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SUMMARY 

 

Airborne fine particulate matter (PM2.5) has been linked to adverse human health 

effects, reduced visibility, climate change, and other air quality concerns. Typically, the 

major contributors of PM2.5 include mobile source emissions, biomass burning, and 

secondary sources with anthropogenic and biogenic nature in origin. The metropolitan 

Atlanta, GA area, located in the southeastern U.S and populated by over 5.4 million 

residents, is of particular interest for air quality study and air pollutant control due to high 

emissions of mobile sources, biomass burning, coal-fired power plants and biogenic 

volatile organic compounds (VOC), with vigorous photochemical processes occurring as 

well.   

Effective control strategies for air pollutants require a detailed investigation of 

chemical composition of airborne PM2.5 in this area as well as quantitative identification 

of specific source impacts on ambient air quality. In this research, various airborne PM2.5 

samples were collected and analyzed, which are directly impacted or dominated by on-

road mobile and other typical urban emissions, regional transport sources, prescribed 

burning plumes, wildfire plumes, as well as secondary sources with anthropogenic and 

biogenic nature in origin. Day-night, seasonal and spatial variations of PM2.5 

characterization were also studied. The impacts or contributions of major sources were 

identified quantitatively through the receptor source apportionment models. These 

modeling results, especially on-road mobile source contributions and secondary organic 

carbon (SOC) were assessed by multiple approaches to provide additional information for 

PM2.5 control strategies. Furthermore, season- and location-specific source profiles were 



 xix

developed in this research to reflect real-world and representative local emission 

characterizations of on-road mobile sources, aged prescribed burning plumes, and 

wildfire plumes. Secondary organic aerosol (SOA), a major component of PM2.5 in the 

summer, was also explored for contribution and individual sources.  

To investigate on-road emissions, regional transport and SOA effects, 12-hr and 

24-hr PM2.5 filter samples were collected in summer 2005 and winter 2006 from three 

sites: two from urban Atlanta (one site adjacent to a freeway and another 400 m away), 

and one at a rural site. Detailed PM2.5 chemical speciation was conducted, including 

organic carbon (OC), elemental carbon (EC), water-soluble OC (WSOC), ionic species, 

tens of trace metals, and over one hundred of solvent-extractable organic compounds. In 

particular, this research focused on primary and secondary organic molecular markers in 

airborne PM2.5, which were identified and quantified by the gas chromatography/mass 

spectrometry (GC/MS) method, as well as source apportionment for fine OC and PM2.5.  

Our results show that organic matter, sulfate and ammonium are major 

components of PM2.5 in both seasons, with significantly higher levels found in the 

summer; whereas nitrate is important only in the winter. Sulfate dominates PM2.5 in the 

summer, particularly on haze days. Homogeneous distributions of WSOC reflect impacts 

from SOA in the summer and from biomass burning emissions in the winter. Primary 

organic compounds usually exhibit different attributes of day vs. night, whereas 

secondary organic tracers vary little. Much higher concentrations of automotive-related 

primary species, especially EC and some primary organic compounds are observed at the 

roadside site. Season-specific on-road mobile source profiles were developed by using 

differences in chemical species concentrations between the roadside site and the nearby 



 xx

campus site. Calculated on-road source profiles differ from mobile source profiles 

measured in laboratory elsewhere. Significant seasonal differences are observed for 2-

methyltetrols, cis-pinonic acid and pinic acid, organic tracers of biogenic SOA. Little 

correlation is found between 2-methyltetrols with cis-pinonic or pinic acid, whereas cis-

pinonic and pinic acids are strongly correlated with each other. In addition, particulate 

organic matter (OM) was estimated through mass balance analysis of gravimetric PM2.5, 

and the OM/OC ratio was found to depend on season and location.  

Source apportionment of PM2.5 and organic carbon were performed using the 

molecular marker-based chemical mass balance (CMB-MM) model. Contributions of 

major primary sources were calculated, including diesel vehicle exhaust, gasoline vehicle 

exhaust, wood combustion, meat cooking, road dust, and vegetative detritus. CMB-MM 

modeled roadway-related source contributions (i.e., diesel vehicle exhaust, gasoline 

vehicle exhaust and road dust) were evaluated at the roadside site by comparing to 

differences of total OC measurements between the roadside site and the nearby campus 

site. As a particular focus of this active research, SOC contribution was estimated by four 

different approaches: (1) the CMB-MM model; (2) the EC tracer method; (3) the WSOC 

method; (4) the secondary organic tracer method. Finally, fraction boundaries of SOC in 

total OC were estimated at the roadside, the campus and the rural sites for the summer 

and the winter. Results suggest that SOC fractions in total OC usually distributed in a 

range with WSOC-estimated SOC as the lower bound and with CMB-MM-estimated 

SOC as the upper bound.        

To better understand the processes impacting the aging of prescribed fire and 

wildfire plumes, a detailed chemical speciation of PM2.5 and carbonaceous aerosols was 
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conducted by GC/MS analysis. Ambient concentrations of many organic species 

(levoglucosan, resin acids, retene, n-alkanes, and n-alkanoic acids) associated with wood 

burning emission were significantly elevated on the event days, whereas steranes, 

cholesterol and major polycyclic aromatic hydrocarbons (PAHs) did not show obvious 

increases. It is interesting to note that ambient hopanes increased significantly during 

wildfire smoke events, implying that hopanes, which are thought as unique tracers of 

mobile sources, can also be produced by thermal alteration of biogenic hopanoid 

precursors in the atmosphere. Strong odd over even carbon-number predominance was 

found for n-alkanes versus even over odd predominance for n-alkanoic acids. 

Observations suggest that resin acids altered during transport from burning sites to 

monitors. Our study also indicates that large quantities of biogenic VOCs and 

semivolatile organic compounds (SVOCs) were released both as products of combustion 

and unburned vegetation heated by the fire. Higher leaf temperature can stimulate 

biogenic VOC and SVOC emissions, which enhance formation of SOA in the 

atmosphere. This is supported by elevated ambient concentrations of secondary organic 

tracers (dicarboxylic acids, 2-methyltetrols, cis-pinonic acid, and pinic acid). An 

approximate source profile was built for the aged fire plume to help better understand the 

evolution of wood smoke emissions and for use in source impact assessment.           

CMB-Regular and CMB-MM approaches were used and compared in this study to 

obtain source apportionment of PM2.5 data from the Southeastern Aerosol Research and 

Characterization Study (SEARCH) project. Temporal (winter and summer) and spatial 

impacts (urban and rural) on source contributions were analyzed. Results indicate a few 

similarities in source contributions between the two approaches. Secondary sources 



 xxii

including secondary sulfate, ammonium, and nitrate contribute the majority of PM2.5 mass in 

the Southeast in both summer (>50%) and winter (>40%). Motor vehicle exhaust and wood 

burning are the major primary sources of PM2.5 in this area. Motor vehicle exhaust, paved 

road dust and wood burning impacts were calculated using both CMB-Regular and CMB-

MM. However, the differences in source apportionments between the two approaches are 

sometimes rather great. This disagreement can be traced to differences in: (1) fitting species 

selected; (2) source category identified; (3) source profile applied; and (4) model uncertainty 

generated. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Research Motivation 

Airborne particulate matter (PM), especially fine particulate matter (PM2.5, 

particles with an aerodynamic diameter equal to or less than 2.5 µm), has been linked to 

adverse human health effects, reduced visibility, climate change, and other air quality 

concerns. Over the past decades, numerous epidemiological studies have proposed that 

long-term and even short-term PM exposure could lead to acute or chronic adverse 

impacts on human health such as increased rates of cardiopulmonary morbidity and 

mortality, elevated hospitalization for respiratory disease, declines in lung function, and 

aggravated asthma [Dockery et al., 1993; Pope et al., 1995; Pope, 2007]. New statistical 

evidence further indicates that a reduction in exposure to ambient PM2.5 would 

significantly improve life expectancies in the United States [Pope et al., 2009]. As a 

direct consequence of such health studies, the U.S. Environmental Protection Agency 

(USEPA) established the National Ambient Air Quality Standard (NAAQS) for ambient 

PM2.5 in 1997. This standard was further enhanced in 2006 with the effective criteria of 

35 and 15 µg m
-3
 for 24-hr and annual average ambient PM2.5 concentrations, 

respectively.  

With the properties of light scattering and light absorbing in the atmosphere, 

particulate matter goes beyond the human health effects and can play an important role in 

visibility reduction and global climate change [Charlson et al., 1992; IPCC, 2007; Malm 

et al., 1994; Sloane et al., 1991]. PM2.5, for example, is considered to be a major factor to 
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reduce visibilities and cause hazes in the United States, including many national parks 

and wilderness areas (http://www.epa.gov/visibility). Atmospheric aerosols also influence 

the radiative budget of the Earth-atmosphere system directly and indirectly, thereby 

impacting global climate conditions [Haywood and Boucher, 2000]. In addition, 

deposition of PM can affect surface soil, water, vegetation, and even the diversity of 

ecosystems (http://www.epa.gov/acidrain/effects).  

Typically, the major contributors of PM2.5 include mobile source emissions, 

biomass burning, and secondary sources with anthropogenic and biogenic nature in 

origin. The metropolitan Atlanta, GA area, located in the southeastern U.S and populated 

by over 5.4 million residents, is of particular interest for air quality study and air pollutant 

control due to high emissions of mobile sources, biomass burning, coal-fired power 

plants and biogenic volatile organic compounds (VOCs), with vigorous photochemical 

processes occurring as well. The Atlanta metropolitan area is growing as the eighth 

largest urban region in the United States and the most populous in the southeastern 

United States (http://www.census.gov/Press-Release/www/releases/archives/population). 

With a large population and low residence density, Atlanta has the highest number of 

total daily vehicle miles traveled (DVMT) in the U.S., ranked fifth among the American 

urbanized areas according to the Federal Highway Administration (FHWA) annual report 

[U.S DOT, 2001]. As a result, large amounts of air pollutants (PM2.5, ozone, etc.) or their 

precursors are emitted by the on-road motor vehicles in this area.    

Biomass burning, including wildland fire and industrial and residential wood 

burning, is another major contributor of PM2.5 in the southeastern U.S. Wildland fire 

(wildfire and prescribed burning) is estimated to contribute about 20% of total PM2.5 
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emissions in the United States [U.S. EPA, 2000]. In 2007, a total of 85,705 wildland fires 

were reported nationally to burn 37,749 square kilometers, 170% above the 10-year 

average [NIFC, 2008]. Among these burned forests, over 60% were treated with 

wildfires. The frequency and intensity of wildfire are expected to increase in the future as 

a result of climate change, which is elevating spring and summer temperatures 

[Flannigan et al., 1998; Westerling et al., 2006]. During the same period, 12,744 square 

kilometers of wildlands were treated with prescribed fires, which is 1,732 square 

kilometers above the previous year’s total and is the highest since 1998 [NIFC, 2008]. 

The Southern Geographic Area where Georgia is located usually has the most prescribed 

fire projects and acres treated. Such large and increasing emission contributions are of 

concern to air quality managers and policy makers, particularly in the areas with active 

prescribed fires and wildfires, large urban populations, and local air qualities near or 

above the applicable air quality standards such as the southeastern U.S. The prescribed 

fires, for example, on February 28, 2007 in Georgia and later the Georgia–Florida 

massive wildfires lasting from April through June severely impacted the metropolitan 

Atlanta and nearby areas with thick wood smoke (haze) for hours and even days at a time 

[Hu et al., 2008; Lee et al., 2008].  

Secondary aerosols originating either from anthropogenic or biogenic sources are 

also thought to be a significant contributor to airborne PM2.5, especially in summer time. 

In Atlanta, for example, over half of the PM2.5 mass has been estimated to be secondary 

[Kim et al., 2003; Zheng et al., 2002] due to strong atmospheric photochemical process 

and abundant emissions of PM2.5 gas precursors such as sulfur dioxide (SO2), nitrogen 

oxides (NOx), gaseous ammonia, as well as anthropogenic and biogenic VOCs. The main 
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secondary PM2.5 components include particulate sulfate (SO4
2-
), nitrate (NO3

-
), 

ammonium (NH4
+
), and secondary organic aerosol (SOA). Their gas precursors are 

emitted by combustion of fossil fuels (coal, diesel and gasoline, etc.), agricultural and 

industrial activities, and natural processes. In particular, biogenic secondary sources are 

increasingly considered to be important in the areas with intensive emissions of biogenic 

VOCs, such as in the forest-rich southeastern U.S. (67% of the state land in Georgia is 

forest [U.S. Forest Service, 2004]).  

Impacted by these primary emissions and secondary sources, Atlanta and its 

surrounding areas are still struggling to attain the NAAQS, and are ranked among the 

most polluted cities in the country, e.g., sixth for highest levels of year-round soot, and 

12
th
 for ground-level ozone (www.lungusa.org). Wholly or in part, 27 counties in 

Georgia, which are mostly located in the metro Atlanta and nearby areas, are designated 

as non-attainment areas for ambient PM2.5 concentrations by the U.S EPA 

(http://www.epa.gov/air/oaqps/greenbk/qnay). In 2007, the 24-hr PM2.5 and 8-hr O3 levels 

in Atlanta exceeded the NAAQS on 24 and 29 days, respectively [Georgia EPD, 2007]. 

As a complex mixture of many components, PM2.5 can be either emitted directly by 

primary sources or formed from precursors through photochemical processes in the 

atmosphere. Effective strategies to control airborne PM2.5 first require a detailed 

investigation and understanding of the PM2.5 chemical composition in the Atlanta area, 

including organic matter (OM), water-soluble OC (WSOC), elemental carbon (EC), ionic 

species (sulfate, nitrate, ammonium, etc.), and trace metals.   

 

1.2 PM2.5 Composition and Speciation 
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Although previous studies have reported chemical composition of airborne PM2.5 

and particulate OM in the Atlanta area and the southeastern U.S. [Baumann et al., 2003; 

Edgerton et al., 2005; 2006; Hansen et al., 2003; Zheng et al., 2002; Zheng et al., 2006b], 

few research has explored detailed composition of PM2.5 and OM, which is immediately 

impacted and dominated by on-road vehicular emissions. Moreover, local source 

composition profiles of mobile emissions, a major source of primary PM2.5 and OM, have 

not yet been investigated in the southeastern U.S. As a result, source profiles developed 

in laboratory and elsewhere (e.g., in California [Cooper et al., 1987; Lough et al., 2007; 

Schauer et al., 1999b; 2002b] and Colorado [Watson et al., 1998]) were used in the 

previous source apportionment studies in this area [Lee et al., 2007; Marmur et al., 2005; 

Zheng et al., 2002; Zheng et al., 2007]. This could result in significant errors in source 

contributions estimated by receptor models owing to seasonal and regional 

inconsistencies of the emission profiles. Previous studies have proposed that the dilution 

and cooling processes applied to the present laboratory emission test samplers cannot 

accurately represent the real-world atmospheric mixing, and would result in significant 

bias in source profiles tested in laboratory [Donahue et al., 2006; Lipsky and Robinson, 

2006; Shrivastava et al., 2006]. Seasonal variations of mobile source compositions due to 

cold start of vehicles and gas-particle partitioning were also mentioned elsewhere [Lough 

et al., 2005a; Robinson et al., 2007]. To better examine the PM2.5 composition directly 

impacted by on-road emissions and to assess in-use mobile source profiles for different 

seasons in the southeast U.S., 12-hr and 24-hr field experiments were performed in urban 

Atlanta, adjacent to a freeway (roadside) and 400 m away (near-road), as well as at a 
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rural site, with particular focus on on-road emissions, regional transport, secondary 

source effects and seasonal variations of PM2.5 composition. 

As a complex mixture of many organic compounds, OM is typically a major 

component in ambient PM2.5 in most areas, accounting for up to 80% of the PM2.5 mass 

[Hansen et al., 2003; Turpin et al., 2000]. Previous studies also have shown that the 

major component of PM2.5 from forest burning events is OM, making up 30–70% of 

PM2.5 mass [Nopmongcol et al., 2007; Robinson et al., 2004; Ward et al., 2006]. 

However, detailed data speciating OM in PM2.5 impacted by wildland fires is sparse, and 

even less data is available for aged plumes. During the February 28, 2007 prescribed 

burning event, hourly ambient OC reached 72 µg m
-3
 and contributed approximately 51% 

of the ambient PM2.5 in Atlanta [Lee et al., 2008]. From April through June 2007, massive 

wildfires led to dozens of hazy days over vast areas and a few metropolitan cities 

including Atlanta, Miami, FL and Birmingham, AL. The maximum 24-hr OC of up to 80 

µg m
-3
 was found in the plumes and the average 24-hr ambient OC made up 40–55% of 

PM2.5 mass, or 60–85% of PM2.5 mass when converted to OM by a factor of 1.5 [Lee et 

al., 2008]. These smoke events provide special opportunities to characterize OM in such 

carbonaceous aerosols, to further understand atmospheric processes that impact the aging 

of fire plumes, to assess formation of biogenic SOA enhanced by wildland fires, and to 

approximate the source composition profiles of prescribed burning and wildfire 

emissions, which can be used for future source apportionment studies.  

One method to develop a more detailed understanding of the composition of 

particulate organic matter is gas chromatography/mass spectrometry (GC/MS), allowing 

hundreds of organic compounds to be identified and quantified such as n-alkanes, 
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hopanes, steranes, n-alkanoic acids, alkanedioic acids, polycyclic aromatic hydrocarbons 

(PAHs), resin acids, and others (syringols, levoglucosan, cholesterol, 2-methyltetrols, 

etc.). Many of these compounds are relatively unique tracers for certain sources and 

widely used to track specific sources of carbonaceous aerosols [Cass, 1998; Claeys et al., 

2004a; Kavouras et al., 1998; Simoneit, 2002; Yu et al., 1999b].  

In brief, hopanes and steranes are emitted from both gasoline- and diesel-powered 

vehicles [Simoneit, 1985; Zielinska et al., 2004] and have been widely used as molecular 

markers of vehicular emissions in source apportionment of PM2.5 and OC [Fraser et al., 

2003b; Schauer et al., 1996; Zheng et al., 2002; Zheng et al., 2006b; Zheng et al., 2007]. 

Cholesterol, found in animal fats and oils, is thought to be an excellent molecular marker 

of meat cooking emissions [Rogge et al., 1991]. Vegetative detritus emissions are 

characterized by high-molecular weight n-alkanes with pronounced odd over even carbon 

number predominance [Rogge et al., 1993a]. Source impacts from biomass burning are 

usually traced through levoglucosan, resin acids, syringols, and retene. As a pyrolysis 

product of cellulose in wood biopolymers, levoglucosan has been considered a 

particularly useful molecular marker of biomass burning [Simoneit et al., 1999]. Resin 

acids are thermal alteration products of coniferous wood resins and emitted exclusively 

from softwood burning (various pines, firs, etc.) [Rogge et al., 1998; Simoneit et al., 

1993; Standley and Simoneit, 1994]. In contrast, hardwood combustion produces much 

higher quantities of syringols [Hawthorne et al., 1988; Hawthorne et al., 1989]. Although 

PAHs are emitted from multiple combustion processes of fuels (biomass, natural gas, 

diesel, and gasoline) and ubiquitous in the atmosphere, retene, a thermal alteration of 
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abietane compounds (resin diterpenoids), is considered as an organic tracer specific for 

coniferous wood burning [Ramdahl, 1983].  

In addition to primary components of PM2.5, SOA formation can result from 

gaseous emissions of isoprenoids (isoprene and monoterpene) [Claeys et al., 2004a; 

Kavouras et al., 1998]. Isoprene and monoterpene are the top two prevalent precursors of 

biogenic SOA. Liao et al. estimated that 58.2% and 37.3% of biogenic SOA come from 

isoprene and monoterpene emissions, respectively [Liao et al., 2007]. A few biogenic 

SOA species linked to isoprene and monoterpene-derived PM2.5 have been identified and 

quantified including 2-methyltetrols (oxidation products of isoprene), cis-pinonic acid 

and pinic acid (oxidation products of monoterpene) [Claeys et al., 2004a; Claeys et al., 

2004b; Yu et al., 1999a; Yu et al., 1999b]. Although dicarboxylic acids (alkanedioic acids 

and dicarboxylic aromatic acids) can be emitted from various primary sources (mobile 

emission, meat cooking, etc.), previous studies suggest that atmospheric photochemical 

formation is probably the main source [Fine et al., 2004b; Fraser et al., 2003a; Yan et al., 

2008a]. Thus, field measurements of these compounds provide information on biogenic 

SOA source contributions to ambient PM2.5.         

 

1.3 Source Apportionment of PM2.5 and OC 

Effective control strategies for air pollutants require quantitative identification of 

specific source impacts on ambient air quality. Unfortunately, only a small fraction of 

OM in aerosols can be characterized quantitatively on the molecular level by current 

speciation methodologies, e.g., GC/MS, and the majority of PM2.5 organic matter is 

unextractable and nonelutable [Zheng et al., 2002]. However, this small fraction of 
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elutable compounds contains species which can be used as tracers for major sources of 

primary OC, and then major source contributions to PM2.5 and organic aerosols can be 

calculated by source apportionment modeling with organic tracers measured in 

extractable and elutable fraction.  

One of most popular approaches to calculate source contributions for PM2.5 is the 

chemical mass balance (CMB) air quality model. As a receptor model, the CMB model 

has been widely applied for source apportionment of ambient pollutants, especially PM 

[Friedlander, 1973; Hopke, 2003; Kowalczyk et al., 1978; Miller et al., 1972; Watson, 

1979; Watson et al., 1984; Watson et al., 1990; Watson et al., 1994; Watson et al., 2002]. 

The CMB model is based on a variety of assumptions: 1) compositions of source 

emissions are constant over the period of ambient and source sampling; 2) chemical 

species are relatively stable and conservative during transport from emissions to the 

receptor; 3) major sources contributing to the receptor are included in the model; 4) the 

number of source categories is less than the number of chemical species; 5) source 

profiles are linearly independent of each other (without collinear problems); and 6) 

measurement uncertainties are random, uncorrelated, and normally distributed [U.S. EPA, 

2004]. Mathematically, the fundamental principle of CMB can be expressed as: 

 

 

where ikC  is the ambient concentration of chemical species i at a specific receptor site k; 

ija  is the fraction of chemical species i in the OC (or PM2.5) emission from source j, also 

called source profile abundances; jkS  is the contribution of source j to the OC (or PM2.5) 

concentration at the receptor site k; and eik is error term.  

.,n,.........,ieSaC ikjk

m

j

ijik 21
1

=+=∑
=



 10 

Historically, elemental and ionic species were first applied in the inorganic 

species-based CMB (CMB-Regular) model to apportion source contributions [Cass and 

Mcrae, 1983; Chan et al., 1999; Chen et al., 2001; Chow et al., 1992; Chow et al., 1995; 

Cooper and Watson, 1980; Gordon, 1980; Hidy and Venkataraman, 1996; Ward and 

Smith, 2005]. However, the CMB-Regular approach is limited in its ability to distinguish 

contributions of some important or potentially important sources of OC and PM2.5, such 

as diesel vehicle exhaust, gasoline vehicle exhaust, wood combustion, meat cooking, 

vegetative detritus, and natural gas combustion. Through introducing organic molecular 

markers, some of which are reasonably unique tracers for specific sources, to the CMB-

Regular model, the molecular marker-based CMB (CMB-MM) model was first 

developed by Schauer et al. (1996) and have been widely applied in source 

apportionment studies [Fraser et al., 2003b; Schauer et al., 1996; Schauer, 1998; 

Schauer and Cass, 2000; Sheesley et al., 2004; Zheng et al., 2002; Zheng et al., 2006b; 

Zheng et al., 2007].  

Typically, CMB-MM is used to apportion source contributions to primary OC 

(POC) in PM2.5, which is emitted directly from primary sources, e.g., mobile sources, 

biomass burning, and meat cooking. Source contribution to secondary OC (SOC) cannot 

be obtained directly through CMB-MM modeling, but is usually estimated by the 

difference between measured total OC and POC identified by CMB-MM [Schauer et al., 

1996; Zheng et al., 2002]. This would lead to large uncertainties when the estimated POC 

is greatly biased owing to a lack of local and representative emission source profiles in 

the methodology. Recent studies indicate that CMB-MM source apportionment results 

are sensitive to the emission source profiles applied in the model [Lough and Schauer, 
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2007; Robinson et al., 2006c; Subramanian et al., 2006; 2007]. It is very hard to 

effectively assess those modeled contributions from primary and secondary sources 

without knowledge of real-world emissions and formation of ambient PM2.5.  

On the other hand, SOC is a major component of total OC, especially in summer 

when vigorous photochemical processing, together with enhanced VOC emissions, 

promotes formation of SOA in the atmosphere. In the southeastern U.S and California 

areas, 30–80% of the total OC in summer is estimated as SOC with different approaches 

[Hildemann et al., 1993; Turpin and Huntzicker, 1995; Zheng et al., 2007]. However, 

very few studies have assessed uncertainties or errors associated with SOC estimates. The 

current knowledge about atmospheric formation, condensation/partition, and composition 

of SOA is still very poor, and no direct measurement of SOA is available. Thus, SOC 

estimates are primarily performed indirectly. Other than the CMB-MM approach, the EC 

tracer method is widely applied to separate SOC from POC based on a large set of 

ambient OC/EC observations in the same location [Chu, 2005; Turpin and Huntzicker, 

1995]. Recent studies also propose using WSOC as an indicator of SOC since it usually 

correlated to SOA formation, especially in summer [Kondo et al., 2007; Miyazaki et al., 

2006; Weber et al., 2007]. Furthermore, new developments on smog chamber irradiation 

experiments provided a different approach, called the secondary organic tracer method, 

which was used to estimate major source contributions to fine SOC originating from 

some prevalent gaseous precursors, such as isoprene and monoterpene [Edney et al., 

2005; Kleindienst et al., 2007a; Offenberg et al., 2007].  

In order to identify and quantify the impacts of specific emission sources on air 

quality in the metropolitan Atlanta and surrounding areas, the CMB-MM approach was 
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used for source apportionment of fine organic carbon and PM2.5 at the roadside, urban 

and rural sites in the summer and the winter. As a focus of active research, mobile source 

contributions identified by CMB-MM were compared to the measured OC from the 

roadside and nearby sites. Intercomparisons of SOC estimates from the four approaches 

described above provide helpful information for evaluating CMB-MM performance and 

better understanding SOA composition in PM2.5. In addition, both the CMB-MM and 

CMB-Regular approaches were employed for source apportionment of PM2.5 to identify 

and quantify the impacts of specific emission sources on air quality in the southeastern 

U.S. The CMB results calculated from the two approaches can help provide more 

comprehensive information of major sources in this region. Furthermore, intercomparison 

between the two approaches can also be used to evaluate and improve CMB source 

apportionment applications and to better understand their limitations.   

 

1.4 Structure and Scope of the Thesis 

The principal objectives of this study are (1) to characterize airborne PM2.5 and 

fine organic matter impacted by on-road mobile emissions, biomass burning, and 

secondary sources; (2) to develop locally or seasonally representative source profiles for 

on-road emissions and aged wildland fire emissions; and (3) to apportion and assess the 

contributions from these major PM2.5 sources. This section provides an overview of the 

research presented in the following chapters.  

Chapter 2:  Roadside, urban and rural comparison of primary and secondary 

organic molecular markers in ambient PM2.5.  Detailed speciation of PM2.5 

carbonaceous aerosols was conducted by GC/MS analysis at the roadside, urban and rural 
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sites with particular focus on automotive-related primary organic compounds and 

biogenic secondary organic tracers. Day–night, seasonal and spatial variations of PM2.5 

organic composition were investigated. Season-specific on-road mobile source primary 

OC profiles were developed by using differences in organic species concentrations 

between the roadside site and the nearby campus site. Seasonal differences and inter-

correlation were studied for organic tracers of biogenic SOA, including 2-methyltetrols, 

cis-pinonic acid and pinic acid.    

Chapter 3:  Characterization of airborne PM2.5 at roadside, urban and rural sites in 

the summer and the winter.  PM2.5 filter samples (12- and 24-hr) were collected in the 

summer and the winter from three sites: two from urban Atlanta (one site adjacent to a 

freeway and another 400 m away), and one at a rural site. Detailed PM2.5 composition 

was investigated including OC, EC, WSOC, ionic species and trace metals, as well as 

their day–night, seasonal and spatial variations. Season-specific on-road mobile source 

primary PM2.5 profiles were developed for this region by using differences in individual 

species concentrations between the roadside site and the nearby urban site. Particulate 

organic matter (OM) was estimated through mass balance analysis of gravimetric PM2.5, 

and WSOC was also investigated spatially and seasonally.  

Chapter 4:  Source apportionment of PM2.5 organic carbon and SOA impact: spatial 

and temporal variations.  Major source contributions to ambient PM2.5 and OC in the 

metropolitan Atlanta and surrounding areas were apportioned using the molecular 

marker-based chemical mass balance (CMB-MM) model. The calculated source 

contributions, especially secondary OC contributions, were assessed by the masured OC 

differences and the results from other source apportionment approaches, including the EC 
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tracer method (i.e., OC/EC ratio), WSOC measurements (i.e. correlation between WSOC 

and SOA or biomass burning), and the secondary organic tracer method (i.e., biogenic 

SOA yields estimated by the chamber irradiation experiments). Fraction boundary of 

SOC estimate in total measured OC was approximated for the urban and rural areas in the 

summer and the winter.        

Chapter 5:  Organic composition of carbonaceous aerosols in an aged prescribed 

fire plume.  Detailed speciation of carbonaceous aerosols was conducted for aged smoke 

from a prescribed fire (dominated by conifers) by GC/MS analysis. Before, on, and after 

the smoke event, ambient wood burning-derived organic species were investigated 

including levoglucosan, resin acids, retene, n-alkanes, and n-alkanoic acids. An 

approximate source profile was built for the aged fire plume to help better understand the 

evolution of wood smoke emissions and for use in source impact assessment. In addition, 

ambient concentrations of secondary organic tracers (dicarboxylic acids, 2-methyltetrols, 

cis-pinonic acid and pinic acid) were measured to explore emissions of biogenic volatile 

organic compounds (VOCs) and semivolatile organic compounds (SVOCs), which are 

significantly enhanced by higher leaf temperatures in the fire.  

Chapter 6:  Detailed chemical characterization and aging of wildfire aerosols in the 

southeastern U.S.  The intensive Georgia–Florida wildfire smoke events occurred in a 

warm and photochemically reactive season (from April through June, 2007) in the 

southeastern U.S. The plumes were sampled by several downwind monitors at different 

distances away from the fires. Detailed composition of wildfire-derived PM2.5 was 

explored with particular focus on development of aged wildfire emission source profiles 

and evolution processes of particulate organic compounds associated with biomass 
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burning during transport from the wildfire location to the monitors. Impact of wildfire-

enhanced biogenic SOA was studied by measured secondary organic tracers, including 

dicarboxylic acids, 2-methyltetrols, cis-pinonic acid and pinic acid. Furthermore, thermal 

alteration of biological hopanes to geological hopanes was studied.    

Chapter 7:  Analysis of source apportionment applications for PM2.5 in the 

Southeast: intercomparison between two approaches.  Both CMB-Regular and CMB-

MM approaches were used and compared for conducting source apportionment of 

ambient PM2.5 data from the Southeastern Aerosol Research and Characterization Study 

(SEARCH) project. Temporal (winter and summer) and spatial impacts (urban and rural) 

on source contributions were analyzed. The possible reasons, which cause disagreements 

between the two approaches, were discussed including fitting species, source category, 

source profile, and model uncertainty. Intercomparison between the two approaches 

provides more comprehensive information of major sources in this region. Such analysis 

can be used to evaluate and to improve CMB source apportionment applications and to 

better understand their limitations.   

Chapter 8:  Conclusions and future research.  The major conclusions and findings of 

this research are summarized. Future work are described or suggested to extend this 

research.         
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CHAPTER 2 

ROADSIDE, URBAN AND RURAL COMPARISON OF PRIMARY 

AND SECONDARY ORGANIC MOLECULAR MARKERS IN 

AMBIENT PM2.5  

 

(Bo Yan, Mei Zheng, Yongtao Hu, Xiang Ding, Amy P. Sullivan, Rodney J. Weber, 

Jaemeen Baek, Eric S. Edgerton, and Armistead G. Russell. Environmental Science & 

Technology, 43 (12), 4287-4293, 2009) 

 

Abstract 

PM2.5 filter samples (12- and 24-hr) were collected in urban Atlanta, GA, next to a 

freeway and 400 m away, as well as at a rural site, with particular focus on exploring on-

road emissions, regional transport and biogenic effects. Detailed speciation of PM2.5 

carbonaceous aerosols was conducted by GC/MS. Diurnal, seasonal and spatial variations 

of PM2.5 organic composition were investigated. Primary organic compounds usually 

exhibit different attributes of day vs. night while secondary organic tracers varied little. 

Much higher concentrations of automotive-related primary organic compounds are 

observed at the roadside site, including n-alkanes, hopanes, steranes, and polycyclic 

aromatic hydrocarbons (PAHs). Season-specific on-road mobile source primary OC 

profiles were developed by using differences in organic species concentrations between 

the roadside site and the nearby site. Calculated on-road source profiles differ from 

mobile source profiles measured in the lab. Significant seasonal differences are observed 

for 2-methyltetrols, cis-pinonic acid and pinic acid, organic tracers of biogenic secondary 
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organic aerosols (SOA). Little correlation is found between 2-methyltetrols with cis-

pinonic or pinic acid, though cis-pinonic and pinic acids are strongly correlated.    

 

2.1 Introduction 

Epidemiological studies suggest that exposure to fine particulate matter (PM2.5) is 

associated with adverse health effects [Dockery et al., 1993; Pope et al., 2002], and 

sources of organic compounds appear to be of particular interest [Sarnat et al., 2008]. 

Organic matter is one of major components in ambient PM2.5 in most areas, accounting 

for up to 80% of the PM2.5 mass [Hansen et al., 2003; Turpin et al., 2000]. As a complex 

mixture of many organic compounds, particulate organic matter can be either emitted 

directly by primary sources or created from chemical reactions in the atmosphere. One 

method to develop a more detailed understanding of the composition of particulate 

organic matter is gas chromatography/mass spectrometry (GC/MS), allowing hundreds of 

organic compounds to be identified and quantified. Many of these compounds are 

relatively unique tracers for certain sources and widely used to track specific sources of 

carbonaceous aerosols [Cass, 1998; Claeys et al., 2004a; Kavouras et al., 1998; Simoneit, 

2002; Yu et al., 1999b].    

Although previous studies of PM2.5 composition in the southeastern U.S have 

been reported [Zheng et al., 2002; Zheng et al., 2006b], few studies have investigated 

detailed chemical composition of carbonaceous aerosols that are immediately impacted 

and dominated by on-road vehicular emissions. Moreover, local source profiles of mobile 

emissions, a major source of primary organic matter and PM2.5, have not been developed 

for the Southeast. Consequently, source profiles developed elsewhere have been used in 
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previous research on source apportionment [Zheng et al., 2002; Zheng et al., 2007]. Due 

to seasonal and regional inconsistency of source composition profiles, this could result in 

errors in source contributions estimated by receptor models. This study uses roadside, 

near-road and rural speciated organic PM2.5 measurements to assess in-use mobile source 

profiles for the summer and winter.   

Secondary organic aerosols (SOA) are also thought to be a significant contributor 

to particulate organic matter, especially in the summer when over half of organic matter 

in the PM2.5 mass has been estimated to be SOA [Bhave et al., 2007; Lim and Turpin, 

2002; Zheng et al., 2007]. SOA is produced in the atmosphere through photochemical 

oxidation of anthropogenic and biogenic volatile organic compounds (VOCs). Biogenic 

secondary sources are increasingly considered an important contributor to SOA in the 

areas with intensive emissions of biogenic VOCs, such as in the forest-rich southeastern 

U.S (e.g., 67% of the state land in Georgia is forest [U.S. Forest Service, 2004]). Isoprene 

and monoterpene are the top two prevalent precursors of biogenic SOA. Liao et al. 

estimated that 58.2% and 37.3% of biogenic SOA come from isoprene and monoterpene 

emissions, respectively [Liao et al., 2007].  

A few distinct SOA tracers linked to isoprene and monoterpene-derived PM2.5 

have been identified and quantified from ambient samples, including 2-methyltetrols 

(oxidation products of isoprene), cis-pinonic acid and pinic acid (oxidation products of 

monoterpenes) [Claeys et al., 2004a; Kavouras et al., 1998; Yu et al., 1999b]. Although 

dicarboxylic acids (alkanedioic acids and dicarboxylic aromatic acids) can be emitted 

from various primary sources (mobile emission, meat cooking, etc.), previous studies 

suggested that atmospheric photochemical formation is probably the main source [Fine et 
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al., 2004b; Fraser et al., 2003a; Yan et al., 2008a]. Thus, field measurements of these 

compounds provide information on biogenic SOA source contributions to ambient PM2.5.         

To better understand the composition and sources of organic PM2.5, field 

experiments were conducted in urban Atlanta, GA, next to a freeway and 400 m away, as 

well as at a rural site, with particular focus on off- and on-road emissions, regional 

transport and effects of biogenic emissions.       

 

2.2 Experimental Section 

2.2.1 Field Sampling  

High-volume (Hi-Vol) particulate samplers (Thermo Anderson) and three-channel 

particulate composition monitors (PCM) were used to collect ambient PM2.5 filter 

samples. Hi-Vol samplers (flow rate of 1.13 m
3
 min

-1
) used pre-baked quartz microfibre 

filters (8 x 10 in, Whatman), and PCM samplers (flow rate of 16.7 L min
-1
) had diffusion 

denuders followed by pre-baked quartz microfibre filters in one channel and pre-weighed 

Teflon filters (47 mm, Pall Life Sciences) in the other two channels. Although it is 

recognized that there exist potential impacts from positive or negative artifacts on organic 

compound measurement without or with denuders in the Hi-Vol or PCM samplers, 

respectively, the reported results of organic compounds are not artifact corrected because 

the major organic tracers studied in this research are dominantly in a condensed phase 

[Schauer et al., 1996].   
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Figure 2.1. (a) Map of all sampling sites including the Highway, Campus, Jefferson 

Street (JST), Yorkville (YRK) and ASACA sites (FTM, FS8, SDK and YGP); (b) 

Highway site, 3 m away from the I-75/85 highway, and Campus site on the roof of Ford 

ES&T Building on the Georgia Tech campus. The prevailing winds in the metro Atlanta 

and Yorkville are northerly and westerly (northwesterly or southwesterly) in the summer, 

and northwesterly and easterly (northeasterly or southeasterly) in the winter, with 

variations due to local terrain and building effects in this complex urban area. 

N 

S 
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Three sampling sites were utilized (Figure 2.1): (1) an interstate highway 

roadside; (2) the Georgia Institute of Technology campus (400 m away from the roadside 

site); (3) a rural site at Yorkville, GA (impacted primarily by biogenic emissions and 

regional transport). The roadside site is 3 m away from the I–75/85 freeway in Midtown 

Atlanta that carries about 280,000 vehicles per day [Georgia Department of 

Transportation., 2006], 97% of which are light duty, gasoline-powered vehicles [Kall 

and Guensler, 2007]. The Yorkville site, 55 km northwest of the metro Atlanta, is one of 

the sampling sites in the Southeastern Aerosol Research and Characterization Experiment 

(SEARCH) air quality monitoring network [Hansen et al., 2003]. At both the roadside 

site and the Yorkville site, PM2.5 samplers were operating on the ground while at Georgia 

Tech campus site, samplers were operating on a roof approximately 16 m above ground. 

These sites were complemented by a SEARCH site (the Jefferson Street (JST), 2 km 

southwest of Georgia Tech), four sites from the Assessment of Spatial Aerosol 

Composition in Atlanta (ASACA) [Butler et al., 2003], and routine monitors around 

Atlanta (Figure 2.1).     

Field sampling was carried out during two seasons: summer (June–July, 2005) 

and winter (January 2006). In the summer study, 12-hr (10am–10pm–10am) back-to-back 

sampling was conducted simultaneously at both the roadside site and the campus site on 

Jun 15–18, 2005 (a total of 14 samples), and 24-hr (10am–10am) measurements were 

taken simultaneously at both the campus site and the Yorkville site on non-rainy days on 

July 8–26, 2005 (16 samples). Three consecutive heavy haze days (July 24–26, 2005) 

were captured by the samplers at both the campus and the Yorkville sites. The 10am–

10pm period is aimed at capturing photochemically formed and altered organic carbon 
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constituents while the 10pm–10am period is directed toward sampling when 

photochemistry is playing less of a role in altering organic PM2.5 composition. Diurnal 

variations of some primary emissions can be explored separately by daytime and 

nighttime samples. For example, primary emissions from on-road rush hours (evening vs. 

morning), urban factories, and meat cooking are characterized by different attributes of 

day vs. night. Similarly in the winter study, 12-hr samples were taken simultaneously on 

Jan 19–26, 2006 both at the roadside site and the campus site (32 samples) and 24-hr 

sampling was conducted at Yorkville (7 samples).  

Hi-Vol samples were analyzed for organic carbon/elemental carbon (OC/EC), 

water-soluble OC (WSOC), and particulate organic compounds with thermal optical 

transmittance (TOT), total organic carbon (TOC) analyzer, and GC/MS, respectively. 

PCM samples were analyzed for OC/EC, PM2.5 mass, water-soluble ionic species, and 

trace metals by using TOT, gravimetry, ion chromatography (IC), and X-ray fluorescence 

(XRF), respectively. Details of PM2.5 sampling (Hi-Vol and PCM) and chemical 

composition measurements (OC, EC, WSOC, ions and tracer metals) are described 

elsewhere [Lee et al., 2005a; Sullivan and Weber, 2006].    

2.2.2 Organic Speciation 

Hi-Vol samples along with field blanks were analyzed for solvent-extractable 

organic compounds using a standardized GC/MS method and both methylation and 

silylation [Nolte et al., 2002; Zheng et al., 2002; Zheng et al., 2006b]. Briefly, each filter 

(one half or quarter section of an entire Hi-Vol filter) is spiked with a deuterated internal 

standard (IS) mixture previously and then successively extracted using hexane and 

benzene/isopropanol (2:1, v/v) with 15-min mild sonication. There are 16 deuterated 
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compounds in the IS mixture solution including: benzaldehyde-d6, dodecane-d26, 

decanoic acid-d19, phthalic acid 3,4,5,6-d4, acenaphthene-d10, levoglucosan-U-
13
C6, 

hexadecane-d34, eicosane-d42, heptadecanoic acid-d33, 4,4'-dimethoxybenzophenone-

d8, chysene-d12, octacosane-d58, ααα-20R-cholestane-d4, cholesterol-2,2,3,4,4,6-d6, 

dibenz[ah]anthracene-d14, and hexatriacontane-d74. The volume of IS solution spiked 

into one sample depends on the measured mass of OC on the filter section extracted, i.e., 

250 µL IS solution per mg OC. For each sample, two hexane sonication extractions are 

followed by three consecutive benzene/isopropanol extractions. After filtering, the 

extracts are gradually concentrated to about 250 µL with rotary evaporation followed by 

blowdown with ultra pure nitrogen gas. Finally, half of each concentrated extract are 

derivatized with fresh diazomethane to convert organic acids to their methyl esters. 

Diazomethane (CH2N2) is generated by a set of standard generator and method descried 

by previous study [Zheng et al., 2002]. These methylated extracts are analyzed by 

GC/MS along with authentic standards, which contain the same IS mixture and target 

compounds. To quantify a few polar organic compounds (levoglucosan, cholesterol, 2-

methyltetrols), underivatized remains of concentrated extracts are silylated with BSTFA 

(N, O-bis(trimethylsilyl)acetamide) to convert polar compounds to trimethylsilyl (TMS) 

derivatives. After one hour reaction at 70 ºC, these silylated extracts are immediately 

analyzed using GC/MS along with authentic standards that are also silylated. These 

derivatized PM2.5 samples are analyzed by an Agilent GC/MSD (6890 GC / 5973N MSD) 

equipped with a 30 m HP-5 MS capillary column (0.25 mm i.d. and 0.25 µm film 

thickness). The operation parameters of GC/MSD applied in this study are same as 

previous experiments [Zheng et al., 2002] include: 1 µL splitless injection, 4 minutes 
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solvent delay, 50-500 amu scan range, electron ionization (EI) mode with 70 eV. The 

temperature ramp of GC is set up as follow: holding at 65 
o
C for 2 min, increasing up to 

300 
o
C at a rate of 10 

o
C/min and holding for 20 min. Identification and quantification of 

target organic compounds in PM2.5 can be determined with the standardized method 

developed by previous studies [Rogge et al., 1993a; b; Schauer et al., 1996; Schauer and 

Cass, 2000; Simoneit and Mazurek, 1982; Zheng et al., 2002]. In brief, each target 

organic compound in the present study was identified with its chemical characteristics 

and retention time, and then quantified by referring to a deuterated IS whose has similar 

chemical structure and retention time with the target compounds. To quantify target 

compounds more precisely, relative response factor (RRF) is calculated for each target 

compound from authentic standards.  

The reported results are field blank corrected, but not adjusted for recoveries. 

Detailed Quality Assurance/Quality Control (QA/QC) procedures were described 

previously, including recoveries, detection limits (shown in Table A.1) and analysis 

precision for organic compounds [Ding et al., 2008; Yan et al., 2008a; Zheng et al., 

2006a; Zheng et al., 2006b; Zheng et al., 2007]. Briefly, an autotune and sensitivity test is 

always carried out before sample analysis to check performance of GC/MS instrument. If 

these tests met the criteria requested, a few solvent blanks are then run in GC/MS to 

ensure a good performance of GC column. During each sequence, the same set of 

authentic standards was run once separately at the beginning, middle and end of an 

operation sequence. Thus, three RRFs were obtained for each target compound after a 

sequence run and an optima factor can be calculated from the calibration curve and used 

to correct quantification of target compounds.   
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2.2.3 Trace Gas and Meteorological Data 

Trace gases (O3, SO2, NO2 and NO) and meteorological data (temperature, solar 

radiation and relative humidity) were measured at the Yorkville site and JST [Edgerton et 

al., 2006; Hansen et al., 2003].  

 

2.3 Results and Discussion 

2.3.1 Organic Matter in PM2.5  

Our measurements indicate that organic matter (OM, using an OM/OC factor of 2 

[El-Zanan et al., 2009]) is a major component of ambient PM2.5 in both the summer and 

the winter, and accounts for 51 to 72% of the PM2.5 mass at the urban sites, and 40 to 

54% at the rural location, depending upon season (Table 2.1).  

2.3.2 Day–Night Variation of Primary Organic Tracers 

Diurnal trends of primary organic tracers were studied by comparing 12-hr 

daytime concentrations with the surrounding 12-hr nighttime data. To better exhibit 

variations of primary source emissions, the ambient data of organic compounds were 

normalized to the observed OC (Figure 2.2). Day–night differences exist for many 

primary organic compounds in PM2.5, suggesting a different mix of primary sources in 

the day and night. n-Alkanes and n-alkanoic acids, two dominant organic compound 

homologues in urban PM2.5, display higher fractions in fine organic matter in the 

daytime. Their average normalized data are 11±12 and 13±18 ng/µg OC in the daytime 

versus 7.6±10 and 7.7±9.4 ng/µg OC in the nighttime, respectively. PAHs and cholesterol 

also show similar trends with ratios of 2.0±2.4 and 0.12±0.20 ng/µg OC in the daytime 
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while 1.4±2.0 and 0.08±0.10 ng/µg OC at night. Hopanes and steranes, tracers of 

vehicular emissions, demonstrate very small daytime and nighttime variations (Figure 

2.2). In contrast, reverse day–night variations exist for levoglucosan and resin acids, 

tracers of wood combustion and abundant in the winter, implying local wood combustion 

for residential heating at night in cold weather.  

2.3.3 Spatial and Seasonal Variations of Primary Organic Tracers 

Distinct spatial variations are found during both seasons (Figure 2.3). The highest 

concentrations of automotive-related primary organic compounds are measured at the 

roadside site, including n-alkanes, hopanes, steranes, and PAHs. Their concentrations are 

significantly lower at the nearby on-campus site and much lower at Yorkville. On 

average, the roadside concentrations are about 2.3 times higher than the campus in both 

seasons while the campus is 3.3 and 1.4 times higher than Yorkville in the summer and 

the winter, respectively (Table 2.2).          

On-road vehicle emissions are a major source of n-alkanes, which are highest at 

the roadside site (40–61 ng m
-3 
in the summer and the winter, respectively), significantly 

lower at the campus site (19–38 ng m
-3
), and lowest at Yorkville (2.9–19 ng m

-3
). 

Vegetative detritus is another major contributor of n-alkanes. Vegetatively-derived n-

alkanes homologues are characterized by an odd carbon-number predominance (carbon-

number maximum Cmax=29 or 31), especially in the warm season [Rogge et al., 1993a]. 

Hopanes and steranes also display spatial variation, dropping by over 60% from the 

roadside site to the campus site in both seasons and about 30% lower than on-campus at 

Yorkville (Table 2.2; Figure 2.3). It is interesting that no significant seasonal difference 

in hopanes and steranes is observed at all sites. This observation differs from a previous 
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study that reported source contributions of mobile sources to organic matter and PM2.5 

are higher in winter, especially for gasoline-powered vehicle exhaust [Zheng et al., 

2006b]. PAHs and n-alkanoic acids are emitted from motor vehicles, and their 

concentrations tend to be 50–70% less at the campus site than by the roadway. 

Significantly higher PAH and n-alkanoic acid concentrations are observed in the winter, 

particularly at Yorkville, probably as a result of more biomass burning emissions. These 

organic compounds are largely emitted from wood combustion [Yan et al., 2008a] while 

vehicular emissions remain relatively consistent. This is further supported by higher 

levels of organic tracers of biomass burning. Levoglucosan and resin acids show little 

spatial variation, especially in the winter when biomass burning is a major source of fine 

primary OC over this region. However, large seasonal variations are found for these 

organic tracers. Levoglucosan and resin acids are 50 and 3.4 ng m
-3
 on average in the 

summer compared to 239 and 22 ng m
-3 
in the winter, respectively, suggesting intensive 

wood burning activities (including residential, commercial and prescribed burning), and, 

possibly, reduced atmospheric decomposition. Seasonal differences may also be caused 

by reduced atmospheric dispersion and increased condensation of organic compounds at 

colder temperatures. 

Cholesterol levels are similar at the two urban locations, and low at Yorkville. 

Higher concentrations are found in the winter, implying greater chemical stability and 

reduced atmospheric dispersion recognizing that cholesterol exists in a condensed phase 

in the atmosphere.  
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Figure 2.2. ‘Nighttime’ vs. ‘Daytime’ primary organic compounds in PM2.5 measured at 

the roadside site and the campus site in the summer and the winter. All ambient 

concentrations of organic compounds are normalized to associated measured OC.   
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Figure 2.3. Mean ambient concentrations of individual organic compounds in PM2.5 at the 

three sampling sites (Highway, Georgia Tech campus and Yorkville (YRK)) and the two 

seasons (summer 2005 and winter 2006). ‘S12’, ‘S24’, ‘W12’, and ‘W24’ denote 12-hr 

summer (June), 24-hr summer (July), 12-hr winter (January), and 24-hr winter (January) 

samples, respectively. ‘H + S’ denotes hopanes and steranes. ‘Biomass Burning’ and 

‘SOA’ indicate the organic tracers of biomass burning and SOA, respectively. Note that a 

log scale is used on the left axis.   
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2.3.4 Source Profiles for On-Road Vehicle Emissions 

The measurements and discussion above suggest that one can estimate an on-road 

vehicle emission source profile, recognizing the inherent limitations, uncertainties and 

required assumptions. A first assumption is that the overwhelming majority of 

automotive-related primary organic compounds are due to mobile sources at the roadside 

site. This is reasonable given that the monitor is adjacent to the highway, that the nearby 

campus site is not so directly impacted, and that there are significant site differences for 

automotive-related PM2.5 constituents. For example, EC, an indicator of mobile source 

emissions, drops by about 80% from the roadside site to the campus site in both seasons. 

The second assumption is that both the roadside and the campus sites are simultaneously 

impacted by a regional mix from other major sources as the two sites are only about 400 

m apart and organic tracers of non-mobile sources are observed at similar levels, e.g., 

levoglucosan and cholesterol, tracers of wood combustion and meat cooking, 

respectively, did not show significant differences between the two sites (Tables 2.1 and 

2.2). Furthermore, organic markers of SOA (cis-pinonic acid, pinic acid, aromatic acids 

and dicarboxylic acids) varied little. A third assumption is that atmospheric processing 

does not significantly alter individual compounds between emission and sampling at the 

roadside and the campus site.  

The on-road mobile source primary OC (POC) profile (fi) is calculated by 

subtracting the on-campus concentration of individual species i, Ci(campus), from the 

concentration at the highway, Ci(highway), and dividing by the difference in OC 

(POCmobile):       

( ) ( )
( ) ( ) mobile

iii
i

POC

∆C

CampusOCHighwayOC

CampusCHighwayC
f =

−

−
= ,     (2.1) 
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Table 2.3. Source Composition Profiles Estimated for the On-Road Mobile Emissions 

and from Previous Mobile Source Lab Tests (unit: ng/µg OC for organic compounds; 

µg/µg OC for EC)  

Species Summer a Winter b Mobile_1 c Mobile_2 d 

Element Carbon  1.208 ± 0.435 1.070 ± 0.443 1.406 ± 0.120 1.835 ± 0.159 

Pentacosane 1.558 ± 1.952 4.025 ± 3.733 1.164 ± 0.189 0.259 ± 0.038 

Hexacosane 0.769 ± 1.186 2.544 ± 2.786 1.762 ± 0.292 0.090 ± 0.019 

Heptacosane 0.432 ± 0.541 1.245 ± 1.532 0.979 ± 0.154 0.040 ± 0.010 

Octacosane 0.129 ± 0.122 0.771 ± 1.205 0.414 ± 0.059 0.041 ± 0.007 

Nonacosane 1.156 ± 1.112 1.681 ± 1.814 0.237 ± 0.037 0.138 ± 0.033 

Triacontane 0.220 ± 0.188 0.996 ± 1.190 0.000 ± 0.001 0.000 ± 0.001 

Hentriacontane 1.064 ± 0.894 2.115 ± 2.042 0.000 ± 0.001 0.057 ± 0.011 

Dotriacontane 0.196 ± 0.079 0.707 ± 0.804 0.000 ± 0.001 0.019 ± 0.003 

Tritriacontane 0.459 ± 0.306 0.780 ± 0.822 0.000 ± 0.001 0.004 ± 0.001 

20S,R-5α(H),14β(H),17β(H)-Cholestanes 0.115 ± 0.063 0.233 ± 0.172 0.332 ± 0.063 0.046 ± 0.006 

20R-5α(H),14α(H),17α(H)-Cholestane 0.101 ± 0.061 0.179 ± 0.109 0.233 ± 0.044 0.036 ± 0.007 

20S,R-5α(H),14β(H),17β(H)-Ergostanes 0.074 ± 0.028 0.138 ± 0.079 0.290 ± 0.052 0.025 ± 0.003 

20S,R-5α(H),14β(H),17β(H)-Sitostanes 0.143 ± 0.061 0.233 ± 0.162 0.279 ± 0.051 0.082 ± 0.012 

22,29,30-Trisnorneohopane 0.127 ± 0.075 0.252 ± 0.167 0.258 ± 0.047 0.039 ± 0.007 

17α(H)-21β(H)-29-Norhopane 0.365 ± 0.159 0.806 ± 0.468 0.635 ± 0.107 0.129 ± 0.024 

17α(H)-21β(H)-Hopane 0.320 ± 0.127 0.659 ± 0.418 0.708 ± 0.121 0.136 ± 0.026 

Benzo(k)fluoranthene 0.050 ± 0.030 0.410 ± 0.341 0.061 ± 0.013 0.121 ± 0.023 

Benzo(b)fluoranthene 0.307 ± 0.212 0.677 ± 0.568 0.069 ± 0.014 0.154 ± 0.030 

Benzo(e)pyrene 0.160 ± 0.104 0.640 ± 0.549 0.071 ± 0.015 0.215 ± 0.042 

Indeno(1,2,3-cd)fluoranthene 0.079 ± 0.062 0.264 ± 0.229 0.053 ± 0.011 0.000 ± 0.001 

Indeno(1,2,3-cd)pyrene 0.243 ± 0.170 0.685 ± 0.585 0.171 ± 0.034 0.118 ± 0.024 

Benzo(ghi)perylene 0.286 ± 0.225 1.248 ± 1.038 0.000 ± 0.001 0.428 ± 0.085 

Benz(de)anthracen-7-one 0.387 ± 0.362 2.445 ± 2.120 0.000 ± 0.001 0.107 ± 0.018 

n-Alkanoic acids (C14-C30) 23.803 ± 23.458 53.180 ± 69.677 4.446 ± 0.715 2.186 ± 0.300 

Note: 
a
 source composition profiles where individual organic compounds are normalized to the on-road 

primary OC mass estimated in the summer; 
b
 source composition profiles where individual organic 

compounds are normalized to the on-road primary OC mass estimated in the winter; 
c
 combined mobile 

source composition profiles based on the gasoline- and diesel-powered vehicle emission profiles tested by 

Schauer et al. [Schauer et al., 1999b; 2002b]; 
d
 combined mobile source composition profiles based on the 

gasoline- and diesel-powered vehicle emission profiles tested by Lough et al. [Lough et al., 2007]. The 

species with fractions significantly less than one standard deviation from zero are not shown in the table.   
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The above fi is calculated separately for each 12-hr sampling period in the summer and 

the winter. On the other hand, no significant difference is observed between day and 

night in traffic types passing through the roadside site [Kall and Guensler, 2007], 

implying relatively consistent diurnal source composition profiles from on-road mobile 

emissions. Finally, the on-road mobile source profiles are created using the seasonal 

(summer or winter) mean of fi (Table 2.3). Uncertainties in these source profiles could be 

caused by propagation of uncertainties in field sampling and lab measurement. An overall 

uncertainty in each fi was calculated by propagating the reported uncertainties associated 

with the measured OC and individual organic compounds. In particular, the uncertainty in 

GC/MS quantified organic compounds was approximately ±20% (one standard deviation) 

on average [Zheng et al., 2002]. However, associated standard deviations of the seasonal 

mean (summer or winter) fi are used in the source profiles, recognizing that the 

propagating uncertainties are smaller than the standard deviations. A specific 

consideration in using this profile is that the freeway is dominated by light duty vehicle 

traffic, and that heavy duty vehicles are limited to those with local delivery. Through 

traffic of heavy duty vehicles is routed to a perimeter road approximately 18 km away.    

In this study, two on-road mobile source profiles are approximated corresponding 

to the measurements in the summer and the winter, and show seasonal differences (Table 

2.3). In the winter, on-road mobile emission fractions (ng/µg OC) of n-alkanes, hopanes, 

steranes, PAHs and n-alkanoic acids increase by 2.0, 1.1, 0.8, 3.5 and 1.2 times compared 

to the ones in the summer, respectively, implying either higher emissions of these tracers 

from on-road mobile sources in the cold season or significant decay in organic tracers in 

the warm season. In addition, gas-particle partitioning is a potential reason for increased 
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particulate fractions of these organic tracers in the winter [Robinson et al., 2007]. 

However, the emission fraction of EC in the winter, 1.07, is only slightly lower than the 

value in the summer, 1.21. The results suggest that atmospheric decay and/or gas-particle 

partitioning may play a role in the seasonal variations of mobile source profiles and 

seasonal impacts should be considered in source apportionment using receptor models. 

Given the observed changes, source contributions of mobile sources (especially gasoline 

vehicle exhaust) are subject to underestimation in summer or overestimation in winter 

without application of season-specific profiles. Furthermore, the comparison indicates 

that EC, hopanes and steranes are preferred tracers of mobile sources in source 

apportionment due to their relatively seasonal stability in the atmosphere.  

Significant differences are found between the on-road mobile source profiles 

developed in this work and those measured previously in the lab (Table 2.3; Figure 2.4). 

Lab-based profiles are calculated using the mixture of observed vehicle types (passenger 

vehicles, small trucks, large trucks and buses) on the I–75/85 highway [Kall and 

Guensler, 2007] and PM2.5 emission factors from the Mobile6 model (version 6.2.0.3). 

Gasoline- and diesel-related emission ratios are obtained for OC, EC, and PM2.5 by 

assuming all passenger vehicles and half of small trucks are gasoline vehicles while large 

trucks, buses and the other half of small trucks are diesel vehicles. These emissions-

weighted fractions were combined with previous gasoline- and diesel-powered vehicle 

emission profiles measured by Schauer et al. [Schauer et al., 1999b; 2002b] and Lough et 

al [Lough et al., 2007], respectively, leading to two different mobile source profiles, 

Mobile_1 and Mobile_2.               
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Figure 2.4. Calculated summer and winter source composition profiles for on-road 

mobile emissions in this study and two combined mobile emission source profiles, 

Mobile_1 and Mobile_2, which are built by integrating previous gasoline- and diesel-

powered vehicle emission profiles measured by Schauer et al. [Schauer et al., 1999b; 

2002b] and Lough et al. [Lough et al., 2007], respectively. The profiles are composed of 

individual species fractions, normalized to OC. The unit is ng/µg OC for all organic 

compounds, and µg/µg OC for EC. Log scale is used and error bars are shown.  
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Figure 2.5. ‘Nighttime’ vs. ‘Daytime’ SOA organic tracers measured at the roadside site 

and the campus site in the summer and the winter. All ambient concentrations are 

normalized to associated measured OC in the plots. Note that a log scale is used.   
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profile are comparable to those of Mobile_1, but significantly higher than Mobile_2. 

Estimated fractions are higher than both Mobile_1 and Mobile_2 for high molecular-

weight n-alkanes (C29–C34 homologues). Emission fractions of hopanes and steranes are 

consistently lower than those of Mobile_1, but higher than Mobile_2. For PAHs, 

comparisons between these source profiles do not show any clear trend, but the winter 

profile is usually found to be highest. Such differences suggest that location- and season-

specific profiles should be developed, and that actual on-road mobile emissions (or the 

impact of dilution and cooling process) differ significantly from lab tests. On the other 

hand, the uncertainties of species are large in the calculated source profiles.    

2.3.5 Organic SOA Tracers 

Unlike primary organic compounds, there is no distinct day–night variation 

observed for secondary organic tracers, including 2-methyltetrols, dicarboxylic diacids, 

aromatic acids, cis-pinonic acid, and pinic acid (Figure 2.5). 

A high linear correlation (overall r
2
=0.98) is observed for the two isomers of 2-

methyltetrols with 2-methylerythritol/2-methylthreitol ratios of 2.2 and 1.7 in the summer 

and the winter, respectively (Figure 2.6). These ratios are comparable to the values of 2.1 

[Ding et al., 2008] and 1.7 [Xia and Hopke, 2006] obtained previously in the eastern and 

southeastern U.S. 2-methyltetrols are measured much higher in the summer while levels 

in the winter are near or below the detection limit. Higher temperatures and light intensity 

in the summer enhance both emissions of isoprene [Lamb et al., 1987] and photochemical 

reaction. Compared with June 2005, 2-methyltetrols are observed to be higher in July. 

One reason is that the average concentration of isoprene increased by about 2 times in 

July, and ozone is high as well. Chamber studies suggest that ozonolysis of isoprene is 
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important for formation of these SOA species [Kleindienst et al., 2007b]. In contrast, 

little 2-methylterols are found in the winter given low temperatures, weak solar radiation 

and defoliation of deciduous trees.   

 

Figure 2.6. Scatter plots of SOA organic tracers (2-methyltetrols, dicarboxylic diacids, 

aromatic, cis-pinonic and pinic acids) measured in the summer and the winter. A log 

scale is used in (a). 2-methyltetrols indicates the sum of 2-methylthreitol and 2-

methylerythritol in PM2.5.  
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12-hr Concentrations of SOA tracers in the Summer
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Figure 2.7. Spatial and daily variations of SOA organic tracers in the summer time.   
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12-hr Concentrations of SOA Tracers in the Winter
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Figure 2.8. Spatial and daily variations of SOA tracers in the winter time.  

 

 

 

Unlike 2-methyltetrols, cis-pinonic acid and pinic acid concentrations are highest 

in the winter (Table 2.1; Figures 2.7 and 2.8). One reason is that emissions of 

monoterpenes do not decrease as much as isoprene in the winter, and depend not only on 

temperatures but also on biophysical processes in conifer trees [Lamb et al., 1987] that 

are plentiful in the Southeast and account for over half of the forests [Geron et al., 2000]. 

Prescribed burning, prevalent from winter through spring in this region, can also enhance 

emissions of monoterprenes as well as formation of particulate SOA tracers even in cold 

weather [Hu et al., 2008; Yan et al., 2008a]. A further hypothesis is that gas-particle 

partitioning of cis-pinonic acid and pinic acid is very sensitive to ambient temperatures, 
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and lower temperatures lead to greater partitioning to the condensed phase, which is 

supported by negative correlation between cis-pinonic and pinic acids vs. ambient 

temperature in the summer (Figure 2.9). Sheehan and Brown found that a decrease of 

temperature by 10 
0
C might result in 150% increases in SOA yield [Sheehan and 

Bowman, 2001]. This study found little correlation between 2-methyltetrols with cis-

pinonic or pinic acid (not shown in figure), implying different origins and formation 

paths for the two kinds of biogenic SOA tracers. cis-Pinonic acid and pinic acid exhibit 

very similar patterns in both seasons, suggesting the same sources, formation pathways, 

and properties in the atmosphere (Figure 2.6). 

Aromatic and dicarboxylic acids show more complicated spatial and seasonal 

variations. Higher concentrations are measured at the highway, implying vehicular 

emissions probably are a significant source or there is rapid formation/condensation of 

particle phase aromatic acids and dicarboxylic acids (Table 2.1, Figures 2.7 and 2.8). The 

former is further supported by the winter measurements that display much larger 

reductions in ambient concentrations for both aromatic acids and dicarboxylic acids from 

the roadside site to the campus site. The results also exhibit a strong correlation (overall 

r
2
=0.67, p<0.001) between aromatic acids and dicarboxylic acids, implying similar 

origins and atmospheric properties (Figure 2.6). The correlation (overall r
2
=0.55, 

p<0.001) between pinic acid and dicarboxylic acids suggests that the two types of organic 

compounds might have similar dynamics. Therefore, atmospheric processing of biogenic 

or anthropogenic VOCs are both likely sources of dicarboxylic acids. In contrast, there is 

little correlation between 2-methyltetrols and dicarboxylic acids. .  
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Figure 2.9. SOA tracers (2-methyltetrols, cis-pinonic acid and pinic acid) vs. 

meteorological variables (temperature and solar radiation) for both the summer and 

winter.   
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CHAPTER 3 

CHARACTERIZATION OF AIRBORNE PM2.5 AT ROADSIDE, 

URBAN AND RURAL SITES IN THE SUMMER AND THE WINTER   

 

(Bo Yan, Mei Zheng, Yongtao Hu, Amy P. Sullivan, Rodney J. Weber, Sangil Lee, 

Charles Evan Cobb, Santosh Chandru, Hyeon Kook Kim, Eric S. Edgerton, and 

Armistead G. Russell. Environmental Science & Technology, in preparation)
 

 

Abstract 

In summer 2005 and winter 2006, 12-hr and 24-hr PM2.5 filter samples were 

collected from three sites: two from urban Atlanta, GA (one site adjacent to a freeway 

and another 400 m away), and one at a rural site. Detailed PM2.5 composition was 

investigated including OC, EC, WSOC, ionic species and trace metals, as well as their 

day–night, seasonal and spatial variations. Particulate organic matter (OM) was estimated 

through mass balance analysis of gravimetric PM2.5, and the OM/OC ratio is found to 

depend on season and location. OM, sulfate and ammonium are major components of 

PM2.5 in both seasons and significantly higher in the summer; whereas nitrate is important 

only in the winter. Sulfate dominates PM2.5 in the summer, particularly on haze days. 

Homogeneous distributions of WSOC reflect impacts from secondary organic aerosols 

(SOA).  Much higher concentrations of automotive-related species are detected at the 

roadside, including OC, EC, iron and copper. Season-specific on-road mobile source 

primary PM2.5 profiles were developed by using differences in individual species 
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concentrations between the roadside site and the nearby on-campus site, and differ from 

in-use mobile source profiles measured in the lab. 

 

3.1 Introduction 

Airborne fine particulate matter (PM2.5) has been linked to adverse human health 

effects, visibility reduction, and climate change [Buseck and Posfai, 1999; Horvath, 

1993; Pope et al., 2002] with growing focus on health effects from roadway-related 

exposures [Escamilla-Nunez et al., 2008; Sarnat et al., 2008]. Typically, the major 

contributors of PM2.5 include mobile source emissions, biomass burning, and secondary 

sources with anthropogenic and biogenic nature in origin. The air quality in Atlanta, GA 

and surrounding metropolitan region, which is located in the southeastern U.S and 

populated by over 5.4 million residents, is of particular interest due to high emissions 

from mobile sources, biomass burning, coal-fired power plants and biogenic volatile 

organic compounds (VOC), with vigorous photochemical processes as well. This region 

is still struggling to attain the National Ambient Air Quality Standards (NAAQS), and 

ranked among the most polluted urban areas in the country. In 2007, for example, the 24-

hr PM2.5 and 8-hr O3 levels in Atlanta exceeded the NAAQS on 24 and 29 days, 

respectively [Georgia EPD, 2007]. 

Effective strategies to control airborne PM2.5 require understanding PM2.5 

chemical composition. Although previous studies have reported PM2.5 composition in the 

Atlanta area and the southeastern U.S [Baumann et al., 2003; Edgerton et al., 2005; 

2006; Hansen et al., 2003], little research has explored a detailed composition of PM2.5, 

which is dominated by direct on-road vehicular emissions, and day vs. night attributes of 
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urban PM2.5. Moreover, local source composition profiles of mobile emissions, a major 

source of primary PM2.5, have not been developed in the southeastern U.S. As a result, 

source profiles tested elsewhere in laboratory (e.g., in California [Cooper et al., 1987; 

Lough et al., 2007; Schauer et al., 1999b; 2002b] and Colorado [Watson et al., 1998]) 

were used in source apportionment studies in this area [Lee et al., 2007; Marmur et al., 

2005]. This may cause errors in source contributions estimated by receptor models. The 

dilution and cooling processes applied in the present laboratory emission tests cannot 

represent real-world atmospheric mixing well, and would result in bias in the source 

profiles tested in lab [Donahue et al., 2006; Lipsky and Robinson, 2006]. Seasonal 

variations of mobile source compositions have been proposed due to cold start of vehicles 

and gas-particle partitioning [Lough et al., 2005a; Robinson et al., 2007]. To examine the 

PM2.5 composition directly impacted by on-road emissions and to assess in-use mobile 

source profiles for different seasons in the southeast U.S., field experiments were 

performed in urban Atlanta, adjacent to a freeway (roadside) and 400 m away, as well as 

at a rural site, with focus on on-road emissions, regional transport, secondary source 

effects and seasonal variations of PM2.5 composition. 

A detailed composition of PM2.5 organic matter measured in the same study has 

been presented in another paper that compares the roadside, urban and rural levels of 

primary and secondary organic molecular markers in PM2.5 and develops season-specific 

on-road mobile source profiles for primary organic carbon (OC) [Yan et al., 2009c]. This 

paper is directed at other components in PM2.5, including total OC, water-soluble OC 

(WSOC), elemental carbon (EC), ionic species and trace metals.      
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3.2 Experimental Section 

3.2.1 Field Sampling       

Details of the field sampling are described elsewhere, including samplers, 

sampling sites, seasons and periods [Yan et al., 2009c]. Briefly, PM2.5 filter samples were 

collected by high-volume (Hi-Vol) particulate samplers and three-channel particulate 

composition monitors (PCM) at three sites (Figure 2.1): (1) a roadside site by an 

interstate highway; (2) an urban site on the Georgia Institute of Technology campus, 400 

m away from the roadside site; (3) a rural site at Yorkville (YRK), GA, 55 km northwest 

of the metro Atlanta. The roadside site is 3 m away from the I-75/85 freeway in Midtown 

Atlanta that carries about 280,000 vehicles per day [Georgia DOT, 2006], 97% of which 

are light duty, gasoline-powered vehicles [Kall and Guensler, 2007]. The Yorkville site is 

a rural sampling site of the Southeastern Aerosol Research and Characterization 

Experiment (SEARCH) air quality monitoring network [Hansen et al., 2003]. 

Furthermore, these sites were complemented by a SEARCH site (the Jefferson Street 

(JST), 2 km southwest of Georgia Tech), four sites from the Assessment of Spatial 

Aerosol Composition in Atlanta (ASACA) [Butler et al., 2003], and multiple routine 

monitors around Atlanta (Figure 2.1).      

Hi-Vol samplers (flow rate: 1.13 m
3
 min

-1
) used pre-baked quartz microfibre 

filters (8 x 10 in), and PCM samplers (flow rate: 16.7 L min
-1
) had diffusion denuders 

followed by pre-baked quartz microfibre filters in one channel and pre-weighed Teflon 

filters (47 mm) in the other two channels. Field sampling was carried out during two 

seasons: summer (June-July, 2005) and winter (January 2006). In the summer study, 12-

hr (10am–10pm–10am) back-to-back sampling was conducted simultaneously at both the 
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roadside site and the campus site on June 15-18, 2005, and 24-hr (10am–10am) 

measurements were taken simultaneously at both the campus site and the Yorkville site 

on non-rainy days on July 8-26, 2005. In the winter study, 12-hr back-to-back filter 

samples were taken simultaneously on January 19-26, 2006 both at the roadside site and 

the campus site and 24-hr sampling was conducted at Yorkville. The reasons for selecting 

the sampling time of 10am–10pm–10am were explained previously [Yan et al., 2009c].  

3.2.2 Chemical Analysis 

PM2.5 mass was determined gravimetrically using both Teflon PCM filters after 

24-hr equilibration in a temperature- and humidity-controlled clean room. Next, water-

soluble ionic species (sulfate, nitrate, ammonium, sodium, chloride, potassium, etc.) were 

measured from one Teflon filter with ion chromatography (IC, Dionex), and the other 

Teflon filter was analyzed for trace metals by X-ray fluorescence (XRF) at the Desert 

Research Institute (DRI). Quartz filters from both the Hi-Vol sampler and the PCM were 

analyzed for OC and EC using thermal optical transmittance (TOT, Sunset Lab). WSOC 

and particulate organic compounds were measured from the Hi-Vol quartz filters with a 

total organic carbon (TOC, Sievers) analyzer and gas chromatography/mass spectrometry 

(GC/MS, Agilent), respectively. The PM2.5 composition analysis methods are described 

elsewhere [Baumann et al., 2003; Lee et al., 2005a; Sullivan and Weber, 2006; Weber et 

al., 2007; Yan et al., 2009c; Zheng et al., 2002]. 

3.2.3 Trace Gas and Meteorological Data 

Trace gases (O3, SO2, CO, NOx and NOy) and meteorological data (temperature, 

solar radiation, relative humidity, precipitation, and light scattering coefficient) were 

measured at the Yorkville site by the SEARCH air quality monitoring network, but not at 
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the roadside and campus sites. A SEARCH site (the Jefferson Street (JST), 2 km 

southwest of Georgia Tech) provides complementary data for the roadside and campus 

sites. The field measurement methods in the SEARCH network are described by Hansen 

et al. and Edgerton et al. [Edgerton et al., 2006; Hansen et al., 2003].  

 

3.3 Results and Discussion 

3.3.1 PM2.5 Composition 

Much higher ambient PM2.5 concentrations are observed in the summer. On 

average, PM2.5 concentrations are 22.7±3.3 and 16.4±1.5 µg m
-3
 at the roadside and 

campus sites in June 2005, respectively, and 28.8±14.6 and 24.5±12.0 µg m
-3
 at the 

campus and Yorkville sites in July 2005 (Table 3.1). Three consecutive haze days (July 

24–26, 2005) were captured at both the campus and the Yorkville sites, resulting in high 

PM2.5 levels in the July sampling events. In the winter, PM2.5 concentrations decrease to 

14.8±5.2, 11.3±5.3 and 7.6±3.2 µg m
-3
 at the roadside, campus and Yorkville sites, 

respectively (Table 3.1).       

OC, ammonium and sulfate are major components of PM2.5 in both seasons, 

making up 36/34%, 8.3/7.0% and 20/14% of the PM2.5 mass at the roadside site in the 

summer/winter, respectively, 30/32%, 12/7.3% and 31/11% at the campus site, and 

23/28%, 14/10% and 36/20% at the Yorkville site. Nitrate is a seasonally major 

component of PM2.5, accounting for 11%, 17% and 28% of the PM2.5 mass in the winter 

at the roadside, campus and Yorkville sites, respectively, but contributes little in the 

summer (Figure 3.1). Fine soil is a significant constituent of the urban PM2.5, accounting 

for about 10% and 7.5% of the PM2.5 mass at the roadside and campus sites, respectively, 
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but soil components are minor at the rural site, making up about 2% of PM2.5 in both 

seasons. Here, fine soil, that is, crustal material, is calculated using [Malm et al., 1994]:  

[ ] [ ] [ ] [ ] [ ] [ ]Ti1.94Fe2.42Ca1.63Si2.49Al2.2Soil ×+×+×+×+×=   (3.1)  

EC, mostly emitted by mobile sources, accounts for 18% of the PM2.5 mass at the 

roadside site in both seasons and below 8% at the campus site, 400 m away. At the rural 

site, EC is a minor component, contributing 1.5/3.6% of the PM2.5 mass in the 

summer/winter, respectively. In Figure 3.1, the ‘Others’ term is a mix of other ionic 

species (chloride, sodium, etc.), other metals (manganese, copper, zinc, arsenic, selenium, 

bromine, tin, antimony, barium, etc.) as well as other elements other than carbon (such as 

oxygen, nitrogen, sulfur and hydrogen) in particulate organic matter (OM).  

To assess OM mass in PM2.5, historically, a factor of 1.4 has been widely used to 

convert OC to OM [White and Roberts, 1977]. Recently, the OM/OC factors of 1.6 and 

2.1 have been proposed for urban and rural areas by Turpin and Lim [Turpin and Lim, 

2001], and the ratio of 2.0 has been approximated by EI-Zanan et al. [El-Zanan et al., 

2009]. In this study, the OM/OC ratio is calculated by mass balance analysis of 

gravimetric PM2.5, as shown below:  

[ ] [ ] [ ] [ ] [ ] [ ] [ ]( )
[ ]OC

elementsotherSoilSONONHECPM

OC

OM
2

4342.5 +++++−
=

−−+

 (3.2)                                  

where ‘other elements’ includes other ions and non-soil metals. This OM/OC ratio is 

likely overestimated without subtracting particle-bound water from PM2.5 mass and 

without including oxygen in non-soil metal oxides. Uncertainties in the OM/OC ratios 

could be caused by propagation of various uncertainties in field sampling (e.g., flowrate) 

and lab measurement (e.g., instrument, method). An overall uncertainty in each OM/OC 

ratio was calculated by propagating the reported uncertainties associated with all 
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individual measurements [El-Zanan et al., 2009]. However, associated standard 

deviations of the mean OM/OC ratios (location- or season-specific) are used below, 

because the propagating uncertainties are significantly smaller than the standard 

deviations. Our results indicate that the OM/OC ratio is season and location dependent, 

increasing from 1.5±0.4 (summer) to 1.9±0.5 (winter) at the campus site and decreasing 

from 2.1±0.2 (summer) to 1.4±0.3 (winter) at Yorkville (computed from Table 3.1). At 

the roadside site, the OM/OC ratio varies little in both seasons and the value of 1.2±0.3 

agrees well with a previous study on mobile emissions [Engelbrecht, 2003]. Calculated 

from measured OC with these ratios, OM is found to contribute 42/45%, 40/60%, and 

42/48% of the PM2.5 mass in the summer/winter at the roadside, campus, and rural sites, 

respectively. As the dominant component of PM2.5 in this area, OM has been investigated 

previously for detailed chemical composition as well as day–night, seasonal and spatial 

comparison [Yan et al., 2009c].        

3.3.2 PM2.5 Composition on Haze Days 

Haze is characterized by intense scattering and absorption of light in the presence 

of aerosols, and is of concern in the southeastern U.S, especially during summer where 

high level PM2.5 concentrations tend to occur [Brewer and Adlhoch, 2005]. Compared to 

the non-haze days, the average daily PM2.5 concentrations increase by 1.5 and 1.3 times 

on the haze days at the campus and Yorkville sites, respectively, and reach 46 and 38 µg 

m
-3
, reducing visibility regionwide (Table 3.2). The associated light scattering 

coefficients, bscat, increase from 6.1x10
-5
 and 4.7x10

-5
 m

-1
 on the non-haze days to 20x10

-

5
 and 14x10

-5 
m
-1
 on the haze days at the urban (JST) and rural (YRK) sites, respectively.  
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Table 3.2. Comparison of the Field Measurements between the Non-Haze and the Haze 

Days in July 2005 

Campus site Yorkville site 
Measurements 

Non-Haze Haze Non-Haze Haze 

Ammonium (µg m-3) 1.963 6.641 2.243 5.395 

Acetate (µg m-3) 0.030 0.080 0.019 0.044 

Formate (µg m-3) 0.048 0.147 0.026 0.090 

Nitrate (µg m-3) 0.993 0.520 0.094 0.078 

Sulfate (µg m-3) 5.253 18.56 5.861 16.28 

Oxalate (µg m-3) 0.177 0.359 0.167 0.271 

OC_PCM (µg m-3) 5.235 10.84 3.815 6.860 

EC_PCM (µg m-3) 0.692 0.969 0.244 0.262 

EC/OC_PCM 0.127 0.090 0.061 0.038 

OM-Calculated (µg m-3) 8.284 17.21 7.462 15.27 

OM/OC-Calculated 1.643 1.590 1.968 2.238 

OC_Hi-Vol (µg m-3) 6.374 12.08 4.784 8.588 

EC_Hi-Vol (µg m-3) 0.671 1.076 0.102 0.133 

EC/OC_Hi-Vol 0.101 0.089 0.021 0.016 

WSOC_Hi-Vol (µg m-3) 3.488 7.347 3.505 6.797 

Soil (µg m-3) 1.355 1.935 0.557 0.648 

PM2.5 (µg m
-3) 18.59 45.89 16.50 37.96 

Trace Gas       

CO (ppb) 319 432 159 201 

SO2 (ppb) 2.56 7.45 1.97 3.51 

NO (ppb) - - 0.13 0.07 

NO2 (ppb) - - 1.54 0.79 

NOy (ppb) 29.7 40.6 2.97 2.37 

NOx/NOy - - 0.56 0.36 

Meteorological Data     

Wind speed (m s-1) 1.28 1.00 1.98 1.31 

Temperature (oC) 26.0 27.6 24.1 26.2 

Relative Humidity (%) 83 71 73 68 

Precipitation (mm) 0.48 0.00 0.35 0.00 

Solar Radiation (w m-2) 210 256 225 251 

Scattering Coefficient (x10-5 m-1)  6.1 20 4.7 14 

Note: the values of ‘Trace Gas’ and ‘Meteorological Data’ on the campus site in the table come from the 

measurements on the JST SEARCH site; and ‘-’ denotes data unavailable.      
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Figure 3.1. Average composition (percentage) of PM2.5 (PCM filter samples) at the 

roadside, the campus and the Yorkville sites in the summer and the winter. ‘Highway-

12’, ‘Campus-12’, ‘Campus-24’, and ‘YRK-24’ denote 12-hr highway, 12-hr campus, 

24-hr campus, and 24-hr Yorkville filter-based field samples, respectively; ‘S’ and ‘W’ 

indicate the summer and the winter season, respectively. ‘a’ and ‘b’ indicate non-haze 

and haze samples, respectively.    
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Figure 3.2. ‘Nighttime’ vs. ‘Daytime’ PM2.5 components (12-hr back-to-back filter 

samples) measured at the roadside and the campus sites in the two seasons. All ambient 

concentrations of components are normalized to associated measured PM2.5.   
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Concentrations of particulate OC, ammonium and sulfate at the campus/Yorkville 

sites are 2.1/1.8, 3.4/2.4, and 3.5/2.8 times higher on the haze days, respectively, and the 

percentages of both ammonium and sulfate in the PM2.5 mass are elevated. In particular, 

sulfate increase from 28/36% on the non-haze days to 40/43% on the haze days (Figure 

3.1). However, the percentages of OC in the PM2.5 mass decrease on the haze days at both 

sites. Similarly, other PM2.5 components such as EC and soil increase in concentration on 

the haze days, but significantly decrease in percentage. At the same time, ambient levels 

of SO2 and CO are clearly elevated on the haze days. These suggest sulfate-dominant 

hazes that are caused by regional transport and local coal-fired power plant emissions. 

Nitrate decease significantly in both ambient concentration and PM2.5 mass percentage, 

implying that more nitrate exists in gas phase. Little precipitation, lower wind speeds, 

higher temperatures and stronger solar radiation on the haze days lead to formation and 

accumulation of high level PM2.5 in the stagnant atmosphere and the regionwide hazes, 

therefore, are due to a combination of meteorology and photochemistry (Table 3.2). 

3.3.3 Day–Night Variation of PM2.5 Composition  

Day–night differences in PM2.5 composition were studied by comparing 12-hr 

daytime concentrations with the surrounding 12-hr nighttime data. The nighttime PM2.5 

concentrations are slightly higher than the daytime values both at the roadside and the 

campus sites. To offset impacts from different mixing heights in the day and the night, 

the data of individual PM2.5 components were normalized to the observed total PM2.5. Our 

results do not display significant day–night variations for most PM2.5 components 

including OC, sulfate, ammonium, and roadway emission-related constituents, e.g., EC, 

soil, iron, copper, and zinc (Figure 3.2). This suggests a relatively consistent mix of 
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major primary sources in the day and the night. In contrast, a significant day–night 

difference is observed for nitrate with ratios of 0.06±0.08 µg/µg PM2.5 in the day vs. 

0.17±0.27 µg/µg PM2.5 in the night, implying that condensation of gas-phase nitrate in 

PM2.5 is sensitive to ambient temperature. Lower temperatures at night lead to the 

formation of more particulate nitrate. 

3.3.4 Spatial and Seasonal Comparison of PM2.5 Composition 

There are distinct spatial variations for PM2.5 composition during both seasons 

(Table 3.1; Figure 3.3). The highest concentrations of automotive-related PM2.5 

components are found at the roadside site, including OC, EC, iron and copper. Their 

concentrations are significantly lower at the nearby campus site and are much lower at 

Yorkville. On average, the roadside concentrations of OC, EC, iron and copper are about 

1.5, 3.6, 3.0, and 4.5 times the campus concentrations in both seasons, and the campus is 

1.7, 3.3, 5.0, and 2.0 times the Yorkville, respectively (Table 3.3). In particular, EC drops 

by over 70% from the roadside site to the campus site while OC drops by about 30% 

between the same sites, suggesting a dramatic decrease of on-road emission impacts with 

distance away from the highway. However, zinc, manganese and lead do not show 

similar spatial differences. Fine soil-related components such as aluminum, silicon, 

calcium and titanium are usually higher at the roadside, especially in the summer, and are 

much lower at the rural site. 

Spatial analysis of organic molecular markers indicates that there is no significant 

difference between the roadside and the campus sites for major nonautomotive-related 

primary OM sources such as meat cooking, wood combustion and vegetative detritus 

[Yan et al., 2009c]. Ammonium and sulfate vary little between the same sites in both 
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seasons, and their urban concentrations are close to the rural levels, suggesting a 

combined impact from atmospheric secondary processing and regional transport on 

ammonium and sulfate. Regional dispersion and similar thermodynamics may lead to 

comparable data between the urban and the rural sites for particulate nitrate in the winter. 

 

Figure 3.3. Mean concentrations of PM2.5 components at the three sampling sites 

(Roadside, Georgia Tech campus and Yorkville (YRK)) and the two seasons (summer 

2005 and winter 2006). ‘S12’, ‘S24’, ‘W12’, and ‘W24’ denote 12-hr summer, 24-hr 

summer, 12-hr winter, and 24-hr winter samples, respectively. Log scale is used.   
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Table 3.3. Average Concentrations of PM2.5 Components Normalized to the Georgia Tech 

Campus Values (Campus-S12 or -S24) 

PM2.5 Components Highway-S12 Campus-S12 Campus-S24 YRK-S24  Highway-W12 Campus-W12 YRK-W24 

Na+ 0.62 1.00 3.55 0.18  0.49 1.00 0.85 

NH4
+ 1.13 1.00 2.21 0.92  1.25 1.00 0.94 

K+ 2.63 1.00 2.32 0.87  1.23 1.00 0.82 

Ca2+ - - - 0.00  0.00 1.00 0.15 

Acetate 1.09 1.00 2.10 0.58  0.78 1.00 0.36 

Formate 0.86 1.00 2.36 0.59  0.46 1.00 0.56 

Cl- 0.08 1.00 0.29 0.18  1.12 1.00 0.38 

NO3
- 0.16 1.00 0.67 0.11  0.83 1.00 1.11 

SO4
2- 1.04 1.00 2.35 0.95  1.59 1.00 1.19 

Oxalate 1.04 1.00 1.72 0.84  1.12 1.00 1.17 

Sodium 12.16 1.00 33.86 2.35  0.00 1.00 36.36 

Magnesium 0.69 1.00 1.25 1.05  0.00 1.00 0.00 

Aluminum 2.10 1.00 1.82 0.48  1.02 1.00 0.52 

Silicon 1.29 1.00 1.42 0.42  1.28 1.00 0.43 

Phosphorous 1.52 1.00 1.79 0.93  1.22 1.00 0.63 

Sulfur 1.64 1.00 2.45 0.82  1.11 1.00 0.84 

Chlorine 0.22 1.00 0.49 0.00  1.48 1.00 0.25 

Potassium 1.13 1.00 1.08 0.62  0.54 1.00 0.56 

Calcium 1.26 1.00 0.76 0.27  0.27 1.00 0.09 

Titanium 1.44 1.00 0.94 0.48  2.64 1.00 0.14 

Vanadium - - - -  - - - 

Manganese 0.99 1.00 0.65 0.30  1.14 1.00 0.06 

Iron 2.59 1.00 1.16 0.28  3.47 1.00 0.17 

Nickel  0.00 1.00 2.13 0.00  0.63 1.00 0.99 

Copper 7.28 1.00 2.03 0.44  1.72 1.00 0.48 

Zinc 0.99 1.00 1.20 0.23  0.44 1.00 0.18 

Arsenic - - - 0.00  - - - 

Bromine 23.85 1.00 30.27 0.15  1.08 1.00 1.51 

Antimony 1.32 1.00 0.02 132.47  0.28 1.00 0.00 

Barium 1.09 1.00 0.87 1.53  4.90 1.00 0.00 

Lead 0.11 1.00 1.32 0.08  1.05 1.00 0.86 

         
OC_PCM 1.48 1.00 1.33 0.68  1.41 1.00 0.59 

EC_PCM 4.22 1.00 0.83 0.32  3.06 1.00 0.30 

EC/OC_PCM 3.00 1.00 0.67 0.47  2.11 1.00 0.62 

         
OC_Hi-Vol 1.35 1.00 1.00 0.73  1.89 1.00 0.66 

EC_Hi-Vol 4.67 1.00 1.05 0.14  4.72 1.00 0.38 

EC/OC_Hi-Vol 3.67 1.00 1.08 0.19  2.53 1.00 0.62 

WSOC-Hi-Vol 1.09 1.00 1.20 0.96  1.42 1.00 0.84 

         
PM2.5 1.39 1.00 1.76 0.85  1.30 1.00 0.67 

Soil 1.83 1.00 1.26 0.38  1.60 1.00 0.25 

OMA_PCM 1.48 1.00 1.33 0.68  1.41 1.00 0.59 

Note: ‘Highway-12’, ‘Campus-12’, ‘Campus-24’, and ‘YRK-24’ denote 12-hr highway, 12-hr campus, 24-

hr campus, and 24-hr Yorkville filter-based field samples, respectively; ‘S’ and ‘W’ indicate summer and 

winter seasons, respectively; ‘-’ denotes data unavailable. 
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PM2.5 composition is characterized by seasonal differences (Table 3.1). 

Significantly higher OC, sulfate and ammonium are measured in the summer as a result 

of strong photochemical processes and high VOC emissions. The summer concentration 

of nitrate is much less than the winter. There is no significant seasonal difference for EC 

at the campus and the rural sites. However, the summer EC is higher than the winter at 

the roadside site, probably due to resuspended road dust which is enriched in EC. This is 

supported by the fact that concentrations of fine soil components are significantly higher 

in the summer. However, concentrations of water-soluble potassium (K
+
) are lower in the 

winter when more biomass burning activities occur, implying that potassium is not a 

unique tracer of biomass burning emissions [Fine et al., 2001]. 

3.3.5 Source Profiles for On-Road Vehicle Emissions 

The discussion above suggests that an on-road vehicle PM2.5 emission source 

profile can be derived under three assumptions. The first assumption is that the 

overwhelming majority of automotive-related primary PM2.5 components are due to 

mobile sources at the roadside. The second one is that atmospheric processing does not 

significantly impact individual species between emission and sampling at the roadside 

and campus sites. The two assumptions are reasonable given that the monitor is adjacent 

to the roadside and that the nearby campus site is not directly impacted, observing 

significant drops in concentrations of automotive-related PM2.5 constituents (Tables 3.1 

and 3.3). The third assumption is that both the roadside and the campus sites are 

simultaneously impacted by a regional mix from other major sources and secondary 

sources. This is supported by the proximity of the two sites as well as the similar levels of 
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sulfate and the organic tracers of non-mobile sources [Yan et al., 2009c]. These 

assumptions can be expressed as follows: 

(campus)PM(roadside)PM regionalregional =       (3.3) 

(campus)C(roadside)C regionali,regionali, =       (3.4) 

campus)(roadsidePPM

campus)(roadsideC

(roadside)PMe)PM(roadsid

(roadside)C(roadside)C
f

mobile

mobilei,

regional

regionali,i

i →

→
=

−

−
=  (3.5) 

where PM and Ci are concentrations of PM2.5 and individual species i, respectively; fi 

stands for the on-road mobile source primary PM2.5 (PPM) profile; and PPMmobile 

(roadside→campus) denotes the on-road mobile-emitted primary PM2.5 at the campus 

site, which is dispersed directly from the roadside. The on-road mobile source profile fi is 

calculated by subtracting the on-campus concentration of individual species from the 

concentration at the roadside site and dividing by the difference in PM2.5 (PPMmobile):     

PM(campus)e)PM(roadsid

(campus)C(roadside)C

PPM

∆C
f ii

mobile

mobilei,

i −

−
==      (3.6) 

The above fi is created separately for each 12-hr sampling period in the summer and the 

winter. Finally, the on-road mobile primary PM2.5 source profiles are built by the seasonal 

mean of fi (Table 3.4; Figure 3.4). Associated standard deviations of the seasonal mean fi 

(summer or winter) are used in the source profiles, recognizing that the propagating 

uncertainties are smaller than the standard deviations. [Yan et al., 2009c] A specific 

consideration in using this profile is that the freeway is dominated by light duty vehicle 

traffic (97%, by traffic volume), and that heavy duty vehicles are limited to those with 

local delivery. Heavy duty vehicles bypassing this city are contained to a perimeter road 

approximately 18 km away, contributing to the regional background. 
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Figure 3.4. Calculated summer and winter PM2.5 source composition profiles for on-road 

mobile emissions in this study and two combined mobile emission source profiles, 

Mobile_1 and Mobile_2, which are built by integrating previous gasoline- and diesel-

powered vehicle emission profiles measured by Schauer et al. [Schauer et al., 1999b; 

2002b] and Lough et al. [Lough et al., 2007], respectively. ‘NFRAQS’ and ‘EPA 

SPECIATE’ indicate the emission profiles tested in North Front Range Air Quality Study 

and EPA SPECIATE 4.0 database, respectively. The profiles are composed of individual 

species fractions, normalized to PM2.5. Log scale is used and error bars are shown.  
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In this study, two on-road mobile emission source profiles are approximated from 

the summer and winter measurements, and the results show a significant seasonal 

difference between the two profiles. The winter season has a significant higher fraction of 

OC in PM2.5 while the EC fraction is slightly higher. There are several possible reasons 

for the differences, including higher emission factors of fine OC from on-road mobile 

sources in the cold season, lower gas-particle partitioning of organic matter in the warm 

season, and meteorological impacts [Pankow, 1987; Robinson et al., 2007]. Given the 

observed discrepancies, contributions of mobile sources are subject to underestimation in 

summer or overestimation in winter without application of seasonal-specific profiles. A 

further implication is that the contribution split between gasoline vehicle and diesel 

vehicle exhausts would be impacted by application of season-specific OC/EC ratios in 

source profiles. The fractions of sulfate, ammonium, and iron are higher in the winter 

source profile, whereas aluminum, silicon, sulfur, potassium, calcium and copper are 

higher in the summer source profile. It is more interesting that the fractions of zinc, 

manganese and antimony are not significantly different from zero in PM2.5 in both source 

profiles, even though they have been proposed elsewhere as metal tracers for roadway-

related emissions such as emissions of fuel, motor oil and additives (zinc 

dithiophosphate), tailpipe emissions of motor oil, tire wear, and brake wear ([Lough et 

al., 2005b; Ning et al., 2008] and references therein). This implies that there probably 

exist other important sources for these elements so that emissions of these sources either 

overwhelm on-road emissions of the elements in both sites or only significantly increase 

the ambient levels at the campus site. For example, zinc can also be emitted by metal 

process industry. This study indicates that application of these elements in receptor 
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models is probably limited given that the unknown major sources were not included in 

source apportionment modeling. The comparison also indicates that EC and iron are 

preferred inorganic tracers of mobile sources in source apportionment due to their 

abundance and seasonal stability. 

The two on-road mobile primary PM2.5 source profiles developed in this work 

were further compared with those measured previously in the lab. The lab-based profiles 

were calculated using observed vehicle types (passenger vehicles, small trucks, large 

trucks and buses) on the I-75/85 highway [Kall and Guensler, 2007] and PM2.5 emission 

factors from the Mobile6 model (version 6.2.0.3). Gasoline- and diesel-related emission 

ratios were obtained for OC, EC, and PM2.5 by assuming all passenger vehicles and a half 

of small trucks are gasoline vehicles while large trucks, buses and another half of small 

trucks are diesel vehicles. These emissions-weighted fractions were combined with 

previous gasoline- and diesel-powered vehicle emission profiles measured by Schauer et 

al. [Schauer et al., 1999b; 2002b], Lough et al. [Lough et al., 2007], Watson et al. 

[Watson et al., 1998], and Cooper et al. [Cooper et al., 1987], respectively, creating four 

different lab-based mobile source profiles, Mobile_1, Mobile_2, NFRAQS, and EPA 

SPECIATE. 

The comparisons show that OC and EC are comparable, but other PM2.5 

components differ (Table 3.4; Figure 3.4). The lowest OC fraction, 0.389, is found in the 

summer source profile, and the value in the winter profile is 0.507, similar to the average 

OC of the four lab-based profiles, 0.468. The EC fractions in the summer and the winter 

profiles, 0.482 and 0.516, are higher than the average EC of the four lab-based profiles, 

0.463. The levels of ammonium, sulfate, titanium, and iron are significantly higher than 
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those derived from the lab-based profiles. The fractions of aluminum and silicon in the 

winter profile are comparable to the others, but much higher in the summer profile. 

Copper in the summer profile is similar to the one in the EPA SPECIATE profile. In 

contrast, nitrate, manganese and zinc, which are tested in each of the lab-based source 

profiles, are not statistically significant in our real-world source profiles. Such differences 

suggest that source profiles are location specific and the actual on-road mobile emissions 

(or the impact of dilution and cooling process) differ significantly from the lab tests. On 

the other hand, the uncertainties of individual species would be large in the source 

profiles in the presence of other unknown important sources for PM2.5 components at the 

roadside or the campus sites. Furthermore, the on-road source profiles here actually 

include contribution from road dust. 

3.3.6 WSOC in Total OC 

A significant fraction of total OC is WSOC, which is correlated to oxygenated 

organic compounds and has been proposed as an indicator of secondary organic aerosol 

(SOA) and biomass burning contributions in airborne PM2.5 [Kondo et al., 2007; Sullivan 

et al., 2006]. Summer time spatial variations of WSOC at the three sampling sites have 

been discussed partially previously, and the results suggest that anthropogenic sources 

probably play a role in the formation of SOA in this region in the absence of biomass 

burning emissions [Weber et al., 2007]. Here, further research is focused on exploring 

both seasonal and spatial distributions of WSOC in fine particulate OC. Note that both 

WSOC and total OC presented below are measured from Hi-Vol filter samples.        

The summer concentrations of WSOC, on average, are roughly 2 times the winter, 

accounting for 41% and 51% of OC at the roadside and the campus sites in June 2005, 
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respectively, and 60% and 79% at the campus and the Yorkville sites in July 2005 (Table 

3.1). On the haze days, WSOC concentrations are about 2 times those on the non-haze 

days at both the campus and the Yorkville sites, and their percentages in total OC 

increased by 6% (Table 3.2). In the winter, the levels of WSOC decrease to 34%, 45% 

and 57% of OC at the roadside, the campus and the Yorkville sites, respectively. 

Although WSOC is also emitted by biomass burning, much higher WSOC in the summer 

suggests formation of more SOA in the atmosphere, supported by strong correlations 

between WSOC and OC or secondary tracers such as sulfate, ammonium, and SOA 

tracers (e.g., dicarboxylic acids, 2-methyltetrols, cis-pinonic acid and pinic acid) (Table 

3.5). This is further supported by the fact that WSOC is not correlated to levoglucosan, an 

organic tracer of biomass burning, in the summer. The ratios of WSOC/levoglucosan 

measured in this research are 109–182 in the summer and 10–15 in the winter at the 

urban and rural sites. On the other hand, WSOC/levoglucosan ratios of biomass burning 

emissions measured in the Atlanta area are 9.1 and 6.4 for the aged prescribed burning 

plume and wildfire plume, respectively [Lee et al., 2008; Yan et al., 2008a; Yan et al., 

2009a]. Thus, it can be estimated that biomass burning contributes less than 8% of 

WSOC in the summer and over 60% of WSOC in the winter, given that levoglucosan is a 

unique organic tracer of biomass burning and relatively stable in the atmosphere [Fraser 

and Lakshmanan, 2000; Simoneit et al., 1999]. In other words, an overwhelming majority 

of WSOC in PM2.5 is SOA in the summer, and there may be a significant SOA fraction in 

OC even in the winter. This is supported by the significant correlation coefficients 

between WSOC and SOA tracers in the summer and the winter (Table 3.5).    
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Spatially, WSOC concentrations decrease slightly from the roadside site to the 

campus site and then to Yorkville in both seasons, revealing regionally homogeneous 

contributions from SOA and biomass burning emissions (Table 3.1). In the winter, 

biomass burning is a major source of OC and WSOC over this region, and exhibits little 

spatial variation, as shown by associated organic tracers, levoglucosan and resin acids 

[Yan et al., 2009c]. There is no solid evidence that either anthropogenic or biogenic 

sources play a predominant role in SOA formation over this area. WSOC is correlated 

with both aromatic acids (1,2-, 1,3-, and 1,4-benzenedicarboxylic acid), tracers of mobile 

sources and anthropogenic secondary sources [Fraser et al., 2003a; Schauer et al., 

2002a], and biogenic SOA tracers, cis-pinonic acid, pinic acid and 2-methyltetrols (Table 

3.5). These imply that there are complex sources and photochemical paths to form 

WSOC and SOA in the atmosphere, which cannot be elucidated well by the current 

knowledge about organic compounds linked to SOA.   

In addition, our study found that ambient WSOC can come from the sources other 

than SOA and biomass burning emission. In the on-road mobile source summer and 

winter profiles developed in this research, WSOC approximately makes up about 

15±12% and 21±10% of total primary OC emitted by on-road motor vehicles (not shown 

in figures), respectively. That suggests mobile source is probably a minor contributor of 

WSOC especially in the winter, possibly due to direct emissions of polar organic 

compounds from motor vehicles, contribution of resuspended road dust or fast 

formation/condensation of anthropogenic SOA at the roadside. 
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Table 3.5 Correlation Coefficients between WSOC and Other PM2.5 Components  

Correlation Coefficient (P-value) 

PM2.5 Components 

Highway-S12 Campus-S12 Campus-S24 YRK-S24  Highway-W12 Campus-W12 YRK-W24 

Ammonium 0.26 (0.58) 0.41 (0.37) 0.95 (0.00) 0.96 (0.00)  0.35 (0.19) 0.34 (0.19) 0.32 (0.48) 

Sulfate 0.23 (0.63) 0.25 (0.59) 0.96 (0.00) 0.99 (0.00)  0.32 (0.23) 0.49 (0.05) 0.49 (0.27) 

OC_Hi-Vol 0.83 (0.02) 0.72 (0.07) 0.97 (0.00) 0.99 (0.00)  0.89 (0.00) 0.87 (0.00) 0.99 (0.00) 

EC_Hi-Vol -0.28 (0.55) 0.10 (0.84) 0.88 (0.01) 0.41 (0.36)  0.24 (0.37) 0.29 (0.29) 0.85 (0.02) 

Levoglucosan 0.37 (0.41) 0.24 (0.60) 0.60 (0.15) 0.97 (0.00)  0.77 (0.00) 0.82 (0.00) 0.94 (0.00) 

1,2-Benzenedicarboxylic acid 0.07 (0.88) 0.89 (0.01) 0.34 (0.46) -0.74 (0.06)  0.08 (0.78) 0.22 (0.42) 0.62 (0.14) 

1,4-Benzenedicarboxylic acid -0.10 (0.83) 0.30 (0.51) 0.54 (0.21) -0.59 (0.17)  0.11 (0.68) 0.59 (0.02) 0.48 (0.27) 

1,3-Benzenedicarboxylic acid -0.33 (0.47) 0.86 (0.01) 0.32 (0.48) -0.63 (0.13)  0.06 (0.83) 0.89 (0.00) 0.89 (0.01) 

cis-Pinonic acid -0.28 (0.55) 0.71 (0.08) -0.62 (0.14) -0.75 (0.05)  -0.02 (0.95) 0.47 (0.07) 0.67 (0.10) 

Pinic acid -0.04 (0.93) 0.69 (0.09) -0.07 (0.89) -0.63 (0.13)  0.20 (0.47) 0.67 (0.01) 0.56 (0.20) 

Sum of dicarboxylic diacids -0.10 (0.83) 0.96 (0.00) 0.42 (0.35) -0.47 (0.28)  0.21 (0.43) 0.88 (0.00) 0.73 (0.06) 

2-Methyltetrols -0.02 (0.97) 0.88 (0.01) 0.66 (0.11) 0.64 (0.12)  0.30 (0.25) 0.13 (0.62) -0.24 (0.61) 

BioSOA -0.23 (0.62) 0.74 (0.06) 0.65 (0.11) 0.63 (0.13)  0.00 (0.99) 0.48 (0.06) 0.66 (0.11) 

Hopanes 0.35 (0.45) -0.04 (0.93) 0.49 (0.27) -0.38 (0.40)  0.14 (0.60) 0.31 (0.24) 0.47 (0.29) 

Steranes 0.32 (0.49) -0.18 (0.70) -0.23 (0.62) -0.67 (0.10)  0.08 (0.76) 0.23 (0.40) -0.68 (0.09) 

Isoprene 0.16 (0.74) 0.05 (0.92) 0.83 (0.02) n/a  n/a n/a n/a 

Note: ‘BioSOA’ represents the sum of 2-methyltetrols, cis-pinonic acid and pinic scid; ‘S12’, ‘S24’, 

‘W12’, and ‘W24’ denote 12-hr summer (June, 2005), 24-hr summer (July, 2005), 12-hr winter (January, 

2006), and 24-hr winter (January, 2006) filter-based field samples, respectively; “n/a’, not available; 

Significant figures (i.e., P-value is equal to or less than 0.10) are shown in bold type.    

 

    

Acknowledgments 

This work was funded in part by the U.S. Environmental Protection Agency 

STAR grants (R832159, R828976 and R831076). We would like to thank Georgia Power 

(Southern Company) for their support of work at the Laboratory for Atmospheric 

Modeling, Diagnostics, and Analysis (LAMDA) at Georgia Institute of Technology in 

this study area. The authors acknowledge Atmospheric Research & Analysis, Inc. for 

their help with the field sampling and meteorological measurements. We also thank 

Xiaolu Zhang for assistance with the WSOC lab measurements.      



 73 

CHAPTER 4 

SOURCE APPORTIONMENT OF PM2.5 ORGANIC CARBON AND 

SOA IMPACT: SPATIAL AND TEMPORAL VARIATIONS  

 

(Bo Yan, Mei Zheng, Yongtao Hu, Amy P. Sullivan, Rodney J. Weber, Eric S. Edgerton, 

and Armistead G. Russell.  Environmental Science & Technology, in preparation) 

 

Abstract 

Source apportionment of PM2.5 and organic carbon was performed using the 

molecular marker-based chemical mass balance (CMB-MM) model. Contributions of 

major primary sources were calculated, including diesel vehicle exhaust, gasoline vehicle 

exhaust, biomass burning, meat cooking, road dust, and vegetative detritus. Their 

seasonal and spatial variations are also discussed. The CMB-MM estimated contributions 

of roadway-related emissions (sum of diesel vehicle exhaust, gasoline vehicle exhaust, 

and road dust) were evaluated at the roadside site using the differences in the total 

organic carbon (OC) measured between the roadside site and the nearby campus site. 

This research in particular focused on assessing the secondary OC (SOC) contribution 

using four different approaches: (1) the CMB-MM model; (2) the elemental carbon (EC) 

tracer method; (3) the water-soluble organic carbon (WSOC) method; (4) the secondary 

organic tracer method. Fraction boundaries of SOC in total OC were estimated at the 

roadside, the campus and the rural sites for the summer and the winter.    
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4.1 Introduction 

 Fine particulate matter (PM2.5) has been associated with adverse health effects 

[Dockery et al., 1993; Pope et al., 2002], and sources of airborne PM2.5 appear to be of 

particular interest [Sarnat et al., 2008]. To explore composition and sources of PM2.5, 12-

hr and 24-hr PM2.5 filter samples were collected in summer 2005 and winter 2006 from 

three field sites in Georgia (Figure 2.1): two from urban Atlanta, GA (one site right next 

to a freeway and another 400 m away), and one at a rural site located at Yorkville (YRK), 

55 km northwest of the metropolitan Atlanta. Detailed PM2.5 composition was 

investigated including organic carbon (OC), elemental carbon (EC), water-soluble OC 

(WSOC), ionic species, trace metals, and a number of solvent-extractable organic 

compounds with particular focus on on-road emissions, regional transport and secondary 

organic aerosol (SOA) effects [Yan et al., 2009c; Yan et al., 2009d].  

Organic matter is one of major components in ambient PM2.5 in the southeastern 

U.S, accounting for up to 80% of the PM2.5 mass in previous studies [Hansen et al., 2003; 

Turpin et al., 2000] or 40–60% in this research [Yan et al., 2009d]. As a complex mixture 

of many organic compounds, particulate organic matter can be either emitted directly by 

primary sources or formed from photochemical processes in the atmosphere. 

Unfortunately, only a small fraction of organic matter in aerosols can be characterized 

quantitatively on the molecular level by current speciation methodologies, such as gas 

chromatography/mass spectrometry (GC/MS) [Zheng et al., 2002]. In this research, 3–

15% of total organic mass was quantified, with the majority of PM2.5 organic matter 

characterized as unextractable and nonelutable in GC/MS [Yan et al., 2009c; Yan et al., 

2009d]. Fortunately, this small fraction of elutable compounds contain species which can 
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be used as tracers for major sources of primary OC, and then major source contributions 

to PM2.5 and organic aerosols can be calculated by source apportionment modeling with 

organic tracers measured in extractable and elutable fraction.   

One of most popular approaches to calculate source contributions for organic 

aerosols and PM2.5 is the organic molecular marker-based chemical mass balance (CMB-

MM) air quality model. This method was first developed by Schauer et al. (1996) through 

introducing organic molecular markers, some of which are reasonably unique tracers for 

specific sources, to the regular inorganic species-based CMB model [Schauer et al., 

1996], and have been widely applied in source apportionment studies [Docherty et al., 

2008; Fraser et al., 2003b; Subramanian et al., 2007; Zheng et al., 2002; Zheng et al., 

2005]. Typically, CMB-MM is used to apportion source contributions to primary OC 

(POC) in PM2.5, which is emitted directly from primary sources, such as mobile sources, 

biomass burning, and meat cooking. Source contributions to secondary OC (SOC) cannot 

be obtained directly through CMB-MM modeling, but is usually estimated by the 

difference between measured total OC and POC identified by CMB-MM [Schauer et al., 

1996; Zheng et al., 2002]. This would lead to large uncertainties when the estimated POC 

is greatly biased owing to lack of local and representative emission source profiles in the 

methodology. Recent studies indicated that CMB-MM source apportionment results are 

sensitive to the emission source profiles applied in the model [Lough and Schauer, 2007; 

Robinson et al., 2006c; Subramanian et al., 2006; 2007]. Moreover, the mobile source 

profiles newly developed in Atlanta, GA were found to be significantly different from 

those tested in the laboratories elsewhere [Yan et al., 2009c]. It is very hard to effectively 

assess those modeled contributions from primary and secondary sources without 
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knowledge of real-world emissions and formation of ambient PM2.5. This research 

provides an opportunity to directly evaluate CMB-MM performance in PM2.5 source 

apportionment for both primary sources and SOC by comparing OC measurements with 

CMB-MM results at the roadside and the nearby campus sites.  

SOC is a major component of total OC, especially in summer when vigorous 

photochemical processing, together with enhanced volatile organic compound (VOC) 

emissions, promotes formation of secondary organic aerosols (SOA) in the atmosphere. 

In the southeastern U.S and California, 30–80% of the total OC in summer is estimated as 

SOC with different approaches [Hildemann et al., 1993; Turpin and Huntzicker, 1995; 

Zheng et al., 2007]. However, very few studies have assessed uncertainties or errors 

associated with SOC estimates. The current knowledge about atmospheric formation, 

condensation/partition, and composition of SOA is still very poor, and no direct 

measurement of SOA is available. Thus, SOC estimates are primarily performed 

indirectly. Other than the CMB-MM approach, the EC tracer method is widely applied to 

separate SOC from POC based on a large set of ambient OC/EC observations in the same 

location [Chu, 2005; Turpin and Huntzicker, 1995]. Recent studies also propose using 

WSOC as an indicator of SOC since it usually correlated to SOA formation, especially in 

summer [Kondo et al., 2007; Miyazaki et al., 2006; Weber et al., 2007]. Furthermore, 

new developments on smog chamber irradiation experiments provide a different 

approach, called the secondary organic tracer method, which was used to estimate major 

source contributions to fine SOC originating from some prevalent gaseous precursors, 

such as isoprene and monoterpene [Edney et al., 2005; Kleindienst et al., 2007a; 

Offenberg et al., 2007].  
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In order to identify and quantify the impacts of specific emission sources on air 

quality in the metropolitan Atlanta and surrounding areas, the CMB-MM approach was 

used for source apportionment of fine organic carbon and PM2.5 at the roadside, urban 

and rural sites in the summer and the winter. As a focus of active research, mobile source 

contributions identified by CMB-MM were compared to the measured OC from the 

roadside and the nearby campus sites. Intercomparisons of SOC estimates from the four 

approaches described above provide helpful information for evaluating CMB-MM 

performance and better understanding SOA compositions in PM2.5.  

 

4.2 Methods 

 4.2.1 The CMB-MM Model 

The CMB air quality model depends on a variety of assumptions: 1) that 

compositions of source emissions are constant over the period of ambient and source 

sampling; 2) that chemical species are relatively stable and conservative during transport 

from emissions to the receptor; 3) that major sources contributing to the receptor are 

included in the model; 4) that the number of source categories is less than the number of 

chemical species; 5) that source profiles are linearly independent on each other (without 

collinear problems); and 6) that measurement uncertainties are random, uncorrelated, and 

normally distributed [U.S.EPA, 2004]. Mathematically, the fundamental principle of 

CMB can be expressed as: 

n,2,1,ieSaC
m

1j

ikjkijik KK=+=∑
=

     (4.1) 
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where Cik is the ambient concentration of chemical species i at a specific receptor site k; 

aij is the fraction of chemical species i in the OC (or PM2.5) emission from source j, also 

called source profile abundances; Sjk is the contribution of source j to the OC (or PM2.5) 

concentration at the receptor site k; and eik is the error term. 

Molecular marker-based source profiles applied to the CMB-MM model were 

obtained from previous source emission tests including medium-duty diesel truck exhaust 

[Hildemann et al., 1991; Schauer et al., 1999b], combined gasoline vehicle exhaust of 

catalyst- and noncatalyst-equipped gasoline-powered vehicles [Schauer et al., 2002b], 

combined wood combustion in the southeastern states [Fine et al., 2002], meat cooking 

[Schauer et al., 1999a], Alabama paved road dust [Schauer, 1998; Zheng et al., 2002], 

natural gas combustion [Hildemann et al., 1991; Rogge et al., 1993b], and vegetative 

detritus [Hildemann et al., 1991; Rogge et al., 1993a]. Recent studies indicate that CMB-

MM source apportionment results are sensitive to the emission source profiles applied in 

the model [Lough and Schauer, 2007; Robinson et al., 2006c; Sheesley et al., 2007; 

Subramanian et al., 2006; 2007]. Moreover, the on-road mobile source profiles that were 

newly developed in Atlanta not only show seasonal variation but also significantly differ 

from those tested in the laboratories elsewhere [Yan et al., 2009c]. Therefore, application 

of these lab-created source profiles in the CMB-MM model could result in biases or 

uncertainties of source apportionment results in this research.          

Fitting species applied to CMB-MM include aluminum (Al), silicon (Si), OC, EC, 

and molecular markers such as n-alkanes, branched alkanes, hopanes, steranes, polycyclic 

aromatic hydrocarbons (PAHs), cholesterol, and levoglucosan. These molecular markers 

are recommended as tracers for specific emission sources based on source tests [Schauer 
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et al., 1996; Schauer and Cass, 2000; Simoneit et al., 1999]. Chemical stabilities of these 

fitting species during local transportation in the atmosphere have been tested [Fraser and 

Lakshmanan, 2000; Schauer et al., 1996].  

Through CMB-MM modeling, several major primary sources are apportioned to 

OC, and the sum of these sources represents POC, recognizing the inherent limitations, 

uncertainties and required assumptions. Then, an upper bound of SOC, namely, ‘Other 

OC’ or ‘unidentified OC’ in CMB-MM that probably includes unknown or unidentified 

primary sources, can be approximated by [Schauer et al., 1996; Subramanian et al., 

2007; Zheng et al., 2002]   

( ) m,1,2,j,PrimarySPOC
m

1j

j K=≈∑
=

     (4.2) 

POCOCOC'edunidentifi'or'Other'SOC tot −=≈ OC     (4.3) 

where ‘Sj’ is the contribution of primary source j to the OC concentration, and ‘OCtot’ 

represents the total measured OC.  

4.2.2 The EC Tracer Method 

Ambient EC is considered a good tracer of primary OC generated from 

combustion sources [Cabada et al., 2004; Turpin and Huntzicker, 1995]. A few 

relationships are built among primary OC, secondary OC and EC as follows: 

EC
EC

OC
OCOC

pri

ncpri ×






+=        (4.4) 

pritotsec OCOCOC −=         (4.5) 

where ‘OCpri’, ‘OCsec’, ‘OCtot’ and ‘OCnc’ represent ‘primary OC’, ‘secondary OC’, ’total 

measured OC’ and ‘non-combustion OC’, respectively. The key of the EC tracer method 
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is to estimate OCnc and (OC/EC)pri from measured OC and EC data. Statistically, these 

values can be derived from linear regression analysis of measured OC vs. EC under a 

consistent and dominant influence from primary source emissions. OCnc is usually 

assumed to be negligible or small, and can be estimated by an intercept of regression line, 

and (OC/EC)pri can be approximated as a slope of regression line [Saylor et al., 2006]. 

However, the approximation is too rough if we include all observations in the same linear 

regression model to estimate OCnc and (OC/EC)pri since many OC measurements actually 

contain large and inconsistent secondary OC. Therefore, previous studies propose that 

OC observations, which are within the lowest 5–10% of OC/EC ratios or collected on a 

cold and cloudy winter when photochemical activities are not active, are most likely 

dominated by primary carbonaceous emissions [Lim and Turpin, 2002; Yu et al., 2007]. 

In this research, a different statistical methodology is introduced to analyze 

probability distribution attributes of measured OC/EC data at different locations. The cut-

off point of (OC/EC)pri is not arbitrarily set as the lowest 5–10% of OC/EC ratios or 

based solely on special winter samples, but is estimated using the data that are 

characterized both by the lowest OC/EC ratios and the similar probability distribution 

mode (e.g., normal distribution). The same OC/EC probability distribution is assumed to 

reflect a consistent mix of similar primary emission sources in PM2.5. Here, probability 

plots of OC/EC ratios through the summer and the winter were conducted for each 

sampling site (Figure 4.1). Excluding those outliers, the data groups with both the lowest 

OC/EC ratio and linear distribution (90% confidence interval) were picked out for 

regression analysis. For example, the data with the probability of 5–50%, 5–40% and 

below 40% can meet our criteria at the roadside, campus and rural sites, respectively. 
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These data mostly come from the winter samples, taking 8 out of 11 roadside samples, 9 

out of 12 campus samples, and all 6 rural samples. Then, sample linear regression fitting 

were performed to find associated slopes and intercepts at different sites, as shown in 

Figure 4.2. As described previously, slopes of the linear regression fitting lines are 

approximated as (OC/EC)pri, which were then used to calculate OCpri (or POC) and OCsec 

(or SOC) using equations 4.4 and 4.5. Note that OCnc was neglected in this research since 

only negative and small intercepts were obtained by the fitting model above for all 

sampling sites. Note that uncertainties are likely caused in this method by the fact that 

both the summer and winter measurements were combined and used in the same 

statistical model without considering seasonal variations of primary emissions and source 

categories owing to lack of field observations in each season. In addition, this method can 

only describe an average situation of primary and secondary OC for a large set of 

observations with significant daily or seasonal variations, e.g., many negative SOC 

estimates in the winter.           

4.2.3 The WSOC Method 

Correlated to oxygenated organic compounds, WSOC makes up a significant 

fraction of total OC and has been regarded as an indicator of secondary organic aerosol 

(SOA) and biomass burning emissions in airborne PM2.5 [Kondo et al., 2007; Sullivan et 

al., 2006; Weber et al., 2007]. The effects of biomass burning contribution need to be 

excluded from the total measured WSOC when it used as a surrogate of SOC. In this 

research, biomass burning derived WSOC is calculated from measured levoglucosan, a 

unique and relatively stable organic tracer of biomass burning emissions [Fraser and 

Lakshmanan, 2000; Simoneit et al., 1999]. The ratios of WSOC/levoglucosan in biomass 
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burning emissions have been measured in Georgia, i.e., 9.1±2.9 and 4.5–6.8 for aged 

prescribed burning plume, and wildfire plumes at different distances downwind from the 

wildfires, respectively [Lee et al., 2008; Yan et al., 2008a; Yan et al., 2009b]. The 

average ratio of 6.7±1.9 is used to calculate biomass burning caused WSOC 

(WSOCbiomass burning) from observed levoglucosan concentrations (Clevoglucosan). So, SOC 

(or WSOC_adj) can be computed as below: 

burningbiomassmeasured WSOCWSOCSOC −≈       (4.6) 

( ) anlevoglucosemissionburningbiomass ClucosanWSOC/levogWSOC ×=     (4.7) 

Note that this WSOC methodology tends to underestimate SOC in PM2.5. Firstly, the 

above WSOC/levoglucosan ratios are overestimated with respect to primary biomass 

burning plumes because some WSOC here are formed secondarily. Biogenic VOCs 

emissions can enhance formation of SOC during the fire events, which has not been 

subtracted from total measured WSOC. Secondly, not all SOC in PM2.5 are water-soluble. 

It was reported that 6–19% of oxygenated organic carbon (OOC) is water-insoluble 

between summer and winter in Tokyo, respectively [Kondo et al., 2007]. Therefore, 

WSOC, after subtracting associated biomass burning effects, is likely to reflect the lower 

bound of the SOC estimate. It should be acknowledged that uncertainties could be caused 

by biases in the WSOC/levoglucosan ratios, which were measured in aged prescribed 

burning and wildfire plumes which occurred in this area and are used to represent the 

seasonal-average mix of various biomass burning emissions in the atmosphere, e.g., 

residential and commercial wood combustion.                      
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Figure 4.1. Probability plots of measured OC/EC ratios during the summer and the winter 

at the roadside, the campus and the Yorkville (YRK) sites. 
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Figure 4.2. Scatter plots and linear regression fitting of the measured OC and EC with the 

lowest OC/EC ratios at the three sampling sites. The non-intercept fitting equations are 

shown as follows: a) OCpri=1.4924×EC at the roadside site; b) OCpri=3.9377×EC at the 

campus site; c) OCpri=7.4377×EC at the Yorkville (YRK) site. 

 

 

4.2.4 The Secondary Organic Tracer Method 
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monoterpene, some SOA tracers have been identified and quantified, such as 2-

methyltetrols (oxidation products of isoprene), cis-pinonic acid and pinic acid (oxidation 

products of monoterpene) [Claeys et al., 2004a; Claeys et al., 2004b; Kavouras et al., 

1998; Yu et al., 1999b]. Together with developments in smog chamber irradiation and 

field studies, these identified SOA tracers provide us an additional path to understand 

composition of atmospheric SOA. The secondary organic tracer method has recently been 
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measured in the laboratory are same as those formed in the atmosphere [Edney et al., 

2005; Kleindienst et al., 2007a; Lewandowski et al., 2008; Offenberg et al., 2007]. 

Following this method, contributions of specific secondary sources to OC, [monoterpene 

SOC] or [isoprene SOC], were approximated in this study using a few fixed conversion 

ratios of organic tracer to SOC concentrations, which were measured in the above 

laboratory studies. These calculations are shown below: 

[ ] [ ] [ ]
( )emonoterpenF

acidPinicacidPinoniccis
SOCemonoterpen

SOC

+−
=     (4.8) 

[ ] [ ]
( )isopreneF

olsMethyltetr2
SOCisoprene

SOC

−
=       (4.9) 

where ‘FSOC(monoterpene)’ and ‘FSOC(isoprene) represent the ratios of monoterpene-

derived and isoprene-derived secondary organic tracers (i.e., sum of cis-pinonic and pinic 

acids, and 2-methyltetrols) to the yielded SOC concentrations in the laboratories, 

respectively. In this research, the Fsoc ratios of 0.148±0.037 and 0.041±0.020 are used 

for isoprene and monoterpenes, respectively, assuming that these secondary organic 

compounds are relatively unique to their biogenic gaseous precursors [Edney et al., 2005; 

Kleindienst et al., 2007a]. However, atmospheric formation and fate of SOA are so 

complicated and least understood so far that the chamber irradiation-derived secondary 

organic tracer method can only provide preliminary estimates of SOC contributions in 

ambient PM2.5 with a high degree of uncertainties.          
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Figure 4.3. Source contributions to fine OC at the three sampling sites in summer 2005. 

‘1’ and ‘2’ denote daytime and nighttime 12-hr samples, respectively. ‘DIESEL’–diesel 

vehicle exhaust, ‘C*CARS’–gasoline vehicle exhaust, ‘VEGETA’–vegetative detritus, 

‘MEATCH’–meat cooking, ‘RDALBA’–road dust, ‘CIGSMO’–cigarette smoke, 

‘C*WOOD’–wood combustion, ‘NATGAS’–natural gas combustion, ‘Others’–other OC 

(or unidentified OC). Error bars are shown. 
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Highway, Campus and YRK (winter, 2006)
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Figure 4.4. Source contributions to fine OC at the three sampling sites in winter 2006. ‘1’ 

and ‘2’ denote daytime and nighttime 12-hr samples, respectively, and ‘B’, ‘A’ and ‘C’ 

represent the roadside, the campus and the Yorkville (YRK) sites. Error bars are shown.   

 

4.3 Results and Discussion 

4.3.1 Source Apportionment of Fine OC  

Up to eight primary sources of fine OC were identified by CMB-MM modeling, 

including diesel vehicle exhaust, gasoline vehicle exhaust, meat cooking, biomass 

burning, road dust, natural gas combustion, cigarette smoke, and vegetative detritus 

(Tables B.1 and B.2; Figures 4.3 and 4.4). Our CMB-MM results show both spatial and 

seasonal differences of primary source contributions for fine OC. At the two urban sites, 

mobile source (sum of diesel and gasoline vehicle exhausts) is the largest contributor of 
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primary OC in the summer, contributing 2.4 and 0.77 µg m
-3
 (or 71% and 46%) of the 

total identified OC (or approximated POC as discussed above) at the roadside and the 

campus sites, respectively (Figure 4.3). At the same time, the average OC/EC ratio at the 

roadside site is 3.3 times lower than that at the campus site, corresponding to a large drop 

in EC of over 70% [Yan et al., 2009d]. In particular, diesel vehicle emissions contribute 

1.5 and 0.39 µg m
-3
 (or 46% and 24%) of POC at the roadside and the campus sites in the 

summer, respectively, and gasoline vehicle emissions contribute 0.84 and 0.38 µg m
-3
 or 

(26% and 23%) of POC. Much more primary OC is apportioned to diesel vehicle 

emissions at the roadside site even though 97% of vehicles driving on the freeway are 

light-duty and gasoline-powered [Kall and Guensler, 2007], implying that on-road diesel 

vehicles have a remarkable impact on PM2.5 emissions. Emission control of diesel 

vehicles exhaust is probably more important for local air quality improvement.  

Meat cooking, biomass burning, road dust, and cigarette smoke are the other 

significant primary OC sources at the two urban sites with slight spatial variations, 

suggesting similar local emissions or homogeneous transport background for these 

primary sources at both the roadside and the campus sites (Figure 4.3). At the rural site 

(Yorkville or YRK), much lower primary source contributions are found. Mobile 

emissions are the largest primary source in the summer, contributing 0.21 µg m
-3
 (or 

38%) of POC. Biomass burning, meat cooking, and road dust are the other significant 

sources at the rural site, whereas no cigarette smoke source is identified. In the summer, 

natural gas combustion is not a significant source at either the urban site or the rural site.    

In the winter, source contributions of biomass burning increased greatly and 

surpassed all the other primary OC sources at each site, suggesting that intensive biomass 



 89 

burning activities occurred regionally in cold weather, including residential, commercial 

and prescribed burning (Figure 4.4). On average, biomass burning contributes 2.3, 1.6, 

and 1.6 µg m
-3 
(or 46%, 56% and 53%) of POC in the winter at the roadside, the campus, 

and the rural sites, respectively. Thus significant influence of biomass burning is clearly 

across this region. Contributions of meat cooking also increased in the winter at all sites 

based on elevated ambient concentrations of cholesterol, a unique organic tracer of meat 

cooking. This is probably due to combination of more indoor activities and reduced 

atmospheric dispersion in the winter. The contributions of mobile sources, the second 

largest source of primary OC in the winter, varied slightly between summer and winter. 

This is consistent with ambient measurements of hopanes, steranes, PAHs, and EC, 

which are unique organic tracers or major components of mobile emissions. The trend is 

different from previous studies in the southeastern U.S., which report much higher source 

contributions from gasoline-powered vehicles in the winter [Zheng et al., 2002; Zheng et 

al., 2007].  

Contributions from road dust also exhibit seasonal differences, being higher in the 

summer corresponding to higher levels of Al and Si, two major components of road dust. 

In the summer, the average concentrations of Al and Si were 2.2 and 3.4 times those in 

the winter. A previous study also found a similar seasonal trend for Al and Si in this 

region [Zheng et al., 2007]. Warm weather and dry conditions in the summer may be 

conducive to road dust reentrainment by passing vehicles [Fraser et al., 2003b]. Higher 

summer concentrations of Al and Si are also likely caused by long-range transport of 

African dusts, which are thought to be carried to the southeastern U.S. by the summer 

trade winds [Prospero et al., 2001]. As minor primary sources, cigarette smoke and 
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vegetative detritus did not show significant seasonal variations. In addition, source 

contributions from natural gas combustion increased significantly at the urban sites in the 

winter, reflecting enhanced emissions from residential heating activities relaying on 

natural gas combustion (Figures 4.3 and 4.4) 

It is common to find that total measured OC mass is not completely identified by 

the CMB-MM model, especially in summer samples (Figures 4.3 and 4.4). On average, 

the identified primary sources can explain 26.2% and 98.8% of the measured OC in the 

summer and the winter, respectively. These unidentified OC mass, namely ‘Other OC’, 

can consist of three terms: unidentified POC, SOC and propagated uncertainties. In the 

winter, ‘Other OC’, on average, accounts for 1% of the total OC, whereas it takes over 

70% in the summer, implying SOA play a role in this observed seasonal variations. The 

fraction of ‘Other OC’, about 70% in the total measured OC, is similar to what was found 

in previous studies [Zheng et al., 2007]. 

4.3.2 Source Apportionment of PM2.5 

From the fine OC source apportionment results above, source contributions to 

PM2.5 mass were computed using OC/PM2.5 ratios measured in previous source emission 

tests. Sulfate, nitrate and ammonium from secondary atmospheric formation were 

calculated directly from their ambient concentrations by subtracting the associated 

amounts emitted from primary sources, which are very small. Detailed source 

contributions from secondary sulfate, nitrate, and ammonium for PM2.5 have been shown 

and discussed in another article [Yan et al., 2009d]. The focus of this study is on source 

apportionment of fine organic matter.     
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Highway vs. Campus (12-hr, 2005)
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Figure 4.5. Source contributions to PM2.5 at the three sampling sites in summer 2005. ‘1’ 

and ‘2’ denote daytime and nighttime 12-hr samples, respectively. ‘DIESEL’–diesel 

vehicle exhaust, ‘C*CARS’–gasoline vehicle exhaust, ‘MEATCH’–meat cooking, 

‘C*WOOD’–wood combustion, ‘RDALBA’–road dust, ‘CIGSMO’–cigarette smoke, 

‘NATGAS’–natural gas combustion, ‘VEGETA’–vegetative detritus, ‘other OM’–other 

organic matter (converted from ‘other OC’), ‘Others’–other or unidentified PM2.5.   
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Highway, Campus and YRK (winter, 2006)
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Figure 4.6. Source contributions to PM2.5 at the three sampling sites in winter 2006. ‘1’ 

and ‘2’ denote daytime and nighttime 12-hr samples, respectively, and ‘B’, ‘A’ and ‘C’ 

represent the roadside, the campus and the Yorkville (YRK) sites. ‘DIESEL’–diesel 

vehicle exhaust, ‘C*CARS’–gasoline vehicle exhaust, ‘MEATCH’–meat cooking, 

‘C*WOOD’–wood combustion, ‘RDALBA’–road dust, ‘CIGSMO’–cigarette smoke, 

‘NATGAS’–natural gas combustion, ‘VEGETA’–vegetative detritus, ‘other OM’–other 

organic matter (converted from ‘other OC’), ‘Others’–other or unidentified PM2.5.   

 

 

 

 Our results indicate that mobile source, meat cooking, biomass burning, and road 

dust are major primary sources to PM2.5 mass (Tables B.3 and B.4; Figures 4.5 and 4.6). 

At the urban sites, mobile source contributed 9.3 and 2.7 µg m
-3
 (or about 37% and 12%) 

of the total identified PM2.5 mass on average in the summer at the roadside and the 

campus sites, respectively, whereas the average contributions decreased slightly at the 

Highway-12 Campus-12 YRK-12 
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two sites with values of 6.7 and 2.6 µg m
-3
 (or 37% and 22%) of the total identified PM2.5 

mass. In both seasons, contributions from diesel vehicle exhausts were significantly 

higher than those from gasoline vehicle exhausts at the urban sites. At the rural site, 

mobile source contributions were much lower with values of 0.86 and 0.65 µg m
-3
 (or 4% 

and 8%) of the total identified PM2.5 mass in the summer and winter, respectively. As a 

typical urban source, meat cooking contributed 0.68 and 1.4 µg m
-3
 (or 2.9% and 9.6%) 

of the identified PM2.5 mass in the summer and the winter, respectively. Source 

contributions from biomass burning and road dust exhibited different seasonal variation 

patterns. At the urban sites, biomass burning and road dust contributed 0.52 and 0.94 µg 

m
-3
 (or 2.2% and 3.9%) of the identified PM2.5 mass in the summer, respectively, whereas 

contributed 2.6 and 0.24 µg m
-3 
(or 18% and 1.8%) in the winter. No significant seasonal 

variation of source contributions is observed for cigarette smoke and vegetative detritus. 

In addition, natural gas combustion is identified only in the winter at the urban sites.   

       Secondary sources also play important roles in composition of ambient PM2.5 at 

this area, especially in the summer, including secondary sulfate, nitrate, ammonium, and 

‘Other OM’ (‘other organic matter’, which is converted from CMB-MM-estimated 

‘Other OC’ by associated OM/OC ratios obtained in this research [Yan et al., 2009d]). 

With relatively small spatial variations, these secondary sources usually show regional 

transport attributes. On average, secondary sulfate, nitrate, ammonium and ‘Other OM’ 

contributed 7.4, 0.55, 2.7, and 7.4 µg m
-3
 (or 31%, 2.4%, 11%, and 31%) of the total 

identified PM2.5 mass in the summer, respectively. In the winter, their average 

contributions are 1.5, 1.8, 0.85, and 1.2 µg m
-3
 (or 14%, 19%, 7.9%, and 9.1%) of the 

identified PM2.5 mass, respectively.     
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Figure 4.7. Comparison between the CMB-MM-calculated on-road OC source 

contribution (sum of the roadside diesel vehicle exhaust, gasoline vehicle exhaust, and 

road dust minus sum of the campus diesel vehicle exhaust, gasoline vehicle exhaust, and 

road dust) and the measured on-road total OC (the roadside OC minus the campus OC). 

‘d’ and ‘n’ indicate daytime and nighttime 12-hr sample, respectively. Error bars are 

shown.  
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4.3.3 Evaluation of CMB-MM Modeling and Estimated SOC in PM2.5 

In this research, the measured total OC was used to directly assess the CMB-MM 

modeling results. Given that the contributions from non-roadway related primary sources 

and SOA varied little between the roadside and the nearby campus sites, the roadside OC 

minus the campus OC should be close to the OC directly emitted by the on-road sources 

(diesel vehicle exhaust, gasoline vehicle exhaust, and road dust). This is reasonable 

recognizing that there are similar spatial distributions in non-roadway related organic 

tracers across both sites [Yan et al., 2009c] and in the CMB-MM results for meat 

cooking, biomass burning, cigarette smoke, and vegetative detritus (Tables B.1 and B.2; 

Figures 4.3 and 4.4). Therefore, the CMB-MM-estimated roadway-related source 

contributions can be evaluated by differences in the measured OC between the two sites. 

Our comparison shows that CMB-MM usually underestimated the contributions from on-

road emissions at the roadside site by average values of 1.02±0.77 and 0.40±0.82 µg m
-3
 

in the summer and the winter, respectively (Figure 4.7). This implies that ‘Other OC’ or 

‘unidentified OC’, which calculated by the CMB-MM model, is likely the upper bound of 

the SOC estimate considering the underestimation of POC as well as possible existence 

of unknown primary OC sources in CMB-MM modeling. This SOC estimate was 

assessed by comparing CMB-MM-calculated ‘Other OC’ with secondary organic tracers 

as well as SOC determined by other methods.          

Figure 4.8 show the correlation between secondary organic tracers and estimated 

‘Other OC’. The CMB-MM-estimated ‘Other OC’ is found significantly correlated with 

ambient sulfate (r
2
=0.64) and ammonium (r

2
=0.66) in the summer. This suggests ‘Other 

OC’ probably consists of secondary organic sources, which can be attributed to similar 



 96 

atmospheric formation and condensation/partition processes as secondary sulfate and 

ammonium. In the winter, ‘Other OC’ was statistically zero on many samples even 

though sulfate and ammonium were still detected. However, no significant correlation is 

found between ‘Other OC’ and secondary organic tracers, such as biogenic secondary 

tracers (cis-pinonic acid, pinic acid and 2-methyltetrols) and multiple secondary tracers 

(aromatic and dicarboxylic acids) even in the summer. One possible explanation is that 

composition of ‘Other OC’ or SOC could be complicated by various anthropogenic and 

biogenic sources and impacted by numerous factors, e.g., temperature, humidity, solar 

radiation, emissions. The amounts of identified organic tracers are only part of SOA 

sources and did not accurately represent all source attributes of SOA in the atmosphere.                      

Scatter plots in Figure 4.9 show the correlationships between CMB-MM-

estimated ‘Other OC’ with the total measured OC, EC Tracer_SOC (estimated by the EC 

tracer method), and WSOC_adj (WSOC subtracting biomass burning effects). ‘Other 

OC’ is significantly correlated with total OC and EC Tracer_SOC (r
2
=0.73 and 0.72, 

respectively) in the summer. ‘Other OC’ is also significantly correlated with WSOC_adj 

(r
2
=0.58 and 0.55 in the summer and the winter, respectively). These suggest that CMB-

MM-calculated ‘Other OC’ is probably dominated by SOC. However, CMB-MM-

estimated “Other OC’ is not always comparable to the EC tracer-estimated SOC in the 

winter. It might be caused by the errors of both the two methods, which would be 

relatively larger in the winter due to small SOC fractions in the total OC. Possible 

overestimations of identified primary OC in sources of biomass burning and meat 

cooking by CMB-MM can also offset some impacts from SOC in the winter.  
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Fraction boundaries of the SOC estimates in the total measured OC were 

described in the method section with the CMB-MM-calculated ‘Other OC’ as the upper 

bound of the SOC estimate and with the WSOC_adj as the lower bound. Our results 

indicate that 38–59%, 51–74%, and 74–87% of the total OC were SOC in the summer at 

the roadside, the campus, and the Yorkville sites, respectively, whereas 13–17%, 18–

27%, and about 12% of the total OC were contributed by SOA in the winter (Figures 4.10 

and 4.11). The SOC fractions estimated by the EC tracer method are found to be 

comparable to the WSOC_adj values.      

4.3.4 Source Contributions for SOA  

The above comparison suggests that SOC is the dominant component of ambient 

OC in the summer. However, we can still not distinguish impacts from anthropogenic and 

biogenic secondary sources. An organic tracer method was then applied to estimate 

source contributions from isoprene and monoterpene, two predominant biogenic 

emissions at the southeastern U.S.  

Results indicate that these biogenic secondary organic sources usually take a 

significant faction of measured OC, especially in the summer (Figures 4.12 and 4.13). At 

the urban sites, isoprene-originated and monoterpene-originated secondary sources were 

estimated to contribute on average 7.5% and 8.2% of the total OC, respectively. In the 

June samples, isoprene-originated and monoterpene-originated sources contributed 0.023 

and 0.85 µg m
-3
 (or 0.3% and 12%) of the total measured OC, respectively, whereas they 

contributed 1.4 and 0.10 µg m
-3
 (or 20% and 1.3%) in the July samples. At the rural site, 

isoprene-originated and monoterpene-originated sources, on average, contributed 1.1 and 

0.25 µg m
-3
 (or 23% and 5.1%) of the total measured OC in the July samples. These 
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values are comparable to the urban site in the same period, suggesting a similarly 

homogeneous emission background level over this area.  

However, large discrepancies can be found between total measured OC and total 

estimated OC, which is equal to the CMB-MM-estimated POC plus the organic tracer 

method-estimated biogenic SOC. In the summer, the measured OC is usually much 

bigger than the estimated OC for four possible reasons: 1) the first direct one lies in the 

fact that anthropogenic SOC is not included in the total OC, which is important for sites 

close to anthropogenic emissions such as highway; 2) the fixed mass factions of SOC 

from the chamber experiments may not be able to represent real-world atmospheric 

processes of these tracers with seasonal variations; 3) the composition of SOA in the 

atmosphere is not well known and complicated such that some important secondary 

sources were probably missed, especially anthropogenic sources; and 4) dynamic 

processes in the atmosphere can impact the fate of ambient aerosols in many unexpected 

ways. The results from the winter samples indicated how difficult it is to understand these 

complex processes through any simplified and laboratory-derived model or method. In 

the winter, a few source contributions originating from monoterpenes were observed with 

high levels at the rural site, and the relative ratios (or Fsoc ratios) between cis-pinonic 

acid and pinic acid were found to differ from those in the summer (Figures 2.6-2.8). 

Therefore, it is suspect to elucidate such a complicated and dynamic process with this 

kind of method since we still know little about these formations. Future research in this 

area should focus on studying formation and composition of SOC, in particular.                          
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Figure 4.8. Scatter plots of Other OC and tracers (cis-pinonic acid, pinic acid, aromatic 

acids, 2-methyltetrols, dicarboxylic acids, sulfate, nitrate, and ammonium) of secondary 

sources for PM2.5.  
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Figure 4.9. Scatter plots of ‘Other OC’ in the CMB-MM model, SOC estimated by the 

EC tracer method, and WSOC adjusted by subtracting biomass burning effect.     
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Figure 4.10. Ratios of SOC in the total measured OC in summer 2005 at the three 

sampling sites. Error bars are shown.  
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Figure 4.11. Ratios of SOC in the total measured OC in winter 2006 at the three sampling 

sites. Error bars are shown.   
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Primary and Secondary OC Estimates (Highway-Roof)
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Figure 4.12. Estimated primary and secondary OC by CMB-MM and organic tracer 

methods in summer 2005.   
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Primary and Secondary OC Estimates (Winter)
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Figure 4.13. Estimated primary and secondary OC by the CMB-MM and organic tracer 

methods in winter 2006.   
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CHAPTER 5 

ORGANIC COMPOSITION OF CARBONACEOUS AEROSOLS IN 

AN AGED PRESCRIBED FIRE PLUME 

 

(Bo Yan, Mei Zheng, Yongtao Hu, Sangil Lee, Hyeon Kook Kim, and Armistead G. 

Russell. Atmospheric Chemistry and Physics, 8, 6381–6394, 2008) 

 

Abstract 

Aged smoke from a prescribed fire (dominated by conifers) impacted Atlanta, GA 

on February 28
th
, 2007 and dramatically increased hourly ambient concentrations of 

PM2.5 and organic carbon (OC) up to 140 and 72 µg m
-3
, respectively. It was estimated 

that over 1 million residents were exposed to the smoky air lasting from the late 

afternoon to midnight. To better understand the processes impacting the aging of fire 

plumes, a detailed chemical speciation of carbonaceous aerosols was conducted by gas 

chromatography/mass spectrometry (GC/MS) analysis. Ambient concentrations of many 

organic species (levoglucosan, resin acids, retene, n-alkanes and n-alkanoic acids) 

associated with wood burning emission were significantly elevated on the event day. 

Levoglucosan increased by a factor of 10, while hopanes, steranes, cholesterol and major 

polycyclic aromatic hydrocarbons (PAHs) did not show obvious increases. Strong odd 

over even carbon number predominance was found for n-alkanes versus even over odd 

predominance for n-alkanoic acids. Alteration of resin acids during transport from 

burning sites to monitors is suggested by the observations. Our study also suggests that 
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large quantities of biogenic volatile organic compounds (VOCs) and semivolatile organic 

compounds (SVOCs) were released both as products of combustion and unburned 

vegetation heated by the fire. Higher leaf temperature can stimulate biogenic VOC and 

SVOC emissions, which enhanced formation of secondary organic aerosols (SOA) in the 

atmosphere. This is supported by elevated ambient concentrations of secondary organic 

tracers (dicarboxylic acids, 2-methyltetrols, pinonic acid and pinic acid). An approximate 

source profile was built for the aged fire plume to help better understand evolution of 

wood smoke emission and for use in source impact assessment.           

 

5.1 Introduction 

Wildland fire (wild fire and prescribed burning) is estimated to contribute about 

20% of  total fine particulate matter (PM2.5) emissions in the United States [EPA, 2000]. 

In 2006, a total of 96,385 wildland fires were reported to burn 39,958 square kilometers, 

125% above the 10-year average [NIFC, 2007]. Among these forests, 11,010 square 

kilometers were treated with prescribed fires, which is 1,659 square kilometers above last 

year’s total and is the second highest since 1998 [NIFC, 2007]. Such large and increasing 

emission contributions are of concern to air quality managers, particularly in areas near or 

above the applicable air quality standards. For example, the prescribed fires on February 

28
th
, 2007 in Georgia and later the Georgia-Florida wildfires lasting from April through 

May severely impacted Atlanta, Georgia with thick wood smoke [Hu et al., 2008; Lee et 

al., 2008]. During such events, hourly concentrations of PM2.5 increased by over 100 µg 

m
-3
.    
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Previous studies have shown that the major component of PM2.5 from forest 

burning events is organic carbon (OC), accounting for 30-70% of PM2.5 mass 

[Nopmongcol et al., 2007; Robinson et al., 2004; Ward et al., 2006]. However, detailed 

data speciating OC in PM2.5 impacted by wildland fires is sparse, and even less data is 

available for aged plumes. During the February 28
th
, 2007 event, OC reached 72 µg m

-3
 

at 6 p.m. and contributed approximately 51% of the ambient PM2.5 in Atlanta, GA [Lee et 

al., 2008]. This smoke event provides an opportunity to characterize OC in such 

carbonaceous aerosols, further understand processes impacting the aging of fire plumes, 

and estimate the composition of prescribed fire-derived PM2.5 for source apportionment 

studies.  

In this study, detailed GC/MS speciation of carbonaceous aerosols, along with 

receptor modeling, is used to quantify impacts from the biomass burning plume, although 

some other techniques can provide information about aerosol composition and source 

impacts as well. For example, aerosol mass spectrometer (AMS) is increasingly used to 

determine real-time size distribution and chemical composition of non-refractory 

submicron inorganic and organic aerosols [Allan et al., 2003; Canagaratna et al., 2007; 

Jimenez et al., 2003]. Recently, this method has been used to estimate source 

contributions from biomass burning through quantitatively characterizing hydrocarbon-

like and oxygenated organic aerosols [Cottrell et al., 2008; DeCarlo et al., 2008; Zhang 

et al., 2005]. GC/MS allows identification and quantification of hundreds of organic 

compounds from ambient PM2.5, including n-alkanes, hopanes, steranes, alkanoic acids, 

alkanedioic acids, PAHs, resin acids, and others (syringols, levoglucosan, cholesterol, 2-

methyltetrols, etc.). Some of these compounds are reasonably unique tracers for certain 
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sources and are widely used to track specific sources of carbonaceous aerosols. Similar 

sets of organic species have also been measured for source emissions. Together, they can 

be used to quantify source impacts on ambient PM2.5.  

Source impacts from biomass burning are usually traced through a few organic 

tracers including levoglucosan, resin acids, syringols and retene. As a pyrolysis product 

of cellulose in wood biopolymers, levoglucosan has been considered a particularly useful 

molecular marker of biomass burning [Simoneit et al., 1999]. With its large emission 

abundance and reasonable thermal stability in the atmosphere, levoglucosan is frequently 

used to assess air quality impacts from biomass burning [Fraser and Lakshmanan, 2000; 

Schauer and Cass, 2000]. Resin acids are thermal alteration products of coniferous wood 

resins and emitted exclusively from softwood burning (various pines, firs, etc.) [Rogge et 

al., 1998; Simoneit et al., 1993; Standley and Simoneit, 1994]. In contrast, hardwood 

combustion produces much higher quantities of syringols [Hawthorne et al., 1988; 

Hawthorne et al., 1989]. Although PAHs are emitted from multiple combustion processes 

of fuels (biomass, natural gas, diesel and gasoline) and ubiquitous in the atmosphere, 

retene, a thermal alteration of abietane compounds (resin diterpenoids), is considered as 

an organic tracer specific for coniferous wood burning [Ramdahl, 1983].  

Other primary sources can be also linked to some specific organic tracers. 

Hopanes and steranes are emitted from both gasoline-powered vehicle and diesel-

powered vehicle [Simoneit, 1985; Zielinska et al., 2004]. They have been widely used as 

molecular markers of vehicular emissions in source apportionment of PM2.5 and OC 

[Fraser et al., 2003b; Schauer et al., 1996; Zheng et al., 2002; Zheng et al., 2006b; Zheng 

et al., 2007]. Cholesterol, found in animal fats and oils, is thought as an excellent 
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molecular marker of meat cooking emission [Rogge et al., 1991]. Vegetative detritus 

emissions are characterized by high-molecular weight n-alkanes with pronounced odd 

over even carbon number predominance [Rogge et al., 1993a].  

In addition to primary components of PM2.5, secondary organic aerosol (SOA) 

formation can result from gaseous emissions of isoprenoids (isoprene and monoterpene) 

[Claeys et al., 2004a; Kavouras et al., 1998]. A few biogenic SOA species have been 

identified and quantified including 2-methyltetrols (oxidation products of isoprene), 

pinonic acid and pinic acid (oxidation products of monoterpene) [Claeys et al., 2004a; 

Claeys et al., 2004b; Yu et al., 1999a; Yu et al., 1999b]. Although dicarboxylic acids 

(alkanedioic acids and dicarboxylic aromatic acids) can be emitted from various primary 

sources (mobile emission, meat cooking, etc.), previous studies suggested that 

atmospheric photochemical formation is probably the main source of these dicarboxylic 

acids [Fine et al., 2004b; Fraser et al., 2003a; Schauer et al., 2002a].      

Here, we collected PM2.5 filter samples before, during and after the February 28
th
, 

2007 prescribed fire episode impacting Atlanta, GA and analyzed organic composition of 

carbonaceous aerosols using GC/MS. We further capitalize on the quantified organic 

tracers to better understand the evolution of wood smoke from wildland fires.  

 

5.2 Method Description 

5.2.1 Ambient Sampling   

Daily PM2.5 samples were collected on 47 mm quartz fiber filters with particulate 

composition monitors (PCM) at the Assessment of Spatial Aerosol Composition in 

Atlanta (ASACA) sites [Butler et al., 2003]. These sites are located in the Atlanta metro 
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area about 80 km downwind from the February 28
th
, 2007 prescribed fires and were 

impacted directly by the smoke plume. The 24-hr daily samples were analyzed for 

organic carbon/elemental carbon (OC/EC), metals and ions using thermal optical 

transmittance (TOT), X-ray fluorescence (XRF) and ion chromatography (IC), 

respectively. Details of ambient sampling, chemical measurements and particle 

compositions are described elsewhere [Baumann et al., 2003; Lee et al., 2005a; Lee et al., 

2008].     

5.2.2 Organic Speciation 

Due to the low air volumes sampled, OC mass on a single PCM filter is usually 

not enough for organic tracer analysis. Therefore, three composite PCM samples (named 

‘Before_Fire’, ‘Event’ and ‘After_Fire’) were prepared as below. ‘Before_Fire’ was 

composed of 6 PCM filters from three ASACA sites for the two days before the smoke 

day. ‘Event’ was composed of 3 PCM filters collected at the same sites on February 28
th
, 

the day most directly impacted. ‘After_Fire’ was composed of 7 PCM filters from the 

same sites within the three days after the smoke day. The three composite samples along 

with a composite field blank were analyzed for organic compounds in PM2.5 using a 

standardized method described elsewhere [Nolte et al., 2002; Zheng et al., 2002; Zheng et 

al., 2006b]. Briefly, each filter composite was spiked with deuterated internal standard 

(IS) mixtures and then successively extracted using hexane and benzene/isopropanol (2:1, 

v/v). After filtering, extracts were concentrated with rotary evaporation followed by 

blowdown under pure nitrogen. Half of each concentrated extract was then derivatized 

with diazomethane to convert organic acids to their methyl esters. These methylated 

extracts were analyzed by GC/MS along with authentic standards. To quantify polar 



 111 

organic compounds (levoglucosan, cholesterol and 2-methyltetrols), underivatized 

remains of concentrated extracts were silylated with BSTFA (N, O-

bis(trimethylsilyl)acetamide) to convert polar compounds to trimethylsilyl (TMS) 

derivatives. After one hour reaction at 70 ºC, these silylated extracts were analyzed using 

GC/MS along with authentic standards. 

 

5.3 Results and Discussion 

Our results show that the observed 24-hr average OC concentration jumped from 

3.5 to 17.7 µg m
-3
 on the event day, accounting for more than 70% (when converted to 

organic matter by a factor of 1.5 [Lee et al., 2008]) of the total 24-hr average PM2.5 mass 

of 37 µg m
-3
. Major sources of carbonaceous aerosols are traced using variations of their 

associated organic tracers.    

5.3.1 Organic Tracers of Biomass Burning 

During the smoke, large increases were observed for biomass burning tracers 

(levoglucosan, resin acids, retene, etc.). Levoglucosan was detected in all ambient 

samples as the most abundant organic compound (Figure 5.1). Before and after the smoke 

event, the observed levoglucosan concentrations were 114 and 145 ng m
-3
, respectively. 

On the event day, the levoglucosan concentration increased dramatically to 1210 ng m
-3
 

and contributed 7% of the total OC, suggesting that the wood burning emission impact 

was 10 times higher on the event day than the non-smoke days. Along with levoglucosan, 

concentrations of resin acids also increased, especially dehydroabietic acid and 7-

oxodehydroabietic acid, increasing to 42 and 19 ng m
-3
, approximately 9 and 23 times 

higher respectively than the levels before the burning day. Unlike levoglucosan, their 



 112 

ambient concentrations remained elevated after the fires (Figure 5.2). To elucidate the 

processes occurring during transport, comparisons between wood burning source 

emissions and ambient data are conducted here. Ratios of major resin acids to 

levoglucosan were calculated and compared for both ambient data and a few source 

emissions from prominent softwood species in the southern United States (Table 5.1). In 

the softwood source emissions, abietic acid and dehydroabietic acid generally account for 

the majority of resin acids, about 58% and 32% respectively on average, while 7-

oxodehydroabietic acid is minor. However, dehydroabietic acid and 7-oxodehydroabietic 

acid constituted a major fraction of the observed resin acids, about 65% and 29% 

respectively, in the ambient sample impacted by the fires. This comparison provides 

evidence that dehydroabietic acid and 7-oxodehydroabietic acid are being formed from 

other resin acids (i.e. diterpenoids) during the 3-4 hour (around 80 km travel distance) 

transport from the burning sites to the monitors. Note that further alterations of 

dehydroabietic acid and 7-oxodehydroabietic acid exist, leading to their ratios to 

levoglucosan being variable over time during transport. Previous studies have also 

proposed that dehydroabietic acid and 7-oxodehydroabietic acid can be formed through 

oxidation processes of other resin acids (i.e. abietic acids), resulting in accumulated 

concentrations in the atmosphere [Oros and Simoneit, 2001; Rogge et al., 1993e]. 

Although most PAHs did not show significant elevation in ambient concentrations during 

the event day, retene, a potential softwood burning tracer, increased by around 12 and 7 

times, respectively compared to before and after the fire, and predominated among all 

PAHs (Figure 5.2).     
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Figure 5.1. 24-hr average ambient concentrations of OC and levoglucosan observed 

before, during and after the event day at Atlanta area, GA.   

 

 

 

 

Table 5.1. Ratios of Major Resin Acids to Levoglucosan in Source Emissions and 

Ambient Samples 

Softwood Emissions Ambient Samples 

Compounds Loblolly 
Pine a 

Slash 
Pine a 

White 
pine b 

Hemlock b 
Balsam 
fir b 

Before_Fire Smoke After_Fire 

Pimaric acid 0.069 0.029 0.008 0.001 0.001 0.001 0.000 0.002 

Sandaracopimaric acid 0.013 0.011 0.026 0.002 0.001 0.003 0.001 0.011 

Dehydroabietic acid 0.339 0.141 0.149 0.017 0.028 0.041 0.034 0.248 

Abietic acid 0.801 0.056 0.391 0.021 0.240 0.001 0.000 0.002 

Abieta-6,8,11,13,15-
pentae-18-oic acid 

0.007 0.003 0.005 0.000 0.002 0.000 0.000 0.000 

Abieta-8,11,13,15-tetraen-
18-oic acid 

0.021 0.000 0.010 0.001 0.003 0.001 0.001 0.001 

7-Oxodehydroabietic acid 0.009 0.004 0.005 0.001 0.000 0.007 0.015 0.042 

Note: 
a
 softwood species tested by Fine et al. [Fine et al., 2002]; 

b
 softwood species tested by Fine et al. 

[Fine et al., 2001].      
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Figure 5.2. 24-hr average concentrations of resin acids and PAHs observed before, during 

and after the event day at Atlanta area, GA. 
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Figure 5.3. 24-hr average concentrations of n-alkanes and n-alkanoic acids observed 

before, during and after the event day at Atlanta area, GA.   
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n-alkanes and n-alkanoic acids identified in this study ranged from C17 to C36 and 

from C14 to C30, respectively (Figure 5.3). Generally, n-alkanes are associated with plant 

wax and fossil fuel contributions, depending on carbon numbers. To approximately 

compare source impacts from plant wax versus fossil fuel combustion, the carbon 

preference index (CPI) measuring carbon number predominance in homologous 

compound series is calculated [Mazurek and Simoneit, 1984; Oros et al., 2006]. In the 

samples before and after the fire, n-alkanes only show a slight odd carbon number 

predominance with CPIs of 1.4 and 1.7, respectively. However, n-alkanes exhibited 

distinctly strong odd carbon number predominance (CPI=3.1, carbon number maximum 

Cmax=29) on the event day, reflecting a major contribution from plant waxes. Likewise, n-

alkanoic acids had a strong even carbon number predominance on the event day 

(CPI=5.7, Cmax=24). The concentration of even-over-odd carbon number series on the 

event day was 50 ng m
-3
, much larger than those before and after the event (12 and 10 ng 

m
-3
, respectively). Thus, a dominant contribution from plant waxes is suggested. These 

compounds are considered natural products of epicuticular waxes and internal lipid 

substances in leaf surfaces and emitted as vegetative detritus or through direct thermal 

volatilization [Rogge et al., 1993a; Simoneit, 2002]. Higher leaf temperatures presumably 

lead to volatilization of these high-molecular weight organic compounds, which can then 

condense into the particle phase in the atmosphere. This result indicates that such waxes 

are not unique tracers for vegetative detritus when wildland fires also significantly impact 

air quality. 

5.3.2 Other Primary Organic Tracers 
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Non-biomass organic molecular markers were also analyzed as indicators of other 

major primary sources. Vehicular engine exhaust and meat cooking are the two other 

major sources of primary organic carbon in the Atlanta urban area [Lee et al., 2007; Liu 

et al., 2005; Marmur et al., 2005; Zheng et al., 2007]. The before, during and after 

concentrations of hopanes and steranes, both organic markers for internal combustion 

engine emissions, did not show significant variation, i.e. 1.7, 1.7 and 1.0 ng m
-3
 (Figure 

5.4). Cholesterol, an organic tracer of meat cooking, did not exhibit major variation as 

well (Figure 5.5). Both suggest that primary sources other than prescribed fire have 

similar influences on Atlanta, GA before, during and after the event day. This point has 

further foundation from prior studies, which have shown that there is a significant 

increase in OC within Atlanta compared with a more rural site (e.g., Yorkville, GA) by 

analyzing regional EC and OC levels from the Southeastern Aerosol Research and 

Characterization (SEARCH) network [Edgerton et al., 2005; Hansen et al., 2003; Zheng 

et al., 2006b]. Furthermore, the sampling sites used here are spread out around metro 

Atlanta and capture the urban mix of primary sources. By compositing the filters, the 

results are relatively insensitive to changes in wind direction. On the other hand, very 

large increases in continuous PM2.5 and OC values were observed when the plume, which 

originated in a rural area, hit the urban monitors in Atlanta [Lee et al., 2008]. These 

increases are consistent with those increases measured on the filters, and overwhelmed 

the background in this area. On the event day, PM2.5 increased by 23.9 µg m
-3 
(over 60%) 

while OC increased by 14.2 µg m
-3
 (over 80%). Biomass burning-related organic tracers 

(levoglucosan, resin acids and retene) increased by 7-23 times. In addition, Community 

Multi-scale Air Quality (CMAQ) modeling showed that the timing of the increase in OC 
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is consistent with when the prescribed fire plume impacted Atlanta [Hu et al., 2008]. 

These points strongly support that vehicular sources and meat cooking emissions are not 

responsible for the large increase in PM2.5 and OC on the event day, and that the greatly 

increased carbonaceous aerosol concentrations during the smoke episode are from 

prescribed fires. Source apportionment results calculated using organic molecular 

marker-based chemical mass balance (CMB-MM) model also indicate significant 

increases of prescribed burning emissions on the event day, but not for other major 

primary sources (i.e. vehicular source and meat cooking) (Table 5.2). Moreover, about 

43% of the total observed OC can not be explained by primary source contributions, 

suggesting that secondary organic aerosol (SOA) is also a significant contributor to the 

increased OC.  

5.3.3 Secondary Organic Tracers 

Our results for secondary organic tracers indicate that additional biogenic SOA 

were formed during the February 28
th
, 2007 fire episode. 2-methyltetrols, secondary 

organic products of isoprene, were detected only on the smoke plume day with a 

concentration of 0.8 ng m
-3
 (Figure 5.5). Pinonic acid and pinic acid,  photo-oxidation 

products of monoterpenes, increased from 2.9 and 1.2 ng m
-3
 to 5.0 and 3.1 ng m

-3
, 

respectively, from the day prior to the fire through the smoke day (Figure 5.5). 

Additionally, elevated dicarboxylic acids (alkanedioic acids and dicarboxylic aromatic 

acids) provided supportive evidence of increased SOA formation in the atmosphere. They 

are further considered here products of biogenic emissions enhanced by the fire since 

significant increases were not found in anthropogenic emissions (i.e. vehicular source and 

meat cooking). The sums of dicarboxylic acids were 7.5, 51, 8.4 ng m
-3
 before, during 
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and after the event, respectively. There are three possible hypotheses relating to the large 

increases in these dicarboxylic acids. The most direct one is that precursors of these 

compounds are associated with prescribed fire emissions. As stated previously, emissions 

of biogenic VOC and SVOC (isoprenes, terpenes, sesquiterpenes, alcohols, esters, 

carbonyls, acids, etc.) would be enhanced by either wood combustion process or 

increasing leaf temperature. Emissions of isoprenoids (isoprene and monoterpene) have 

been observed to be higher during forest fires due to increased temperatures [Alessio et 

al., 2004]. A previous study also suggests that leaf temperatures rising from 25 to 35 ºC 

would increase biogenic VOC and SVOC emissions by 4 and 1.5 times from isoprene-

emitting deciduous trees and terpene-emitting conifers, respectively [Lamb et al., 1987]. 

The second hypothesis is that the dramatic increase in OC mass can enhance formation of 

SOA due to increased partitioning of these diacids to the particle phase. However, unless 

there is a significant chemical affinity between OC and the compounds, such a shift is not 

expected to be so large (less than 10% of enhancement in SOA) [Nopmongcol et al., 

2007; Odum et al., 1996]. The third hypothesis is that enhanced photo-oxidation 

occurred. The observed increase of ozone in the plume is indicative that this effect might 

exist, but would be limited since ozone increased about 50% (from around 60 to 90 ppb), 

significantly less than the increase in dicarboxylic acids (8 times higher). Therefore, 

among the three hypotheses above, the evidence strongly supports that biomass burning 

is a major contributor to precursors of dicarboxylic acids. Results of air quality modeling 

and measurement of water soluble organic carbon (WSOC) provide further supporting 

evidence [Hu et al., 2008; Lee et al., 2008].     
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Figure 5.4. 24-hr average concentrations of alkanedioic acids, hopanes and steranes 

observed before, during and after the event day at Atlanta area, GA.   
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Figure 5.5. 24-hr average concentrations of other compounds (cholesterol, 2-

methyltetrols, pinonic acid and pinic acid) observed before, during and after the event 

day at Atlanta area, GA.   

 

 

 

Table 5.2. Source Contributions to Organic Carbons in PM2.5 (unit: µg m
-3
) 

Samples 

Diesel 
Vehicle 

Exhaust 

Gasoline 
Vehicle 

Exhaust 

Vegetative 
Detritus 

Meat 
Cooking 

Road Dust 
Nature Gas 
Combustion 

Prescribed 
Wood 

Burning 
Others 

Before_Fire 0.691 ± 0.105 0.202 ± 0.055 0.013 ± 0.006 0.467 ± 0.225 0.004 ± 0.004 0.008 ± 0.003 1.137 ± 0.331 0.996 

Event 0.808 ± 0.186 0.209 ± 0.117 0.090 ± 0.044 0.373 ± 0.194 N/A a N/A 8.676 ± 1.851 7.530 

After_Fire 0.247 ± 0.068 0.107 ± 0.029 0.011 ± 0.005 0.297 ± 0.146 0.003 ± 0.002 0.001 ± 0.002 0.952 ± 0.228 1.490 

Note: 
a
 ‘N/A’ indicates that this source was not identified in the ambient sample. 
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5.3.4 Source Profiles for an Aged Plume 

Capturing the fire event provides information to assess the source composition 

profiles of an aged prescribed fire plume. The above discussions indicate that the large 

increases in PM2.5, OC and associated chemical species on the event day are a direct 

contribution from prescribed fire emissions. From this result, associated aged source 

profiles can be derived. Here, two approximate source composition profiles were 

developed for the aged biomass burning plume by considering differences between the 

before_event day (non-fire event impacted) and the event day, designated ‘aged_plume 

profile’ and ‘primary_plume profile’. ‘Aged_plume profile’ is constituted by fractions of 

individual chemical species (increased concentrations) in the total increased (fire-caused 

total) PM2.5 mass, i.e. 23.9 µg m
-3
, on the event day (Table 5.3). This profile contains 

chemical compositions of the aged plume, but is not the primary PM2.5 source profile due 

to large quantities of SOA in aerosol from the fire emissions. ‘Primary_plume profile’ is 

then calculated using fractions of individual chemical species (increased concentrations) 

in the fire-caused primary PM2.5 mass where the estimated fire-caused secondary organic 

carbon (SOC) was subtracted from the fire-caused total PM2.5 mass on the event day 

(Table 5.3). The fire-caused SOC on the event was estimated based on the CMB-MM 

modeling results and measured EC/OC ratios. Briefly, the CMB-MM apportionment 

results indicate that prescribed fires contributed approximately 1.1 and 8.7 µg m
-3
 to the 

total primary OC before and on the event day, respectively (Table 5.2). The difference, 

7.6 µg m
-3
, is attributed to the plumes. Results here find that the total, primary plus 

secondary, impact of the plumes on OC is 14.2 µg m
-3
, suggesting that 6.6 µg m

-3
 (47% 

of the fire-caused total OC) comes from enhanced SOC. A comparable SOC fraction in 
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the fire-caused total OC was also estimated using the EC/OC ratio method. In the aged 

plume, the fire-caused EC/OC ratio is 0.039 while a value of 0.065 has been measured for 

prescribed burning emissions in Georgia [Lee et al., 2005a]. The lower EC/OC ratio 

suggests SOA formation in the aged plume. Using those ratios, SOC is calculated to 

account for 40% of the fire-caused total OC. Averaging the two, 44% of fire-caused total 

OC is taken as SOC during the event, and the fire-caused primary OC (POCfc) is then 

estimated by:   

( ) ( ) ( ) ( )[ ] ( )SOCSOCfc f1eventbeforeOCeventOCf1causedfireOCPOC −×−−=−×−=   

           (5.1) 

where fsoc is the estimated SOC fraction in the fire-caused total OC. Similarly, the amount 

of fire_caused primary PM2.5 (PPMfc) is calculated as:    

( ) ( )[ ] ( ) SOCfc fcausedfireOCeventbeforePMeventPMPPM ×−−−−=   (5.2) 

Finally, fractions of individual species (fi) in fire_caused primary PM2.5 are found as:  

( ) ( )
fc

ii
i

PPM

eventbeforeCeventC
f

−−
=       (5.3) 

where Ci is the ambient concentration of individual chemical species in PM2.5 that are 

viewed as being dominated by primary emissions. An overall uncertainty of each 

chemical species in the two plume source profiles was calculated by propagating 

uncertainties associated with the observed OC, estimated SOC fraction and measured 

chemical species (i.e. organic compounds, EC, ions and trace metals). Note that 

additional uncertainties would be caused in estimation of SOC due to uncertainties of the 

CMB-MM results and biases of the applied OC/EC ratios which are obtained from 

another prescribed burning plume in this area.                         
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Our study indicates that the ‘primary_plume profile’ derived from the fire event is 

comparable with the prescribed burning emission profile measured by Lee et al. (2005) 

for some organic compounds, but significantly different for others (Table 5.3 and Figure 

5.6). In the aged fire plume, levoglucosan accounts for 14% of primary OC, comparable 

to 9.5% in the profile of Lee et al. (2005). Most n-alkanes also show comparable levels 

for the two source profiles. Hopanes and steranes were not significant in either set. The 

ratio of water-soluble potassium (K
+
)/OC in the ‘primary_plume profile’ is 0.0067, lower 

than the values in Lee et al. (0.011) and in Fine et al. (0.012 on average), but comparable 

to the average ratio of 0.0058 from foliar fuel combustion [Fine et al., 2004a; Hays et al., 

2002; Lee et al., 2005a]. However, significant differences were found for the fractions of 

PAHs, resin acids, n-alkanoic acid and dicarboxylic acids, suggesting aging of fire smoke 

after a 3-4 hour travel distance. Lee et al. (2005) measured higher abundances for many 

PAHs and resin acids, implying direct combustion is the main contributor of these 

compounds and significant chemical alteration occurs during transport, especially for 

resin acids. In contrast, the aged plume has distinctly higher dicarboxylic acids 

(alkanedioic acids and dicarboxylic aromatic acids) fractions. Enhanced SOA formation 

in the atmosphere from the fire is suggested by these secondary indicators. The profile 

comparison between prescribed fire source emission and aged plume is useful to 

understand evolution of wood smoke during transport and to assess the organic species 

applied in CMB-MM modeling. Impacts from aging process of smoke plume should be 

considered in source apportionment methodology using CMB model, i.e. selection of 

fitting species.               
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5.4 Conclusions 

Large increases in PM2.5 and OC in Atlanta caused by an aged prescribed fire 

plume through direct burning emissions and formation of secondary organic aerosols was 

captured by a system of monitors. Organic tracers of biomass burning, levoglucosan, 

resin acids and retene, exhibited sharp increases in concentrations during the episode. 

Observed resin acids and retene indicated predominant softwood (conifers) burning. 

Increases in resin acids were accompanied by high levels of dehydroabietic acids and 7-

oxodehydroabietic acids, mainly formed during transport. Carbon number predominance 

for n-alkanes (odd over even) and n-alkanoic acids (even over odd) suggested that 

emissions from heat-exposed vegetation are important as one of major sources for 

increasing OC, especially secondary OC. Secondary organic tracers were observed with 

significantly higher ambient concentrations, providing further support for biogenic SOA 

formation. These data allow estimating source profiles for aged fire plumes, which can be 

used for improving source apportionment of wood burning by CMB modeling.     
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Figure 5.6. Comparison between source composition profiles developed from the aged 

biomass burning plume on the event and the prescribed burning emission measured by 

Lee et al. (2005).  The profiles are composed of individual species fractions, normalized 

to primary PM2.5 mass. A log-log scale is used.  
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CHAPTER 6 

DETAILED CHEMICAL CHARACTERIZATION AND AGING OF 

WILDFIRE AEROSOLS IN THE SOUTHEASTERN U.S 

 

(Bo Yan, Yongtao Hu, Xiaolu Zhang, Di Tian, Sivaraman Balachandran, Hyeon Kook 

Kim, Rodney J. Weber, Mei Zheng, and Armistead G. Russell. Journal of Geophysical 

Research-Atmospheres, in preparation)
 

 

Abstract 

In April of 2007, a major wildfire originated in the Okefenokee National Wildlife 

Refuge in Georgia, and over next two months spread across the Georgia-Florida border. 

Burning out about 388,017 aces of wildland, the fire led to dozens of hazy days over 

states in the southeastern U.S. The wildfire-derived PM2.5 was characterized at three 

sampling sites at different distances downwind of the fire origin for detailed chemical 

composition, including organic carbon (OC), elemental carbon (EC), water-soluble OC 

(WSOC), ionic species, trace metals, and solvent-extractable organic compounds.  

The highest increases in hourly and 24-hr PM2.5 were observed to reach over 340 

and 100 µg m
-3
, respectively, on the smoke days. Wildfire-derived PM2.5 was dominated 

by organic matter, making up 60-85% of the PM2.5 mass. Significant increases were 

found for biomass burning tracers (levoglucosan, resin acids, retene, etc.), n-alkanes, n-

alkanoic acids, as well as some inorganic species, such as water-soluble potassium (K
+
), 

ammonium (NH4
+
), nitrate (NO3

-
), sulfate (SO4

2-
), and EC. The ratios of levoglucosan vs. 

inorganic indicators of biomass burning (K
+
 and EC) did not show significant decreases 
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from the wildfire origin to the monitors 400 km downwind. However, resin acids are 

subject to alteration in the atmosphere. It is interesting to note that hopanes increased 

significantly during wildfire smoke events, implying that ambient hopanes, unique 

organic tracers of mobile source, can also be produced by thermal alteration of biogenic 

hopanoid precursors. The source profiles for aged wildfire plumes were developed and 

can be used for improving source apportionment of biomass burning by CMB modeling.    

Secondary organic tracers, 2-methyltetrols and pinic acid, were observed with 

significantly higher concentrations at the downwind sites, providing further support for 

enhanced formation of biogenic SOA. However, cis-pinonic acid, another photo-

oxidation product of monoterpenes, did not show significant increase. In addition, 

elevated aromatic and aliphatic diacids were observed at all downwind sites, suggesting 

that they are not only secondarily created from anthropogenic emissions but also formed 

from or enhanced by wildfire-derived biogenic emissions in the atmosphere.        

 

6.1 Introduction 

Biomass burning is a major source of fine particulate matter (PM2.5) in the 

atmosphere on both regional and global scales, and has significant impacts on air quality, 

visibility, human health and climate [Bond et al., 2004; Hobbs et al., 1997; Lighty et al., 

2000; Penner et al., 1992; Reid et al., 2005]. It is estimated that wildland fire, including 

wildfires and prescribed burning, contributes about 20% of total PM2.5 emissions in the 

United States [U.S. EPA, 2000]. In 2007, a total of 85,705 wildland fires were reported 

nationally to have burned 9,328,045 acres, over 60% of which were caused by wildfires  

[NIFC, 2008]. The frequency and intensity of wildfire are expected to increase in the 
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future as a result of climate change, which is elevating spring and summer temperatures 

[Flannigan et al., 1998; Westerling et al., 2006].  

Such large and increasing emission contributions are of concern to affected areas, 

especially those with large populations and local related air pollutant concentrations near 

or above the applicable air quality standards. For instance, the Big Turnaround Complex 

(BTC) wildfire, originating in the Okefenokee National Wildlife Refuge in Georgia and 

spreading across the Georgia–Florida border, resulted in elevated pollutant levels from 

April through June 2007. This massive wildfire burned about 390,000 aces of saw 

palmettos, titis, gallberry hollies, scrubs and varied pines. Ranked the 11th largest 

wildfire in U.S. since 1997 and the largest fire for the US Fish & Wildlife Service outside 

Alaska [NIFC, 2008], the fire led to dozens of hazy days over Georgia, Florida, Alabama 

and parts of neighboring states. It was estimated that millions of residents in this region 

were exposed to the unhealthy air for hours or even days. For example, thick wildfire 

smoke plumes hit the metropolitan Atlanta, GA and surrounding areas several times 

within one month (May 2007), resulting in ambient PM2.5 concentrations of up to 76 µg 

m
-3
 (24-hr average) and 365 µg m

-3
 (1-hr average).  

Previous studies on biomass burning have often concentrated on residential and 

commercial wood combustion, e.g., fireplace and woodstove wood combustion [Fine et 

al., 2002; 2004a; Hays et al., 2003; Schauer et al., 2001], as well as agricultural biomass 

burning [Hays et al., 2002]. Recently, chemical composition and air quality impacts of 

prescribed burning emissions have been investigated, especially in the southern states 

where prescribed burning is applied increasingly in agriculture and wildland management 

[Lee et al., 2008; Yan et al., 2008a]. However, detailed data speciating fine organic 
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carbon (OC) and PM2.5 impacted by wildfires is sparse, especially in the southern states, 

and even less data is available for both fresh and aged plumes originated from the same 

wildfire event. Consequently, the aging process of specific organic tracers during long-

range transport is not well known for wildfire emissions, even though it is critical for air 

quality management as well as application and assessment of molecular marker based 

receptor models in source apportionment [Robinson et al., 2006b]. Here, the Okefenokee 

wildfire plumes were captured by downwind monitors at different distances away from 

the fire origin. This provides an opportunity to further understand atmospheric processes 

impacting the aging of fire plumes, assess formation of secondary organic aerosol (SOA) 

enhanced by wildfires, and approximate source composition profiles of wildfire 

emissions for use in future source apportionment.       

In this study, chemical composition of aerosols was characterized on days heavily 

impacted by the plume from the BTC wildfire, and contrasted against days less directly 

impacted. Routine observations of PM2.5 composition include OC, elemental carbon (EC), 

ions, and trace metals. As the major component of PM2.5 from biomass burning 

emissions, fine OC is further characterized by gas chromatography/mass spectrometry 

(GC/MS) analysis for detailed composition of organic compounds including n-alkanes, 

hopanes, steranes, n-alkanoic acids, alkanedioic acids, polycyclic aromatic hydrocarbons 

(PAHs), resin acids, and others (syringols, levoglucosan, cholesterol, 2-methyltetrols, 

etc.). Some of these compounds are reasonably used as to track specific sources of 

carbonaceous aerosols.  

Source impacts from biomass burning, in particular, were traced through a few 

organic molecular markers including levoglucosan, resin acids, syringols and retene. 
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Levoglucosan is considered a particularly useful tracer of biomass burning [Simoneit et 

al., 1999], and is frequently used for source impact studies because of its large emission 

abundance and reasonable thermal stability in the atmosphere [Fraser and Lakshmanan, 

2000; Schauer and Cass, 2000]. Resin acids are thermal alteration products of coniferous 

wood resins and emitted exclusively from softwood burning (various pines, firs, etc.) 

[Rogge et al., 1998; Simoneit et al., 1993; Standley and Simoneit, 1994]. In contrast, 

hardwood combustion produces much higher quantities of syringols [Hawthorne et al., 

1988; Hawthorne et al., 1989]. Although PAHs are emitted from multiple combustion 

processes of fuels (biomass, natural gas, diesel and gasoline) and ubiquitous in the 

atmosphere, retene, a thermal alteration of abietane compounds (resin diterpenoids), is 

considered as an organic tracer for coniferous wood burning [Ramdahl, 1983]. Potassium 

(K), an important inorganic tracer of biomass burning, is widely applied because of its 

abundant fraction in emissions [Hays et al., 2002; Kim et al., 2003; Schauer et al., 2001]. 

Along with receptor modeling, these tracers were used to quantify source impacts of 

biomass burning on PM2.5. Their aging processes during transport were investigated by 

comparing these organic tracers with EC and a few other inorganic species.   

 

6.2 Experimental Section 

6.2.1 Ambient Aerosol Sampling   

Filter samples from a variety of ambient air monitoring networks were utilized 

(Figure 6.1). Daily PM2.5 samples were collected on 47 mm filters by particulate 

composition monitors (PCM) at the Assessment of Spatial Aerosol Composition in 

Atlanta (ASACA) sites [Butler et al., 2003]. Three ASACA urban sites (Fire Station #8 
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(FS8), Fort McPherson (FT), and South Dekalb (SD)) are located in metropolitan Atlanta, 

about 400 km away from the wildfires in Okefenokee National Wildlife Refuge. Hourly 

PM2.5 was also measured in the metropolitan Atlanta and surrounding areas at the 

Southeastern Aerosol Research and Characterization (SEARCH) sites [Hansen et al., 

2003], as well as at the U.S. Environmental Protection Agency’s (EPA) State and Local 

Air Monitoring Station (SLAMS) sites [Demerjian, 2000]. In Bibb County, GA, about 

120 km southeast of Atlanta or 280 km northwest of the wildfires, 24-hr PM2.5 samples 

were collected by PCM every 6 days at a Speciation Trends Network (STN) site (Allied 

Chemicals, Macon) [Chu et al., 2004], and hourly data was measured at a nearby SLAMS 

site (Macon Southeast). In Coffee County, GA, about 60 km northwest of the wildfires, 

24-hr PM2.5 was collected every 6 days at a STN site (Douglas). Just inside the 

Okefenokee National Wildlife Refuge, an Interagency Monitoring of Protected Visual 

Environments (IMPROVE) monitor was sampling 24-hr PM2.5 every 3 days [Eldred et 

al., 1997]. In April and May of 2007, the ambient air monitors in the metropolitan 

Atlanta area captured the wildfire plumes on May 16, May 22, and May 27. The air 

monitors in Bibb County captured one heavy smoke plume on May 12, and the one in the 

Coffee site was impacted by smoke plumes several times (Table 6.1).     

The 24-hr filter samples collected from the ASACA sites were individually 

analyzed for OC/EC, trace metals, and ions using thermal optical transmittance (TOT), 

X-ray fluorescence (XRF) and ion chromatography (IC), respectively [Baumann et al., 

2003; Lee et al., 2005a; Lee et al., 2008]. Chemical composition (OC, EC, ions and trace 

metals) of 24-hr ambient PM2.5 collected at the STN and IMPROVE sites were measured 

by RTI international and Crocker Nuclear Laboratory in UC Davis, respectively. Note 
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that the data of PM2.5 mass and trace metals is not available for a few smoke samples 

collected at the Okefenokee site due to overloading.     

 

 

Figure 6.1. Ambient air monitors in metropolitan Atlanta, Georgia and southern Georgia 

impacted by the wildfire plumes. FS8, FT and SD are the ASACA sites; Bibb and Coffee 

are the STN sites; OKEF is an IMPROVE site; JST is an SEARCH site; and the others 

are the SLAMS sites. The Okefenokee wildfires area is circled (lower right corner).   
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Table 6.1. ASACA and STN Composite PCM Non-Smoke and Smoke Samples Used for 

GC/MS Organic Tracer analysis  

Composite 

Samples 

Combination 

Sites 
Combination Sampling Date 

PM2.5  

(µg.m-3) 

OC  

(µg.m-3) 

EC  

(µg.m-3) 
OC/EC 

ASACA Samples       

NonSmoke-1 FS8, FT, SD 05/14 - 05/15 14.9 4.09 0.74 5.54 

Smoke-1 FS8, FT, SD 5/16/2007 25.0 10.3 1.25 8.24 

NonSmoke-2 FS8, FT, SD 05/17 - 05/19 10.8 2.56 0.62 4.10 

Smoke-2 FS8, FT, SD 5/22/2007 53.6 25.3 2.10 12.07 

NonSmoke-3 FS8, FT, SD 05/24 - 05/25 10.0 3.22 0.75 4.27 

Smoke-3 FS8, FT, SD 5/27/2007 46.2 22.7 1.68 13.50 

NonSmoke-4 FS8, FT, SD 05/28 - 05/29 14.6 3.41 0.65 5.22 

       

STN Samples       

NonSmoke-Bibb Bibb 
04/18, 04/30, 05/06, 

 05/18, 05/24 
16.2 5.21 0.75 6.95 

Smoke-Bibb Bibb 5/12/2007 117 62.8 1.22 51.5 

NonSmoke-Coffee Coffee 
03/31, 04/06, 04/12,  

05/24, 05/30 
10.8 3.54 0.31 11.4 

Smoke-Coffee Coffee 
04/18, 04/24, 04/30,  

05/06, 05/12/07 
19.9 7.38 0.55 13.4 

Note: ‘FS8’, ‘FT’ and ‘SD’ denote the ASACA urban sites at Fire Station #8, Fort McPherson and South 

Dekalb, respectively. ‘Bibb’ and ‘Coffee’ indicate the STN sites at Bibb county and Coffee county, GA, 

respectively.    

 

 

 

6.2.2 Organic Speciation Using GC/MS and IC 

Owing to low air volumes, OC mass on a single PCM filter is usually not enough 

for GC/MS organic tracer analysis. Therefore, individual PCM filters from the ASACA 

and the STN sites were combined as a few non-smoke and smoke samples (Table 6.1). 

These composite samples, along with composite field blanks, were analyzed for solvent-

extractable organic compounds in PM2.5 using a standardized GC/MS method described 

previously [Nolte et al., 2002; Yan et al., 2008a; Zheng et al., 2002; Zheng et al., 2006b]. 

The ASACA and STN filters were also measured for water-soluble OC (WSOC) with a 
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Total Organic Carbon (TOC) analyzer (Sievers Model 800 Turbo, Boulder, CO) [Sullivan 

et al., 2004]. Additionally, quartz filters from the STN sites were further analyzed for 

levoglucosan with the IC method [Engling et al., 2006].    

 

 

Figure 6.2. Hourly ambient concentrations of PM2.5 observed in the metropolitan Atlanta, 

GA and surrounding areas during the wildfire episodes.     
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6.3 Results and Discussion 

6.3.1 Ambient PM2.5 and OC 

Between May 15-28, 2007, the metropolitan Atlanta and nearby areas were 

impacted by wildfire smoke plumes a few times. Large increases of hourly PM2.5 were 

observed by many monitors in this region (Figure 6.2). The highest increase (over 340 µg 

m
-3
) in hourly PM2.5 occurred at MacDonough on May 22, following by increases of over 

240 and 230 µg m
-3
 in Newnan on May 26 and South Dekalb on May 27, respectively. 

Three of these smoke events were captured by the ASACA air monitors (FS8, FT, and 

SD) (Table 6.1). The 24-hr PM2.5 concentrations (three sites combined) jumped from 

14.9, 10.8, and 10.0 µg m
-3 
to 25.0, 53.6, and 46.2 µg m

-3
, respectively, and the 24-hr OC 

(three sites combined) increased from 4.1, 2.6, and 3.2 µg m
-3 
to 10.3, 25.4, and 22.7 µg 

m
-3
, on the smoke days. Wildfire plumes were sampled by the air monitors at the Bibb, 

Coffee, and Okefenokee sites on or around May 12, 2007. At the Bibb site, hourly PM2.5 

increased rapidly from 20 to 142 µg m
-3
 within the first hour (10:00 am) when the plume 

arrived, and peaked at 342 µg m
-3
 by 2:00 pm (Figure 6.3). Correspondingly, the 24-hr 

PM2.5 and OC increased from 16.2 and 5.2 µg m
-3
 to 117 and 62.8 µg m

-3
, respectively. At 

the Okefenokee site, tremendously high 24-hr OC (up to 80 µg m
-3
) were found, 

contrasting against the average OC of 1.3 µg m
-3
 on non-smoke days (Figure 6.3). 

Smaller variations were observed at the Coffee site with increases of 9.1 and 3.8 µg m
-3
 

in 24-hr PM2.5 and OC, respectively. Such large and continuous increases in PM2.5 and 

OC were observed during the same period over these monitors that spread from the 

Georgia-Florida border to the metropolitan Atlanta area, suggesting direct impacts of 

wildfire emissions. Our back trajectory modeling indicates that these smoke plumes 
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originated in the Okefenokee National Wildlife Refuge (Figure D.1). This is supported by 

regionwide investigations in organic molecular markers and inorganic tracers of major 

primary sources.    

 

   

Figure 6.3. Ambient concentrations of PM2.5 during the wildfire episodes: (a) hourly 

PM2.5, O3 and mixing heights (estimated by the NOAA HYSPLIT back trajectory model) 

at the Bibb site; (b) daily PM2.5, OC, EC, K, and Fe at the Okefenokee site.  
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Table 6.2.  Fire-Caused PM2.5 Compositions (Cross-Ratios) in the Wildfire Plumes and 

Previous Studies   

This Wildfire Study 
Comparison Ratios (µg / µg) 

Okefenokee a Coffee b Bibb b Atlanta c 
Prescribed d Pine Wood e 

OC / PM2.5 0.43 0.39 0.49 0.55 0.59 0.53 

OM/PM2.5 0.65 0.59 0.74 0.83 0.89 0.80 

WSOC/OC n/a  f 0.61 g 0.49 0.47 0.71 n/a 

OC / EC 11.3 45.0 66.9 17.3 25.9 38.0 

OC / K 304.7 161.9 220.7 461.7 266.8 192.1 

K / EC 0.05 0.28 0.30 0.04 0.10 0.20 

Fe / EC 0.03 0.16 0.05 0.07 0.03 0.00 

Levoglucosan / K n/a 10.9 26.4 34.5 20.6 52.3 

Levoglucosan / EC n/a 3.03 8.01 1.29 2.00 10.3 

Dehydroabietic acid / Levoglucosan n/a 0.006 0.005 0.027 0.034 0.032 

7-oxodehydroabietic acid / Levoglucosan n/a 0.006 0.003 0.005 0.015 0.002 

Abietic Acid / Levoglucosan n/a 0 0 0 0 0.136 

Note: 
a
 IMPROVE data, and XRF values come from averages of smoke days; 

b
 STN data, and organic 

compounds are measured by GC/MS; 
c
 ASACA data, and organic compounds are measured by GC/MS; 

d
 

Lee et al. (2008) and Yan et al. (2008); 
e
 Schauer et al. (2001); 

f
 n/a data is not available; 

g
 partial filters are 

selected for averaging.   

 

Figure 6.4. 24-hr average ambient concentrations of OC and levoglucosan observed at the 

metropolitan Atlanta, Bibb, and Coffee sites during the wildfire episodes.     
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6.3.2 Organic and Inorganic Tracers of Biomass Burning 

Results indicate that the major component of PM2.5 from wildfire is OC, 

accounting for 40-55% of the PM2.5 mass or 60-85% when converted to organic matter 

(OM) (using a factor of 1.5 [Lee et al., 2008]) (Table 6.1). On the smoke days, large 

increases in biomass burning tracers (levoglucosan, resin acids, retene, etc.) were 

observed. Levoglucosan concentrations increased from 26.4, 41.1 and 21.9 ng m
-3
 to 

1248, 6664 and 309 ng m
-3 
at the Atlanta, Bibb, and Coffee sites, respectively, 

contributing 6%, 11%, and 5% of the total OC (Figure 6.4). Resin acids also increased 

significantly at the Atlanta and Bibb sites (Figure 6.5). Dehydroabietic acid and 7-

oxodehydroabietic acid, two major resin acids in aged wildfire plumes, increased by 

about 80 and 15 times at the Atlanta sites on the smoke days, respectively, and by 15 and 

8 times at the Bibb site. However, no significant increase was found at the Coffee site, 

implying that the composite smoke sample might be an ambiguous mixture of both fresh 

and aged plumes.  

To elucidate processes occurring during transport, ratios of major resin acids to 

levoglucosan were calculated and compared (Table 6.2). Abietic acid, the most abundant 

resin acid in softwood source emissions, was found in very small ratios to levoglucosan, 

whereas 7-oxodehydroabietic acid, a relatively minor component in source emissions, 

was several times higher. The ratios of dehydroabietic acid to levoglucosan varied in the 

ambient samples. This suggests that resin acids, unlike levoglucosan, are subject to 

alteration in the atmosphere, leading to their ratios to levoglucosan being variable over 

time during transport. Previous studies have also proposed that dehydroabietic acid and 

7-oxodehydroabietic acid can be formed by oxidation processes of other resin acids (e.g., 
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abietic acids) [Oros and Simoneit, 2001; Rogge et al., 1993e]. In addition, PAHs 

increased on the smoke days from 0.42, 0.47, and 0.13 ng m
-3
 to 2.2, 2.1, and 0.28 ng m

-3
 

at the Atlanta, Bibb and Coffee sites, respectively, and retene increased by 21, 5.8 and 1.8 

times (Figure 6.5).        

The wildfire emissions also caused large increases in concentrations of n-alkanes 

and n-alkanoic acids (Figure 6.6). Ambient n-alkanes increased from 4.2, 4.5, and 1.9 ng 

m
-3
 to 154, 369, and 46 ng m

-3
 at the Atlanta, Bibb and Coffee site, respectively, and n-

alkanoic acids increased from 19, 4.4, and 5.5 ng m
-3 
to 408, 1007, and 62 ng m

-3
. 

Generally, n-alkanes are associated with plant wax and fossil fuel contributions, and 

biomass emission is characterized by odd carbon number predominance [Mazurek and 

Simoneit, 1984; Oros et al., 2006]. In the non-smoke samples, n-alkanes only show a 

slight odd carbon number predominance with carbon number maximum (Cmax) of 23, 25, 

and 25 at the Atlanta, Bibb and Coffee sites, respectively. However, n-alkanes exhibited 

distinctly strong odd carbon number predominance (Cmax=29) on the smoke days. 

Likewise, n-alkanoic acids had a strong even-to-odd carbon number predominance on the 

smoke days (Cmax=24). Therefore, a dominant contribution from plant waxes is 

suggested. These compounds are natural products of epicuticular waxes and internal lipid 

substances on leaf surfaces and emitted as vegetative detritus (via leaf surface abrasion) 

or through direct thermal volatilization [Rogge et al., 1993a; Simoneit, 2002]. Higher leaf 

temperatures presumably lead to volatilization of these high-molecular weight organic 

compounds, which can then condense into the particle phase in the atmosphere. This 

result indicates that such waxes are not unique tracers for vegetative detritus when 

wildland fires also significantly impact air quality [Yan et al., 2008a].  
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Figure 6.5. 24-hr average concentrations of resin acids and PAHs observed at the 

metropolitan Atlanta, Bibb, and Coffee sites during the wildfire episodes. 
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Figure 6.6. 24-hr average concentrations of n-alkanes and n-alkanoic acids observed at 

the metropolitan Atlanta, Bibb, and Coffee sites during the wildfire episodes.  
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Figure 6.7. 24-hr average concentrations of other organic compounds (cholesterol, 2-

methyltetrols, cis-pinonic acid, pinic acid, and aromatic acids) and some inorganic 

components (EC, ions and trace metals) observed at the metropolitan Atlanta, Bibb, and 

Coffee sites during the wildfire episodes. Log scale is applied for Y axis. 
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Figure 6.8. 24-hr average concentrations of alkanedioic acids, hopanes and steranes 

observed at the metropolitan Atlanta, Bibb, and Coffee sites during the wildfire episodes. 
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The wildfire emissions also led to significant increases in ambient concentrations 

of some inorganic species such as potassium (K), ammonium (NH4
+
), nitrate (NO3

-
), 

sulfate (SO4
2-
) and EC (Figure 6.7). During the smoke events, potassium, an inorganic 

tracer of biomass burning, increased from 0.03, 0.05, and 0.05 µg m
-3
 to 0.08, 0.27 and 

0.07 µg m
-3
 at the Atlanta, Bibb and Coffee sites, respectively, and EC increased from 

0.69, 0.45, and 0.21 µg m
-3
 to 1.9, 1.0 and 0.50 µg m

-3
 at the same time.                

6.3.3 Other Primary Organic Tracers 

Non-biomass organic molecular markers were also analyzed as indicators of other major 

primary sources. Meat cooking and vehicular engine exhaust are the two other major 

sources of primary organic carbon in urban areas [Lee et al., 2007; Liu et al., 2005; 

Marmur et al., 2005; Zheng et al., 2007]. Cholesterol, an organic tracer of meat cooking, 

did not exhibit significant variation at the Atlanta sites, and was near or below detection 

limits at the Bibb and Coffee sites on the event days (Figure 6.7). Steranes, organic 

markers for mobile emissions, were not detected in filters from any monitor, whereas 

hopanes, also molecular markers of vehicle emissions, were measured to be significantly 

higher on the event days, increasing from 0.40, 0.51, and 0.07 ng m
-3
 to 2.6, 8.2, and 0.84 

ng m
-3
 at the Atlanta, Bibb, and Coffee sites, respectively (Figure 6.8). There is not any 

evidence either that contributions of mobile emissions varied significantly over the 

smoke affected area during the event days or that coal combustion emissions in this 

region could lead to significantly high levels in ambient hopanes [Oros and Simoneit, 

2000]. Wildfire emissions are the most likely sources of the elevated hopanes, which are 

about 10 times higher than the levels on the non-smoke events. Similarly, hopanes were 

also found to significantly increase on the prescribed burning smoke event that occurred 
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on February 28, 2007 [Yan et al., 2008a]. These interesting observations are further 

supported by previous studies. They proposed that 17β(H),2lβ(H)-hopanes or other 

biogenic hopanoid precursors produced by microbiota and some higher plants can 

thermally alter or mature under high temperatures to 17α(H),2lβ(H)-hopanes, organic 

tracers of vehicular emissions as well as the compounds measured in this research 

[Standley and Simoneit, 1987]. On the other hand, 17α(H),2lβ(H)-hopanes have not ever 

been reported to be detected in previous emission tests of residential and commercial 

wood combustion [Fine et al., 2002; 2004a; Rogge et al., 1998; Schauer et al., 2001], 

implying that these combustion processes cannot result in such thermal alteration of  

17β(H),2lβ(H)-hopanes with biological nature in origin. Therefore, our results indicate 

that such hopanes likely are not unique organic tracers for mobile sources when emission 

impacts of wildland fires are significant. Impacts of elevated hopanes should be 

considered for wildland fire smoke events; otherwise contributions of mobile sources, 

especially gasoline vehicle exhausts, would be overestimated at that time by receptor 

models (Table D.2).      

Very large increases in continuous PM2.5 and OC measurements were also 

observed when the wildfire plumes hit the urban monitors at the Atlanta, Bibb and Coffee 

sites. These increases are consistent with those increases measured on the PCM filters, 

and overwhelmed typical levels, especially at the Atlanta and Bibb sites. On the smoke 

events, PM2.5 increased by 37, 100 and 9.1 µg m
-3 
(or by 300%, over 600% and 80%) at 

the Atlanta, Bibb and Coffee sites, respectively, and OC increased by 21, 58 and 4.5 µg 

m
-3
 (or by over 600%, 1100% and 130%). Biomass burning-related organic tracers 

(levoglucosan, resin acids and retene) increased by up to 80, 160 and 13 times at the 
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Atlanta, Bibb and Coffee sites, respectively. Thus, vehicular sources and meat cooking 

emissions are likely not responsible for the large increase in PM2.5 and OC on the event 

days, and that the greatly increased concentrations are from the wildfire. Source 

apportionment results calculated using the molecular marker-based chemical mass 

balance (CMB-MM) model also indicate significant increases in wildfire emissions on 

the smoke days, but not for other major primary sources (i.e. meat cooking) ( Table D.2).  

6.3.4 Secondary Organic Tracers 

Wildfire emissions can enhance formation of biogenic SOA in the atmosphere 

[Hu et al., 2008; Yan et al., 2008a]. Here, 2-methyltetrols, secondary organic products of 

isoprene, on the non-smoke days were detected only at Atlanta (11 ng m-3) (Figure 6.7). 

However, 2-methyltetrols were detected at all monitors on the event days (43, 84, and 3.1 

ng m
-3
 at the Atlanta, Bibb and Coffee sites, respectively). Pinic acid, a photo-oxidation 

product of monoterpenes, increased from 3.0, 14 and 1.6 ng m
-3
 to 9.4, 99 and 3.6 ng m

-3
 

at the Atlanta, Bibb and Coffee sites, respectively, on the event days (Figure 6.7). 

However, cis-pinonic acid, another photo-oxidation product of monoterpenes, did not 

show significant increases, probably implying different mechanisms of atmospheric 

formation and fate for pinic acid and cis-pinonic acid in aged wildfire plumes. Elevated 

aromatic and aliphatic diacids were observed at all sites on the event days, providing 

supportive evidence of increased SOA formation in the atmosphere [Yan et al., 2008a]. 

Dicarboxylic acids increased from 4.6 and 0.4 ng m
-3
 to 42 and 125 ng m

-3
 on the event 

days at the Atlanta and Bibb sites, respectively, though less increase was detected at the 

Coffee site. This suggests that they are not only secondarily created from anthropogenic 

emissions but also enhanced by wildfire-derived biogenic emissions in the atmosphere.  
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6.3.5 Source Profiles for Aged Plumes 

Capturing the wildfire events provides information to develop source composition 

profiles of wildfire plumes and to further assess aging processes of wildfire-derived 

organic tracers. The above discussions indicate that the large increases in PM2.5, OC and 

associated chemical species on the smoke days are a direct contribution from wildfire 

emissions. From this result, associated source profiles for aged wildfire PM2.5 were 

derived. Here, two approximate source composition profiles were developed for each 

monitor for the aged wildfire plumes by considering differences between the non-smoke 

and smoke days, designated ‘aged_plume profile’ and ‘primary_plume profile’. 

‘Aged_plume profile’ contains fractions of individual chemical species (increased 

concentrations) in the total increased (fire-caused total) PM2.5 mass, i.e. 37, 100, and 9.1 

µg m
-3
 at the Atlanta, Bibb and Coffee sites, respectively (Table D.1). This profile 

contains chemical compositions of the aged plume, but is not the primary PM2.5 source 

profile due to large quantities of SOA in the aerosols from fire emissions. The 

‘Primary_plume profile’ was then calculated using fractions of individual chemical 

species (increased concentrations) in the fire-caused primary PM2.5 mass where the 

estimated fire-caused secondary organic carbon (SOC) was subtracted from the fire-

caused total PM2.5 mass on the event day (Table 6.3). The fire-caused SOC on the event 

days was estimated using measured OC/EC ratios. In the aged plumes, the fire-caused 

OC/EC ratios are 17.3, 66.9 and 45, whereas a value of 11.3 was measured at the 

Okefenokee site. To estimate primary OC/EC ratios in the wildfire emissions, the smoke 

plumes captured at the Okefenokee site are thought to be fresh or un-age. This is 

reasonable given this site is next to the wildfire and overwhelmingly dominated by fresh 
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wildfire emissions (Figure 6.3). The lower OC/EC ratios observed at the downwind sites 

suggest SOA formation in the aged plumes, assuming wildfire-caused ambient EC did 

not vary significantly during atmospheric transport. Using those ratios, SOCs are 

calculated to account for 34%, 83% and 75% of the fire-caused total OCs at the Atlanta, 

Bibb and Coffee sites, respectively. The fire-caused primary OC (POCfc) is then 

estimated by    

( ) ( ) ( ) ( )[ ] ( )SOCSOCfc f1smokenonOCsmokeOCf1causedfireOCPOC −×−−=−×−=   

           (6.1) 

where fsoc is the estimated SOC fraction in the fire-caused total OC. Similarly, the amount 

of fire_caused primary PM2.5 (PPMfc) is calculated as    

( ) ( )[ ] ( ) SOCfc fcausedfireOCsmokenonPMsmokePMPPM ×−−−−=   (6.2) 

Finally, fractions of individual species (fi) in fire_caused primary PM2.5 are calculated as  

( ) ( )
fc

ii
i

PPM

smokenonCsmokeC
f

−−
=       (6.3) 

where Ci is the ambient concentration of individual chemical species in PM2.5 that are 

viewed as being dominated by primary emissions. An overall uncertainty of each 

chemical species in the two plume source profiles was calculated by propagating 

uncertainties associated with the observed OC, estimated SOC fraction and measured 

chemical species (i.e. organic compounds, EC, ions and trace metals) (Table D.1). Note 

that significant uncertainties would be caused in estimation of SOC due to biases of the 

applied OC/EC ratios, which were obtained from different wildfire plumes probably 

under different atmospheric conditions.                         
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Figure 6.9. Source composition profiles of resin acids and PAHs approximated from the 

wildfire events and from the previous studies (primary OC normalized).  
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Figure 6.10. Source composition profiles of n-alkanes and n-alkanoic acids approximated 

from the wildfire events and from previous studies (primary OC normalized).    
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Figure 6.11. Source composition profiles of alkanedioic acids, hopanes, and steranes 

approximated from the wildfire events and from previous studies (primary OC 

normalized).  
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Figure 6.12. Source composition profiles of others, levoglucosan, metals and ions 

approximated from the wildfire events and from previous studies (primary OC 

normalized).  
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The ‘primary_plume profile’ derived from the wildfires is comparable to the aged 

prescribed burning profile [Yan et al., 2008b], the prescribed burning emission profile 

[Lee et al., 2005a], and the pine wood emission profile [Schauer et al., 2001], for some 

organic compounds, but significantly different for other compounds (Table 6.3 and 

Figures 6.9-6.12). In particular, the aged wildfire profiles at the Atlanta site are more 

comparable to the previous profiles. In the aged wildfire plumes, levoglucosan accounts 

for 11% of primary OC in Atlanta, comparable to 14% in the profile of Yan et al. (2008) 

and 9.5% in the profile of Lee et al. (2005) (Figure 6.12). However, the levoglucosan 

values at the Bibb and Coffee sites are much higher than the previous ones.  

There are a few possible reasons for the differences. Emission factors of wildfires 

changed during this episode as different biofuels burned or as combustion processes 

varied (e.g., flaming, smoldering), leading to variable fractions of levoglucosan in the 

wildfire emissions. Secondly, SOA in the aged wildfire plumes are overestimated at the 

Bibb and Coffee sites since the measured OC/EC ratios are subject to uncertainties, 

causing such high ratios of levoglucosan over primary OC. The second one is relatively 

more probable, considering comparisons of other primary organic tracers. In the aged 

source profiles, Bibb and Coffee always show significantly higher fractions of n-alkanes, 

n-alkanoic acids, and steranes, all of which are believed to be stable molecular markers 

(Figures 6.10 and 6.11). The ratio of water-soluble potassium (K
+
)/OC in the 

‘primary_plume profile’ is 0.0050. This is lower than the values in Lee et al. (0.011) and 

in Fine et al. (0.012 on average), but comparable to the average ratio of 0.0058 from 

foliar fuel combustion and in Yan et al. (0.0067) [Fine et al., 2004a; Hays et al., 2002; 

Lee et al., 2005a; Yan et al., 2008b]. Furthermore, significant differences were found for 
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the fractions of PAHs, resin acids, n-alkanoic acid and dicarboxylic acids, suggesting 

aging of fire smoke after a 12 hour travel distance. Lee et al. [2005] and Schauer et al. 

[2001] measured higher values in PAHs and resin acids, implying direct combustion is 

the main contributor of these compounds and significant chemical alteration occurs 

during transport, especially for resin acids (Figure 6.9). In contrast, the aged plume has 

distinctly higher aromatic and aliphatic diacids fractions (Figure 6.11). Enhanced SOA 

formation in the atmosphere from the fire is suggested by these secondary indicators.  

The profile comparison between prescribed fire source emissions and the aged 

plume is useful to understand the evolution of wood smoke during transport and to assess 

the organic species applied in CMB-MM modeling. Impacts from aging process of the 

smoke plume should be considered in source apportionment methodology using the CMB 

model, including selection of fitting species.        
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CHAPTER 7 

ANALYSIS OF SOURCE APPORTIONMENT APPLICATIONS FOR 

PM2.5 IN THE SOUTHEAST: INTERCOMPARISON BETWEEN 

TWO APPROACHES 

 

(Bo Yan, Sangil Lee, Lin Ke, Eric S. Edgerton, Mei Zheng, Armistead G. Russell. 

Atmospheric Environment, in preparation) 

 

Abstract 

Chemical mass balance (CMB) modeling has been successfully developed and 

frequently applied to apportion source contributions to organic carbon (OC) and fine 

particulate matter (PM2.5). Historically, inorganic species are used in CMB (CMB-

Regular). More recently, organic molecular markers have been employed (CMB-MM). 

CMB-Regular and CMB-MM approaches were used and compared in this study for 

conducting source apportionment of PM2.5 data from the Southeastern Aerosol Research 

and Characterization Study (SEARCH) project. Temporal (winter and summer) and 

spatial impacts (urban and rural) on source contributions were analyzed. Results indicate 

a few similarities in source contributions between the two approaches. Secondary sources 

including secondary sulfate, ammonium, and nitrate contributed the majority of PM2.5 

mass in the Southeast in both summer (>50%) and winter (>40%). Motor vehicle exhaust 

and biomass burning are the major primary sources of PM2.5 in this area. Motor vehicle 

exhaust, paved road dust and biomass burning impacts were both calculated using CMB-

Regular and CMB-MM. However, the differences of source apportionments between the 
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two approaches are sometimes rather great. The disagreement is caused by several 

reasons: (1) fitting species selected; (2) source category identified; (3) source profile 

applied; (4) model uncertainty. 

 

7.1 Introduction 

Effective control strategies for air pollutants require identification and 

quantification of impacts of specific sources on ambient air quality. As a receptor model, 

the Chemical Mass Balance (CMB) air quality model has been widely applied for source 

apportionment of ambient pollutants, especially particulate matter (PM) [Friedlander, 

1973; Hopke, 2003; Kowalczyk et al., 1978; Miller et al., 1972; Watson, 1979; Watson et 

al., 1984; Watson et al., 1990; Watson et al., 1994; Watson et al., 2002].  

Based on chemical species mass balance, the CMB air quality model depends on a 

variety of assumptions: 1) compositions of source emissions are constant over the period 

of ambient and source sampling; 2) chemical species are relatively stable and 

conservative during transport from emissions to the receptor; 3) major sources 

contributing to the receptor are included in the model; 4) the number of source categories 

is less than the number of chemical species; 5) source profiles are linearly independent of 

each other (without collinear problems); and 6) measurement uncertainties are random, 

uncorrelated, and normally distributed [U.S.EPA, 2001]. Mathematically, the 

fundamental principle of CMB can be expressed as: 
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j
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Where ikC  is the ambient concentration of chemical species i at a specific receptor site k; 

ija  is the fraction of chemical species i in the OC (or PM2.5) emission from source j, also 

called source profile abundances; jkS  is the contribution of source j to the OC (or PM2.5) 

concentration at the receptor site k; and eik is error term.  

Several methods derived from least square fitting functions have been developed 

for solving the CMB equations such as ordinary weighted least squares [Friedlander, 

1973; Gartrell and Friedlander, 1975], Britt and Luecke least squares [Britt and Luecke, 

1973] and effective variance weighted least squares [Watson et al., 1984]. The solution 

method of effective variance weighted least squares is applied more frequently now as it 

theoretically yields the most likely solutions to CMB equations using many chemical 

species, not just chemical tracers in the model. Moreover, uncertainties of source 

contributions are analytically estimated through integrating precisions of ambient 

concentrations and source profiles. Chemical species with higher measurement accuracy 

are given greater weights than those with lower accuracy [U.S.EPA, 2001].  

Supported by a series of measurement technologies, elemental and ionic species 

were initially applied in inorganic species-based CMB (CMB-Regular) model to 

apportion source contributions [Cass and Mcrae, 1983; Chan et al., 1999; Chen et al., 

2001; Chow et al., 1992; Chow et al., 1995; Cooper and Watson, 1980; Gordon, 1980; 

Hidy and Venkataraman, 1996; Ward and Smith, 2005]. However, the CMB-Regular 

approach was limited in its ability to distinguish contributions of some important or 

potentially important sources of OC and PM2.5, such as diesel vehicle exhaust and 

gasoline vehicle exhaust, biomass burning, meat cooking, vegetative detritus, and natural 

gas combustion. The reason is that these source emissions principally contain organic 
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compounds and elemental carbon (EC) instead of relatively unique elements. The 

introduction of molecular markers, some of which are reasonably unique tracers for 

certain sources, can provide additional information about source impacts so that 

important sources of OC and PM2.5 can be better identified and quantified. With further 

developments of measurement techniques for ambient organic chemicals [Nolte et al., 

2002; Rogge et al., 1991; Rogge et al., 1993a; b; c; d; Rogge, 1994], the molecular 

marker-based CMB (CMB-MM) model has been built and increasingly used for source 

apportionment in many areas since 1996 [Fraser et al., 2003b; Schauer et al., 1996; 

Schauer, 1998; Schauer and Cass, 2000; Sheesley et al., 2004; Zheng et al., 2002; Zheng 

et al., 2006b; Zheng et al., 2007]. 

However, the CMB-MM model also has a few disadvantages. More resources and 

time are needed to measure trace organic compound concentrations, and local source 

profiles are unavailable in many areas. Chemical stability of organic molecular markers 

during transport is another concern, particularly under intense photochemical conditions 

[Robinson et al., 2006a; Robinson et al., 2007]. Unlike organic compounds, elemental 

species are chemically stable during transport, and their ambient concentrations are 

routinely measured. Ambient information of such species is more generally available, 

allowing spatial and temporal variations of source impacts to be calculated using CMB-

Regular.   

In order to identify and quantify the impacts of specific emission sources on air 

quality in the southeastern U.S., both the CMB-MM approach and CMB-Regular 

approach are used here for source apportionment of PM2.5. The CMB results calculated 

from the two approaches can help provide more comprehensive information of major 
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sources in this region. More importantly, as a focus of active research, intercomparison 

between the two approaches can be used to evaluate and improve CMB source 

apportionment applications and to better understand their limitations.   

 

7.2 Methods  

7.2.1 Sampling and Measurements 

Ambient data used here are from the Southeastern Aerosol Research and 

Characterization Study (SEARCH) project. Seasonal (winter and summer) and spatial 

impacts (urban and rural) are studied.  

24-hr filter-based samples from July 2001 and January 2002 were collected daily 

with particle composition monitor (PCM) at SEARCH sites including Jefferson Street in 

Atlanta, Georgia (JST), Yorkville, Georgia (YRK), N. Birmingham, Alabama (BHM), 

Centreville, Alabama (CTR), Pensacola, Florida (PNS), and Oak Grove, Mississippi 

(OAK). During this period, 24-hr filter-based samples were also collected parallel at 

Jefferson Street in Atlanta with a Hi-Volume PM2.5 sampler. Among these SEARCH 

sites, Jefferson Street, N. Birmingham, and Pensacola are urban sites while Yorkville, 

Centreville, and Oak Grove are rural sites. Monthly average (daily filter composite) PCM 

samples from 6 SEARCH sites were used for source apportionment and comparisons as 

well as the daily high-volume (Hi-Vol) samples from Jefferson Street. The sampling 

details and species measurements (OC, EC, trace metals and ions) were described in 

previous papers [Hansen et al., 2003; Lee et al., 2005b]. Organic species in PM2.5 were 

analyzed with gas chromatography (GC)/mass spectrometry (MS) in Georgia Institute of 

Technology [Zheng et al., 2002; Zheng et al., 2007].      
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Ambient measurements in SEARCH and CMB-MM source profiles employed 

different thermal-optical protocols for carbon analysis (OC/EC): IMPROVE (Interagency 

Monitoring of Protected Visual Environments) and NIOSH (National Institute of 

Occupational Safety and Health), respectively. The disagreement of carbon analysis 

between ambient data and source profiles would bring suspected CMB-MM source 

apportionments, especially for mobile source, which is greatly depended on ratios of 

OC/EC. To match with NIOSH-based source profiles, IMPROVE-based ambient OC/EC 

data had to be converted to NIOSH-based data in advance through comparison between 

IMPROVE and NIOSH data sets measured on the same SEARCH samples. 

NIOSH and IMPROVE methods have been shown to agree with each other for 

total carbon (TC), sum of OC and EC, but have different splits between OC and EC 

[Chow et al., 2001; Chow et al., 2004a; Chow et al., 2005]. In this study, a total of 139 

Hi-Vol filter-based daily samples was analyzed by both NIOSH and IMPROVE 

approaches. These samples come from two representative sampling months, January 

(2004 and 2005) and July (2003 and 2004), and four SEARCH sampling sites, JST, 

BHM, CTR, and PNS. NIOSH and IMPROVE protocol-based measurements were 

performed at Georgia Institute of Technology and Desert Research Institute (DRI), 

respectively. The two data sets were compared for each season and site, and the 

associated linear regressing equations were conducted and applied to convert IMPROVE-

based ambient OC/EC data to simulated NIOSH-based data before CMB-MM modeling.  

There is not the similar problem in CMB-Regular modeling since the IMPROVE protocol 

is used in both source profile tests and ambient data measurements.  

7.2.2 Source Profiles 
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CMB-MM source profiles come from previous source emission samplings 

including medium duty diesel truck exhaust [Schauer et al., 1999b], combined gasoline 

vehicle exhaust of catalyst-equipped and noncatalyst-equipped gasoline-powered vehicles 

[Schauer et al., 2002b], biomass burning in the southeastern states [Fine et al., 2002], 

meat cooking [Schauer et al., 1999a], Alabama paved road dust [Schauer, 1998; 

U.S.EPA, 2002; Zheng et al., 2002],  natural gas combustion [Hildemann et al., 1991; 

Rogge et al., 1993b], and vegetative detritus [Hildemann, 1991; Rogge et al., 1993a].  

The method of NIOSH carbon analysis was used in the emission tests of these source 

profiles.  

CMB-Regular source profiles include motor vehicle exhaust [Zielinska et al., 

1998], biomass burning [Zielinska et al., 1998], coal combustion from power plants 

[Chow et al., 2004b], Alabama paved road dust [U.S.EPA, 2002], and cement kilns 

[Chow et al., 2004b]. The method of IMPROVE carbon analysis was used in the source 

profile studies except for the Alabama paved road dust. 

7.2.3 Fitting Species 

Fitting species applied in CMB-MM include aluminum (Al), silicon (Si), OC, EC, 

and organic molecular markers such as n-alkanes, hopanes, steranes, polycyclic aromatic 

hydrocarbons (PAHs), cholesterol (or nonanal), levoglucosan. These organic molecular 

markers are recommended for specific emission sources in previous studies [Cass, 1998; 

Schauer and Cass, 2000; Schauer, 2003; Simoneit, 1985; Simoneit et al., 1999]. Both 

diesel vehicle exhausts and gasoline vehicle exhausts are characterized by high carbon 

contents, OC and EC, and a few unique organic tracers (hopanes and steranes).  Such 

sources can be distinguished further by different EC/OC ratios and PAHs in CMB-MM 
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since the diesel vehicle exhaust profile has much higher EC/OC ratio while gasoline 

vehicles emit more PAHs.  Biomass burning is characterized by unique organic tracers, 

levoglucosan and a few resin acids. Meat cooking is identified by abundant nonanal and 

unique cholesterol. A few specific n-alkanes and PAHs are representative species in the 

chemical compositions of vegetative detritus and natural gas combustion, respectively. 

The chemical stabilities of these fitting species during local transportation in atmosphere 

have been tested [Schauer et al., 1996].  

Fitting species applied in CMB-Regular typically include ions (SO4
2-
, NO3

-
, 

NH4
+
), elements (Al, Si, Ca, Fe, K, Se, Cu, As, Ba, Br, Mn, Ti, Zn, Pb), OC and EC.  

Their different fractions in emission sources provide a possibility to estimate several 

source contributions in CMB-Regular modeling: (1) motor vehicle: OC, EC, Ba, Zn; (2) 

road dust: Al, Si, Ca, Fe, OC; (3) biomass burning: K, OC, EC; (4) coal combustion:  

SO4
2-
, Ca, Si, Se, OC; (5) cement kilns: SO4

2-
, Ca, Si, Fe, K, and OC [Chow and Watson, 

2002; Chow et al., 2004b; Schauer, 2006].  

EPA CMB v8.0 software using effective variance weighted least squares was used 

to estimate source contributions to OC and PM2.5. A few performance diagnostics were 

considered in CMB modeling, including χ
2
 (target value: 0-4), R

2
 (target value: 0.8-1.0), 

ratio of the calculated to the measured concentration of fitting species (target value: 0.5-

2.0), T-Stat (target value: >2.0).  

 

7.3 Results and Discussion 

7.3.1 Ambient Data Conversion 
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An almost perfect agreement on TC (fitting slope = 0.995, intercept = -0.123, R
2
 

= 0.991) was found between NIOSH-based data and IMPROVE-based data for 139 

SEARCH samples. Compared with the IMPROVE protocol, the NIOSH method always 

lead to larger OC and smaller EC values.  Statistical analyses of OC and EC data from the 

two methods indicated highly correlated linear relationship (Figure 7.1).  Notably, the 

slopes vary with sites and seasons (Figure 7.2). Therefore, the associated linear 

regression equations were used for converting ambient data between NIOSH and 

IMPROVE.  Here, IMPROVE-based OC/EC measurements were converted to NIOSH-

based data with the linear regression functions expressed in Figure 7.2. 

7.3.2 Source Categories 

For the CMB-MM application, up to seven primary sources of OC and PM2.5 were 

resolved, including diesel vehicle exhaust, gasoline vehicle exhaust, meat cooking, paved 

road dust, biomass burning, natural gas combustion, and vegetative detritus (Figure 7.3).  

Other industrial emission sources such as coal combustion and cement kilns were not 

included due to the lack of organic molecular marker-based profiles.  

CMB-Regular resolved three of the primary sources above used in CMB-MM, 

including motor vehicle exhaust (sum of diesel vehicle and gasoline vehicle exhaust), 

paved road dust, biomass burning and added industrial sources such as coal combustion 

and cement kilns (Figure 7.3). CMB-Regular can have trouble separating diesel vehicle 

exhaust and gasoline vehicle exhaust, biomass burning and meat cooking. Furthermore, 

appropriate source profiles for natural gas combustion and vegetative detritus are not 

available for CMB-Regular.  
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Figure 7.1. Comparison of NIOSH and IMPROVE carbon concentrations for 139 fine 

particle daily samples from 4 SEARCH sites: JST, BHM, CTR, and PNS. 
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Figure 7.2.  Comparison of NIOSH and IMPROVE carbon concentrations for 19 and 22 

fine particle daily samples from the summer and the winter at JST site, respectively.  
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Source apportionment of PM2.5 in January 2002,

JST (monthly, CMB-MM)
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Figure 7.3.  Comparison of source apportionments to PM2.5 estimated by CMB-MM and 

CMB-Regular for Jefferson Street, Atlanta (JST) summer and winter samples (monthly). 

 

 

 

7.3.3 Motor Vehicle Exhaust 

Relatively comparable source contributions were estimated for motor vehicle 

exhaust by both CMB-MM and CMB-Regular. As a major primary source of PM2.5 in the 

Southeast, motor vehicle exhaust on average accounts for about 4-10% (summer-winter) 

and 4-9% (summer-winter) of the PM2.5 mass found using CMB-MM and CMB-Regular, 

respectively. Both methods lead to very similar daily variations in JST site. During the 

summer, the average discrepancies are less than 10% while CMB-MM results are 

consistently higher than those from CMB-Regular (41% on average) during the winter 

(Figures 7.4 and 7.5).  
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Figure 7.4. Comparison of motor vehicle exhausts, paved road dust and biomass burning 

contributing to PM2.5 estimated by CMB-MM and CMB-Regular for JST summer 

samples. 
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Figure 7.5.  Comparison of motor vehicle exhausts, paved road dust and biomass burning 

contributing to PM2.5 estimated by CMB-MM and CMB-Regular for JST winter samples. 
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Figure 7.6.  Comparison of motor vehicle exhausts, paved road dust and biomass burning 

contributing to PM2.5 estimated by CMB-MM and CMB-Regular for SEARCH monthly 

(July, 2001; January, 2002) samples. 
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Table 7.1. Source Contributions to PM2.5 Estimated by CMB-MM
 
and CMB-Regular 

Motor vehicle exhausts (µg/m3) Paved road dust (µg/m3) Biomass burning (µg/m3) SEARCH 

samples 
(monthly) CMB-MM 

CMB-

Regular 

Difference 

(%) 
CMB-MM 

CMB-

Regular 

Difference 

(%) 
CMB-MM 

CMB-

Regular 

Difference 

(%) 

CTR-January 0.39 0.14 -64 0.06 0.20 233 0.51 2.07 306 

CTR-July 0.38 0.17 -55 0.32 0.14 -56 0.15 3.19 2027 

BHM-January 3.38 2.06 -39 0.16 0.54 238 0.93 2.31 148 

BHM-July 2.09 2.63 26 0.52 0.77 48 0.27 3.05 1030 

YRK-January 0.37 0.24 -35 0.02 0.08 300 0.45 1.86 313 

YRK-July 0.28 0.37 32 0.20 0.24 20 0.15 2.62 1647 

JST-January 2.16 2.03 -6 0.05 0.60 1100 1.58 2.79 77 

JST-July 1.07 1.46 36 0.54 0.59 9 0.29 2.04 603 

OAK-January 0.31 0.02 -94 0.04 0.09 125 0.79 1.89 139 

OAK-July 0.19 0.03 -84 0.25 0.40 60 0.23 2.59 1026 

PNS-January 0.94 1.38 47 0.04 0.11 175 1.13 3.14 178 

PNS-July 0.48 0.48 0 0.39 0.28 -28 0.10 1.93 1830 

          

Average- Jan. 1.26 0.98 -22 0.06 0.27 350 0.90 2.34 160 

Average-July 0.75 0.86 15 0.37 0.40 8 0.20 2.57 1185 

Notes: the difference (%) = 100* ((CMB-Regular) - (CMB-MM)) / (CMB-MM) 

 

 

Similar spatial and temporal impacts were also found for monthly samples.  

Higher source contributions appeared in urban areas, and the maximum at N. 

Birmingham. Smaller seasonal variations were discovered in rural sites. Motor vehicle 

exhaust impacts in the summer are generally lower than those in the winter (Figure 7.6).  

The seasonal variation is expected since the effect of cold start conditions on motor 

vehicles in winter [Manchester-Neesvig et al., 2003]. Significantly higher PM2.5 

emissions are produced from gasoline-powered vehicles in winter compared with in 

summer [Cadle et al., 1999]. 

However, results from the different methods are not always comparable to each 

other for motor vehicle exhaust. The source apportionment differences on monthly 

samples vary from -93% to 48% with the sites and seasons (Table 7.1; Figure 7.6). 
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7.3.4 Paved road dust 

Comparable source contributions, 0.37 and 0.40 µg.m
-3
, were calculated for paved 

road dust in the summer by both CMB-MM and CMB-Regular, respectively. This source 

contributed to about 2.1% of PM2.5 mass.  In the winter, paved road dust contributions are 

generally much lower than those in summer (Table 7.1; Figures 7.4-7.6). This seasonal 

variation is further supported by the higher ambient Al and Si concentrations, two 

elemental tracers and major components of road dust, in the summer when the average 

ambient concentrations of Al and Si are 3.9 and 2.4 times those in the winter. Warm 

weather and dry condition in summer might be a reason, which are conducive to road 

dust reentrainment by passing vehicles [Fraser et al., 2003b]. Higher summer 

concentrations of Al and Si are also likely caused by long-range transport of African 

dusts, which are thought to be carried to the southeastern U.S. by the summer trade winds 

[Prospero et al., 2001].           

However, source contributions of paved road dust in CMB-MM show obvious 

differences with CMB-Regular results in the winter. The average contributions from 

CMB-Regular are 350% higher than those from CMB-MM (Table 7.1). Moreover, 

contributions of paved road dust in most winter samples from JST (daily) are not 

significant based on the results of CMB-MM modeling (Figure 7.5). Aluminum and 

silicon concentrations are so small that insignificant or negative contributions of paved 

road dust are calculated, as these two elements are also important species in other source 

such as vegetative detritus.   

7.3.5 Biomass burning 
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Source contribution results did not agree on biomass burning at all SEARCH sites 

between CMB-MM and CMB-Regular approaches. The contributions range from 1.0% to 

9% (summer and winter) in CMB-MM and from 14% to 23% (summer and winter) in 

CMB-Regular. In the summer, insignificant or much lower contributions of biomass 

burning were found with CMB-MM since levoglucosan, a unique organic tracer of 

biomass burning, is not detected or observed only with very low concentrations. Average 

levels of biomass burning identified by CMB-MM and CMB-Regular are 0.2 and 2.6 

µg.m
-3
, respectively, in the summer.  

Moreover, CMB-MM results show noticeably higher contributions of biomass 

burning in the winter (Figures 7.4-7.6). However, slightly higher contributions or even 

opposite trends were observed at SEARCH sites from the calculated results using CMB-

Regular. Those CMB-Regular apportionments are suspect since the levoglucosan 

concentrations observed in the winter were about 2-15 times higher than in the summer.  

This trend was also contrary to the local emission inventory where residential biomass 

burning and prescribed fire events in this region decrease from winter to summer [Tian, 

2005].  

7.3.6 Other Primary Source  

Up to 3 additional primary sources were identified in CMB-MM besides those 

discussed above including meat cooking, natural gas combustion and vegetative detritus.  

They were found to be minor sources in this areas using CMB-MM.   

Impacts from two industrial sources, coal combustion and cement kilns, were 

quantified using CMB-Regular with average contributions of about 2% (coal combustion) 

and 0.5% (cement kilns) to the PM2.5 mass.   
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Figure 7.7.  Correlations of source contributions to PM2.5 estimated by CMB-MM and 

CMB-Regular for JST winter and summer samples (daily). 
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7.3.7 Secondary Sources 

Both approaches indicated that secondary sulfate, secondary nitrate and secondary 

ammonium, accounted for the majority of measured PM2.5 mass at the Southeast, 

especially in the summer. Those components make up 51% (summer) and 44% (winter), 

and 51% (summer) and 42% (winter) of the PM2.5 mass as calculated using CMB-MM 

and CMB-Regular, respectively. Secondary sulfate is the largest component of PM2.5 

mass (36%, summer; 22%, winter) followed by secondary ammonium (13%, summer; 

11%, winter), and secondary nitrate (2%, summer; 11%, winter). Only slight differences 

are found between the two approaches (Figure 7.7). The perfect agreement is expected 

since those components were estimated directly based on ambient observations of ions 

(SO4
2-
, NO3

-
, and NH4

+
) and molecular composition ((NH4)2SO4, NH4HSO4, NH4NO3) 

either in CMB-MM or in CMB-Regular.   

In addition to secondary inorganic ions, secondary organic aerosols (SOA) also 

contribute significantly to the PM2.5 mass in this region. The “Other OC” in CMB-MM 

represents the difference between the measured OC and the sum of calculated primary 

OC, and would include SOA formed by atmospheric chemical reactions and other factors 

[Zheng et al., 2002]. Secondary OC in CMB-Regular is calculated by subtracting primary 

OC (product of primary OC/EC ratio and EC) from the measured OC [Turpin and 

Huntzicker, 1995]. CMB-Regular and CMB-MM indicate that secondary OC might 

contribute up to 37-44% (winter-summer) and 39-73% (winter-summer) of the measured 

OC, respectively. This is consistent with the expected seasonal variation in the southeast.  

Higher temperatures, increased biogenic emissions and more intense solar radiation 

during the summer provide favorable conditions for photochemical activity and 
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secondary OC production [Brown et al., 2002].  Secondary OC would account for about 

11-9% (winter-summer) and 10-14% (winter-summer) in PM2.5 mass calculated using 

CMB-Regular and CMB-MM, respectively.    

7.3.8 Driving Forces of Source Apportionments 

Discrepancies between the results from the two CMB approaches are caused by 

use of different fitting species in the models. To analyze the specific driving forces of 

source apportionments in the two methods, impacts of fitting species on source 

contributions were evaluated by correlation coefficients between species concentration 

and source contributions in numerous data sets. Species with higher correlation 

coefficients would be more powerful to drive the source apportionment in models (Tables 

7.2 and 7.3).       

 Therefore, in CMB-Regular, motor vehicle exhaust contributions mainly depend 

on EC and OC, followed by Zn, K, and Fe. Paved road dust contributions are firstly 

correlated with K and Fe. Biomass burning contributions are also most impacted by EC, 

OC, K, and Zn. Other influential species in CMB-Regular include Mn (coal combustion), 

Si (cement kilns).  

In CMB-MM, diesel vehicle and gasoline vehicle exhaust contributions are based 

on EC, OC, hopanes and steranes, followed by n-alkanes, and PAHs. Meat cooking 

contributions are mainly driven by cholesterol and oleic acid (F18:1). Biomass burning 

contributions are mostly correlated with levoglucosan. Other influential species include 

n-alkanes with high odd carbon numbers (vegetative detritus), and Al, Si (paved road 

dust). Unique tracers usually have higher correlation coefficients in CMB-MM. Many 

species influenced natural gas combustion impacts, though PAHs are dominated.  
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Table 7.2. Correlation Coefficients of Source Contributions and Species Concentrations 

in CMB-Regular for JST Daily Samples (n=39) 

Species NH4HSO4 (NH4)2SO4 NH4NO3 
Motor 

vehicle 

Biomass 

burning 

Coal 

combustion 

Road 

dust 
Cement 

Secondary 

OC 

SO4
-2 0.50 0.96 -0.51 0.11 0.15 0.02 0.03 -0.15 -0.01 

NO3
- -0.29 -0.51 1.00 0.41 0.39 0.07 0.15 0.06 0.28 

NH4
+ 0.30 0.99 -0.51 0.13 0.16 0.07 0.05 -0.18 -0.03 

EC -0.19 0.18 0.40 1.00 0.99 0.23 0.48 -0.26 0.53 

OC -0.19 0.18 0.40 1.00 0.99 0.23 0.48 -0.26 0.53 

As 0.46 -0.12 0.14 0.27 0.24 0.10 0.16 0.24 0.38 

Ba 0.08 0.19 -0.24 -0.07 -0.03 -0.13 0.32 -0.04 -0.18 

Br -0.23 0.07 0.44 0.54 0.58 0.04 0.43 0.02 0.40 

Cu 0.49 0.11 -0.15 -0.07 -0.09 0.10 -0.09 0.21 0.35 

Mn 0.08 0.31 0.08 0.32 0.27 0.58 0.31 0.32 0.22 

Pb 0.50 0.07 -0.09 0.00 -0.02 0.13 -0.05 0.23 0.40 

Se 0.58 0.27 -0.21 0.08 0.06 0.18 0.18 0.30 0.29 

Ti 0.16 0.17 -0.25 0.09 0.05 0.43 0.43 0.43 0.01 

Zn -0.32 -0.20 0.52 0.65 0.62 0.39 0.21 0.04 0.58 

Al 0.08 0.20 -0.36 -0.13 -0.16 0.31 0.35 0.48 -0.05 

Si 0.17 0.16 -0.31 -0.09 -0.13 0.31 0.45 0.54 -0.09 

K -0.10 -0.10 0.41 0.64 0.66 0.19 0.64 0.35 0.60 

Ca 0.35 0.52 -0.25 0.21 0.18 0.42 0.31 0.32 0.17 

Fe 0.08 0.18 0.15 0.62 0.57 0.53 0.59 0.36 0.45 

Note: Significant figures (R>0.6) are shown in bold type.  

 

 

 

 

Table 7.3. Correlation Coefficients of Source Contributions and Species Concentrations 

in CMB-MM for JST Daily Samples (n=56) 

Species 
Diesel 

Exhaust 

Gasoline 

Exhaust 

Meat 

Cooking 

Biomass 

Burning 

Road 

Dust 

Natural Gas 

Combustion 

Vegetative 

Detritus 

OC 0.84 0.50 0.32 0.57 -0.28 0.53 0.68 

EC 0.96 0.42 0.31 0.56 -0.27 0.47 0.60 

Al -0.17 -0.24 -0.21 -0.23 0.97 -0.15 -0.14 

Si -0.13 -0.17 -0.16 -0.19 0.95 -0.12 -0.08 

Pentacosane 0.55 0.83 0.42 0.40 -0.18 0.64 0.75 

Hexacosane 0.56 0.81 0.43 0.38 -0.22 0.64 0.77 

Heptacosane 0.64 0.87 0.44 0.62 -0.25 0.72 0.82 

Octacosane 0.61 0.84 0.43 0.53 -0.25 0.69 0.81 

Nonacosane 0.69 0.68 0.37 0.49 -0.25 0.52 0.97 

Triacontane 0.61 0.84 0.41 0.49 -0.26 0.73 0.85 

Hentriacontane 0.67 0.58 0.36 0.35 -0.22 0.47 0.99 

Dotriacontane 0.67 0.79 0.45 0.47 -0.26 0.71 0.87 

Tritriacontane 0.69 0.74 0.41 0.43 -0.25 0.68 0.93 

20S,R-5α(H),14β(H),17β(H)-Cholestanes 0.53 0.98 0.43 0.58 -0.25 0.73 0.62 

20R-5α(H),14α(H),17α(H)-Cholestane 0.56 0.97 0.45 0.57 -0.24 0.74 0.64 

20S,R-5α(H),14β(H),17β(H)-Ergostanes 0.51 0.97 0.43 0.49 -0.25 0.69 0.60 

20S,R-5α(H),14β(H),17β(H)-Sitostanes 0.54 0.99 0.46 0.54 -0.26 0.70 0.65 

22,29,30-Trisnorneohopane 0.49 0.98 0.44 0.57 -0.26 0.73 0.59 

17α(H)-21β(H)-29-Norhopane 0.53 0.99 0.47 0.56 -0.27 0.70 0.64 

17α(H)-21β(H)-Hopane 0.54 0.98 0.50 0.54 -0.28 0.69 0.65 

9-Hexadecenoic acid 0.03 -0.16 0.25 0.14 -0.02 0.05 0.10 
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9-Octadecenoic acid 0.39 0.40 0.70 0.34 -0.16 0.62 0.51 

Nonanal 0.21 -0.16 0.07 -0.04 -0.08 0.05 0.25 

8,15-Pimaredienoic acid 0.39 0.41 0.60 0.18 -0.16 0.64 0.25 

Pimaric acid 0.36 0.59 0.60 0.46 -0.20 0.79 0.34 

Isopimaric acid 0.32 0.43 0.61 0.29 -0.15 0.71 0.27 

Sandaracopimaric acid 0.34 0.54 0.59 0.45 -0.20 0.74 0.32 

Abietic acid 0.17 0.27 0.67 0.34 -0.10 0.62 0.19 

Levoglucosan 0.51 0.72 0.40 0.78 -0.28 0.60 0.64 

Benzo(k)fluoranthene 0.55 0.75 0.55 0.52 -0.19 0.98 0.55 

Benzo(b)fluoranthene 0.54 0.80 0.49 0.60 -0.20 0.96 0.59 

Benzo(e)pyrene 0.62 0.81 0.51 0.56 -0.22 0.92 0.63 

Indeno(1,2,3-cd)fluoranthene 0.41 0.43 0.52 0.53 -0.08 0.66 0.50 

Indeno(1,2,3-cd)pyrene 0.56 0.65 0.60 0.54 -0.17 0.82 0.63 

Benzo(ghi)perylene 0.67 0.83 0.49 0.54 -0.23 0.81 0.72 

Cholesterol 0.38 0.63 0.79 0.44 -0.26 0.61 0.51 

Note: Significant figures (R>0.7) are shown in bold type. 
 

 

 

Figure 7.8. Comparison of source contributions to chemical species applied in CMB-MM 

and CMB-Regular (four JST samples are used: 07/17/01, 07/25/01, 01/12/02, and 

01/27/02, in turn from left to right; OC indicates Primary OC; the fraction of source 

contribution was normalized to identified primary OC).   
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Comparison of influential species would explain some similarities and differences 

between CMB-Regular and CMB-MM estimations discussed previously. Most 

agreements of source contributions were found on motor vehicle exhaust since OC and 

EC are primary driving species in both models. Therefore, it is expected that fairly 

comparable contributions were estimated using the two methods. However, a few 

secondarily influential species are also impacting this source contribution in CMB-

Regular (Zn, K, and Fe) and in CMB-MM (hopanes, steranes, n-alkanes, and PAHs).  

Discrepancies of source contributions, therefore, happened between the two approaches 

under comprehensive driving of those influential factors. Unlike motor vehicle exhaust, 

paved road dust did not own any common driving species in CMB-Regular (K and Fe) 

and in CMB-MM (Al and Si) even though both methods used elements as influential 

factors for this source. As major components of crustal material, Al and Si might provide 

better support for road dust estimations. Likewise, biomass burning contributions 

depended on the unique tracer, levoglucosan, in CMB-MM while OC, EC, K and Zn are 

more influential in CMB-Regular. As a result, it is not surprising that there are large 

differences existing between the models.  

7.3.9 Source Contributions to Fitting Species 

To explain these differences of source apportionments, further analysis are stated 

below. Figure 7.8 illustrates source contributions to specific species in CMB-MM and 

CMB-Regular. Four samples from Jefferson Street, Atlanta were randomly chosen as 

examples, including two summer samples (07/17/01 and 07/25/07) and two winter 

samples (01/12/02 and 01/27/02). About 42% (summer) and 35% (winter) of the primary 

OC are contributed by motor vehicle exhaust in CMB-MM. Biomass burning is not a 
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significant source in the summer while it contributes high percentage for primary OC, 

53%, as motor vehicle exhaust does in the winter. In contrast, motor vehicle exhaust in 

CMB-Regular only contributed 12% (summer) and 13% (winter) of the primary OC, and 

too much primary OC, about 84%, is contributed by biomass burning even in the 

summer. In CMB-Regular, both EC and OC play more major roles in the quantification 

of biomass burning than K, which also is an influential species of other sources such as 

cement kilns and soil dust. Sharing the same influential fitting species, EC and OC, 

source contributions of motor vehicle exhaust and biomass burning was not distinguished 

well using CMB-Regular model. Here, as a result, biomass burning contributions are 

inclined to be overestimated by CMB-Regular while motor vehicle exhaust contributions 

are probability underestimated. Unlike source apportionments using CMB-Regular, meat 

cooking was not neglected and definitely a significant source of primary OC (20% in the 

summer and 7% in the winter) in CMB-MM. The ambient data of unique fitting species, 

levoglucosan and cholesterol/nonanal, could provide, to some extent, supports for their 

apportionment. The estimated-measured radios of levoglucosan and nonanal in CMB-

MM are around 0.7 and 1.0 for the samples discussed above, respectively.    

Most EC, up to 90%, was from motor vehicle exhaust in CMB-MM while the 

contribution of the same source to EC was less than 50% in CMB-Regular, with the 

remains mostly contributed by biomass burning. This dissimilar explanation is also 

corresponding to source contributions to primary OC we stated above. Some source 

contributions of biomass burning were mixed with ones of motor vehicles in CMB-

regular.   
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Most of the ambient Al and Si come from paved road dust in CMB-Regular 

without obvious seasonal changes. However, a few sources other than paved road dust 

contributed significantly to Al and Si in CMB-MM, especially in winter when almost all 

Al and Si are from other sources instead of paved road dust (Figure 7.8).  

Underestimation of paved road dust might be caused by incorrect reconstruction of 

ambient Al and Si in CMB-MM in the presence of other sources such as vegetative 

detritus and motor vehicle exhaust. Without relative unique tracers, paved road dust 

contributions possibly mix up with ones from other sources where Al and Si are also 

account for significant abundances.      

 

7.4 Conclusions 

Major emission sources have been apportioned by two CMB-based approaches, 

one using traditional elemental species, and the other using organic molecular markers.  

Similar spatial and temporal impacts on source contributions are usually found in both 

approaches. However, comparisons between the two approaches also indicate a few 

significant discrepancies.  

More sources of OC in PM2.5 were distinguished by CMB-MM including diesel 

vehicle exhaust, gasoline vehicle exhaust, meat cooking, vegetative detritus and natural 

gas combustion. However, a few more industrial emission sources were quantified using 

CMB-Regular (coal combustion and cement kilns) with available inorganic species-based 

source profiles. The main disadvantage of the CMB-regular approach is that it lacks 

ability to distinguish source impacts of OC where there is little difference in their 

elemental fingerprints. Motor vehicle exhaust contributions are inclined to mix up with 
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biomass burning contributions. The main disadvantage of the CMB-MM approach is lack 

of molecular marker-based source profiles and decay of organic tracers in atmosphere. 

The intercomparison of the two approaches also indicates that source 

apportionment results calculated by the CMB model are sensitive to source profiles and 

fitting species applied in the models. To effectively decrease bias or uncertainties of 

source contributions, real-world and representative source profiles should be developed 

and applied for local emissions, especially for those major sources, such as mobile 

emissions, biomass burning, and meat cooking. It is also important to select and use 

appropriate or significant fitting species in the model. Further study is expected in these 

fields to improve CMB-MM performance.  
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CHAPTER 8 

CONCLUSIONS AND FUTURE RESEARCH 

 

8.1 Conclusions 

Airborne particulate matter (PM), especially fine particulate matter (PM2.5, 

particles with an aerodynamic diameter equal to or less than 2.5 µm), has been linked to 

human health effect, reduced visibility, climate change, and other air quality concerns. 

Typically, the major contributors of airborne PM2.5 include mobile source emissions, 

biomass burning, and secondary sources with anthropogenic and biogenic nature in 

origin. The metropolitan Atlanta, GA area, located in the southeastern U.S. and populated 

by over 5.4 million residents, is of particular interest due to high emissions of mobile 

sources, biomass burning, coal-fired power plants, and biogenic volatile organic 

compounds (VOCs), with vigorous photochemical processes occurring as well. 

Effective control strategies for air pollutants require an investigation of chemical 

composition of airborne PM2.5 in this area as well as identification and quantification of 

specific source impacts on ambient air quality. In this research, various PM2.5 samples 

were collected and analyzed, which are impacted or dominated by on-road mobile and 

other typical urban emissions, regional transport sources, prescribed burning plumes, 

wildfire plumes, as well as secondary sources with anthropogenic and biogenic nature in 

origin. Detailed composition of PM2.5 and fine organic matter was investigated, including 

organic carbon (OC), elemental carbon (EC), water-soluble OC (WSOC), ionic species, 

tens of trace metals, and over one hundred of solvent-extractable organic compounds. 
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Day-night, seasonal and spatial variations of PM2.5 composition were studied as well. 

Impacts or source contributions of major sources were identified and quantified through 

receptor-based source apportionment models. The modeling results were assessed by 

multiple approaches (roadway-related OC, OC/EC ratios, adjusted WSOC, and SOA 

tracers) to provide information as comprehensive as possible for PM2.5 control strategies. 

Moreover, season- and location-specific source profiles were developed to reflect more 

real-world and representative emission characterizations of on-road mobile sources in 

Atlanta, aged prescribed burning plumes, and wildfire plumes. Secondary organic aerosol 

(SOA), a major component of PM2.5, was also explored for tracers, sources and 

contributions.  

Roadside, urban and rural comparison of primary and secondary organic molecular 

markers in ambient PM2.5 

Approximately 110 solvent-extractable particulate organic compounds were 

identified and quantified by gas chromatography/mass spectrometry (GC/MS). Results 

indicate that primary organic compounds usually exhibit different attributes of day vs. 

night, whereas secondary organic tracers varied little. Much higher concentrations of 

automotive-related primary organic compounds were observed at the roadside site, 

including n-alkanes, hopanes, steranes, and polycyclic aromatic hydrocarbons (PAHs). It 

is interesting to note that no significant seasonal difference in hopanes and steranes was 

observed at all sites. Levoglucosan and resin acids, organic tracers of biomass burning, 

show little spatial variation, especially in the winter when biomass burning is so 

important that a regionwide background level was measured at all sites. However, 

significant seasonal variations were found for these biomass burning tracers with much 
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higher levels in the winter. Cholesterol levels were similar at the two urban sites and 

significantly lower at Yorkville. Higher concentrations of cholesterol were found in the 

winter.    

Season-specific on-road mobile source profiles for primary OC were developed in 

Atlanta by using differences in organic species concentrations between the roadside site 

and the nearby campus site. The calculated on-road source profiles differ from those 

mobile source profiles measured in the laboratories elsewhere, suggesting that 

atmospheric decay and/or gas-particle partitioning may play a role in the seasonal 

variations of mobile source profiles. Therefore, seasonal impacts should be considered in 

receptor-based source apportionment studies.  

Significant concentrations were measured in both seasons for cis-pinonic acid and 

pinic acid, organic tracers of monoterpene-originated SOA. However, 2-methyltetrols, 

organic tracers of isoprene-originated SOA, were observed to be significant only in the 

summer. Little correlation is found between 2-methyltetrols with cis-pinonic or pinic 

acid, though cis-pinonic and pinic acids are strongly correlated. Aromatic and aliphatic 

diacids also show strong correlation, implying that atmospheric processes are equally 

important for both anthropogenic and biogenic VOC.    

Characterization of airborne PM2.5 at roadside, urban and rural sites in the summer 

and the winter 

Ambient PM2.5 concentrations were observed to be about two times higher at all 

sites in the summer. Organic matter (OM), ammonium, and sulfate are major components 

of PM2.5 in both summer and winter. The sum of these three constituents accounts for 

70/66% of the PM2.5 mass in the summer/winter, respectively, at the roadside site, 83/78% 
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at the campus site, and 92/78% at the Yorkville site. Sulfate dominated PM2.5 in the 

summer, particularly on haze days. Nitrate is a major component of PM2.5 in the winter, 

but contributed little in the summer. EC and fine soil dust are significant constituents of 

the urban PM2.5.  

Particulate OM was estimated through mass balance analysis of gravimetric 

PM2.5, and the OM/OC ratio was found to depend on season and location. There were 

significant seasonal variations in OM/OC ratios at the campus and the Yorkville sites, 

whereas the OM/OC ratio varied little in both seasons at the roadside site. Significantly 

higher concentrations of automotive-related species were detected at the roadside, 

including OC, EC, iron, and copper. Season-specific on-road mobile source profiles for 

primary PM2.5 were developed in Atlanta by using differences in individual species 

concentrations between the roadside site and the nearby campus site. The calculated 

source profiles differ from in-use mobile source profiles developed elsewhere from the 

laboratory tests. 

The summer concentrations of WSOC are roughly two times the winter, 

suggesting enhanced formation of SOA in the atmosphere. This is supported by strong 

correlations between WSOC and OC as well as secondarily formed species such as 

sulfate, ammonium, and SOA tracers (e.g., dicarboxylic acids, 2-methyltetrols, cis-

pinonic acid, and pinic acid). Homogeneous distributions of WSOC on a regional scale 

reflected predominant impacts from SOA in the summer and from biomass burning 

emissions in the winter. It was estimated that biomass burning contributed less than 8% 

of WSOC in the summer and over 60% of WSOC in the winter. In addition, on-road 

mobile source is likely a minor contributor of ambient WSOC, especially in the winter.  
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Source apportionment of PM2.5 organic carbon and SOA impact: spatial and 

temporal variations 

Up to eight primary sources of fine OC were identified and quantified by the 

molecular marker-based chemical mass balance (CMB-MM) model, including diesel 

vehicle exhaust, gasoline vehicle exhaust, meat cooking, biomass burning, road dust, 

natural gas combustion, cigarette smoke, and vegetative detritus. On-road vehicle 

emissions (or diesel vehicle and gasoline vehicle exhausts) play an important role on 

composition of ambient OC, especially at the roadside and the nearby sites. Meat 

cooking, biomass burning, road dust, and cigarette smoke are also significant primary 

sources of OC at the urban sites. Although the fleet was dominated by gasoline-powered 

vehicles, diesel vehicle emissions contributed 46% and 24% of the identified OC at the 

roadside and the campus sites in the summer, respectively, and gasoline vehicle 

emissions contributed 26% and 23%. Emission control of diesel vehicle exhausts is 

probably more important for air quality improvement. In the winter, biomass burning 

source was so important, contributing 46%, 56%, and 53% of the total identified primary 

OC alone at the roadside, the campus, and rural sites, respectively. This suggests that 

active biomass burning activities for residential heating greatly increase biomass burning 

emissions in a cold season.  

‘Other OC’, unidentified OC mass by the CMB-MM model, was large in the 

summer, taking over 70% of the measured OC, whereas the total measured OC in the 

winter was well explained by the primary sources. Abundant ‘Other OC’ in the summer 

instead of in the winter implies that secondary OC would be the predominant component 

of the ‘Other OC’. This is further supported by strong or significant correlations between 
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“Other OC” and secondary sulfate, secondary ammonium, WSOC_adj (WSOC 

subtracting biomass burning effects), and the EC tracer-estimated SOC. In particular, 

fraction boundaries of the SOC estimate were inferred by using the WSOC_adj value as 

the lower limit and the CMB-MM-calculated ‘Other OC’ as the upper limit. Results 

indicate that 38–59%, 51–74%, and 74–87% of OC were SOC in the summer at the 

roadside, the campus, and the Yorkville sites, respectively, whereas 13–17%, 18–27%, 

and about 12% of OC were contributed by SOA in the winter. The average SOC fractions 

estimated by the EC tracer method are comparable to the WSOC_adj (SOC) values in 

both seasons.  

Organic composition of carbonaceous aerosols in an aged prescribed fire plume 

Large increases in PM2.5 and OC were captured at the metropolitan Atlanta area, 

which were caused by an aged prescribed fire plume through direct biomass burning 

emissions and enhanced formation of biogenic SOA in the atmosphere. A detailed 

chemical speciation of carbonaceous aerosols was conducted by GC/MS analysis.    

Ambient concentrations of many organic species (levoglucosan, resin acids, 

retene, n-alkanes and n-alkanoic acids) associated with biomass burning emissions were 

significantly elevated on the event day. Levoglucosan increased by a factor of 10, while 

hopanes, steranes, cholesterol and major PAHs did not show obvious increases. The 

presence of abundant resin acids and retene indicated predominant softwood (conifers) 

burning. Increases in resin acids were accompanied by high levels of dehydroabietic 

acids and 7-oxodehydroabietic acids, mainly formed by atmospheric processes during 

transport. Carbon-number predominance for n-alkanes (odd over even) and n-alkanoic 

acids (even over odd) suggested that emissions from heat-exposed vegetation are 
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important as one of major sources for increasing OC, especially secondary OC. Results 

indicate that large quantities of biogenic VOC and semivolatile organic compounds 

(SVOCs) were released both as products of combustion and unburned vegetation heated 

by the fire. Higher leaf temperature can stimulate biogenic VOC and SVOC emissions, 

which enhanced formation of SOA in the atmosphere even in the winter. This is 

supported by elevated ambient concentrations of secondary organic tracers (dicarboxylic 

acids, 2-methyltetrols, cis-pinonic acid and pinic acid).   

 An approximate source profile was developed for the aged prescribed fire plume 

to help better understand the evolution of biomass burning emissions and for use in 

source impact assessment.         

Detailed chemical characterization and aging of wildfire aerosols in the southeastern 

U.S 

The metropolitan Atlanta and nearby areas were heavily impacted for hours and 

even days by massive wildfire smoke plumes from April through June 2007. The highest 

increases in hourly and 24-hr PM2.5 were observed to reach over 340 and 100 µg m
-3
, 

respectively. Results indicate that wildfire-derived PM2.5 was dominated by OM, making 

up 60-85% of the PM2.5 mass. On the smoke days, large increases were observed for 

biomass burning tracers (levoglucosan, resin acids, retene, etc.). In particular, 

levoglucosan increased by 46, 161, and 13 times, respectively, at the downwind Atlanta, 

Bibb and Coffee sites, and contributed 6%, 11%, and 5% of the total OC. The wildfire 

emissions also caused large increases of n-alkanes and n-alkanoic acids. n-Alkanes 

exhibited distinct odd carbon number predominance, and n-alkanoic acids had a strong 

even-to-odd carbon number predominance on the smoke days, suggesting a dominant 
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contribution from waxes on plant leaves. It is interesting to note that ambient hopanes 

increased significantly during wildfire smoke events, implying that hopanes, which are 

thought as unique tracers of mobile source, can also be produced by thermal alteration of 

biogenic hopanoid precursors in the atmosphere. 

Significant increases were also seen in some inorganic species, such as water-

soluble potassium (K
+
), ammonium (NH4

+
), nitrate (NO3

-
), sulfate (SO4

2-
), and EC. The 

ratios of levoglucosan vs. inorganic indicators of biomass burning (K
+
 and EC) did not 

show significant decreases from the wildfire origin to the monitors 400 km downwind, 

implying that there is no significant atmospheric decay during half-day transport even in 

a warm season. However, resin acids are subject to alteration in the atmosphere, leading 

to their ratios to levoglucosan being variable over time.  

Secondary organic tracers, 2-methyltetrols and pinic acid, were observed with 

significantly higher concentrations at the downwind sites, providing further support for 

enhanced formation of biogenic SOA. However, cis-pinonic acid, another photo-

oxidation product of monoterpenes, did not show significant increases, implying that its 

mechanism of formation and atmospheric fate in aged wildfire plumes is probably 

different from pinic acid. In addition, elevated aromatic and aliphatic diacids were 

observed at all downwind sites on the smoke days, suggesting that they are not only 

secondarily created from anthropogenic emissions but also formed from or enhanced by 

wildfire-derived biogenic emissions in the atmosphere.  

The source profiles for aged wildfire fire plumes were developed as well, which 

can be used for improving source apportionment of biomass burning by CMB modeling.      



 198 

Analysis of source apportionment applications for PM2.5 in the Southeast: 

intercomparison between two approaches 

Major emission sources have been apportioned by two CMB-based approaches, 

one using traditional elemental species (CMB-Regular) and the other using organic 

molecular markers (CMB-MM). Similar spatial and temporal impacts on source 

contributions are usually found in both approaches. Secondary sources including 

secondary sulfate, ammonium, and nitrate contribute the majority of the PM2.5 mass in the 

southeastern U.S. in both summer (>50%) and winter (>40%). Motor vehicle exhaust, 

paved road dust, and biomass burning sources were calculated both using CMB-Regular 

and CMB-MM. Motor vehicle exhausts and biomass burning are the major primary 

sources of PM2.5 in this area. However, comparisons between the two approaches also 

identify a few significant discrepancies.  

More sources of OC in PM2.5 were distinguished by CMB-MM including diesel 

vehicle exhaust, gasoline vehicle exhaust, meat cooking, vegetative detritus, and natural 

gas combustion. However, a few more industrial emission sources were quantified using 

CMB-Regular (coal combustion and cement kilns) with available inorganic species-based 

source profiles. The main disadvantage of the CMB-regular approach is that it lacks 

ability to distinguish major sources of OC, especially those without elemental 

fingerprints. For example, it was not rare to see that motor vehicle exhaust mixed up with 

biomass burning source. The main disadvantage of the CMB-MM approach is lack of 

local molecular marker-based source profiles and stability of organic tracers in the 

atmosphere. Further research is expected as to how to integrate two approaches for better 

source apportionment of PM2.5.  
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8.2 Future Research  

Rethinking Tracers of PM2.5 Sources: Implication of Cross-Correlation Analysis on 

Inorganic and Organic Components   

Various airborne PM2.5 samples have been collected and analyzed in this research, 

which are directly impacted or dominated by on-road mobile and other typical urban 

emissions, regional transport sources, prescribed burning plumes, wildfire plumes, as 

well as secondary sources with anthropogenic and biogenic nature in origin. Detailed 

PM2.5 characterization has also been investigated seasonally and spatially, including over 

one hundred of organic compounds, ionic species, and tens of trace metals, some of 

which were proposed or proved as relatively unique tracers for specific sources. These 

measurements provide a great opportunity to screen out those potential tracers of PM2.5 

sources and to further evaluate the tracers currently applied in source apportionment 

models. Statistical cross-correlation analysis of PM2.5 components will be performed in 

various intensive emissions to better link measured constituents to specific sources. 

Spatial and seasonal variations of their correlations not only provide information to select 

appropriate fitting species or refine the selection in receptor-based models but also help 

better understand contributions to PM2.5 and OC from primary and secondary sources. 

Preliminary results indicate that water-soluble potassium (K+) and zinc are likely not 

suitable as tracers of biomass burning and gasoline vehicle emissions in receptor-based 

models, respectively, recognizing that they can also come from unknown or unidentified 

sources. SOA tracers will also be assessed for potential sources. For example, aromatic 

and aliphatic diacids may be formed in the atmosphere both from anthropogenic and 

biogenic precursors.         
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Source Apportionment of PM2.5 and OC Using the Molecular Marker-Based CMB-

LGO Method 

Through introducing some gaseous measurements, together with boundary 

constraints of fitting species, the chemical mass balance-Lipschitz Global Optimizer 

(CMB-LGO) method provides a possibility to optimize the current source apportionment 

models, e.g., the CMB-MM air quality model. In particular, application of gaseous tracers 

of mobile sources, CO and NOx, may be helpful in splitting PM2.5 source contributions 

between diesel vehicle emissions and gasoline vehicle emissions. In the future study, the 

CMB-LGO model will be used for source apportionment of PM2.5 impacted by intensive 

emissions, such as on-road emissions, prescribed burning plume, wildfire plumes, and 

secondary sources, with focus on application of organic molecular markers. Constraints 

in individual species could be determined through overall literature review of ambient 

levels and local emission inventories. Calculated source contribution results will be 

assessed by PM2.5 and OC measurements in a few special case studies, e.g., measurement 

between the roadside site and the nearby campus site, as well as observation in prescribed 

burning and wildfire plumes. Furthermore, molecular marker-based source profiles will 

be approximated for major primary sources in this area by application of CMB-LGO.   

 

Comparative Analysis of Source Contributions Apportioned by the CMB Model 

Using New Developed Source Profiles 

  Season-specific on-road mobile source profiles for primary OC and primary 

PM2.5 were newly developed in Atlanta, as shown in Chapters 2 and 3. Source 
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composition profiles were also built for aged prescribed burning plumes and aged 

wildfire plumes in this research, as shown in Chapters 5 and 6. How could these real-

world and representative source profiles improve or change source apportionment 

performance of the CMB model, which is applied to the metropolitan Atlanta area and 

the southeastern U.S.? To address this question, these newly developed source profiles, 

together with other available mobile source and biomass burning profiles tested in the 

laboratories elsewhere, will be applied in source apportionment using the CMB model. 

The sensitivities of CMB modeling results will be investigated for these different source 

profiles. Moreover, the ambient PM2.5 data from the roadside and the nearby campus sites 

will be used to evaluate performance of various mobile source profiles in the CMB 

model, whereas the ambient data from the prescribed burning plume and wildfire plumes 

for assessing these biomass burning profiles. Finally, these assessments are vital in 

providing the best estimates of PM2.5 and OC source apportionment using CMB.       
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APPENDIX A 

 

 

Table A.1. Detection Limits (MDL) of Organic Compounds Quantified with The GC/MS 

Method (unit: ng m
-3
). 

Resin Acids MDL Hopane and Sterane MDL 

Isopimaric acid 0.038 17α(H)-21β(H)-Hopane 0.010 

Dehydroabietic acid 0.028 22,29,30-Trisnorhopane 0.010 

Abietic acid 0.032 20S,R-5α(H),14β(H),17β(H)-Cholestanes 0.008 

1,2-Benzenedicarboxylic acid 0.008 20R-5α(H),14α(H),17α(H)-Cholestane 0.006 

1,4-Benzenedicarboxylic acid 0.005 20S,R-5α(H),14β(H),17β(H)-Ergostanes 0.008 

1,3-Benzenedicarboxylic acid 0.008 20S,R-5α(H),14β(H),17β(H)-Sitostanes 0.019 

    

Fatty Acids  PAHs  

Tetradecanoic acid  0.010 Fluoranthene 0.012 

Hexadecanoic acid 0.014 Pyrene 0.005 

Octadecanoic acid 0.007 Benz(a)anthracene 0.005 

Eicosanoic acid 0.022 Chrysene/Triphenylene 0.006 

Docosanoic acid 0.022 Benzo(b)fluoranthene 0.029 

Tetracosanoic acid 0.030 Benzo(k)fluoranthene 0.018 

Octacosanoic acid 0.086 Benzo(a)pyrene 0.010 

Triacontanoic acid 0.049 Indeno(cd)pyrene 0.007 

9-Hexadecenoic acid 0.032 Benzo(ghi)perylene 0.011 

9,12-Octadecanedienoic acid 0.031 Coronene 0.007 

9-Octadecenoic acid 0.024   

    

Alkanedioic Acids  n-Alkanes  

Propanedioic acid 0.025 Heptadecane 0.008 

Butanedioic acid 0.006 Octadecane 0.012 

Pentanedioic acid 0.039 Eicosane 0.016 

Hexanedioic acid 0.014 Tetracosane 0.031 

Heptanedioic acid 0.014 Octacosane 0.024 

Octanedioic acid 0.014 Triacontane 0.046 

Nonanedioic acid 0.013 Dotriacontane 0.035 

    

Others    

2-Methyltetrols 0.090   

cis-Pinonic acid 0.040   

Pinic acid 0.070   
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Figure D.1. 48-hr back trajectories for the ambient air monitors in metro Atlanta, Bibb, 

Coffee and Okefenokee sites impacted by the wildfire smoke plumes occurred in May 

2007.  
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