AN EXPERIMENTAL INVESTIGATION IN THE COOLING

OF A LARGE GAS TURBINE WHEELSPACE

A THESIS

Presented to

The Faculty of the Division of Graduate Studies

By

Francis W. Yep

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Mechanical Engineering

Georgia Institute of Technology

October, 1977

AN EXPERIMENTAL INVESTIGATION IN THE COOLING

OF A LARGE GAS TURBINE WHEELSPACE

ACKNOWLEDGMENTS

Acknowledgment is made to Dr. Winer for his suggestions, support and encouragement and the freedom he granted to the author to conduct the experiment independently making it more challenging and a truly engineering problem to tackle.

Thanks also go to Dr. Sanborn who took the time and interest reading and commenting on the first thesis draft and Dr. Corley, who helped in the computer program.

The participation of Scott Bair, Bill Brock, Bob Byron and Bill Chen in setting up the equipment and running of the experiment are greatly appreciated. Acknowledgment is also made to secretaries Elaine Fletcher and Jackie Van Hook in typing the manuscript.

Finally, the author expresses his deep appreciation to the General Electric Company, Large Gas Turbine Division and the Georgia Institute of Technology, School of Mechanical Engineering for the support of the research and the research assistantship. It is hoped that the result of this almost one year effort is beneficial to General Electric, Georgia Tech, the thesis advisor and the writer himself.

ii

TABLE OF CONTENTS

	and a second second Second second	Page
ACKNOW	TEDGMENTS	11
LIST O	F TABLES	V
iist o	F ILLUSTRATIONS	vi
SUMMAR	Υ	xi
Chapte	r	
I.	TECHNICAL BACKGROUND	1
II.	EQUIPMENT	3
	Measurements	
III.	TEST PROCEDURES	15
	Experimental Procedure Data Handling	
IV.	DISCUSSION OF RESULTS	22
	Rotating Seal Geometry	
v.	CONCLUSIONS AND RECOMMENDATIONS	. 91
Append	lices	
I.	COMPUTER PROGRAM WS1 FLOW CHART	93
II.	GRAPHS OF TEMPERATURES, PRESSURES, AND SEAL PRESSURE DIFFERENTIALS AS A FUNCTION OF COOLING FLOW RATES FOR TESTS LISTED IN TABLE 5-1	111
IIIA.	TEMPERATURE DATA	114
IIIB.	AVERAGE PRESSURE VERSUS COOLING CURVES	152
IIIC.	LOCAL SEAL PRESSURE DIFFERENCE VERSUS COOLING CURVES	191

TABLE OF CONTENTS (Continued)

Append	lices		: · · · · · · · · · · · · · · · · · · ·	2	•	Page	≥
IIID.	OUTER SPACE PRESSURE DISTRIBUTION		• • •	••	i 	228	;
IVA.	MECHANICAL DRAWINGS OF WHEELSPACE	APPARAT	us .			. 232	
IVB.	PHOTOGRAPHS OF WHEELSPACE APPARATU	ís	· • • •		• • •	, 239	ł
BIBLIC	GRAPHY			• •	••	. 246	

LIST	OF	TABLES

Fable		х. 1. М		Page
2-1.	Thermocouple Identification .			13
2-2.	Pressure Tap Location	••••••	• • • • • • •	. 14
3-1A.	Test Description, Test Series	I		. 18
3-1B.	Test Description. Test Series	II		. 19

LIST OF ILLUSTRATIONS

Figure		Page
2-1.	General System Schematic	4
2-2.	The Wheelspace Seal Nomenclature	· 7.
2-3.	Coordinate Location Definition for T/C and Pressure	9
2-4A.	Instrumentation Sensor Location	10
2-4B.	Instrumentation Sensor Location	11
3-1A.	Rotor Seal Geometry, Test Series I	16
3 -1 B.	Rotor Seal Geometry, Test Series II	16
3-1C.	Rotating Seals - PT18, PT18A and PT19	17
4-1A.	Wheelspace Temperature in Fore and Aft Position (B4 and C4) Tests FIAl Baseline	24
4-1B.	Wheelspace Temperature in Fore and Aft Position for Several Rim Spacings (B4 and C4), Tests FlA1, F2A6, F3A7, F4A8	25
4-1C.	Wheelspace Temperature in Fore and Aft Position for Several Radial Scal Clearances (B4 and C4), Tests F1A1, F8A14, F9A15	26
4-1D.	Wheelspace Temperature in Fore and Aft Position for Several Rotor-Stator Inner Spacings (B4 and C4), Tests F10A16, F17A17, F18A18	27
4-2.	Temperature at Position B4 for Forward Rotating Seal Geometry PT18 (II) and PT19 (I)	29
4-3.	Pressure at Position B4 for Forward Rotating Seal Geometry PT18 (II) and PT19 (I)	30
4-4.	Local Coolant Flow Across Radial Seal for Two Different Forward Rotating Seals, PT18 (II) and PT19 (I) (Circumferential Position 3)	31
4-5.	Temperature at Position C4 for Aft Rotating Seals PT18 (I) and PT18A (II)	32

vi

Figure		Page
4-6.	Pressure at Position C4 for Aft Rotating Seals PT18 (I) and PT18A (II)	35
4-7.	Local Coolant Flow Across Radial Seal and for Two Different Aft Rotating Seals, PT18 (1) and PT18A (11) Circumferential Position 3	33
4-8A.	Rim Spacing Effect on Temperature, Seal PT18, Position C2	36
4-8B.	Rim Spacing Effect on Temperature, Seal PT18, Position C4	37
4-8C.	Rim Spacing Effect on Temperature, S al PT18, Position B4	38
4-9.	Rim Spacing Effect on Pressure, Seal PT18, Position C4	39
4-10.	Aft Local Flow Across the Radial Seal for Different Rim Spacing, Seal PT18, Position 3	40
4-11.	Rim Spacing Effect on Pressure, Seal PT18, Position B2	41
4-12.	Rim Spacing Effect on Pressure, Seal PT18, Position B4	42
4-13A.	Rim Spacing Effect on Temperature, Seal PT19, Position B2	43
4 -1 3B.	Rim Spacing Effect on Temperature, Seal PT19, Position B4	44
4-14.	Rim Spacing Effect on Forward Local Flow Across the Radial Seal, Seal PT19, Position 3	46
4-15.	Rim Spacing Effect on Pressure, Seal PT19, Position B4	47
4-16.	Rotor-Stator Inner Spacing Effect on Temperature, Seal PT18, Position B4	48

Figure		Page
4-17.	Rotor-Stator Inner Spacing Effect on Temperature, Seal PT18, Position C4	49
4-18A.	Rotor-Stator Inner Spacing Effect on Temperature, Seal PT18A, Position C3	51
4 -18 B.	Rotor-Stator Inner Spacing Effect on Temperature, Seal PT18A, Position C4	52
4-19.	Rotor-Stator Inner Spacing Effect on Pressure, Seal PT18, Position C3	53
4-20A.	Rotor-Stator Inner Spacing Effect on Pressure, Seal PT18, Position B4	54
4-20B.	Rotor-Stator Inner Spacing Effect on Pressure, Seal PT18A, Position C4	55
4-21.	Rotor-Stator Inner Spacing Effect on Aft Local Flow, Seal PT18, Position 3	56
4-22A.	Rotor-Stator Inner Spacing Effect on Forward Local Flow, Seal PT18, Position 3	57
4-22B.	Rotor-Stator Inner Spacing Effect on Aft Local Flow, Seal PT18A, Position 3	58
4-220.	Rotor-Stator Inner Spacing Effect on Aft Average Local Flow, Seal PT18A	59
4-23.	Radial Seal Clearance Effect on Temperature, Seal PT19, Position B3	61
4-24.	Effect of Radial Seal Clearance on Temperature, Seal PT19, Position B4	62
4-25.	Effect of Radial Seal Clearance on Pressure, Seal PT19, Position B4	63
4-26.	Effect of Radial Seal Clearance on Forward Local Flow Across Radial Seal, Seal PT19, Position 3	64

Figure		Page
4-27A.	Effect of Radial Seal Clearance on Temperature, Seal PT18, Position B3	65
4-27B.	Effect of Radial Seal Clearance on Temperature, Seal PT18, Position B4	66
4-28A.	Effect of Radial Seal Clearance on Pressure, Seal PT18, Position B3	67
4-28B.	Effect of Radial Seal Clearance on Pressure, Seal PT18, Position B4	68
4-29.	Effect of Radial Seal Clearance on Forward Local Radial Seal Flow, Seal PT18, Position 3	69
4-30A.	Effect of Radial Seal Clearance on Temperature, Seal PT18, Position C3	70
4-30B.	Effect of Radial Seal Clearance on Temperature, Seal PT18, Position C4	71
4-31.	Effect of Radial Seal Clearance on Pressure, Seal PT18, Position C4	72
4-32.	Effect of Radial Seal Clearance on Aft Local Flow Across Radial Seal, Seal PT18, Position 3	73
4-33A.	Effect of Radial Seal Clearance on Temperature, Seal PT8A, Position C3	74
4-33B.	Effect of Radial Seal Clearance on Temperature, Seal PT8A, Position C4	85
4-34.	Effect of Radial Seal Clearance on Pressure, Seal PT18A, Position C4	76
4-35.	Effect of Radial Seal Clearance on Aft Local Flow Across Radial Seal, Position 3	77
4-36.	Effect of Rim Flow on Pressure, Seal PT19, Position B^4	79
4-37.	Effect of Rim Flow on Pressure, Seal PT18, Position C4	80
4-38.	Effect of Rim Flow on Pressure, Seal PT18, Position B4	81

ix

Figure	Pa	age
4-39.	Effect of Rim Flow on Temperature, Seal PT18, Position $B^{l_{\rm H}}$	83
4-40.	Effect of Rim Flow on Forward Local Flow Across Radial Seal, Seal PT18, Position 3	84
4-41.	Effect of Rim Flow on Temperature, Seal PT18, Position C4	85
4-42.	Effect of Rim Flow on Aft Local Flow Across Radial Seal, Seal PT18, Position 3	86
4-43.	Effect of Rim Flow on Temperature, S al PT19, Position B^4	87
<u>4-11</u>	Effect of Rim Flow on Forward Local Flow Across Radial Seal, Seal PT19, Position 3	88
4-45.	Effect of Wheelspeed on Temperature, Seal PT18, Position C4.	<u>89</u>
4-46.	Effect of Wheelspeed on Pressure, Seal PT18, Position C4	90

х

SUMMARY

Due to the heat conducted through the wheel and stator of the turbine and the radial inflow of hot exhaust gases, high temperatures occur in the turbine wheelspace. Cooling of a turbine disk by compressed air from the compressor represents a loss of compressed burner inlet air. Therefore it is desirable to use the minimum cooling air, consistent with turbine wheel temperature limitations.

It is known that the gemoetry of the rotating seal, the rim spacing, the inner rotor-to-stator spacing, the radial seal clearance, the amount of rim flow and the wheelspeed can affect the wheelspace temperature.

The rate of wheelspace temperature decrease with increased cooling flowrate depends on the combination of seal geometry and operating conditions. The rotating seal geometry, rim spacing and the rotor-to-stator inner spacing play a major role in wheelspace cooling. It was also found that the effect of the radial clearance between the rotating and stationary seal, the amount of hot gas flow in the outer rim space and the wheelspeed on wheelspace temperature are less pronounced.

xi

CHAPTER I

TECHNICAL BACKGROUND

This investigation is a continuation of the Phase I large gas turbine wheelspace cooling studies [1] Its objective is to determine experimentally the relationship among cooling air flowrate, seal geometry, wheelspeed and system temperatures to provide design criteria.

Many previous studies have been concerned with the fluid mechanics and heat transfer on a rotating disk. Several of these have been directed toward turbine design. A report by Hoeft [2] reviews wheelspace cooling for General Electric turbines through 1973. Bayley et al. [3] and Haynes et al. [4] studied the case of a shrouded disk. Owen, Haynes and Bayley [5] report a combined experimental and theoretical investigation of the heat transfer from an air cooled rotating disk. Chao and Grief [6], Metzger [7,8] and Koosintin et al. [9] also did related investigations.

The inflow of hot gases is governed by the static pressure difference in the radial direction on the stationary wall. This pressure difference is in part due to the centrifugal forces created by the fluid motion. It is found that the shape of the stationary wall surface as well as the rotating disk affect this pressure gradient, thus, the radial inflow of hot gases and outflow of cooling air. Uzkan studied different stationary wall geometry with and without radial through flow [10 and 11]. The effect of the rotating wheel shape was also evaluated

T

by him [12].

Uzkan's results gave insight into the fluid behavior on a rotating wheel and stationary wall. However, in order to apply his results to actual turbine design a complete housing must be present. This led Edelfelt [13,14] to continue Uzkan's investigation.

As the wall and/or the rotor geometry is changed, the drag forces as well as the static pressure are altered. In order to gain a better understanding of the fluid behavior between the turbine disk and its stationary wall on different geometry, Mani [15] made a series of experiments by varying the inlet condition, stator seals and overlapping stator and rotor seals. Mani found that overlapping seals are very effective in reducing the radial inflow at the rim, and reducing the axial clearance can reduce the critical throughflow. No penalty of torque increase was found with these changes.

In the study reported here a 40 inch diameter wheel is incorporated in a casing designed specifically to permit extensive changes in both rotating and stationary seal geometry. Both hot rim flow simulating working fluid and wheelspace cooling air are provided. Stationary blading is provided in the casing to turn the rim flow in such a way as to simulate direction and magnitude of hot rim flow over the seal area. The system is heavily instrumented for temperature and pressure measurements. Three rotating seals were employed. The system is highly flexible and could be used for further seal studies in addition to those reported here.

CHAPTER II

EQUIPMENT

Figure 2-1 shows a schematic of the testing facilities at Georgia Tech employed in this study. A 40 inch diameter wheel with forward and aft rotating seals is mounted on two bearings in the walls of the housing. The wheel is driven by a propane fueled Chrysler Industrial engine through a two inch drive shaft. The engine and the drive shaft are connected by a belt and a Twin Disk hand operated dry clutch. The drive shaft is underneath the engine, supported by two pillow blocks and attached through a Lovejoy flexible coupling to the shaft of the wheel. The wheelspeed is varied continuously up to about 3000 rpm by adjusting the throttle of the engine. A Hasler manual tachometer held against the wheel shaft is used to measure the wheelspeed.

Hot air, simulating turbine working fluid, is supplied by a Worthington two-stage piston air compressor connected to a combustion chamber. An air-propane mixture is electrically ignited in the chamber. Propane supply, and hence temperature, is controlled pneumatically by a Taylor Instruments Temperature Controller. The hot air was typically supplied at 250F. The amount of hot air flow is controlled by a valve or by adjusting the compressor capacity. Air flowrate can be varied from two to four lbm/s. The flow rate through the combustion chamber is measured with an orifice plate flowmeter located upstream of the

500 gallon propane tank 1.

2. Regulator

3. Pressure gage

4. Emergency switch

Spark plug 5.

Combustion chamber 6.

7. Orifice plate flowmeter

8. Control valve

9. Mercury manometer

10. Taylor instrument temperature controller

11. Hot air line

12. Air control valve

Air line pressure gage
Pulley and belt

15. Twin disc hand operated dry clutch

16. Chrysler industrial engine

17. Pillow blocks

18. 3-drive shaft

19. Lovejoy couplings

20. Nozzle

21. Buckets

22. Jack screws

23. Rotating seals (forward and aft)

24. Rotor

25. Radial seal

KEY TO FIGURE 2-1

- 26. Rim seal
- 27. 10 hp centrifugal blower
- Forward cooling air 28.
- 29. Aft cooling air
- Orifice plate flowmeters 30.
- Merian #3 fluid manometers 31.
- 32. Leed-Northrup multipoint recorder
- Thermocouple-cooling air temperature 33. measurement
- 56 thermocouples at different forward 34. and aft wheel location
- 35. 24 pressure tap lines
- 54 pressure tap lines 36.
- Pneumatic Taylor Instrument controller 37.

chamber. Fifteen heavy duty rubber hoses are used to provide distribution of hot air to the housing. The hot air is exhausted directly to the atmosphere from ten openings in the housing.

Cooling air is supplied by a ten hp electric driven centrifugal blower through two ducts. An orifice plate flowmeter is placed in each of these ducts to measure the amount of air flow. Six flexible hoses, three on each duct, are used to provide cooling in the forward and aft sides of the housing. The blower provides air up to 1.3 lbm/s. The amount of air flow can be varied by restricting the inlet of the blower.

The hot air, cooling air and surrounding ambient air temperatures are measured with copper constantan thermocouples connected to a Leeds and Northrup multipoint recorder.

A detailed schematic of the wheelspace seal area is shown in Figure 2-2 and the working drawings of the wheelspace apparatus are included in Appendix 1A. The 40 inch wheel acts as a rotor. The rotorto-stator rim spacing (A in Figure 2-2) can be varied from 0.1 inch to 0.6 inch by adjusting the jack bolts in the housing wall. The inner rotor-to-stator spacing (D in Figure 2-2) can also be adjusted in the same manner from 0.75 inch to 1.5 inch. Seals and spacers of different width and thickness are available so that the radial seal clearances (C in Figure 2-2) as well as the radial seal overlap (B in Figure 2-2) can be varied. The radial seal clearance can vary from 0.05 inch to 0.20 inch. The radial seal overlap was held constant at 0.05 inch for all tests reported.

Stationary buckets at the axial position of the wheel and nozzles

2-2. The Wheelspace Seal Nomenclature. Figure

upstream to these buckets are present, so the flow behavior (direction and magnitude of the velocity) is comparable to that of an actual turbine wheel.

Mechanical drawings and photographs of the equipment are presented in Appendix I.

Measurements

Thermocouple and pressure tap locations are designated by subscripts (T_{XYZ} and P_{XYZ}). The first subscript (x) indicates the axial location, the second (y) the radial position and the third (z) the circumferential position. The coordinates for the positions are shown in Figure 2-3.

It is convenient to average the values of temperature or pressure from different circumferential positions for some discussions. When this is done two subscripts (x,y) are used indicating the axial and radial position, and the value reported is the average of the circumferential locations for that x and y.

Temperature Measurements

Fifty-six cooper-constantan thermocouples are used to measure the temperature at different locations. Twenty-eight are on the aft side and 28 on the forward side. These thermocouples are distributed radially at three circumferential positions 120° apart. They are mounted on the wheelspace wall, radial seal area and axially along the crossflow space. Figure 2-4 shows the locations schematically. Photographs in Appendix I -B show typical temperature and pressure sensor installations.

2-4A. Instrumentation Sensor Location. Figure

By connecting the thermocouples to a Leeds and Northrup multipoint recorder the temperatures are obtained. Table 2-1 indicates the relationship between recorder position and thermocouple locations.

Pressure Measurements

Seventy-eight static pressure taps are present. Thirty pressure taps are distributed radially along the wheelspace walls and axially along the rim flow space at two circumferential locations. Twenty-four pressure taps are placed circumferentially (12 forward and 12 aft) along the outer surface of the rim flow. These pressure taps are used to detect circumferential variations in the crossflow. Locations of these taps relative to the flow vanes are shown in Appendix III-D.

The static pressures are read on two common-well manometers with reference to atmospheric pressure. Meriam No. 3 fluid with specific gravity of 2.95 is used as a measuring fluid. The manometers can not be read to an accuracy of better than ± 0.05 inch resulting in pressure accuracies of about ± 0.01 psi.

In addition to the above, there are 48 pressure taps placed in 24 pairs to measure the pressure difference across the radial seals. Twelve pairs are located in each of the forward and aft sections. They are located circumferentially along the radial seal. U-tube manometers are used to read the pressure difference. Figure 2-4 and Table 2-2 show their locations.

Pressure and temperature data were entered into a computer file for analysis with the program presented in Appendix III. A complete printout of the data for all tests is available but not included in this document. Table 2-1. Thermocouple Identification - December 15, 1975.

RECORDER		MACHINE			· .
BANK	<u>t/c</u>	LOCATION	<u>BANK</u>	<u>T/C</u>	LOCATION
1	2 2 4 5 6 7 8 9 10 11 12	E73 D71 C01 C74 C71 C84 AFT C81 E81 E83 D81 F71	4	1 2 3 5 6 7 8 9 10 11 12	C11 C31 B61 B63 B64 B51 B53 B41 B43 B44 FORWARD B31
2	1 3 4 5 6 7 8 9 10 11 12	F73 A71 B71 B74 F81 B81 F83 B84 A81 E71 C44	5	1 2 3 4 6 7 8 9 10 11 12	B33 B21 B23 B24 B11 A01 D01 AFT B03 FORWARD C03 AFT B01 FORWARD
3	1 2 4 5 6 7 8 9 10 11 12	C64 C63 C61 C53 C51 AFT C43 C41 C33 C24 C23 C21	6	1 2 3 4 5 6 7 8 9 10 11 12	B04 CO4 AFT AMBIENT CROSS INLET COOLING INLET 1/16/76

Table

2-2. Pressure Tap Location.

P _{C04}	P _{F73}	Рсок	P _{B3M}	P _{C2M}	
P _{B04}	P _{F74}	PCOL	P _{B2M}		
^р соз	P _{F7.34}	PCOM	Р _{СЗН}		
Р _{ВОЗ}	P _{F7.64}	Р _{ВЗН}	^р с2н	·	-
P _{C13}	P _{F84}	^р в2н	PC3G		
P _{C23}	Р _{ВОН}	P _{B3G}	P _{C2G}		
P _{C24}	PBOG	P _{B2G}	P _{C3F}		
^Р сзз	PBOF	^Р ВЗF	P _{C2F}		
P _{C43}	PBOE	P _{B2F}	P _{C3E}		
P _{C44}	PBOD	P _{83E}	P _{C2E}		
P _{C53}	P _{BOC}	P _{B2E}	Pc310		
^р с64	P _{BOB}	P _{B3D}	P _{C2D}		
P _{B13}	^р вон	P _{B2D}	PC3C		
P _{B23}	PBOJ	P _{B3C}	P _{C2C}		
P _{B24}	Р _{ВОК}	P _{B2C}	P _{C3B}		
P _{B33}	P _{BOL}	P _{B3B}	P _{C2B}		
P _{B43}	PBOM	P _{B2B}	Рсза		
P ₈₄₄	Р _{СОН}	P _{B3A}	P _{C2A}		
P _{B53}	PCOG	P _{B2A}	P _{C3J}		
	PCOF				
^Р В64	PCOE	P _{B3J}	P _{C2J}		
P _{E73}	P _{COD}	P _{B2J}	Р _{СЗК}		
P _{E74}	Pcoc	^Р ВЗК	PC2K		
PE7.34	P _{COB}	^Р В2К	P _{C3L}		
^Р Е7.64	P _{COA}	P _{B3L}	P _{C2L}		
P _{E84}	P _{COJ}	P _{B2L}	РСЗМ		

CHAPTER III

TEST PROCEDURE

Two test series were conducted, each with different seals on the rotor. Figure 3-1 shows the seal geometry for the two test series.

In both test series, studies of the effect of rim spacing, rim flow, inner rotor-stator spacing and radial seal clearance are made. In test series I, in addition to those four tests mentioned above, wheelspeeds of 1200 rpm, 2200 rpm and 3000 rpm are also included. Table 3-1 describes the conditions employed.

Each test consists of varying the cooling flow from the maximum blower capacity to near zero. Four to six cooling flowrates are used in a test.

Experimental Procedure

The steps taken for each test are as follows: The propane, engine and compressor are turned on followed by igniting the airpropane mixture in the combustion chamber. Once hot air is obtained, the blower is turned on to supply cooling air. Due to the thermal transient, generally 15 minutes or longer is required for the system to reach steady state. The wheel speed is checked by means of a Hasler tachometer held against the shaft. Steady state is determined from the temperature readings on the multipoint recorder and the wheelspeed. Only steady state data are considered in the present studies.

Figure 3-1A. Rotor Seal Geometry, Test Series I.

Figure 3-1B. Rotor Seal Geometry, Test Series II.

TEST NUMBER	TEST EFFECT	RADIAL SEAL CLEARANCE ¹ (IN.)	RIM AXIAL SPACING ² (IN.)	ROTOR-STATOR INNER SPACING ³ (IN.)	RIM FLOW (LBM/SEC)	WHEEL SPEED (RPM)
FIAI	Baseline	0.1	0.2	1.0	4.0	2900, 3100
A3	Speed	0.1	0.2	1.0	4.0	2200, 2300
A5	Speed	0.1	0.2	1.0	4.0	1200, 1300
F2 A6	Rim Spacing	0.1	0.1	1.0	4.0	2880
F3 A7	Rim Spacing	0.1	0.4	1.0	4.0	2900, 3050
F4 A8	Rim Spacing	0.1	0.6	1.0	4.0	2535
F5 A9	Rim Flow	0.1	0.2	1.0	2.9	2900
F6 A10	Rim Flow	0.1	0.2	1.0	1.84	2910
A12	Rotor-Stator Inner Spacing	0.1	0.2	0.75	4.0	2900
A13	Rotor-Stator Inner Spacing	0.1	0.2	- 1.5	4.0	3150, 2500
F8 A14	Radial Seal Clearance	0.15	0.2	1.0	4.0	3000
F9	Radial Seal Clearance	0.05	0.2	1.0	4.0	3000

Table 3 - 1A. Test Description, Test Series I

¹C in Figure 3-2.

²A in Figure 3-2 ³D in Figure 3-2

TEST NUMBER	TEST EFFECT	RADIAL SEAL CLEARANCE ¹ (IN.)	RIM AXIAL SPACING ² (IN.)	ROTOR-STATOR3 INNER SPACING ³ (IN.)	RIM FLOW (LBM/SEC)	WHEEL SPEED (RPM)
F10 A16	Baseline	0-1	0.2	1.0	4.0	2950, 3000
F11	Rim Spacing	0.1	0.1	1.0	4.0	2900
F12	Rim Spacing	0.1	0.4	1.0	4.0	2900
F13	Rim Spacing	0.1	0.6	1.0	4.0	2850
F14	Rim Flow	0.1	0.2	1.0	3.2	2850, 3000
F15	Rim Flow	0.1	0.2	1.0	1.87	2920
F17 A17	Inner Spacing	0.1	0.2	0.75	4.0	2800, 3000
F18 A18	Inner Spacing	0.1	0.2	1.5	4.0	2850
F19 A19	Radial Seal Clearance	0.2	0.2	1.0	4.0	2850
F20 A20	Radial Seal Clearance	0.15	0.2	1.0	4.0	2850
F21 A21	Radial Seal Clearance	0.05	1.2	1.0	4.0	2750

Table 3-1B. Test Description, Test Series II

¹C in Figure 3-2 ²A in Figure 3-2

 3 D in Figure 3-2

Data Handling

The temperature data are non-dimensionalized according to the dimensionless temperature parameter:

$$\theta = \frac{T - T_{cool}}{T_{hot} - T_{cool}}$$

where

T = local wheelspace temperature $T_{cool} = coolant$ inlet temperature

 T_{hot} = hot air temperature at the inlet of the wheel.

This parameter can range from zero to one depending on whether the local temperature is the minimum or maximum possible, namely the cooling air temperature or hot cross flow temperature respectively. These dimensionless temperatures are further averaged over the three different circumferential locations having this same axial and radial positions. These dimensionless temperatures are presented in the form of plots in Appendix 3-A (Figures AT-1 to AT-23). Tables of these data are available but not included in this report.

The static pressure data determine the flow behavior and the wheelspace pressure. The data are taken directly from the experiment, entered into the computer and averaged from two circumferential positions for given axial and radial position. The results of the pressure measurements are given in psi and plots of the average pressure versus cooling flow are presented in Appendix 3-B, (Figures AP-1 to AP-23). Tables of these data are available but not included in this report. The local radial flow across the seal is proportional to the square root of pressure difference across the seal for a given seal geometry. Therefore the pressure measured at radial positions 2 and 3 indicate the local direction of flow and the square root of the pressure difference represents the flow rate. The pressures measured at radial positions 2 and 3 are therefore converted into square roots of pressure difference with appropriate consideration of sign for direction of the flow (flow out of wheelspace is positive). These data are plotted in Appendix 3-C, (Figures AF-1 to AF-23). Tables of these data are available but not included in this report. The square root of the seal pressure difference can be used as an indicator of local seal flow only when the seal geometry is held constant (that is for test involving a given set of seals with common overlap and radial clearance).

Finally, the circumferential static pressure distribution at radial position 0 (the wall of the casing) is evaluated and presented in Appendix 3-D.

CHAPTER IV

DISCUSSION OF RESULTS

The temperature and pressure in the wheelspace as well as the seal flow depend on six factors: the rotating seal geometry, the rim spacing between the rotor and stator, the inner rotor-to-stator spacing, the radial seal clearance between the disk rotating seal and the stator static seal, the amount of rim flow and the wheelspeed. The effect of each of these factors will be discussed in this section. Extensive details of pressures, temperatures, and seal pressure differences for each run will be found in the appendices of the report.

A high degree of accuracy in the results can not be expected due to the nature of the equipment and the presence of many outside factors that cannot be controlled during the experiment. A typical uncontrolled factor is the ambient temperature which influences cooling air supply temperature, heat transfer from the unit, and propane supply pressure. However, since the purpose of the experiment is to evaluate how the different factors affect the cooling of the turbine disk for actual turbine design, the trends in the data are of primary importance.

Most of the following discussion is based on position B4 and $C4^{\star}$ for forward and aft sides respectively because this radial position

*Position B4 or C4 refer to the average of three circumferential positions B41, B43 and B44 for forward and C41, C43 and C44 for AFT position. (See Figure 1-3B and position reference to B4 and/or C4).

is the outermost location in the wheelspace.

As expected the wheelspace temperature decreases as the supply of cooling air increases because the cooling air convects away the heat conducted through the wheel and the stator, and obstructs the inflow of hot gases from the rim flow.

For any given set of operating conditions the temperature in the forward wheelspace is higher than in the aft wheelspace. Figure 4-1A shows this effect at radial position 4 in baseline tests FIAL and FIOA16. The same effect can be observed in radial positions 2, 3, 5 and 6 by comparing Figures AT1-B and AT13-A. The difference between forward and aft wheelspace temperatures for several other seal geometries are shown in Figures 4-1B, 4-1C and 4-1D. Consistently the temperatures at the forward wheelspace are higher than those in the aft wheelspace.

The lower aft wheelspace temperatures are due in part to the fact that the forward rim flow temperatures $(T_{AO} \text{ and } T_{BO})$ are higher than the aft $(T_{CO} \text{ and } T_{DO})$.

The rim flow temperature is reduced in the direction of flow as a result of cooling by the surfaces and mixing of lower temperature cooling air from the wheelspace. Therefore the amount of conduction heating of the forward wheelspace should be greater than the aft and any hot gas inflow in the forward wheelspace will have a greater influence on wheelspace temperatures than a comparable amount of inflow to the aft wheelspace.

Wheelspace Temperature in Fore and Aft Position for Several Radial Seal Clearances (B4 and C4), Tests FIA1, F8A14, F9A15.

Rotating Seal Geometry

Three rotating seal geometries were evaluated. Seals PT18 and PT19 were used on the forward side while on the aft side PT18 and PT18A were used (See Figure 4-2). To evaluate the effect of the rotating seal geometry the following conditons were employed: 3000 rpm wheelspeed, 4 lbm/s rim flow and rim spacing. radial seal clearance and rotor-tostator inner spacing (A, C and D respectively in Figure 3-2) of 0.2, 0.1 and 1.0 inches respectively.

On the forward side of the rotor, the wheelspace temperatures are higher when seal PT18 is used. Figure 4-2 shows the temperature difference due to different rotating seal geometries at radial position B4. Curve I in Figure 4-2 corresponds to seal PT19 while Curve II corresponds to PT18. For temperatures at different radial locations (B5, B6, B7, F7, A7, A8 and B8) compare Figures AT1-A and AT13-A.

When using seal PT19, the wheelspace pressure is lower (See Figure 4-3 for radial position B4 and for other radial positions compare Figures AP1-A and AP13-A), therefore, hot rim gas inflow* is found (Figure 4-4) at low values of cooling supply $(m_{cool}, < ~ 0.4 \text{ lbm/sec})$. Because of the presence of the lip on seal PT19, it creates greater resistance to coolant flow out of the wheelspace.

On the aft side of the rotor, wheelspace temperatures using seal PT18-A are higher than when using PT18. (See Figure 4-5 or compare Figures AT1-B and AT13-B). The higher temperature is associated with the lower amount of local radial outflow (Figure 4-7). The presence *Positive $\sqrt{\Delta p}$ represents outflow, negative $\sqrt{\Delta p}$ represents inflow.

-5.

in the second second

of the "step" in seal PT18A does not seem to influence the wheelspace pressure (Figure 4-6) but does result in less coolant outflow.

Rim Spacing Effect

In order to see the effect of rim spacing (A in Figure 3-2), two sets of experiments are run. On the forward side of the rotor rotating seals PT18 and PT19 are used. On the aft side seal PT18 is used. By holding the wheelspeed, rim flow, radial seal clearance and inner rotorto-stator spacing constant, at 3000 rpm, 4 lbm/s., 0.1 inch and 1.0 inch respectively, the effect of rim spacing of 0.1, 0.2, 0.4 and 0.6 inches are evaluated.

When rotating seal PT18 is used, the wheelspace temperatures at either forward or aft positions are found to be higher for larger rim spacing. Figures 4-8A and 4-8B show the effect on wheelspace temperature of rim spacings at radial positions C2 and C4 respectively and Figure 4-8C shows the forward temperatures at position B4. (Also see Figures AT1-B, AT4-B, AT5-B, AT6-B, AT13-A, AT14, AT15 and AT16). The wheelspace pressure and the local outflow of coolant is not affected by changing the rim spacings between the stator and the rotor. (See Figures 4-9 to 4-12, also see Figures AP1-B, AP4-B to AP6-B, AF1-B, AF4-B to AF6-B, AP13A, AP14 to AP16, and AF13-A, AF4 to AF6).

When rotating seal PT19 is used, decreasing the rim spacing to 0.2 inch lowers the wheelspace temperature at either radial position 2, or 4 but the further decrease in spacing seems to be detrimental (See Figures 4-13A and 4-13B, or compare Figures AT1-A and AT4-A to AT4-6 for rim spacing of 0.1 inch). The reversal in trend with reduced rim

Figure 4-8C. Rim Spacing Effect on Temperature, Seal PT18, Position B4.

Figure 10. Aft Local Flow Across the Radial Seal for Different Rim Spacing, Seal PT18, Position 3.

....

\$

Figure 4-13A. Rim Spacing Effect on Temperature, Seal PT19, Position B2.

Figure 4-13B. Rim Spacing Effect on Temperature, Seal PT19, Position 84.

spacing is also seen for the wheelspace pressure (Figure 4-15) and radial seal flow (Figure 4-14).

Comparisons of Figures ATL-B and ATL3-A, AT4-B and ATL4, ATL5-B and ATL5, and AT6-B and ATL6 show they have the same slope for the forward and aft side of the wheel for a given rim spacing and rotating seal geometry. Therefore, the rim spacing plays an equally important role on the forward as well as the aft side of the wheel.

Rotor-to-Stator Inner Spacing

At a rim flow of 4 lbm/s, wheelspeed of 3000 rpm, radial seal clearance 0.1 inch, rim spacing 0.2 inch, the effect of inner rotor-tostator spacing (D in Figure 3-2) of 0.75 inch, 1.0 inch and 1.5 inch is evaluated. The forward seal employed is PT18 and the aft is PT18 or PT18-A.

On the forward side with seal PT18, wheelspace temperatures decrease for smaller rotor-to-stator inner spacings (Figure 4-16). It is believed that the corresponding lower temperature at smaller spacing is a result of the changing character of the convection heat transfer from the stator as the spacing decreases. For a constant cooling flow a decrease in rotor-stator spacing increases the local velocity and hence the local convection coefficient. Comparisons of the effect of rotor-to-stator spacing for positions B2, B3, B5 and B6 can be made by examining Figures AT13-A, AT19-A and AT20-A.

On the aft side, using seal PT18, the temperature versus cooling curves for inner rotor-to-stator spacing of 1.5 inch, 0.75 inch, and 1.0 inch are shown in Figure 4-17 for radial position C4. The lowest

Figure 4-14. Rim Spacing Effect on Forward Local Flow Across the Radial Seal, Seal PT19, Position 3.

.

्राष्ट्र अप

Figure 4-15. Rim Spacing Effect on Pressure, Seal PT19, Position B4.

<u>y</u>zi

Figure 4-16. Rotor-Stator Inner Spacing Effect on Temperature, Seal PT18, Position B4.

wheelspace temperature is for a 1.0 inch spacing. Figures AT1-B, AT9 and AT10 can be compared to see the rotor-to-stator inner spacing effect for position B2, B5, B6, B7, A7, F7, B8, A8 and F8. The above results show the temperature effect due to inner rotor-to-stator spacing is significant when seal PT18 is used. However, when using seal PT18-A, Figure 4-18A and 4-18B show the wheelspace temperature changes due to different inner spacings between the rotor and stator are negligible. Figures AT19-B and AT20-B are the results of rotor-to-stator spacings of 0.75 inch and 1.5 inch.

For all the above cases, on the forward or aft side of the wheel, the wheelspace pressure difference due to the different rotor-to-stator inner spacing is small. (See Figures 4-19, 4-20A and 4-20B and compare Figures AP1-A, AP9 and AP10 and AP13, AP19 and AP20).

Comparison of Figures 4-16, 4-17, and 4-18B with corresponding cooling outflow (square root of pressure difference) in Figures 4-22A and 4-21 and 4-22B respectively seems to present an inconsistancy. It is expected that when more cooling outflow occurs the wheelspace temperature would be lower because (1) more cooling air is present to convect away the heat conducted through the wheel and stator, and (2) less hot gas would penetrate the wheelspace. However, this trend is not present in the data. No explanation for this consistancy is available at this time.

Radial Seal Clearance

The effect of radial seal clearance of 0.05 inch, 0.1 inch and 0.15 inch are evaluated. The experiments were run for several cooling

50 °

Figure 4-18A. Rotor-Stator Inner Spacing Effect on Temperature, Seal PT18A, Position C3.

----/

· · · •

. . .

ŝ

.

59.

supply rates, 4 lbm/s rim flow, 3000 rpm wheelspeed, 0.2 inch rim spacing and 1.0 inch rotor-to-stator inner spacings. PT18 and PT19 rotating seals are used on the forward side of the wheel and PT18 and PT18-A on the aft side. The results are presented in Figures 4-23 to 4-35.

With rotating seal PT19, lower wheelspace temperatures are obtained when the radial seal clearance is 0.1 inch (Figure 4-23, 4-24, for positions B3 and B4 for other positions compare Figures AT1-A, AT11-A and AT12-A). At a smaller gap (0.05 inch), the wheelspace temperatures and pressures are higher (Figure 4-23, 4-24 and 4-25). Apparently the small flow area between the static and rotating seals obstruct the heated coolant from flowing out of the wheelspace creating a high wheelspace pressure as shown in Figure 4-25 (or compare AP1-A, AP11-A and AP12-A). Therefore, as the coolant is heated due to the heat conducted through the rotor and stator, the temperatures in the wheelspace are higher.

When seal PT18 is used on the forward or aft side of the wheel, the effect of radial seal clearance is even less pronounced than with PT19. The difference in wheelspace temperatures or pressures is not significant for the range of gaps studied. Figures 4-27, 4-28, 4-30 and 3-31 show the temperature and pressure curves for radial positions 3 and 4. (Also see Figures AT13, AT21 to AT23 for temperatures and AP13, AP21 to AP23 for pressures at other radial positions.)

The results with PT18-A seal show no difference in temperature or pressure at positions C3 and C4 for different radial seal clearances

Figure 4-24. Effect of Radial Seal Clearance on Temperature, Seal PT19, Position B4.

-

- 1

-77-2

A set of the set of

Figure 4-27A. Effect of Radial Seal Clearance on Temperature, Seal PT18, Position B3.

Figure 4-30A.

2

1⁻²⁴ 1417-1 Effect of Radial Seal Clearance on Temperature, Seal PT18, Position C3.

いる。

(See Figures 4-33 and 4-34 and Figures AT13-B, AT21-B to AT23-B and AP13-B, AP31-B to AP23-B).

Comparing the results of radial seal clearance using seal PT18, PT18A and PT19, it is found that the lip on PT19 seal has an effect on the wheelspace temperature and pressure but not a large effect.

Figures 4-26, 4-29, 4-32 and 4-35 show $\sqrt{\Delta p}$ across the seal but must be viewed with caution in the case of varying the radial seal gap. The $\sqrt{\Delta p}$ was introduced as a useful indicator of local flow across the seal when the seal geometry is constant. However, comparisons can not be made from one curve to another in this case because the seal gap is being changed.

Within the range of this experiment, a 0.1 inch radial seal gap seems to result in the lowest wheelspace temperatures. But the radial seal clearance does not influence wheelspace temperatures to the extent that rim spacing and rotor-to-stator inner spacing do.

Rim Flow

At a wheelspeed of 3000 rpm, 0.2 inch rim spacing, 0.1 inch radial seal clearance, 1.0 inch inner rotor-to-stator spacing and using rotating seal PT18 on the aft side and PT18 or PT19 on the forward side, the effect of rim flow was studied.

Regardless of the rotating seal geometry in forward and aft locations, higher wheelspace pressures are present with higher rim flow (See Figures 4-36, 4-37 and 4-38, also compare Figures AP1, AP7, AP8, AP13-A, AP17 and AP19). This is to be expected because with high rim flow, the rim area pressure is higher hence restricting the outflow

œ

of cooling air.

Similarly, when seal PT18 is used on the forward side, lower wheelspace temperatures (Figure 4-39) and greater local coolant outflow (Figure 4-40) are found with less rim flow. When this same seal is used on the aft side of the wheel, the variations in wheelspace temperatures and seal flow are not as pronounced (Figures 4-41 and 4-42).

The case where rotating seal PT19 is used is shown in Figures 4-43 and 4-44. The effect of rim flow on wheelspace temperature is small in this case.

Wheelspeed Effect

By using seal PT18, rim spacing of 0.2 inch, radial seal clearance 0.1 inch, rotor-to-stator inner spacing of 1.0 inch and 4 lbm/s rim flow it is found that wheelspeeds from 1200 to 3000 RPM have little influence on wheelspace temperatures or pressures. (Figures 4-45 and 4-46 or compare AT1-B, AT2, AT3, AT1-B, AP-2 and AP-3).

Effect of Rim Flow on Temperature, Seal PT18, Position B4.

.84 ÷.,

یرین برین برینیدید برینیدید

7-1-1-1

 $\mathcal{A}_{\mathcal{A}}$

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Conclusions drawn from the experimental results are:

1. The wheelspace temperature always decreases as the coolant supply increases. The rate of temperature decrease depends on the geometry of the rotating seal, the outer rim spacing, the radial seal clearance between the rotating and stationary seal, the inner rotorto-stator spacing, the amount of rim flow and the wheelspeed.

2. When rotating seals PT18 and PT19 are used on the forward side of the wheel, the wheelspace temperature using PT18 seal is higher than using seal PT19. But the wheelspace pressure is lower, and with PT19 seal.

3. When rotating seal PT18 and PT18A are used on the aft side of the wheel, the wheelspace temperature and pressure using PT18A seal are higher.

4. The effect of rim spacing on wheelspace temperature was significant. On either forward or aft side, where seal PT18 is used, smaller rim spacing causes lower wheelspace temperatures. However, the wheelspace pressure is not affected by the change in rim spacing. In neither case was hot gas in flow found at low coolant supply (0.13 lbm/sec). When PT19 seal was used on the forward side, the wheelspace temperatures reached a minimum at a rim spacing of 0.2 inch. Inflow of hot gases were always present at some locations when the rim

spacing is large (0.4 inch and 0.6 inch) regardless of the amount of cooling supply. The effect of rotor-to-stator inner spacing is also important. When PT18 seal is used on the forward side, lower wheel-space temperatures were obtained with smaller spacing. When PT18 is used on the aft side, a spacing of 1 inch resulted in minimum wheel-space temperatures. Also no inflow is present even at low coolant supply (~ 0.15 lbm/sec).

When seal PT18A is used on the aft side, the rotor-to-stator inner spacing has no pronounced effect on wheelspace temperature.

5. For seals PT18 and PT19 wheelspace temperatures were minimum for a radial seal clearance of 0.1 inch but the variation of wheelspace temperature with radial clearance was small. For seal PT18A the effect of radial clearance was even less.

6. Finally, at a given seal geometry, increasing the wheelspeed results in a reduction of wheelspace temperature but the effect is small.

Rim flow effects wheelspace temperatures as expected with temperatures increasing with greater rim flow.

Of the variables studied the rim spacing and the inner rotorstator spacing have the most pronounced effect on wheelspace temperatures.

APPENDIX I

COMPUTER PROGRAM WS1 FLOW CHART

93

æ

PROGRAM WS1: ABSTRACT

C 1 2 C

> C C

> С

С

С

С

С C

C

C C

С

C

С

C

Ē

С

3 4 С

5 С

7 С

8 С

10

11

12

13

14

15

16

17

18

19

20

21 22

23

24

25

26

THIS PROGRAM CALCULATES THE AVERAGE DIMENSIONLESS TEMPERATURE AT DIFFERENT WHEEL LOCATION, AVERAGE WHEEL-SPACE PRESSURE AND THE FLOW ACROSS A CIRCUNFERENTIAL SEAL OF THE WHEEL. IT READS IN DATA TAKEN FROM THE EXPERIMENT, SORTS THEM AND CONVERT THE DATAS TO THE APPROPRIATE UNITS. ONCE CALCULATIONS ARE DONE, THE ORGANIZED DATA WILL BE PRINTED OUT IN A FORM OF TABLES AND BY USING LIBRARY SUBROUTINES PLOTTINGS OF DIMENSIONLESS TEMPERATURE, AVERAGE PRESSURE AND SQUARE ROOT OF THE ABSOLUTE VALUE OF THE PRESSURE ACROSS THE CIRCUNFERENTIAL SEAL VERSUS COOLING ARE DONE.

THIS PROGRAM WILL HANDLE FORWARD TEST, AFT TEST OR THE COMBINATION OF BOTH TO UP TO SIX RUNS. IT IS COMPOSED OF A FOUR PARTS MAIN PROGRAM AND FIVE SUBROUTINES.

DICTIONARY OF PRIMARY VARIABLES USED IN THIS PROGRAM:

AA: RIM SEAL CLEARENCE AMB: ANDIENT TEMPERATURE

AT: AFT TEMPERATURE

27 C BC(I): PRESSURE TAPS LOCATIONS FOR FLOW ACROSS THE 28 С CIRCUNFERENTIAL SEAL. 29 C **BF(I): PRESSURE TAPS LOCATIONS CIRCUNFERENTIALLY AT** "O' FOSITION. 30 Ċ Ĉ BP(I,J): CIRCUNFERENTIAL PRESSURES 31 C 32 BPC(I,J): CIRCUNFERENTIAL PRESSURES ACROSS SEAL 33 **B3: PRESSURE DIFFERENCE B33-B23** С 34 С CA(I); AFT COOLING 35 С CC: RADIAL SEAL CLEARENCE 36 37 CF(I): FORWARD COOLING C CO: COMMENTS COO: COOLING TEMPERATURE 38 С CRO: HOT INLET TEMPERATURE 39 С C3: AFT PRESSURE DIFFERENCE C33-C23 C 40 С 41 D(I,J): TEMPERATURE DATAS 42 **BA: DATE** С C DD: ROTOR-STATUR AXIAL CLEARENCE 43 С DF(I): THERMOCOUPLES LOCATION 44 45 DFD(I): SORTED THERMOCOUPLES LOCATION С С DG(I): THERMOCOUPLES LOCATION, AVERAGE VALUES 46 47 С DP(I): PRESSURE TAPS LOCATION FAT: FORWARD AND AFT TEMPERATURES FT: FORWARD TEMPERATURE 48 С 49 С 50 С HF(I): CROSS FLOW 51 C N(I): RUN_NUMBER (PRESSURE) NBA: NUMBER OF AFT RUNS (TANGENTIAL LOCATION) 52 С 53 C NDF: NUMBER OF FORWARD RUNS (TANGENTIAL LOCATION) NR: NUMBER OF RUNS 54 С

55 C NRA: NUMBER OF AFT RUNS

56 NRF: NUMBER OF FORWARD RUNS NT(I): NUMBER OF RUNS (TEMPERATURE) NTA: NUMBER OF AFT RUNS (TEMPERATURE) 57 С

58 С

59 С NTF: NUMBER OF FORWARD RUNS (TEMPERATURE) NTR: NUMBER OF RUNS (TEMPERATURE) 60 С

N1: NUMBER OF RUNS С 61

62 C P(I): PRESSURE AT DIFFERENT RADIAL LOCATION

PA(I,J): AVERAGE PRESSURE FROM 2 CIRCUNFERENTIAL POSITION PD(I): PRESSURE TAPS DEFINITION C С POF: SUBROUTINE, PRINT OUT FORWARD TEMPERATURES RPM: WHEELSPEED Ĉ SB: FRESSURE TAPS IDENTIFICATION FOR PRESSURE DIFFERENTIAL C ACROSS THE RADIAL SEAL T(I,J): DIMENSIONLESS TEMPERATURE C Ĉ TA(1,J):AVERAGE DIMENSIONLESS TEMPERATURE FROM 3 CIRCUNFERENTIAL C POSITIONS TN: TEST NUMBER TT(I): CROSS TEMPERATURE PROGRAM MAIN(INPUT;OUTPUT;TAPE5=INPUT;TAPE6=OUTPUT) DIMENSION RPM(6),HF(6),TT(6),CF(8),CA(8),N1(6),D(59,6), *NT(6),DS(59,6),T(59,6),TA(28,8),DF(59),DFD(59),DG(28) DIMENSION DP(30), P(30,6), N(6), PA(22,8), PD(22) DIMENSION_BPF(12,6),BPA(12,6),BPCF(12,6),BPCA(12,6),BF(12), BA(12),SBF(12,6),SBA(12,6),FCA(12),BCF(12) *BA(1 DIMENSION TN(7), DA(2), CO(7), ITITE(2), ITITA(2) DIMENSION AKF(6), AKA(6), BKF(6), BKA(6) DIMENSION IBUF (512) PART I: GENERAL С THERMOCOUPLES IDENTIFICATION DATA DF/*C73*,*D71*,*C01*,*C74*,*C71*,*C84*,*C81*, **E81*,*C83*,*D81*,*F71*,*F73*,*A71*,*B71*,*B74*, **F81*,*B81*,*F83*,*B84*,*A81*,*E71*,*C44*,*C64*, **C63*, *C61*, *C53*, *C51*, *C43*, *C41*, *C33*, *C24*, *C23*, **C21*,*C11*,*C31*,*B61*,*B63*,*B64*,*B51*,*B53*, **B41*,*B43*,*B44*,*B31*,*B33*,*B21*,*B23*,*B24*, **B11*,*A01*,*D01*,*B03*,*C03*,*B01*,*B04*,*C04*, **AMB*,*CRO*,*COO*/ DATA DFD/*A01*,*A71*,*A81*,*B01*,*B03*,*B04*,*B11*,*B21 **B23*,*B24*,*B31*,*B33*,*B41*,*B43*,*B44*,*B51*,*B53*, **B61*,*B63*,*B64*,*B71*,*B74*,*B91*,*B84*,*F71*,*F73*, **F81*,*F83*,*C01*,*C03*,*C04*,*C11*,*C21*,*C23*,*C24*, **C31*,*C33*,*C41*,*C43*,*C44*,*C51*,*C53*,*C61*,*C63*, **C64*,*C71*,*C73*,*C74*,*C81*,*C83*,*C84*,*D01*,*D71*, **D81*,*E71*,*E81*,*AMB*,*CRO*,*COO*/ DATA D6/ *A0*,*A7*,*A8*,*B0*,*B1*,*B2*,*B3*,*B4*,*B5*, **B6*,*B7*,*B8*,*F7*,*F8*,*C0*,*C1*,*C2*,*C3*,*C4*, **C5*,*C6*,*C7*,*C8*,*D0*,*D7*,*D8*,*E7*,*E8*/ С С PRESSURE TAPS IDENTIFICATION DATA PD/*CO*,*C1*,*C2*,*C3*,*C4*,*C5*,*C6*,*E7*,*E7*,3*, **E7.6', *E8', *B0', *B1', *B2', *B3', *B4', *B5', *B6', *F7', *"F7.3", "F7.6", "F8"/ DATA DP/"C04", "B04", "C03", "B03", "C13", "C23", "C24", "C33", **C43*,*C44*,*C53*,*C64*,*B13*,*B23*,*B24*,*B33*, **B43*,*B44*,*B53*,*B64*,*E73*,*E74*,*E7.34*,*E7.64*, **E84*,*F73*,*F74*,*F7.34*,*F7.64*,*F84*/ C С PRESSURE DIFFERENCE ACROSS TANGENTIAL SEAL IDENTIFICATION DATA BF/"BOH", "BOG", "BOF", "BOE", "BOD", "BOC", "BOB", "BOA", **BOJ*,*BOK*,*BOL*,*BOM*/ DATA BA/*COH*,*COG*,*COF*,*COE*,*COD*,*COC*,*COB*,*COA*, **COJ*,*COK*,*COL*,*COM*/ DATA BCF/'B3H-B2H','B3G-B2G','B3F-B2F','B3E-B2E', *'B3D-B2D','B3C-B2C','B3B-B2B','B3A-B2A','B3J-B2J',

DATA BCA/'C3H-C2H', 'C3G-C2G', 'C3F-C2F', 'C3E-C2E', 'C3D-C2D', *'C3C-C2C', 'C3B-C2B', 'C3A-C2A', 'C3J-C2J', 'C3K-C2K',

**B3K-B2K*,*B3L-B2L*,*B3M-B2M*/

*"C3L-C2L","C3M-C2M"/

63

64

65

66 67

68

69

70

71

72

73

74

75

76

77

78

79

80 81

82 83

84

85

86

87

88 89

90

91 92

93 94 95

96 97

98

99 100 101

102 103 104

105

106 107

108

109

110

111

112

113

114

115 116

117

118

119

120 121

122 123 124

125

126 127

128

С

С

С

C

С

C

Ĉ

129 130	~	CALL PLOTS(IBUF,512,9,00) CALL PLOT(1.,1.,-3)		
131 132 133		READ IN DATA		
134		READ(5,701) TN		
135 136	701	1 FORMAT(7A10) READ(5,702)DA		
137	702	2 FORMAT(2A10)		
138 139		READ#;AA/CC/DD READ(5;703)CO		
140	703	3 FORMAT(7A10)		
141 142		READ#+NRF+NRA IF(NRF+GE+NRA)G0 T0 704		
143		NR=NRA		
144 145	704	GO TO 705 4 NR=NRF		
146	705	5 READ*, (N1(I),I=1,NR)		
147		READ*, (RPM(I),I=1)NR)		
140		READ## (MP(1)#1=1#NR) DEAD## (TT(1).1-1.ND)		
150		READAT (FE(I).I=1.NRE)		
151	•	READ*, (CA(1),I=1,NRA)	• •	
152	C		:	
153 154	C	CALCULATIONS		
155		DD 707 I=1,NRF		
156 157	707	7 CF(I)=.309*SQRT(CF(I)) DO 708 I=1.NRA		
158	708	3 CA(I)=.309*SQRT(CA(I))		
159 160	C	PRINT OUT 1		
161	C			
162	711	I FORMAT(10X,T25, TEST NUMBER	:*,T39,7A10)	
164		WRITE(6,712)DA	•	
165 166	712	<pre>2 FORMAT(1H ,/,T25,"DATE:",T3 WRITE(6,713)AA,CC,DD</pre>	2,2A10)	
167	713	3 FORMAT(1H //,T25,*RIM SEAL	CLEARENCE IN INCHES: **	
168		*T60, F4.2, //, T25, *RADIAL SEA	L CLEARENCE IN INCHES! ",	
169		#160+F4+2+//+120+*RUI-STAT A #T60+F4+2+/)	X. SEAL CLEAKIN INCHEST	
171		WRITE(6,714)CO	· · · · ·	
172	714	<pre>4 FORMAT(1H ,T25,*COMMENTS:*,</pre>	T35+7A10)	
173	710	WRITE(6,710)NRF/NNA N CORMAT// TOP INUMPER OF FOR	1460 DINCHE TEA. 11. 77	
175	/10	*T25, "NUMBER OF AFT RUNS!",T	50,11,//)	
176		WRITE(6,715)(N1(I),I=1,NR)		
178	/15	3 FURMAI(13)*RUN NUMBER;*/123 WRTTF(A:71A)(RPM(I):T=1:NR)	10781/1	
179	716	5 FORMAT(/+T3+"WHEEL SPEED IN	RPM: * + T25+6F8.0+/)	
180		WRITE(6,717)(HF(I),I=1,NR)		
181	717	7 FORMAT(/,T3, CROSS FLOW IN	PPS:",T25,6F8.2,/)	
182	710	WRIIE(6)/18)((1))1=10NK) CODMAT(/_T7.900000 TEMO TA	NEG ETT. TOR. (EG 0. /)	
184	/10	IF (NRF + EQ + 0) 60 TO 720	DE0 F: 91239008:0977	
185		WRITE(6,719)(CF(I),I=1,NRF)		
186	719	FORMAT(/,T3, FOR COOLING IN	PFS:"+T25+6F8+2+/>	
187	720) IF(NRA.EQ.0)60 TO 723	· · · ·	
188	704	WRITE(6//21/(CA(I)/I=1/NRA)	DDC++.TOF-460 00 /1	
190	C /21	L FORMHICZTIST AFT CUULING IN	FF3+"+123+6F8+2+//	
191	C	PART II: WHEEL TEMPERATURE		
192	С	•		
	727	S READX, NTF,NTA		
				• .
---	-------------	-----	---	---------------------------------------
195			NTRENTA	
197		771	OU TO 732	
198		732	READX, (NT(I),I=1,NTR)	
199			IF(NTF.EQ.0)G0 T0 740	
200	_		IF(NTA.E0.0)G0 TO 741	· ·
201	С С		EARWARD AND AET TERTE	
202	C		FORWARD AND AFT TEOTO	·
204	-	•	DD 781 I=1,10	· .
205		781	READ*;(D(I;J);J=1;NTA)	
206			DO 782 I=11,20	
207		782	READ#;(D(I;J);J=1;NTF) D0 783 T=21.35	· · · · ·
209		783	READ*(D(I)) + J=1 + NTA)	
210			PD 784 I=36,50	
211		794	READ*,(D(I,J),J=1,NTF)	
212			READ*, (D(51, J), J=1, NTA)	
213			READ*;(D(52;J);J≈1;NTF) READ*;(D(53;J);(≈1;NTA)	· · · ·
215			DD 785 I=54+55	1. 1.
216		785	READ*, (D(I,J),J=1,NTF)	
217			READ*,(D(56,J),J=1,NTA)	
218	•		DO 786 I=57,59	
219		786	- READ#;(U(L;J);J≈1;NTR) - CA}I - POF(DG:DS:DFO:T:TA:N	TE • NT » D \$CE • TN)
221			CALL PDA(DG,DS,DFD,T,TA,N	TA+NT+D+CA+TN)
222			GO TO 733	
223	C			•
224	C		AFT TEST ONLY	
225	C	740	DO 761 I≕1•10	
227		761	READ*, (D(I,J), J=1, NTA)	
228			DO 762 I=21,35	
229		762	READ*, $(D(I,J), J=1, NTA)$	
230			$READ_{F}(D(S1,J),J=1,NTA)$	
232			$READ*_{J}(D(53)J)_{J=1}(RIA)$	•
233			DO 763 I=57,59	•
234		763	READ*, (D(I,J),J=1,NTA)	· · · · · · · · · · · · · · · · · · ·
235			CALL POA(DG,DS,DFO,T,TA,N	TAINT BYCAPTN)
236	· _		60 10 733	*
238	č		FORWARD TEST ONLY	
239	C			•
240		741	DO 771 I=11,20	
241		771	$READ_{i}(D(I,J),J=1,NTF)$	
242		770	DD 772 1=36,50	
243		//2	READ*;(D(52;J);J≈1;NTF)	
245			READ*,(D(54,J),J=1,NTF)	. *
246			READ*, (D(55, J), J=1, NTF)	
247			DD 773 1=57,59	
248		//3	CALL POP(1)G.DS.DS.DS.L.M.P.J.	TE-NT-D-CE-TNY
250		733	READ*, NA, NF	
251	C			
251 252	C		PART III: WHEEL PRESSURE	
251 252 253	C C C		PART III: WHEEL PRESSURE	
251 252 253 254 255	C C C		PART III: WHEEL PRESSURE	
251 252 253 254 255 256	C C C		PART III: WHEEL PRESSURE IF(NF.GE.NA)GD TO 1 NR=NA GO TO 2	
251 252 253 254 255 256 257	C C C	1	PART III: WHEEL PRESSURE IF(NF.GE.NA)GO TO 1 NR=NA GO TO 2 NR=NF	
251 252 253 254 255 256 257 258	C C C	12	PART III: WHEEL PRESSURE IF(NF.GE.NA)GD TO 1 NR=NA GO TO 2 NR=NF READ*,(N(I),I=1,NR)	
251 252 253 254 255 256 257 258 259	CCC	12	PART III: WHEEL PRESSURE IF(NF.GE.NA)GD TO 1 NR=NA GO TO 2 NR=NF READ*,(N(I),I=1,NR) IF(NF.EQ.0)GD TO 301	

261	Č		FORWARD AND AFT TESTS
263	Ĉ		
264			READ*,((F(11,12),12=1,NR),11=1,30)
200			DO 321 1=1/30 DO 322 1=1/30
267		322	$P(I_{j}) = .1065 * P(I_{j})$
268		321	CONTINUE
269			CALL APF(PA,PD,P,NF,CF,DP,AKF,BKF,CKF,B3,TN,ITITF)
270			CALL APA(PA)PD)P)NA)CA)DP)AKA)BKA)CKA)C3)TN)ITITA) GD_TD_320
272	С		
273	Č		FORWARD TEST ONLY
274	С	700	
275		302	READ*(((2)12))12=1;8() READ*(((4,12))12=1;8()
277			DO 343 I1=13,20
278		343	READ*,(P(11,12),12=1,NF)
279		344	DU 344 11=26,30 READ*,(P(I1,I2),I2=1,NF)
281		- • •	BO 323 I=2,4,2
282			DO 324 J=1;NF
283		324	$P(I_{j}J) = 1065 P(I_{j}J)$
285		ديرد	DON 1100E
286			DO 326 J=1,NF
287		326	$P(I_{J}) = .1065 * P(I_{J})$
288		325	CONTINUE DD 327 I=26.30
290			DO 328 J=1,NF
291		328	P(I,J) = ,1065*P(I,J)
292		327	CONTINUE
273			GO TO 320
295	C		
296	C		AFT TEST ONLY
297	C	301	READ*, (P(1,12),12=1,NA)
299			READ*+(P(3,I2),I2=1,NA)
300		-	BO 357 11=5,12
301		337	NCADA(((11)12)/12=1)NA) . DD 758 71=91.95
303		358	READ* (P(11,12), 12=1, NA)
304			DO 330 I=1,3,2
305			00 331 J=1,NA
308		330	CONTINUE
308			DO 332 I=5,12
309		777	DO 333 J=1/NA P(T-1) = 1045+P(T-1)
311		332	CONTINUE
312			RO 334 I=21,25
313			DO 335 J=1,NA
314		335	P(I;J)=,1065*F(I;J)
316		004	CALL APA(PA,PD,P,NA,CA,DP,AKA,BKA,CKA,C3,TN,ITITA)
317	С		
318	C		PART IV: FLOW ACROSS CIRCUNFERENCIAL SEAL
320	U.	320	READ* + NBF + NBA
321			IF(NBF.EQ.0)60 TO 400
322	~		IF(NBA.EQ.0)60 TO 401
323 324	С С		FORMARD AND AFT TESTS
325	č		e weersteerswer officiel 111 to Parkel 114
326		. •	WRITE(6,402)

327 328		402	FORMAT("1",//,T26,"FORWARD PRESSURE") CALL TFAC(BPF,BPCF,NBF,CF,BF,SBF,BCF,AKF,BKF,CKF,B3,TN,IT	ÌTF)				
329		403	WRITE(6:403) FORMAT(****-//.*******************************					
331		-100	CALL TPAC(BPA, BPCA, NBA, CA, BA, SBA, BCA, AKA, BKA, CKA, C3, TN, ITITA)					
332		GD TO 499						
333	C							
335	č		FORWARD TEST ONLT	,				
336	-	401	WRITE(6,402)	· · ·				
337			CALL TPAC(BPF, BPCF, NBF, CF, BF, SBF, BCF, AKF, BKF, CKF, B3, TN, IT	ITF)				
338	C		GU IU 499					
340	č		AFT TEST ONLY					
341	C		115-4					
342 343		400	WRITE(6,403) CALL TPAC(BPA,BPCA,NBA,CA,BA,SBA,BCA,AKA,BKA,CKA,C3,TN,IT	ITA)				
344		499	CALL PLOT(0,,0,,999)					
345			STOP					
346			END CHINDRUITING TRACARD-REC. N.C.R.C.R.RC.AM.BM.CKGAZ-TH-ITITIN					
347		•	DUBROUTING (FRE(BF)BFC;N)C;B;BB;BC;RA;BC;CA;A3;N)I)IIC) DIMENSION RP(12-A).RPF(12-A).P(R).R(12).SB(12-A).RF(12)					
349			DIMENSION BK(6),AK(6),SAK(6)					
350			DIMENSION SB1(13,8),Y1(8)	· .				
351			DIMENSION TN(7),ITITL(2)					
352		452	READX (BP(T.)) . (=1.N) . (BPC(T.)) . (=1.N)					
354			DO 412 I=1,12					
355			DO 411 J≂1≠N	1 · · ·				
336			BPC(I, I)=, 1060#BP(I), I) BPC(I, I)=, 0341#BPC(I, I)					
358		411	CONTINUE					
359		412	CONTINUE	·				
360	ğ		DOTAT ONT TANGENTIAL DECOMPE	are in				
301	r r		FRINI GUI IANGENIIAL FRESSURE	· ·				
363	Ŭ		WRITE(6,454)					
364		454	FORMAT('0',//,T25,'CIRCUNFERENTIAL PRESSURE (PSI)')					
365			WRITE(6,457)(C(I),I=1,N)					
360		457	NO 455 I=1,8					
368		455	WRITE(6,456)B(I),(BP(I,J),J=1,N)	• `•				
369			WRITE(6,456)CK,(BK(J),J=1,N)					
370		474	DU 470 1=7712 UDITE(4.454)D(T).(DD(3.1).1=1.N)					
372		456	FORMAT(T7,A3,T25,6F7.2)					
373	C		:					
374	C		PRINT DUT ACROSS SEAL PRESSURE					
375	- C							
377			URITE(A.4A1)					
		461	WRITE(6,461) FORMAT(//,T12,"PRESSURE DIFFERENCE ACROSS SEAL (PSI)")					
378		461	WRITE(6,461) FORMAT(//,T12,"PRESSURE DIFFERENCE ACROSS SEAL (PSI)") WRITE(6,457)(C(I),I=1,N)					
378 379		461	WRITE(6,461) FORMAT(//,T12,"PRESSURE DIFFERENCE ACROSS SEAL (PSI)") WRITE(6,457)(C(I),I=1,N) DO 462 I=1,8	· ·				
378 379 380 381		461 462	WRITE(6,461) FORMAT(//,T12,"PRESSURE DIFFERENCE ACROSS SEAL (PSI)") WRITE(6,457)(C(I),I=1,N) DO 462 I=1,8 WRITE(6,463)BC(I),(BPC(I,J),J=1,N) WRITE(6,463)A3.(AK(I), I=1,N)	· · · · · · · · · · · · · · · · · · ·				
378 379 380 381 382		461 462	WRITE(6,461) FORMAT(//,T12,*PRESSURE DIFFERENCE ACROSS SEAL (PSI)*) WRITE(6,457)(C(I),I=1,N) DO 462 I=1,8 WRITE(6,463)BC(I),(BPC(I,J),J=1,N) WRITE(6,463)A3,(AK(J),J=1,N) DO 477 I=9,12					
378 379 380 381 382 383		461 462 477	<pre>WRITE(6,461) FORMAT(//,T12,*PRESSURE DIFFERENCE ACROSS SEAL (PSI)*) WRITE(6,457)(C(I),I=1,N) D0 462 I=1,8 WRITE(6,463)BC(I),(BPC(I,J),J=1,N) WRITE(6,463)A3,(AK(J),J=1,N) D0 477 I=9,12 WRITE(6,463)BC(I),(BPC(I,J),J=1,N)</pre>	· · ·				
378 379 380 381 382 383 384		461 462 477 463	<pre>WRITE(6,461) FORMAT(//,T12,*PRESSURE DIFFERENCE ACROSS SEAL (PSI)*) WRITE(6,457)(C(I),I=1,N) D0 462 I=1,8 WRITE(6,463)BC(I),(BPC(I,J),J=1,N) WRITE(6,463)A3,(AK(J),J=1,N) D0 477 I=9,12 WRITE(6,463)BC(I),(BPC(I,J),J=1,N) FORMAT(T7,A7,T25,6F7.2)</pre>					
378 379 380 381 382 383 384 385 384		461 462 477 463	<pre>WRITE(6,461) FORMAT(//,T12,"PRESSURE DIFFERENCE ACROSS SEAL (PSI)") WRITE(6,457)(C(I),I=1,N) D0 462 I=1,8 WRITE(6,463)BC(I),(BPC(I,J),J=1,N) WRITE(6,463)BC(I),(BPC(I,J),J=1,N) D0 477 I=9,12 WRITE(6,463)BC(I),(BPC(I,J),J=1,N) FORMAT(T7,A7,T25,6F7.2) TAKE SQUARE BODT DE PRESSURE DIFFERENCE</pre>					
378 379 380 381 382 383 384 385 384 385 386 387		461 462 477 463	<pre>WRITE(6,461) FORMAT(//,T12,*PRESSURE DIFFERENCE ACROSS SEAL (PSI)*) WRITE(6,457)(C(I),I=1,N) D0 462 I=1,8 WRITE(6,463)BC(I),(BPC(I,J),J=1,N) WRITE(6,463)A3,(AK(J),J=1,N) D0 477 I=9,12 WRITE(6,463)BC(I),(BPC(I,J),J=1,N) FORMAT(T7,A7,T25,6F7.2) TAKE SQUARE ROOT OF PRESSURE DIFFERENCE</pre>					
378 379 380 381 382 383 384 385 384 385 386 387 388	CCC	461 462 477 463	<pre>WRITE(6,461) FORMAT(//,T12,*PRESSURE DIFFERENCE ACROSS SEAL (PSI)*) WRITE(6,457)(C(I),I=1,N) D0 462 I=1,8 WRITE(6,463)BC(I),(BPC(I,J),J=1,N) WRITE(6,463)A3,(AK(J),J=1,N) D0 477 I=9,12 WRITE(6,463)BC(I),(BPC(I,J),J=1,N) FORMAT(T7,A7,T25,6F7.2) TAKE SQUARE ROOT OF PRESSURE DIFFERENCE D0 469 J=1,N </pre>					
378 379 380 381 382 383 384 385 386 385 386 387 388 389 700	CCC	461 462 477 463	<pre>WRITE(6,461) FORMAT(//,T12,"PRESSURE DIFFERENCE ACROSS SEAL (PSI)") WRITE(6,457)(C(I),I=1,N) D0 462 I=1,8 WRITE(6,463)BC(I),(BPC(I,J),J=1,N) WRITE(6,463)BC(I),(BPC(I,J),J=1,N) D0 477 I=9,12 WRITE(6,463)BC(I),(BPC(I,J),J=1,N) FORMAT(T7,A7,T25,6F7.2) TAKE SQUARE ROOT OF PRESSURE DIFFERENCE B0 469 J=1,N D0 467 I=1,12 F5(DPC(I,J),I=1,A) D0 467 I=1,12 F5(DPC(I,J),I=1,A) </pre>					
378 379 380 381 382 383 384 385 384 385 386 387 388 389 389 390 391	CCC	461 462 477 463	<pre>WRITE(6,461) FORMAT(//,T12,*PRESSURE DIFFERENCE ACROSS SEAL (PSI)*) WRITE(6,457)(C(I),I=1,N) DD 462 I=1,8 WRITE(6,463)BC(I),(BPC(I,J),J=1,N) WRITE(6,463)BC(I),(BPC(I,J),J=1,N) DD 477 I=9,12 WRITE(6,463)BC(I),(BPC(I,J),J=1,N) FORMAT(T7,A7,T25,6F7.2) TAKE SQUARE ROOT OF PRESSURE DIFFERENCE DD 469 J=1,N DD 467 I=1,12 IF(BPC(I,J),LT.0.0)GB TD 468 SB(I,J)=SQRT(BPC(I,J))</pre>					

			· · · · · · · · · · · · · · · · · · ·	
				· · ·
				· · · ·
			100	1. N. 1.
393		469	AMAGE AND A	
37.4			AN=SURT(A)	
395			SB(I,J)=-AN	
396		467	CONTINUE	
397		469	CONTINUE	
398		470) WRITE(6.471)	
200		471	ENDAT///.T12.*BOUADE PONT OF PRESSURE DIFFERENCE **)	
400		4/4	HEATE (A.AST) (FIT) SUBARE ROOT OF FRESSORE MIFFERENCE, 7	
404				
401			10 480 J=1,N	
402			IF (AK(J),L1,0,0)60 10 481	
403			SAK(J)=SURT(AK(J))	· ·
404			GC TO 480	
405		481	P=-AK(J) · ·	
406			PN=SQRT(P)	
407			SAK (J) =- PN	
408		480	CONTINUE	
409			DO 472 I=1,8	
410		472	HETTE (4.473) BC (7) - (58(7) - 1) - (=1.N)	
A11		7/4		
412			WRIE 014/3/83/(3MR(3)/3-1/N/ NA 492 1#0.19	
447		407		
413		483	WRITE(0)(4/3)BU(1/)/(DF(1/)/)=I/N/	
414		473	EURMAT (17+62+125+6F7+2)	
410				
416			DO 10 I=1,8	•
417		10	SB1(I,J)=SB(I,J)	
418			SB1(9,J)=SAK(3)	
419			DO 12 I=10,13	
420		12	SB1(T, I) = SB(T-1, I)	
421		-11	CONTINUE	
422	C			
407	ž		PLAT POUNE PAAT OF APEAL HTE PRESCUPE US FOOL THE	
423 474	ř		FLUT BROAKE ROOT OF ABBOCUTE PRESSURE VS GOULTRU	
ADE	0			
423				
426	•		SB1(1;N+1)=4	1. J. 1. 1. 1. 1.
42/		20	> SB1(1)N+2/=,2	
428			C(N+1)=.0 \$ C(N+2)=.1	
428 429			$C(N+1)=.0 \pm C(N+2)=.1$ Y1(N+1)=4 \$ Y1(N+2)=.2	
428 429 430			C(N+1)=.0 \$ C(N+2)=.1 Y1(N+1)=4 \$ Y1(N+2)=.2 CALL AXIS(0.,0.,ITITL:-17,7.,0.,0.0,.1)	
428 429 430 431			C(N+1)=.0 \$ C(N+2)=.1 Y1(N+1)=4 \$ Y1(N+2)=.2 CALL AXIS(0.,0.,ITITL:-17,7.,0.,0.0,.1) CALL AXIS(0.,0.,"SQRT PRESS. DIFF.",17,6.,90.,4,.2)	
428 429 430 431 432			C(N+1)=.0 \$ C(N+2)=.1 Y1(N+1)=4 \$ Y1(N+2)=.2 CALL AXIS(0.,0.,ITITL,-17,7.,0.,0.0,.1) CALL AXIS(0.,0.,"SQRT PRESS. DIFF.",17,6.,90.,4,.2) N2=N+2	· · · · ·
428 429 430 431 432 433			C(N+1)=.0 \$ C(N+2)=.1 Y1(N+1)=4 \$ Y1(N+2)=.2 CALL AXIS(0.,0.,ITITL,-17,7.,0.,0.0,.1) CALL AXIS(0.,0.,"SQRT PRESS. DIFF.",17,6.,90.,4,.2) N2=N+2 PO 22 I=1,13	
428 429 430 431 432 433 434			C(N+1)=.0 \$ C(N+2)=.1 Y1(N+1)=4 \$ Y1(N+2)=.2 CALL AXIS(0.,0.,ITITL:-17,7.,0.,0.0,.1) CALL AXIS(0.,0., SQRT PRESS. DIFF.*,17,6.,90.,4,.2) N2=N+2 R0 22 I=1,13 D0 21 J=1.N2	· · · · · · · · · · · · · · · · · · ·
428 429 430 431 432 433 434	-		C(N+1)=.0 \$ C(N+2)=.1 Y1(N+1)=4 \$ Y1(N+2)=.2 CALL AXIS(0.,0.,ITITL,-17,7.,0.,0.0,.1) CALL AXIS(0.,0., SQRT PRESS. DIFF.*,17,6.,90.,4,.2) N2=N+2 BO 22 I=1,13 DO 21 J=1,N2 Y1(J)=SP1(I,1)	
428 429 430 431 432 433 434 435 435		21	C(N+1)=.0 \$ C(N+2)=.1 Y1(N+1)=4 \$ Y1(N+2)=.2 CALL AXIS(0.,0.,ITITL,-17,7.,0.,0.0,.1) CALL AXIS(0.,0., SQRT PRESS. DIFF.*,17,6.,90.,4,.2) N2=N+2 B0 22 I=1,13 D0 21 J=1,N2 Y1(J)=SB1(I,J) CONTINUE	
428 429 430 431 432 433 434 435 435 435	-	21	C(N+1)=.0 \$ C(N+2)=.1 Y1(N+1)=4 \$ Y1(N+2)=.2 CALL AXIS(0.,0.,ITITL,-17,7.,0.,0.0,.1) CALL AXIS(0.,0., SQRT PRESS. DIFF.*,17,6.,90.,4,.2) N2=N+2 B0 22 I=1,13 D0 21 J=1,N2 Y1(J)=SB1(I,J) CONTINUE	
428 429 430 431 432 433 434 435 435 437	-	21 22	C(N+1)=.0 \$ C(N+2)=.1 Y1(N+1)=4 \$ Y1(N+2)=.2 CALL AXIS(0.,0.,ITITL,-17,7.,0.,0.0,.1) CALL AXIS(0.,0., SQRT FRESS. DIFF.*,17,6.,90.,4,.2) N2=N+2 B0 22 I=1,13 D0 21 J=1,N2 Y1(J)=SB1(I,J) CONTINUE CALL LINE(C,Y1,N,1,-1,1)	
428 429 430 431 432 433 434 435 435 435 437 438		21 22	C(N+1)=.0 \$ C(N+2)=.1 Y1(N+1)=4 \$ Y1(N+2)=.2 CALL AXIS(0.,0.,ITITL,-17,7.,0.,0.0,.1) CALL AXIS(0.,0., SQRT FRESS. DIFF.*,17,6.,90.,4,.2) N2=N+2 B0 22 I=1,13 D0 21 J=1,N2 Y1(J)=SB1(I,J) CONTINUE CALL LINE(C,Y1,N,1,-1,I) CALL SYMBOL(.25,7.,.14,TN,0.0,25) CALL SYMBOL(.25,7.,.14,TN,0.0,25)	
428 429 430 431 432 433 434 435 435 435 437 438 439	-	21 22	C(N+1)=.0 \$ C(N+2)=.1 Y1(N+1)=4 \$ Y1(N+2)=.2 CALL AXIS(0.,0.,ITITL,-17,7.,0.,0.0,.1) CALL AXIS(0.,0., SQRT FRESS. DIFF.*,17,6.,90.,4,.2) N2=N+2 R0 22 I=1,13 D0 21 J=1,N2 Y1(J)=SR1(I,J) CONTINUE CALL LINE(C,Y1,N,1,-1,I) CALL SYMEOL(.25,7.,.14,TN,0.0,25) CALL PLOT(9.,0.,-3)	
428 429 430 431 432 433 434 435 434 435 436 437 438 439 440	-	21 22	C(N+1)=.0 \$ C(N+2)=.1 Y1(N+1)=4 \$ Y1(N+2)=.2 CALL AXIS(0.;0.;ITITL;-17;7.;0.;0.0;.1) CALL AXIS(0.;0.;SQRT FRESS. DIFF.*;17;6.;90.;4;.2) N2=N+2 RO 22 I=1;13 DO 21 J=1;N2 Y1(J)=SR1(I;J) CONTINUE CALL LINE(C;Y1;N;1;-1;I) CALL SYMEOL(.25;7.;.14;TN;0.0;25) CALL PLOT(9:;0.;-3) RETURN	
428 429 430 431 432 433 434 435 434 435 436 437 438 439 440 441		21 22	C(N+1)=.0 \$ C(N+2)=.1 Y1(N+1)=4 \$ Y1(N+2)=.2 CALL AXIS(0.;0.;ITITL;-17;7.;0.;0.0;.1) CALL AXIS(0.;0.;SQRT PRESS. DIFF.*;17;6.;90.;4;.2) N2=N+2 RD 22 I=1;13 DD 21 J=1;N2 Y1(J)=SB1(I;J) CONTINUE CALL LINE(C;Y1;N;1;-1;I) CALL SYMBOL(.25;7.;.14;TN;0.0;25) CALL PLOT(9:;0.;-3) RETURN END	
428 429 430 431 432 433 434 435 434 435 436 437 438 437 438 439 440 441 442	С.	21 22	C(N+1)=.0 \$ C(N+2)=.1 Y1(N+1)=4 \$ Y1(N+2)=.2 CALL AXIS(0.;0.;ITITL;-17;7.;0.;0.0;.1) CALL AXIS(0.;0.;SQRT PRESS. DIFF.*;17;6.;90.;4;.2) N2=N+2 RD 22 I=1;13 DD 21 J=1;N2 Y1(J)=SB1(I;J) CONTINUE CALL LINE(C;Y1;N;1;-1;I) CALL SYMBOL(.25;7.;.14;TN;0.0;25) CALL PLOT(9:;0.;-3) RETURN END	
428 429 430 431 432 433 434 435 434 435 436 437 438 437 438 439 440 441 442 443		21 22	C(N+1)=.0 \$ C(N+2)=.1 Y1(N+1)=4 \$ Y1(N+2)=.2 CALL AXIS(0.;0.;ITITL;-17;7.;0.;0.0;.1) CALL AXIS(0.;0.;SQRT PRESS. DIFF.*;17;6.;90.;4;.2) N2=N+2 RD 22 I=1;13 DD 21 J=1;N2 Y1(J)=SB1(I;J) CONTINUE CALL LINE(C;Y1;N;1;-1;I) CALL SYMBOL(.25;7.;.14;TN;0.0;25) CALL PLOT(9:;0.;-3) RETURN END TEMPERATURE SUBROUTINES	
428 429 430 432 433 435 435 435 435 437 438 443 444 442 443 444		21 22	C(N+1)=.0 \$ C(N+2)=.1 Y1(N+1)=4 \$ Y1(N+2)=.2 CALL AXIS(0.,0.,ITITL,-17,7.,0.,0.0,.1) CALL AXIS(0.,0., SQRT PRESS. DIFF. ,17,6.,90.,4,.2) N2=N+2 PD 22 I=1,13 DD 21 J=1,N2 Y1(J)=SB1(I,J) CONTINUE CALL LINE(C,Y1,N,1,-1,I) CALL SYMBOL(.25,7.,.14,TN,0.0,25) CALL PLOT(9.,0.,-3) RETURN END TEMPERATURE SUBROUTINES	
428 429 430 432 433 435 435 435 435 435 437 89 441 442 444 445		21 22	C(N+1)=.0 \$ C(N+2)=.1 Y1(N+1)=4 \$ Y1(N+2)=.2 CALL AXIS(0.,0.,ITITL,-17,7.,0.,0.0,.1) CALL AXIS(0.,0., SQRT PRESS. DIFF. 17,6.,90.,4,.2) N2=N+2 PD 22 I=1,13 DD 21 J=1,N2 Y1(J)=SB1(I,J) CONTINUE CALL LINE(C,Y1,N,1,-1,I) CALL SYMEDL(.25,7.,.14,TN,0.0,25) CALL PLOT(9.,0.,-3) RETURN END TEMPERATURE SUBROUTINES PRINT OUT FORWARD	
428 429 430 432 433 435 435 435 435 435 435 441 442 444 444 445 445	C C C C C	21 22	C(N+1)=.0 \$ C(N+2)=.1 Y1(N+1)=4 \$ Y1(N+2)=.2 CALL AXIS(0.;0.;ITITL;-17;7.;0.;0.0;.1) CALL AXIS(0.;0.;SQRT PRESS. DIFF.*;17;6.;90.;4;.2) N2=N+2 PD 22 I=1;13 DD 21 J=1;N2 Y1(J)=SB1(I;J) CONTINUE CALL LINE(C;Y1;N;1;-1;I) CALL SYMEOL(.25;7.;.14;TN;0.0;25) CALL PLOT(9::0.;-3) RETURN END TEMPERATURE SUBROUTINES PRINT OUT FORWARD	
428 4331 4333 4356 789 4412 4445 4445 4445 4445 4445 4445 4445	C C C C C	21 22	C(N+1)=.0 \$ C(N+2)=.1 Y1(N+1)=4 \$ Y1(N+2)=.2 CALL AXIS(0.,0.,ITITL:-17,7.,0.,0.0,.1) CALL AXIS(0.,0., SQRT PRESS. DIFF.*,17,6.,90.,4,.2) N2=N+2 RD 22 I=1,13 DD 21 J=1,N2 Y1(J)=SB1(I,J) CONTINUE CALL LINE(C,Y1,N,1,-1,1) CALL SYMEOL(.25,7.,.14,TN,0.0,25) CALL PLOT(9.,0.,-3) RETURN END TEMPERATURE SUBROUTINES PRINT OUT FORWARD SUBROUTINE POF(DG,DS,DF0.T.TA,NTE.NT.D.CF.TN)	
$\begin{array}{c} 428\\ 44301\\ 43334\\ 43354\\ 43354\\ 433789\\ 4444\\ 4445\\ 4445\\ 4445\\ 4447\\ 4445\\ 4447\\ 4445\\ 4478\\ 4445\\ 4478\\ 4478\\ 4478\\ 4478\\ 44888\\ 4488\\ 4488\\ 4488\\ 4488\\ 4488\\ 4488\\ 4488\\ 4488\\ 4488\\$	6 C C C C	21 22	C(N+1)=.0 \$ C(N+2)=.1 Y1(N+1)=4 \$ Y1(N+2)=.2 CALL AXIS(0.,0.,ITITL,-17,7.,0.,0.0,.1) CALL AXIS(0.,0.,*SQRT PRESS. DIFF.*,17,6.,90.,4,.2) N2=N+2 R0 22 I=1,13 D0 21 J=1,N2 Y1(J)=SB1(I,J) CONTINUE CALL LINE(C,Y1,N,1,-1,I) CALL SYMEOL(.25,7.,.14,TN,0.0,25) CALL PLOT(9.,0.,-3) RETURN END TEMPERATURE SUBROUTINES PRINT OUT FORWARD SUBROUTINE POF(DG,DS,DF0,T,TA,NTF,NT,D,CF,TN) DIMENSION DG(28),DS(59.6).T(59.6).DE0(59).TA(28.8).NT(A).D(5)	19,4).
$\begin{array}{c} 429\\ 4301\\ 4333\\ 4334\\ 4335\\ 4334\\ 4334\\ 4334\\ 434\\ 4$	C C C C C	21 22	C(N+1)=.0 \$ C(N+2)=.1 Y1(N+1)=4 \$ Y1(N+2)=.2 CALL AXIS(0.,0.,ITITL,-17,7.,0.,0.0,.1) CALL AXIS(0.,0., SQRT PRESS. DIFF.*,17,6.,90.,4,.2) N2=N+2 RD 22 I=1,13 DD 21 J=1,N2 Y1(J)=SB1(I,J) CONTINUE CALL LINE(C,Y1,N,1,-1,I) CALL SYMEOL(.25,7.,.14,TN,0.0,25) CALL PLOT(9.,0.,-3) RETURN END TEMPERATURE SUBROUTINES PRINT OUT FORWARD SUBROUTINE POF(DG,DS,DF0,T,TA,NTF,NT,D,CF,TN) DIMENSION DG(28),DS(59,6),T(59,6),DF0(59),TA(28,8),NT(6),D(59))	59,6),
428 429 430 432 433 433 433 435 433 435 435 435 442 444 445 444 445 447 89	C C C C C	21 22	C(N+1)=.0 \$ C(N+2)=.1 Y1(N+1)=4 \$ Y1(N+2)=.2 CALL AXIS(0.,0., ITITL,-17,7.,0.,0.0,.1) CALL AXIS(0.,0., \$QRT PRESS. DIFF.*,17,6.,90.,4,.2) N2=N+2 DD 22 I=1,13 DD 21 J=1,N2 Y1(J)=SB1(I,J) CONTINUE CALL LINE(C,Y1,N,1,-1,I) CALL SYMBOL(.25,7.,.14,TN,0.0,25) CALL PLOT(9.,0.,-3) RETURN END TEMPERATURE SUBROUTINES PRINT OUT FORWARD SUBROUTINE POF(DG,DS,DF0,T,TA,NTF,NT,D,CF,TN) DIMENSION DG(28),DS(59,6),T(59,6),DF0(59),TA(28,8),NT(6),D(5)) *CF(8)	59,6),
429 433 433 433 433 433 433 433 433 433 43	C C C C C	21 22	C(N+1)=.0 \$ C(N+2)=.1 Y1(N+1)=4 \$ Y1(N+2)=.2 CALL AXIS(0.,0.,ITITL,-17,7.,0.,0.0,.1) CALL AXIS(0.,0., *SQRT PRESS. DIFF.*,17,6.,90.,4,.2) N2=N+2 D0 22 I=1,13 D0 21 J=1,N2 Y1(J)=SB1(I,J) CONTINUE CALL LINE(C,Y1,N,1,-1,I) CALL SYMBOL(.25,7.,.14,TN,0.0,25) CALL PLOT(9.,0.,-3) RETURN END TEMPERATURE SUBROUTINES PRINT OUT FORWARD SUBROUTINE POF(DG,DS,DF0,T,TA,NTF,NT,D,CF,TN) DIMENSION DG(28),DS(59,6),T(59,6),DF0(59),TA(28,8),NT(6),D(58) *CF(8) DIMENSION Y1(8)	59,6),
$\begin{array}{c} 428\\ 429\\ 4301\\ 4333\\ 4335\\ 4335\\ 4335\\ 4336\\ 7389\\ 4412\\ 4445\\ 4445\\ 4445\\ 4447\\ 4489\\ 4501 \end{array}$	C C C C C	21 22	C(N+1)=.0 \$ C(N+2)=.1 Y1(N+1)=4 \$ Y1(N+2)=.2 CALL AXIS(0.,0.,ITITL,-17,7.,0.,0.0,.1) CALL AXIS(0.,0., *SQRT PRESS. DIFF.*,17,6.,90.,4,.2) N2=N+2 B0 22 I=1,13 D0 21 J=1,N2 Y1(J)=SB1(I,J) CONTINUE CALL LINE(C,Y1,N,1,-1,I) CALL SYMEOL(.25,7.,.14,TN,0.0,25) CALL PLOT(9.,0.,-3) RETURN END TEMPERATURE SUBROUTINES PRINT OUT FORWARD SUBROUTINE POF(DG,DS,DF0,T,TA,NTF,NT,D,CF,TN) DIMENSION DG(28),DS(59,6),T(59,6),DF0(59),TA(28,8),NT(6),D(5 *CF(8) DIMENSION Y1(8) DIMENSION TN(7)	59,6),
428 430 433 433 433 433 433 433 433 433 433	C C C C C	21 22	C(N+1)=.0 \$ C(N+2)=.1 Y1(N+1)=4 \$ Y1(N+2)=.2 CALL AXIS(0.,0.,TITITL,-17,7.,0.,0.0,.1) CALL AXIS(0.,0.,*SQRT PRESS. DIFF.*,17,6.,90.,4,.2) N2=N+2 BU 22 I=1,13 DU 21 J=1,N2 Y1(J)=SB1(I,J) CONTINUE CALL LINE(C,Y1,N,1,-1,I) CALL SYMEDL(.25,7.,.14,TN,0.0,25) CALL PLOT(9.,0.,-3) RETURN END TEMPERATURE SUBROUTINES PRINT OUT FORWARD SUBROUTINE POF(DG,DS,DF0,T,TA,NTF,NT,D,CF,TN) DIMENSION DG(28),DS(59,6),T(59,6),DF0(59),TA(28,8),NT(6),D(58),CF(8)) DIMENSION JG(28),DS(59,6),T(59,6),DF0(59),TA(28,8),NT(6),D(58),CF(8)) DIMENSION Y1(8) DIMENSION Y1(8) DIMENSION TN(7) DU 906 I=1,NTF	59,6),
428 430 433 433 433 433 433 433 433 433 433	6 C C C C	21 22	C(N+1)=.0 \$ C(N+2)=.1 Y1(N+1)=4 \$ Y1(N+2)=.2 CALL AXIS(0.,0.,TITITL,-17,7.,0.,0.0,.1) CALL AXIS(0.,0., "SQRT PRESS. DIFF.",17,6.,90.,4,.2) N2=N+2 D0 22 I=1,13 D0 21 J=1,N2 Y1(J)=SB1(I,J) CONTINUE CALL LINE(C,Y1,N,1,-1,I) CALL SYMEOL(.25,7.,.14,TN,0.0,25) CALL PLOT(9.,0.,-3) RETURN END TEMPERATURE SUBROUTINES PRINT OUT FORWARD SUBROUTINE POF(DG,DS,DF0,T,TA,NTF,NT,D,CF,TN) DIMENSION DG(28),DS(59,6),T(59,6),DF0(59),TA(28,8),NT(6),D(5 *CF(8) DIMENSION Y1(8) DIMENSION Y1(8) DIMENSION TN(7) DO 906 I=1,NTF DS(1,I)=D(50,I)	59,6),
429 433 433 433 433 433 433 433 433 444 444 444 444 444 445 52 34 55 455 455 455 455 455 455 455 455 4	C C C C C	21 22	C(N+1)=.0 \$ C(N+2)=.1 Y1(N+1)=4 \$ Y1(N+2)=.2 CALL AXIS(0.,0.,ITITL,-17,7.,0.,0.0,.1) CALL AXIS(0.,0., \$GRT PRESS. DIFF.*,17,6.,90.,4,.2) N2=N+2 D0 22 I=1,13 D0 21 J=1,N2 Y1(J)=SB1(I,J) CONTINUE CALL LINE(C,Y1,N,1,-1,I) CALL SYMBOL(.25,7.,.14,TN,0.0,25) CALL PLOT(9.,0.,-3) RETURN END TEMPERATURE SUBROUTINES PRINT OUT FORWARD SUBROUTINE POF(DG,DS,DF0,T,TA,NTF,NT,D,CF,TN) DIMENSION DG(28),DS(59,6),T(59,6),DF0(59),TA(28,8),NT(6),D(5 *CF(8) DIMENSION Y1(8) DIMENSION Y1(8) DIMENSION TN(7) D0 906 I=1,NTF DS(1,I)=D(50,I) DS(2,I)=D(13,I)	59,6),
4290 4333 4333 4333 4333 4334 4444 4445 4444 4444 4444 4455 234 5555 5554 5555 5554 5555 5555	C C C C C	21 22	C(N+1)=.0 \$ C(N+2)=.1 Y1(N+1)=.4 \$ Y1(N+2)=.2 CALL AXIS(0.00.,TITIL:-17,7.,0.,0.0,.1) CALL AXIS(0.00., \$QRT PRESS. DIFF.*,17,6.,90.,4,.2) N2=N+2 D0 22 I=1,13 D0 21 J=1,N2 Y1(J)=SB1(I,J) CONTINUE CALL LINE(C,Y1,N,1,-1,I) CALL SYMEDL(.25,7.,.14,TN,0.0,25) CALL PLOT(9.,0.,-3) RETURN END TEMPERATURE SUBROUTINES PRINT OUT FORWARD SUBROUTINE POF(DG,DS,DF0,T,TA,NTF.NT,D,CF,TN) DIMENSION DG(28),DS(59,6),T(59,6),DF0(59),TA(28,8),NT(6),D(5 *CF(8) DIMENSION Y1(8) DIMENSION TN(7) D0 906 I=1,NTF DS(1,I)=D(50,I) DS(3,I)=D(20,I)	59,6),
44444444444444444444444444444444444444	C C C C C	21 22	C(N+1)=.0 \$ C(N+2)=.1 Y1(N+1)=4 \$ Y1(N+2)=.2 CALL AXIS(0.,0., ITITL,-17,7.,0.,0.0,1) CALL AXIS(0.,0., SQRT PRESS. DIFF.*,17,6.,90.,4,.2) N2=N+2 RD 22 I=1,13 DD 21 J=1,N2 Y1(J)=SB1(I,J) CONTINUE CALL LINE(C,Y1,N,1,-1,I) CALL SYMEOL(.25,7.,14,TN,0.0,25) CALL PLOT(9.,0.,-3) RETURN END TEMPERATURE SUBROUTINES PRINT OUT FORWARD SUBROUTINE POF(DG,DS,DF0,T,TA,NTF,NT,D,CF,TN) DIMENSION DB(28),DS(59,6),T(59,6),DF0(59),TA(28,8),NT(6),D(5 *CF(8) DIMENSION TN(7) DO 906 I=1,NTF DS(1,I)=D(50,I) DS(3,I)=D(20,I) DS(4,I)=D(54,I)	59,6),
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	00000	21 22	C(N+1)=.0 \$ C(N+2)=.1 Y1(N+1)=.4 \$ Y1(N+2)=.2 CALL AXIS(0.;0.;ITITL;-17;7.;0.;0.0;1) CALL AXIS(0.;0.;SQRT PRESS. DIFF.';17;6.;90.;4;.2) N2=N+2 D0 22 I=1;13 D0 21 J=1;N2 Y1(J)=SB1(I;J) CONTINUE CALL LINE(C;Y1;N;1;-1;I) CALL SYMEOL(:25;7.;14;TN;0.0;25) CALL PLOT(9:;0.;-3) RETURN END TEMPERATURE SUBROUTINES PRINT OUT FORWARD SUBROUTINE POF(DG;DS;DF0;T;TA;NTF;NT;D;CF;TN) DIMENSION DG(28);DS(59;6);T(59;6);DF0(59);TA(28;8);NT(6);D(5 *CF(8) DIMENSION Y1(8) DIMENSION Y1(8) DIMENS	59,6),

			· · · · · · · · · · · · · · · · · · ·	
				ĺ
· · ·				
۰.			101	ĺ
459	,		DS(7,I)=D(49,I) DS(P:I)=D(46,I)	
461			DS(8,1)=D(47,1)	l
462			DS(10,I)=D(48,I)	
463 464			DS(11,I)=D(44,I) DS(12,I)=D(45,I)	ļ
465			DS(13,I) = D(41,I)	
466			DS(14,I)=D(42,I)	
467 468			DS(15,I)=D(43,I) DS(14,I)=D(39,I)	
469			DS(17,1)=D(40,1)	ł
470			BS(18,I) = B(36,I)	l
4/1 472			DS(19,1)=D(37,1) DS(20,1)=D(38,1)	
473			DS(21,1)=D(14,1)	
474			DS(22,I)=D(15,I) DS(23,I)=D(17,I)	
476			DS(24,I)=D(19,I)	
477			DS(25,I)=D(11,I)	
4/8		7	DS(26+1)=D(12+1) DS(27+1)=B(14+1)	
480			DS(28,I)=D(18,I)	
481			DS(57,I)=D(57,I)	
482 483			DS(58,1)=D(58,1) DS(59,1)=D(59,1)	
484		906	CONTINUE	ł
485			WRITE(6,901)	
480	1	× 107	K//)	
488			WRITE(6,900)(CF(I),I=1,NTF)	ł
489 490		700	DO 902 I=1,28	
491	Ş	702	WRITE(6,907)DFO(1),(DS(1,J),J=1,NTF)	
492 493	с С	707	FORMAT(T7+A5+T25+6F7+0)	
494	č		CALCULATIONS FOR DIMENSIONLESS TEMPERATURE	
495	С	•	DO 004 (-1-1-)175	
497			DO 909 $I=1,28$	
498	5	709	T(I,J)=(DS(I,J)-DS(59,J))/(DS(58,J)-DS(59,J))	ľ
499	ç	704		$\left \right $
501	ę	711	FORMAT(//,T10, 'FORWARD DIMENSIONLESS TEMP DISTRIBUTION: '	
502		k		
503 504			W(1) = (0) = (0) + (0) + (0) + (0) = (0)	
505	\$	203	WRITE(6,905)DFD(1),(T(1,J),J=1,NTF)	
506	<u>ج</u>	205	FORMAT(T7,A5,T25,6F7.2)	
508	č		TAKE AVERAGE DIMENSIONLESS TEMPERATURE	
509	C			
510 511			D0 921 J=1/N1F	
512	9	21	TA(J,I)=T(J,I)	
513			TA(4+I)=(T(4+I)+T(5+I)+T(6+I))/3. TA(5+I)=T(7+I)	
515			TA(6,1)=(T(8,1)+T(9,1)+T(10,1))/3,	
516			TA(7,I) = (T(11,I)+T(12,I))/2.	
517			IA(8,1)=(I(13,1)+I(14,1)+I(10,1))/3, TA(9,T)=(T(13,T)+T(17,T))/2.	
519			TA(10,I)=(T(18,I)+T(19,I)+T(20,I))/3.	
520			TA(11,I) = (T(21,I)+T(22,I))/2,	
521 522	,		IA(12)I) = (I(23)I) + I(24)I)/2. $IA(13)I) = (I(25)I) + I(24)I)/2.$	
523			TA(14,I) = (T(27,I) + T(28,I))/2.	ł
524	5	20	CONTINUE	

525	ç	BOTHT OUT DIMENSION FOR TENDERATURE						
527	č	FRINT OUT DIMENSIONLESS TEAFERNTURE						
528	- ·	WRITE(6,922)						
529	922	FORMAT(/,T10, "FORWARD AVE, DIMENSIONLESS TEMP DISTRIBUTION")						
530		WRITE(6,900)(CF(I),I=1,NTF)						
532	923	DC 923 I=1,14 WRITE(6,905)DG(I),(TA(I,J),J=1,NTF)						
533	C t							
534	ç	PLOT FORWARD DIMENSIONLESS TEMPERATURE VS COOLING						
536	Ċ.	DO 10 I=1,14						
537		TA(I+NTF+1)=0.0						
538	10							
539 540		$V_1(NTF+1)=0.0$ \$ $V_1(NTF+2)=.2$						
541		CALL AXIS(0.,0., FOR. COOLING (PPS) 18,7.,0.,0.0,.1)						
542		CALL AXIS(0.,0., DIMENS. TEMP. +15,5.,90.,0.0,.2)						
543 544		NTFP2=NTE+2 DO 12 I=1,14						
545		DO 11 J=1,NTFP2						
546		Y1(J)=TA(I,J)						
547	11							
549	12	CALL SYMBOL($.25_{1}6{1}14_{7}TN_{7}0.0_{7}25$)						
550		CALL PLOT(9.,0.,-3)						
551		RETURN						
552 553	С							
554	C	PRINT OUT AFT						
555 554	C	CURPOLITING POALOG-DC.DED.T.TA.NTA.NT.D.CA.TN)						
557		DIMENSION DG(28),DS(59,6),T(59,6),DFO(59),TA(28,8),NT(6),D(59,6),						
558	1	KCA(8)						
559		DIMENSION Y1(8)						
560		DO 956 I=1.NTA						
562		DS(29,I) = D(3,I)						
563		DS(30,I)=D(53,I)						
565		DS(32,1)=D(34,1)						
566		DS(33,I)≃D(33,I)						
567		DS(34,I) = D(32,I) DS(35,I) = D(32,I)						
560		BS(36,1) = D(35,1)						
570	I.	DS(37,I)=D(30,I)						
571		DS(38,1)=D(29,1)						
572 573		DO(0771)-D(2011) RS(40+1)=R(22+1)						
574		DS(41,1)=D(27,1)						
575		DS(42,I)=B(26,I)						
576 577		DS(43,1)=D(25,1) DS(44,1)=D(24,1)						
578		DS(45,I)=D(23,I)						
579		DS(46,I)=D(5,I)						
580		DS(4//1)=D(1/1) DS(49-1)=D(4+1)						
582		DS(49,I)=D(7,I)						
583		BS(50,1)=D(9,1)						
584		DS(51,I)=D(6,I)						
586		BS(53,I)=D(2,I) BS(53,I)=D(2,I)						
587		DS(54,I)=D(10,I)						
588		DS(55,I) = D(21,I)						
387 501		US(3671/FU(8)1/ DS(57.T)=D(57.T)						
370		***************						

591 592	•	•	DS(58,I)=D(58,I) DS(59,I)=D(59,I)
593		956	CONTINUE
594			WRITE(6,951)
595 596		951	FORMAT(//,T10,*AFT TEMP AT FOLL.WHEEL LOCATION (DEG F):*,//) WRITE(4,950)(CA(I),I=1,NIA)
597		950	FORMAT(//,T7, *CODLING (PPS)*,T25,6F7,2;/)
500		052	DU 732 1-27730 SIDTTE/4-057)DE0/11-(DE(1-1)-(-1-NTA)
600 601	r	952 957	FORMAT(177,45,125,6F7.0)
602	č		CALCULATION FOR DIMENSIONLESS TEMPERATURE
604	C		DO 954 I=29,56
6VJ 404		050	DU 707 J=17N/A T/T_1_/DC/T_1_DC/E0_1\\//DC/E0_1\\/DC/E0_1\\
607		959 954	T(1+3)=(D5(1+3)-D5(3++3))/(D5(38+3)-D5(3++3))
808			
609 610		961	WRITE(6,950)(CA(I),I=1,NTA)
611			DO 953 I=29,56
612		953	₩RITE(6,955)DFD(I),(T(I,J),J≃1,NTA)
613	r	700	FURNHIS///HU/120/0F/+2/
615	č		TAKE AVERAGE DIMENSIONLESS TEMPERATURE
610	ч.		DO 070 T-1 WTA
617 410			DD 770 1=17818 TA/15-7)=/T/90-7)1T/20-7)1T/21-7))/3
619			TA(16,1)=T(32,1)
620			TA(17,1)=(T(33,1)+T(34,1)+T(35,1))/3.
621		•	TA(18,I) = (T(36,I) + T(37,I))/2.
622			TA(19,I) = (T(3B,I) + T(39,I) + T(40,I))/3
623			TA(20,1)=(1(41,1)+1(42,1))/2
624 625			$\frac{1}{(21,1)=(1(43,1)+1(44,1)+1(45,1))/3}{TA(22,1)=(T(46,1)+T(47,1)+T(48,1))/3}$
626			TA(23,I)=(T(49,I)+T(50,I)+T(51,I))/3,
62/		980	DU 980 J=24,28 TA(1,7)=7(1428+T)
629	,	970	CONTINUE
630	С		
631	Ĉ		PRINT OUT AVERAGE DIMENSIONLESS, TEMPERATURE
632	С		
633 634		971	WRITE(6,971) FORMAT(/,T10,"AFT AVERAGE DIMENSIONLESS TEMP DIST:")
635			WRITE(6,950)(CA(I),I=1,NTA)
636 637 -		973	DO 973 I=15,28 WRITE(6,955)DG(I),(TA(I,J),J=1,NTA)
638	C		
639 640	С С		PLOT AFT BIMENSIONLESS TEMPERATURE VS COOLING
641	-	•	to 10 I=15+28
642			TA(I,NTA+1)=0.0
643		10	TA(1,NTA+2)=0.2
644			CA(NTA+1)=.0 \$ CA(NTA+2)=.1
645			Y1(NTA+1)=0.0 \$ Y1(NTA+2)=.2
646			CALL AXIS(0,,0,, AFT COULING (PPS) 17.7.,0,,0,0,.1)
04/ 440			UHEL HAIS(U))U))"DIRENS) TERM)"13000000000000000000000000000000000000
649			12 1 = 15,28
650			I2=I-14
651			DO 11 J=1,NTAP2
652			Y1(J)=TA(I,J)
653		11	CONTINUE
654 455		12	UALL LINE(UA)(1)(A)(1)(1)(1) CALL SYMBOL(.25.4.1.14.TN-0.0.25)
600 45.4			GREE BINDOE(12070171177107947207 PALI DINT(0
000			Set File No. 1 No. 64 T. S. F. F. Z. Set F. Z. Set F. Z. Set F. S.

657			RETURN
658	•		END
460	~		
007	<u>с</u>		
660	C		PRESSURE SUBROUTINES
661	C		and the second
662		;	SUBROUTINE APA (PA, PD, P, NA, CA, DP, AKA, PKA, CKA, C3, TN, ITITA)
663			THENSION PA(22.8) PU(22) P(30.4) CA(4) DP(30)
664			DIMENSION ANA(A) - BKA(A)
115			
000			DITENSION (1(8)
666	_		DIMENSION IN(7)+1/11A(2)
66/	C		
668	C		PRINT OUT AFT
669	С		
670			WRITE(6,313) (1997) (1997) (1997)
671		313	FORMAT(1H ////T12,"AFT PRESS, AT FOLL, WHEEL LOCATION (PSI):*///)
672		310	FORMAT(//.T7.*CODI ING (PPS):*.T25.4F7.2./)
673		311	FORMAT(1) + 17+65+75+6F7-2)
174		•••	
0/4			WK11E(0)310)(CH(1))1=1)NH)
675			WRITE(6,311) DP(1),(P(1,11),11=1,NA)
676			WRITE(6,311) DP(3);(P(3,11),11=1;NA)
677			DD 350 I=5,12
678		350	WRITE(6,311) DP(I),(P(I,11),I1=1,NA)
679			DO 351 I=21,25
680		351	$WRTTF(A,311) OP(T) \cdot (P(T,T)) \cdot T1 = 1 \cdot NA)$
201	c	~~*	
492	ř		TAKE AUFRAGE AFT PRESSNDE
107	ž		THE AFTRE HE LYCOORE
683	U		
684			DO 810 I=1,NA
682			PA(1,1)=(P(3,1)+P(1,1))/2
686			PA(2,I)=P(5,I)
687			PA(3,I)=(P(6,I)+P(7,I))/2.
688	•		PA(4,I)=P(8,I)
689			PA(5,I) = (P(9,I) + P(10,I))/2
200			
491			F = = = = = = = = = = = = = = = = = = =
072			PA(8,1) = (P(21,1) + P(22,1))/2
693			PA(9, I) = P(23, I)
674			PA(10+1)=P(24+1)
695	•		PA(11,I)=P(25,I)
696		810	CONTINUE
697			WRITE(6,801) •
678		801	FORMAT(1H ///,T15,*AFT AVE,PRESS.(PPS)*)
699		,	WRITE(4.809)(CA(1), T=1.NA)
700		809	FORMAT(//.T7."COOLING (PST):".T25.6F7.2./)
701			
701			
702		804	WRIE(6,802)/D(1),(FA(1)),J=1,NA)
703		802	FURMAT(1H + 17) A5+125+647+2)
704		803	CONTINUE
705			CKA=°C03°
706			C3=*C33-C23*
707			TTTTA(1) = AFT COBLIN*
700			
700			
110			
<u>711</u>			A(A) J) = F((B + J) − F((A + J)
712		31	CUNTINUE
713	С		
714	C		PLOT AFT AVERAGE PRESSURE VS COOLING
715	С		
716			BO 10 I=1,11
717			Pa(T,Na+1) = -1
719		10	
710		* V	
114			GA(RA+1)=+V > $GR(RA+2)=+1$
720			Y1(NA+1)=-1, \$ $Y1(NA+2)=.5$
721			UALL AXIS(0.70.7"AFT COOLING (PPS)"7-17,7.70.7.00.7.1)
722		•	CALL AXIS(0.,0., AVE. PRESS. (PSI)*,17,6.,90.,-1.,5)

	· . ·	105

							· .
					:	1 . T	105
707		·	K-NA13	•	·		* + -
724			00 12 1=1,11	-	•		
725			DO 11 J=1;K				
726		11	Y1(J)=PA(I;J)	· .			
728	•		CALL LINE (CA, Y1, NA, 1, -1, Z)				
729		12	CONTINUE			· .	
730			CALL SYMBOL (+25+7+++14+TN+0	.0,25)	•		
732		. • ·	RETURN				
733			END				
734		·	SUBROUTINE APF(PA+PD+P+NF+C	F, DF, AKF,	BKF,CKF,	B3,TN,ITITF)) <u> </u>
735			DIMENSION PA(22,8),PD(22),P DIMENSION AKE(6),BKE(6),	(30,6),CF	(8),DP(3	0)	`
737		•	DIMENSION Y1(8)				•
738	_		DIMENSION TN(7), ITITF(2)	· ·			
739	C		PRIMT BUT CODUARD	-			
741	č		PRINT DOI FORWERD				
742	_		WRITE(6,312)			· · · · · · · · · · · · · · · · · · ·	
743		312	FORMAT(1H ,//,T12,"FORWARD	PRESS AT	FOLL WHE	EL LOCATION	(PSI)")
745		310	FORMAT(//,T7,"COOLING (PFS)	:*,T25,6F	7.2./)		-
746			WRITE(6,311)DP(2),(P(2,11),	11=1,NF)			
747		·-	WRITE(6,311)DF(4),(P(4,11),	I1=1,NF)			
749		341	WRITE(6,311) DP(1),(P(1,11)	• I1=1 • NF)			
750			DO 342 I=26,30				
751		342	WRITE(6,311) DP(1),(P(1,11)	,I1=1,NF)	in de la companya de		•
753	C	311	FORMATCEN \$179H3\$72370F7+27	•		•	
754	C		TAKE AVERAGE FORWARD PRESSU	RE			
755	C		DO 920 T=1.NE				· ·
757			PA(12,1)=(P(4,1)+P(2,1))/2.				
758			PA(13,I)=P(13,I)			• •	
759			PA(14,1)=(P(14,1)+P(15,1))/ PA(15,1)=P(16,1)	2.		· · ·	
761			PA(16,I)=(P(17,I)+P(18,I))/	2.			· .
762			PA(17,I)=P(19,I)		· · ·	•	
763			PA(19,1)=(P(24,1)+P(27,1))/	2.			
765			PA(20,I)=P(28,I)				
766			PA(21,I)=P(29,I)				
767		820	PA(22,1)=P(30,1) CONTINUE				
769		ULV	WRITE (6,811)				
770		811	FORMAT(1H ///,T15, FOR.AVE.	PRESS. (PS	SI)")		
772		815	FORMAT(//,T7, COOLING (PSI)	:*,T25,6F	7.2,/>		
773			DO 813 I=12,22				
774		012	WRITE(6,812) PD(I),(PA(I,J)	•J=1•NF>	· · · · ·	·	
776		813	CONTINUE				
777			CKF="BO3"			•	
778			B3= B33-B23 B	• . •			•
780			TTITE(2)="B (PPS)"	•	· · ·	•	
781			DD 30 J=1,NF			· .	• <u>-</u> • •
782			BKF(J)=P(4,J)	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			
783 784		30	AKF(J)=F(16;J)-F(14;J) CONTINUE			· .	•
785	C		- · · · · ·				
786 797	C		PLOT FORWARD AVERAGE PRESSU	RE VS COO	LING	· .	
788	-	-	DO 10 I=12,22	· . · ·			
			· · · · · · · · · · · · · · · · · · ·				5. A.A.

1. 医感热力 (1)

n en Al factoria

789 790	10	PA(1,NF+1)=-1. PA(1,NF+2)=.5	· · · · ·
701		CE(MELINE A) = CE(MELON = 1)	
771		LEVNETI)=+V P LEVNETZ)=+1	·
792	· •	Y1(NF+1)=-1, \$ Y1(NF+2)=,5	
793		CALL AXIS(0.,0., FOR. COOLING (PPS)	-18,7.,0.,.0,.1)
794		CALL AXIS(0.,0., "AVE. PRESS. (PSI)",17	7=6.=90.==1.=.5>
795		K=NF+2	
796		DO 12 I=12,22	· .
797	-	DO 11 J=1+K	
798		Y1(J)=PA(I+J)	
799	11	CONTINUE	
800		I2=I-11	
801		CALL LINE(CF, Y1, NF, 1, -1, 12)	
802	12	CONTINUE	- · · · · · · · · · · · · · · · · · · ·
803	•	CALL SYMBOL(.25,7.,.14,TN,0.0,25)	
804		CALL PLOT(9.,0.,-3)	
805		RETURN	
806		END	

l

APPENDIX II

111

GRAPHS OF TEMPERATURES, PRESSURES, AND SEAL PRESSURE DIFFERENTIALS AS A FUNCTION OF COOLING FLOW RATES FOR TESTS LISTED IN TABLE **5-1**

LIST OF GRAPHS FROM APPENDIX 3A, 3B AND 3C

FIGURE NO. (PHASE I)

TEMPERATURE (AP3A)	PRESSURE (AP. 3B)	SORT P.O. (AP. 3C)	FORE	AFT	TEST NUMBER
AT1-A	AP1-A	AF1-A	x		F1A7 Baseline
AT1-B	AP1-B	AF1-B		Х	F1A7 Baseline
AT2	AP2	AF2		X	A3 Speed Effect
AT3	AP3	AF3		. X	A5 Speed Effect
AT4-A	AP4-A	AF4~A	X		F2A6 Rim Space
AT4-B	AP4-B	AF4-B		х	F2A6 Rim Space
AT5-A	APB-A	AF5-A	X		F3A7 Rim Space
AT5-B	AP5-B	AF5-B	1 N.A.	X	F3A7 Rim Space
AT6-A	AP6-A	AF6-A	X		F4A8 Rim Space
AT6-B	AP6-B	AF6-B		х	F4A8 Rim Space
AT7-A	AP7-A	AF7-A	· X		F5A9 Rim Flow
AT7-B	AP7-B	AF7-B		х	F5A9 Rim Flow
AT8-A	AP8-A	AF8-A	X		F6A10 Rim Flow
AT8-B	AP8-B	AF8-B		х	F6A10 Rim Flow
AT9	AP9	AF9		х	Al2 Rot. Stat.
AT10	- AP10	AF10		х	Al3 Rot. Stat.
AT11-A	AP11-A	AF11-A	Х	-	F8A14 Radial Seal
AT11-B	AP11-B	AF11-B		X	F8A14 Radial Seal
AT12-A	AP12-A	AF12-A	X		F9A15 Radial Seal
AT12-B	AP12-8	AF12-B	•	X	F9A15 Radial Seal

	(11)
	(PHASE
	<u>N</u> 0.
•.	IGURE

AFT TEST NUMBER	FlOAl6 Baseline	X FlOAl6 Baseline	F11 Rim Space	F12 Rim Space	F13 Rim Space	F14 Rim Flow	F15 Rim Flow	F17A17 Inner	X F17A17 Inner	F18A18 Inner	X F18A18 Inner	F19A19 Radial	X F19A19 Radial	F20A20 Radial	X F20A20 Radial	F21A21 Radial	X F21A21 Radial
FORE	×		×	×	×	×	×	×		×		×		×		X	
SORT P.O. (AP. 3C)	AF13-A	AF13-B	AF14	AF15	AF16	AF17	AF18	AF19-A	AF19-B	AF20A	AF20B	AF21-A	AF21-B	AF22-A	AF22-B	AF23-A	AF23-B
PRESSURE (AP. 3B)	AP13-A	AP13-B	AP14	AP15	AP16	AP17	AP18	AP19-A	AP19-B	AP20-A	AP20-B	AP21-A	AP21-B	AP22-A	AP22-B	AP23-A	AP23-B
FEMPERATURE (AP. 3A)	AT13-A	AT13-B	AT14	AT15	AT16	AT17	AT18	AT19-A	АТ19-В	AT20-A	AT20-B	AT21-A	AT21-B	AT22-A	AT22-B	AT23-A	AT23-B

. .

and the second secon

APPENDIX IIIA

FIGURES AT1 - AT23

DIMENSIONLESS TEMPERATURE PLOTS

Figure AT2

Figure AT4A

÷,

Figure AT-6A

Figure AT-6C

124

8 6.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 FOR. COULING (PPS)

Figure AT-8A

i i sere

F8A14 RADIAL SEAL CLEAR.

- ; ;

Figure AT-12B

. He

Figure AT-13B

.

Figure AT-14

Li Li

tgure MI-10

Figure AT-19A

į.

warder a final the set of the

Ê

Figure AT-21B

Figure AT-22A

Figure AT-22B

APPENDIX IIIB

Figures AP1 AP

PRESSURE PLOTS

Figure AP-1A

Sec. Sec.

3.1.2

Figure AP-3

F2A6 R1M SPACE

Figure AP-4A

4.6.24

Figure AP-7A

Figure AP-7B

Figure AP-8A

FGALO RIM FLOW

166

Figure AP-8B

.

A13, R0T-S1A1

168

Figure AP-10

一般的 化合理 化合理相关 化输出

F8A14 RADIAL SEAU CLEAR.

Figure AP-11B

Figure AP-12A

Figure AP-12B

-13

Figure AP-13A

Figure AP-13B

化全体系统 化丙酮酮酸化合金 经行为人

÷.

F12 RIM SPACE

Figure AP-15

176

÷.

FIS RIM FLOW

F17A17 INNER SPACING

Figure AP-19A

F17A17 INNER SPACING

Figure AP-19B

Figure AP-20B

χĤ

1.00

Figure AP-21B

F20A20 RHDIAL SEAL CLEAR.

F20A20 RADIAL SEAL CLEAR.

Figure AP-22B

F21A21 RADIAL SEAL CLEAR,

APPENDIX IIIC

FIGURES AF1 - AF23

SEAL FLOW PLOT

FIA1 BASELINE

Figure AF1-A

.

Figure AF-1B

1.1.1

Figure AF-3

F2A6 R1M SPACE

Figure AF-4B

196

WY .

AF8 RIM SPACING EFFECT

Figure AF-5B

Figure AF-6A

199.

F4A8 RIM SPACE

Figure AF-6B

Figure AF-7A

Figure AF-8A

Figure AF-8B

F8A14 RADIAL SEAL CLEARE,

Figure AF-11A

FOR14 RADIAL SEAL CLEAR,

Figure AF-11B

F9A15 RADIAL SEAL CLEARE.

Figure AF-12A

F9A15 RADIAL SEAL CLEAR,

Figure AF-12B

Figure AF-13A

. F13 RIM SPACE

Figure AF-16

.

and a second second

F14 RIM FLOW

Figure AF-17

FIGA16 BASELINE

Figure AF-13B

FIS RIM FLOW

Figure AF-18

Figure AF-19A

218

Figure AF-19B

:219

F18A18 INNER SPACE

Figure AF-20A

F18A18 INNER SPACE

Figure AF-20B

F19A19 RADIAL SEAL CLEAR.

Figure AF-21B

F20A20 RADIAL SEAL CLEAR.

Figure AF-22A

F20H20 RADIAL SEAL CLEHR,

Figure AF-22B

F21A21 RADIAL SEAL CLEAR,

Figure AF-23A

F21A21 RADIAL SEAL CLEAR.

Figure AF-23B

and the second state of the second states of

APPENDIX IIID

OTHER SPACE PRESSURE DISTRIBUTION

Figure IIID-1. The circumferential location of the pressure taps with respect to the buckets and nozzles at the wall of the casing

Figure IIID-2 and IIID-3 shows the circumferential pressure distribution on the forward and aft side respectively for different cooling rate for 4 lbm/sec axial throughflow and 3000 rpm wheelspeed. Pressures are gage pressure measured relative to ambient.

APPENDIX IN-A

j.

MECHANICAL DRAWINGS OF WHEELSPACE APPARATUS

MECHANICAL DRAWINGS OF WHEELSPACE APPARATUS

Number	10-5-523	Wheelspace Test Rig
Number	10-5-523-1	Wheelspace Test Rig
Number	10-5-523-2	Wheelspace Test Rig
Number	10-5-523-3	Wheelspace Test Rig
Number	10-5-523-4	Wheelspace Test Rig

APPENDIX IV-B

PHOTOGRAPHS OF WHEELSPACE APPARATUS

239

PHOTOGRAPHS OF WHEELSPACE APPARATUS

- Figure 1B1. Overview of Wheelspace Test Facility.
- Figure 1B2. Side View of Wheelspace Test Apparatus.
- Figure 1B3. Inside View of Aft Wheelspace with Wheel Removed.
- Figure 1B4. Rim Cover with Blades and Rim Flow Instrumentation.
- Figure 1B5. Seal Area Instrumentation.

Figure B1. Overview of Wheelspace Test Facility.

Figure B3. Inside View of Aft Wheelspace with Wheel Removed.

Figure B4. Rim Cover with Blades and Rim Flow Instrumentation.

244

BIBLIOGRAPHY

- W. O. Winer, D. M. Sanborn, S. Bair, "Large Gas Turbine Wheelspace Cooling Studies", Progress Report, Georgia Institute of Technology, October 1976.
- R. F. Hoeft, "Calculation Procedure for Determining Critical Wheelspace Cooling Flow and a Review of Disk Cooling on CTPD Machines", General Electric Data Folder No. 73-GTD-5, Schenectady, New York, January 19, 1973.
- F. J. Bayley, J. M. Owen, "The Fluid Dynamics of a Shrouded Disk System with a Radial Outflow of Coolant", ASME Publication 70-GT-6, December 1969.
- 4. C. M. Haynes, J. M. Owen, "Heat Transfer from a Shrouded Disk System with a Radial Outflow of Coolant", ASME Publication 74-GT-4, November 1973.
- J. M. Owen, C. M. Haynes, F. J. Bayley, "Heat Transfer from Air-Cooled Rotating Disk", Proc. Roy. Soc Hond. A336, August 1973, pp. 453, 473.
- 6. B. T. Chau, R. Greif, "Laminar Forced Convection over Rotating Bodies", ASME Publication 74-WA/HT-67, November 1973.
- 7. D. E. Metzer, R. J. Korstad, "Effects of Cross Flow on Impingement Heat Transfer", Trans. ASME, Journal of Engineering for Power, Paper No. 71-GT-1, January 1972, pp. 35-41.
- .8. D. E. Metzer, "Heat Transfer and Pumping on a Rotating Disk with Freely Induced and Forced Cooling", ASME Publication No. 70-GT-6, December 1969.
- M. L. Koosinlin, B. E. Launder, B. I. Sharma, "Prediction of Momentum, Heat and Mass Transfer in Swirling, Turbulent Boundary Layers", Trans. ASME, Journal of Heat Transfer, May 1974, pp. 204-208.
- T. Uzkan, "The Effects of Stationary Wall Geometry on the Flow Regime Between a Rotating Disk and Stationary Wall, Part I: No Throughflow", General Electric Research and Development Center Report No. 66-C-345, October 1966.

- 11. T. Uzkan, "The Effects of Stationary Wall Shape on the Fluid Flow Behavior Between a Rotating Disk and a Parallel Wall, Part II: With Radial Throughflow", General Electric Research and Development Center Report No. 66-C-389, October 1966.
- 12. T. Uzkan, "The Effects of the Conical Shape of a Gas Turbine Rotor on the Coolant Flow Requirement", General Electric Research and Development Center Report No. 66-C-166, May 1966.
- 13. I. H. Edelfelt, "Experimental Investigation of the Flow Between a Stationary Wall and a Rotating Disk with Throughflow and Axial Flow", General Electric Research and Development Center Report No. 71-C-010, December 1970.
- 14. I. H. Edelfelt, "Effect of Radial Seals upon the Flow Behavior Between a Rotating Disk and its Housing when Radial Throughflow is Present", General Electric Research and Development Center Report No. 67-C-196, May 1967.

15. R. Mani, "Experimental Investigation of Flow Between a Stationary Wall and Rotating Disk with Throughflow", General Electric Research and Development Center Report No. 68-C-073, March 1968.

247