and L. Eeckhout, “Criticality stacks: Identi-
fying critical threads in parallel programs using synchronization behavior,” in Pro-
ceedings of the 40th Annual International Symposium on Computer Architecture,
ser. ISCA ’13, Tel-Aviv, Israel: ACM, 2013, pp. 511–522, ISBN: 978-1-4503-2079-
5.

[39] N. R. Tallent, J. M. Mellor-Crummey, and A. Porterfield, “Analyzing lock contention
in multithreaded applications,” in Proceedings of the 15th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, ser. PPoPP ’10, Banga-
lore, India: ACM, 2010, pp. 269–280, ISBN: 978-1-60558-877-3.

[40] M. M. u. Alam, T. Liu, G. Zeng, and A. Muzahid, “Syncperf: Categorizing, de-
tecting, and diagnosing synchronization performance bugs,” in Proceedings of the
Twelfth European Conference on Computer Systems, ser. EuroSys ’17, Belgrade,
Serbia: ACM, 2017, pp. 298–313, ISBN: 978-1-4503-4938-3.

[41] Intel, Intel VTune Performance Analyzer, http://www.intel.com/cd/software/products/asmo-
na/eng/vtune/239144.htm, 2008.

[42] M. V. Studio. (). Concurrency visualize.

[43] P. S. Yu, D. M. Dias, and S. S. Lavenberg, “On the analytical modeling of database
concurrency control,” J. ACM, vol. 40, no. 4, pp. 831–872, Sep. 1993.

[44] A. Thomasian, “On a more realistic lock contention model and its analysis,” in Pro-
ceedings of 1994 IEEE 10th International Conference on Data Engineering, 1994,
pp. 2–9.

[45] S. Eyerman and L. Eeckhout, “Modeling critical sections in amdahl’s law and its
implications for multicore design,” in Proceedings of the 37th Annual International
Symposium on Computer Architecture, ser. ISCA ’10, Saint-Malo, France: ACM,
2010, pp. 362–370, ISBN: 978-1-4503-0053-7.

[46] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and N. Zeldovich, “Non-scalable
locks are dangerous,” 2012.

110



[47] S. Keckler, W. Dally, D. Maskit, N. Carter, A. Chang, and W. Lee, “Exploiting fine-
grain thread level parallelism on the mit multi-alu processor,” in Computer Archi-
tecture, 1998. Proceedings. The 25th Annual International Symposium on, 1998,
pp. 306 –317.
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