On Matchings and Covers

Penny Haxell
University of Waterloo

Matchings and Covers

Let \mathcal{H} be a hypergraph.
A matching in \mathcal{H} is a set of disjoint edges.
A cover of \mathcal{H} is a set of vertices that meets every edge.

General Problem: To bound the minimum size of a cover of \mathcal{H} in terms of the maximum size of a matching in \mathcal{H}.

Triangle matching

Let G be a graph. A triangle matching or triangle packing of G is a set of pairwise edge-disjoint triangles in G.

The parameter $\nu(G)$ is defined to be the maximum size of a triangle matching in G.

Covering triangles by edges

A cover of the triangles in the graph G is a set of edges C of G such that every triangle of G contains an edge of C.

The parameter $\tau(G)$ is defined to be the minimum size of a cover of G.

Comparing $\nu(G)$ and $\tau(G)$

For every graph G we have $\nu(G) \leq \tau(G)$.

For every graph G we have $\tau(G) \leq 3 \nu(G)$.

Tuza's Conjecture

Conjecture (Tuza 1984): For every graph G,

$$
\tau(G) \leq 2 \nu(G) .
$$

Results on Tuza's Conjecture

- known for certain special classes of graphs, including K_{5}-free chordal graphs (Tuza 1990), odd-wheel-free and four-colourable graphs (Aparna Lakshmanan, Bujtás and Tuza 2011)
- known for planar graphs (Tuza 1990), and more generally graphs without subdivisions of $K_{3,3}$ (Krivelevich 1995)
- weighted versions of the problem have been studied (Chapuy, DeVos, McDonald, Mohar and Scheide 2011)
- for every graph G we have $\tau(G) \leq\left(3-\frac{3}{19}\right) \nu(G)$.
- If true, Tuza's Conjecture is best possible.

$$
A \underset{\nabla}{\infty}
$$

Fractional matching

Let G be a graph. A fractional triangle matching of G is a function p that assigns to each triangle t of G a non-negative real number, such that for each edge e of G we have

$$
\sum_{t \ni e} p(t) \leq 1
$$

Thus a triangle matching \mathcal{S} corresponds to a fractional triangle matching in which each triangle in \mathcal{S} gets value 1 and all others get 0.

Fractional triangle cover

A fractional cover of the triangles in G is a function c that assigns to each edge of G a non-negative real number, such that for each triangle t of G we have

$$
\sum_{e \in t} c(e) \geq 1 .
$$

Thus a cover C of the triangles in G corresponds to a fractional cover in which each vertex in C gets value 1 and all other vertices get 0 .

Fractional parameters

The fractional parameter $\nu^{*}(G)$ is defined to be the maximum of $\sum_{t \in G} p(t)$ over all fractional triangle matchings p of G.

The parameter $\tau^{*}(G)$ is the minimum of $\sum_{e \in G} c(e)$ over all fractional covers c of G.

Then we know that $\nu(G) \leq \nu^{*}(G)$ and $\tau(G) \geq \tau^{*}(G)$.

The Duality Theorem of linear programming tells us that

$$
\tau^{*}(G)=\nu^{*}(G)
$$

Fractional results on Tuza's Conjecture

Theorem (Krivelevich 1995): Let G be a graph. Then

- $\tau^{*}(G) \leq 2 \nu(G)$.
- $\tau(G) \leq 2 \nu^{*}(G)$.

An asymptotic result

Theorem: Let G be a graph with n vertices. Then

$$
\tau(G) \leq 2 \nu(G)+o\left(n^{2}\right) .
$$

This follows from the fractional version $\tau(G) \leq 2 \nu^{*}(G)$ together with the following general packing theorem.

Theorem (PH, Rödl): Let G be a graph with n vertices, and let H be any fixed graph (for example, a triangle). Then

$$
\nu_{H}^{*}(G) \leq \nu_{H}(G)+o\left(n^{2}\right) .
$$

A closer look - the role of K_{4}

(A) Tuza's Conjecture is true for planar graphs, and best possible because of K_{4}. What can we say about planar graphs for which $\tau(G)$ is close to $2 \nu(G)$? Are they close to being disjoint unions of K_{4} 's?
(B) The fractional result $\tau^{*}(G) \leq 2 \nu(G)$ of Krivelevich is best possible because of K_{4}. What can we say about graphs for which $\tau^{*}(G)$ is close to $2 \nu(G)$? Are they close to being disjoint unions of K_{4} 's?

On Question (A)

Theorem (Cui, PH, Ma 2009) Let G be a planar graph, and suppose

$$
\tau(G)=2 \nu(G)
$$

Then G is an edge-disjoint union of K_{4} 's and edges, such that every triangle is contained in exactly one of the K_{4} 's.

On Question (A)

Theorem (PH, Kostochka, Thomassé 2011) Let G be a planar graph that does not contain K_{4}. Then

$$
\tau(G) \leq 1.5 \nu(G)
$$

Moreover equality holds if and only if G is the edge-disjoint union of 5 -wheels (plus possibly some edges not in any triangle).

(B): A stability theorem

Theorem (PH, Kostochka, Thomassé 2011) Let G be a graph such that $\tau^{*}(G) \geq 2 \nu(G)-x$. Then G contains $\nu(G)-\lfloor 10 x\rfloor$ edge-disjoint K_{4}-subgraphs plus an additional $\lfloor 10 x\rfloor$ edge-disjoint triangles.

Note that just these K_{4} 's and triangles witness the fact that

$$
\tau^{*}(G) \geq 2 \nu(G)-\lfloor 10 x\rfloor .
$$

The proof also shows that if G is K_{4}-free then

$$
\tau^{*}(G) \leq 1.8 \nu(G)
$$

Stability for Tuza's conjecture

Could there be a similar stability theorem for Tuza's Conjecture?

The only known graphs for which equality holds for Tuza's Conjecture are (disjoint unions of) K_{4} and K_{5}. Could it be true that every graph for which $\tau(G)$ is close to $2 \nu(G)$ contains many K_{4} 's?

NO.

For each $\epsilon>0$, there exists a K_{4}-free graph G_{ϵ} such that $\tau\left(G_{\epsilon}\right)>$ $(2-\epsilon) \nu\left(G_{\epsilon}\right)$.

For large n, let H be an n-vertex triangle-free graph with independence number $\alpha(H)<n^{2 / 3}$. $\left(R(3, t)\right.$ is of order $t^{2} / \log t$.)

Form a graph G by adding a new vertex v_{0} and joining it to all vertices in H.

Then a triangle matching in G corresponds to a matching in H, so

$$
\nu(G) \leq n / 2 .
$$

A cover in G corresponds to the complement of an independent vertex set in H. Thus

$$
\tau(G) \geq n-n^{2 / 3} .
$$

Some proof ideas

Theorem (PH, Kostochka, Thomassé 2011) Let G be a planar graph that does not contain K_{4}. Then $\tau(G) \leq 1.5 \nu(G)$. Moreover equality holds if and only if G is the edge-disjoint union of 5 -wheels (plus possibly some edges not in any triangle).

To prove this we first show
Theorem Let G be a FLAT graph that does not contain K_{4}. Then $\tau(G) \leq$ $1.5 \nu(G)$. Moreover equality holds if and only if G is the edge-disjoint union of 5 -wheels (plus possibly some edges not in any triangle).

Here flat means that every edge is in at most two triangles.

The triangle graph

Let G be a graph. The triangle graph $T(G)$ of G has vertex set the set of triangles of G. Two vertices of $T(G)$ are joined by an edge if and only if the corresponding triangles of G share an edge of G.

If G is flat then $T(G)$ is a triangle-free subcubic graph.
A triangle matching in G corresponds to an independent set in $T(G)$, and a cover of the triangles in G corresponds to an edge cover of the vertices in $T(G)$.

By Gallai's Theorem this is determined by the maximum size of a matching in $T(G)$.

Flat graphs and planar graphs

To study triangle matching and covering in flat graphs we need

- bounds on the independence number of triangle-free subcubic graphs,
- Tutte's 1 -factor theorem.

If G is planar and has no separating triangle then it is flat.
To study triangle matching and covering in flat graphs we need in addition to analyse the effect of separating triangles.

Some proof ideas

Theorem (PH, Kostochka, Thomassé 2011) Let G be a graph such that $\tau^{*}(G) \geq 2 \nu(G)-x$. Then G contains $\nu(G)-\lfloor 10 x\rfloor$ edge-disjoint K_{4}-subgraphs plus an additional $\lfloor 10 x\rfloor$ edge-disjoint triangles.

Proof idea: choose a maximum triangle matching and a lexicographically largest set of edge-disjoint special substructures in G. Define a fractional cover based on this set.

The role of K_{4}

We are still far from understanding the role of K_{4} even in these special cases of the conjecture. For example:

Q: What is the smallest possible value of c such that

$$
\tau^{*}(G) \leq c \nu(G)
$$

for every K_{4}-free graph G ?
We know that $c \leq 1.8$, and the 5 -wheel shows that $c \geq 1.25$.

