
PROGRAM ANALYSIS:
AN EXPLORATION OF RELATIONAL VERIFICATION

A Thesis
Presented to

The Academic Faculty

by

Nicholas K. Ryan

In Partial Fulfillment
of the Requirements for the Degree

Bachelor of Science with the Research Option in the
School of Computer Science

Georgia Institute of Technology
May 2017

PROGRAM ANALYSIS:
AN EXPLORATION OF RELATIONAL VERIFICATION

Approved by:

Professor William Harris, Advisor
School of Computer Science
Georgia Institute of Technology

Professor Mayur Naik
School of Computer Science
Georgia Institute of Technology

Date Approved: May 3, 2016

TABLE OF CONTENTS

PREFACE . iv

ACKNOWLEDGEMENTS . v

I INTRODUCTION . 1

1.1 Program Equivalence . 1

1.2 Concurrency . 2

1.3 Information Flow . 2

II PROCEDURES . 3

2.1 Finding Relational Verification Benchmarks 3

2.1.1 Program Equivalence . 3

2.1.2 Concurrency . 4

2.1.3 Information Flow . 5

III RESULTS AND DISCUSSION . 6

3.1 Program Equivalence . 6

3.2 Concurrent Programs . 6

3.3 Information Flow . 7

3.4 Database . 7

iii

PREFACE

This thesis is submitted in partial fulfilment of the requirements for a Bachelor’s

Degree in Computer Science. It contains work done from January to May 2016.

My supervisor on the project has been Dr. William R. Harris, School of Computer

Science, Georgia Institute of Technology. This thesis has been made solely by the

author; the algorithms for which these benchmarks were collected, however, were

designed by others.

iv

ACKNOWLEDGEMENTS

I would like to thank my supervisor Dr. William R. Harris for his guidance with this

work and providing insightful feedback as necessary.

Thanks to Dr. Mayur Naik for his assistance and feedback on this thesis.

And finally, thanks to Dr. Malavika Shetty for her unending support and feedback

from the beginning of the proposal to this thesis.

v

Program Analysis:
An Exploration of Relational Verification

Nicholas K. Ryan

8 Pages

Directed by Professor William Harris

Program analysis is a quickly growing field. We attempt to tackle new problems

regarding program equivalence, concurrent programs, and information flow. As these

problems have not been addressed at the same level we desire, there are no adequate

testing suites. Previous tests for program analysis generally consisted of ‘toy pro-

grams’ which was not a trend we wanted to follow. As such we began exploring new

resources for testing such as coding practice problems, industry code, and related aca-

demic research. We found many unique testing materials which satisfy many program

analysis problems as the code we analyzed was ‘real-world’ code. By ‘real-world’ we

mean code which was not written purely for testing. This code was written to solve

a problem in industry or research with no knowledge of our analysis. In the end we

hope to provide a database of benchmarks which can be used for future projects by

the program analysis community.

CHAPTER I

INTRODUCTION

Program analysis is a broad field in which the behavior of the program is analyzed

through an automated process. In general, these programs are examined for certain

properties such as correctness, robustness, safety, and liveness. Program analysis can

typically be considered as one of two categories: program optimization or program

correctness; however, these categories are not strictly mutually exclusive. Program

optimization focuses on decreasing the amount of resources used and improving the

speed at which the program can operate. Program correctness is concerned with de-

termining if a program accomplishes its desired goal. We choose to initially focus our

benchmark collection on three subfields: program equivalence, analysis of concurrent

programs, and information flow.

1.1 Program Equivalence

Previous work in program analysis has focused on relatively simple programs, gen-

erally it involves a single program. We break this trend by examining relational

verification, specifically program equivalence which requires analyzing two programs

simultaneously. Although some work has been done in this subfield, it has all been

rudimentary. It could only show equivalence when two programs are of similar struc-

ture [1], single-threaded, or analyzed during compilation [3]. We introduced our own

algorithm which could handle varying structures and which does not rely on the

compiler.

Program equivalence is an undecidable problem; this means that it is impossible

to confirm equivalence for all inputs so there are some program combinations that we

cannot say “Yes, they are equivalent” or “No, they are not equivalent.” This is due in

1

part to an infinite number of inputs to these programs, making it infeasible to test all

of their inputs. Because it is undecidable, any work in this field is ground breaking.

However, because of the difficulties that come with this problem it can be difficult

to adaquately test any new algorithms. Many testers resort to ‘toy programs’ which

only test the desired property. We, however, intend to test programs written without

knowledge of these tests. We intend to test ‘real’ programs. Our collection method

is described below in Procedures.

1.2 Concurrency

As mentioned above, program analysis is still in relatively simple stages. There

has been little work regarding concurrent programs so we hope to make substantial

steps in this area. As such initial steps will not be large and we choose to focus on

various data structures and hope to prove various properties such as dead-locks and

race conditions. Continuing our trend of avoiding ‘toy programs’ we collected our

concurrent programs from industry and academia projects. If possible we would like

these benchmarks to also satisfy the equivalence requirements. So if we could find

multiple implementations of the same type of structure that would be ideal. This

desire led us to the Synchrobench study [2]. This work provided a large supply of

concurrent data structures, written for testing, that satisfied equivalence requirements

as well.

1.3 Information Flow

This area is still extremely new for program analysis. We hope to apply Information

Flow techniques to program analysis as a new way of approaching certain properties of

the program. This can open new doors for analysis by providing a different look at the

security features of a program while still proving properties relevant to concurrency

or equivalence. However, we have not made significant progress in this field so we

hope that finding benchmarks will provide insight into approaching the problem.

2

CHAPTER II

PROCEDURES

2.1 Finding Relational Verification Benchmarks

In general, we find all of the benchmarks in a similar manner. We collect them through

coding practice websites, popular git repository websites, and well-known benchmark

repositories. We collect them from code that is already established and tested. We

would rather make use of fully developed code than write our own ‘toy’ programs to

prove the feasibility of our algorithms. Each relational verification problem will have

its own unique traits and properties that we would like to analyze. As such we may

need to search for these benchmarks in different ways.

The only requirement which holds across all benchmarks is that they must compile

to the JVM. We have this requirement as some of the most powerful analysis tools

apply only to JVM bytecode. Furthermore, the JVM allows a consistency across

architectures that cannot be obtained with other languages.

2.1.1 Program Equivalence

In order to develop sufficient tests we need to consider the problem were trying to solve

and its limitations. Program equivalence is not a trivial task. As these are just the

beginning steps to solving an undecidable problem, we ignore most non-trivial cases.

In order for a program to be a good test case we need to satisfy a few requirements:

• The programs need to be ‘primitive.’ The addition of linked data structures

such as ArrayLists or HashSets attempts to tackle a more complex problem

which we need not consider at this point in our research. Therefore programs

with linked data structures are not considered appropriate tests.

3

• The code should vary in complexity. Requiring files with branching, loops, or

arrays, but also basic straight-forward files as control.

• The problems must be algorithmic in nature to avoid ambiguous solutions.

There must be multiple approaches to the solution.

In consideration of these requirements we find that practice interview problems fit

quite well. These problems can be found on popular practice websites such as

CodeChef and TopCoder. The problems are simple enough to have an elegant solution

however there are multiple ways to approach the problem. In addition, it’s helpful

that each solution can generally be contained to a single file. Next steps include ac-

cessing the Software-artifact Infrastructure Repository (SIR) for more complex, well-

known, program analysis benchmarks. SIR will allow testing across multiple versions

of ‘larger, more advanced’ programs to test equivalence when the only change should

be optimization. The inclusion of these benchmarks will further validate our find-

ings as it’s well-known that benchmarks from this repository hold up under extreme

scrutiny.

It was found that searching GitHub did not result in strong benchmarks.

2.1.2 Concurrency

The only requirement for concurrent benchmarks was that they must be data struc-

tures. This allows us to focus on testing the data structure instead of being concerned

if it solved a certain problem. For testing we needed to verify concurrent properties

for data structures, such as dead lock and data races, in addition to all of the prop-

erties which should hold for a ‘normal’ data structure, such as null pointer and array

index out of bounds exceptions.

We found that the best source of benchmarks came from GitHub. Searching for

concurrent libraries resulted in plenty of large repositories containing concurrent data

structures.

4

2.1.3 Information Flow

Although we are still searching for benchmarks, we believe the best place to find

these benchmarks will be GitHub. As of now, we do not know what will make a

good benchmark or what we’re trying to find. Our goal is to find programs which

leak ‘secret’ information to the ‘public.’ This can be any information released to

a common out-source that provides insight into the information not released. This

means we’re concerned with programs that will handle sensitive information such as

healthcare or banking applications.

5

CHAPTER III

RESULTS AND DISCUSSION

The most prevalent benchmarks were dependent on which problem we we’re trying

to solve. We provide a breakdown of each problem and what we have found or hope

to find.

3.1 Program Equivalence

The benchmarks for program equivalence primarily came from the practice program-

ming websites. We pulled approximately 850 problems and 95000 solutions to these

problems. This will give us plenty of cases to test our algorithm. At this point we

found that our algorithm, while efficient, does not prove strong properties. As such,

we have not progressed farther than these practice problems in our testing.

3.2 Concurrent Programs

Our primary focus for concurrency was in datastructures. This allows us to focus on

testing the data structure and less on whether the code correctly solves some arbi-

trary problem. These repositories came from large scale industry programs, research

papers, and hobbyists. This gives good opportunity to see how different code sources

may be designed to meet different specifications. A large proportion of our bench-

marks for concurrency came from the Synchrobench repository1; which consisted only

of concurrent datastructures. Each datastructure is written in multiple concurrent

paradigms and as such will be useful for testing equivalence down the road. At this

1https://sites.google.com/site/synchrobench/

6

point in time we have also drawn two maps from JCommon2, a collection of Face-

book code, a FastArrayBlockingQueue from a repository called Concurrent3, and four

structures from MapDB4.

3.3 Information Flow

Information flow benchmarks are still being found. However, we believe that once

these benchmarks are found it can open doors to ideas for creating algorithms relevant

to program analysis.

3.4 Database

Our goal for this work was to create a new benchmark database for the program

analysis community. We hope that this database will serve as a valuable tool for

future work. Furthermore, we hope that a highly-accesible benchmark database will

give rise to stronger algorithms as they can be more rigorously tested.

2https://github.com/facebook/jcommon
3https://github.com/coderplay/concurrent
4https://github.com/jankotek/mapdb

7

REFERENCES

[1] B. Godlin, O. S., “Regression verification : Proving the equivalence of similar

programs,” Software Testing, Verification, and Reliability, vol. 23, pp. 241–258,

2013.

[2] Gramoli, V., “More than you ever wanted to know about synchronization:

Synchrobench, measuring the impact of the synchronization on concurrent al-

gorithms,” in Proceedings of the 20th ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming (PPoPP’15), pp. 1–10, ACM, Feb 2015.

[3] Necula, G. C., “Translation validation for an optimizing compiler,” ACM SIG-

PLAN Notices, vol. 35, no. 5, pp. 83–94, 2000.

8

