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SUMMARY

Turbulence is ubiquitous in naturally-occurring and man-made flows. Despite its

importance in scientific and engineering applications, the transition from smooth laminar

flow to disorganized turbulent flow is poorly understood. In some cases, the transition can

be understood in the context of linear stability theory, which predicts when the underly-

ing laminar solution will become unstable as a parameter is varied. For a large class of

flows, however, this approach fails spectacularly, with theory predicting that the laminar

flow is stable but experiments and simulations showing the emergence of spatiotemporal

complexity.

In this dissertation, the direct or subcritical transition to turbulence in Taylor-Couette

flow (i.e., the flow between independently rotating co-axial cylinders) is studied experimen-

tally. Chapter 1 discusses different scenarios for the transition to turbulence and recent

advances in understanding the subcritical transition within the framework of dynamical

systems theory. Chapter 2 presents a comprehensive review of earlier investigations of lin-

early stable Taylor-Couette flow. Chapter 3 presents the first systematic study of long-lived

super-transients in Taylor-Couette flow with the aim of determining the correct dynamical

model for turbulent dynamics in the transitional regime. Chapter 4 presents the results of

experiments regarding the stability of Taylor-Couette flow to finite-amplitude perturbations

in the form of injection/suction of fluid from the test section. Chapter 5 presents numerical

investigations of axisymmetric laminar states with realistic boundary conditions. Chap-

ter 6 discusses in detail the implementation of time-resolved tomographic particle image

velocimetry (PIV) in the Taylor-Couette geometry and presents preliminary tomographic

PIV measurements of the growth of turbulent spots from finite-amplitude perturbations.

The main results are summarized in Chapter 7.
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CHAPTER I

INTRODUCTION

Turbulent flows are ubiquitous in science and engineering. From the naturally occurring

flows like ocean currents and the flow in blood vessels to man-made flows such of the wakes

behind airplanes and automobiles, turbulence is all around us. Turbulence occurs when the

inertial forces in a flow are sufficiently strong to overcome the smoothing effects of viscosity

ν. The relative importance of these two effects is usually captured by a dimensionless

quantity called the Reynolds number Re. When Re is small, viscous forces dominate and

the resulting flow is laminar, meaning that adjacent fluid layers slide past each other and

the flow is regular and smooth. For sufficiently high values of Re, inertia dominates and the

laminar flow is replaced by a series of chaotic eddies and vortices that fluctuate erratically at

a variety of spatial and temporal scales. One of the great outstanding problems in classical

physics is deriving a general theory that can predict when a particular flow will be turbulent.

1.1 The Transition to Turbulence

For a large class of fluid flows, the transition to turbulence can be explained by studying

the stability of the laminar solution to infinitesimal perturbations using linear stability

theory. This allows one to predict when the laminar solution becomes unstable so that

the flow transitions to a new, more complex flow pattern [2–5]. These patterns typically

bifurcate from the laminar solution and correspond to spatial or temporal modulations of

the laminar state. As the control parameter is increased, these patterns grow in amplitude

and eventually become unstable themselves, giving way to other flow states. The complexity

of these states becomes progressively higher, eventually resulting in turbulence. Flows that

follow this route to turbulence are said to undergo a supercritical transition.

A famous example of a system that undergoes a supercritical transition to turbulence is

Rayleigh-Bénard convection. This is the flow that occurs when a temperature gradient is

applied across a thin layer of fluid under the action of gravity. For small thermal gradients,

1



(a) (b) (c)

(d) (e) (f)

Figure 1.1: Shadowgraph images of Rayleigh-Bénard convection show hot upwelling and cold
downwelling flows as dark and bright regions, respectively. As the temperature gradient is
increased beyond a critical value (a)-(f) the spatiotemporal complexity of the flow gradually
increases. Adapted from H. Kurtuldu, “New Methods of Characterizing Spatio-temporal
patterns in Laboratory Experiments,” Ph.D. dissertation, School of Physics, Georgia Insti-
tute of Technology, Atlanta, Georgia, 2010 [7].

heat transport is purely conductive. If the temperature gradient is sufficiently large, how-

ever, buoyancy effects become dominant and the flow undergoes a transition to a simple

convective state with uniform convection rolls [5]. Increasing the temperature gradient fur-

ther causes the flow to undergo a series of transitions to states of increasing spatiotemporal

complexity and eventually leads to turbulence (see Figure 1.1). The study of transition

in Rayleigh-Bénard convection and other flows that undergo supercritical transitions has

been instrumental in the development of the theories of pattern formation and nonlinear

dynamics of extended systems [5, 6].

Another class of flows exists for which the transition to turbulence is very different.

For these flows, linear stability analysis predicts that the laminar solution is stable up to

some critical Reynolds number Rec. However, experiments show that these flows become

2



(a) (b)

Figure 1.2: (a) The subcritical nature of the transition to turbulence in pipe flow was first
observed in the pioneering experiments of Osborne Reynolds. Reynolds noticed that as the
dimensionless control parameter Re = Ud/ν increased beyond a certain value, a filament
of dye injected along its center line suddenly became incoherent and disorganized. For pipe
flow, the U is the mean flow rate in the pipe and d is the pipe diameter. (b) A modern
realization of Reynolds’s experiment shows the sudden onset of disorder with increasing
Reynolds number (top to bottom). (a) is adapted from O. Reynolds, Papers on Mechanical
and Physical Subjects, Vol. II p. 71, 1901 Cambridge, UK: Cambridge University Press.
Copyright 1901 by Cambridge University Press. (b) is adapted from M. Van Dyke, An
Album of Fluid Motion, p. 61, 1982, Stanford, California: Parabolic Press. Copyright 1982
by Milton Van Dyke.

turbulent at Reynolds numbers significantly lower than Rec.
1 Furthermore, as the flow

transitions to turbulence, it does not visit a series of progressively more complex flow

patterns as in the supercritical transition scenario but instead bypasses these and makes

a direct transition to a state with a high degree of spatiotemporal complexity. Flows that

follow this route to turbulence are said to undergo a subcritical transition to turbulence.

Subcritical transitions are much less well understood than supercritical transitions and have

been the subject of much recent work [8–11]. Examples of flows that undergo a subcritical

transition to turbulence include the pressure-driven flow in a cylindrical pipe (see Figure 1.2)

and the shear-driven flow between two parallel plates [10], which is known as plane Couette

flow.

1For many canonical shear flows, including pipe flow and plane Couette flow, linear stability theory
predicts that the laminar flow is stable for all Reynolds numbers (i.e., Rec →∞).
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1.2 Taylor-Couette Flow

Most flows become turbulent via either the supercritical route or the subcritical one only.

One important exception is the flow in the gap between concentric rotating cylinders (see

Figure 1.3). Known as Taylor-Couette flow after the seminal contributions of G.I. Taylor

and M. Couette, this flow is most famous for its role in the development of hydrodynamic

stability theory and for the wide variety of flow regimes that it can exhibit depending on

the rotation rates and relative sizes of the two cylinders.

The Taylor-Couette geometry is specified by the radius of the inner cylinder ri, the

radius of the outer cylinder ro, and the height of the fluid column between them H. The

inner cylinder rotates with angular velocity ωi and the outer one rotates with angular

velocity ωo. Dimensional analysis shows that four nondimensional parameters are sufficient

to characterize the system. One choice of control parameters that has been historically

popular with experimentalists (and which will be used throughout most of this work) is to

define two Reynolds numbers and two geometric parameters as follows:

Rei =
ri ωi d

ν
,

Reo =
ro ωo d

ν
,

η =
ri
ro
, and Γ =

H

d
,

(1)

where d = ro − ri and ν is the kinematic viscosity of the fluid. This choice is convenient

because for a fixed geometry it nondimensionalizes the problem in terms of the readily

accessible boundary conditions. The inner cylinder Reynolds number Rei corresponds to

the nondimensional linear velocity of the inner cylinder surface. Similarly, the outer cylin-

der Reynolds number Reo corresponds to the nondimensional linear velocity of the outer

cylinder wall. The geometrical parameters η and Γ capture the curvature and spanwise

aspect ratio of the flow, respectively.2 More recently, Dubrulle et al. have suggested that

(Rei, Reo, η) should be replaced with an alternative set of parameters (Res, Rω, Rc). These

parameters are based on dynamical considerations and separate the effects of shear and

2η also sets streamwise aspect ratio Γθ. For example, if Γθ is defined in terms of ratio of the mean
circumference to the gap between between the cylinders, then Γθ = π (ro + ri)/(ro − ri) = π (1 + η)/(1− η).

4
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d

riro

ωi

ωo
Figure 1.3: Studied by researchers going as far back as Newton, the flow of the fluid between
two coaxial rotating cylinders has come to be known as Taylor-Couette flow in honor of
seminal contributions by Maurice Couette and Geoffrey Ingram Taylor.

5



rotation, allowing the direct comparison of flow regimes in Taylor-Couette flow with those

in other rotating shear flows [12]. The definition of these parameters and their use will be

discussed in Section 3.5.5 as part of the analysis of the lifetimes of turbulent transients in

weakly co-/counter-rotating Taylor-Couette flows.

For low rotation rates, fluid elements in Taylor-Couette flows simply follow circular paths

as would be expected from symmetry considerations. This featureless flow is called circular

Couette flow. However, if the inner cylinder rotation rate exceeds a certain critical value,

the flow undergoes a bifurcation that breaks the axial symmetry and results in a stack

of axisymmetric, toroidal vortices known as Taylor vortices. As the rotation rate of the

inner cylinder is increased further, the Taylor vortices become unstable themselves, giving

way to a series of progressively more complicated states famously described by Coles [14]

and by Andereck, Liu, and Swinney [13]. The plethora of possible flow states is illustrated

in Figure 1.4. This supercritical transition to turbulence is analogous with transition in

Rayleigh-Bénard convection.3 Experimental and theoretical studies of these two systems

have played a fundamental role in showing the validity of abstract mathematical ideas from

dynamical systems theory in real-world physical systems.

Although Taylor-Couette flow is most famous for its supercritical transition to turbu-

lence, it can also make the transition following a subcritical route. When outer cylinder

rotation dominates (a notion that will be made more specific in Chapter 2), linear stability

analysis predicts that the flow will be stable to infinitesimal perturbations for all Reo [16].

However, linear stability does not preclude the growth of perturbations of finite amplitude.

If Reo is sufficiently large, finite-amplitude perturbations can grow. Instead of leading to a

series of increasingly more complex states, these instabilities lead directly to highly complex

states typically featuring spatiotemporal intermittency, as shown in Figure 1.5.

3The analogy between the supercritical transition to turbulence in Taylor-Couette flow and the transition
to turbulence in Rayleigh-Bénard convection is more than qualitative. It turns out that in certain regimes
the two problems can be mapped onto each other mathematically. For more details, see the paper by Prigent
et al. [15].
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Figure 1.4: (a) Andereck, Liu, and Swinney showed that, like Rayleigh-Bénard convection,
Taylor-Couette flow undergoes a series of bifurcations as the driving parameters Rei and Reo
are varied [13]. These bifurcations are driven by instabilities that arise when fast moving
fluid near the inner cylinder overcomes viscous damping forces and gets centrifuged outward.
(b) Kalliroscope visualizations of various flow regimes. Adapted from C.D. Andereck et
al., “Flow regimes in a circular Couette system with independently rotating cylinders,” J.
Fluid Mech., p. 155, 1986, Cambridge, UK: Cambridge University Press. Copyright 1986
by Cambridge University Press.
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(a) (b)

(c) (d)

(e) (f)

Figure 1.5: When the flow is dominated by the rotation of the outer cylinder, Taylor-
Couette flow is stable to infinitesimal perturbations. However, if a perturbation of finite
amplitude is applied to the flow, it can grow, bypassing the pattern-forming bifurcations
of flows dominated by inner cylinder rotation, and go directly to turbulence. (a) Taylor-
Couette flow is perturbed by a small injection of fluid, barely visible here as two horizontal
stripes. (b)-(e) The perturbation grows and forms a patch of turbulence. (g) Subcritical
transitions, such as this one, are often characterized by spatiotemporal intermittency and
the coexistence of laminar and turbulent domains. This sequence of images was taken at
Reo = 3000 with the inner cylinder fixed. The radius ratio η was 0.905 and the aspect ratio
Γ was 40.

8



1.3 Transitional Turbulence from the Dynamical Systems Point of View

When dealing with turbulence, the primary weapon in the fluid dynamicist’s arsenal has

long been the statistical approach pioneered by Reynolds, Taylor, Prandtl, von Kárman,

and Kolmogorov.4 In this framework, turbulence is viewed as a stochastic process where

the velocity field fluctuates randomly about a mean flow. Starting from empirically mo-

tivated models for the fluctuations, the statistical approach has proven quite successful in

describing the mean behavior of turbulent flows at very high Reynolds numbers [17]. This

success, however, does not carry over to moderate Reynolds numbers. Significant challenges

remain, including the central problem of linking the observed stochastic fluctuations to the

deterministic Navier-Stokes equations that govern the flow. As put by Eberhard Hopf in

1948 [19], “The ultimate goal... must be a rational theory of statistical hydrodynamics

where... properties of turbulent flow can be mathematically deduced from the fundamental

equations of hydromechanics.”

In his paper, Hopf laid out a research program by which such a theory might be ar-

rived at. He proposed that solutions of the Navier-Stokes equations could be thought of

as existing in an infinite dimensional state space, where each velocity field corresponds to

a point. Within this infinite space of all conceivable velocity fields, Hopf conjectured that

there is finite-dimensional manifold corresponding to flows that are actually permissible by

the Navier-Stokes equations. This manifold is called the inertial manifold and its dimen-

sionality is governed by the effects of viscosity. At low Re, viscosity damps out fluctuations

and smooths out spatial gradients, collapsing the inertial manifold to a single point that

corresponds to the laminar flow. At higher Re, inertia becomes dominant and the space

of allowable flows grows, increasing the complexity of the inertial manifold. In this view,

turbulence arises as the flow visits different regions of the inertial manifold. Unfortunately,

Hopf was unable to pursue his proposed research program due to the limited computational

power available in 1948, leading him to lament, “The great mathematical difficulties of these

important problems are well known and at present the way to a successful attack on them

4The statistical theory of turbulence is reviewed in the classic book by Tennekes and Lumley [17] and
more recently in the book by Pope [18].
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Figure 1.6: In the dynamical systems picture of turbulence, a turbulent flow corresponds
to a trajectory (black line)in a high-dimensional state space. The trajectory is guided by
hyperbolic dynamical objects called exact coherent structures (ECS) and their stable and
unstable manifolds (shown in red). When in the neighborhood of a particular ECS, the
turbulent flow exhibits dynamics that are qualitatively similar to those of the ECS and
has similar physical properties such as energy dissipation. Because the inertial manifold is
compact, a trajectory will visit the neighborhood of a given ECS many times, leading to
the close recurrences observed empirically in turbulent flows. The amount of time that a
trajectory spends near a particular ECS is determined by the ECS’s stability. This means
that the time-average of any quantity of interest over a trajectory can be approximated by an
average of that same quantity calculated for the ECS’s whose neighborhoods the trajectory
visits, weighted by the amount of time that the trajectory spends in each neighborhood.
This procedure is formalized within the framework of periodic orbit theory [20,21].

seems hopelessly barred.”

The exponential growth in computing power of the last decade has made it possible to

revisit Hopf’s dynamical theory of turbulence. Drawing on advances in the study of low-

dimensional nonlinear systems, a dynamical picture of turbulence has begun to emerge.5

Central to this picture is the idea of recurrent patterns. As a turbulent trajectory evolves

on the inertial manifold, it often revisits the same neighborhoods in state space, showing

qualitatively similar, although never exactly repeating, spatial and temporal features char-

acteristic of that neighborhood. The trajectories themselves are guided by a set of solutions

5Some of the early successes of this research program are reviewed in the books by Holmes et al. [22]
and by Bohr et al. [23]. More recent advances are reviewed in the papers by Eckhardt et al. [9, 10] and
by Gibson, Halcrow, and Cvitanović [24], in the online tutorial by Gibson and Cvitanović [25], in the
review by Kawahara, Uhlmann and van Veen [26], and in the proceedings of the IUTAM Symposium on the
Laminar-Turbulent Transition and Finite Amplitude Solutions [8].
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of the Navier-Stokes equations called exact coherent structures and their stable and unsta-

ble manifolds [24], as shown schematically in Figure 1.6. Although never observed directly

in experiments, these weakly unstable hyperbolic objects correspond to stationary states

(fixed points), periodic orbits, traveling waves and other coherent structures [10]. Calculat-

ing these solutions numerically is now feasible [24, 27–30] and efforts are underway to use

them to calculate dynamical averages within the framework of periodic orbit theory [31,32].

While this program has made great strides in the last decade, most of this progress has

been limited to numerical studies. Two important exceptions are experimental papers by

Hof et al. in 2004 [33] and by de Lozar et al. in 2012 [34]. The former study reported the

first experimental evidence of the existence of unstable traveling wave solutions in pipe flow.

The latter study went one step further by using experimental data as a seed for a numerical

search that yielded exact coherent structures embedded in the so-called edge state that

separates the laminar solution from turbulent dynamics in state space. Beyond these two

studies, experimental evidence for the existence and relevance of exact coherent structures

in laboratory flows is scarce.

Experimental investigations of Taylor-Couette flow have a long history of informing dy-

namical systems research and have provided key insights in the development of the theory of

bifurcations, chaos, and pattern formation [5,6,35]. Interestingly, however, Taylor-Couette

flows have largely been excluded from the push to develop a dynamical theory of turbulence

along the lines described above. This may be in part because the field has been mostly the

realm of theorists and numericists, who have eschewed the complications introduced by

flow curvature and rotation and concentrated mostly on pipe and plane Couette flows. In

this dissertation, the viewpoint is taken that even though Taylor-Couette flow may intro-

duce additional complexity, it opens the possibility of high-precision experimental studies

of the subcritical transition that are not practical in other simple shear flows. In certain

flow regimes, Taylor-Couette flow shares many of the features observed in transitional shear

flows and serves to complement existing studies in other geometries.

The rest of this dissertation is organized as follows: Chapter 2 presents a comprehensive

review of the literature concerning the subcritical transition to turbulence in Taylor-Couette
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flows. Emphasis is given to experimental investigations of linearly stable regimes where

the inner cylinder is at rest. Chapter 3 presents the first systematic study of long-lived

super-transients in Taylor-Couette flow with the aim of determining the correct dynamical

model for turbulent dynamics in the transitional regime. Part of this work was previously

reported in D. Borrero-Echeverry et al., Phys. Rev. E 81, 025301(R), 2010. That work is

discussed in more detail and additional unpublished results regarding the effects of system

size, boundary conditions, and inner cylinder rotation on transient lifetimes are reported.

Chapter 4 presents the results of experiments regarding the stability of Taylor-Couette

flow to finite-amplitude perturbations in the form of injection/suction of fluid from the

test section. Critical thresholds for transition are reported and their scaling with Reynolds

numbers is discussed. Chapter 5 presents the results of axisymmetric simulations of laminar

Taylor-Couette flows that can be used to calibrate tomographic particle image velocimetry

(PIV) measurements. Chapter 6 discusses in detail the implementation of time-resolved

tomographic PIV in Taylor-Couette flow and presents preliminary measurements of the

growth of a turbulent spot from a finite-amplitude perturbation, as well as measurements

of some basic laminar flows. This technique allows the measurement of three-dimensional

velocity fields in a volume and holds great promise in elucidating the complex dynamics of

turbulence at moderate Re. Chapter 7 provides a summary of the main results from the

earlier chapters.

The main document is supplemented with a series of appendices. Appendix A provides

tables of the data gathered in the experiments of Chapter 3. Appendix B contains a se-

ries of Matlab codes used in this work, including details pertaining to computer control

of various hardware. Appendix C contains mechanical drawings for parts of the exper-

imental apparatus that were constructed as part of this research. Appendix D contains

mechanical drawings for a new inner cylinder that allows for the injection/withdrawal of

fluid to/from the test section as a source of finite-amplitude perturbations. Appendix E

contains mechanical drawings for the three-dimensional calibration target developed for the

tomographic PIV measurements. Appendix F provides technical details of the distributed

computing cluster that was assembled for the processing of tomographic PIV data.
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CHAPTER II

HISTORICAL INVESTIGATIONS OF THE SUBCRITICAL

TRANSITION TO TURBULENCE IN TAYLOR-COUETTE FLOW

“Those were the days when plumbers were

plumbers...”

— Predrag Cvitanović

The history of Taylor-Couette flow is a long and storied one. The literature concerning

pattern forming bifurcations driven by inner cylinder rotation and their role in the super-

critical transition to turbulence is extensive (see, e.g., the book by Koschmieder [5], the

bibliography compiled by Tagg [36], the review articles by Tagg [35, 36] and by Di Prima

and Swinney [37], and the expansive study by Andereck et al. [13]). The literature, however,

is much sparser regarding flows where outer cylinder rotation dominates and the transition

to turbulence is subcritical. These sources are scattered in the literature and no compre-

hensive review of them exists. For this reason, an attempt has been made here to review as

much of the prior work in this regime as possible. Emphasis is given to experimental investi-

gations of transitional flows where the inner cylinder is at rest or of weakly counter-rotating

subcritical flows.

2.1 The Early Years: Newton, Coulomb, and Stokes, 1687-1848

The first theoretical discussion of the flow between concentric cylinders is attributed to

Newton in 1687, who in Section IX of Book II of the Principia discussed the laminar flow

that occurs when the two cylinders co-rotate such that “the times of their revolutions be

as their semidiameters” (i.e., the linear velocity of the walls for both the cylinders is the

same) [38]. Newton incorrectly arrived at the conclusion that in this case, the velocity

profile is constant (independent of radial position), an error that would stand uncorrected

for 161 years.

The first experimental investigation of the flow between concentric cylinders is attributed
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Figure 2.1: Newton’s illustration of the flow due to a rotating cylinder in an infinite fluid.
By realizing that a stream surface could be be replaced by a solid wall moving with the
same velocity, Newton made the first, if incorrect, prediction of the laminar flow between
rotating cylinders. Adapted from I. Newton, Philosophiæ Naturalis Principia Mathematica,
(trans. Andrew Motte), 1846, New York, NY: Daniel Adee.

to Marcel Coulomb, who in 1794, constructed the earliest recorded concentric cylinder

apparatus in an attempt to measure “liquid friction” [39]. Coulomb’s apparatus was driven

by the energy stored in the torsion of a wire from which the inner cylinder was suspended.

Coulomb’s apparatus was not very successful as a rheometer and he continued his work

using other techniques that were in vogue at the time. It would not be until the 1880s

when electrical motors allowed researchers to carefully regulate the rotation rates in their

apparatus that the use of concentric cylinders as rheometers became popular [40].

In 1848, George G. Stokes discovered Newton’s mistake and derived the correct expres-

sion for the laminar flow between arbitrarily rotating infinite concentric cylinders [41]. He

showed that the azimuthal velocity vθ as a function of the radial position r is given by

vθ(r) = Ar +
B

r
, (2)

where

A = −ωi
η2 − µ
1− η2

and B = ωiri
2 1− µ

1− η2
, (3)
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ri and ro are the radii of the inner and outer cylinders, respectively, ωi and ωo are their an-

gular frequencies of rotation, µ = ωo/ωi, and η = ri/ro. The axial and radial components

of velocity vz and vr are zero. Today, this flow is known as circular Couette flow. Stokes

went on to suggest that observing such flows would help determine the appropriate bound-

ary conditions at solid walls, which were still under debate at the time. He also predicted

that flows dominated by inner cylinder rotation would be centrifugally unstable, meaning

that fast moving fluid near the inner cylinder would get centrifuged outward, and that this

would lead to turbulence [41].

2.2 The Experimentalists: Couette and Mallock, 1880-1900

The final two decades of the 19th century saw a great number of researchers turning their

attention to the study of flows between concentric cylinders. In 1881, Max Margules derived

a formula that allowed the measurement of fluid viscosity by measuring the torque exerted

by the fluid on one of the cylinders in a Taylor-Couette configuration as the other was

rotated at constant speed [42]. This inspired a variety of experimentalists to construct

concentric cylinder apparatus starting with John Perry. Perry appears to have built a

Taylor-Couette apparatus as early as 1882, but his work was not published until 1893 [43]

and was largely ignored [44].1 Working independently in Paris and Cambridge, Maurice

Couette and Arnulph Mallock conducted experiments in apparatus driven by electric motors

publishing their initial results in 1888.

Mallock’s 1888 paper is mostly concerned with measurements of the viscosity of water,

which he measured by rotating the outer cylinder and measuring the torque on the inner [45].

In this paper, Mallock notes the presence of a secondary flow due to the finite size of his

apparatus. He also notes that these effects are minimized when the ratio of the length of the

cylinders to the gap between cylinders is large. Now known as Ekman cells, these secondary

flows are driven by deviations from the ideal infinite cylinders considered by Stokes [13,46].

Although such finite-size effects have been shown to play an important role in determining

the dynamics of centrifugally unstable Taylor-Couette flows (see Ref. [47] for examples),

1Perry’s device was more akin to a modern-day “double cup” rheometer in design than to a typical
Taylor-Couette apparatus.
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their role in the subcritical transition to turbulence is still a subject of debate [48–55].

In 1896, Lord Kelvin presented to the Royal Society a follow-up paper by Mallock

where Mallock discussed the effect of inner vs. outer cylinder rotation and system size on his

viscosity measurements, as well as his efforts to minimize end wall effects [56]. In it, Mallock

reported that if the inner cylinder is rotated “the motion of the fluid was eddying and

unstable, even at very low velocities” and therefore not suitable for viscosity measurements.

As noted by Donnelly, the lowest rotation rate for the inner cylinder used by Mallock

exceeded the critical rotation rate for the emergence of Taylor rolls, leading Mallock to

arrive at the incorrect conclusion that Taylor-Couette flows with inner cylinder rotation are

always unstable [42]. Mallock also reported that when he rotated the outer cylinder instead,

the torques measured with his apparatus increased linearly with rotation speed (as predicted

by Margules for circular Couette flow) until, at some critical speed, the torque readings

began to fluctuate erratically. At even higher rotation rates, the torque readings stabilized

again and were observed to vary smoothly with increasing cylinder rotation rate. However,

the readings no longer scaled linearly with rotational speed of the cylinder. Mallock also

noticed that if the system was set to a rotation rate just below the critical one, where the

torque measurements became erratic, any small perturbation of the system would cause

the torque readings to fluctuate wildly before the torque readings stabilized to the value

measured before the perturbation. These episodes lasted for extended periods of time and

had “irregular” durations. Mallock noted that they were also correlated with the appearance

of “small dimples and elevations” on the free surface of the water.

Across the English Channel, Couette was conducting his own experiments in the labora-

tory of Gabriel Lippmann at the Sorbonne [57]. Couette presented his preliminary results in

a series of notes to the French Academy of Science in 1888 [57]. In these notes and his 1890

doctoral thesis, Couette described a series of experiments in which he measured the viscosi-

ties of water and air using a concentric cylinder apparatus of his own design in which the
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outer cylinder was driven by an electric motor. It appears that Couette realized that capil-

lary viscometers would provide more accurate viscosity measurements2, but was fascinated

by his observations of rotating flows. Couette made a concerted effort to verify the validity

of the equations for the motion of liquids proposed by Navier in 18233 and carefully studied

the relevance of the no-slip boundary condition [40]. The no-slip boundary condition states

that, at a solid boundary, the relative velocity between the fluid and the boundary vanishes.

Although now generally accepted as the appropriate boundary condition in most settings,

the no-slip boundary condition was still under scrutiny in Couette’s time. Like Mallock,

Couette realized that the boundary conditions at the ends of his cylinders would affect his

measurements and designed a system of guard rings to help mitigate these effects.

Figure 2.2: (a) Maurice Couette performed extensive studies of the flow between rotating
concentric cylinders. (b) His original experimental apparatus was rediscovered in a store-
room at the Catholic University of the West in 1990. Adapted from J.M. Piau, M. Bremond,
J.M. Couette, and M. Piau, “Maurice Couette, one of the founders of rheology,” Rheologica
Acta 33, p. 357-368, 1994. Copyright 1994 by Springer Berlin Heidelberg.

2Couette also performed careful studies on the flow of liquids through small pipes and made important
contributions to the development of capillary tube rheometers. Couette’s many contributions to rheology are
highlighted in the biography by Piau et al. [57] and in the reviews by Dontula [44] and Piau and Piau [40].

3Together with Stokes’s equations for viscous flow, these equations are now known as the Navier-Stokes
equations.
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Couette’s torque measurements showed the same general trends as Mallock’s. At low

rotation rates the torques scaled linearly with rotation rate, becoming erratic at intermediate

rotation rates, and finally scaling nonlinearly with rotation rate at high rotation rates.

Couette interpreted this as evidence of the existence of two forms of fluid motion: one

given “exactly and not approximately by simplest integrals of the Navier equation” and one

which was not [42,57]. Couette also made substantial theoretical contributions, performing

detailed calculations of fluid flows near the walls of slowly oscillating bodies. He also

analyzed the effects that non-concentricity of the cylinders would have on his measurements

and developed a theory to compensate for them [57]. Unfortunately, Couette’s work on

rotating flows was not continued after he left the Sorbonne and his apparatus lay “unused

in a store-room, unknown to most people” [57] at the Catholic University of Angers (now

the Catholic University of the West) where he taught for the rest of his career. It was not

until 1990 that it was discovered and refurbished by Michel Brémond and Maurice Dubois

and displayed at the university’s exhibition of historic scientific instruments [57], Figure 2.2.

2.3 Linear Stability: Rayleigh and Taylor, 1916-1923

The hydrodynamics literature concerning the flow between concentric cylinders is rather

sparse during the three decades following the experiments of Couette and Mallock [58].4 One

important exception is Lord Rayleigh’s 1917 paper “On the Dynamics of Revolving Fluids”

[61]. Motivated by meteorological considerations, Rayleigh derived a general criterion for

the stability of rotating, inviscid flows. Rayleigh’s argument proceed as follows:5 A rotating

fluid in equilibrium will flow in such a way that the centrifugal force is balanced by the radial

pressure gradient, i.e. ∂p/∂r = ρv(r)2/r. Suppose that a fluid element originally at r = r1

is moved outward to a new radial position r2. The flow will be stable if the fluid element

experiences a restoring force that tends to move it back toward its original position. For an

incompressible fluid this requires that v(r2)2/r2 > v(r1)2/r1 for all r2 > r1. Mathematically,

this can be expressed in terms of the angular velocities (ω = v/r) as:

4Some references exist in the rheology literature during this period. For some representative examples,
see the papers by Drew [59] and Gurney [60].

5A formal proof is given by Chandrasekhar in Ref. [3].
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d (rv)2

dr
=

d

dr

(
r2ω
)2

> 0. (4)

Rayleigh applied this criterion to the inviscid flow between concentric cylinders and

arrived at the conclusion that such flows are always unstable when the inner cylinder rotates

and the outer cylinder is stationary and always stable when the outer cylinder rotates and

the inner cylinder is stationary. The more general case can be evaluated by inserting the

velocity profile derived by Stokes (Eq. 2) into Eq. 4, resulting in the constraint that when

ωo
ωi

>

(
ri
ro

)2

(5)

the flow is stable, as summarized in Figure 2.3. Here it can be seen that the Taylor-Couette

flow of an inviscid fluid will be unstable for all counter-rotating flows or whenever the ratio

of the angular velocity of the outer cylinder to that of the inner cylinder is less than the

square of the radius ratio. It is important to note that by construction Rayleigh’s criterion

only predicts the stability of rotating inviscid flows to axisymmetric perturbations, meaning

that other instability mechanisms are possible.

Figure 2.3: Rayleigh’s stability criterion for inviscid Taylor-Couette flow. Adapted from
Bénard Cells and Taylor Vortices by E.L. Koschmieder, 1993, Cambridge, UK: Cambridge
University Press. Copyright 1993 by Cambridge University Press.

In 1921 G.I. Taylor, inspired by the theoretical work of Lord Rayleigh and others, began

work on a concentric cylinder apparatus [62]. Noting that Couette and Mallock’s data

dealt almost exclusively with flow configurations were the inner cylinder was held fixed
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and were, therefore, not adequate to fully examine the validity of Rayleigh’s result, Taylor

constructed an apparatus where both cylinders could be rotated independently. The results

of Taylor’s experiments were reported in his seminal 1923 paper “Stability of a Viscous

Liquid Contained Between Two Rotating Cylinders” [2]. In this paper, Taylor successfully

applied linear stability theory to the viscous flow between concentric cylinders and was

able to calculate the critical condition for instability in terms of the rotation rates of the

cylinders, their radii, and the fluid viscosity in the narrow gap approximation, i.e. as the

radius ratio η → 1.6 Taylor concluded that viscosity played a stabilizing role in some flows

that would otherwise be unstable according to Rayleigh’s criterion (Eq. 5). Taylor predicted

that flows where the outer cylinder rotation dominates (i.e., when the cylinders co-rotate

and the angular velocity of the outer cylinder is greater than that of the inner cylinder, so

that µ > +1, or when the inner cylinder is held fixed, so that µ = ±∞) should be linearly

stable at all rotation rates and derived more detailed stability criteria for general co- and

counter-rotating flows. Taylor’s results are summarized in Figure 2.4.

Figure 2.4: Stability diagram for Taylor-Couette flow from Taylor’s 1923 paper. Open cir-
cles correspond to the theoretically predicted stability boundary. Closed circles correspond
to the experimentally observed stability boundary. Adapted from G.I Taylor, “Stability of
a Viscous Liquid Contained between Two Rotating Cylinders”, Phil. Trans. R. Soc. Lond.
A 223, p. 339, 1923. Copyright 1923 by Royal Society Publishing.

6A more general, modern treatment of this analysis can be found in Chadrasekhar’s 1961 book Hydrody-
namic and Hydromagnetic Stability [3].
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Taylor verified his theoretical predictions for stability and for the structure of the super-

critical flow fields in a series of flow visualization experiments using dye injections. Before

discussing his experimental results, Taylor critiques Mallock’s observations on the stabil-

ity of Taylor-Couette flows and attributes them to deficiencies in Mallock’s apparatus. In

particular, he criticizes the small aspect ratio of Mallock’s apparatus. The aspect ratio Γ

of a Taylor-Couette apparatus is defined as the ratio of the height of the cylinders H to

the width of the gap d = ro − ri. Mallock’s experiments were conducted at Γ between ∼

8 and 20. Taylor also pointed out that in Mallock’s experiments the inner cylinder hung

from a torsion wire, which allowed for it to move off-axis. Taylor addressed these issues by

mounting both cylinders rigidly on bearings and using a tall test section with Γ ∼ 90. Tay-

lor’s experimental results showed an excellent agreement with his theoretical predictions.

For flows where µ > +1,7 where outer cylinder rotation dominates, Taylor wrote that “the

motion was completely stable even at the maximum speed of which the apparatus was ca-

pable” in contradiction to Mallock’s result [2]. Taylor’s experiments were confirmed in a

1928 paper by J.W. Lewis, who used aluminum powder suspended in the fluid to visualize

the flow [63]. A refinement of this technique by Schultz-Grunow and Heim in the 1950s

would prove to be instrumental in the study of Taylor-Couette flows (see Section 2.6).

2.4 The Beginnings of Velocimetry: Taylor and Wendt 1933-1936

For the remainder of the 1920s and into the early 1930s, Taylor turned his attention to

a variety of other problems in mechanics. In the mid-1930s he returned to the problem

of concentric cylinders. In a 1935 paper, Taylor reported Pitot tube measurements of the

velocity profile in the gap between a fixed outer cylinder and a rotating inner cylinder [64]

at large Reynolds numbers. This was followed the next year by a two-part paper titled

“Fluid Friction Between Rotating Cylinders”.

In the first part, Taylor reported a series of measurements of the torque on one cylinder

due to the rotation of the other for a variety of radius ratios and Reynolds numbers [65]. For

the case where the outer cylinder rotated and the inner cylinder was fixed, Taylor observed

7Taylor’s results regarding flows where inner cylinder rotation dominates are reviewed in chapter 11 of
the Koschmieder’s book [5].
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Figure 2.5: Stability boundary for flows driven by the rotation of only one cylinder as a
function of normalized gap d/ro = 1−η. Taylor’s experiments showed that as the radius ratio
is decreased below η ∼ 0.95, the Reynolds number where transition occurs spontaneously
grows very quickly for flows driven by the outer cylinder. For smaller gaps, the dependence
on gap width is much weaker. At the same time, the critical Reynolds number for linear
instability increases as the gap becomes smaller. If both curves are extrapolated to η → 1,
a crossover is observed between η = 0.999 and η = 0.99955. Taylor predicted that beyond
this point nonlinear instability mechanisms would dominate and direct transition should be
observed. Adapted from G.I Taylor, “Fluid Friction Between Rotating Cylinders I – Torque
Measurements”, Proc. R. Soc. A 157, p. 546-564, 1936. Copyright 1936 by Royal Society
Publishing.

(as did Couette and Mallock before him) that as the rotation rate of the outer cylinder

was increased the torque scaled as predicted for circular Couette flow (Eq. 2) up to some

critical Reynolds number Rec above which the flow became turbulent and the scaling broke

down.8 He also noted that in between the laminar and turbulent regimes there existed

a range of Reynolds numbers for which steady flow could be achieved if the system was

prepared with sufficient care, but where “a slight disturbance, such as that produced by a

slight rotation of the inner cylinder in the opposite direction of that of the outer one” would

8It is interesting to note that in his 1923 paper Taylor dismisses Mallock’s results even though Taylor’s
apparatus at the time was not able to reach the Reynolds numbers where Mallock reported observing a
transition to turbulence.
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“make the flow permanently turbulent”. Taylor noticed that if he extrapolated his data on

the dependence of Rec on radius ratio to the limit of η → 1 there would come a point when

the critical Reynolds number for flows with only the outer cylinder rotating would be lower

than the critical Reynolds number for linear instability for flows with only the inner cylinder

rotating (see Figure 2.5). He conjectured that at this radius ratio (somewhere between

0.999 and 0.99955) the nonlinear mechanisms that drive the transition to turbulence in

flows dominated by outer cylinder rotation would take over and direct transition would be

the norm. Following this reasoning, he estimated that the critical Reynolds number for

spontaneous transition in plane Couette flow would fall between 315 and 500,9 which is in

good agreement with modern experiments [67].

The second part of Taylor’s 1936 paper describes Pitot tube measurements of the velocity

profile of a Taylor-Couette flow where the outer cylinder rotates and the inner cylinder is

fixed [68]. Taylor reports that even at high Reynolds numbers these flows can sustain

significant velocity gradients across the gap, unlike flows where the inner cylinder rotates

and the outer is fixed. He also reports that the velocity profile is similar to that predicted by

Eq. 2, but that the velocity near the inner cylinder is greater than predicted. He attributes

this to the end effects, which tend to push fast moving fluid inwards at the midplane when

the end caps are attached to the outer cylinder. Toward the end of this paper, Taylor

mentions an earlier paper by Wendt that describes similar measurements, but concludes

that quantitative comparison between the experiments is not possible due to the small

aspect ratio of Wendt’s apparatus.

Fritz Wendt was a doctoral student of Prandtl at Georg-August-Universität Göttingen

[69]. In 1933, he published a paper in the German journal Ingenieur-Archiv titled “Tur-

bulent Flows Between Two Rotating Coaxial Cylinders” in which he described the main

results of his doctoral dissertation [70]. Wendt’s paper was the first to study flows far from

the regime discussed by Taylor in 1923 [5]. In it, he reported the first measurements of the

9The Reynolds number for plane Couette flow is conventionally defined in terms of half the gap between
planes and half the velocity of one plane relative to the other. Reynolds numbers for Taylor-Couette flow
are traditionally defined in terms of the full gap and the speed of the wall. Therefore, the Reynolds numbers
for plane Couette flow are a factor of four smaller than those for Taylor-Couette flow with only one cylinder
rotating. Additional corrections for curvature are given by Prigent et al. in Ref. [66].

23



velocity and pressure distributions inside the gap, as well as measurements of the torque

transferred between the cylinders for a range of aspect and radius ratios. Unlike previous

researchers, who concentrated on configurations where only one cylinder rotated, Wendt

acquired data for a variety of co- and counter-rotating flows.

Wendt’s data showed that even in cases where Taylor’s 1923 theory predicted the Couette

profile to be stable, a sudden increase in the measured torques occurred at sufficiently large

Reynolds numbers and that this transition was hysteretic. Wendt’s also studied the effect

of varying end conditions on the torque measurements, attaching the bottom end cap of his

apparatus to either the inner cylinder or the outer cylinder, or a “split-ring” configuration,

where the inner half of the bottom end cap rotated with the inner cylinder and the outer

half rotated with the outer cylinder (his experiment had a free surface at the top of the

gap). He found that the different end conditions changed the critical rotation rate by about

10%. Wendt’s measurements would remain the sole source of experimental velocimetry

in counter/co-rotating Taylor-Couette flow at high Re ∼ O
(
105
)

until the advent of laser

Doppler velocimetry (LDV) in the late 1970s.10 Wendt also noted that the measured torques

depended strongly on the end conditions when the aspect ratio was small.

2.5 Experiments in Liquid Helium II: Hollis-Hallett and Heikkila,
1953-1958

The theory of linear stability successfully employed by Taylor in 1923 continued to advance

throughout the 1930s and 1940s, but, as Coles described it in 1965, “experimental work on

transition in Couette flow... moved at a somewhat slower pace” with most experiments cov-

ering “the same limited ground explored in the earliest work” [14]. The early 1950s brought

a series of new experiments on the flow of liquid helium II in Taylor-Couette geometries.

While the focus of this dissertation is on the subcritical transition to turbulence in Taylor-

Couette flows of viscous fluids, the substantially different phenomenology of Taylor-Couette

10While Wendt’s 1933 paper is widely cited, it is not clear what happened to Wendt himself after he left
Prandtl’s group. A search of English and German language academic databases found no further publications
in his name. The only other mention of Wendt in the literature is in an appendix of a biography of Johann
Nikuradse by Hager and Liiv, which contains documents regarding Nikuradse’s dismissal from Göttingen
in 1934 [71]. These mention that Wendt became an Assistant Professor at the Clausthal University of
Technology and was accused by Nikuradse of stealing some of Nikuradse’s research papers, but later absolved.
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flows of liquid helium, which has a normal viscous component and a superfluid component

at temperatures below 2.1768 K, is quite interesting so it is briefly reviewed here.

In 1953, A.C. Hollis-Hallett realized that a Couette viscometer provided a way to mea-

sure the absolute viscosity of the normal component of liquid helium II [72]. Taking into

account that Rayleigh’s criterion dictates that inner cylinder rotation would destabilize the

superfluid component, he designed the viscometer so that the outer cylinder rotated and

the torque (due to the normal component) would be measured on the inner cylinder. To his

surprise, Hollis-Hallett discovered that the measured torques were larger than expected and

did not scale linearly with increased outer cylinder rotation rate. He was unable to explain

these results but discounted the possibility of flow instability given that the Reynolds num-

bers for his experiments (Reo ∼ O(75)) were significantly lower than the critical Reynolds

numbers reported by Wendt and Taylor (Rec ∼ O(104)) [65,70]. Instead, he speculated the

possibility that an “interaction between the superfluid component and the boundary walls”

might lead to a “new type of frictional force” that would lead to an increased torque.

Hollis-Hallett and W.J. Heikkila revisited the Taylor-Couette problem in a 1955, adapt-

ing Hollis-Hallet’s viscometer to operate at very low rotation speeds [73], which allowed

them to study flows with Reynolds numbers of O (1). Heikkila and Hollis-Hallett were

able to observe a regime where the measured torques behaved as predicted for Couette

flow. This suggested a transition in the flow structure for which they measured a critical

Reynolds number of ∼ 51 at 2 K. The relevant instability mechanism would not be fully

explained until 1988 by C.F. Barenghi and C.A. Jones [74]. Barenghi and Jones studied the

stability of liquid helium II in the Taylor-Couette geometry using the two-fluid Hall-Vinen-

Bekharevich-Khalatnikov (HVBK) model [75–77]. They found that even in Rayleigh-stable

flows, the interplay between the rotation of the outer cylinder and the elasticity of the

superfluid vortex lines makes the superfluid component unstable to non-axisymmetric per-

turbations. So-called “mutual friction” then couples the unstable superfluid component to

the stable normal component destabilizing it and leading to an increase in the measured

torques. Barengui and Jones’ theory also successfully explained the pioneering 1959 ob-

servations of Donnelly [78] that the linear instability of both the superfluid and viscous
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components was delayed by mutual friction in experiments where only the inner cylinder

rotated, i.e., the critical Reynolds number increased from 128 (as predicted for viscous flu-

ids) to 202 in helium II.11 Taken together, the experiments of Hollis-Hallett and Heikkila

and Donnelly lead to the surprising conclusion that Taylor-Couette flow of helium II is more

unstable when only the outer cylinder is rotating than when only the inner cylinder rotat-

ing [79]! It should also be noted that Hollis-Hallett and Heikkila’s experiments studying

the stability of Taylor-Couette flows of helium II with only the outer cylinder rotating have

never been repeated [79].

2.6 Two Extremes: Bagnold and Schulz-Grunow, 1954-1959

In 1954 R.A. Bagnold published what would become one of the founding papers of the field

of particle-laden flows [80]. In it, he derived a theory describing the relationship between

the shear and normal stresses exerted on a wall by a liquid laden with large (as opposed

to molecular) particles. He tested his theory in a series of experiments in which he used a

specially designed Couette rheometer to measure the shear and normal forces on the inner

cylinder as he sheared a suspension of neutrally buoyant particles by rotating the outer

cylinder. As opposed to earlier experiments, which used torsion fibers, Bagnold’s apparatus

used a calibrated spring to measure the torque on the inner cylinder. The surface of the

inner cylinder was made of flexible rubber sheet and its interior was sealed off from the

surrounding air. Air was only allowed to escape via a small tube connected to a manometer.

By monitoring the changes in pressure inside of the cylinder, Bagnold was able to extract

the normal forces exerted by the particle suspension on the inner cylinder.

As a limiting case, Bagnold performed experiments using pure water at Reynolds num-

bers between 8000 and 33000. He measured a quadratic dependence of the shear stresses on

shear rate for all the Re that he studied, indicating that the flow was turbulent. Earlier ex-

periments by Taylor and Wendt using similar radius ratios had shown Taylor-Couette flow

to be stable up to Re up to ∼ 18000, which leads to the conclusion that Bagnold’s rubber

sheet design probably suffered from significant perturbations [52,81]. It is probably for this

11Donnelly’s result was predicted in a theoretical paper by Chandrasekhar and Donnelly in 1957, but their
theory did not make a prediction for flows with the outer cylinder rotating and the inner cylinder fixed.
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reason that Bagnold’s experiments are not typically discussed in the hydrodynamic stability

literature. However, they provide a reminder that the construction of the apparatus can

significantly affect the stability of the flow.

Five years later, in 1959, F. Schulz-Grunow of RWTH Aachen University would publish a

paper titled “On the Stability of Couette Flow”. In it, Schultz-Grunow used linear stability

analysis to study the stability of Taylor-Couette flow with the outer cylinder rotating and

the inner cylinder at rest. He predicted that such flows should be linearly stable at all Reo

for all gap sizes, extending Taylor’s result for narrow gaps from 1923. Schultz-Grunow tested

his theory in a series of carefully controlled flow visualization experiments. His apparatus

was constructed with stringent tolerances and he was able to establish stable axisymmetric

flows at Reynolds numbers an order of magnitude higher than earlier experiments. He also

went on to show that if he purposely misaligned his apparatus so that the cylinders were

not coaxial or if he used inner cylinders that were not perfectly round,12 his system would

undergo transition at Reynolds numbers similar to those observed by Couette, Mallock,

Taylor, and Wendt. Schultz-Grunow also reported that when the system became turbulent,

this usually started near the ends of the cylinders.

In order to visualize the flow, Schultz-Grunow employed a technique that he developed

in 1956 with H. Heim [82]. This technique consists of suspending aluminum flakes in the

fluid. Because of their shape the flakes align themselves preferentially in the flow, affecting

the optical properties of the fluid. Schultz-Grunow and Heim used this technique to capture

the first photographs states that later would become known as wavy Taylor vortices and

turbulent Taylor vortices. Interestingly, neither Schulz-Grunow nor Heim investigated these

flows further. Their technique, however, would become the flow visualization method of

choice for studying supercritical Taylor-Couette flows and be used in hundreds of papers

[5].13

12Schultz-Grunow used inner cylinders with elliptical (m=2), square (m=4), and hexagonal (m=6) cross-
sections.

13The aluminum powder technique was not invented by Schultz-Grunow and Heim and dates back at least
to Bénard, who used it in 1900 to visualize the boundaries of convection cells [83]. Aluminum powder was
also used to generate streaklines in studies of Taylor-Couette flow by Terada and Hattori in 1926 [84], Lewis
in 1928 [63], and Hagerty in 1947 [85]. However, Schultz-Grunow and Heim appear to be the first to have
used aluminum flakes in high concentration to visualize Taylor-Couette flow.
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2.7 The Catastrophic Transition and Spiral Turbulence: Coles and
Van Atta, 1955-1966

In 1955, while Schultz-Grunow and Heim were conducting their experiments at Aachen,

Donald Coles at Caltech was beginning what would become a monumental, decade-long

study of flow transitions in Taylor-Couette flows. The results of this study were reported

in his 1965 paper “Transition in circular Couette flow” [14]. Coles’s study was originally

inspired by the lack of experimental data on the transition to turbulence in the absence of the

Taylor instability. His initial experiments were carried out in a large apparatus and used air

as the working fluid. The apparatus was equipped with hot wire anemometers, which could

be translated across the gap and provided point measurements of the flow velocity. Coles

performed detailed hot wire measurements for cases where one cylinder rotated and the other

was at rest, as well as cases where both cylinders rotated. When inner cylinder rotation

dominated (i.e. above the linear stability boundary shown in Figure 2.4), Coles found that

turbulence was preceded by velocity signals with discrete frequency spectra. These spectra

grew more complex as the rotation rate was increased, with the discrete spectrum eventually

giving way to broadband noise.14 Subsequent flow visualization experiments in a smaller

apparatus, using a variation of the technique developed by Schultz-Grunow and Heim [82],

would shed a light on the source of these measurements. Coles reported that the transition

to turbulence dominated by centrifugal instability was governed by the emergence of a series

14While Coles never published his hot wire spectra, his qualitative description of their evolution for in-
creasing inner cylinder rotation rates suggest that he observed but did not recognize that he had evidence
rejecting Landau’s famous scenario for the transition to turbulence. In 1944 Landau proposed that turbu-
lence arises after a large number of successive bifurcations with each bifurcation introducing new temporal
frequencies into the flow until turbulence is reached [86]. Under this scenario, the measured spectra would
have progressively more and more peaks as the Reynolds number was increased. Coles reported that he
observed spectra that were at first discrete (with increases in Reynolds number adding only a few new
frequencies and their harmonics), but that after a few bifurcations the peaks began to broaden and lose in-
tensity until the spectrum was dominated by broadband noise. It turns out that this is exactly the behavior
that would be observed in a nonlinear system making the transition to chaos in the scenario proposed by
Ruelle and Takens in 1971 [87, 88]. Ruelle and Takens showed mathematically that if “a system undergoes
three Hopf bifurcations, starting from a stationary solution, as a parameter is varied, then it is likely that
the system possesses a strange attractor with sensitivity to initial conditions after the third bifurcation” [89].
Effectively, this means that spectra will show an increasing number of frequencies for the first three or four
bifurcations but after that the broadband spectrum of chaotic dynamics will dominate. Gollub and Swinney
showed the inadequacy of the Landau model and that turbulence exhibits the hallmarks of deterministic
chaos by careful quantitative analysis of the spectral features of laser Doppler velocimetry time-series of
Taylor-Couette flow which showed qualitatively similar features to the hot wire measurements described by
Coles [90].
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of progressively more complicated patterns, which were reflected by the hot wire spectra.

He called this route to turbulence “transition by spectral evolution”.

Although some of the patterns he reported were observed by earlier researchers [82],

Coles was the first to study supercritical Taylor-Couette flows in depth. Much to his sur-

prise, he discovered that the equilibrium state reached by any given experiment depended

very sensitively on experimental protocol. His extensive study showed that for a given

Rei above the linear stability boundary as many as 26 states with differing azimuthal and

axial wave numbers could be observed. These states are now collectively known as wavy

Taylor vortices and (along with other supercritical flow regimes of Taylor-Couette flow)

have been the subject of intense study in the decades since Coles’s pioneering work. For a

comprehensive review, the reader is referred to the book by Koschmieder [5].

For counter-rotating flow regimes dominated by outer cylinder rotation, Coles observed

drastically different behavior. His hot wire measurements showed “patterns of alternating

laminar and turbulent flow” [14]. In some regimes, these fluctuations were irregular but in

other regimes they seemed to alternate at roughly half the frequency of the outer cylinder.

The latter were the first observations of so-called spiral turbulence, which is discussed be-

low. The intermittent turbulent episodes “appeared with almost explosive suddenness” out

of purely laminar flow as the outer cylinder was slowly accelerated and showed consider-

able hysteresis. Coles called this transition “catastrophic”, noting that the resulting states

were characterized by spatiotemporal intermittency with coexisting laminar and turbulent

domains separated by well-defined interfaces.15

Coles determined that there were two qualitatively different regimes. The first occurred

when the inner cylinder was slowly accelerated for fixed Reo below ∼ 2700 but above ∼ 570.

In this case, the linear instability was observed to occur first in the form of laminar spirals.

As shown in Figure 2.6 the boundary for catastrophic transition in this regime is just above

the Taylor boundary. At slightly higher values of Rei, the spirals were observed to grow

15Some of Coles’s early work seems to have been done with a Masters student called Haruo Oguro who
graduated from Caltech in 1957. Oguro appears to have later obtained a doctoral degree and joined the
faculty at Tokai University in Japan. Attempts were made to obtain his thesis, which was titled “Catastrophic
transition and spiral turbulence in circular Couette flow”, but these attempts were unsuccessful.
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Figure 2.6: Coles’s phase diagram for catastrophic transition. (a) For −570 < Reo < 0,
the flow undergoes a transition to wavy Taylor vortices as Rei is increased beyond the
curve marked by �. For ∼ −2700 < Reo < −570, the catastrophic transition boundary
(N) lies above the Taylor boundary (�), so the transition is such that the linear instability
mechanism provides a perturbation in the form of laminar spirals, which trigger turbulence.
This eventually decays leaving behind laminar flow that is linearly unstable, leading to
the formation of new spirals and restarting the process. As Rei is increased further the
turbulent fraction γ increases until eventually the flow becomes fully turbulent (H) (b)
For Reo < −2700 the catastrophic transition boundary drops below the linear stability
boundary. This creates a region (bounded below by N and above by � and �) in which
Couette flow is stable if left to itself, but which becomes turbulent if subjected to sufficiently
large external perturbations. Once turbulent, the flow will remain so until the system is
brought back across the transition boundary (γ = 0). Above the line marked with �,
perturbations inherent to the apparatus are sufficient to trip the flow so turbulence is always
observed. However, like in the hysteretic region, the flow is characterized by coexisting
laminar and turbulent domains, sometimes in the form of spiral turbulence. Note: The
Reynolds numbers in Coles’s original figure are based on cylinder radii. Here the numbers
have been recalculated in terms of the gap width. Adapted from D. Coles, “Transition in
circular Couette flow”, J. Fluid Mech. 21, p. 390, 1965. Copyright 1965 by Cambridge
University Press.
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and then break down into small turbulent patches at random locations within the flow. The

patches persisted for a short time but then broke down, leaving behind laminar flow, which

in turn became unstable to the formation of spirals starting the whole process again. This

regime is now known as the intermittency regime (INT in the nomenclature of Andereck et

al. [13]). As Rei was increased further, the turbulent episodes became more frequent and

the turbulence fraction, (i.e., the fraction of the flow that was turbulent) increased until the

flow became fully turbulent.

For even larger Reo, Coles found a second regime where finite-amplitude perturbations

triggered the transition to turbulence, even in the absence of linear instability. Once tripped,

turbulence persisted indefinitely and only disappeared if the system was run well below the

transition boundary for some time. Coles did not report how long these states were observed

or how long the system had to run below the transition boundary before the flow relami-

narized. At sufficiently large values of Reo, the transition could be spontaneously triggered

by imperfections in the apparatus or end effects. In this regime the transitional flows were

characterized by well-defined turbulent and laminar domains. Although these could take

on a variety of configurations, one commonly observed pattern consisted of a single band of

turbulence that spiraled around the apparatus like the pattern on a barbershop pole. Coles

reported that the spiral pattern rotated at the mean angular velocity of the cylinders, so

that the fluid near the walls would have to alternate quite suddenly between laminar and

turbulent flow. This suggested the existence not only of a front where laminar flow became

turbulent, but a also sharp interface where the flow relaminarized. The nature of these

fronts is not well understood and has been the object recent study [91].

Coles’s 1965 paper would be followed the next year by two papers in the Journal of

Fluid Mechanics. The first paper was co-authored by Coles’s doctoral student Charles Van

Atta. In it they describe hot wire measurements of circular Couette flow with the inner

cylinder fixed and the outer cylinder and end walls rotating together at high Reynolds

number [46]. Their data showed that the secondary flow induced by the finite aspect ratio

of their apparatus, while small, could result in significant deviations from the ideal velocity

profile (Eq. 2), as shown in Figure 2.7. The second paper, authored by Van Atta [92],
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Figure 2.7: Coles and Van Atta’s hot wire measurements ( ) show that even though the
radial and axial velocity components in Couette flow are small at Reo = 6000, they lead
to significant deviations from the Couette profile (solid line). Their apparatus had a radius
ratio of η = 0.89 and an aspect ratio of Γ = 27.35, similar to the apparatus used in the
experiments described in Chapter 3. Adapted from D. Coles and C. Van Atta, “Measured
distortion of a laminar circular Couette flow by end effects”, J. Fluid Mech. 25, p. 513,
1966. Copyright 1966 by Cambridge University Press.

describes a series of exploratory measurements of spiral turbulence.

The boundary for catastrophic transition measured by Van Atta is qualitatively similar

to the one established by Coles using flow visualization, but was systematically shifted to

higher Reo. Van Atta attributed this to the fact that the smaller apparatus used a split-ring

configuration for the end caps, while the large apparatus used end caps that rotated with the

outer cylinder. Van Atta also noted that unlike in the supercritical case, where the final state

of fluid depends strongly on the protocol used to reach it, transitional states (characterized

by their turbulent fraction or by the velocity of the turbulent laminar interfaces) appeared

to be unique and independent of the protocol used to obtain them. He also noted that as

long as the flow was below the Taylor stability boundary, the turbulent patches appeared to

rotate at roughly the mean angular velocity of the two cylinders. By traversing his hot wire

probes through the flow, Van Atta was also able to measure the structure of the turbulent

domain (see Figure 2.8), noting that for flows dominated by outer cylinder rotation, the

leading edge of the turbulent patches was near the outer cylinder and the trailing edge was
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near the inner one. Van Atta also noted that spiral turbulence was more frequent at larger

aspect ratios and that spirals of either handedness were equally likely.16

Figure 2.8: Van Atta measured the shape of the laminar/turbulent interfaces in spiral
turbulence by traversing hot wire anemometers through the flow. He found that the leading
edge of the turbulent band traveled close to the outer cylinder and the trailing edge traveled
close to the inner cylinder. Overall the turbulent patch traveled at approximately the
mean angular velocity of the two cylinders. Adapted from C. Van Atta, “Exploratory
measurements in spiral turbulence”, J. Fluid Mech. 25, p. 495-512, 1966. Copyright 1966
by Cambridge University Press.

2.8 Modern Investigations of Subcritical Taylor-Couette flow

2.8.1 Nonlinear Stability Analysis

The rich phenomenology of Taylor-Couette flows discovered by Coles and Van Atta would

spur a whirlwind of activity in the 1970s. The majority of this work concentrated on exper-

imental, theoretical, and eventually numerical investigations of supercritical bifurcations in

16Additional details about the turbulent domains and their interfaces with the laminar flow were reported
in follow-up papers by Coles in 1966 [93] and 1967 [94].
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flows dominated by centrifugal effects. The subcritical regime, however, received fairly lim-

ited attention. One important exception is the work of D.D. Joseph and his collaborators

between 1970 and 1971. Building on the earlier work of Serrin [95], Joseph and Munson

used the Reynolds-Orr energy method to study the stability of Couette flow to arbitrary

finite-amplitude perturbations [96]. This approach allowed them to predict the existence of

a window of absolute stability, shown in Figure 2.9, where finite-amplitude perturbations

could not grow. Joseph and Hung considered the special case of axisymmetric perturba-

tions [97], which allowed them to increase the size of the stability window to finite-amplitude

perturbations up to a specific size. The approach taken by Joseph and his collaborators

cannot predict stability boundaries in the way that linear stability does, since it considers

all possible arbitrary perturbations including ones that are not hydrodynamically allowed.

However, flow regimes that are predicted to be stable for all perturbations are naturally

also stable to all hydrodynamically realizable ones. This means means that the energy

method provides a lower bound for stability instead of a criterion for instability. A detailed

discussion of energy stability criteria for Taylor-Couette flow can be found in Ref. [16].

Figure 2.9: The nonlinear stability analysis of Joseph and Hung predicts a window of sta-
bility to arbitrary perturbations. Adapted from D.D. Joseph and W. Hung, “Contributions
to the Nonlinear Theory of Stability of Viscous Flow in Pipes and Between Rotating Cylin-
ders”, Arch. Rat. Mech. Anal. 4, p. 1-22, 1971. Copyright 1971 by Springer.
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Since the pioneering work of Joseph and his collaborators in the 1970s, several attempts

have been made at finding criteria for nonlinear stability for Taylor-Couette flow. In 1995,

Levinski and Cohen made a theoretical prediction that there should be flow regimes where

the fluid impulse of finite size vortical disturbances would grow in external shear flows [98].

In 1999, Malkiel, Levinski, and Cohen extended this theory to Taylor-Couette flow and

tested it in a series of experiments where they perturbed the flow using concurrent injection

and suction of fluid from ports on the inner cylinder wall [99]. They observed that large

enough perturbations led to the periodic shedding of hairpin vortices from the inner cylinder

wall, in agreement with their theoretical predictions.

In 2005 Garaud and Ogilvie proposed a physically motivated closure for the Reynolds

averaged Navier-Stokes equations [100]. Applying this model to Taylor-Couette flow allowed

them to predict regimes of linear stability, as well as regimes where finite-amplitude pertur-

bations might grow. As shown in Figure 2.10, their model predicts subcritical instability

in co-rotating as well as counter-rotating flows in regimes that are qualitatively similar to

those where Richard observed turbulence in experiments [101].

2.8.2 Predictions of Nonlinear Stability Thresholds from Historical Data

One approach that has proven popular with the astrophysics community has been to use

the experimental data of Couette, Taylor, and Wendt on the subcritical transition to derive

phenomenological models of the transition. This approach was introduced by Zeldovich [102]

in 1981, who determined that, in the narrow gap limit, the critical Reynolds number for

transition scales with the square of d/r̄, where r̄ is average radius of the two cylinders. An

explanation for this scaling was proposed by Dubrulle in 1993 [103]. Richard and Zahn [104]

took a similar approach to Zeldovich and found that the stability boundary for the historical

data of Taylor [65] and Wendt [70] for large gap flows (η > 0.95) was well captured by a

critical Reynolds number based on the gradient of angular velocity Re∗ = (r̄3/ν)(|ωo−ωi|/d)

of 6× 105.

Dubrulle et al. [12] generalized Zeldovich’s approach and performed a meta-analysis of

the historical data, along with new data from the thesis of D. Richard [101] and Tillmark
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Figure 2.10: Garaud and Ogilvie’s model predicts that there are regimes of Taylor-Couette
flow where finite-amplitude perturbations can grow. (a) For co-rotating flows, their model
(closed symbols) is in qualitative agreement with the experimental observations of Richard
[101] (open symbols). (b) For counter-rotating flows, their model predicts that nonlinear
instability (open symbols) is possible below the linear stability boundary (closed symbols).
Adapted from P. Garaud and G.I. Ogilvie, “A model for the nonlinear dynamics of turbulent
shear flows,” J. Fluid Mech. 530, pp. 145-176, 2005. Copyright 2005 by Cambridge
University Press.

and Alfredsson’s data for rotating plane Couette flow [105]. They arrived at an empirical

expression for the subcritical stability boundary for Taylor-Couette flow for both co-rotating

and counter-rotating flow, capturing its dependence on both Reynolds number and radius

ratio. They also concluded that using different boundary conditions (end caps rotating with

the inner/outer cylinder or split end rings) only changed the critical Reynolds number for

subcritical instability by about 10%. They also discussed the effects of additional forces

on the flow, concluding that both magnetic forces and vertical stratification can destabilize

subcritical flows by exciting linear instability mechanisms. Using the historical torque

data, Dubrulle et al. derived a turbulent viscosity model that, when used in models of

astrophysical disks, predicted angular momentum transfer rates in good agreement with

astronomical observations.
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2.8.3 Spiral Turbulence

After the pioneering work of Coles and Van Atta, the subcritical regime was first revisited

by Andereck, Liu, and Swinney in 1986 [13]. In this expansive study, Andereck et al. studied

the boundaries separating both supercritical and subcritical flow regimes of Taylor-Couette

flows. They found that for Reo > −4500,17 the turbulent spirals appeared to rotate at

approximately the same rate as the outer cylinder, in contrast with Van Atta’s observations

at larger Reo, which showed the spirals rotating at the mean speed of the two cylinders.

Andereck et al. also discovered a stable state in which two spirals of opposite helicities

coexisted, with one in the upper half of the gap and the other in the bottom. The two

spirals joined at the midplane to form a V-shaped pattern. The same year, Yamada and

Imao published the results of experiments in the spiral turbulence regime, reporting the

existence of new spiral turbulence states with two spirals [106]. They also conducted hot

wire measurements of the flow in the gap, confirming earlier results by Van Atta [92]. Both

groups observed that spiral turbulence was hysteretic and that, once initiated, could be

sustained, even below the linear stability boundary.

Spiral turbulence has since been studied by several authors. Hegseth et al. studied the

axial variation in the pitch and the width of the turbulent spiral in a system with varying

aspect ratios and end conditions [107]. They were able to explain the variation they observed

within the framework of phase dynamics theory. The coexistence of turbulent and laminar

domains in spiral turbulence was explained by Hayot and Pomeau using a quintic Ginzburg-

Landau equation in 1994 [108]. The dynamics of spiral turbulence were next addressed in

experiments by Litschke and Roesner in 1998, who studied how varying end conditions affect

the formation of turbulent bands [109]. They noted that although experiments with the

end caps rotating with the outer cylinder tended to lead to turbulent spirals, experiments

with the end caps rotating with the inner one usually led to the V-shaped turbulent pattern

observed by Andereck et al. They also studied the effects of gap width and found that the

17The rotation direction of the inner cylinder is conventionally taken to be positive. Negative values of
Reo mean that the outer cylinder is rotating in the direction opposite to the rotation direction of the inner
cylinder.
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onset of turbulence was shifted to higher Re for larger gaps.

More recent studies have focused on the transitional intermittency regime (INT) between

the supercritical interpenetrating spiral regime (IPS) and spiral turbulence (SPT), which

is characterized by sporadic bursts of turbulence. Originally noted by Coles [14] and by

Andereck et al. [13] as a precursor to spiral turbulence, this regime was first studied in detail

in the Masters thesis of F. Hamill [110] in 1995 and by Colovas and Andereck [111] in 1997.

Colovas and Andereck measured the size distribution of laminar domains as a function of

the inner cylinder rotation rate and found that the increase in turbulent fraction abruptly

slowed at the onset of spiral turbulence. The mechanism behind cyclic turbulent bursting

was elucidated in numerical simulations by Coughlin and Marcus, who discovered that the

linearly unstable inner layer was itself unstable to a secondary instability [112]. As this

mode grew, it acted as a finite-amplitude perturbation to the outer layer. Goharzadeh and

Mutabazi [113] performed additional experimental characterization of the intermittency

regime in 2001 and studied its role as a precursor to spiral turbulence.

In 2002, Prigent and Dauchot discovered that the turbulent spots observed in small

aspect ratio plane Couette experiments [67, 114, 115] organized into alternating stripes of

laminar and turbulent flow in a large aspect ratio plane Couette flow experiment [116].

These oblique bands were found to be analogous to spiral turbulence in a very large aspect

ratio apparatus (Γ = 442) with a small gap (η = 0.983) [117]. The analogy between

plane Couette flow and Taylor-Couette flow in the limit of large Γ and η had earlier been

discussed by Faisst and Eckhardt [118], who found that in this limit the linear instability

of circular Couette flow moves to Re larger than those observed for subcritical instability.

Prigent and Dauchot found that for large aspect ratios, spiral turbulence takes the form of

a periodic pattern of helical laminar and turbulent bands. Prigent and Dauchot explained

their observations of the onset of spiral turbulence in terms of coupled amplitude equations

with additive noise. This work was expanded in a 2003 paper by Prigent et al. [66], who

concluded that the observed patterns were the result of a supercritical long-wavelength

instability of fully turbulent shear flow. Additional evidence for this scenario was presented

by Prigent and Dauchot in 2005 [119]. Direct numerical simulations of turbulent stripes
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in plane Couette flow have been conducted by Barkley and Tuckerman [120], who used

the insight gained from them to develop a low order model to explain the wavelengths

and tilt angles observed in experiments [121]. More recently, the dynamics of turbulent

stripes have been studied numerically by Tuckerman and Barkley [91], who found that the

turbulent stripe regime can be subdivided into four different subregimes with distinctive

characteristics.

The first fully-resolved direct numerical simulations (DNS) of spiral turbulence were

performed by Alvaro Meseguer’s group at the Universitat Politècnica de Catalunya in

2009 [122]. They found that spiral turbulence originates from the detachment of vortex

filaments from the inner cylinder wall. These are advected by the rotation of the inner

cylinder and eventually break down leading to turbulence. For low outer cylinder rotation

rates (Reo= -1200), they found that the transition from spiral turbulence could not be

sustained as the inner cylinder is slowed down, yielding to interpenetrating spirals before

full relaminarization occurred. For higher outer cylinder rotation rates (Reo= -3000), spiral

turbulence could be sustained well into the linearly stable regime and relaminarization was

directly back to circular Couette flow.

Additional simulations of spiral turbulence have been carried out by S. Dong and his

collaborators at Purdue University [123,124]. They confirmed the experimental observations

of Coles and Van Atta [92–94] that in spiral turbulence, the turbulent intensity is greater

in the middle of the gap. They also confirmed that the leading edge of the turbulent spiral

is located near the outer cylinder, while the trailing edge is near the inner one. A similar

asymmetry was found in the axial components of velocity, where the mean flow in the

turbulent region was observed to go toward one end near the outer cylinder and toward the

other near the inner one [123]. They also noted that the turbulence in the turbulent bands

of spiral turbulence is composed of “small-scale azimuthally elongated vortices” [124] and

that the laminar domains are not completely “void of vortices.”
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Figure 2.11: Flow regimes for co-rotating Taylor-Couette flow

2.8.4 Stability of quasi-Keplerian flows

One linearly stable flow regime that has received much attention in the recent literature

is the so-called quasi-Keplerian regime (see Figure 2.11). In this co-rotating regime, the

angular speed |ω| decreases radially outward (∂|ω|/∂r < 0), while the magnitude of the

specific angular momentum |r2ω| increases radially inward (∂|r2ω|/∂r > 0). These co-

rotating flows lie between the Rayleigh stability line (Eq. 5) and the solid body rotation line

(ωi= ωo) and are widely used to model astrophysical objects like accretion disks. Classical

stability theory predicts that such flows should be stable. However, the observed accretion

rates of astrophysical disks cannot be accounted for by the transport of angular momentum

resulting from molecular viscosity alone. This suggests that these flows are in fact turbulent.

Several groups have recently made experimental attempts at establishing whether quasi-

Keplerian Taylor-Couette flows are absolutely stable.

In 2006 Hantao Ji and his collaborators at the Princeton Plasma Physics Laboratory

tested the stability of quasi-Keplerian flows in a series of experiments using a Taylor-Couette

apparatus designed to minimize end effects. The end caps in the apparatus were split into
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two rings that could be rotated independently of the cylinders themselves. By adjusting

the rotation rates of these rings they were able to reduce the influence of end effects and

achieve flows in the gap that more closely approximated the ideal Couette profile [48].

LDV measurements of the flow in the gap showed very low levels of velocity fluctuations

throughout the quasi-Keplerian regime, suggesting that the flow remained laminar up to

Reynolds numbers as high as 106 [49]. Ji et al. also noted that fluctuation levels increased

significantly when the rotation rates of the end rings where not properly adjusted.

The results of Ji et al. were challenged in a 2011 paper by Paoletti and Lathrop of the

University of Maryland. Paoletti and Lathrop measured the flux of angular momentum

by measuring the torque on the inner cylinder for both co- and counter-rotating flows at

Reynolds numbers ofO
(
106
)

[50]. In order to minimize the influence of end effects they used

a long test section and only measured the torque on the central region of the inner cylinder.

They found that angular momentum transport was significantly enhanced at sufficiently

high Re, even in the linearly stable regions of the (Rei, Reo) parameter space, including the

quasi-Keplerian regime. Paoletti and Lathrop also established the existence of four different

dynamical regimes that showed distinct torque scalings characterized by the Rossby number

Ro = (ωi − ωo)/ωo. The Rossby number characterizes the relative importance of Coriolis

forces and inertial forces in rotating flows.

Even though both groups attempted to avoid the influence of end effects, numerical

simulations by Marc Avila have since suggested that these effects might nonetheless be im-

portant in both experiments and that they could lead to instability [53]. Avila’s simulations

showed that both experimental end wall configurations affect the flow globally. They also

showed that the finite size of the Princeton and Maryland systems makes them unstable to

traveling waves at Reynolds numbers as low as a few hundred for the Maryland experiment

and ∼ 1500 for the Princeton experiment. These instabilities can lead to a transition to

turbulence at Reynolds numbers of a few thousand.

The stability of quasi-Keplerian flows is still the matter of much debate. In 2012 the

Princeton group published the results of more detailed experiments that corroborated their

2006 results [51]. They concluded that the secondary flows induced by the end walls can be
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centrifugally unstable and lead to instability in experiments where they are not carefully

controlled. This was followed soon thereafter by a paper by the Maryland group, who,

in collaboration with Detlef Lohse’s group at the University of Twente, synthesized data

from two different experimental facilities [125]. Once again, they concluded that quasi-

Keplerian flows become turbulent at finite Re. They also argued that end effects could not

account for the enhanced transport that they measured. More recently, Eric Edlund and

Ji reported experiments where they purposely perturbed quasi-Keplerian flows with large

finite-amplitude perturbations in the form of radial jets [55]. They found that the flow

quickly laminarized, even for very large perturbations [55].

2.8.5 Exact Coherent Structures in Taylor-Couette flow

As discussed in Chapter 1, recent theoretical developments suggest that the dynamics of tur-

bulence in shear flows are guided by unstable, finite-amplitude solutions to the Navier-Stokes

equations called exact coherent structures (ECS) or invariant solutions [24, 25]. Such solu-

tions have been identified in a variety of flows, including pipe flow [30], plane Couette flow

and plane Poiseuille flow [126]. While the first exact coherent structures for Taylor-Couette

flow were not calculated till 2009 [127, 128], Taylor-Couette flow played an important role

in the discovery of the first invariant solutions by Nagata in 1990. Nagata started with a

numerical simulation of Taylor vortex flow and looked for solutions that bifurcated from

it as he performed a homotopy continuation to the plane Couette limit. In doing so, he

discovered a pair of equilibria, the so-called “lower-branch” and “upper-branch” solutions

for plane Couette flow [27].18

In 2009, Meseguer’s group at the Universitat Politècnica de Catalunya reported the

discovery of the first subcritical invariant solutions of Taylor-Couette flow [127,128]. These

solutions come in the form of two families of rotating spiral waves, a short wavelength one

that bifurcates from circular Couette flow (Eq. 2) and a long wavelength one that does

not. Even though they exist just below the linear stability boundary for counter-rotating

flows, it is not clear if these solutions play a role in the dynamics of subcritical turbulence.

18These same equilibria were independently discovered by other means by Waleffe [29] and by Clever and
Busse [28].
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More recently, Deguchi et al. have reported the existence of localized invariant solutions for

linearly stable counter-rotating flow that can be followed by numerical continuation into

the Rayleigh-stable co-rotating regime [129]. Because these solutions exist well into the

subcritical regime and consist of localized vortical structures, there is hope that they might

form part of the backbone for sustained turbulence in the subcritical regime.

2.8.6 Spontaneous Transition with Outer Cylinder Rotation Only

One of the more detailed modern experimental investigations of the subcritical transition

to turbulence in Taylor-Couette flows was performed by Burin and Czarnocki in 2012 [52].

They studied the transition to turbulence for flows where only the outer cylinder rotated

for a variety of radius ratios and end cap configurations using flow visualization and laser

Doppler velocimetry. For large radius ratios (η = 0.97), they observed that as Reo was in-

creased, turbulence spontaneously appeared at a roughly consistent critical Reynolds num-

ber Rec. Turbulence typically started at the end caps and formed patches inclined relative

to the azimuthal flow, which coalesced into spiral turbulence after about one minute (see

Figure 2.12). Burin and Czarnocki also measured the angular frequency and pitch angles of

the turbulent spirals as a function of Reo, finding that both increased slightly with increas-

ing Reo. As Reo was increased, the width of the turbulent band increased until eventually

the entire domain was filled with turbulence. Throughout the transition region LDV mea-

surements showed that the turbulence filled most of the gap radially and had turbulent

fluctuations of about 10% of the mean flow velocity. As observed earlier by Coles and Van

Atta [14, 92] and Andereck et al. [13], these states showed considerable hysteresis. When

Reo was reduced below Rec, the turbulent bands were observed to lose coherence and break

up into disconnected but long-lived patches.

For smaller radius ratios (η = 0.55 and 0.73), the transition sequence was markedly

different with turbulence usually starting in the midplane of the test section. The initial

turbulent patch was then observed to grow until it filled the entire annulus vertically. LDV

measurements showed that it did not fill the entire gap radially but rather that turbulence

was concentrated near the inner cylinder with mostly quiescent flow near the outer cylinder.
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Figure 2.12: Burin and Czarnocki studied the subcritical transition to turbulence for dif-
ferent radius ratios. (a) For small gaps (η = 0.97), the transition begins with the sudden
onset of spiral turbulence (Reo = 4500). (b) As Reo increases (Reo = 6500), the width of
the spiral grows until (c) it fills the entire domain (Reo = 7500). (d) This transition ex-
hibits hysteresis but the turbulent spirals are observed to break up into intermittent patches
below Rec(Reo = 2500). (e) For large gaps (η= 0.55), the transition typically starts near
the midplane and (f) quickly fills the entire gap (Reo = 100000). (g) As in the small gap
case, the transition shows hysteresis with turbulence breaking up into localized patches
(Reo = 50000).
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Further analysis showed that turbulence was mostly confined to regions of high shear, the

location of which could be strongly influenced by the end cap conditions. This caused the

transition for their large gap configurations, which have lower shear, to be shifted to much

larger Reynolds numbers (Rec ∼ 4500 for η = 0.97 vs. Rec ∼ 70000 for = 0.55). As in the

small gap case, significant hysteresis was observed as the Reynolds number was decreased

below Rec with the turbulence breaking up into large patches before relaminarization.
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CHAPTER III

TRANSIENT TURBULENCE IN TAYLOR-COUETTE FLOW

One of the outstanding problems in using dynamical systems theory to describe the sub-

critical transition to turbulence is determining the kinds of dynamical objects that govern

turbulent dynamics. One hypothesis that has been put forth is that turbulent dynamics are

governed by a chaotic attractor [87]. In this picture, the laminar state is the only attracting

state at low Reynolds numbers Re. As Re is increased a chaotic attractor appears. This

attractor is not connected to the laminar solution, which remains linearly stable. However,

finite-amplitude perturbations about the laminar state can put the system in the chaotic

attractor’s basin of attraction. Once on the attractor the flow’s dynamics become turbu-

lent. As Re increases the basin of attraction of the chaotic attractor grows, making it

easier for random ambient fluctuations to take the system into the chaotic regime. At some

critical Reynolds number Rec, the basin of attraction for turbulence comes to encompass

the entire state space and the dynamics become generically turbulent. Recent experiments

and numerical simulations have shown that, in the transitional regime, the picture is more

subtle and the dynamics appear to be governed by a chaotic saddle rather than a strange

attractor [10].

This chapter discusses a series of experiments that were carried out to test these ideas

in the context of linearly stable Taylor-Couette flows. Section 3.1 provides a review of the

phenomenology associated with the subcritical transition in linearly stable shear flows with

an emphasis on metastable turbulent transients. Section 3.2 gives a detailed description

of the Taylor-Couette apparatus used and provides an overview of the flow visualization

methods employed. The experimental procedure and data analysis methods are discussed

in Sections 3.3 and 3.4. Experimental results are reported in Section 3.5. The bulk of these

results were originally reported in D. Borrero-Echeverry, M.F. Schatz, and R. Tagg, “Tran-

sient turbulence in Taylor-Couette flow,” Physical Review E 81, 025301(R), 2010, which
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included the first systematic study of the decay of turbulent states in Taylor-Couette flow.

Additional unpublished results regarding the effects of system size, boundary conditions,

and inner cylinder rotation on transient lifetimes are also presented. Section 3.6 discusses

the experimental findings in the context of recent developments in the literature. Finally,

Section 3.7 suggests directions for future research.

3.1 Background

Experiments in shear flows have shown that at sufficiently high Reynolds number, per-

sistent states with complex spatiotemporal dynamics can be reached by finite-amplitude

perturbations to the laminar flow even in cases where this is predicted to be linearly stable.

These so-called subcritical transition scenarios appear to be quite generic and have been

observed in flows ranging from pipe flow [130,131] and plane Couette flow [67,132] to plane

Poiseuille flow [133–135] and boundary layer flow [136,137]. As noted in Chapter 2, several

researchers have reported subcritical transition scenarios in Taylor-Couette flows dominated

by outer cylinder rotation. However, this regime has not received nearly as much attention

as supercritical Taylor-Couette flows and has not been characterized as well as other shear

flows that undergo subcritical transitions to turbulence.

Subcritical shear flows share several common characteristics. In the transitional regime

shear flows are often characterized by the coexistence of well-defined turbulent and laminar

domains. These domains exhibit complex spatiotemporal dynamics and can be highly het-

erogeneous, which makes it hard to implement the statistical techniques traditionally used

in turbulence research. Recent successes in interpreting the phenomenology of subcritical

transitions in shear flows within the framework of dynamical systems theory are described

in the reviews by Eckhardt [9]1 and by Eckhardt et al. [10].

Another common feature of transitional shear flows is that at sufficiently low Re inter-

mittent states that appear to be asymptotically turbulent can relaminarize without prior

indication. This behavior was first observed in numerical simulations of pipe flow by Brosa,

who found that such turbulent episodes can be incredibly long-lived [138]. Furthermore, the

1Eckhardt’s review focuses on transitional pipe flow, but other linearly stable shear flows exhibit quali-
tatively similar phenomenology and pose similar research questions.
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Figure 3.1: (a) The time to relaminarization of finite-amplitude perturbations shows strong
dependence on the nature of the initial perturbation itself. The relaminarization times in
numerical simulations of a low-dimensional model of shear flow exhibit fractal structure as
the Reynolds number and the energy of the initial perturbation are varied. The maximum
integration time before relaminarization is indicated by color with long-lived events shown
in red and short-lived events shown in blue. (b)-(c) are progressive magnifications of (a)
and show the delicate structure of the stable manifold of the turbulent state. Adapted from
J. Moehlis, B. Eckhardt, and H. Faisst, “Fractal lifetimes in the transition to turbulence,”
Chaos 14, p. S11, 2004. Copyright 2004 by the American Institute of Physics.

lifetimes of individual events show strong dependence on the details of the initial perturba-

tion with qualitatively similar perturbations leading to wildly different lifetimes [139, 140].

As shown in Figure 3.1, the relationship between the details of a perturbation and the

lifetime of the turbulent event that it triggers is highly non-trivial.

This behavior makes it difficult to come to any conclusions about the transition to

turbulence from the results of individual experiments. However, insight can be gained by

analyzing ensembles of experiments using qualitatively similar perturbations. Experimental

and numerical studies in a variety of shear flows have shown that at fixed Re the lifetimes

of turbulent transients initiated by qualitatively similar perturbations are exponentially

distributed [115, 131, 139, 141–148].2 More precisely, the probability P that a flow will still

be turbulent after some time t is given by

P ∼ exp(−t/τ) (6)

2The lifetimes of turbulent episodes in superfluid 4He have also been shown to follow an exponential
distribution [149]. As discussed in Section 2.5, however, the behavior of superfluids and normal fluids can
be wildly different, so it unclear whether a connection exists between the experiments in superfluid 4He and
those in viscous fluids.
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Figure 3.2: Decay probabilities are exponentially distributed in a variety of shear flows. (a)
The characteristic lifetimes τ (given by the slope of P vs. t curves on a semi-log plot) in
pipe flow simulations by Willis and Kerswell increase as Re increases from 1580 to 1860.
(b) Qualitatively similar results were found experimentally in plane Couette flow by Bottin
and Chaté as Re was increased from 298 to 323. (a) was adapted from A.P. Willis and R.R.
Kerswell, “Critical Behavior in the Relaminarization of Localized Turbulence in Pipe Flow,”
Phys. Rev. Lett. 98, 014501, 2007. Copyright 2007 American Physical Society. (b) was
adapted from S. Bottin and H. Chaté, “Statistical analysis of the transition to turbulence
in plane Couette flow,” Eur. Phys. J. B 6, 143-155, 1998. Copyright 2008 Springer-Verlag.

for large t, where the characteristic lifetime τ is a function of Reynolds number (see Fig-

ure 3.2). This distribution suggests that (at least at moderate Re) the turbulent state can be

characterized by a chaotic repeller model [150–152]. Also known as chaotic saddles, chaotic

repellers are hyperbolic dynamical objects that repel trajectories along some directions, but

are attracting along others and exhibit chaotic dynamics within their stable manifolds. An

exponential distribution of lifetimes also implies that the decay of turbulent transients is

memoryless [153]. Formally, this means that the probability of decay during a certain time

interval only depends on the duration of the interval and is independent of how long the

turbulent episode has existed before the beginning of the interval.

The dependence of τ on Re has been the subject of much debate (see Figure 3.3 for an

example from pipe flow). Some numerical simulations and experiments have concluded that

at moderate Re the characteristic lifetimes of turbulent episodes increase with increasing Re

until at some critical Reynolds number Rec, they diverge and turbulence becomes sustained

[67, 115, 142, 144]. At this point the system is thought to undergo a boundary crisis [154]

after which the dynamics become associated with those of a chaotic attractor [9].
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Figure 3.3: Lifetimes of turbulent puffs in pipe flow. (a) The experiments of Peixinho and
Mullin suggested that there exists a critical Reynolds number above which the lifetimes of
turbulent puffs diverges and turbulence becomes sustained. (b)-(c) Experiments by Hof et
al. suggested that lifetimes increase super-exponentially but remain bounded for all Re. (a)
adapted from J. Peixinho and T. Mullin, “Decay of Turbulence in Pipe Flow”, Phys. Rev.
Lett. 96, 094501, 2006. (b) and (c) adapted from B. Hof et al., “Repeller or Attractor?
Selecting the Dynamical Model for the Onset of Turbulence in Pipe Flow”, Phys. Rev. Lett.
101, 214501, 2008. Copyright American Physical Society 2006 and 2008.

Other experiments and simulations suggest that characteristic lifetimes do not diverge,

so that even if they increase very rapidly with Re, they remain bounded for finite Re

[143, 145, 146, 148, 155]. Such a scenario implies that turbulence in these systems is not a

permanent state of the flow for any Re but is instead transient, if very long-lived. One inter-

esting consequence of these results is that the turbulent state and the laminar state remain

dynamically connected, which may allow for the possibility of controlling the transition

using only small, local perturbations to the flow [156].

One of the reasons that the existence of a critical Reynolds number in linearly stable

shear flows remains a subject of debate is that earlier studies have addressed the question

using open flows such as pipe flow and plane Couette flow. This limits the maximum time
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during which a turbulent episode may be observed and introduces complications associ-

ated with inlet conditions. Numerical exploration of this question has also proven to be

problematic since many highly resolved simulations over long times are required to obtain

significant statistics [147], straining today’s fastest supercomputers.

This chapter presents the first measurements of the lifetimes of transitional states in

Taylor-Couette flow. Several researchers have studied regimes of counter-rotating Taylor-

Couette flow that exhibit coexisting turbulent and laminar domains. As discussed in

Chapter 2, these have mostly been limited to studies of spiral turbulence and its dynam-

ics [13,14,66,92,107,116,122,124] and to bursting regimes where there is an interplay between

linear instability mechanisms and turbulent bursting phenomena [13,109–113]. Only a few

experiments have been carried out in configurations where only the outer cylinder rotates

and the inner cylinder is fixed. These include the classic experiments of Taylor [65, 68],

Wendt [70], Schult-Grunow [157], and Coles [14], and recent experiments by Alidai [158]

and by Burin and Czarnocki [52].

In the subcritical regime Taylor-Couette flow shares much of the phenomenology ob-

served in other shear flows. The transition to turbulence is abrupt and is characterized by

spatially and temporally intermittent “patches” of turbulence3 that coexist with a laminar

background (see Fig. 3.4). Transition occurs despite theoretical predictions that circular

Couette flow should to be linearly stable for all outer cylinder rotation rates as long as the

inner cylinder is stationary [159]. Due to its periodicity, Taylor-Couette flow allows for ar-

bitrarily long observation times and avoids the problems of contamination from inlets that

plague plane Couette and pipe experiments. Furthermore, because Taylor-Couette flow has

not previously been tested in this context, the experiments described here provide a test

for the generality of trends observed in other shear flows.

3While subcritical Taylor-Couette flow share many of the qualitative features of other transitional shear
flows, the term patches is used here so as to not make any unwarranted analogies with the much more
well-characterized turbulent puffs in pipe flow or turbulent spots in boundary layer flows.
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Figure 3.4: Photographs of turbulent patches in Taylor-Couette flow at Reo = 7500 with
only the outer cylinder rotating. In this regime, turbulent patches coexist with the laminar
flow and exhibit complex spatiotemporal dynamics. The flow is visualized using Kalliro-
scope.

3.2 Experimental Apparatus

The experimental apparatus used in these experiments is a vertical Taylor-Couette system

(shown in Figure 3.5) originally designed by Donald A. Hirst and constructed by the Machine

Shop in the Department of Physics at the University of Texas at Austin [160]. Hirst used it

to study how the dimension of the attractor in weakly chaotic Taylor-Couette flow depends

on system size. The system features the ability to independently rotate the inner and outer

cylinders and to adjust the height of the working volume, as well as a heat bath that enables

the temperature to be carefully controlled.

3.2.1 Taylor-Couette Apparatus

The apparatus consisted of two independently rotating cylinders. The outer cylinder was

made of a glass.4 Its inside diameter was measured at 8 locations around the circumference

at both ends and halfway along its length. The measurements were averaged resulting in a

mean outer cylinder of radius ro of 7.620 ± 0.008 cm. The inner cylinder was made of brass

4Hirst writes in his thesis that he used an outer cylinder made of Plexiglas. When it arrived at Georgia
Tech, the apparatus had a glass outer cylinder with slightly smaller dimensions than those reported by Hirst.
Attempts were made at establishing the origin of this cylinder, but were unsuccessful.
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and was powder coated flat black at Miller’s Powder Coating (Lilburn, Georgia). After

powder coating, the inner cylinder diameter was measured at 8 radial positions at each of 3

locations along its length, resulting in a mean inner radius ri of 6.638 ± 0.001 cm. Together

with the outer radius measurement this gave a gap d of 0.982 cm and a radius ratio η of

0.871.

The bottom end cap was made of Teflon and fit onto a stainless steel table, which also

made up the lower axle for the outer cylinder. The top end cap was also made of Teflon and

had three holes through which push rods were inserted. These were attached to a stainless

steel ring covered by a Teflon jacket that could be pushed along the length of the cylinder

and defined the top boundary of the test section. By adjusting the position of the ring,

the aspect ratio Γ of the system could be varied. The push rods were secured to a brass

assembly that held the top bearing for the inner cylinder so that both ends of the test

section rotated with the outer cylinder.5 The experiments reported here were conducted at

Γ = 33.6 unless otherwise noted.

Each cylinder was driven by a Compumotor M Drive M106-178 stepper motor with

25,000 steps per revolution and controlled using a Compumotor model 2100-1 indexer

(Parker Hannifin, Rohnert Park, California). The indexers were controlled from a PC using

Matlab’s Instrument Control Toolbox (MathWorks Incorporated, Natick, Massachusetts).

Sample code is provided in Section B.2.6 The motors were mounted directly on the alu-

minum frame that supports the apparatus. The outer cylinder was connected to its respec-

tive motor using a W.M. Berg No. RC25-50 Row-L-ER® steel link chain (W.M. Berg Inc.,

East Rockway, New York). This was chosen for its durability while driving the outer cylin-

der at a constant rate for extended periods of time. The inner cylinder was connected to

its motor using a W.M. Berg No. 3DCF-150-E Min-E-Pitch® dual ladder chain. This type

of chain was determined to be more durable under the quick, impulsive driving required for

the inner cylinder (see Section 3.3 for details). Mechanical drawings of the shaft adapters

5Hirst’s original design allows the aspect ratio of the system to be actively adjusted by a stepper motor
while the cylinders are rotating. This feature was not used here.

6While it is possible to control the indexers from the front panel, internal switches must be adjusted to
set the velocity and acceleration ranges for the front panel switches. By using computer control the entire
range of velocities and accelerations is available. The reader is referred to Ref. [161] for more details.
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Figure 3.5: Hirst system. The Taylor-Couette apparatus used in these experiments was
originally designed by D.A. Hirst at the University of Texas [160]. It features independently
rotating cylinders, continuously adjustable aspect ratio, and the possibility of carefully
regulating the operating temperature.
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used to attach the sprockets to the motors and to the apparatus are given in Appendix C.

The native resolution of the indexers was improved by stepping down the motors using a

3:1 gear ratio. The accuracy of the indexer settings was tested by measuring the rotation rate

of the cylinders using a Honeywell HMC1501 rotary displacement sensor (Honeywell Sensor

Products, Plymouth, Minnesota). The HMC1501 provides an output voltage proportional

to sin 2φ, where φ is the angle between an externally applied magnetic field and chip package.

Permanent magnets were mounted diametrically across the inner cylinder sprocket and the

top bearing assembly to generate constant magnetic fields that rotated with each cylinder.

The HMC1501 was placed in this field on an externally mounted bracket and its output

voltage was recorded using a Measurement Computing USB-1208FS data acquisition module

(Measurement Computing, Norton, Massachusetts). The resulting signal was then analyzed

by Fourier analysis to determine the rotation rates of the cylinders ωo,i.
7 For the range of

rotation rates used in the experiments described here the angular velocities were determined

to be within 0.5% of the indexer set point.

The working fluid was distilled water. The flow was visualized by mixing 2.2% Kalliro-

scope AQ 1000 (Kalliroscope Corporation, Groton, Massachusetts) by volume into the wa-

ter. The viscosity of the resulting suspension was measured using a No. 50 Cannon-Fenske

routine viscometer (Cannon Instrument Co., State College, Pennsylvania). It was found

to have a kinematic viscosity ν of 1.0298 ± 0.0025 mm2/s at 20.0◦C, a 2% increase in the

effective viscosity relative to pure water in agreement with that reported by Andereck et

al. [13]. The rheology of the suspension was also studied using a stress-controlled rheometer

and no deviations from the expected Newtonian behavior were found (see Figure 3.6 for

details). Special care was taken while filling the apparatus to ensure that no air bubbles

were trapped in the test section as these were found to be very efficient at tripping the

transition to turbulence.8

In order to control variations in viscosity due to temperature fluctuations, the entire

7Note that since the output of the HMC1501 is proportional to sin 2φ, the peak frequency of the sensor
output is twice the rotation frequency of the cylinders.

8Completely removing bubbles from the test section can be tricky. Rotating the inner cylinder can help
detach bubbles from the cylinder walls. Rotating the outer cylinder accumulates small bubbles into larger
ones that can be removed by plunging the top end ring until it hits the bottom of the test section.
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Figure 3.6: The rheological properties of the Kalliroscope suspension were measured using
an MCR-501 stress-controlled rheometer with a double Couette geometry (Anton Paar,
Graz, Austria). The shear rate (circles) was measured as a function of shear stress for
distilled water (red) and a suspension of 2.2% Kalliroscope (blue). The effective viscosity
(triangles) was calculated by taking the ratio of the shear stress to the shear rate. The break
in the curves that appears at a shear rate of about 103 s−1 coincides with the theoretically
predicted onset of Taylor vortices (black arrow) for the rheometer geometry. Measurements
courtesy of B. Sierra-Mart́ın and A. Fernández-Nieves of the Georgia Tech School of Physics.

apparatus was encased in a heat bath, which was supplied with chilled water using a Neslab

RTE-210 refrigerated bath/chiller (Thermo Scientific, Newington, New Hampshire). The

chiller was set to 20.00◦C and the temperature in the bath was monitored using a Minco

S1059PA5X6 platinum resistance thermometer (Minco Products, Inc., Fridley, Minnesota).

2-wire resistance measurements of the platinum resistance thermometer were carried out us-

ing a Hewlett-Packard HP 34401A multimeter (Hewlett-Packard Co., Palo Alto, California)

and imported into Matlab using the Instrument Control Toolbox (see Appendix B.3). These

were then converted to temperatures using the interpolant for temperature as a function of

resistance provided by Minco [162]. The thermometer readings were observed to deviate by

less than ±0.05◦C over several days. The temperature in the working fluid itself was peri-

odically measured using a Thermo Scientific ERTCO ASTM 63C compliant full immersion

mercury thermometer with 0.1◦C resolution and was found not to vary significantly from

the temperature measured in the heat bath. These results, along with the geometric char-

acteristics of the apparatus, allowed the outer cylinder Reynolds number Reo = ro ωo d/ν
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to be set to within 1%.

3.2.2 Flow Visualization

As mentioned earlier, the flow was visualized using the Kalliroscope technique. This tech-

nique works on the same principle as the aluminum powder technique first used in Taylor-

Couette flows by Schultz-Grunow and Heim [82] (see Section 2.6). The first to use Kalliro-

scope visualization in Taylor-Couette flow were Swinney, Fenstermacher, and Gollub. Their

original photographs are reproduced in Figure 3.7.9

Figure 3.7: The first published images of Kalliroscope visualization of Taylor-Couette flow-
showing the supercritical transition to turbulence were published by H.L. Swinney, P.R.
Fenstermacher, and J.P. Gollub in 1977. Some of these photos were reproduced in Swinney
and Gollub’s 1978 article “The Transition to Turbulence” in Physics Today [175]. Adapted
from Synergetics (Vol. II), H. Haken (ed.), 1977, Berlin, Germany: Springer-Verlag. Copy-
right 1977 Springer-Verlag.

Named after the Greek words kalos, rheos, and skopien meaning “beauty”, “flow”, and

“seeing”, the Kalliroscope technique is based on seeding the flow with minuscule guanine

platelets that reflect light preferentially depending on their orientation [179]. Guanine is

a commercial pigment extracted from fish scales and affords several advantages over other

materials used for flow visualization with reflective flakes. For one, it has a significantly

lower density (1.62 g/cc) than other commonly used flake materials (aluminum, mica, etc.).

9Kalliroscope was invented by artist Paul Matisse in the mid 1960s for use in “kinetic sculptures” [163].
Matisse was granted a patent for his invention [164] and began selling Kalliroscope commercially as early
as 1968. However, its adoption by the fluid dynamics community appears to have been rather slow. A
detailed search of the literature found only 14 references to Kalliroscope use during the 1970s [165–178]. The
earliest reference to Kalliroscope visualization in the Taylor-Couette literature appears to be a monograph
by Swinney, Fenstermacher, and Gollub in the second volume of Springer’s Series on Synergetics [174]. By
the mid 1980s Kalliroscope had largely replaced the aluminum powder technique as the flow visualization
technique of choice for researchers studying Taylor-Couette flow.
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Guanine flakes are also quite small with typical dimensions of approximately 30× 6× 0.07

µm [169]. Because of their low density and small size guanine flakes can stay in suspended

in water for long periods of time.10 Guanine also has a high index of refraction (n = 1.85),

which makes Kalliroscope particles easy to see in water even at very low concentrations [179].

This makes Kalliroscope visualization relatively unintrusive.11

While Kalliroscope is incredibly good at showing flow structure, it is interesting to note

that even today, 35 years after its invention, it is not clear what it is that Kalliroscope visu-

alization actually shows [181]. A few attempts have been made to understand this [181–184],

but no consensus exists for general flows beyond the qualitative argument that platelets tend

to align themselves with stream surfaces. Even taking this into account, the interpretation

of Kalliroscope images depends on the details of the lighting arrangement. For example, in

images of spiral turbulence by Andereck et al., where the flow is illuminated from outside

the cylinders, turbulent bands appear dark [13]. In images of the same flow by Prigent and

Dauchot, who illuminated their system with the light emitted by a fluorescent coating on

the inner cylinder, turbulent bands appear bright [117]. More complicated lighting arrange-

ments can elucidate additional flow features but complicate the interpretation of the flow

structures even further [185].12

In the experiments described here, the flow was illuminated externally (see Section 3.2.3)

and Kalliroscope images of coexisting laminar and turbulent domains were interpreted as

follows: In the laminar domains, the stream surfaces are well-defined and smooth, so the

alignment of the platelets is spatially correlated and they provide uniform reflection of the

incident light, yielding bright areas. In the turbulent domains, the flow is erratic, so the

platelets acquire random orientations, which lowers the effective reflectivity of the fluid.

10Some early experiments used perchloroethylene (C2Cl4), a solvent used in dry-cleaning, which has
a density of 1.620 g/cc. This allowed Kalliroscope particles to remain suspended indefinitely. An art
installation using Kalliroscope in perchloroethylene showed no “observable settling of the flakes” for over 15
years [179].

11As pointed out by Dominguez-Lerma et al. care must be taken when studying flows with poor mixing
properties [180].

12While extracting quantitative flow data from Kalliroscope images has proven challenging, recent progress
has been made in visualizing data from computer simulations using “virtual rheoscopic fluids” [184,186,187].
The idea here is to generate visualizations of numerically computed flow fields that emulate Kalliroscope, so
that they can be compared directly with experimental flow visualization images.
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This results in darker areas that show significant fluctuations in intensity. This effect is

enhanced by the black powder coating on the inner cylinder.

3.2.3 Camera Setup, Lighting, and Image Acquisition

The flow was imaged using a Sony XC-77 monochrome CCD video camera (Sony Corpora-

tion of America, New York, New York) powered by an Aegis Electronics PS-12SU camera

adapter/power supply (Aegis Electronic Group, Gilbert, Arizona). A 28 mm Nikon Nikkor

f/2.8 AF-D lens (Nikon Incorporated, Melville, New York) was installed on the camera us-

ing a C-mount to F-mount adapter. The camera was mounted on a post approximately 1.2

m in front of the apparatus and was aimed at the middle of the test section and manually

focused. The camera was turned on its side so that the longer dimension of the sensor

extended vertically. This allowed the camera to capture a larger segment of the flow field.

A Nikon PK-11 8 mm extension ring was used to help frame the images so that moving

parts (e.g., the rods holding the adjustable upper end cap) were not in the frame. The

resulting field of view covered a region of the flow that was approximately 25 cm tall and

compromised ∼ 75% of the total height of the test section.

Because the image analysis algorithm used to detect the presence of turbulence relies

on detecting intensity fluctuations in the recorded images (see Section 3.4.1 for details), the

camera’s automatic gain correction was disabled to minimize unwanted intensity fluctua-

tions. This was done by configuring the internal solder jumpers as shown in Figure 3.8.

Additional fluctuations in image intensity were found to come from reflections of movement

in the laboratory on the front window of the heat bath or from variations in ambient light-

ing. To eliminate these effects, the apparatus and camera setup were fully enclosed in a

tent made of black plastic sheeting.

The flow was illuminated by two 15 W fluorescent lamps, which were placed horizontally

in front of the apparatus; one above the test section and another below it as shown in

Figure 3.9. The diffusers that came installed on the lamps were left on. Cardboard blinds

were installed to ensure that only light reflected by the test section reached the camera.

This improved the contrast in the captured images. The camera support was spray painted

59



(a) (b) (c)

Figure 3.8: Disabling automatic gain correction on the Sony XC-77 camera requires the
user to toggle internal solder jumpers. (a) The jumpers that set the XC-77’s automatic
gain correction mode are located on the upper left hand corner of the PR-89 board as
shown by the red arrow. The PR-89 board is the topmost board when the camera housing
is opened. (b) When jumper on the right is connected by soldering its two pads together
and the jumper on the left is left disconnected, automatic gain correction is enabled. (c)
Automatic gain correction can be disabled by disconnecting the jumper on the right and
connecting the jumper on the left as shown.

flat black to prevent it from being reflected from the front window of the heat bath.

The camera output was recorded on a PC using a WinTV 44801 television tuner board

(Hauppauge Computer Works, Hauppauge, New York), which was controlled using Matlab’s

Image Acquisition Toolbox (see Appendix B.1 for sample Matlab code). The camera output

was connected to the composite video channel on the tuner board using RG59 coaxial

cable. Images were acquired at a reduced resolution of 320×240 pixels to minimize storage

requirements and facilitate real-time processing and analysis. Except for the three highest

Reynolds numbers studied (see Section 3.3), the video was captured at 30 frames per second.

At the highest Reynolds numbers, the frame rate was reduced to 5 frames per second due

to data storage limitations since individual turbulent transients could last many hours.

This reduced frame rate was determined to be sufficient to detect the presence of turbulent

patches in the flow.

3.3 Experimental Procedure

Like plane Couette and pipe flows, linearly stable Taylor-Couette flow requires finite-

amplitude perturbations to the base flow to initiate the transition to turbulence. In order

to ensure that all experiments at a particular Reynolds number started from the same state,
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CCD

Figure 3.9: The flow was illuminated with two 15 W fluorescent lamps, which were placed
above and below the test section. Cardboard blinds prevented light from the lamps from
directly illuminating the camera.

the laminar state was first prepared by accelerating the outer cylinder to the desired Reo.

Care was taken not to accelerate the cylinder too quickly as rapid acceleration was found to

trigger turbulence. The system was allowed to run in Couette flow for several minutes (∼

3 radial diffusion times td = d 2/ν) in order to eliminate any transients. As will be shown

in Chapter 4, the size of the perturbations needed to trip turbulence becomes smaller with

increasing Reynolds number. It was determined that at Reo ∼ 16,000 turbulence was spon-

taneously triggered by ambient noise, so the experiments described here were conducted

significantly below this threshold.13

Once laminar flow was established, the flow was perturbed by rapidly accelerating the

inner cylinder in the direction opposite the rotation of the outer cylinder and immediately

stopping it. The velocity profile of the inner cylinder is shown in Figure 3.10. This cre-

ated a large global perturbation that disturbed the whole flow. As will be discussed in

Section 3.5.4, the resulting distribution of lifetimes was not very sensitive to the details

of the initial perturbation, so the perturbation profile shown in Figure 3.10 was used in

13The critical Reynolds number for spontaneous transition was determined by stepping up Reo in steps
of ∼ 150 every 3 minutes until transition was observed. This was measurement was repeated 5 times with
similar results. For more details on the spontaneous transition to turbulence in Taylor-Couette flows with
only the outer cylinder rotation, see the paper by Burin and Czarnocki [52].
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Figure 3.10: The angular velocity of the inner cylinder was measured as a function of time
using a Honeywell HMC1501 rotary displacement sensor. The sensor signal was normalized,
unwrapped and smoothed. The velocity was then calculated by numerical differentiation of
the displacement data. The perturbation profile shown here was generated by setting the
maximum motor velocity to 10 Hz, the maximum acceleration to 60 Hz/s, and the total
motor displacement to 400,000 steps. The 3:1 gear ratio between the inner cylinder and the
motor stepped this down to an inner cylinder rotation rate of 3.33 Hz.

all experiments unless noted otherwise. This perturbation will henceforth be referred to

as the standard perturbation. The standard perturbation is qualitatively different from the

localized perturbations used in earlier pipe flow experiments [142, 143, 146]. Instead, it is

more similar to quenching experiments conducted in plane Couette flow [115]. The inner

cylinder rotation rate was chosen so that it took the system well into the turbulent regime.

After briefly exhibiting featureless turbulence, the flow relaxed to an intermittent state like

the one shown in Fig. 3.4. This was monitored until the flow relaminarized and the lifetime

of the event was recorded.

3.4 Data Analysis

3.4.1 Automated Detection of Turbulent Patches

Because of the large number of experiments required to characterize the statistical distribu-

tions of lifetimes, the monitoring of the flow was automated using realtime analysis of the

video stream. As the video stream was imported into the computer, it was separated into

ten frame segments. A frame from each segment was subtracted from a reference frame in

the segment preceding it. The resulting image was thresholded to highlight only pixels that

62



were significantly different from the same pixel in the reference image to reduce noise. It was

determined that a threshold value of 12 out of 255 for 8 bit images accurately distinguished

between laminar and turbulent regions of the flow. The elements of this binary image were

added together and the resulting number N was compared to an empirically determined

threshold, NT = 300. If N dropped below NT for 30 seconds (turbulent patches were never

observed to return after disappearing for more than a few seconds), the system stopped

acquiring data and prepared for the next run. Figure 3.11 shows a typical time series of N .
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Figure 3.11: Typical turbulence signal N for the standard perturbation at Reo = 7305
and Γ = 23. The initial perturbation is evident at t = 2 s. The large amplitude of the
perturbation sets the majority of the flow rotating in the clockwise direction. As the flow
relaxes to counter-clockwise rotation driven by the outer cylinder it goes through a short
period of time where the flow is almost quiescent (4 s < t < 8 s). If the perturbation
is successful the flow becomes turbulent resulting in a fluctuating signal. The apparent
periodicity of the signal corresponds to turbulent patches coming into and out of the view
of the camera as they circulate around the cylinder. At t = 68 s turbulence suddenly
collapses, leaving behind purely laminar flow.

The image processing algorithm described above was found to be more robust during

long experimental runs than subtracting a constant background image taken at the begin-

ning of the experiment. This is because during long runs Kalliroscope is slowly deposited

on the outer cylinder wall, which gradually changes the reflected light intensity even for

completely laminar flow. The method employed here works around this by detecting only

short-time variations in the captured images.
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3.4.2 Calculating τ(Reo)

Repeating the experiment M times (between 200 and 1200 times depending on Reo, see

Table 1) gives significantly different results at fixed Reo, as shown in Figure 3.12a. The

statistics are better visualized by probability P that an event will survive up to time t.

This was calculated as follows: For each time t, the fraction of events p that lasted at least

as long as t was used as an estimator of P (t). The sampling error in this estimate is given

by [188]

∆P =

√
p (1− p)
M

. (7)

As shown in Figure 3.12b, P (t) has two salient features. First, it has an exponentially

decaying tail (i.e., P (t) ∼ exp(−(t − t0)/τ) for times greater than t0, where t0 is the time

associated with the initial formation of the turbulent state. The typical lifetime τ can be

estimated from the slope of a linear fit to the tail of the distribution on a semi-log plot.

More precisely, it is given by the inverse of the slope parameter. The uncertainty in this

measurement was calculated from the 95% confidence interval on the slope parameter of the

fit. Second, a significant fraction (∼ 30%) of the experiments relaminarized immediately

after the perturbation. These short-lived events were not used in determining τ , but were

used to provide an estimate for t0. This was determined to be ∼ 1200 advective time units14

ta = d/roωo. For the range of Reynolds numbers studied here, ta ∼ 0.012 s. An alternative

method to estimate t0 and a discussion of how the choice of t0 affects the measured values

of τ is provided in the paper by Avila et al. [147].

3.5 Results

3.5.1 Scaling of τ with Reo

The experiment outlined in Section 3.3 was repeated at various Reynolds numbers (see

Appendix A for details). As shown in Figure 3.13, the survival probabilities show approx-

imately exponential decay at all Reynolds numbers. Some deviations from exponential

14t0 was incorrectly reported as 120 instead of 1200 in Borrero-Echeverry et al., Phys. Rev. E 81,
025301(R), 2010.
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Figure 3.12: Experiments at constant Reo yield turbulent events with lifetimes that vary
significantly. (a) Lifetimes for 300 experiments at Reo = 8106 with Γ = 33.6. Times are
scaled by the advective time unit ta = d/ro ωo. (b) The probability P of a turbulent event
persisting up to t approximately follows an exponential distribution for long times. The
typical lifetime τ can be calculated from the slope of a weighted least-squares linear fit to
the tail of the distribution (black line). For short times, the lifetimes of events depends
on whether the initial perturbation puts the flow in the basin of attraction of the chaotic
repeller. If the perturbation puts the flow in the basin of attraction of the laminar flow, the
flow relaminarizes immediately, as evidenced by the sharp drop off in P at small t. Error
bars indicate sampling error (∆ (ln P ) = ∆P /P ) and are shown only at representative
points.

behavior can be seen and are probably due to limited statistics (see Section 3.7.3 for a

discussion of the abnormally large deviation observed for Reo = 6423). In order to test

this hypothesis, finite samples of exponentially distributed pseudo-random numbers were

generated and their survival probabilities were calculated. Figure 3.14 compares the decay

probability for experiments at Reo = 7111 with two of the synthetic data sets. It is evi-

dent that the observed spread in the experimental data is comparable to the spread in the

synthetic data, which also show some commonly observed trends like a slight downward

curvature for large times due to the rarity of very long-lived transients. The exponential

tails of the survival probabilities, a hallmark of chaotic repellers [150,151], indicate that the

decay of turbulence is memoryless. The same behavior has been reported in all previous

studies of the decay of turbulence in plane Couette and pipe flows [115,142–146,155], as well

as in studies of decaying magnetohydrodynamic turbulence [148] and transient turbulence
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Figure 3.13: Probability of survival as a function of time for various Reo at Γ = 33.6.
The typical lifetime τ increases very quickly with increasing Reo. The solid lines show
the weighted least squares linear fits to the tails of the distributions. For Reo > 8500 a
maximum observation time was imposed as described in the text.
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in superfluid helium II [149].
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Figure 3.14: The decay probabilities of samples of 300 exponentially distributed pseudo-
random numbers (4,�) with the same mean parameter as experiments at Reo = 7111 show
a similar statistical variation to experiments ( ).

As shown in Figure 3.15, the characteristic lifetimes, as measured from least squares

fits of the exponential tails of P(Reo), increased very rapidly with Reo. However, no Reo

was found for which decay was not eventually observed. At Reo = 9922, an event was

observed that lasted 29 hours before relaminarizing. Naturally, conducting the number

of experiments required to obtain good lifetime statistics at higher Reynolds numbers was

impractical, so maximum observation times were imposed for the highest Reynolds numbers

studied (Reo = 8564, 8870, 9176). Imposing a maximum observation time prevented the

direct observation of the decays of the longest-lived events, but still left enough events of

intermediate length to get good estimates of the characteristic lifetimes. This technique

has been used successfully in studies of pipe flow, where turbulence is advected down the

pipe and the maximum observation time is limited by the length of the pipe [33, 146]. To

validate this procedure, it was used to measure the characteristic lifetime for Reo = 7111.
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Figure 3.15: Characteristic lifetime τ grows faster than exponentially as a function of Reo.
Lifetimes are scaled in advective time units ta. The points indicated with  correspond
to data sets for which all the decays were directly observed. The points indicated with N
correspond to data sets for which a maximum observation time was set. Errors in log10 τ

−1

are on the order of the symbol size and were estimated from the 95% confidence intervals
for the slope parameter of the linear fits shown in Fig. 3.13.

The resulting lifetime differed from that measured by observing all events by less than 1%.

As is evident in Figure 3.15, a purely exponential growth model does not fit the data

well and the lifetimes grow faster than exponentially with increasing Reo. The lifetime data

in Figure 3.15 was fit with the various functional forms proposed by Hof et al. [146] and it

was found that

τ−1(Reo) = exp(−exp(c1Reo + c2)), (8)

with c1 = 3.61×10−4 and c2 = −0.59 best captured the observed trend (i.e., had the smallest

residuals). While Eq. 8 visually fits the observed trend, goodness-of-fit statistics indicate

that it is not statistically significant (i.e., χ2
ν � 1). As shown in Fig. 3.15, alternative

fits to the data are possible (e.g., τ−1 = exp(−(Reo/c5)c6) with c5 = 3305 and c6 = 2.62)

and differentiating between them requires many more decades of data. Therefore, the claim

cannot be made that Eq. 8 is the actual functional dependence of τ on Reo. The important

point is that the observed trend suggests that the lifetimes of turbulent transients remain
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Figure 3.16: (a) The inverse of the measured lifetimes only approaches zero asymptotically
with increasing Reynolds number. (b) Magnified view of (a) for large Reo.  correspond to
experiments where all decays were observed directly. N correspond to experiments where a
maximum observation time was imposed.

bounded for increasing Reo. If the lifetimes diverged, τ−1 would be expected to cross zero

at some point. Instead they only approach zero asymptotically as shown in Figure 3.16.

Attempts were also made to fit the data with functional forms that contain singularities (e.g.,

τ = A/(Rec −Reo)α) but these fits result in unreasonably large overall scaling parameters,

which suggests that if a critical Reynolds number exists it is far away from the regime

studied here as shown in Figure 3.17.

3.5.2 Effects of System Size on τ

A natural extension of the work presented above is to measure the lifetimes of turbulent

transients for different Taylor-Couette geometries. Experiments were conducted at a variety

of aspect ratios and Reynolds numbers as summarized in Appendix A. It was observed that

lifetimes increased at least exponentially with increasing Reo, with the smaller aspect ratio

configurations typically showing quicker decays at fixed Reo than the larger aspect ratio

ones. However, as can be seen in Figure 3.18a, the scaling of τ with Γ is non-trivial. For

Reo < 8200, the data for Γ = 23 closely follow the original data set at Γ = 33.6. However,

above this value the two curves separate, with the measured lifetime at Γ = 33.6 at Reo =

8564 almost a factor of 4 larger than that at Γ = 23. On the other hand, the decay constants
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Figure 3.17: Multiplying a function that has a singularity by a very large number stretches
the part of function that grows very slowly in such a way that it can be used to represent
data that grows at a bounded rate by staying away from the singularity. This is the case
for the lifetime data at Γ = 33.6, where fits of the type expected for critical phenomena
(τ = A/(B −Reo)C) have large overall scaling parameters of O

(
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)
. The best fit of this

kind is shown with (solid red line) and without (dashed red line) the prefactor of O
(
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)
.

It can be seen that the part of the function that is almost flat gets stretched out, so that for
a range of Reo it looks like super-exponential growth of the form τ(Reo) = exp(exp(c1Reo+
c2)) (solid blue line). Similar results were obtained for fits to lifetime models of the form
τ = exp(A/(Reo − B)C), which expected in systems undergoing transitions analogous to
the ideal glass transition. Here A was found to be O

(
1082

)
.
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Figure 3.18: (a) The lifetimes of transient turbulence increase at least exponentially with
Reo for Γ = 15 ( ), 23 (N), and 33.6 (�). (b) At Reo = 7647, the lifetimes appear to
grow quickly as the system size increases before tapering off to a roughly constant value
above Γ ∼ 25. The solid line is a fit of of the form τ(Γ) = A(1 − exp(−B(Γ − Γc))) with
A = 6.62× 103, B = 0.235, and Γc = 12.6.
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for Γ = 15, start off much smaller for low Reo, but grow more quickly than for the larger

aspect ratios. Interestingly, neither of the reduced aspect ratio data sets show evidence of

super-exponential scaling of τ with Reo and are better represented by pure exponentials. It

is possible that the range of Reo studied at reduced Γ is too narrow to capture the super-

exponential trend that might have been observed had studies been conducted for a wider

range of Reo. As an example, take the data presented in Figure 3.15. If only the central six

data points are considered, the data is well fit by an exponential. It is only when all the

data are taken into account that the super-exponential trend becomes apparent. A similar

example can be found in the pipe flow literature where Hof et al. reported exponential

scaling of transient lifetimes in their initial 2004 they found when they extended their study

to a wider range of Reynolds numbers in 2008 [146].

Experiments over a greater number of aspect ratios were carried out at a fixed Reo. It

was found that the measured decay constants grew quickly with increasing Γ, but appeared

to level off for Γ ∼ 25. This suggested a least-squares fit of the data to

τ (Γ) = A
(

1− e−B(Γ−Γc)
)
, (9)

which is shown in Figure 3.18b. By extrapolating this fit to small Γ, it was predicted

that turbulent transients would not be observed for aspect ratios smaller than about 12.6.

This hypothesis was tested by attempting to measure lifetimes at Γ = 7.5 and 10, where

it was found that it was almost impossible to get persistent turbulence. This is evident in

Figure 3.19, where the probability of events lasting longer than 100 or so non-dimensional

time units (approx. 10 seconds) at Γ = 7.5 is very small.

3.5.3 Effects of End Conditions on τ

As noted by Schultz-Grunow [157] and more recently by Burin and Czarnocki [52], the

end wall conditions in experimental Taylor-Couette apparatus play a significant role in the

transition to turbulence. A preliminary test was conducted to check whether the end walls

played a role in the decay of turbulent transients. A set of 150 long-lived events at several

values of Reo were analyzed to see if there was any region of the experimental domain where

turbulent patches were more likely to decay. It was determined that when both end caps
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Figure 3.19: As the aspect ratio is reduced from 33.6 (�) to 15 ( ) to 7.5 (N), the fraction
of events that lead to persistent turbulence drops dramatically.

rotated with the inner cylinder, all three regions were statistically equally likely with 37.3%

of events disappearing in the top third of the domain, 29.6% of events disappearing in the

middle of the domain, and 33.1% of events disappearing in the bottom third of the domain

within a margin of error of about 7-8%. The slight difference in the probability of decay near

the walls as opposed to the central region of the domain, though not statistically significant,

could potentially be accounted for by the structure of secondary flows due to the finite size

of the experimental apparatus. These are particularly strong in the boundary layers near

the end caps (see Chapter 5) and may provide a source of energy for the turbulent patches.

A further test of the role of end walls conditions was conducted by leaving the top

boundary free and performing a set of lifetime measurements at several different Reynolds

numbers (runs 20-22 in Table 1). It was found that the fraction of events that relaminar-

ized immediately almost doubled. The survival probabilities of long-lived events still had

exponential tails, but the measured lifetimes were found to be significantly shorter than

those measured with a solid end wall at the top, as shown in Figure 3.20. Furthermore, the

dependence of τ on Reo was not as strong as in the solid end wall case. As before, the final
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Figure 3.20: The lifetimes measured when the top surface was left free ( ) are significantly
shorter and do not depend as strongly on Reo as the lifetimes measured when a top of the
experimental domain was a solid wall rotating with the outer cylinder (N).

location of the turbulent patch was recorded for a set of 260 experiments. The asymmetry

of the experimental configuration was apparent in this data with 36.5% of cases disappear-

ing near the top interface, 13.9% of cases disappearing in the middle third of the domain,

and 49.6% of cases disappearing near the bottom boundary with a margin of error of about

6-7%. It is interesting to note the marked reduction in the fraction of events that disappear

near the center of the domain. This might be explained by the fact that the secondary flow

in this configuration takes the form of a single Ekman cell that fills the entire domain [158],

so that there is an axial flow near the midplane that pushes the turbulent patches away

from the middle section and toward the ends. Conversely, when both ends are solid walls,

the secondary flow consists of a pair of Ekman cells, which meet at the midplane of the

domain. This leads to zero axial velocity at the midplane (see Chapter 5), so that turbulent

patches advected there are more likely to remain there.
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Figure 3.21: When the flow is perturbed by counter-rotating the inner cylinder ( ) a larger
fraction of the events decay almost immediately than when the flow is perturbed by co-
rotating it (�) at Reo = 7647. The amount of time that must pass before exponential
decay is observed t0 also changes. However, τ for both experiments is comparable with
τ = 6190 ± 107 for the counter-rotating case and τ = 6520 ± 33 for the co-rotating one.

3.5.4 Effects of Different Perturbations on τ

As discussed in Section 3.4.2, a significant fraction (∼ 30%) of experiments conducted

using the standard perturbation relaminarized almost immediately after the perturbation.

Because the standard perturbation disorganizes the fluid globally, one can think of it as

moving the system away from the laminar attractor in a random direction in state space.

If the perturbation puts the system in the basin of attraction of the turbulent state, the

system will exhibit transient turbulent dynamics. If the perturbation leaves the system

in the basin of attraction of the laminar state, turbulence decays immediately. This also

means that different perturbations will show differing degrees of success exciting turbulent

transients.

In order to test the dependence of the measured lifetimes to the details of the pertur-

bation, five additional experimental runs were conducted at Reo = 7647. The first of these

consisted of co-rotating the inner cylinder instead of counter-rotating it. It was found that
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this type of perturbation was more successful than the standard perturbation at inducing

transition with almost all events leading to long-lived transients (see Figure 3.21). One

possible explanation for the improved efficiency of co-rotating perturbations is that the wall

speed of the inner cylinder for the standard perturbation profile is significantly greater than

that of the outer cylinder. This means that during the perturbation, the flow mostly rotates

in the same direction as the inner cylinder. After the perturbation, the flow must adjust

to being driven by the outer cylinder only. In the case of the co-rotating perturbation, this

transition consists of just slowing down to match the speed of the outer cylinder and the flow

rotates in the same direction for the duration of the experiment. In the counter-rotating

case, the flow must switch directions as it adjusts back to the outer cylinder rotation rate.

In doing so, it passes through an intermediate state with very little net flow. This state

is probably close to the laminar solution, which increases the likelihood of the flow relami-

narizing. In addition to its improved efficiency, it was observed that the minimum time t0

before exponential decay statistics were observed increased for co-rotating perturbations.

The measured typical lifetime τ , however, was within 5% of the value for counter-rotating

perturbations.

Another set of experiments were conducted to test how the different parameters of the

standard perturbation affected the measured lifetimes. As shown in Figure 3.22, increases

in the pulse duration of up to a factor of 10 did not significantly change the value of τ .

This was also the case for a decrease in the inner cylinder acceleration by a factor of 60.

The measured lifetimes were also insensitive to the maximum inner cylinder velocity as

long as this was on the order of the speed of the outer cylinder. If the maximum speed was

much lower, τ remained the same, but the fraction of events that relaminarized immediately

increased dramatically.

A final set of experiments was conducted to test the sensitivity of the system to rapid

quenching. This technique was used in lifetime measurements in pipe flow by Peixinho

and Mullin [142] and in plane Couette flow by Bottin and Chaté [115]. The idea is that by

initially perturbing the flow at a high Re, where the flow is fully turbulent, and then quickly

quenching it down to a lower Re, the details of the initial perturbation can be ignored since

76



0 0.5 1 1.5 2 2.5 3
×104

-6

-5

-4

-3

-2

-1

0

t/ta

ln
P

Accel. 60× lower
Duration 10× longer

Max. Vel. 20% lower
Standard Perturbation

Figure 3.22: Varying the parameters of the standard perturbation profile does not signifi-
cantly change τ , but can affect the efficiency of the perturbation.

the experiment effectively starts inside the turbulent attractor. A similar approach was

taken here by perturbing the flow at Reo = 7647, allowing it to run for a minute, and then

quenching Reo by 10%. It was observed that the system quickly adjusts to such changes in

Reo and the decay statistics “forget” that the system was originally at higher Reo within a

few seconds.

3.5.5 Effects of Co-/Counter-Rotation on τ

In all the cases discussed up to this point, the inner cylinder was allowed to come to

rest at the end of the perturbation. As discussed in Chapter 2, inner cylinder rotation

can significantly affect the dynamics of linear-stable Taylor-Couette flows. This brings up

the obvious question: What effect does rotating the inner cylinder have on the lifetimes

of turbulent transients? In order to address this question a series of experiments were

conducted in which the inner cylinder continued to rotate slowly after the perturbation

instead of coming to rest. As shown in Figure 3.24, it was found that τ increases if the

cylinders counter-rotate and decreases if they co-rotate. This qualitative behavior could
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Figure 3.23: The system quickly adjusts to changes in Reo. After a standard perturbation
at Reo = 7647, the system was allowed to run for 60 seconds, after which Reo was reduced
to 6882 ( ) over 2 seconds. The decay statistics closely follow those of Reo = 7647 (�)
until the reduction in Reo and then quickly changes to follow the statistics for Reo = 6882
(N).

have been guessed a priori since counter-rotation typically plays a destabilizing role, while

co-rotation usually stabilizes the flow. An increase in τ for counter-rotating regimes could

also be predicted by noting that the relative speed between the two cylinders is greater (for

fixed Reo), which increases the effective Reynolds number. A similar argument can be made

for the observed decrease in τ for co-rotating cylinders. In order to compare the results

of these experiments to the ones discussed earlier where the inner cylinder was fixed, it is

convenient to define a shear Reynolds number as follows [12]:

Res =
2

1 + η
|ηReo −Rei|. (10)

Figure 3.24 shows τ as a function of Res. It can be seen that inner cylinder rotation

has a significant effect on the observed lifetimes with a 3% increase in Res leading to

a sixteen-fold increase in τ . This effect is stronger than simply increasing the Reynolds

number by rotating the outer cylinder more quickly. For the limited range of inner cylinder

rotation rates studied here, the increase in τ seems to scale at least exponentially with inner

cylinder rotation rate. The best fit exponential curve is given by τ(Res) = exp (aRes + b)
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Figure 3.24: Inner cylinder rotation has a significant effect on the observed lifetimes. For
a fixed Res, if the inner cylinder rotates after the perturbation ( ), the observed life-
times defer significantly from those measured with the inner cylinder fixed (�). Increas-
ing/decreasing Res by rotating the inner cylinder has a stronger effect on lifetimes than
increasing/decreasing it by changing the outer cylinder rotation rate. The increase is at
least exponential (solid line) and potentially even super-exponential. The dotted line cor-
responds to the super-exponential trend calculated for τ(Res) using all the data for outer
cylinder rotation only at Γ = 33.6.

with a = 0.01319 and b = −85.06.

3.6 Summary and Discussion

The experiments discussed here have shown that when only the outer cylinder rotates,

transitional states in Taylor-Couette flow share many of the decay characteristics observed

in other canonical shear flows. The exponential tails observed in the survival probability

distributions suggest that the correct model for turbulence in the regime studied is a chaotic

repeller [150–152]. It was also shown that characteristic decay times increase faster than

exponentially with increasing Reo but remain bounded for finite Reo, in agreement with the

most extensive data for pipe flow [146,189]. The reader might wonder why this distinction

matters. After all, extrapolating the observed trends out to Reynolds numbers of interest in
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engineering applications would suggest that for all practical purposes turbulent transients

would last unobservably for long times. The answer to this question lies in the fact that

the existence of turbulent transients, even if these are very long-lived, implies a dynamical

connection exists between the turbulent dynamics and laminar state. This opens up avenues

for control using small perturbations that exploit this connection, as explained schematically

in Figure 3.25, and developed in detail for low-dimensional dynamical systems by Shinbrot

et al. [156]. The feasibility of relaminarizing transitional shear flows with small controls has

been demonstrated in pipe flow by Hof et al. [190].

Having established the super-exponential but bounded growth of the lifetime of turbu-

lent transients, the question arises as to what the scaling actually is. As discussed earlier the

data collected here is insufficient to distinguish between different super-exponential scaling

functions τ(Reo). This, in fact, is the case for all experimental studies of turbulent tran-

sients conducted so far [146]. Addressing this question with simulations over a large range

of Reynolds numbers is not feasible due to the large number of experimental runs and long

simulation times needed to obtain good statistics. There is, however, a lone theoretical

prediction by Goldenfeld et al. [191]. Goldenfeld and his collaborators showed that if it

is assumed that a turbulent patch decays when the velocity fluctuations throughout the

patch drop below a certain level (a reasonable assumption given the numerical evidence

by various authors [140, 192, 193]), then the scaling for the typical lifetime patches as a

function of Reynolds number can be derived from the theory of extreme statistics. The

basic idea is that each region of the patch can be thought of as drawing a number from a

random distribution once every temporal correlation time τ0. This number can be thought

of as corresponding to the size of the velocity fluctuations in that region. One region will

draw the largest number x meaning that, by definition, all the other regions drew smaller

numbers (i.e., had smaller velocity fluctuations). It turns out that the probability F (x)

that maximum x of M randomly selected numbers is less than some value X is governed

by

F (X) = exp(−exp(−(X − α)/β)), (11)

where α and β are parameters that depend on M . Goldenfeld et al. argue that since
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Figure 3.25: (a) If the turbulent state and the laminar solution are not dynamically con-
nected, it is impossible to relaminarize the flow, except with a large, global control that puts
the system in the neighborhood of the laminar flow. (b) However, if the dynamical connec-
tion exists, it is possible to apply a small, local perturbation to the flow that nudges the
turbulent flow in the direction of the connecting branch and allowing the natural dynamics
to relaminarize the flow.
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the spatial correlations in a patch decrease as Re increases, this is equivalent to having

effectively more regions, or larger M , so that it becomes harder and harder for x to be

below the prescribed threshold for sustained turbulence Xc. This means that the system

must draw more times before x > Xc and the patch persists longer. The average number

of draws until x > Xc can then be shown to scale like exp(exp(c1Re+ c2)) for large M and

so the average time till the patch decays follows a similar scaling law.

Another question that was addressed here was the dependence of the decay constants on

the aspect ratio of the Taylor-Couette system. It was shown that there is a general trend for

the decay constant in smaller aspect ratio systems to be smaller than those of larger aspect

ratio systems. However, a general scaling was not obvious. At some Reynolds numbers,

it was observed that τ grew quickly for increasing Γ at small aspect ratios but eventually

approached an asymptotic value for Γ >∼ 25. Looking at the available data, it appears that

the decay constants grow faster as a function of Reo for larger systems. The aspect ratio

dependence of turbulence lifetimes has also been studied by Alidai, who measured decay

constants in a partially filled system with a free interface at the top surface [158]. His data,

shown in Figure 3.26, show similar qualitative trends with increased lifetimes at larger Γ

and the apparently faster increase in τ with Reo for larger Γ.

The physical mechanism behind τ ’s dependence on aspect ratio is unclear. As pointed

out by other researchers [13] and discussed in more detail in Chapter 5, the laminar state of

finite-sized Taylor-Couette system is non-trivial [13]. The role played by end-effects (e.g.,

Ekman pumping) in relaminarization is still not well understood, although the experiments

reported in Section 3.5.3 suggest that they might play an important role. Another possibility

that was recently proposed by Manneville [192], who studied a simplified model of plane

Couette flow, is that it might be possible for turbulence to become sustained globally even

if it is transient locally. Manneville’s argument extends earlier ideas by Pomeau [194],

which suggest that the spatiotemporally complex state observed in subcritical transitions

to turbulence can be thought of as a type of directed percolation problem [192]. The idea

here is that the flow can be thought of as two phases, an “active” turbulent phase and an

“absorbing” laminar phase. Over a certain time span, turbulent regions can contaminate
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Figure 3.26: The lifetimes measured by Alidai for systems with a free surface at the top of
the experimental domain at Γ = 14 (�), 18 (N), and 20 ( ) show qualitative agreement
with his experiments with a solid end wall at Γ = 22 (∗). The solid lines are least-squares
fits of the form τ(Reo) = exp(−exp(c1Reo + c2)). Adapted from A. Alidai, “Transient
turbulence in Taylor-Couette flow,” Masters thesis, Department of Mechanical Engineering,
Delft University of Technology, Delft, The Netherlands, 2011.

nearby laminar regions or they can decay. In small systems, where there is a small number

of regions, the probability that all turbulent regions relaminarize can be relatively large,

so the observed lifetimes are small. In large systems, the probability that all turbulent

regions decay at the same time is small, so turbulence persists longer (or indefinitely for

large enough systems). The observed increases in lifetimes with increases in Γ are probably

due to contributions from both finite-size effects, which depend on boundary conditions and

affect the base flow, and from system size effects, which determine the dimensionality of the

available state space independently of the specific boundary conditions.

The role of boundary conditions was studied by conducting experiments where the top

surface of the experimental domain was left free. It was found that the exponential tails of

the decay probabilities were maintained. However, the observed decay constants at fixed

Reo were found to be smaller and the scaling of τ with Reo was found to be much weaker

than in the case where the top boundary was a solid wall. It is interesting to compare these
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findings with the results of Alidai, who conducted experiments with a free surface at several

aspect ratios and Reynolds numbers (see Figure 3.26). Alidai’s experiments confirm the

finding that the exponential distribution of lifetimes is maintained when the top surface is

free, which is consistent with numerical studies of turbulent transients in plane Couette flow

in a doubly periodic computational domain without end walls [195]. Alidai also reported

that triggering turbulent transients became more difficult, which led him to extend the

duration of his perturbations. Unexpectedly, Alidai’s data show significant increases in

lifetimes with increasing Reo. In some cases the dependence of τ on Reo is stronger than

in his experiments with a solid top wall. The source of the discrepancy between Alidai’s

experiments and those reported here is unknown.

Additional experiments were carried out to test the dependence of the measured decay

constants on the type of perturbation used to initially trigger turbulence. It was found

that while initial perturbations can affect decays that occur at short times and be more or

less efficient at triggering turbulence, long-lived events that contribute to the exponential

tails of the survival probabilities decay with the same exponential distribution regardless

of the details of the initial perturbation. This observed independence of τ on the nature

of the perturbation is consistent with experiments in pipe flow by de Lozar and Hof [196],

who tested the effect of different perturbations on τ . They used a variety of perturbations

including fluid injection, injection/suction of fluid, quenching fully turbulent flow, and the

presence of a solid obstacle in the flow. They found that as long as the perturbation is

large enough to cause the transition to turbulence in the first place, the decay statistics

do not depend on the details of the perturbation. de Lozar and Hof also noted that t0

depends on the nature of the initial perturbation, as observed here. Alidai, who used both

fluid injections and counter-rotation of the inner cylinder in his experiments on turbulent

transients in Taylor-Couette flow, found no significant dependence of τ on the type of

perturbation used [158].

Finally, experiments were conducted to test the effect of weak inner cylinder notation on

the decay constants for fixed Reo. It was found that co-rotation stabilized the flow leading to

the faster decay of turbulent transients. Conversely, counter-rotation destabilized the flow
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and made the transient lifetimes longer. Analyzing the results in terms of a shear Reynolds

number Res [12], showed that the transient lifetimes are more sensitive to inner cylinder

rotation than to changes in Res due to changes in the outer cylinder rotation rate. While

any extrapolation of these results to strongly co-/counter-rotating flows should be done

with a healthy dose of skepticism, the strong stabilizing effect of co-rotation is consistent

with the recent findings of Edlund and Ji [55], who showed that a class of linearly stable,

co-rotating Taylor-Couette flows called Keplerian flows (see Section 2.8.4) are stable to a

variety of large amplitude perturbations even at Re ∼ O
(
106
)

and failed to detect persistent

turbulence, even transiently.

3.7 Recommendations for Future Work

3.7.1 Effect of Boundary Conditions on the Lifetimes of Turbulent Transients

As discussed in Sections 3.5.2 and 3.5.3, the boundary conditions of the experimental domain

can significantly affect the lifetimes of turbulent transients. So far, most of the experiments

reported have been conducted in a rather limited range of geometries (η ∈ [0.871, 0.917] and

Γ ∈ [15, 33.6]). Even though the phenomenology in this domain is rich, Burin and Czarnocki

[52] have shown that it can change drastically for Taylor-Couette flows of different geometries

(see Section 2.8.6). Their experiments showed that for 0.55 < η < 0.73 turbulence remains

confined to a region near the inner cylinder. It is possible that turbulent transients in

this regime might show some interesting behavior. It may also be interesting to study

turbulent transients for aspect ratio greater than 40. In these geometries, spiral turbulence

is observed for a range of Reynolds numbers, and it is possible that the interplay between

the long-wavelength modulation of turbulent spots observed by Prigent et al. [66] and the

decay processes for turbulent transients may lead to interesting dynamics. Both of these

experiments could be carried out with cylinders currently available in the Pattern Formation

and Control Lab.

Another natural extension of this work would be to try using different end conditions

in the experimental domain. At this point the discrepancy, even at a qualitative level,

between the behavior observed in the experiments where the top of the domain was a free
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surface and similar experiments by Alidai [158] remains a mystery. This configuration might

warrant further investigation. Alternatively, the end caps attached to the inner cylinder or

split end rings could be used. As noted by Burin and Czarnocki, this significantly affects

the Reynolds number for spontaneous transition, meaning that it is also likely to have a

significant effect on transient lifetimes.

3.7.2 Effect of Rotation on the Lifetimes of Turbulent Transients

As discussed in Section 3.5.5, inner cylinder rotation greatly affects the lifetimes of tur-

bulent transients. The experiments conducted here were originally conceived in terms of

the traditional control parameters Rei and Reo. These are convenient experimental con-

trol parameters because they nondimensionalize the wall velocities. However, conducting

experiments with varying Rei at constant Reo can make it difficult to isolate the physical

processes that might lead to the observed variation in lifetimes. Dubrulle et al. [12] have

proposed replacing the traditional control parameters with a dynamically motivated set of

control parameters composed of the shear Reynolds number Res (Eq. 10) and a rotation

number Rω given by

Rω = (1− η)
Rei +Reo
ηReo −Rei

. (12)

These parameters are convenient from a theoretical perspective because they separate the

influence of different physical effects, with Res capturing the influence of shear and Rω

measuring the influence of rotation. The work described here spans a wide range of Res but

only a small range of Rω between 0.141 and 0.153. It also only covers the cyclonic regime,

where Rω is positive. Recent experiments by Edlund and Ji [55] suggest that the stability of

anti-cyclonic flows in the quasi-Keplerian regime (linearly stable flows with Rω < −1) may

be very different than those of cyclonic flows. It is possible that experiments for a wider

range of Rω may lead to the discovery of new flow regimes with different lifetime scaling

laws.

3.7.3 Boundary Crises and the Growth of the Turbulent Repeller

As shown in Figure 3.28b, the probability distribution calculated for Reo = 6423 at Γ =

33.6 showed a large deviation from the exponential trend for long times. It is quite possible
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that this is due to insufficient statistics (after throwing out transients that lasted less than

t0, only 149 events were used to calculate τ). However, recent numerical studies of chaotic

repellers in plane Couette flow by Kreilos et al. [1] suggest an exciting alternative. Kreilos et

al. showed that the size of the chaotic saddle governing turbulent transients grows via a series

of very rapid bifurcations. First, a saddle-node bifurcation creates a pair of periodic orbits

within the saddle. As Re is increased, this undergoes a cascade of bifurcations creating a

chaotic attractor embedded within the chaotic saddle. As Re is increased even further, the

attractor collides with its boundary and becomes “leaky” via a boundary crisis bifurcation,

effectively combining with the original saddle in the process. The resulting saddle has a

larger escape constant τ . This sequence of events is explained in more detail in Figure 3.27.

This whole bifurcation sequence occurs over a very narrow range of Reynolds numbers

(∼ 2) and is therefore unlikely to be observed directly in experiments. The upshot of Kreilos

et al.’s work, however, is that the lifetimes of turbulent transient may vary non-smoothly

for narrow ranges of Reynolds numbers. It may be possible that if an experimenter carried

out lifetime measurements in the neighborhood of such a crisis event, slight variations in

experimental conditions would lead her to sample some events from each side of the bifur-

cation. In order to test what measured probability distributions might look like, synthetic

probability curves were generated by sampling 175 pseudo-random numbers at random from

two exponential distributions. Figure 3.28a shows the results of one such numerical experi-

ment. While it is naturally premature to suggest that the probability curve for Reo = 6423

provides convincing evidence for the boundary crisis scenario proposed by Kreilos et al., the

similarity between the two probability distributions is apparent. Repeating the experiments

described in Section 3.3 to improve the available statistics would allow the determination

of whether the transient lifetimes observed at Reo = 6423 deviate from exponential (see,

e.g., Figure 3.28c).

3.7.4 Spatiotemporal Intermittency and Sustained Turbulence

The observed scaling of transient lifetimes is in qualitative agreement with the most detailed

studies of turbulent transients in pipe flow [146]. In that flow, a critical Reynolds number
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Figure 3.27: Two dimensional visualizations of the state space (see Ref. [1] for details), show
that the chaotic saddle grows via the emergence and subsequent annihilation of a chaotic
attractor in a boundary crisis. (a) At Re = 248.5, a pair of periodic orbits is formed in a
saddle-node bifurcation inside the chaotic saddle. (b) As Re is increased, the stable orbit
undergoes a bifurcation cascade, leading to a chaotic attractor at Re = 249.1, seen here
as the red region of very long-lived events. (c) The attractor grows until, at Re = 250.13,
it collides with its boundary basin and becomes “leaky” in a crisis bifurcation. (d) As the
attractor breaks down, it comes to form a sort of saddle-within-a-saddle, shown here at
Re = 250.25. In order to relaminarize, trajectories that start inside the inner region must
first escape the inner saddle and then escape the outer saddle. Each of these processes has
exponential decay statistics with different decay constants. The time constant for the inner
region starts off much larger than the one for the outer region, but becomes progressively
smaller with increasing Re, asymptotically approaching a value slightly larger than the
decay constant of the outer region. As Re is increased further the dynamical connectivity
between the two saddles increases via a series of heteroclinic bifurcations, merging the two
regions into a single saddle with a longer time constant. Adapted from T. Kreilos et al.
“Increasing Lifetimes and the Growing Saddles of Shear Flow Turbulence,” Phys. Rev.
Lett. 112, 044503, 2014. Copyright 2014 by the American Physical Society.
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Figure 3.28: The deviation of the distribution of lifetimes at Reo = 6423 for Γ = 33.6 is
suggestive of the boundary crisis scenario proposed by Kreilos et al. (a) Distribution of 175
pseudo-random numbers taken at random from two exponential distributions with τ = 200
(dotted line) and τ = 700 (dashed line). The solid blue line is a weighted least squares
linear fit. (b) Experimentally measured distribution of lifetimes for Reo = 6423. (c) The
distribution of 1500 pseudo-random numbers taken from the two exponential distributions
shows significant deviations from a pure exponential that should be observable in sufficiently
resolved experiments.
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Figure 3.29: While the typical timescale before decay (open symbols) increases with Re, the
typical time before a puff is likely to split (closed symbols) decreases. Turbulence becomes
sustained when the typical time to decay exceeds the typical time to split.

has been reported above which turbulence is always observed unless the experiment is

prepared with great care. Recent work by Avila et al. [189] has determined the mechanism

by which turbulent transients lead to sustained turbulence. Avila and her collaborators

discovered that localized turbulent regions called puffs can split before they decay. After a

short maturation process, the resulting puffs follow the same statistics as the original puff

(i.e., they have exponentially decaying survival probability and can split into more puffs

themselves). They key to establishing the origin of the critical Reynolds number was found

to be puff splitting. As Re is increased, the typical time before a puff splits decreases. Avila

et al. concluded that when the typical time scale for a puff to split becomes shorter than

the time scale for it to decay, turbulence can invade the entire domain even if individual

puffs decay. Therefore, the transition to sustained turbulence in shear flows is not governed

by an increase in temporal complexity as proposed by Ruelle and Takens [87], but rather

falls within the framework of spatiotemporal intermittency envisioned by Pomeau [194].

During the experiments described here, the spatiotemporal evolution of turbulent patches in

Taylor-Couette flow was observed to feature splitting events. This suggests that ultimately

90



the transition to persistent turbulence may be mediated by similar mechanisms as transition

in pipe flow. However, in Taylor-Couette flow patches have the freedom to spread and split

in both the streamwise and spanwise directions, which suggests that the transition will

be more complicated [54]. Because of its periodicity, Taylor-Couette flow should allow for

careful measurements of the increasing spatiotemporal complexity of turbulent patches with

increasing Reynolds number.
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CHAPTER IV

FINITE-AMPLITUDE THRESHOLDS FOR TRANSITION IN

TAYLOR-COUETTE FLOW

One common feature of linearly stable flows is that, in order to trigger turbulence, the base

flow must be perturbed by a finite-sized disturbance. The natural question arises of just how

large the perturbation must be in order to initiate turbulence [9]. Experiments have shown

that as the Reynolds number is increased, flows become more sensitive to perturbations,

so that smaller perturbations are required to trigger turbulence [131, 197–205]. From the

dynamical systems perspective, this reflects the fact that the basin of attraction of the

laminar state becomes smaller with increasing Re. However, the rate at which the basin of

attraction of the laminar state contracts with increasing Re is still a subject of debate [9].

The previous chapter discussed how large global perturbations to linearly stable Taylor-

Couette flow can lead to transient turbulent episodes whose lifetimes increase rapidly with

increasing Reynolds number. This chapter presents the results of the first experiments

designed to investigate finite-amplitude thresholds for transition in linearly stable Taylor-

Couette flow via small localized perturbations. Section 4.1 reviews the recent literature on

finite-amplitude thresholds for transition in linearly stable shear flows. Section 4.2 discusses

modifications that were made to the Hirst apparatus as a part of these experiments and gives

details about the design and operation of the injection system that was used to generate

disturbances to the flow. Section 4.3 outlines the experimental procedure. The results of the

experiments are presented in Section 4.4 and discussed in Section 4.5. Section 4.6 provides

suggestions for future extensions to this work.

4.1 Background

It is well-established that certain laminar shear flows are linearly stable for all Reynolds

numbers. This class of flows includes pipe flow and plane Couette flow [4], as wells as certain

regimes of Taylor-Couette flow [16]. Despite their stability to infinitesimal perturbations,
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these flows are observed to become turbulent at sufficiently large Reynolds numbers. The

critical Reynolds number for which turbulence occurs typically depends on the care with

which the experiments are conducted [52, 204]. An illustrative example is the variety of

critical Reynolds numbers reported for pipe flow. For example, in his pioneering studies of

the transition to turbulence in pipe flow, Reynolds reported a critical Reynolds number of

2 260 when he used industrial pipe, but a higher value of 13 000 when he took additional care

preparing the experiment and used precision bore tubing. Pfenniger showed that critical

Reynolds numbers as high as 100 000 can be achieved with sufficient care [206]. A less

famous, but analogous example can be found in the literature concerning linearly stable

Taylor-Couette flows, as discussed in Section 2.6. By carefully controlling experimental

conditions Schultz-Grunow was able to maintain laminar flows for outer cylinder Reynolds

numbers that were over an order of magnitude than reported by other researchers [157].

Conversely, an analysis of the experiments of R.A. Bagnold [80] by Hunt et al. [81] suggests

that Bagnold’s apparatus underwent transition at much lower numbers than expected. This

might be expected since the inner cylinder in Bagnold’s apparatus had walls made of flexible

rubber sheeting.

The fact that the transition Reynolds number of these linearly stable systems depends

on the precision of the experimental setup suggests that finite-amplitude perturbations are

required to trigger turbulence. It also suggests that as the Reynolds number increases, the

size of the required perturbation becomes smaller. This observation presents the obvious

question of how the size of the smallest perturbation that can trigger turbulence scales with

Reynolds number. This question has received much attention over the last 20 years in a

variety of shear flow configurations [131,197–200,202–205,207–210]. The general consensus

appears to be that in shear flows the critical perturbation amplitude scales asymptotically

like Reγ , where the critical exponent γ is negative. The exact value of γ has been the subject

of recent debate and varies from flow to flow [199, 211]. Estimates from experiments and

numerical data typically put γ in the interval between −1 and −2 [212], although theoretical

considerations permit critical exponents as small as −4 [211]. The discussion is complicated

by inherent difficulties in relating the types of perturbations accessible experimentally and
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those that are easy to implement numerically and to study theoretically [213].

The value of γ can provide insight into the processes underlying the transition to tur-

bulence [207, 214]. For example, if transition is only possible when the amplitude of the

perturbation A is large enough so that nonlinear advection (O
(
A2
)
) overcomes viscous

dissipation (O (A/Re)), then a critical exponent of γ = −1 is expected [215]. Critical ex-

ponents smaller than −1 are predicted when non-normal amplification plays a role in the

transition. Non-normal amplification, which is explained schematically in Figure 4.1, pro-

vides a mechanism by which finite-amplitude perturbations can be temporarily amplified

via linear mechanisms until they become large enough to engage nonlinear mechanisms

and cause transition [207]. Different critical exponents between −1 and −4 are predicted

depending on the way the linear non-normal amplification mechanisms and the nonlinear

terms exchange energy [207, 214]. The concept of non-normal amplification has become a

central idea in the study of the subcritical transition to turbulence. For further discussion

of the role played by non-normal amplification at the onset of turbulence in shear flows, the

reader is referred to the review by Grossmann [212].

The non-normality of the Taylor-Couette operator was first demonstrated in 1993 by

Gebhardt and Grossman [216]. However, the role of non-normal amplification for general

Taylor-Couette flows would not be studied until 2002, when Alvaro Meseguer discovered

that subcritical counter-rotating flows could exhibit significant transient growth.1 Nonax-

isymmetric modes showed the largest amplification, but axisymmetric streaks could also be

amplified. Meseguer discovered a strong correlation between flow regimes where transient

growth was significant and the flow regimes where Coles [14] observed spontaneous transi-

tions to turbulence. Meseguer’s work has recently been extended by Maretzke et al., who

found significant transient growth in all linearly stable regimes of Taylor-Couette flow [219]

with only slightly weaker amplification in the Rayleigh-stable regime than in Rayleigh-

unstable ones. They also showed that the effectiveness of transient amplification (optimal

transient growth) scales like Re2/3, suggesting that these effects might be significant at

1Meseguer’s paper cites a conference proceedings paper by Hristova et al. where they considered transient
growth of axisymmetric perturbations in flow regimes approximating plane Couette flow [217]. This work
was later published in Physics of Fluids [218].
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Figure 4.1: The non-normality of the linearized Taylor-Couette operator can lead to tran-
sient amplification of small perturbations. Suppose that a perturbation can be represented
as a linear superposition of two eigenmodes e1 and e2, which are linearly stable with eigenval-
ues λ1 and λ2 such that λ1 > λ2. (a) If e1 and e2 are orthogonal, then a small perturbation
v′ will in general have small components in e1 and e2. As the modes decay in time, the
magnitude of v′ will also decay. (b) If e1 and e2 are not orthogonal, then the components
of v′ along e1 and e2 are not necessarily small, even though v′ is small. If one modes decays
faster than the other, the magnitude of v′ can temporarily increase.
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large Reynolds numbers. Unfortunately, none of the studies of non-normal amplification in

Taylor-Couette flow up to now has yielded a prediction of the critical exponent for Taylor-

Couette flow.

This chapter presents the first experimental attempt to measure finite-amplitude thresh-

olds for the transition to turbulence in linearly stable Taylor-Couette flow and includes

some preliminary estimates of the critical exponent. In the experiments reported here, the

inner cylinder was held fixed while the outer cylinder rotated. Perturbations were gen-

erated by sucking and injecting fluid from ports on the inner cylinder wall. These types

of perturbations have been used in similar investigations of transition thresholds in pipe

flow [131,200,204], plane Couette flow [67,115], and plane Poiseuille flow [205].

Fluid injections from the inner cylinder wall were first used by Malkiel et al. [99], who

showed that, in certain co-rotating regimes, continuous suction/injection of fluid led to the

periodic shedding of hairpin vortices, which grew in time and separated from the inner

cylinder wall, before decaying further down stream. Malkiel and his collaborators analyzed

their experimental findings in the context of the theoretical framework laid out earlier by

Levinski and Cohen [98] and found good agreement. The theory of Levinski and Cohen

provides a sufficient criterion for stability2, i.e., it can predict when perturbations will not

grow. However, it only provides a necessary condition for instability, meaning that it can

only predict where perturbations might grow.

Fluid injections at the wall were also used by Alidai as part of his investigation of

turbulent transients in Taylor-Couette flow [158]. Alidai showed that fluid injections were

capable of triggering turbulent transients and that the lifetimes of these transients were

similar to those initiated by global perturbations. Unfortunately, Alidai does not discuss

the details nor amplitudes of the perturbations used. More recently, Edlund and Ji [55] have

2Formally, Levinski and Cohen’s theory defines stability in terms of the growth of fluid impulse instead
of the usual energy criterion. The fluid impulse is given by

p =
1

2

∫
r × ω (r) dV,

where r is the position vector, ω is the disturbance vorticity, dV is the differential volume element, and the
integral extends over the entire flow. It captures the geometrical growth of localized vortices. The growth
of the fluid impulse does not necessarily imply growth in energy or vice versa.
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used fluid injections to test the stability of quasi-Keplerian flows. This family of linearly

stable co-rotating flows lie between the solid body rotation line and the Rayleigh line in

the Reo-Rei plane and have received much attention recently as part of the debate on the

stability of astrophysical disks [12]. Edlund and Ji found that quasi-Keplerian flows appear

to be stable to large perturbations for Reynolds numbers as large as 105 − 106, which is

contrary to the earlier findings of Paoletti et al. [125].

4.2 Experimental Apparatus

In order to study finite-amplitude thresholds for transition, several modifications were made

to the original Taylor-Couette apparatus described in Chapter 3. In the fall of 2011, the

original outer cylinder (ro = 7.62 cm) of the Hirst apparatus cracked. Several attempts

were made to find a suitable replacement, but it was impossible to find a cylinder with the

same dimensions and optical quality. A new precision bore glass cylinder of larger diameter

was purchased from the Duran Group (Wertheim, Germany). This was measured at three

locations along its length yielding a mean radius of 8.003 ± 0.002 cm. Matching end caps

and end rings were fabricated from glass-filled Delrin. Mechanical drawings for these parts

are provided in Appendix C.

In order to allow direct comparison with fully-resolved simulations currently underway

in the group of Roman Grigoriev, the experiments discussed in this chapter were conducted

at a small aspect ratio of 5.26. A spacer made of anodized aluminum was inserted into the

gap to raise the test section for better optical access. The spacer was held in place against

the outer cylinder with o-rings and rotated with it. Originally, the spacer filled the entire

gap radially, but it was observed that any misalignment between the spacer and the inner

cylinder caused pumping of fluid from the gap between them into the test section. This

effect was minimized by modifying the spacer so that it had an L-shaped cross-section to

allow the fluid between the spacer and the inner cylinder to flow more freely. This is shown

schematically in Figure 4.2.

In order to minimize vibrations from the stepper motors, they were mounted on a

separate optical table. The cylinders were driven by W.M. Berg Flex-E-Grip timing belts
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Figure 4.2: The spacer had an L-shaped cross-section to minimize pumping effects due to
any misalignment between it and the inner cylinder.

(part no. 37TB-320). The outer cylinder was driven at a 1:1 gear ratio, so that the motor

did not have to spin too fast to achieve the desired Reynolds number. The inner cylinder

was driven at 12:26 gear ratio to improve on the resolution of the indexer. This allowed

steps in Rei of 1.7.

4.2.1 New Inner Cylinder with Jets

In order to have a source of controllable finite-amplitude disturbances a new inner cylinder

was constructed. This cylinder was made of naval bronze and had an outer radius of

7.239 ± 0.001 cm. Like the inner cylinder used in the experiments of Chapter 3, it was

powder-coated flat black at Miller’s Powder Coating (Lilburn, Georgia). The cylinder was

hollow and a line of 84 holes was drilled into the cylinder wall, which served as ports

through which fluid could be injected or withdrawn to perturb the flow. The holes were

spaced evenly by 4.19 mm and had diameters of 2.5 mm. They were tapped with #3-56

threads, which allowed them to be fitted with miniature barbed fittings for 1/16′′ inner

diameter tubing (McMaster-Carr part no. 5454K74) or plugged from the inside with 316

stainless steel cap screws. The ends of the cylinder were removable to allow access to the

interior of the cylinder so that tubing could be connected to the ports. The tubing was fed
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Figure 4.3: Ports were built into the wall of the inner cylinder, so that fluid could be
injected/withdrawn in order to induce streamwise vorticity.

through the bottom shaft, which was hollowed out. It was connected to an injection system

(described below) with 2-way micro tubing valves (Cole-Parmer part no. EW-06473-10),

which allowed the ports to be closed off when the injection system was not in use. The ports

that were used for the injection/withdrawal of fluid (hereafter called jets) were fitted with

precision ruby orifices with a radius rjet of 0.381 mm (part no. RB-82453, Bird Precision,

Waltham, Massachusetts). These ensured that the flow from the jets was as uniform as

possible. Unused ports were smoothed over with bees’ wax. Mechanical drawings for the

new inner cylinder are provided in Appendix D. When used with the glass cylinder from

the Duran Group, the new cylinder gives a gap of 7.61 mm and a radius ratio of 0.905.

4.2.2 Injection System

The injection system was based on the design used by Peixinho and Mullin [204] in their

investigations of finite-amplitude thresholds for transition in pipe flow. It consisted of a Har-

vard Apparatus No. 55-2222 syringe pump (Harvard Apparatus, Holliston, Massachusetts),

which was modified as shown in Figure 4.4 to allow it to inject and withdraw fluid si-

multaneously. Because the syringe pump takes a relatively long time before coming up to

speed, the flow was first diverted into a reservoir. Once the syringe pump had accelerated
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to full speed, a high speed solenoid valve switched the flow into the lines feeding the jets

as shown in Figure 4.5. A 3-way particle tolerant solenoid valve (Cole-Parmer, Vernon

Hills, Illinois, part no. EW-98305-42) was chosen for its excellent chemical resistance (for

use with the NH4SCN-based refractive index matching solutions used during tomographic

PIV measurements) and short response time (15 ms). The valves were controlled with a

computer using TTL signals from Measurement Computing’s USB-1208FS data acquisition

module to switch a driver circuit (see Appendix B.4 for details).

4.2.3 Flow Visualization and Working Fluid

The working fluid was distilled water with 2% Kalliroscope AQ 1000 added for flow visualiza-

tion. For more details on Kalliroscope visualization, the reader is referred to Section 3.2.2.

The flow was illuminated with fluorescent lamps as shown in Figure 3.9. While the temper-

ature of the fluid was not actively regulated, it was monitored by using a Thermo Scientific

ERTCO ASTM 63C compliant full immersion mercury thermometer with 0.1◦C resolution

and found not to vary by more than 0.25◦C with a mean temperature of 24.2◦C. The fluid

was periodically stirred by spinning the inner cylinder at high speed to ensure a uniform

distribution of Kalliroscope. The syringes in the injection system were cycled through the

jets several times to ensure that any air in the supply lines was removed. Special care was

taken to remove any air bubbles from the test section because these were observed to be

quite efficient at triggering turbulence.

4.3 Experimental Procedure

The outer cylinder was first accelerated at a moderate rate to Reo= 5168 with the inner

cylinder held fixed. Preliminary experiments showed that the flow would never become

turbulent below this Reynolds number (see Figure 4.6). The rotation rate of the outer

cylinder was then slowly increased at a rate of 0.02 Hz/s2. This slow acceleration was

necessary to ensure that the flow did not become turbulent spontaneously. Once the desired

Reo was reached, the flow was allowed to equilibrate for 60 seconds (∼ 1 viscous diffusion

time across the gap). The flow was then perturbed by injecting and/or withdrawing a

small amount of fluid through the jets on the inner cylinder wall. The volume of the
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Figure 4.4: The Harvard Apparatus No. 55-2222 syringe pump was modified so that it could
be used for simultaneous injection and suction. An aluminum syringe holder was added on
the left end of the pump, allowing a second set of syringes to operate in the direction
opposite to the manufacturer’s design. An aluminum block was bolted to the pusher block
allowing the plungers on the syringes, which normally just rest against the pusher block,
to be bolted to it. The barrels of syringes on the right side of the pump were bolted to the
aluminum blocks. The barrels of syringes on the left side of the pump were clamped to the
syringe pump body. Together, these modifications allowed the syringe pump to draw fluid
in addition to injecting it and operate in both directions.

reservoir

syringe pump

inner cylinder

high speed
solenoid
valve

(a) (b)

Figure 4.5: Schematic of the injection system. (a) When the syringe pump first starts, the
solenoid valves divert the flow so that fluid is injected/withdrawn from a reservoir. (b)
Once the pump is up to speed the valves are switched allowing fluid to flow to/from the
inner cylinder. After the perturbation has been active for the desired amount of time, the
valves are switched back, and the syringe pump is ramped down. The fast action of the
solenoid valves allows for boxcar shaped perturbations, similar to those used by Peixinho
and Mullin [204].
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Figure 4.6: Preliminary experiments were conducted where the jets were run continuously
for 30 seconds at a prescribed volumetric flow rate Qjet. Conditions that led to turbulence
are marked with blue circles( ). Conditions that remained laminar are marked with red
squares (�). Turbulence was never observed for Reo < 5168.

fluid injected/withdrawn from the test section varied from experiment to experiment but

never exceeded 0.2% of the test section volume. The volumetric flow rate through the jets

never exceed 0.7% of the flow rate through a meridional cross-section (θ = constant) of

the test section. Similar perturbations have been used in studies of transition thresholds

in pipe flow [131, 200, 204], in studies of the subcritical transition to turbulence in plane

Couette flow [115, 198], and in the study of turbulent transients in Taylor-Couette flow by

Alidai [158].

The injection created a small localized perturbation, which was monitored by eye. Trials

were categorized according to the evolution of the perturbation. Perturbations were typi-

cally observed either to decay completely within a couple of revolutions of the outer cylinder

(1− 2 seconds) or to grow and lead to turbulence that filled most of the gap. If turbulence

was still present after 15 seconds (∼ 30 revolutions of the outer cylinder), the perturbation

was considered successful. A fraction of the successful trials were observed for 3 additional

minutes. A few long-lived transient events similar to those discussed in Chapter 3 were
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observed. These trials were categorized as successful since they put the system in the basin

of attraction of the turbulent state, regardless of whether this is actually asymptotically

stable.

4.4 Results

The experiment described above was repeated 20 times each for different combinations of

Reo and volume flow rate Qjet through the jets. The injections lasted 250 ms. The jets were

configured as shown schematically in Figure 4.3 so that the four jets alternated between

injecting and suctioning fluid. This type of perturbation will henceforth be referred to as

a push/pull perturbation to distinguish it from pure injection or pure suction. The results

of these experiments are summarized in Figure 4.7. As expected, larger perturbations

were found to be more successful at triggering turbulence. Furthermore, the size of the

perturbation required to trigger turbulence was found to decrease with increasing Reo.

A clear threshold was observed with the probability of a perturbation being successful

increasing rapidly for increasing perturbation flow rate at fixed Reo.

In order to study the dependence of the critical perturbation amplitude quantitatively,

a nondimensional perturbation amplitude in the spirit of the one used by Peixinho and

Mullin [204] was adopted. The flux through the jets was made nondimensional by scaling

it by the flux through a meridional plane of the Taylor-Couette apparatus ΦTC , which was

calculated under the assumption that the mean flow in the gap is purely azimuthal and

flows with a mean velocity of one half of the outer cylinder speed Uo. The nondimensional

perturbation amplitude A is then given by:

A =
Φjet

ΦTC
=

Qjet/2πr
2
jet

1
2 Uo Γd2/Γd2

=
Qjet

πr2
jet Uo

. (13)

As shown in Figure 4.8, the success rate for perturbations as a function of nondimen-

sional perturbation amplitude varies significantly with Reo. As Reo is increased, the sharp-

ness of the transition becomes more pronounced as is evidenced by comparing the data for

Reo = 6687 and the data for Reo = 8369. In the former case, the increase in the success

rate is gradual, but in the latter case the transition is quite sharp and occurs at smaller
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Figure 4.7: The probability that a 250 ms push/pull perturbation with flow rate Qjet will
trigger the transition to turbulence as a function of Reo. Each cell summarizes the results of
20 experiments and is color coded by the fraction of events that led to persistent turbulence.

perturbation amplitudes. Despite their quantitative differences, all the curves share a char-

acteristic S-shape, which suggested that they might be made to collapse onto a single curve

by proper rescaling.

Experiments and theoretical predictions for other shear flows suggest that the critical

amplitude should scale like Reγ , where γ ∈ [−21/4,−1] [131, 197–200, 202–205, 207–210].

The data was rescaled by Reγo for the different values reported in the literature and it was

determined that scaling the perturbation amplitude by Re 2
o resulted in the best collapse of

the data. In order to keep the scaling parameter of O (1), the Reynolds number itself was

scaled by Remin = 5168, which was the highest Reynolds number for which no long-lived

turbulence was observed in preliminary experiments independent of perturbation strength.

The rescaled data are shown in Figure 4.9.3 The collapse of the data onto a single master

curve by rescaling suggests that the critical perturbation amplitude scales like Re−2
o . A more

3Since the scaling by Remin multiplies all the data equally, the choice of Remin does not affect any of
the results presented here.
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Figure 4.8: The success rate of push/pull perturbations depends strongly on Reo.

quantitative estimate of the critical exponent was calculated as follows: First, the critical

perturbation amplitude Ac was defined as the point when 85% of trials led to persistent

turbulence. Next, the data was interpolated for each value of Reo to estimate Ac. Finally,

these data were plotted on a log-log plot of Ac vs. Reo and a linear fit was performed using

least-squares regression. This analysis yielded a critical exponent of −2.0 ± 0.4, as given

by the slope of the linear fit. The uncertainty in γ was estimated from the 95% confidence

interval for the slope parameter of the linear fit.

Experiments in pipe flow have shown that the scaling of the critical perturbation am-

plitude can vary based on the kind of perturbation used [204]. In order to test if this is

also the case in Taylor-Couette flow, a series of experiments were carried out using 250

ms perturbations that consisted only of fluid injections from two jets without suction from

the remaining two. The results of these experiments were almost exactly the same as those

using push/pull disturbances and yielded a critical exponent of −1.9 ± 0.6. An attempt was

made to repeat the experiments using only suction as a perturbation. However, it was found

that using suction exclusively never triggered turbulence, at least for the flow rates possible

with the available syringe pump. Flow visualization confirmed that the suction from the

jets did actually disturb the flow, but no transition was observed. Possible explanations for
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Figure 4.9: Scaling A by Re 2
o collapses the data onto a single master curve. This suggests

that the critical perturbation amplitude scales like Re−2
o .
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Figure 4.10: A linear fit on a log-log plot of Ac vs Reo yields a critical exponent of −2.0
with a 95% confidence interval of ± 0.4.
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this phenomenon are discussed in Section 4.5.

The experiments described here were carried out, in part, as preliminary flow visualiza-

tion experiments for the tomographic PIV measurements that will be discussed in Chapter 6.

One of the goals of those experiments was to study the growth of a turbulent spot from a

localized perturbation. For this reason, it was convenient to use a perturbation that fit (at

least initially) within the measurement volume of the tomographic PIV system, which spans

an arc of about 36◦. The spatial extent of the perturbation can be estimated by assuming

that the perturbation is advected by the rotating outer wall. Under this assumption the

spatial extent of a perturbation that last for a time δt is given by

L = Uo δt. (14)

For the typical Reynolds numbers studied here, this means that a 250 ms perturbation

will have an initial spatial extent of 200–250 mm. This is about 42%-53% of the circum-

ference of the test section and significantly larger than the tomographic PIV measurement

volume. For this reason, another set of experiments was conducted using perturbations that

lasted only 50 ms. The shortened duration led to perturbations that had an initial spatial

extent of about 40-50 mm and spanned an arc of 30◦ − 37◦.

The results of these experiments are summarized in Figure 4.11. Qualitatively, the

data follow a similar trend to the data for 250 ms perturbations; only perturbations larger

than a critical amplitude trigger turbulence, which becomes smaller with increasing Reo.

However, there are also some obvious differences. For one, the critical amplitude is shifted

toward larger perturbations than those observed for 250 ms perturbations. As shown in

Figure 4.13, the transition also appears to be less sharp except in the case of Reo = 8359,

where a particularly sharp transition is observed.

As might be expected from the discontinuity and lack of smoothness of the data seen in

Figure 4.13, the data are not as easily collapsed onto a master curve by rescaling. The best

results were obtained by rescaling the data by Re
5/2
o and are shown in Figure 4.12. Obvious

deviations from the master curve can be seen for the less continuous data sets (Reo = 6687

and Reo = 8359). A critical exponent of −3.1 was calculated using the same procedure as
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Figure 4.11: The probability that a 50 ms push/pull perturbation with flow rate Qjet will
trigger the transition to turbulence as a function of Reo. Each cell summarizes the results of
20 experiments and is color coded by the fraction of events that led to persistent turbulence.
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Figure 4.12: The transition between perturbations that successfully initiate turbulence and
those that do not is not as sharp for 50 ms perturbations as for 250 ms perturbations. The
critical amplitude is also observed to increase.
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Figure 4.13: The data for perturbations with a 50 ms duration do not collapse as neatly
upon rescaling as the data for perturbations lasting 250 ms.

was used for the 250 ms data set. This had a large margin of error of ± 1.5. If only the

smoother data sets (Reo= 7105, 7523, and 7941) were included, the critical exponent was

estimated to be −2.6 ± 1.4.

4.5 Summary and Discussion

The experiments reported in the previous section demonstrated that like other linearly sta-

ble shear flows, Taylor-Couette flow with the inner cylinder held fixed can be destabilized

by finite-amplitude perturbations. In order for transition to occur, the outer Reynolds

number must be sufficiently high and the perturbation must exceed a critical amplitude,

which becomes smaller with increasing Reo. For a range of perturbation amplitudes, the

process is probabilistic with some perturbations leading to turbulence while other qualita-

tively similar ones relaminarize immediately. This reflects the complicated structure of the

boundary separating the turbulent and laminar regions in state space [9,220]. As in the case

of spontaneous transition, if the perturbation is successful, the transition is catastrophic and

the flow evolves immediately into a state with complex spatiotemporal dynamics at many

different spatial and temporal scales. As in the experiments of Chapter 3, these states are

characterized by the coexistence of turbulent and laminar domains.
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Some preliminary experiments reported here showed that for the Taylor-Couette ge-

ometry used here there is a minimum Reynolds number of ∼ 5168 below which sustained

turbulence could not be observed. Similar observations have been made by various authors

in other shear flows like plane Couette [67,115,198] and pipe flow [131,141,204,208]. Over

the last decade researchers have confirmed the existence of exact finite-amplitude solutions

to the Navier-Stokes equations in these flows [24, 27–30, 221]. These unstable solutions are

thought to guide the evolution of turbulent dynamics. However, experimental and numeri-

cal studies have shown that there exists a range of Reynolds numbers between where these

solutions first emerge and where sustained turbulence is first observed. This observation

brings the obvious question: “What happens in state space between the appearance of

the first coherent structures and the experimental observation of turbulence?” [9]. The

2014 discovery of finite-amplitude solutions in subcritical regimes of Taylor-Couette flow by

Deguchi et al. [129], adds another player to this discussion and the measurements provided

here could provide guidance for numerical studies of this intermediate regime.

The next set of experiments showed that the critical perturbation amplitude scales

algebraically with Reo, i.e., Ac ∼ Reo
γ . For push/pull perturbations lasting 250 ms, a

critical exponent of −2 was found. A similar value of −1.9 was found for perturbations

where only injection was used. It is interesting to contrast this finding with the pipe flow

results of Peixinho and Mullin [204], who found that push/pull perturbations had threshold

amplitudes about an order of magnitude smaller than simple injection and that the two

kinds of perturbations led to different critical exponents. They hypothesized that it is

suction that gives push/pull disturbances their additional effectiveness. The reason for this

is that suction draws fast moving fluid from the center of the flow toward the wall and

generates an inflection point in the velocity profile, which leads to instability according

to Rayleigh’s inflection point theorem [222]. Peixinho and Mullin did not directly test

this hypothesis with suction only experiments. In this context, it is interesting to note

that in the experiments described here, perturbations consisting only of suction were never

observed to trigger turbulence, even at the highest flow rates possible with the current

system. An obvious solution to this puzzling observation would be to assume a malfunction
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of the suction system. However, flow visualization experiments showed clear evidence that

the base flow was perturbed.

In order to understand the asymmetry between injection and suction, it is informative

to calculate the typical velocity of the fluid as it exits/enters the jets. This is given by

Φjet =
1

2

Qjet
πr2

jet

, (15)

where the factor of two comes from the fact that the jets were connected in pairs. For the

range of volumetric flow rates used here, Eq. 15 gives typical flow velocities between 37 and

82 cm/s. At these velocities, the jet would cross the gap in between 8 and 20 ms. Taken

together with the fact that the gap between the cylinders is only about 10 times the jet

diameter, it is obvious that the jet does not have the time nor room to become smoothly

entrained into the mean flow, so it collides with the outer cylinder wall. When it does so,

the jet itself becomes turbulent. On the other hand, when fluid is withdrawn from the test

section through the jet nozzles, it goes into the small diameter tubing that leads back to

the syringe pump and no additional turbulence is induced. Therefore, it becomes apparent

that for the experimental configuration used here, the instability mechanism is mediated

by the complex interaction of the jets with the outer cylinder wall and not by the type

of smooth injections of streamwise vorticity that were conceived when the perturbation

system was designed. The similar scaling laws observed for push/pull perturbations and

pure injections can then be understood as emerging from the fact that only the injection

part of the push/pull disturbance is significantly perturbing the flow. Naturally, it would

be ideal to have a perturbation with simple structure like the one shown in Figure 4.3,

but it was found that if the injection rate was low enough so that the jet was able to turn

before colliding with the outer wall, the perturbation was too weak to cause transition for

the entire range of Reynolds numbers studied. While it is possible to drive the system to

higher Reo, where the system may be more sensitive to these small perturbations, the flow

becomes highly unstable beyond Reo ∼ 9000 and it becomes difficult to prepare the system

so that it does not become turbulent spontaneously.

When the perturbation duration was reduced to 50 ms, it was observed that the system
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Figure 4.14: In pipe flow, the critical perturbation amplitude increases nonlinearly as the
“length” of the perturbation drops below∼ 6 pipe diameters. The length of the perturbation
is given by the mean flow speed times the duration of the perturbation. Adapted from B.Hof,
A. Juel, and T. Mullin, “Scaling of the Turbulence Transition Threshold in a Pipe”, Phys.
Rev. Lett. 91, 244502, 2003. Copyright 2003 by the American Physical Society.

generally required larger perturbations to undergo transition for a given Reo. This observa-

tion is in qualitative agreement with the pipe flow experiments of Hof et al. [200,204,208],

who showed that when the length of the perturbation (defined as the mean flow speed

times the duration of the perturbation) is less than about 6 pipe diameters, the critical

perturbation amplitude increased nonlinearly with decreasing perturbation length (see Fig-

ure 4.14). Using a similar definition of perturbation length using one half the outer cylinder

wall speed as proxy for the mean flow speed, the perturbations used here ranged between

2.6 and 3.3 gap widths for the 50 ms perturbations and 13.2 and 16.5 gap widths for the 250

ms perturbations. Assuming that the results of Hof et al. map over to Taylor-Couette flow,

the difference in the critical amplitudes observed for the two data sets should be expected.

As shown by Peixinho and Mullin, however, the dependence of the critical amplitude on

perturbation duration, jet diameter and orientation, and Reynolds number is not a simple

one [204]. The relatively small data set gathered here is not large enough to draw a defini-

tive quantitative relationship between pulse duration and critical amplitude. While it is
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possible that the observed differences in critical transition amplitudes are indicative of the

underlying physics, it is also possible that some of the observed scatter in the data is due

to the fact that the response time of the solenoid valves is about 15 ms, which comparable

to the duration of the 50 ms perturbations. This could be tested by using faster valves like

the injectors from an automobile engine, which have switching times of ∼ 1 ms.4

Critical exponents were calculated for the two data sets. It was found that for 250 ms

perturbations, the critical exponent was approximately −2. For the experiments with 50 ms

perturbations, the critical exponent was between -2.6 and -3.5, although this data set was

significantly more noisy than in the 250 ms case. The observed power law dependence of

critical amplitude on Reynolds number (A ∼ Reγ) has been predicted for shear flows [207],

although the exact value can depend on the flow configuration [199]. While numerous es-

timates exist for different flows [131, 197–200, 202–205, 207–210], the work presented here

constitutes the first time that the critical exponent has been estimated for linearly stable

Taylor-Couette flow. It is interesting to note, that the majority of the critical exponents

reported for other shear flows lie in the interval γ ∈ [−1.5,−1], which makes the critical ex-

ponents calculated here somewhat unique. That being said, the critical exponents reported

here are within the bounds predicted by the theory of Kreiss et al., who established a lower

bound of γ > −21/4 for plane Couette flow based on energy considerations. This bound

has recently been improved upon by Henningson and Kreiss, who showed that γ must be

greater than −4 [211]. Although most of the experimental and numerical evidence suggests

that the critical exponents for shear flows lie between −1 and −1.5, critical exponents of

exactly γ = −2 and γ = −3 have been predicted by some early low-dimensional models of

parallel shear flows (see Ref. [214] for a detailed discussion), so the values reported here are

not outside the realm of possibility.

The values of the critical exponents reported here should be taken with a grain of salt,

given the limited data. One major source of uncertainty in these measurements is the limited

number of trials performed. The statistical uncertainty in determining the proportion of

4The perturbation system used by Tom Mullin’s group at Manchester uses the injectors for a late model
Ford Escort (unknown model year). The key is that the injectors do not have the spray nozzles used in
modern cars [223].
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√
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provide better coverage probability than normal approximation confidence interval for small
numbers of trials and for proportion estimates near 0 or 1.

disturbances that lead to turbulence with only 20 trials per combination of perturbation

amplitude and Reo can be quite large. Figure 4.15 shows the margin of error as a function of

the estimated proportion as predicted using Wilson intervals [188] for different sample sizes.

It is evident that even if 100 trials were performed for each combination of parameters, the

uncertainty in the proportion estimates would still be of order 3-8%. For N = 20, the margin

of error in the measured proportions is between 10% and 20%. The statistical uncertainty

inherent in deriving threshold amplitudes from numerical and experimental data has been

largely under appreciated in the literature and even the most detailed studies have only

used sample sizes of ∼ 40, which give uncertainties of O (10%).

Regardless of whether the actual values of the critical exponents reported here are

quantitatively accurate, the more important result is that γ < −1. A critical exponent

of exactly γ = −1, as has been reported by some authors [199, 200, 205, 220], would be

expected if transition occurred when the effects of the nonlinear advection term in the
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evolution equations for the perturbation (O
(
A2
)
) exceeded viscous dissipation (O (A/Re))

[215]. The balance of these two terms sets an upper bound on the value of γ. However, a

critical exponent less than −1 is expected when the effects of non-normal amplification are

important [207]. In this case, linear mechanisms allow small perturbations to temporarily

grow before decaying away. This transient amplification allows perturbations to grow large

enough to engage the nonlinearity and lead to turbulence. The critical exponents measured

here, suggest that transient growth may play a part in the transition to turbulence in linearly

stable Taylor-Couette flows, although how exactly this comes into play may be tricky to

discern from the complex spatial structure of the perturbations used.

4.6 Recommendations for Future Work

The pipe flow literature suggests some natural extensions to the work presented here. One

question that was not addressed here is how the specific details of the perturbation affect the

observed scaling of the critical perturbation amplitude. Experiments in pipe flow have shown

that the effectiveness of push/pull disturbances depends strongly on their orientation [204].

Jet pairs oriented at an angle to the mean flow trigger turbulence more effectively than

jet pairs oriented parallel or perpendicular to it, a fact that is reflected in different critical

exponents for the two types of perturbations. In order to unravel the complex dependence

of transition threshold on perturbation geometry, experiments could be carried out using

different jet diameters and different jet spacings. Both of these experiments could be carried

out with the existing Taylor-Couette apparatus.

The additional complexity of the Taylor-Couette geometry also suggests some extensions

to this work that have no analog in pipe flows. For example, the effectiveness of pertur-

bations in triggering turbulence could be studied as a function of aspect ratio. During the

experiments reported in Chapter 3, it was observed that it was harder to make smaller

aspect ratio configurations transition to turbulence using large global perturbations. This

suggests that finite-amplitude thresholds should show some dependence on aspect ratio.

Alternatively, localized finite-amplitude perturbations could be applied at different loca-

tions in the flow to help understand the role of secondary flows and finite-size effects on
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transition. For example, jets could be used to reinforce or suppress Ekman pumping near

the end caps in order to accentuate or curb its effect on transition.

Testing the effect of controlled finite-amplitude disturbances on the transition scenarios

observed in systems with different radius ratios may also lead to interesting results. For

example, Burin and Czarnocki [52] have noted that in small gap systems with only the outer

cylinder rotating turbulence fills the whole gap radially. On the other hand, turbulence is

concentrated near the inner cylinder for systems with a large gap. It might be of interest

to study the sensitivity of such flows to perturbations as a function of radial position. One

possible way to do this would be to use poloxamer solutions as a working fluid. These

solutions undergo a sharp gel transition as a function of temperature, which might be

employed as a local perturbation that could be triggered optically by focusing a laser at a

particular radial position.5

To date, no theoretical prediction for the critical exponent for the transition threshold

in linearly stable Taylor-Couette flow has been made. Meseguer has shown that non-normal

amplification should play a role in this regime [224], which suggests that the critical exponent

should be less than −1. As mentioned earlier, Kreiss et al. have calculated a lower bound for

the critical exponent in plane Couette flow of −21/4. In their paper they assert that their

theory “may be extended to other geometries such as Hagen-Poiseuille and Taylor-Couette

flow,” with only minor modifications. While this is outside of the scope of this dissertation,

such an extension might prove significant. Improvements to the theory of Kreiss et al. by

Henningson and Kreiss [211] should be taken into account in any such theory. Numerical

simulations on the growth of perturbations in Taylor-Couette flow are also missing from the

literature and could provide useful scaling information with which to compare experiments.

Such a numerical study should be designed keeping in mind the type of perturbations that

are experimentally accessible. A discussion of this issue in the context of pipe flow is

provided by Trefethen et al. [213] and by Mellibovsky and Meseguer [202].

As discussed earlier, Maretzke et al. [219] have recently expanded the earlier work of

5These solutions have significantly higher viscosity than water, so much higher rotation rates might be
necessary to observe turbulence. They are also non-Newtonian, which presents further complications.
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Meseguer [224] and performed analytical and numerical calculations of the optimal transient

growth rate in different flow regimes. They found that the maximal transient growth rate

is correlated with the experimentally observed subcritical transition boundaries. This led

them to propose that the maximal non-normal amplification rate in a particular flow regime

may be a useful measure of subcritical instability in Taylor-Couette flow. Maretzke et al.

also proposed a semi-empirical model, which estimates that a threshold shear Reynolds

number6 ReT below which turbulence cannot be sustained is approximated by

ReT = a(η)−3/2 (880 ± 370) , (16)

where

a (η) = ao + a1η

(
1− 1

3
η2

)
+ a2η

2

(
1− 2

3

)
(17)

with a0 = 9.218 × 10−3, a1 = 0.1198, and a2 − 9.072 × 10−2. This predicts a threshold

shear Reynolds number between 35985 and 88198 for the geometry used here, which is

significantly higher than the observed value of 4910. However, the geometry used here has

a small aspect ratio (Γ= 5.26), so it is possible that their theory, which assumes infinite

cylinders, does not apply. Extending the preliminary work presented to a larger variety of

geometries could be used to test the validity of their model.

One final point that was not discussed earlier is the relatively large scale of the per-

turbations needed to successfully trigger turbulence in linearly stable Taylor-Couette flow.

These perturbations have fluxes of the same order as the streamwise flux in the base flow,

i.e., A ∼O (1), even though the fluid volumes involved are actually quite small. While it is

difficult to compare the critical amplitudes even for different experimental implementations

of the same flow [213], it is interesting to note that the critical perturbation amplitudes in

pipe flow experiments are of O
(
10−2

)
−O

(
10−3

)
[204]. It is currently unknown whether

this large discrepancy is actually physical, but given that the perturbations were nondi-

mensionalized in a similar fashion to Ref. [204], the difference is curious. A speculative

argument may be made that this difference has something to do with the added stability

that is afforded to Taylor-Couette flows by rotation. This is supported by the observation

6See Ref. [12] for a discussion of shear Reynolds numbers.
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that, even at large amplitudes, pure suction perturbations failed to trigger turbulence. Only

the strongly nonlinear interaction between the injected jets and the outer cylinder wall was

observed to initiate the transition to turbulence. It is possible that experiments for differ-

ent counter-rotating, but linearly stable, Taylor-Couette flows might provide a resolution to

this question. In such an analysis, the effects of shear and rotation could be separated by

considering the control parameters proposed by Dubrulle et al. [12], as discussed in Sections

3.5.5 and 3.7.2.
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CHAPTER V

NUMERICAL SIMULATIONS OF THE LAMINAR VELOCITY FIELD

FOR FINITE-SIZE TAYLOR-COUETTE FLOW

Researchers going back to Couette and Mallock have noted that the flow in experimental

Taylor-Couette systems deviates from the ideal Couette profile (Eq. 2) due the influence

of the end walls. Here, the no slip boundary condition drives the flow in such a way that

pressure forces are not balanced by centrifugal effects [48], leading to the formation of a pair

of large axisymmetric vortices known as Ekman cells [13]. These can result in significant

distortion of the azimuthal velocity profile and the emergence of weak axial and radial flows

[46]. As part of the effort to understand the phenomenology of the subcritical transition,

the laminar flow was numerically computed in finite domains with the same geometry as the

experimental apparatus to check how closely the experimental flow approximated the ideal

laminar solution. The simulations also provided a reference against which tomographic PIV

measurements could be calibrated and proved useful in locating of the measurement volume,

as will be discussed in Section 6.4.1. The simulations were carried out using the commercial

computational fluid dynamics package Fluent 14.5, which is available as part of the ANSYS

Workbench engineering simulations platform (ANSYS Inc., Canonsburg, Pennsylvania).

The rest of this chapter is organized as follows: Section 5.1 formulates the problem as an

axisymmetric swirling flow. Section 5.2 discusses the details of the computational domain

and Section 5.3 outlines the numerical methods used. The results of the simulations are

presented in Section 5.4 and their implications for experiments are discussed in Section 5.5.

5.1 Problem Formulation

The problem was formulated as an incompressible, steady, axisymmetric swirling flow in

which the azimuthal or “swirl” velocity component is governed by the following momentum
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equation:

∂

∂t
(vθ) +

1

r

∂

∂z
(rvzvθ) +

1

r

∂

∂r
(rvrvθ) = ν

1

r

∂

∂z

[
r
∂vθ
∂z

]
+ ν

1

r2

∂

∂r

[
r3 ∂

∂r

(vθ
r

)]
− vrvθ

r
. (18)

This is solved concurrently with a two dimensional Navier-Stokes equation for the radial

and axial velocities. The fluid properties were adjusted according to the parameters of the

working fluid in the experiment that was to be simulated. No slip boundary conditions were

used for the end caps and the cylinder walls.

5.2 Domain Geometry and Meshing

The computational domain was generated using ANSYS’s DesignModeler. It consisted of a

simple rectangle spanning the radial and axial dimensions of the experimental test section.

The end walls rotated with the outer cylinder. Meshing was performed using ANSYS’s

Meshing software. Because of the simplicity of the geometry, a rectilinear grid was used.

The grid spacing was biased in both the axial and radial directions to improve resolution

near the walls where more complex flow features were expected. The grid resolution was

increased until further increases in resolution did not improve the solutions. The solutions

were also validated against three-dimensional calculations by Michael Krygier of Roman

Grigoriev’s group and good agreement was found.

5.3 Numerical Methods

The simulations were carried out using Fluent’s “pressure-based” solver, which is a finite

volumes implementation of the projection method. In order to accelerate convergence the

momentum and pressure correction equations were solved as a coupled system. Gradi-

ents were evaluated using a least squares cell-based method. The pressure correction was

solved on a staggered grid using PRESTO! discretization. The in-plane momentum and out-

of plane “swirl” velocity equations were formulated using a second order upwind scheme.

Pseudo-transient relaxation was used to speed up convergence. The simulation was ini-

tialized using Fluent’s “hybrid” initialization, which uses a potential flow approximation

to provide an initial guess for the solver. Convergence of the solution was monitored by

checking the absolute residuals of the continuity equation and the axial, radial, and swirl
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Figure 5.1: The azimuthal velocity profile ( ) in the midplane (z=0) deviates significantly
from ideal Couette profile (solid line). The velocities shown here are normalized by the
outer cylinder wall speed Uo.

velocities until they all fell below 10−6.1 For more details on Fluent’s implementation of the

various numerical schemes used here, the reader is referred to the ANSYS Fluent Theory

Guide [225].

5.4 Results

The axisymmetric laminar solution was simulated for an aspect ratio of 5.26 at an outer

Reynolds number of 7750 with the inner cylinder held fixed. As might be expected from the

work of Coles and Van Atta [46], the velocity profile significantly deviates from the ideal

Couette profile (see Figure 5.1). The flow is faster than predicted throughout the gap and

has a strong gradient near the inner cylinder wall. As shown in Figures 5.2 and 5.3a, the

azimuthal velocity profile is fairly uniform except in a thin boundary layer near the end

caps.

The distortion of the azimuthal velocity profile is driven by secondary axial and radial

flows that are driven by the no-slip boundary condition at the end caps. This prevents

1The velocity equations converged much faster than the continuity equation. The absolute residuals of
the velocities in the converged solutions were O

(
10−8

)
for most simulations.
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Figure 5.2: The azimuthal velocity profile at mid-gap (r = 1/2(ri + ro)) does not vary
significantly as a function of the axial coordinate z, except for thin boundary layers near
the end caps, which have a thickness of approximately 2 mm. Only the top half of the test
section is shown for clarity, but the flow is symmetric about z = 0.

the build up of a pressure gradient to balance the centrifugal force on fluid near the ends

and causes it to flow radially outward, as shown in Figure 5.3b. The strongest radial flow,

which can reach about 4% of the outer cylinder wall speed, is concentrated near the end

caps. The much weaker return flow is distributed almost uniformly throughout the rest of

the test section and drives fast moving fluid from near the outer cylinder inward leading

to the observed distortion of the azimuthal velocity profile. The radial flow is accompanied

by a slightly weaker axial flow, which is concentrated near the inner cylinder wall (see

Figure 5.3c). Together they form a pair of counter-rotating vortices called Ekman cells,

which are visible in Figure 5.3d.

5.5 Discussion

The results discussed above have important implications for experiments testing the sta-

bility of linearly stable Taylor-Couette flow. For one, they show that this experimental

configuration does not generate a faithful approximation of the ideal flow between infinitely

long cylinders. This is to be expected given the small aspect ratio of the system, which was

chosen so that fully three-dimensional direct numerical simulations with the same geometry
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Figure 5.3: Iso-contours of (a) azimuthal velocity vθ, (b) radial velocity vr, (c) axial velocity
vz, and (d) stream function ψ in the r-z plane. The computational domain has been rotated
by 90◦, so that the inner cylinder is at the bottom of the figures. (a) The azimuthal velocity
profile is mostly uniform throughout the gap with the exception of a small region near the
end caps. (b) The end caps force an outward flow, which is concentrated in a thin boundary
layer. The return flow is spread throughout the rest of the gap and is much weaker. (c)
The induced axial flow is concentrated near the inner cylinder and is weaker than the radial
flow . (d) Together, the axial and radial flows form a pair of weak, counter-rotating cells
that fill most of the gap.
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Figure 5.4: Azimuthal velocity profiles across the gap for various aspect ratios at Reo =
7750.

as the experiments could be conducted. However, it is interesting to check other experimen-

tal configurations and see if yield better results. One approach taken by researchers going

all the way back to Wendt [70] and Taylor [2, 65, 68] has been to use systems with a large

aspect ratio. Figure 5.4 shows the results of simulations carried out at a variety of aspect

ratios accessible with the current apparatus. It can be seen that even at aspect ratios that

some authors [5, 13] have considered to be “large” (Γ >∼ 30), high Reynolds number flows

with only the outer cylinder rotating deviate significantly from the ideal flow profile.

The observed distortions also present challenges for particle image velocimetry (PIV)

measurements of the flow. As discussed above, the flow profile in the small aspect ratio

configuration has a significant velocity gradient near the inner cylinder wall. Resolving

velocity gradients using PIV is difficult in general [226], but can be especially tricky if the

gradient is near a wall. Any interrogation window that encompasses the wall will necessarily

contain subregions that do not contain particles. That means that these subregions do not

contribute to the correlation and thus the velocity calculated for that interrogation window

is biased toward the velocity of the subregion that does contain particles. If the velocity

gradient near the wall is large, this means that velocity measurements near the wall will

significantly overestimate the local fluid velocity.
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Figure 5.5: The azimuthal velocity profile relative as seen from the frame of reference of the
inner cylinder wall for (Rei, Reo) = (0, 7750) ( ) and for (Rei, Reo) = (−625, 1000) (�). By
counter-rotating the cylinders a subcritical flow with small velocity gradients and low mean
flow can be established. The solid lines correspond to the ideal (Γ → ∞) circular Couette
profile.

The types of simulations described here can help inform future experiments. Recently,

additional calculations were carried out as part of ongoing studies of subcritical transitions

to turbulence in counter-rotating flows. The same Fluent code and computational domain

were used but the boundary conditions were adjusted so that Reo = 1000 and Rei = −625.

This flow was observed to become spontaneously turbulent in flow visualization experiments

when the inner cylinder Reynolds number was increased to about 628. Once it becomes

turbulent, the transition exhibits hysteresis, suggesting that the transition is subcritical.

Figure 5.5 compares the results of these simulations to the velocity profile computed when

only the outer cylinder was allowed to rotate. It can be seen that even though this flow is

close to unstable, it does not have particularly strong velocity gradients. Furthermore, the

velocities are much smaller so that the cross-correlation step in tomographic PIV should be

significantly faster since the search radius for correlation peaks could be smaller. The flow

could also be imaged a lower frame rate meaning that the flow could be observed for longer

periods of time. Because the mean flow rate is close to zero, turbulent structures should
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advect by the measurement volume much more slowly so that their dynamics might be

studied more effectively. At this time, the injection system is not configured for injections

while the inner cylinder is rotating but this could be achieved with a rotary joint (e.g.,

McMaster-Carr part no. 9177K512).
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CHAPTER VI

IMPLEMENTATION OF TOMOGRAPHIC PIV FOR

TAYLOR-COUETTE FLOWS

Recent advances in computational power have spurred on the development of a new un-

derstanding of turbulent dynamics based on dynamical systems theory [9, 10, 24, 25, 227].

In this framework, a particular fluid flow can be thought of as a trajectory in an infinite-

dimensional state space comprised of all possible flows. Each instantaneous velocity field

then corresponds to a point in this space. The dynamics of trajectories are guided by

unstable invariant solutions called exact coherent structures, which guide the flow in the

same manner that fixed points, limit cycles, and periodic orbits guide dynamics in low-

dimensional dynamical systems. The numerical evidence for existence of exact coherent

structures is extensive [25,27–31,54,126,127,129,221,228–232] and a unified picture of their

role in turbulent dynamics has begun to emerge [8, 9, 24,26,227,233–239].

On the experimental front, however, progress has been slower. Because of their inherent

three-dimensionality, finding evidence for the existence of exact coherent structures puts

even today’s most advanced experimental techniques to the test. This chapter presents

some of the first attempts at spatially and temporally-resolved measurements of three-

dimensional flow structures in turbulent Taylor-Couette flow using tomographic particle

image velocimetry (PIV). This recently developed velocimetry technique shows promise in

providing experimental support to ongoing numerical and theoretical studies. Section 6.1

reviews earlier studies of Taylor-Couette flow using different variants of PIV. Section 6.2

provides an in-depth description of the tomographic PIV system, including details pertain-

ing to the design of a custom-built three-dimensional calibration target that was fabricated

as part of this work. The experimental procedure and data processing methods are discussed

in Section 6.3. A discussion of data post-processing techniques is presented in Section 6.4.

These include visualization techniques for volumetric data, as well as methods to locate the
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measurement volume relative to the natural cylindrical coordinate system to allow the com-

parison of experimental data with numerical simulations. Some preliminary experimental

results are presented in Section 6.5. These include tomographic PIV measurements of the

laminar profile, Taylor vortices, and the growth of localized perturbations generated using

the injection system described in Chapter 4. A summary is provided in Section 6.6.

6.1 Background

6.1.1 Previous Investigations of Taylor-Couette flow Using PIV

While PIV has become a workhorse in experimental fluid mechanics over the last two

decades [226,240], its use in the study of Taylor-Couette flows has been comparatively lim-

ited. In 1997, Baumert et al. were the first to use planar PIV in Taylor-Couette flow. The

used it to study the viscoelastic instability of a Boger fluid [241]. This was followed shortly

thereafter by a 1998 paper by Wereley and Lueptow, who used planar PIV to measure the

radial and axial velocities of non-wavy and wavy Taylor vortex flow in a meridional plane

(θ = constant) [242]. They found that while the velocity field for Taylor vortex flow agreed

with what one would predict from flow visualization experiments, the spatiotemporal dy-

namics of the vortex cores in wavy Taylor vortex flow are quite complicated with significant

interactions and fluid transport between adjacent vortices. Wereley and Lueptow extended

this work to Taylor-Couette flows with imposed axial flow in 1999 [243].

About the same time Malkiel et al. used planar PIV to study the evolution of finite-

amplitude perturbations to linearly stable Taylor-Couette flows [99]. By measuring the

velocity field in the midplane of the system, they were able to show that, in certain co-

rotating regimes, sufficiently large perturbations near the inner cylinder wall could grow to

form hairpin vortices that separated from the wall and were stretched by the mean flow.

Their results agreed well with earlier theoretical predictions by Levinski and Cohen [98].

Planar PIV has since been used by a variety of researchers. Wereley et al. [244] studied

transport in particle-laden Taylor-Couette flows with a porous inner cylinder. Judat et al.

used PIV to study the effects of macro- and micro-scale mixing on precipitation dynamics

in a Taylor-Couette reactor with axial flow [245]. Smieszek and Egbers used planar PIV
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to study flow bifurcations in Taylor-Couette flows of non-Newtonian fluids [246]. Wang et

al. performed planar PIV measurements of turbulent Taylor vortex flow [247]. Coufort et

al. studied the relationship between hydrodynamics and flocculation in a Taylor-Couette

reactor [248]. Racina and Kind used PIV to study local dissipation rates of turbulent

kinetic energy in turbulent Taylor-Couette flow [249]. Abcha et al. used PIV to establish a

qualitative relationship between the reflected light intensity in Kalliroscope visualizations

and the local radial velocity [183]. Deng et al. used PIV to study of the formation of

Taylor vortices in a large gap, small aspect ratio system [250]. Lee et al. used planar PIV

to study the effects of axial wall slits in the outer cylinder on the supercritical transition

sequence [251]. Sathe et al. used PIV in their study of the transition sequence in a two

fluid Taylor-Couette configuration [252]. van Hout and Katz studied the mean flow and

turbulent statistics in high Re counter-rotating Taylor-Couette flow [253]. Huisman et

al. [254] performed planar PIV measurements to study angular momentum transport in

strongly turbulent (Rei up to 2 × 106) Taylor-Couette flow, finding good agreement with

the scaling predicted for the so-called ultimate turbulence regime [255].

The first and, until quite recently, only measurements of a three-dimensional velocity

field in Taylor-Couette flow were performed by Akonur and Lueptow in 2003 [256]. By

exploiting the temporal periodicity of wavy Taylor vortex flow, Akonur and Lueptow were

able to reconstruct the full three-dimensional field by phase-averaging a series of planar PIV

measurements in different latitudinal (z = constant) and meridional planes. In an accompa-

nying paper [257], Akonur and Lueptow used these three dimensional velocity measurements

to study the role of chaotic advection in the mixing properties of these flows. More recently,

Ravelet et al. performed stereoscopic PIV measurements of turbulent Taylor-Couette flow.

This technique allowed them to measure all three velocity components in a meridional

plane [258]. These data were used to study the origin of changes observed in torque scaling

as the rotation number Rω (see Section 3.7.2) was varied at high Reynolds number.
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6.1.2 Volumetric PIV

The recent advent of volumetric velocimetry techniques [259] has made it possible to study

the types of complex three-dimensional structures that arise in transitional Taylor-Couette

flows. These techniques include holographic PIV [260–264], scanning light sheet PIV [265–

268], defocusing PIV, and tomographic PIV. Each of these techniques has its own advantages

and drawbacks. Brief reviews of the operating principles of each of these techniques are

provided in the book by Adrian and Westerweel [226]. The advantages and disadvantages

of several of these techniques are reviewed in the article by Arroyo and Hinsch [259].

In holographic PIV, the particle positions are recorded on holographic film. The holo-

gram is then projected and the particle positions are reconstructed by scanning a camera

through the three-dimensional projection. This process is slow and requires developing of

holographic film in dark room conditions, making it unsuitable for time-resolved measure-

ments of the evolution of turbulent structures [269]. Furthermore, while holographic PIV

provides very high spatial resolution [261], the required optics are quite complex and tech-

nical limitations constrain its applicability to small measurement volumes of a few cubic

millimeters [270]. This makes it unsuitable for the study of the spatially extended turbulent

structures observed in the turbulent Taylor-Couette flows in the subcritical regime. Recent

attempts have been made to address some of the shortfalls of holographic PIV by replacing

holographic film by digital recordings [263,271], but the technique is not yet robust enough

to perform the kind of spatially- and temporally-resolved measurements that are required

to study the dynamics of turbulent flows.

Scanning light sheet PIV (SLS-PIV) is a variation of basic planar PIV where the light

sheet is scanned through a volume and a series of images are taken with the light sheet

illuminating different planes [265–268]. The idea is that if these are taken at sufficiently

short time intervals, the particle field is essentially frozen in time and the three-dimensional

particle field can be reconstructed. While this approach allows the use of high seeding

densities and hence provides high spatial resolution, the assumption that the flow does not

evolve as the laser sheet scans through the volume sets an obvious limit on the temporal

resolution of the measurement. This technique shows great promise in moderate speed flows
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but is not easily extended to flows with velocities higher than about 1 m/s [270]. The curved

interfaces present in Taylor-Couette setups make scanning the light sheet uniformly through

the measurement volume tricky and make SLS-PIV difficult to implement in this geometry.

It may be possible to overcome these difficulties by using careful ray-tracing in design of the

optics train. This approach has been used recently to perform high-precision laser Doppler

velocimetry measurements of Taylor-Couette flow at high Reynolds numbers [272], although

it is unclear if this method would be easy to implement for volumetric illumination by a

scanning light sheet.

Another approach that has been employed to achieve volumetric measurements of flow

fields is defocusing PIV [273–276]. In this technique, the whole measurement volume is

illuminated simultaneously and imaged using three offset apertures using one [273] or more

sensors [275]. Because the apertures are offset from the optical axis, a single particle is

projected onto the sensor not as a single point, but as a triangular arrangement of defocused

spots. The size of the triangle is related to the the distance between the imaged particle

and the focal surface of the lens [277],1 so that given knowledge of the aperture geometry

and the recorded images, the three dimensional locations of the particles can be extracted

for PIV interrogation. The simplicity of defocusing PIV makes it an attractive candidate

for the study of turbulent dynamics, but the spatial resolution and maximum measurement

volume of commercially available defocusing PIV systems is still limited.

Originally introduced by Elsinga et al. in 2006 [279], tomographic PIV has recently

emerged as flexible option for three-dimensional velocity measurements [270]. Like defocus-

ing PIV, tomographic PIV uses volumetric illumination. The three-dimensional positions of

particles are reconstructed numerically from images of the measurement volume captured

from different direction using multiple cameras (typically four). Unlike in 3D particle track-

ing methods, where the positions of individual particles are directly estimated by triangula-

tion [280], the particle field in tomographic PIV is reconstructed using optical tomography

1In a sense, the multiple apertures used in defocusing PIV play the inverse role to that played by the
Hartmann mask in focusing optics in astrophotography [278].
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techniques. These are usually based on the multiplicative algebraic reconstruction tech-

nique (MART) [281], which iteratively attempts to generate the particle distribution that

resulted in the captured images. The mapping between the measurement volume and the

image sensors is generated using calibration techniques similar to those employed in stereo-

scopic PIV, although the tolerances on the calibration are more stringent in tomographic

PIV than in stereo PIV. Once the particle distribution in the measurement volume has

been reconstructed, the velocity field can be calculated using three-dimensional extensions

of standard cross-correlation algorithms typically used in planar PIV [279]. Tomographic

PIV remains an active area of research. Recent developments in the field are reviewed in

the 2013 article by Scarano [270].

Tokgoz et al. [282] have recently used Taylor-Couette flow to assess the spatial resolu-

tion and accuracy of tomographic PIV. They performed velocimetry measurements in the

circular Couette, Taylor vortex, and featureless turbulence regimes and found that tomo-

graphic PIV was able to accurately resolve the laminar and Taylor vortex regimes. In order

to test the accuracy of tomographic PIV in the turbulent regime, Tokgoz et al. used their

three-dimensional data to calculate the energy dissipation rate. They compared this result

to estimates of energy dissipation rate from torque measurements and found that tomo-

graphic PIV adequately resolved all the scales at Re = 3800, but was unable to completely

resolve the flow at Re = 14000 and 47000. As part of their study, Tokgoz et al. conducted

a systematic investigation of the effects of different parameters of PIV interrogation such

as interrogation window size and overlap on the measured dissipation rates and determined

that the resolution of tomographic PIV measurements is more sensitive to interrogation

window size changes than to changes in overlap.

6.2 Experimental Setup

The experiments described in this chapter were conducted with the same experimental

configuration described in Chapter 4. The outer cylinder was made of glass and had a

radius of 80 mm. The inner cylinder was made of naval bronze, which was powder coated

flat black and had a radius of 72.4 mm. The gap between the cylinders was, therefore, 7.6
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mm and the radius ratio was 0.905. The aspect ratio of the test section was set to 5.26 gap

widths (4.00 cm) by adjusting the position of the top end ring. In order to improve optical

access, the test section was elevated by inserting an aluminum spacer into the bottom of

the gap. Both ends of the test section (the end ring and the spacer) rotated with the outer

cylinder. The stepper motors were mounted on a separate optical table and the cylinders

were driven using timing belts to minimize mechanical noise.

6.2.1 Cameras

The flow was imaged using four high-speed Phantom v210 cameras (Vision Research, Wayne,

NJ), which can achieve frame rates of up to 2190 frames per second. These high frame rates

were needed to accurately resolve the turbulent dynamics of flows with only the outer

cylinder rotating. In this configuration, the outer cylinder wall speeds required to maintain

turbulence can be as high as 1-2 m/s. Each camera was equipped with a 105 mm f/2.8 AF

Micro-Nikor lens (Nikon Incorporated, Melville, New York). The cameras were mounted on

rigid optical rails using three-axis geared heads (model no. 400, Manfrotto, Cassola, Italy).

They were arranged in the standard “cross” configuration [283–286] shown in Figure 6.1.

The geared heads were arranged so that the fields of view of the cameras overlapped as

much as possible. The typical field of view spanned about 50 mm × 38 mm in the center

of the test section. In order to extend the depth of field across the gap, the aperture was

set f/11.

6.2.1.1 Scheimpflug adapters

As discussed by Elsinga et al. [279] and by Scarano [270], the quality of tomographic re-

construction depends on the angle subtended by the cameras. Ideally, the larger the angle

between the cameras, the better the reconstruction. In practice, the angle between the

cameras is limited by the imaging optics. When the camera sensor is not parallel to the

desired plane of focus, the image will not be uniformly in focus. This distortion can be

corrected for by tilting the lens relative to the sensor plane until it satisfies the Scheimpflug

condition [287]. For the tomographic PIV measurement reported here this was achieved

by using LaVision’s Scheimpflug Camera Lens Adapter v1 (part no. 1108196, LaVision,
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Figure 6.1: Phantom v210 cameras in the standard “cross” configuration. The cameras are
equipped with 105 mm Nikon Micro lenses, LaVision Scheimpflug mounts, and Edmund
Optics 550 nm long-pass filters.
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(a) (b) (c)

Figure 6.2: Installing the LaVision Scheimpflug Camera Lens Adapter on a Vision Research
Phantom v210 Camera (a) The Phantom v210 comes with a standard Nikon F-mount and
has a deeply recessed sensor. This prevents the use of tilt mounts directly on the camera
since their use would place lenses too far from the sensor to focus correctly. (b) This can be
remedied by replacing the F-mount with a custom face plate that puts lenses mounted on
the LaVision tilt mount closer to the sensor. (c) The tilt mount can be rotated to satisfy
the Scheimpflug condition for compound angles before locking it down with set screws.

Ypsilanti, Michigan). The v1 allows the lens to be tilted in one-dimension. By rotating the

v1 relative to the camera body, compound angles can be accommodated.

6.2.1.2 Mounting the Scheimpflug adapters

The Phantom v210 features a deeply recessed sensor housing. Therefore, attaching the tilt

mount directly to the front of the camera (e.g., via the standard Nikon F-mount or the

optional C-mount adapter) will result in the lens being too far from the sensor and limit

the working distance over which the lens can be properly focused. This can be partially

corrected by removing the F-mount and replacing it with a narrower, custom face plate

designed by Deepak Adhikari at the University of Minnesota.2 In this way, the tilt mount

(and therefore the lens) are much closer to the sensor and the range of usable working

distances improves. The tilt mount can also be rotated to satisfy the Scheimpflug condition

for compound viewing angles without having to rotate the camera body, which makes it

easier to achieve overlapping fields of view. For more details, see Figure 6.2. Mechanical

drawings for Dr. Adhikari’s original face plate design are included in Appendix C.

2Currently a postdoctoral associate in the group of Prof. Donald Webster in Georgia Tech’s School of
Civil and Environmental Engineering.
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(a)

(b)

Figure 6.3: Cutout schematic of the LaVision Scheimpflug Camera Lens Adapter with
locking screw (a) LaVision’s tilt mount works by using a spring to push on the mount head.
The head pivots on the mount body until it stops against an adjustable knob. (b) A locking
screw (UNC #4-40) was installed on the head to prevent it from oscillating. Once the tilt
mount is adjusted to the desired angle, the screw is tightened and pushes against the mount
body, locking the head in place.

6.2.1.3 Preventing vibration in the tilt mount

LaVision’s tilt mount uses a spring to push on the head, which pivots on the mount body

until it stops against an adjustment knob as shown in Figure 6.3a. This knob prevents the

head from rotating away from the body. However, it does not prevent the head from rotating

back towards the body if sufficient external forcing is applied to overcome the spring. When

the camera is subjected to mechanical vibration, the mount head can oscillate, leading to

difficulties in tomographic reconstruction. In order to prevent this, a threaded hole (UNC

#4-40) was made on mount head to allow the installation of a locking screw. When tightened

against the tilt mount body, this screw locks the head in place as shown in Figure 6.3b.

6.2.1.4 Turning camera fans on/off

The CMOS sensors on the Phantom v210 cameras can generate a lot of heat. In order to

keep the sensors cool, the cameras are equipped with several fans that provide air cooling.

The fans also introduce undesirable vibrations to the system, which can degrade the quality

of the tomographic PIV measurement, especially when long focal length objectives or high
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magnification are used. In order to reduce these vibrations, it is advantageous to turn

the camera fans off while taking data. Unfortunately, neither LaVision’s DaVis nor Vision

Research’s Phantom Camera Control (PCC) software provides a straightforward way to do

this.

However, it is possible to turn off the fans by temporarily adjusting the setpoint for

the camera’s temperature control system to a temperature much higher than the default

setting (40◦C), so that the camera senses that it is so far from overheating that cooling is

not necessary. This can be done by connecting to the camera via Telnet and issuing the

appropriate commands. Care must be taken to reset the cameras to the default setpoint

after acquiring data to prevent overheating and possible damage to the cameras.

Because each camera requires a separate Telnet session, turning the camera fans on/off

by hand can be cumbersome. However, the procedure can be automated by using TST10.exe,

a Telnet scripting tool by Albert Yale.3 TST10.exe allows the user to automatically initiate

a Telnet session and send the Telnet server (i.e., the camera) a series of commands stored

in an input file. By scripting TST10.exe calls within a batch file all the camera fans can

be turned off at a click of the mouse and automatically restarted after some predetermined

time to guard against accidental overheating.

As an example, consider the input file fan1off.txt, shown below:

100.100.103.254 7115

SEND "set hw.tsetcam 99\m"
WAIT "Ok!"

When executed from the Windows command line using TST10.exe, fan1off.txt will

initiate a Telnet session with the camera at IP address “100.100.103.254” over port “7115”

(Notice that Phantom cameras use port 7115 for Telnet instead of the usual 23.). It will

then change the setpoint for the temperature control system to “99”, so that the fans will

not come on until the sensor temperature reaches 99◦C. Finally, it will confirm that the

command has been executed by waiting for the camera to return the string “Ok!”. Once it

reaches the end of the input file, TST10.exe will terminate the Telnet session.

3This software is no longer supported by Mr. Yale but is readily available for download on the Internet.
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Separate input files must be written for each camera and include that camera’s IP

address. Individual camera IP addresses can be found by clicking on their icons in the

Setup window of DaVis or by going to the Camera Info menu within the Live tab in PCC.

Additionally, input files must be created to turn the camera fans back on (i.e., return

the temperature control system setpoint to the default 40). Then, a batch file can be

created to run all the Telnet sessions automatically. Such a file would look something like

fansoff.bat, which assumes that both TST10.exe and the various input files are stored in

C:\Users\LaVision\ and is shown below:

C:\Users\LaVision\TST10.exe /r:C:\Users\LaVision\fan1off.txt
C:\Users\LaVision\TST10.exe /r:C:\Users\LaVision\fan2off.txt
C:\Users\LaVision\TST10.exe /r:C:\Users\LaVision\fan3off.txt
C:\Users\LaVision\TST10.exe /r:C:\Users\LaVision\fan4off.txt
timeout /t 100

C:\Users\LaVision\TST10.exe /r:C:\Users\LaVision\fan1on.txt
C:\Users\LaVision\TST10.exe /r:C:\Users\LaVision\fan2on.txt
C:\Users\LaVision\TST10.exe /r:C:\Users\LaVision\fan3on.txt
C:\Users\LaVision\TST10.exe /r:C:\Users\LaVision\fan4on.txt

This batch file sends the commands to each of the four cameras in the tomographic PIV

system to turn off its cooling fans, waits for “100” seconds or for the user to hit ENTER,

and then, sends the commands to turn the cooling fans back on.

6.2.1.5 Image acquisition and timing

The four cameras were controlled using the DaVis software package, which interfaced

with the cameras via a dedicated timing unit (LaVision High Speed Controller, model

no. 1108075). This unit provides the timing signals necessary to synchronize the cameras

and trigger acquisition. The wiring diagram for a single camera is shown Figure 6.4. In

order to record images each camera requires two signals. The first of these is the frame

synchronization signal (F-SYNC), which originates from the output labeled “Cam 1”-“Cam

4” on the CAMERA port of the high speed controller. Each camera must have its own

individual F-SYNC signal, which is connected directly to the F-SYNC connector on the

camera body. DaVis mounts the cameras in order of ascending serial number4 and it is

4The Phantom v210s used here have serial numbers 9882, 9883, 9884, and 9885. Davis mounts camera
9882 as camera 1, 9883 as camera 2, etc.
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Figure 6.4: Wiring diagram for Phantom v210 camera. Blue lines denote Ethernet con-
nections using CAT-6 cables. Black lines denote connections using BNC cables. Red lines
denotes connections using USB cables.

important to connect the correct F-SYNC signal to each camera (e.g., the Cam 1 signal,

should go to camera 1). The second required signal is the trigger signal, which initiates

recording. This signal originates from the “UserTrigger” output of the CAMERA port on

the high-speed controller. Typically, all four cameras share the same trigger signal, which

is connected to the cameras through the “TRIGGER” channel on special breakout boxes

(Vision Research, model no. VRI-BOB-2T) that connect to the CAPTURE connector on

the camera bodies.

In addition to the timing signals, DaVis communicates with the cameras via Ethernet.

This connection is used to configure the various settings (exposure time, e.g.) in the camera

software. In order for DaVis to recognize the cameras, the two must be on the same TCP/IP

subnet. While it is possible to change the IP addresses of the camera via Telnet, it much

easier to configure the data acquisition computer (and any network attached storage units
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or file servers) to the correct subnet. By default the camera IP addresses reside on the

100.100.x.x subnet (subnet mask 255.255.0.0).

When the cameras are first turned on, any captured images will typically have patterned

noise in the form of vertical stripes. This can be corrected by performing an “Intensity

Correction”, which is available from the Camera dialog in the Davis Recording Window.

The intensity correction must be performed with a lens cap attached to the camera and

depends on the frame rate and exposure time settings for a particular camera. If either of

these settings is changed, the intensity correction must be repeated. Another useful feature

that can be found in the Camera dialog is the “Add an offset (+/-)” button. In order for

tomographic reconstruction to work correctly regions that do not have particles should be

as close to black as possible (i.e., have zero counts). It was found that adding an offset of

-20 counts, canceled out much of the thermal noise from the sensor, making the background

almost perfectly black.

Another aspect that was important to the work presented here was to synchronize the

start of the image acquisition sequence with the injection of fluid that was used to trigger

turbulence. This was achieved by configuring the system to accept an external trigger from

the DaVis Recording window. This setting can be found under the Device Settings tab

in the Timing menu, where it is labeled as “Source”. If this field is set to “external”, the

system will wait after the “Start Recording” button is pressed until it receives a TTL high

signal on the “Trigger” input of the TRIGGER INPUT port on the high speed controller.

An example of how such a trigger might be implemented in Matlab using a Measurement

Computing USB-1208FS is provided in Appendix B.4. The Timing menu in DaVis also

allows the capture of a fixed number of images into a rolling buffer before the trigger signal,

which is controlled in the “Trigger Image” dialog, so that events preceding the trigger by a

fixed amount of time can be recorded.

6.2.2 Nd:YLF Laser

The measurement volume was illuminated from the front of the apparatus using a Q-

switched frequency-doubled neodymium-doped yttrium lithium fluoride (Nd:YLF) laser
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Figure 6.5: Laser guiding optics (drawing not to scale).

(Quantronix 527/DP-H) with a wavelength of 527 nm. The Q-switch was externally trig-

gered using the same trigger signal used for the cameras, which was connected to the control

module via the J105 connector on the back of the unit. The 527/DP-H had a pulse dura-

tion of 150 ns, which was much shorter than any of the timescales in the flow, obviating

the need for shuttering. The short duration of the laser pulse effectively sets the exposure

during data acquisition, but it is useful to configure the cameras to the maximum allowable

exposure for the desired frame rate. This helps with the acquisition of calibration images,

which are taken using halogen illumination that is much less intense than the laser.

The location of the 220 VAC line in the laboratory made it necessary to steer the laser

beam to the apparatus as shown in Figure 6.5. This was done using Edmund Optics 45◦

Nd:YAG laser line mirrors (Edmund Optics part no. 45-991), which have greater than

98% reflectance at 527 nm. The use of high reflectivity mirrors was necessary to minimize

the losses in beam intensity since the Nd:YLF laser only had a maximum output of ∼ 4-5

mJ/pulse at 2kHz, which is at the lower limit of what is typically needed for tomographic

PIV measurements [270]. Earlier attempts using mirrors with 90% reflectance resulted in

images with poor contrast since almost 35% of the already scarce laser light was lost in the

optics train.

Because the ratio of the width to the height of the measurement volume was almost unity
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(4:3), a single 150 mm plano-convex with anti-reflective coating for 532 nm light (Edmund

Optics part no. 69-409) was used to expand the beam. Four razor blades mounted on

bar-type lens holder were used to create a rectangular aperture. This assured that the

edges of the illuminated volume were sharp and that only the more uniform central part

of the Gaussian beam was used. The relatively shallow depth of the measurement volume

(∼ 1 cm) and the small divergence angle of the lens made it so that the cross-section of the

illuminated volume varied by less 0.3 mm throughout its depth.

6.2.3 Particles

A critical part of any PIV measurement is the choice of particles [288]. A primary considera-

tion when selecting particles is that they must scatter (or in the case of fluorescent particles

emit) sufficient light to be distinguishable from the background when imaged. However,

the particles must also accurately follow the flow without changing it and be available in

sufficient quantities to be able to properly seed the flow densely enough that measurement

has the desired spatial resolution. Performing volumetric PIV in a Taylor-Couette system

with a large radius ratio like the one used here will almost always require the experimenter

to capture images of particles near a wall. This can be tricky since the light reflecting

from the walls can wash out the particle images. This can be avoided by using fluorescent

particles, which absorb the illuminating laser light and re-emit at a different wavelength.

The laser light can then be filtered out with appropriate optical filters, resulting in higher

contrast images. Another advantage of using fluorescent particles is that unlike simple scat-

tering, which is strongly anisotropic for small particles, fluorescence can be considered to

be isotropic. This means that images from different cameras will have similar brightness

and contrast, which is beneficial for the tomographic reconstruction of the measurement

volume.

In this work, the cameras were outfitted with long-pass filters from Edmund Optics

with a cutoff wavelength of 550 nm (Edmund Optics part no. 64-700), which had an optical

density of 2 in the rejection band. The filters had a diameter of 50 mm and were mounted

on 52 mm rings from old UV camera filters using hot glue, so that they could be mounted
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directly on the front of the camera lenses as shown in Figure 6.1.

6.2.3.1 Fluorescent particles for use in water

Commercial fluorescent particles can be prohibitively expensive. For this reason, custom-

made fluorescent particles were made by dyeing Sepabeads SP20SS (synthetic adsorbant

resin particles manufactured by the Mitsubishi Chemical Corporation of Tokyo, Japan)

with rhodamine following the advice of Prof. Satoshi Someya of the National Institute

of Advanced Industrial Science and Technology in Japan. Sepabeads are highly porous

particles made of cross-linked styrene-divinylbenzene and are used as a sorbent in high

performance liquid chromatography (HPLC). Prof. Someya and his collaborators have

previously used Sepabeads dyed with rhodamine to study two-dimensional, flow-induced

vibrations of cylindrical bodies in cross-flow [289].

Before beginning the dyeing process, the Sepabeads were separated by size using a set

of U.S. standard sieves with mesh openings ranging in size from 45 to 75 microns (Dual

Manufacturing Company, Franklin Park, Illinois). The majority of the particles were found

to be in the 63-75 micron range, although a significant fraction fell outside this range5. For

the work presented here, the particles in 45-53 micron range were selected and dyed by

stirring them overnight in a concentrated solution of rhodamine 6G dissolved in ethanol.

Rhodamine 6G was chosen because of its high quantum yield (∼0.95) and because its

absorption peak (531 nm) is well-suited to excitation with an Nd:YLF laser (see Figure 6.6

for more details). The particles were then washed by placing them in a No. 450 standard

sieve (32 micron mesh openings) and running tap water over them for 30 minutes. Finally,

the particles were dried for several hours in an oven at 60◦C. Drying the particles made

them easier to store and prevented the slow leaching of rhodamine into the liquid phase

that occurs if they are stored in suspension.

To use the dyed particles, they were pre-wetted by stirring them in distilled water

5Sepabeads SP20SS vary in size between 45 and 150 microns with very few particles outside of this range.
Mitsubishi Chemical manufactures a variety of synthetic adsorbent resin particles in a wide range of sizes.
Their Diaion HP20 series provides larger particles, while their MCI Gel CHP20 line offers smaller ones. Of
particular interest for use in tomographic PIV are MCI Gels CHP20/P20 and CHP20/P30, which have mean
sizes of 20 and 30 microns, respectively. These, however, are significantly more costly than Sepabeads.
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overnight. Because Sepabeads are naturally hydrophobic, a small amount of Micro-90 con-

centrated cleaning solution (International Products Corporation, Burlington, New Jersey)

was added as a surfactant to prevent clumping. Pre-wetting the particles also allowed water

to fill their pores making them closer to neutrally buoyant.

6.2.3.2 Fluorescent particles for use in ammonium thiocyanate solutions

In order to minimize the distortion caused by imaging through the curved surfaces of the

outer cylinder, a concentrated ammonium thiocyanate (NH4SCN) solution with a refractive

index matching that of the cylinder was used as a working fluid in some of this work (see

Section 6.2.4 below). While the dyed Sepabeads described above work well in water, they

tend to float in the denser NH4SCN solution making it difficult to maintain a sufficiently

high concentration in the working volume in cases where the flow does not mix well and must

be observed for extended periods of time. For this reason, more dense fluorescent particles

were made following a slightly modified version of the procedure described by Pedocchi et

al. for making particles from polyester casting resin stained with rhodamine [291].

Given the relatively low energy per pulse of the Nd:YLF laser used in this work (∼ 4−5

mJ/pulse) and the small lens apertures required to maintain particles in focus throughout

the measurement volume, the rhodamine concentration prescribed by Pedocchi et al. (0.1%

by volume) was found to be too low to provide a detectable fluorescence signal. There-

fore, particles with higher rhodamine concentration were fabricated as follows: About 100

milliliters of Aristocrat Deep Clear polyester casting resin (BDC Epoxy Systems, Santa Fe

Springs, California) was stirred together with 3 grams of rhodamine 6G powder until the

rhodamine was dissolved. This high concentration of rhodamine makes the resin opaque and

gives it an olive green color. Because rhodamine dissolves readily in the uncured polyester

resin, dissolving the rhodamine in water before mixing it (as described by Pedocchi et. al.)

was found to be unnecessary. The resin was then mixed with the catalyst as directed by the

manufacturer’s instructions and allowed to harden in a polyethylene mold that had been

prepared with Castin’ Craft mold release (Environmental Technology Inc., Fields Landing,

California). The resulting block of resin was then ground with a Ryobi 1/4 sheet sander
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Figure 6.6: Absorption and Emission Spectra of Rhodamine 6G. (a) Rhodamine 6G has
an absorption peak at 531 nm and a high quantum efficiency of 0.95 (compared to 0.7 for
rhodamine B, for example). This makes it well-suited to excitation with the 527 nm line
of a frequency-doubled Nd:YLF laser. (b) Its emission peak is at 552 nm, which is just
above the 550 nm cutoff wavelength for the long-pass optical filters used in this work. The
peak is skewed toward higher wavelengths such that 91% of the emitted light is emitted at
wavelengths higher than 550 nm. Figures adapted from spectra made publicly available by
the Oregon Medical Laser Center. [290]
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using 120 grit silicon carbide sandpaper.6 The resulting powder had a bright pink color

In order to make the particles more closely mono-disperse, the powder was wet sieved

using U.S. standard sieves. The majority of the resulting particles were found to be smaller

than finest sieve available (25 microns). Particles that were caught between the two finest

sieves (25 and 32 microns) were selected as PIV tracers for their relatively uniform size. As

can be seen in Figure 6.7, however, their shapes can vary quite substantially and are are

not particularly smooth. Estimates of the bulk density of the resin give a bulk density of

∼1.24 g/cc in agreement with the literature [291,292].

Figure 6.7: Micrographs of polyester resin particles stained with rhodamine 6G. The parti-
cles where illuminated with 488 nm light and were imaged using a Nikon Eclipse TE-2000
inverted microscope equipped with an optical long-pass filter with a cutoff wavelength of
510 nm. Images courtesy of Prof. Jennifer Curtis and Louis McLane of the Georgia Tech
School of Physics.

6The resin block can be ground much more efficiently using an electric coffee grinder but the coffee grinder
is destroyed in the process.
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(a) (b)

Figure 6.8: The heat bath was filled with a mineral oil mixture with the same index
of refraction as the glass cylinder. (a) When the test section was filled with water there
was significant distortion due to the refractive index mismatch between the glass cylinder
and the water. (b) By filling the test section with ammonium thiocyanate solution, the
distortion is reduced and the gap between the cylinders becomes apparent.

6.2.4 Refractive Index Matching

In performing tomographic PIV measurements of Taylor-Couette flow the experimenter

must perforce image through the two (inner and outer) curved surfaces of the outer cylinder.

As discussed by Ravelet et al. [258] and by Huisman et al. [272], this can introduce errors

when taking velocity measurements near the outer cylinder wall. In order to minimize

distortion from the outer cylinder, the heat bath and the test section were filled with a

refractive index-matched fluid (see Figure 6.8). A similar approach was taken by Wereley

and Lueptow [242] in their pioneering PIV measurements of Taylor-Couette flow.
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6.2.4.1 Refractive index matching using mineral oil

In order to minimize distortion from the outside surface of the outer cylinder, the heat bath

was filled with a mixture of commercially available mineral oils. McMaster-Carr sells two

grades of mineral oil. The index of refraction of the two oils as a function of temperature was

measured using an Atago 3850 PAL-RI hand-held refractometer (Atago Company, Tokyo,

Japan), as shown in Figure 6.9. The 3850 PAL-RI measures the refractive index of liquids

at 588 nm with an accuracy of ±0.0003 and was calibrated using HPLC grade water. It

was found that the light viscosity oil (McMaster-Carr part no. 3190K629) has an index of

refraction of 1.467 at 20◦C. The heavy viscosity oil (McMaster-Carr part no. 3190K632)

has an index of refraction of 1.477 at 20◦C. By mixing the two, it was possible to match

the index of refraction of the glass cylinder (n=1.473).

The manufacturer specifies the refractive index of the glass cylinder as 1.473 at 587.6 nm

[293]. However, the fluorescent particles used here have an emission peak at 552 nm, which

raises the question of whether the refractive index is correctly matched at this wavelength.

While specific data for the outer cylinder material were not available, the effects of chromatic

aberration were estimated by using publicly available data for commercial borosilicate glass

(SCHOTT BK7). The index of refraction of BK7 is about 0.0017 higher at 552 nm than

588 nm [294]. Luckily, this coincides with the increase in the refractive index of mineral

oil over this range of wavelengths, which is about 0.0018 [295], so the effects of chromatic

aberration should be small.

The index of refraction of mixtures of the two grades of oil with volume fractions of

high viscosity oil ranging from 57% to 75% were measured at room temperature (∼23◦C).

Using these data, which are shown in Figure 6.10, it was determined that a mixture with

68.8% high viscosity oil by volume would result in a mixture with an index of refraction

of 1.473. This mixture had a kinematic viscosity of 72 cSt, which made it too viscous

to pump directly with the Neslab RTE-210 refrigerated bath used in the experiments of

Chapter 3. Attempts were made at using a stronger secondary pump to pump the oil

through a heat exchanger submerged in the refrigerated bath, but it was determined that

the pump heated the oil mixture significantly, leading to visible refractive index gradients
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Figure 6.9: Index of refraction of McMaster-Carr mineral oils as a function of temperature.
N are data for heavy viscosity oil. � are data for light viscosity oil.

in the bath. Therefore, experiments were conducted at room temperature and the outer

cylinder was allowed to rotate for several minutes to mix the oil before taking data. The

temperature of the oil in the bath was monitored with an immersion thermometer and the

outer cylinder rotation rate was adjusted to obtain the desired Reynolds number in the test

section. All experiments were conducted between 23◦C and 25◦C, which meant that the

index of refraction of the mineral oil mixture varied by less than 0.001.

6.2.4.2 Refractive index matching using NH4SCN solution

Because of the high viscosity of the mineral oil, it was not possible to rotate the outer

cylinder fast enough to generate turbulence in the test section without generating significant

mechanical noise. For this reason, a refractive index matching solution based on ammonium

thiocyanate (NH4SCN) was formulated. Ammonium thiocyanate solutions have previously

been used as a refractive index-matching medium by several researchers [296–300]. NH4SCN

was chosen because its aqueous solutions have physical properties that are closer to those of

water compared to other common refractive index matching solutions like aqueous sodium

iodide solutions [301–303]. For example, whereas a sodium iodide solution with the index of

refraction of borosilicate glass has a specific gravity of ∼1.7 and a kinematic viscosity of ∼2.5
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Figure 6.10: Index of refraction of mineral oil mixtures as a function of high viscosity oil
volume fraction. The data have been compensated for variations in temperature of up to 1◦C
at the time of the data was taken by assuming a temperature coefficient of 3.45× 10−4/◦C.

cSt [303], the equivalent NH4SCN solution has a specific gravity of 1.13 and a kinematic

viscosity of 1.41 cSt at 23◦C. Such a solution can be prepared by mixing 55.1% NH4SCN

by weight in water. Because the solvation process is endothermic, it is useful to gently heat

the mixture as the the NH4SCN dissolves. The kinematic viscosity for this solution was

measured as a function of temperature using a No. 50 Cannon-Fenske routine viscometer.

It was found this was well by a linear model given by ν(T ) = 1.867− 0.01967T cSt, where

T is the fluid temperature in degrees Celsius. In this work ACS reagent grade (≥ 97.5%

pure) NH4SCN was used (product no. 221988, Sigma Aldrich, St. Louis, Missouri). This

had some insoluble impurities that were filtered out using filter paper.

Care should be taken when using ammonium thiocyanate as a refractive index-matching

fluid since it is mildly toxic. While NH4SCN is compatible with most plastics and with

glass, it can corrode exposed metals. Tests were run which showed that it is compatible

with aluminum (both plain and anodized) and 316 stainless steel. Brass and bronze parts

will blacken do not appear to be damaged beyond that. After long term exposure to brass,

the solution becomes slightly blue/green. NH4SCN solutions were found to quickly corrode

plain steel and 304 multipurpose stainless steel. Contact with steel made the solutions turn

a deep red.

150



Figure 6.11: Typical raw image at 0.025 ppp displayed using the default color map in DaVis
using a bit shift of 128. The ruby nozzles on the jets strongly fluoresce under the stray laser
light, can be seen on the left edge of the image.

6.3 Experimental Procedure

6.3.1 Image Acquisition and Pre-Processing

The system was prepared by mixing particles into the working fluid until a particle density

of about 0.025 particles per pixel (ppp) was achieved (see Figure 6.11). The number of

particles in the images was estimated by detecting the number of intensity peaks in the

images. This was done using the “Test 2D peak detection” button in the volume self-

calibration menu in DaVis and setting the maximum number of possible particles to 106.

While Elsinga et al. suggested a maximum particle density of 0.05 ppp in their original

formulation of tomographic PIV [279], the seeding density of 0.025 ppp was chosen to

account for the additional complexity of imaging through curved, moving walls introduced

by Taylor-Couette flow, as proposed by Tokgoz et al. [282]. That being said, Michaelis

et al. [304] have shown recently particle concentrations up to 0.10 ppp can be successfully

reconstructed using the standard multiplicative algebraic reconstruction technique (MART),
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so it may be possible to use increased particle densities to improve the spatial resolution of

future measurements.

After the correct particle concentration was achieved, the temperature of the working

fluid was measured using a mercury immersion thermometer. The syringes on the injection

system were run back and forth so that they were primed with fluid at the same particle

concentration and temperature as the test section. The outer cylinder was accelerated

at 0.02 Hz/s2 until Reo = 7750. The wall speed was adjusted to compensate for the

temperature dependence of the kinematic viscosity of the working fluid. Once the desired

Reynolds number was achieved, the system was allowed to run for 2 minutes. Ideally, the

system would be allowed to equilibrate for a longer time, but it was found that the Ekman

circulation depleted the particles from the midplane of the flow, so 2 minutes (∼ 2 viscous

diffusion times across the gap) was used as a compromise.

At this point, a 50 ms push/pull perturbation with a volumetric flow rate of 50 mL/min

was injected into the test section using the injection system described in Chapter 4. Image

acquisition was externally triggered using the digital signal that switched the valves in the

injection system. The cameras were configured so that they acquired 250 frames before

the perturbation was triggered, which provided a sample of the laminar flow before the

perturbation. Once the images were captured the were downloaded to a network attached

storage unit (ReadyNAS 516, NETGEAR, San Jose, California) where they were stored for

processing using the distributed computing cluster described in Appendix F.7

Because of the relatively low energy per pulse of the available Nd:YLF laser, the images

were rather faint and most of the signal was captured in the least significant bits of the

camera sensors. These bits are inherently noisier than more significant bits. In order

improve the quality of the images before reconstruction, the images were pre-processed

using DaVis’s built-in image processing capabilities. Examples of the images before and

after pre-processing are shown in Figure 6.12. A sliding minimum subtraction filter with a

5× 5 pixel kernel was applied to accentuate the particles relative to the background. This

7Because image pre-processing is a relatively fast process that generates a lot of network traffic. This
can lead to errors if more than 7-8 nodes are used for image pre-processing. This is not the case for more
computationally intensive procedures like volume reconstruction and the calculation of velocity vectors.

152



(a) (b)

Figure 6.12: (a) A sub-region of a raw image displayed at 128 bit shift using DaVis’s default
color map. (b) The same sub-region after pre-processing displayed at 4k bit shift.

filter makes it so that dark (but non-zero intensity) regions within 5 pixels of a particle

get zeroed out. In order to compensate for the lack of uniformity of the illumination and

variations in intensity between different pulses, the images were normalized to local average

over 20× 20 pixel windows. Because the images were somewhat noisy due to the low light

levels, the images were first smoothed with a 3 × 3 Gaussian filter and then resharpened.

This effectively makes the individual particles peaks more uniform and blob like without

significantly changing their size and improves their overlap during cross-correlation. In

order to remove any remaining noise in the dark spaces between particles, 10 counts were

subtracted from every pixel. In order to improve the dynamic range, the images were

multiplied by a constant factor of 100. Finally, areas of the images that were outside of

the illuminated volumes were masked out. Because there are no bright particles in these

regions, the various filters result in significant noise in these regions, so it is important to

exclude these from the reconstruction process.

6.3.2 Calibration

In order for tomographic reconstruction to work, a relationship Mi must be established

between points P = (X,Y, Z) in physical space and their images pi = (xi, yi) on the i
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cameras (here i ∈ [1, 2, 3, 4]), such that

pi = Mi(P ). (19)

The error in the mapping must be less than 0.4 pixels and preferably less than 0.1 pixels

[279]. As in stereoscopic PIV [305], the mapping function can be estimated using images

taken as a known template pattern is traversed through the measurement volume. These

data are then fit to either a pinhole model (typically used for measurements in air) or a

third order polynomial model (typically used in measurements in water) [306].

Attempts were made to use this technique by traversing a LaVision Micro Calibration

Plate (part no. 1108939) across the measurement volume. This target consists of a glass

slide with three dot patterns of different geometries printed on it. The medium sized target,

which has a square grid of 0.12 mm dots spaced 0.5 mm apart, was cut out by the Glass

Shop in the School of Chemistry and attached to a flat aluminum rod with epoxy. The

target was then inserted into the test section through a slot that was cut into the top

outer cylinder bearing support and traversed using a computer controlled micro-positioner

(model no. ESP300, Newport Corporation, Irvine, CA). It was found that the constrained

geometry of the test section made it difficult to accurately orient and move the calibration

plate. The small size of the calibration plate also made it so that only the central 20 mm

of the measurement volume could be calibrated.

In order make the calibration procedure more robust a three-dimensional calibration

target was developed. This target, which is shown in Figure 6.13, was machined into the

side of an aluminum end ring. The target consisted of two planes that that were offset

by 0.794 mm. Each plane had a regular grid of dots spaced 3.175 mm apart. In order

to ensure that there was sufficient contrast between the dots and the rest of the target,

the aluminum was anodized flat black by Metal Finishers of Atlanta (Lilburn, Georgia)

and the dots were made by breaking the anodizing with a 3/0 center drill exposing the

bare aluminum below. The resulting holes had a diameter of 0.508 mm and were potted

with bees’ wax, so that they reflected light more uniformly. The three-dimensional target

provided two calibration planes that virtually filled the field of view and provided over 100
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Figure 6.13: A three-dimensional calibration target was machined into the side of the top
end ring. This consisted of two planes of dots separated by 0.794 mm, which were staggered
relative to each other. The dots on each plane were on a square grid with 3.175 mm between
dots. The center of the front plane was 4.039 mm from the inner cylinder.

reference points per plane. Detailed mechanical drawings and technical details about the

design of the calibration target are provided in Appendix E.

The calibration target was illuminated with a halogen floodlight (McMaster-Carr part

no. 1549K13) and set of calibration images was taken before each experimental run. It is

useful to set the exposure to the maximum possible duration before taking the calibration.

These were processed using LaVision’s DaVis software. During the calibration process both

the heat bath and the test section were filled with fluid. The calibration data was used to

provide an initial guess for the mapping function, which was assumed to be a third order

polynomial. The estimated calibration error (average deviation to mark) was typically less

than 0.8 pixels. As mentioned earlier, calibration error greater than 0.4 pixels can lead to

loss of accuracy during tomographic reconstruction. Furthermore, the mapping function

needs to be correctly extrapolated away from the calibration planes in order to compensate

for any distortion in the imaging optics.

In order to improve the calibration, the volume self-calibration procedure developed by
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Wieneke [307] was employed. This technique attempts to locate individual particles by

triangulation as in three-dimensional particle tracking. The residual triangulation error or

disparity can then be used to correct the mapping function. In order to make this technique

more robust, statistics of the disparity vectors for a large number of particles are gathered

over different areas of the flow from different images. These are used iteratively to estimate

the optimal correction for the mapping function. In the case of Taylor-Couette flow, special

care needs to be taken during self-calibration because the sampled volume is not rectangular

as in typical tomographic PIV experiments. Regions of the illuminated volume that do not

have particles can be dominated by noise, which can lead to spurious disparity vectors. In

order to minimize this effect, it is convenient to start with a small volume near the center

of the test section and use only a relatively small number of particles to calculate disparity

vectors for a small number of sub-volumes. The resulting disparity vector field should be

judiciously filtered using the universal outlier detection and smoothed, so that the correction

to the mapping function is smooth. It is much better to perform a few more iterations of

self-calibration, than to mess up the calibration function with a discontinuous correction.

Once the disparity level drops, the calibration volume can be expanded and more sub-

volumes added. This procedure is repeated until satisfactory disparity levels are achieved

throughout the measurement volume. For more information about the implementation of

Wienecke’s volume self-calibration method, the reader is referred to LaVision’s FlowMaster

Tomographic PIV User’s Manual [308].

6.3.3 Volume Reconstruction

Since the introduction of tomographic PIV [279], significant efforts have gone into develop-

ing new algorithms to increase its accuracy and reduce its computational cost. As discussed

earlier, tomographic PIV measurements require two main steps. First, the volume is recon-

structed from a set of recorded images. Then, velocity fields are obtained by using cross-

correlation of the volumes using standard PIV algorithms extended to three dimensions.

While particle cross-correlation algorithms are well understood (see the books by Raffel et

al. [240] and Adrian and Westerweel [226] for extensive reviews), reconstruction techniques
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are still in their infancy and have been the focus of much recent research [279, 309–314].

While the mainstay of tomographic reconstruction has traditionally been the multiplica-

tive algebraic reconstruction technique (MART), simultaneous MART (SMART) [311] has

recently emerged as a much more efficient solution. Both of these algorithm are iterative pro-

cedure and much of the computational effort goes into the first couple of iterations. In order

to speed up their convergence, it is useful to initialize the algorithm using a multiplicative

line-of-sight reconstruction (MLOS). LaVision’s has implemented SMART reconstruction

with MLOS initialization in a procedure that they call FastMART.8 This algorithm is tens

of times faster than MART and ideal for processing time-series of tomographic PIV data.

6.3.3.1 Convergence of FastMART algorithm

Even though FastMART is much faster than MART, tomographic reconstruction is still

very time consuming, with additional FastMART iterations improving the accuracy of the

reconstruction but adding to the processing time. For this reason, the convergence rate of

the FastMART algorithm as a function of the number of FastMART iterations was tested.9

Since the real particle distribution in an experimental volume is unknown, a reference

volume was created by reconstructing it using 40 FastMART iterations using DaVis’s default

settings. This many iterations would never be used in practice and it was assumed that

the result of such a reconstruction converged as closely as possible to the real particle

distribution. The same volume was then reconstructed with only 3 FastMART iterations.

The results were compared by subtracting the two volumes voxel by voxel and then summing

over the whole volume and normalizing the difference by the total intensity in the reference

volume, i.e., the reconstruction quality10

8Formally, FastMART actually implements a proprietary algorithm called CSMART, which differs from
SMART in the way that data from different cameras is incorporated into the reconstruction [315].

9Note that in general this depends on experimental conditions such as seeding density, background noise,
etc. and should be tested independently for experimental configurations much different than the one de-
scribed here

10Note: The definition of reconstruction quality used here is different from the commonly used definition
introduced by Elsinga et al. [279].
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Figure 6.14: Reconstruction quality as a function of FastMART iterations averaged over 5
independent trials. Error bars show standard deviation of reconstruction quality between
trials.

Q =

∑
X,Y,Z

Vref (X,Y, Z)− VN (X,Y, Z)∑
X,Y,Z

Vref (X,Y, Z) .
(20)

The procedure was repeated for 5 different volumes for varying numbers of FastMART

iterations. The results are summarized in Figure 6.14. It was found that for the seeding

densities and imaging parameters used in this work, no significant gains in reconstruction

quality are achieved by increasing the number of FastMART iterations beyond 15 iterations

with only minor gains beyond 7. Considering that each additional FastMART iteration

adds about an one hour of processing time on the distributed processing cluster for a full

camera buffer (5478 sets of four images), 7 iterations was chosen as a good compromise

between reconstruction quality and processing speed.

Once a set of images is converted into a volumetric intensity field, it is important to

check the quality of the reconstruction. This can be done using the z-profile extraction tool

in DaVis, although this can be deceiving because of the curved nature of the test section.

A more convenient way to check the quality of the reconstruction is to generate a synthetic
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Figure 6.15: A synthetic view of the reconstructed volume looking down the axial direction.
The inner and outer walls are clearly visible as interfaces where there is a sudden decrease
in particle density.

view of the measurement volume that looks down along the axial direction through the

volume. Figure 6.15 shows such a view. A poor reconstruction will have a significant

number of particles outside of the curved test volume.

6.3.4 Particle Cross-Correlation

Once the time-series of images are reconstructed into a time-series of three-dimensional

volumes, velocity vectors can be calculated by analyzing the changes in the particle distri-

butions between successive volumes. Analogously to planar PIV, the volume is divided into

a series of sub-volumes and the most likely displacement of the fluid in that volume is calcu-

lated by looking for the peak in the spatial cross-correlation function. In planar PIV, where

the number of particles per pixel can be quite high, this is usually achieved most efficiently

using spectral (Fast Fourier Transform-based) implementations of the cross-correlation func-

tion. However, in tomographic PIV, the number of particles per voxel is typically low and

the resulting data structures can be quite sparse. In this case, a direct correlation of the

volumetric data can be significantly more efficient.

This is typically done in an iterative multi-step fashion [226], where a smaller number

of larger interrogation volumes is used to provide an initial estimate for the displacements

and capture large scale motion, which is then refined using smaller interrogation volumes.

Within a single step (fixed interrogation window size), a multi-pass approach can be used to

improve the quality of the correlation by deforming the interrogation volumes to account for
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Figure 6.16: Typical parameters for direct correlation.

the deformation of the fluid element being measured [316]. As with volume reconstruction,

there is a trade off between the number of correlation steps and passes, which increase the

accuracy of the measurement, and the computational time. Typical processing parameters

used here are shown in Figure 6.16. For a detailed description of the various processing

parameters, the reader is referred to LaVision’s FlowMaster Tomographic PIV User’s Guide

[308] and to the book by Adrian and Westerweel [226].

6.4 Data Analysis

6.4.1 Locating the Measurement Volume

Typical implementations of tomographic PIV are designed to measure velocity components

in a three-dimensional Cartesian coordinate system. This makes it challenging to interpret

measurements in Taylor-Couette flow, which are more naturally expressed in cylindrical

coordinates. Previous investigators have bypassed this complication by looking at data

in the plane where the radial direction and the Cartesian axis through the measurement

volume coincide [282] (see Figure 6.17). Alternatively, they have evaluated quantities like

energy dissipation, which are invariant under coordinate transformations. However, in order

to compare experimentally measured flow structures with numerical results, a coordinate

transform must be established to convert between the Cartesian system of the flow mea-

surements and the cylindrical coordinates used in simulations.
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Figure 6.17: DaVis’s tomographic PIV package is designed for rectangular measurement
volumes and returns vector positions and components in a Cartesian coordinate system
(X.Y, Z). The Taylor-Couette problem is more naturally expressed in terms of cylindrical
coordinates (r, θ, z). In order to transform data from one coordinate system to another,
the location of the axis of symmetry must be determined. Adapted from S. Tokgoz et al.
“Spatial resolution and dissipation rate estimation in Taylor-Couette flow for tomographic
PIV,” Exp. Fluids 53, pp. 561-583, 2012. Copyright 2012 by Springer.
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Figure 6.18: The PIV software originally return the velocity data in a Cartesian coordinate
system (X ′, Y ′, Z ′) that is set by the initial calibration. The goal is to find a shift ∆X,
which maps the data to a new coordinate system X = X ′ + ∆X,Y ′, Z ′, such that vZ(X =
0, Y, Z) = 0. This can be done by plotting the data for vZ ( ) along a line of constant Y ′

and Z ′ as a function of X ′. The data can be interpolated to find where the zero crossing
(�). The distance between the zero crossing and X ′ = 0 (red arrow) gives an estimate for
∆X.
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In principle this should be straightforward, but in practice it is complicated by the fact

that the position of the symmetry axis relative to the measurement volume is only known

approximately. A two-step method was devised to locate the measurement volume using the

measurements of the axisymmetric laminar flow that were taken before the perturbation was

injected. The first step established the shift along the X direction by which the experimental

data must be shifted so that the X = 0 plane coincided with the θ = 0 plane, as outlined

in Figures 6.18 and 6.19. Once this shift was applied, the data for vX as a function of Z in

the X = 0 plane were compared to the data from the axisymmetric simulations discussed in

Chapter 5. The numerical data were shifted in the Z direction by a small amount ∆Z and

the norm of the difference between the two velocity fields was calculated. The minimum in

the norm as a function of ∆Z provided and estimate of the optimal shift such that the Z = 0

plane was tangent to the inner cylinder. Theoretically, a similar approach could be taken

with the Y coordinate. However, as discussed in Chapter 5, the base flow has very weak

axial dependence except near the end caps, making it difficult to locate the measurement

volume axially. Taking measurements of a flow with stronger axial dependence and/or

larger axial or radial components such as Taylor vortex flow before or after taking other

data would allow for such a calibration. Once the measurement volume is located, spurious

vectors that fall outside of it but were not thrown out by the universal outlier detection

filter can be masked out.

6.4.2 Post-processing Data for Analysis of Turbulent Structures

Even though the procedure outlined in the previous section provides a good way to lo-

cate the measurement volume and allows the flow to be broken down into components in

cylindrical coordinates, visualizing turbulent structures can still be tricky. The turbulent

intensity is only about 10%, meaning that turbulent structures are often obscured by the

mean flow in raw vector fields. A natural solution to this problem would be to subtract

the mean flow. However, because of the relatively short duration of the time series that

can be taken given the memory limitations of the high-speed cameras and the spatiotempo-

rally intermittent nature of the flows investigated here, averaging the data can sometimes
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Figure 6.19: Because the PIV data is inherently noisy, an estimate of ∆X from a single line
of data is not robust. In order to obtain a more robust estimate, the procedure outlined in
Figure 6.18 was repeated for many lines at different values of Y ′ and Z ′ for data from 50
laminar velocity field. The resulting estimates for ∆X were histogrammed and the resulting
distribution was fit with a Gaussian (red). The centroid of the Gaussian provides a more
robust estimate for ∆X.

(a) (b)

Figure 6.20: (a) Raw vector field at Reo = 7750 in the Z = 4.99 mm plane. The color
map represents the X component of velocity. No significant structure is evident. (b) Af-
ter background subtraction and spatiotemporal filtering, the turbulent structures becomes
apparent.
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return somewhat non-uniform background fields. It was determined that a time-averaged

measurement laminar flow, taken prior to the triggering of turbulence by a fluid injection,

provided a more robust background.

It is also useful to exploit the coherence of the turbulent structures to eliminate noise

in the measurements. Because the evolution of the turbulent structures is slow relative to

the acquisition rate of the cameras, applying a running Gaussian filter of length 3 was used

to smooth the data in time. Judicious use of a 3 × 3 × 3 Gaussian spatial filter can also

help provide a smoother data set while preserving local velocity gradients. The effect of

this post-processing procedure is shown in Figure 6.20.

Another post-processing technique that is useful for extracting turbulent structures is

to use point-wise vortex extraction criteria based on the eigenvalues of the velocity gradient

tensor. These quantities become accessible because tomographic PIV allows all the com-

ponents of the velocity gradient tensor to be measured directly. In this work it was found

that Hunt et al.’s [317] Q-criterion provided the best visualization. For a discussion of other

vortex identification schemes, the reader is referred to Section 9.5 of the book by Adrian

and Westerweel [226]. The Galilean invariant Q is given by

Q =
1

2

(
∂ui
∂xi

∂ui
∂xi
− ∂ui
∂xj

∂uj
∂xi

)
(21)

where ui is the velocity component along the xi direction. The value of Q depends on

the relative strength of rotational, antisymmetric part of the velocity gradient tensor to

that of the symmetric, shearing part. Where Q is positive, rotation dominates over shear

suggesting that a point is part of a vortex. Vortices can be visualized by looking at iso-

surfaces of Q. Using the Q-criterion is useful because it can extract turbulent features even

without background subtraction or transformation of the coordinate system. Figure 6.21

shows a visualization of Taylor rolls using the Q-criterion.

6.5 Preliminary Results

A series of tomographic PIV measurements of the growth of perturbations into persistent

turbulent spots was begun in spring of 2014. Because the measurement volume cannot

capture the entire flow, the following strategy was employed to capture the different phases
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Figure 6.21: (a) Q = 2 × 10−5 iso-surface from numerical simulation of Taylor rolls at
(Rei, Reo) = (870, 0). (b) Q = 2 × 10−5 iso-surface from time average of 20 tomographic
PIV measurements of Taylor rolls at (Rei, Reo) = (870, 0). Numerical simulation courtesy
of Michael Krygier.

of the spot’s evolution: First, the jets were positioned just outside and upstream of the

measurement volume. The system was prepared as outlined in Section 6.3.1. A set of

calibration images using the three-dimensional calibration target were taken for reference.

The outer cylinder was then slowly accelerated until Reo = 7750. Once the desired Reynolds

number was achieved a 50 mL/min push/pull perturbation with a duration of 50 ms was

applied to the flow. Image acquisition was triggered with the same signal that switched the

valves to provide a well-determined time stamp. The cameras were configured so that 250

frames consisting of laminar flow were captured pre-trigger so that the measurement volume

could be located later. A small amount of Kalliroscope (∼ 0.1% by volume) was added to

the working fluid (NH4SCN-based refractive index matching solution) to verify that the

flow became turbulent after the perturbation and not before. The Kalliroscope generated

a slight shimmering as it scattered the incident laser light, but the density used was low

enough so that it did not affect the fluorescence signal from the seeding particles. Once the

whole camera buffer (5478 frames) had downloaded to the network attached storage unit,

the inner cylinder was rotated so that the jets were moved upstream by 36◦ (about the same

angular displacement covered the measurement volume) and the experiment was repeated.

Overall, 9 angular positions were covered with three data sets taken at each location.

Although the perturbations were not repeatable in detail, the hope is that by varying

the position of the jets the evolution of typical spots could be investigated. This work is
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currently under way. Tomographic PIV generates huge amounts of data (∼ 2× 10 5 three-

dimensional vectors per frame), so processing the acquired data set is a massive undertaking.

To date this has generated over 14 terabytes of data, which are currently being evaluated.

Figures 6.22 and 6.23 show examples of some of the types of analyses that can be conducted.

6.6 Summary

This chapter described the implementation of tomographic PIV measurements for the study

of the turbulent structures that emerge during the subcritical transition to turbulence in

Taylor-Couette flow. Taylor-Couette flow presents some special challenges that are not

typically present in other tomographic PIV applications. The system has many moving

parts and can be inherently noisy. For this reason, several steps where taken to mitigate

mechanical vibration including modification the tilt mounts used to correct for distortion

due to off-axis imaging and shutting down the cooling fans on the high-speed cameras.

Performing tomographic PIV measurements in small gap Taylor-Couette apparatus also

presents some challenges when it comes to calibration of the mapping function used for

tomographic reconstruction. It was shown that this process can be simplified by using a

three-dimensional target similar to those used in stereoscopic PIV and by extrapolating

the mapping function using volume self-calibration. Distortions due to imaging through

the curved glass surfaces can be corrected by using refractive index matching fluids. In

particular, it was found that aqueous solutions of ammonium thiocyanate are particularly

well-suited to tomographic PIV studies of mechanically-driven turbulence, since they allow

for higher Reynolds numbers with lower mechanical forcing. Their density can also be well-

matched by easy to make fluorescent particles, whose use provides significant advantages

when imaging near walls or other interfaces. Work is currently underway to process a series

of time-resolved tomographic PIV measurements. The scale of this project exceeds most

published tomographic PIV studies by several orders of magnitude with several tens of

thousands of frames of data already reconstructed.
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(a) (b)

(c) (d)

Figure 6.22: Vortical structures in a turbulent spot as they advect through the measurement
volume (a)-(d). A horseshoe-like structure is visible in (d), which suggests that hairpin
vortices may play a role in subcritical Taylor-Couette flow like they do in other near-wall
turbulence.
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Figure 6.23: Because the turbulent structures evolve relatively slowly, they only change
slightly as they are advected through the measurement volume. The spatial structure can
be constructed by extracting a velocity measurement at a particular plane or line (in this
case a line extending axial in the middle of the gap in the X = 0 plane) and creating a
space-time diagram [318]. Here, turbulent intensity of the azimuthal component of velocity
shows the growth of the spot as it circles around the test section and comes back around
through the measurement volume.
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CHAPTER VII

CLOSING REMARKS

7.1 Summary

The research presented in this dissertation is a first step toward understanding the transition

to turbulence in linearly stable Taylor-Couette flows. The stability of this flow was probed

using a variety of experimental techniques to elucidate different aspects of the transition

mechanisms. It was shown that in this important, yet frequently ignored regime, Taylor-

Couette flow shares many of the features of other linearly stable shear flows that have

dominated recent discussions about subcritical transitions to turbulence. While some of

these flows are perhaps more computationally and theoretically tractable than the Taylor-

Couette problem (or at the very least do not include the additional complication of rotation),

none of these is as robust an experimental platform as Taylor-Couette flow. It is hoped that

the work presented here will convince future researchers that the Taylor-Couette system can

be as useful a tool in the study of the subcritical transition to turbulence, as it was in the

study of supercritical transitions to turbulence in previous decades.

After an extensive review of the scattered literature concerning linearly stable Taylor-

Couette flows, it was shown that when only the outer cylinder rotates, metastable turbulent

states can be reached by applying finite-amplitude perturbation to the flow in the form of

sudden counter rotation of the inner cylinder. At fixed outer Reynolds number Reo, the

survival probability of these turbulent transients decays exponentially with a characteristic

lifetime τ that depends on Reo, independently of how the turbulent state is first gener-

ated. From the standpoint of dynamical systems, this suggests that the turbulent dynamics

in this regime are guided by a strange saddle. It was determined that τ increases very

quickly with Reo, so that a change in Reo of less than a factor of two leads to an increase

of τ by about five orders of magnitude. However, the data suggest that even though the

growth of τ with Reo is faster than exponential, it appears to be bounded. This implies
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that the turbulent dynamics remain dynamically connected to the laminar state, which

opens up the possibility of controlling the transition to turbulence using small control sig-

nals. Additional experiments were conducted to probe the dependence of τ on boundary

conditions. While qualitatively, these data suggest that τ becomes smaller as the system

size becomes decreases, the relationship between boundary conditions and the lifetimes of

turbulent transient is non-trivial.

The first set of experiments reported here showed that finite-amplitude perturbations

to linearly stable Taylor-Couette flow can lead to long-lived turbulent episodes. However,

they did not address the issue of how large a perturbation must be in order to trigger

turbulence. This question was addressed in a second set of experiments that perturbed

the flow using controlled injections of fluid into the test section through holes on the inner

cylinder wall. It was determined that there exists a minimum Reynolds number below which

turbulence could not be initiated independent of the strength A of the perturbation. Above

this threshold, the strength of the perturbation required to trigger turbulence decreased

with increasing Reo. The critical amplitude Ac was observed to scale as a power law with

increasing Reynolds number with a critical exponents of approximately −2. Because this

value is smaller than −1, it suggests that non-normal amplification plays a role in the growth

of perturbations into persistent turbulent spots. One interesting aspect of these experiments

is that they showed that the minimum perturbation required to trigger turbulence in linearly

stable Taylor-Couette flow is much larger than that observed in other shear flows, which

may be a result of the stabilizing effects of rotation.

Simple axisymmetric simulations of laminar flows were carried out to obtain a baseline

to calibrate tomographic PIV measurements of Taylor-Couette flow. These were carried

out using the commercial computational fluid dynamics package Fluent and should be easy

to repeat by future researchers studying other flow regimes. In particular, the simulations

showed that certain linearly stable, counter-rotating regimes might be more suitable for

tomographic PIV investigations than those with only outer cylinder rotation, which was used

here. While not shown here, these simulations can also be used to quickly (O (5minutes))

obtain other axisymmetric flows such as Taylor vortices, which can be useful calibration
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flows.

Finally, the implementation of tomographic PIV in the Taylor-Couette geometry was

discussed in detail. Many technical aspects were discussed including issues that arise during

data acquisition and imaging. Other useful data was provided regarding the fabrication of

fluorescent particles and refractive index-matching solutions. Detailed explanations of the

many steps required to obtain useful velocimetry data were provided and challenges specific

to Taylor-Couette flow were discussed. Some of the analysis methods currently being used

to study volumetric velocimetry data were discussed and examples were given of how they

might be used to study the growth of turbulent spots from localized perturbations.

7.2 Original Contributions

Original contributions presented in this dissertation include:

� The first measurements of the statistics of the lifetimes of turbulent super-transients in

Taylor-Couette flow. It was shown that for long times, the lifetimes are exponentially

distributed as has been observed in other canonical shear flows like pipe flow and

plane Couette flow. This work suggests that Taylor-Couette flow, with its well-known

robustness as a platform for precision experimental work, may be ideally suited to

study the subcritical transition to turbulence.

� The first measurement of the scaling of transient lifetimes with Reynolds number.

These were observed to grow super-exponentially but remain bounded at finite Reynolds

number, at least for the range of Reynolds number studied. The data scale approx-

imately as exp(exp(aReo + b)), in agreement with theoretical predictions based on

extremal statistics theory.

� The first systematic study of finite-amplitude thresholds for the subcritical transition

to turbulence in Taylor-Couette flow. An estimate of the minimal Reynolds number

where turbulence can persist was provided and the amplitude of the minimum per-

turbation size was shown to scale as a power law in Reo with a critical exponent of

approximately −2.
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� A systematic study of the effects of system size on transient lifetimes. It was concluded

that in smaller systems, turbulence is less persistent, consistent with ideas linking the

transition to turbulence to directed percolation problems and the transition to chaos

via spatiotemporal intermittency.

� The first study of the effects of rotation the lifetimes of turbulent transients. By using

weak co-/counter-rotating flows, it was shown that rotation plays an important role in

the subcritical transition to turbulence. Changes in the shear Reynolds number Res

due to differential rotation of the two cylinders were shown to have a stronger effect

on turbulent lifetimes than than changes in Res due to changes in the outer cylinder

wall speed in experiments where the inner cylinder was held fixed.

� Performed tomographic PIV measurements of the growth of a localized perturbation

into a turbulent spot.

� Perfomed volumetric velocity field measurements of various Taylor-Couette flows and

validated them against numerical simulations showing generally good agreement.

� Compiled a comprehensive review of the literature concerning the subcritical transi-

tion to turbulence in Taylor-Couette flow spanning the entire history of the problem.

This in-depth review should prove useful to researchers as they formulate new ques-

tions about this traditionally overlooked problem.

� Adapted the tomographic PIV technique in order to overcome the challenges presented

for this type of measurement by the Taylor-Couette geometry. These include imaging

through and near curved, moving walls and mechanical noise.

� The design and fabrication of a perturbation system, including a specially designed

inner cylinder, high-speed valve system, and modified syringe pump, which allowed

the perturbation of Taylor-Couette flow via injection/withdrawal of fluid from the test

section.

� Developed a method for turning off the on-board fans in the Phantom v210 cameras

for use in applications were vibration needs to be minimized.
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� The development and fabrication of a custom three-dimensional calibration target for

tomographic PIV measurements in the Taylor-Couette geometry. This target greatly

improves the quality of the calibration and expands the size of the measurement

volume that can be calibrated, as well as making the calibration operation significantly

faster and easier.

� Development of refractive index matching fluids to alleviate optical distortion while

imaging through the curved interfaces of the Taylor-Couette system. Ammonium

thiocyanate solutions were shown to be ideally suited to perform time-resolved to-

mographic PIV measurements since their relatively low viscosity allowed for higher

Reynolds numbers to be reached at lower flow speeds.

� A prediction from numerical simulations of circular Couette flow in finite-size Taylor-

Couette geometries that counter-rotating flows may be better suited to tomographic

PIV measurements due to the smaller velocity gradients present in those flows.

� Developed a method for locating measurement volume relative to the natural cylin-

drical coordinate system of the Taylor-Couette geometry using laminar flow measure-

ments. The method is robust to measurement noise and makes possible the comparison

of velocity fields from numerical simulations and experiments.
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APPENDIX A

LIFETIME DATA FOR TRANSIENT TURBULENCE

Table 1: Experimental Runs at Γ = 33.6

# of
Run Reo Rei trials τ στ Notes

1 5505 0 1200 6.27× 101 1.91× 100

2 5964 0 600 9.05× 101 1.76× 100

3 6423 0 300 2.27× 102 9.49× 100

4 6882 0 300 1.23× 103 4.21× 101

5 7111 0 300 1.72× 103 5.50× 101

6 7341 0 300 2.83× 103 6.82× 101

7 7647 0 300 6.19× 103 1.07× 102

8 7800 0 300 1.17× 104 1.34× 102

9 8106 0 300 2.23× 104 5.08× 102

10 8258 0 300 4.87× 104 9.31× 102

11 8564 0 200 2.77× 105 6.58× 103 Max. observation time = 1.5 hr

12 8870 0 200 7.37× 105 6.26× 104 Max. observation time = 3 hrs

13 9176 0 200 1.99× 106 3.86× 105 Max. observation time = 6 hrs

14 7647 -132.6 208 5.30× 104 7.54× 102

15 7647 -66.3 300 1.76× 104 3.50× 102

16 7647 -33.1 300 9.39× 103 1.98× 102

17 7647 0 300 6.52× 103 3.34× 101 Co-rotating perturbation

18 7647 33.1 200 4.94× 103 4.11× 101 Co-rotating perturbation

19 7647 66.3 200 3.17× 103 5.01× 101 Co-rotating perturbation

20 7647 0 300 2.76× 103 9.98× 101 Free surface at top boundary

21 7800 0 300 3.14× 103 5.99× 101 Free surface at top boundary

22 8106 0 300 3.29× 103 4.59× 101 Free surface at top boundary

23 7647 0 300 Reo reduced to 6882 after 60 s
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Table 2: Experimental Runs at Γ = 23

# of
Run Reo Rei trials τ στ Notes

1 6423 0 300 2.20× 102 7.70× 100 Co-rotating perturbation

2 6882 0 300 8.10× 102 5.59× 100 Co-rotating perturbation

3 7341 0 300 2.76× 103 3.36× 101 Co-rotating perturbation

4 7647 0 900 6.10× 103 1.59× 102 Co-rotating perturbation

5 7800 0 300 9.15× 103 5.66× 101 Co-rotating perturbation

6 8106 0 297 1.55× 104 1.39× 102 Co-rotating perturbation

7 8564 0 300 6.14× 104 3.05× 103 Co-rotating perturbation

Table 3: Experimental Runs at Γ = 15

# of
Run Reo Rei trials τ στ Notes

1 6882 0 300 3.03× 102 5.87× 100 Co-rotating perturbation

2 7341 0 900 1.41× 103 1.22× 101 Co-rotating perturbation

3 7647 0 300 2.84× 103 2.25× 101 Co-rotating perturbation

4 7800 0 300 5.20× 103 8.59× 101

5 8106 0 300 1.39× 104 1.25× 102 Co-rotating perturbation

6 8258 0 122 2.24× 104 9.88× 102

7 8564 0 300 5.09× 104 2.37× 102 Co-rotating perturbation

Table 4: Experimental Runs at Reo = 7647 for Variable Aspect Ratio.

# of
Run Reo Γ trials τ στ Notes

1 7647 15.0 300 2.84× 103 1.14× 101 Co-rotating perturbation

2 7647 18.1 900 4.88× 103 2.16× 101 Co-rotating perturbation

3 7647 23.3 300 6.01× 103 3.84× 101 Co-rotating perturbation

4 7647 33.6 300 6.42× 103 5.56× 101

5 7647 36.9 300 6.79× 103 6.69× 101 Co-rotating perturbation
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APPENDIX B

MATLAB CODES

B.1 wintvimaq.m: Image Acquisition Using WinTV Cards

This function is an example of several similar codes that were used to acquire images for the

work described in Chapter 3. It uses Matlab’s Image Acquisition Toolbox to interface with a

WinTV television tuner card, which is used as a frame grabber. The code captures N frames

from an NTSC video stream using a Matlab videoinput object. Frames are captured at

fps frames per second.1 Because the output of the Sony XC-77 camera (see Section 3.2.3)

is monochrome, frames are flattened from the three color channels in the NTSC standard

to a single 8-bit grayscale channel. This saves hard drive space and makes it faster to

process frames in realtime.

Frames are continuously logged to memory. For every fpf frames that are acquired the

subfunction FrameSave is called. FrameSave pulls fpf frames from the beginning of the

buffer and writes them to disk as a single .mat file along with their time stamps, clearing

room in the buffer for new frames. While this example only writes frames to disk, additional

“realtime” processing could be done on the frames within FrameSave before saving them.

In fact, this is how turbulent transients were monitored (see Section 3.3 for details). The

result is a series of sequentially numbered .mat files that each contain fpf frames.

The video decoding on the WinTV 44801 is performed by Conexant’s Fusion 878A

PCI interface chipset. Because production of the Fusion 878A stopped in the early 2000’s,

drivers are only available for Microsoft operating systems up to Windows XP. Linux drivers

exist but multiple hardware/software conflicts are reported online. At the time that these

experiments were carried out, Matlab’s Image Acquisition Toolbox was not supported on

Linux systems, so no attempts were made to use WinTV cards in Linux. However, Linux

may provide an avenue for continued use of legacy 878A-based WinTV cards.

1Only integer fractions of 30 are allowable frame rates (i.e. 15, 10, 7.5, 6, etc.).
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function wintvimaq(N)

global fpf fps % Make variables that will pass to FrameSave global

% Clean up any image acquisition that may have stayed open

try, delete(imaqfind), catch, end

% Set acquisition parameters

fps = 30; % Frame rate in frames per second

fpf = 5; % Frames to be saved per .mat file

% Create and configure video input and set resolution

vi1 = videoinput('winvideo',1,'RGB555_320x240');

vi1.FrameGrabInterval = floor(30/fps); % Set frame rate

vi1.ReturnedColorSpace = 'grayscale'; % Flatten signal to grayscale

vi1.SelectedSourceName = 'composite'; % Set correct input mode

set(vi1,'FramesPerTrigger',N,'LoggingMode','memory');

% After fpf frames are acquired save them to a .mat file w/ FrameSave

set(vi1,'FramesAcquiredFcn',@FrameSave,'FramesAcquiredFcnCount',fpf);

% Initialize counter for filenames

vi1.UserData = 1;

% Take three pictures (prevents over-saturated images when the video

% stream is first started)

g = getsnapshot(vi1); g = getsnapshot(vi1); g = getsnapshot(vi1);

start(vi1); % Start video stream

wait(vi1,N/fps); % Wait until N frames have been captured

stop(vi1) %Stop video stream

clear global fpf fps, delete(vi1), end % Clear workspace

end

% Saves fpf frames to a file called "vi1.UserData".mat

function FrameSave(vi1,event)

global fpf fps

% Get data from video input object

[data,time] = getdata(vi1,vi1.FramesAcquiredFcnCount);

filename = ['file',num2str(vi1.UserData),'.mat']; % Set filename

% -v6 option speeds up save process to help prevent buffer overflow

save(filename,'data','time','-v6'); % Save fpf frames to .mat file

vi1.UserData = vi1.UserData + 1; % Update counter for next filename

end
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B.2 indexercmd.m: Controlling Compumotor Indexers Using RS-232

This function is an example of how to control a Compumotor model 2100 indexer using

Matlab’s Instrument Control Toolbox. It uses a Matlab serial object to send commands to

the indexer using the RS-232 serial communications interface. The computer and the indexer

must be connected via a null modem serial cable. While the indexer has a DB-25 connector,

most modern computers use DE-9 connectors for serial communications. However, only a

few pins are actually used to set up the RS-232 interface, so the use of standard 25-pin to

9-pin adapters is acceptable.

indexercmd.m is an example of the code that was used to perturb laminar flow with a

sudden rotation of the inner cylinder in the experiments described in Chapter 3. It starts by

creating a serial object called s. Most of the default settings for serial objects (baud rate

of 9600 bps, 8 data bits, 1 stop bit, no parity bit, and no flow control) are compatible with

the indexer. The only major exception is the Terminator character, which is used to signal

the end of a command. The indexer uses the space character, which has an ASCII code

of 32. Once s is configured, serial communications are opened using fopen. A command

sequence pulse is assembled using sprintf. In this case it would read:

E MN D400000 A60 V10 G

Here E enables remote operation of the indexer and disables front panel operation. MN

sets the indexer to “preset” mode, which means that the motor will rotate by a preset

number of steps. In this example, the motor will ramp up to a maximum rotation rate

of 10 Hz (set by V10) at an angular acceleration of 60 Hz/s2 (set by A60), continue at 10

Hz, and then decelerate at 60 Hz/s2 until it stops. The total angular displacement will be

400,000 steps (set by D400000) and the resulting motion will have a trapezoidal velocity

profile. The command G tells the indexer to execute the previous list of commands (i.e.,

the motor will not actually start until it receives a G command). The command sequence

is sent to the indexer using the fprintf Matlab command. Once the command sequence

is sent an additional command (F) is sent to return control to the front panel and serial

communications are closed by closing s using fclose. Note that the indexer executes
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commands serially, so the F command will not prevent any of the previous commands from

executing.

While the example used here is very simple, the indexer features an extensive command

language that allows the programming of significantly more complex motions. One useful

variation of the code shown here is to replace the MN command with MC. This sets the indexer

to “continuous” mode meaning that it will ramp up to the maximum velocity and continue

rotating at that speed. In this case, the D400000 command is extraneous. Additional

commands, including those used to trigger the execution of a command sequence based on

external trigger signals, are discussed in detail in the Compumotor Model 2100 Indexer User

Guide [161]. This also documents troubleshooting procedures for serial communications and

describes the function of a series of internal switches that alter the operation of the indexer.

function indexercmd

% Clean up any serial connections that stayed open

try, fclose(instrfind), catch, end

% Create and open serial connection with indexer

s = serial('COM1');

s.Terminator = 32; % set terminator character to "space" (ASCII 32)

fopen(s)

% Set perturbation parameters

delay = 10; % Set delay (in seconds) before perturbation is initiated

accel = 60; % Acceleration rate in rev/s/s

vel = 10; % Maximum angular velocity in rev/s

dis = 400000; % Number of steps to take 25000 steps = 1 rev

% Create perturbation command string with perturbation parameters

pulse = sprintf('E MN A%d V%d D%d G',accel,vel,dis);

pause(delay), fprintf(s,pulse) % Send perturbation command to indexer.

% Close serial connection to indexer

fprintf(s,'F') % Return control to front panel

fclose(s)

end
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B.3 measuretemp.m: Temperature Measurements Using HP 34401A
Multimeter and Minco S1059PA5X6 Platinum Resistance Ther-
mometer

This function is an example of how to import resistance measurements from the Hewlett-

Packard HP 33401A multimeter into Matlab using the RS-232 serial communications inter-

face. This was used together with the Minco S1059PA5X6 platinum resistance thermometer

(PTD) to monitor the temperature of the heat bath.

measuretemp.m creates a Matlab serial object called m, which has the appropriate

settings to communicated with the HP 33401A. The configuration of the RS-232 interface

on the HP 33401A can be modified from the system menu and its settings must agree with

those used to initialize m. The HP 33401A is configured to take 10 measurements close

to 150 Ω with a precision of 0.3 % (the HP 33401A will automatically set the range to

achieve the desired accuracy up to 6 1/2 digits) with 1 second between measurements. These

measurements are averaged and converted to temperature measurements using a polynomial

interpolating function provided by Minco for the PTD’s temperature vs. resistance curve,

which is implemented in the subfunction RtoT.

The HP 34401 can be configured for a variety of automated measurements. Details are

provided in the Hewlett-Packard HP 34401A Multimeter User’s Guide [319]. The calibra-

tion data for the platinum resistance thermometer can be found in Calibration Report No.

2789 from Minco Products [162].
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function temp = measuretemp;

% Close any serial objects accidentally left open

try, fclose(instrfind), catch, end

% Configure and open serial communication with HP 33401A

m = serial('COM4','BaudRate', 1200, 'StopBits',2,'Parity','none',...

'DataBits',8');

m.InputBufferSize = 32768;

fopen(m);

% Configure HP 33401A for remote operation

fprintf(m,'*RST'); pause(1)

fprintf(m,'SYSTEM:REMOTE');

% Configure resistance measurements of ~ 150 Ohms with

% 0.3 % accuracy (range automatically selected by HP 33401A)

fprintf(m,'CONFIGURE:RESISTANCE 150,0.3');

fprintf(m,'TRIGGER:SOURCE IMMEDIATE'); % Set immediate triggering

fprintf(m,'SAMPLE:COUNT 10'); % Set 10 measurements per trigger

fprintf(m,'TRIGGER:DELAY 1'); % Measurements are taken 1 second apart

% Trigger resistance measurements and import into Matlab

fprintf(m,':READ?');

pause(12)

R = fscanf(m);

% Parse comma delimited string into doubles

resistance = str2double(strread(R,'%s','delimiter',','));

data = mean(resistance); % Take mean resistance reading

% Close serial communications with the multimeter

fclose(m); delete(m); clear m;

% Convert resistance measurement to temperature

temp = RtoT(data)

end

% Converts resistance to temperature using Minco interpolating function

function T = RtoT(R)

W = R/100.1224;

Wref = W + 1.2221536e-4*(W-1) + 3.1997114e-4*(W-1)^2;

D = [439.932854 472.418020 37.684494 7.472018 2.920828 0.005184...

-0.963864 -0.188732 0.191203 0.049025];

T = 0; % Temperature in Celsius, set to 273.15 if needed in Kelvin

for i = 1:10, T = T + D(i)*((Wref - 2.64)/1.64)^(i-1); end

end
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B.4 perturb.m: Control Program for Injection System

This function controls the injection system that runs the jets used for finite-amplitude

perturbations used in the experiments of Chapters 4 and 6. It uses Matlab’s Instrument

Control Toolbox to implement the RS-232 serial communications interface to communicate

with the Harvard Apparatus 55-2222 syringe pump. It also uses the Data Acquisition Tool-

box to interface with a Measurement Computing USB-1208FS data acquisition module,2

which provides digital I/O signals that control high speed solenoid valves. This can also be

used to trigger the cameras used in tomographic PIV measurements.

perturb.m takes three inputs. PulseDuration is the duration of the perturbation in

seconds.3 FlowRate is the flow rate from a single syringe in mL/min. This example assumes

that 140 mL Kendall Monoject syringes (Covidien AG, Mansfield, Massachusetts) with a

37.5 mm bore are being used (Fisher Scientific part no. 22-257-152). PumpDirection takes

a value of +/-1 and controls the direction of the pusher block on the syringe pump.

perturb.m first creates a digital I/O object called DIO with two channels called trigger

and valve. It then creates a serial I/O object called s1, which is used to configure the

syringe pump. A brief TTL pulse is then sent on trigger. When this is connected to

the “Trigger” input on the Trigger port of LaVision’s High-Speed Controller, it can be

used to start the cameras’ data acquisition. For this to work, external triggering must be

enabled within DaVis. perturb.m then starts running the syringe pump, which initially

injects/withdraws fluid from a reservoir. After waiting for 2 seconds to let the syringe pump

come up to speed, it sends a TTL high to the circuit that drives the solenoid valves. This

switches the valves so that the fluid being injected/withdrawn by the syringes now flows

to/from the jets on the inner cylinder. The driver circuit and its operation are described in

Figure B.1. After waiting for the desired PulseDuration, it switches the valves back, and

stops the pump. Control is then returned to the front panel of the syringe pump and DIO

and s1 are closed to release the hardware so it can be used by other programs.

2Measurement Computing’s data acquistion hardware is only supported in 32-bit installations of Matlab.
3In this implementation, timing is handled in software using Matlab’s pause command. This is only

accurate up to a couple of milliseconds. More accurate timing can be achieved using a microcontroller like
an Arduino.
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+24 
VDC

D1
1N4004

Solenoid
Valve

USB-1208FS
R1

2.2k
Q1

TIP120TTL

Figure B.1: Solenoid driver circuit for injector valves. When the TTL signal from the
USB-1208FS is set to high, the TIP120 transistor switches open allowing current from the
24 VDC power supply to flow through the solenoid valve’s coil and switches the valve.
The power supply must be able to source at least 115 mA of current. A 1N4004 diode in
parallel to the solenoid valve prevents the large back EMF that generated when the current
is suddenly switched off from damaging the driver circuit.
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function perturb(PulseDuration,FlowRate,PumpDirection)

% Open digital I/O channel on port A0 on USB-1208FS

DIO = digitalio('mcc','0');

trigger = addline(DIO,2,0,'out');

valve = addline(DIO,1,0,'out');

% Open serial communications and configure syringe pump

s1 = serial('COM5','StopBits',2,'Terminator',13);

fopen(s1);

fprintf(s1,'MMD 37.5'); pause(0.3) % Set syringe bore diameter in mm

output = sprintf('MLM %0.2f',FlowRate);

fprintf(s1,output); pause(0.3) % Set flow rate in mL/min

% Send trigger pulse to cameras

putvalue(trigger,1), putvalue(trigger,0)

% Run syringe pump

if PumpDirection == 1

fprintf(s1,'RUN');

elseif PumpDirection == -1

fprintf(s1,'REV'); % Run pump in the forward direction

end

pause(2)

putvalue(valve,1) % Open valves

pause(PulseDuration)

putvalue(valve,0) % Close valves

pause(1)

fprintf(s1,'STP'); % Stop pump

% Return control to syringe pump front panel

% and clean up resources

fprintf(s1,'KEY');

fclose(s1);

delete(s1), delete(DIO)

clear s1 DIO

end
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APPENDIX C

CAD DRAWINGS

This appendix contains CAD drawings for various parts that were fabricated for use with

the Hirst system. While some of them were designed for use with the original cylinder that

came with the Hirst system, which is now broken, they should provide a good starting point

from which to design parts for use with the new, larger cylinders from the Duran Group.
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Figure C.1: Mechanical Drawing for the Adjustment Blocks for the End Ring. These pieces
allowed the push rods that hold the top end ring to be locked down. They attach to the
holes on the upper bearing support that were originally mount points for the Interior Outer
Cylinder Bearing Retainer.
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Figure C.2: Mechanical Drawing for the Top End Ring for ro = 80.00 mm and ri = 72.4
mm. This part sets the adjustable top boundary of the test section. The position of the
attachment points for the push rods is fairly critical.
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Figure C.3: Mechanical Drawing for the Outer Cylinder Motor Adapter for use with Row-
L-ER chains. Used to mount sprocket on motor shaft for outer cylinder.
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Figure C.4: Mechanical Drawing for the Motor Adapters for use with timing belts. Used
in the experiments of Chapter 6.
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Figure C.6: Mechanical Drawing for the End Cap for ro = 7.620 cm and ri = 5.679 cm (η
= 0.754).
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Figure C.9: Mechanical Drawing for the Top End Cap for ro = 8.000 cm and ri = 7.239 cm
(η = 0.905) using the new lower outer cylinder end (Figure C.11).
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Figure C.12: Mechanical Drawing for the Bottom End Cap for ro = 8.000 cm and ri =
7.239 cm (η = 0.905) using new lower outer cylinder end (Figure C.11).
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Figure C.13: Mechanical Drawing for New Outer Cylinder Lower End.
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Figure C.14: Mechanical Drawing for New Outer Cylinder Bottom Axle.
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APPENDIX D

CAD DRAWINGS FOR INNER CYLINDER WITH JETS

This appendix contains CAD drawings for the parts that make up the inner cylinder used

in the experiments of Chapters 4 and 6. It features a series of 84 ports in an axial line that

can be used to inject or remove fluid to perturb the flow. Unused ports can be plugged from

inside with #3-56 cap screws. It is recommended to use stainless steel screws (316 if using

NH4SCN solution for refractive index-matching) to avoid corrosion problems. Unused ports

can be smoothed over by filling them with softened bees’ wax. The bees’ wax can be made

darker by mixing it with black shoe polish. Precision ruby orifice assemblies that screw into

#3-56 threads of the ports are available from Bird Precision (Waltham, Massachusetts) in a

variety of sizes. Three sets of four orifices (part no. RB-82453) were purchased with 0.030′′,

0.015′′, and 0.0075′′ diameters.
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Figure D.1: Assembly of Cylinder with Jets with ri = 7.239 cm. Detailed part drawings
are given in Figures D.2-D.7.
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Figure D.2: Top Shaft for Cylinder with Jets.

205



Figure D.3: Bottom Cap for Cylinder with Jets.
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Figure D.4: Side View of Cylinder Body. The cylinder body has a line of 84 ports along an
axial line that can be fitted with miniature barbed fittings for 1/16 ′′ tubing to inject fluid.
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Figure D.5: End View of Cylinder Body.
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Figure D.6: Bottom Cap for Cylinder with Jets.
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Figure D.7: Bottom Shaft for Cylinder with Jets. The shaft is hollowed out as a feedthrough
for the jets.
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APPENDIX E

MECHANICAL DRAWINGS FOR 3-D CALIBRATION TARGET FOR

TOMOGRAPHIC PIV

By machining the calibration target into the movable end ring, the calibration procedure

is greatly accelerated since the target can be positioned quickly and repeatably. It also

guarantees that the axial coordinate and the Y coordinate of the reconstructed volume are

aligned. In theory, the larger the separation between the calibration planes and the greater

the number of calibration marks, the better the overall calibration. However, several design

constraints exist in practice:

� The calibration marks on the back plane must be visible from cameras pointing at

the target at an angle.

� DaVis’s calibration software searches for marks on the back plane in the middle of the

square formed by four adjacent marks on the front plane. The spacing between the

calibration marks must be large enough so that as the cameras are angled away from

normal, the dots on the back plane do not drift outside of this square by perspective

effects.

� The spacing must be small enough so that at least 7 points are visible in each direction

for each plane.

The dimensions of the calibrations target were designed based on these considerations

and are similar to the now-discontinued Type 2.5 three-dimensional calibration target from

LaVision. This design provides significantly more calibration marks than necessary for the

typical measurement volumes used here, so future designs might use fewer marks with a

larger separation between planes, or even a third calibration plane.
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Figure E.1: Mechanical Drawing for 3-D Calibration Target. Additional details are provided
in Figures E.4-E.3.
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Figure E.2: Detailed Drawing for 3-D Calibration Target Recessed Calibration Plane.

213



E

 .6
87

5 

 .8
12

5 

 .1
25

0 

 .1
25

0 

 .6
25

0 

 .7
50

0 

 .1
25

0 

 .1
25

0 
D

ET
A

IL
 E

 
SC

A
LE

 5
 : 

2

G
rid

 D
et

ai
l

N
O

TE
: D

o 
N

O
T 

m
ak

e
gr

id
 u

nt
il a

fte
r p

ar
t h

as
 b

ee
n

an
od

ize
d

!

To
 m

ak
e 

gr
id

, u
se

 1
/6

4"
en

d
 m

ill 
to

 ju
st

 b
re

ak
th

e 
an

od
izi

ng

A
lu

m
in

um

D
O

 N
O

T 
SC

A
LE

 D
RA

W
IN

G

3D
Ta

rg
et

Fin
al

SH
EE

T 
4 

O
F 

4

UN
LE

SS
 O

TH
ER

W
IS

E 
SP

EC
IF

IE
D

:

SC
A

LE
: 1

:2
W

EI
G

HT
: 

RE
V

D
W

G
.  

N
O

.

ASI
ZE

TIT
LE

:

N
A

M
E

D
A

TE

C
O

M
M

EN
TS

:

Q
.A

.

M
FG

 A
PP

R.

EN
G

 A
PP

R.

C
HE

C
KE

D

D
RA

W
N

FI
N

IS
H

M
A

TE
RI

A
L

IN
TE

RP
RE

T 
G

EO
M

ET
RI

C
TO

LE
RA

N
C

IN
G

 P
ER

:

D
IM

EN
SI

O
N

S 
A

RE
 IN

 IN
C

HE
S

TO
LE

RA
N

C
ES

:
FR

A
C

TIO
N

A
L

A
N

G
UL

A
R:

 M
A

C
H

   
  B

EN
D

 
TW

O
 P

LA
C

E 
D

EC
IM

A
L 

   
TH

RE
E 

PL
A

C
E 

D
EC

IM
A

L 
 

A
PP

LIC
A

TIO
N

US
ED

 O
N

N
EX

T 
A

SS
Y

PR
O

PR
IE

TA
RY

 A
N

D 
C

O
N

FI
DE

N
TIA

L
TH

E 
IN

FO
RM

A
TIO

N
 C

O
N

TA
IN

ED
 IN

 T
HI

S
D

RA
W

IN
G

 IS
 T

HE
 S

O
LE

 P
RO

PE
RT

Y 
O

F
<I

N
SE

RT
 C

O
M

PA
N

Y 
N

A
M

E 
HE

RE
>.

  A
N

Y 
RE

PR
O

D
UC

TIO
N

 IN
 P

A
RT

 O
R 

A
S 

A
 W

HO
LE

W
ITH

O
UT

 T
HE

 W
RI

TT
EN

 P
ER

M
IS

SI
O

N
 O

F
<I

N
SE

RT
 C

O
M

PA
N

Y 
N

A
M

E 
HE

RE
> 

IS
 

PR
O

HI
BI

TE
D

.

5
4

3
2

1

Figure E.3: Detailed Drawing for 3-D Calibration Target Mark Pattern.
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Figure E.4: Detailed Drawing for 3-D Target O-ring Grooves.
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APPENDIX F

DISTRIBUTED PROCESSING CLUSTER

Tomographic PIV can generate huge amounts of data and can require significant computa-

tional resources to process. However, because many of the required operations are carried

out on a single frame or pair of frames at a time and are independent of the computations

that need to be carried out on all the other frames, the process is trivially parallelizable. In

order to exploit this, a computer cluster was assembled to distribute the computational load.

This consisted of sixteen1 Lenovo ThinkCentre MT-M-6138-CTO desktop computers with

Intel Core 2 Quad processors (running at 2.66 GHz) and 8 GB of memory. The computers

were obtained from the School of Physics’s Information Technology (IT) department after

they were retired from the School’s teaching laboratories. They were networked together

using a Netgear Prosafe 16 Port Gigabit Switch (model no. GS116) and CAT 6 Ethernet

cable and a stand-alone local area network (LAN) was implemented using the 64-bit version

of Microsoft’s Windows 7 operating system. Windows 7 was chosen over other operating

systems because LaVision updates the Windows version of their DaVis software more fre-

quently than those for other operating systems. Because of the novelty of tomographic PIV,

algorithms are constantly being improved so being able to use the most up-to-date software

took precedence over creating a more general purpose distributed computing environment

as would be possible under Linux.

LaVision implements distributed processing via their Distributed Computing in DaVis

package. This provides several different options for distributed computing, of which the

Master/Slave model was chosen. In this model, a single computer, called the Master DaVis,

farms out individual computations to all the other computers, called Remote Workers, and

gathers the results. This model was chosen because it has the advantage that it only requires

a DaVis license and dongle for the Master DaVis. The Remote Workers do not require a

1Recently expanded to 30.
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license but are limited to executing jobs assigned to them by the Master DaVis. They

cannot initiate any jobs of their own or display any data. For more details on distributed

processing in DaVis, see LaVision Distributed Computing manual [320].
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[248] C. Coufort, D. Bouyer, and A. Liné, “Flocculation related to local hydrodynamics in
a Taylor-Couette reactor and in a jar,” Chem. Eng. Sci., vol. 60, pp. 2179–2192, 2005.

[249] A. Racina and M. Kind, “Specific power input and local micromixing times in turbu-
lent Taylor-Couette flow,” Exp. Fluids, vol. 41, pp. 513–522, 2006.

[250] R. Deng, D. Arifin, Y. Mak, and C.-H. Wang, “Characterization of Taylor vortex flow
in a short liquid column,” AIChE J., vol. 55, pp. 3056–3065, 2009.

[251] S.-H. Lee, H.-T. Chung, C.-W. Park, and H.-B. Kim, “Experimental investigation
of the effect of axial wall slits on Taylor-Couette flow,” Fluid Dyn. Res., vol. 41,
p. 045502, 2009.

232



[252] M. Sathe, S. Deshmukh, J. Joshi, and S. Koganti, “Computational fluid dynamics
simulation and experimental investigation: Study of two-phase liquid-liquid flow in a
vertical Taylor-Couette contactor,” Ind. Eng. Chem. Res., vol. 49, pp. 14–28, 2010.

[253] R. van Hout and J. Katz, “Measurements of mean flow and turbulence characteristics
in high-Reynolds number counter-rotating Taylor-Couette flow,” Phys. Fluids, vol. 23,
p. 105102, 2011.

[254] S. Huisman, D. van Gils, S. Grossmann, C. Sun, and D. Lohse, “Ultimate turbulent
Taylor-Couette flow,” Phys. Rev. Lett., vol. 108, p. 024501, 2012.

[255] S. Grossmann and D. Lohse, “Multiple scaling in the ultimate regime of thermal
convection,” Phys. Fluids, vol. 23, p. 045108, 2011.

[256] A. Akonur and R. M. Lueptow, “Three-dimensional velocity field for wavy Taylor-
Couette flow,” Phys. Fluids, vol. 15, no. 4, pp. 947–960, 2003.

[257] A. Akonur and R. M. Lueptow, “Chaotic mixing and transport in wavy Taylor-Couette
flow,” Physica D, vol. 167, pp. 183–196, 2002.

[258] F. Ravelet, R. Delfos, and J. Westerweel, “Influence of global rotation and reynolds
number on the large-scale features of a turbulent Taylor-Couette flow,” Phys. Fluids,
vol. 22, p. 055103, 2010.

[259] M. P. Arroyo and K. D. Hinsch, “Recent developments of PIV towards 3D measure-
ments,” in Particle image velocimetry (A. Schroeder and C. Willert, eds.), vol. 112 of
Topics in Applied Physics, pp. 127–154, Berlin, Germany: Springer-Verlag, 2008.

[260] K. D. Hinsch, “Three-dimensional particle velocimetry,” Meas. Sci. Technol., vol. 6,
pp. 742–753, 1995.

[261] K. D. Hinsch, “Holographic particle image velocimetry,” Meas. Sci. Technol., vol. 13,
pp. R61–72, 2002.

[262] S. Herrmann and K. D. Hinsch, “Light-in-flight holographic particle image velocime-
try,” Meas. Sci. Technol., vol. 15, pp. 613–621, 2004.

[263] J. Sheng, E. Malkiel, , and J. Katz, “Digital holographic microscope for measuring
three-dimensional particle distributions and motions,” Appl. Opt., vol. 45, pp. 3893–
3901, 2006.

[264] S. S. Orlov, S. I. Abarzhi, S. B. Oh, G. Barbastathis, and K. R. Sreenivasan, “High-
performance holographic technologies for fluid-dynamics experiments,” Phil. Trans.
R. Soc. A, vol. 368, pp. 1705–1737, 2010.
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