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SUMMARY

For 2 very long time analysts and practicing engineers have
been beget by uncertainty in defining the boundary conditions for real
gtructures subject to degtabilizing loads. Recently, some progress in
the resolution of this guestion has heen made. A new method of boundary
evaluation, which associated the behavior of a structure under a non-
destabilizing force system with the behavior of the same structure
in a destabilizing enviromment, was propased. The initial study
demonstrated that in a number of cases the technique had significance
fer columns. However, the view point was restricted. It was not
clear from the initial work whether the results were fortuitous or
whether they were a consequence of a general principle. Empiricism,
particularly when applied in a very specialized fashion can often yield
results of interest for a particular or specific example and be value-
less in any expanded problem. The question - how to determine the
influence of realistic boundaries in a non-destructive fashion - is one
of the most important. Thus, this thesis presents the results of
detailed evaluations which clearly establish that the prior resulta

are the outcome of a general relationship basic to the issue.



i CHAPTER I
INTRODUCTION

It is generally accepted that the critical leoad for a relatively
slender, geometrically perfect, centrally compressed column is given by

the formula

= ¢ n°EB1/1° (1)

PCI‘

where ¢ is the restraint coefficient, a quantity which characterizes
the conditions of end fixity. Nevertheless, there is a major problem
in the practical uge of thig simple equation. This difficulty was

succinctly stated by Salmon [1] who wrote in 1921:

The most pressing point for future research on the gubject

of columns 1s undoubtedly the question of the degree of

imperfection in practical fixed ends; in short, what value

of K[c]*¥should be assumed for such ends. A complete answer

to this question is difficult, but, at present, the designer

has no real data whatsoever regarding practical end conditions.

While a satisfactory answer to the above question remains to be

found, the designer is not without some practical information per-
taining to end restraint. Deslgn conventiong have emerged which are
usually conservative and which can be applied with confidence to

orthodox types of attachment. For example, Niles and NMewell [2]

pregsent the following guidelines for airframe c¢olumn members:

* Klel, end fixity coefficient,



As used in practice, the restraint coefficient is partly rational,
partly empirical. A value less than 1.0 is seldom required,
or a value greater than 2.0 permitted. Aeronautical engineers have
cugstomarily designed compression members in trusses having all-
welded joints on the basis of ¢ = 2.0, if the structure supporting
the member was as stiff as, or stiffer than, the member itself.
If the joints were made with several rivets or bolts, ¢ was taken
equal to 1.5 unless adequate test data were available to justify
a larger coefficient. If the restraining effect of the contiguous
structure was in doubt, ¢ = 1.0 was used.
It is clear that these criteria are of questionable usefulness,
especially in novel and innovative applications, and that more definitive
information certainly is desirable for all cases.

Since Salmon's statement was made, much research on the subject
of ¢olumns has been carried out. Great ingenuity has been expended by
experimentaslists in simulating the "ideal" end restraint conditions
that are normally congidered in analysis. A thorough review of these
efforts has recently been prepared by Horton and Struble [3]. In this
report the authors conclude that the complexity of achieving prescribed
conditions and the fact that such conditions are rarely, if ever, met
in actual structures provide strong justification for seeking a simple
non-destructive testing method. A successful method of this type would
yield data pertinent to the stability of column members with realigtic
end restraint wlthout risk of costly damage or loss.

One powerful technique of column evaluation has already been
established. This is the so-called Southwell Method. A review of its
applicability to various types of structures is to be found in Reference

[4]. Despite the power of this technique and its universal applic-

ability in structural stebllity problems, it does not completely satisfy



the needs. The reason for this is that, before this method can be
applied, data must be generated at destabilizing load levels which
approach the critical., In this seuse, the Southwell method can not be
ineluded in the category of the non-destructive test. It is perhaps
more appropriately referred to as an indirect test.

Subsequent to the analysis of Southwell, Fisher [5] made a more
detailed study. In this, he demongtrated that constant lateral load
gystems were effectively imperfections. Hence, lateral loading is a
simple means of sensitizing columns to axial load effects. This
means, then, that compressive load level can be reduced, data
acquigition simplified and reliability enhanced by applying a constant
lateral force. The Southwell c¢critical load, bteing independent of
imperfection level, is unaltered by the procedure.

Another approach to stability ewvaluation has heen based upon
relationships that exist between vibration frequencies and stability.
It consists of measuring reductions in natural vibration frequencies
as destabilizing load levels are increased. Stability limits may be
estimated from vibration data obtained at suberitical values of load in
this manner. This technique, as the Southwell method, is indirect
rather than non-destructive in the gense explained earlier and does not
appear to have received much attention [6].

Efforts [7,8,9,10] directed toward the development of truly
non-destructive testing methods have recently been made. These center
around the establishment of relationships between the behavior of the

menmber under non-destabilizing conditions and in instability. The



approach adopted in References [7], [8], and [9] originated from the
cbservation that buckling loads of columns are raised if end restraint
stiffnessges are increased while the flexibility or compliance of the
member under lateral loads 1S concomitantly decreased. These early
investigations were concerned primarily with the establishment of
empirical correspeondence laws relating critical loads and compliances
under lateral loads. The results obtained in this way are encouraging,
but much additional work remains to be done.

A semi-analytical procedure is presented in Reference [10] which
differs from the above. The author suggests applying lateral loads to
the member, measuring parameters which vary with the end restraint
gtiffnesses and then ingerting these measured values into gtability
equations in order to predict buckling. Obviocugly, this idea is both
rational and straight-forward, but it does not permit measurements to
be directly interpreted in terms of buckling. Moreover, since a
precise theoretical calculation is required, extension of the method
tc more complex structural elements could present considerable
difficulty.

To date the need for a practical non-destructive stability test
is not yet satisfied. UNevertheless, by correlating buckling loads
with compliances under lateral loads, progress has been made towards
establishing such a test for columns. In the present work the back-
ground of this approach is reviewed in depth, a new correspondence law
for Qolumns is presented and a significant parameter associated with
points of inflection identified. In addition, the practical appli-

cation of the law is discussed and comparisons with previous laws are made.



CHAPTER 11
NON-DESTRUCTIVE LATERAL IOAD TESTS

The work reported in References [7], [8], and [9] is basic to
the current endeavor. The central idea presented in these pioneering
efforts is perhaps best introduced by way of an illustration. Consider
two similar columnsg of uniform bending stiffnegs with different con-
ditions of end restraint - one simply supported and the other clamped
at both ends. For these two configurations, the product of the
respective buckling load and the maximum deflection caused by unit
concentrated lateral force applied at the span mid-point is

constant. That is
P (&) =TF (2)
Q

where & is the span mid-point deflection, @ is the magnitude of the
concentrated lateral load, and L is the member length. ‘
Equation (1) suggests that an increase (decreage) in restraint
stiffness raises (lowers) P..» the buckling load of the beam acting as
a column, and lowers (raiges) the compliance (§/G) in such a way that
the product of the two remaing congtant. Is thig fact gimply
fortuitous or is it a congequence of a general principle of mechanicg?
In an effort to answer this question, the remaining limiting

¢ases of restraint were investigated [T]; the results are summarized in



Table 1. The best agreement corresponds to concentrated lateral loads
applied s0 as to maximize the compliance (8/Q). It is seen that
equation (2) is adequate for all but the cantilever beam, in which
case it gives results that are in error by a factor of four.

Struble [9] modified equation (2) to derive a rule which also
applies to the cantilever. He noted that the difference between the
cantilever and the other cages recorded in Table 1 is the number of
inflection (zero moment) points that develop under both lateral and
destabilizing forces. (The cantilever restraint produces a single
inflection point, while the others result in two). Consequently, the

modified law is of the form

2
4y _m L
Pcr(a) =1 (3)

l2n2

where 'n' is the number of inflection points that develop within the
gpan under the lateral loading. The incorporation of 'n' into the
empirical law is similar to the introduction of the concept of
effective or reduced length in the usual theory of column buckling;
recall that a column’'s effective length iz associated with the
distance between inflection points in the buckled configuration.

Equation (3) can be appropriately called the load-deflection
test. Following Struble [9], it will usually be abbreviated to
simply "P-delta" test or law.

Results for beams of uniform bending stiffness or for limiting

cages of reastraint vhich correspond to either zero or infinite boundary



Table 1.

Lozd-Deflection Test

Ideal Conditions

®

O xll-8®

Of Erﬂ Res’ll'cllnf P . l‘_2 a ?'.
e | SOl (e Bgpbnac
Q
g 0.000n 1.000 0.02083 1.000
N%
Q
0.586L |
—\M 2.0L5 0.0098k 0.968
Q
’le/—E 4,000 0.00521 1.000
L Q
4 ~ ¢.250 0.33333 4.000




restraint springs are not sufficient to substantiate the soundness of
equation (3). Additional study [7,9] provided strong evidence that
uniformity of bending stiffness is not essential for the P-delta law
to remain valid., A systematic study [9] of the two elasticaily
regtrained configurationsg shown in Figures la and 1b was also con-
ducted. For beams with elastic rotational restraint at the ends
(Figure la), it was found that the maximum error incurred by using
equation (2) is only 7 percent for all values of the rotational spring
constants.,

The P-delta test is no panacea, however. When applied to beams
possessing the type of boundary restraint depicted in Figure 1b the
agreenment found 1s far from satisfactory in certain parameter ranges.
A problem develops as the translational spring stiffness at the tip
increagses - the number of inflection points changes abruptly from one to
two producing an unrealistic discontinuity in ecritical load prediction
based upon equation (2). An error in P, of as much as 235 percent was
reported by Struble [9] for this type of constraint; he then proposed an
elaborate modification of the P-delta law in order to improve the
situation, but the modified law was cumbersome to apply and the error
remained unacceptably large for practical purposes.

An attendant experimental study [8] of the P-delta test was
conducted using a test fixture designed to simulate the boundary
conditions shown in Pigure la. Maximum compliances were located by
systematically varying lateral load positions along the beam specimens

while critical loads were egtimated by the Southwell method. Typical



(a)
Unyielding Supports, Elastic Rotational Springs

K2

——

(b)
Cantilever with Elastically Supported Tip

Figure 1. Elastically Restrained Beam
Configuration
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test results appear in Figure 2; it is evident that the product of
the critical load and maximum compliance ig constant.

While the value of the P-delta test cannot be denied, its
shortcomings when lateral springs are present prompted a further
search for g more comprehensive law., Uoting that the transition from
one to two inflection points was at the heart of the problem, Struble
[9] made the following conjecture:

We have thus far emphasized the importance of inflection
points in beam behavior, indicating that there might be

some sensitivity to wave form, as opposed to wave ampli-
tude, that is lacking in the measurement of a single
deflection only. It is noteworthy that an inflection point
is also a point of extremal slope, and it is only natural

to wonder if the measurement of maximum slopes might provide

g better estimstion of the buckling load than using the
deflection &pproach.

He tenaciocusly employed a trial-and-error approach to finding laws
relating the buckling loads and extreme valueg of slope or rotation,
Perhaps the most successful of the load-rotation or "P-theta"

laws is

NERE g

where Bm is the difference between the maximum and minimum wvalues of
the rotation angle produced by bending under the lateral load §. The
leoad is positioned so as to maximize em. This relation is applicable

without modification to the four limiting cases of resgtraint discussed
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earlier. It is illustrated in Table 2. It does not explicitly
contain either material or geometrie properties of the beam.

The adequacy of the P-theta test has been explored within the
context of the elastically restrained configurations shown in
Figures la and 1b, For beams on unyielding supports with ends
elastically restrained against rotation (Figure la), the use of
equation (4) results in a meximm error in critical load prediction
of 6 percent for all values of end spring stiffnesses. Unfortunately,
such good agreement cannot be achieved if g lateral spring is present
(Figure 1b); unscceptebly large errors in the range of wesk lateral
spring stiffness indicate that this test suffers from a deficiency
comparable to that of the P-delta law.

In summary, it has been clearly established that both the P-delta
and P-theta tests provide a sound basis for the evaluation of boundary
effects for a wide clags of structures subjected to destabilizing loads.
Thege tests have been empirically developed, however., Their range of
applicability is limited and their underlying principles have yet to
be uncovered. Nevertheless, the potential usefulness of such methods

is beyond question.

Introduction of a Uniformly Distributed Lead

In the practical application of either the P-delta or P-theta
tests, maximum flexibility locations are generally unknown at the
outset. It becomes necesgsary, therefore, t0 search for them by
applying lateral forces at a sufficient number of stations along the

beam. Such a procedure produces a large quantity of data, of which



Table 2. Load-Slope Test.

13

Heal Conditions ® @ O « 8@
nd traint
of End Restra o L2 | Om-EI | o P @
e eI QL2 Qe
Q
’;’o.ﬁl 1.000 0.1250 1.000
Q
0.612L R 2.045 0.0609 0.99
EF‘N%
0.500L @&
N V-E i ,000 0.0312 1.000
]
L Q
:\]' 0.250 0.5000 1.000

e Denotes nflection point.
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only a fraction - the extreme values of compliance -~ are of any
interest if the P-delta or P-theta tests are used. In view of the
inadequacy of these two methods for weak lateral restraints and of the
guantity of unused data svailable, the quegtion naturally arises
whether this data can be employed effectively to improve stability
predictions in the parameter ranges where improvement is needed.

We are strongly tempted to search for g meaningful statistic
such as some form of weighted average which incorporates all the data
obtained in traversing the beam. We are alsc cognizant that an
intimate relationship exists between a "moving" concentrated load and a
uniformly distributed load - the effects of the latter are the cumulative
or integrated effects of the former. At this peoint these two notions
coalesce to suggest a new direction - exploring the possibility of
relationships between & uniformly loaded beam and itg stability limit.

We emphasize at the outset that uniformly distributed loading is
not recommended as practicable. It should be regarded as the convenient
limiting mathematical form for use in the gearch for empirical laws.
The recommended test procedure would consist of suitably superposing
data obtained from the application of a finite number of concentrated
loads along the beam span. We shall consider this matfer in more

detail later in the dlscussion.

Search for Empirical Laws

The development of empirical laws is usually based upon an
intuitive step followed by inductive-deductive reasoning. In this the

experience geined in prior or similar situations is most helpful. So.
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it hag been in this study. Previous work indicated that extreme
valueg of beam displacement and slope caused by lateral loads provide
relevant compliance data. Moreover, the method of considering ideal
limiting cases of end restraint first and then proceeding to more
general situations has evolved as a pragmatic method of evaluating
proposed emplrical relations. These two notions serve to guide the
courge of our investigation.

We note that for a cantilever under uniform lateral load, g

per unit length, the tip slope is given by
o 73
9 = qL°/6EI (5)

and that the critical compressive load for an ldentical column under

axial force is

P = BT /h? (6)

cr

whence it follows that

P+ 0= T ™

It should be noted at this juncture that the point at which the obser-
vation has heen made is the tip of the beam. At this point there are
certain other clearly definable conditions.

(1) the bending moment due to either the side load or the
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axial load would be zero.
(2) the deflection in either load condition would be maximum.
(3} the slope at the tip can be regarded as a limiting case

since

where 61 is the lateral displacement determined at the tip and 52 is
the lateral displacement determined at a point Ax inboard of the tip.
It is also pertinent to note that

(4) the shear at the tip is zero.

(5) that the displacement curve under the action of the side

force has no inflection points.

The introduction of a sideways partial restraint at the tip
causes certain clear changes to take place., If the stiffness of the
restraining spring does not exceed a certain critical value then the
deflection at the tip will always be the maximum deflection in the beam
but when the value is exceeded it will no longer remain so. Moreover,
no matter how light the spring is, there will always be two zero
moment points along the beam, and there will always be a shear force
at the tip statiom.

We proceed now to examine the case of a simply supported beam.
Under a uniform load, g, the maximun slopes are located at the positions

of zero moment, viz. each end, and are given by
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1
® = 5% I (8)

P == (9)
cr L2
and so
2
Pcr © 8= Eﬁﬁg (10)

The similarity with the previous case is apparent. There is therefore
s Strong justification for examining the other limiting cases in the
same fashion. At this stage certain complexities occur. We note now
that if both of the beam ends are clamped, the positions of zero moment
are no longer at the ends of the beam but are moved in from the ends
by 0.211 L and are separated by a distance of 0.578 L. The slopes
at these points are of course much reduced, having a value of

0.193 (q13

32 (%)
It is apparent that the prior simple relationship is no longer

applicable.

The discrepancy between the clamped-clamped and the other cases
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can be simply resolved by a slight change in the comparison formula

uged. We cbserve that the product

_ 2 gL _ 2 ql,
P Omex = L x 0.193 7 AT = 0.772 m %H

and that the 6max is positioned at a distance of 0.211 L or 0.789 L
from the end. Hence, we conjecture that a better quantity to consider
is the least wvalue of Pcr 8max/fmax, where Lmsx is the greater of the

two distances from an end to the inflection point. Thus, we propose

the approximate relation

(12)

The results obtained when thig simple rule is used for the four ideal
cases are shown in Table 3. The buckling determinant and the equation
for beam slope under uniform lateral lead for the rotaticnally
restrained body on unyielding lateral supports is derived in Appendix
A. TFrom these derivations we can numerically evaluate the approximstion
(11) in o broader context. The necessary computations were made on a
Univac 1108 and are summarized in Table 4. We see from this that
the expregsion is excellent for all combinations of end rotational
stiffness

A further examination of the case of a beasm with one end clamped

and the other simply supported {propped cantilever) shows that the
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Table 3. Distributed Losd-Slope Test
Ideal Conditions (D @ (D % @
of End Restraint 2 a - '
Por L e eﬂ'mgn; 04 _Fir Omax
T2ET Imax-q L Imox @ TI8
8
7533__—- 1.000 1.000 1.000
|<_ 1.000L —— a4
8
max
ﬁ
% — 2.045 0.500 1.023
| 0.25L
Bma_x
E L .000 0245 0.980
{max = O.TB\QII
emax
é 0.250 4,000 1.000
1 1 .000L ™

o Denotes inflecton point.



Table k4,
equation (11).

Estimation of the Buckling Load by

Stiffness Parameter C!o

20

0 .5 1 2 5 10 50 100 105 10
1.000 1.09% 1.175 1.306 1.548 1.730 1.968 2,006 2.0k 2,046
1.000 1.077 1.143 1.250 1.455 1.625 1.893 1.943 1.994 2.000| ©

0 =1.5 -2.7 -Lk.3 «g.0 ~6.,1 -3.8 -3.1 -2.3 -2.2

.193 1.278 1.46 1.671 1.864 2,114 2.153 2.190 2.195
1.197 1l.267 1.380 1.598 1.780 2.067 2.121 2,175 2.18L. ] .5
03 -.9 -2.5 -ll"o3 -ll'o5 -303 -105 --7 "l6
1.367 1l.512 1.780 1.982 2.243 2.284 2,323 2,327
1.372 LlL.k92 1.721 L1.914 2.217 2.275 2.332 2.339 1
.3 -l.b -3.3 -3.,5 -l.2 - A 5
1.668 1.959 2.179 2.461 2,505 2.546 2.552
1.660 1.918 2.129 2.463 2.536 2.590 2.597 [ 2
OOO -2.0 "2.3 00 08 107 1-9
P _exact 2,297 2.557 2.891 2.943 2.991 2.997
P _estimated 2,273 2.520 2.870 2.922 2.970 2.975 | 5
% error 21,0 =15 =] =T =T el
2.854 3.239 3.298 3.353 3.359
2.813 3.187 3.246 3.300 3.306 |10
-1-5 -106 "1.6 -106 -106
3.700 3.711 3.838 3.845
3.718 3.789 3.855 3.863 |50
.5 .5 o A
3.845 3.914 3.921
3.896 3.965 3.973 LOO
1.3 1.3 1.3
3.984  3.992 3
4,077 4.085 O
2.3 2.3
4,000 5
4.098 10
2.5

Stiffness Parameter Ctl
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relation (11) applies approximately if the slope value at the second
inflection point is used. For this beam under the uniform load g,

the slope at the inflection point remote from the pinned end is

3
= al
8 = 0.344 =

and this point is located at a distance of 0.75 L from the pinned end.

Thus ,

P 8 3 \ 2
ook, = ()BT ) - o.500 (BF)

This observation suggests that equation (11) may be generalized.

If we let el and 92 denote the two extreme values of slope that corre-

spond to inflection peints located at distances Ll and L from the

remote ends of the beam (Figure 3), then we expect that

[y I8p1 (loy] +le5])

LT T (Ll + Lé}

Thus we can derive another equation as a replacement for equation (11).

Py 19

+ | ® )
| 1ol g )

(L, + 1)



inflection points

uniform load
q (Force/Length)

[ ! ext
..—.....x
f -
L—Pz -
L -
Figure 3. Geometric Parameters for an Elastically

Restrained Beamn.
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where Ll, 6. and 92 are defined in Figure 3. In an effort to

27 71

clarify the issue further the hehevior of a beam with rotational end
restraint at both ends is considered analytically (Appendix A). The
lateral leoad is uniformly distributed and has a velue of ¢ per unit
length., The analysis demonstrates that the sum of the absolute walues
of the slopes at the zero moment points is proportional to the cube of
the distance apart of these points. This simple result has important
practical consequences, because the formula (12) can now be written in

the form

P
(_%§9(2 ) Lsext) - Tr2

(L+4 )

(13)

ext

In other words to evaluate the critical load under axial com-
pregsion we do not need to measure slope at a point but merely
distance apart of two points. Practically this is a much simpler
operation.

The numerical calculations appropriate to this formula
demonstrate that for all possible combinations of rotational spring
stiffness the meximum error is only 2.5 percent. The results are
shown in Table 5. The comparisons between the regults by this test and
those of "P-delta" and "P-theta" tests are shown in Figure L.

The caleulation was made for the case of equal rotational
restraint, because for all three test methods this is the case in

which the meximum error exists. It is seen that the result for the



Table 5. Errors Involved in the Estimation Formila
equation (13).

Stiffness Parameter ao

o .5 1 5 5 10 50 100 109 10°
&.ooo 1.094% 1.175 1.306 1.548 1.730 1.968 2.006 2.042 2.0L6
000 1.095 1.176 1.303 1.535 1.715 1.977 2.023 2.069 2.074
b.O al -0 -.3 - -09 . 09 lt3 l.ll-
1,193 1.278 1.416 1.671 1.864 2.114% 2.153 2.190 2.195
1.197 1l.282 1.418 1.664 1.856 2.13¢ 2,18l 2.229 2.234
.3 .3 .1 -.5 -5 .9 1.3 1.8 1.8
1.367 1l.512 1.780 1.982 2.243 2,284 2,323 2.327
1.372 1.514% 1.77% 1.975 2.266 2.317 2.367 2.373
3 2 -.3 -.3 1.0 1.4 1.9 2.0
1.668 1.959 2.179 2.&61 2.505 2.547 2.552
1.669 1.950 2.169 2.484 2.539 2.593 2.600
oo --5 "-5 09 la3 108 lc9
2,297 2.557 2.891 2.943 2,991 2.997
2.273 2.528 2,895 2,959 3.022 3.030
-l‘O -1.2 ol 05 l-O 101
P_. exact 2.854 3.239 3.298 3,353 3.359
P_, estimated 2.813 3.227 3.300 3.371 3.380
% error -1.5 -4 .1 .5 .6
3.700 3.77L 3.838 3.845
3.718 3.805 3.891 3.901
'5 09 lo]+ 1-5
3.91% 3.924 3.921
3.896 3.985 3.995
1.3 1.8 1.9
3.98% 3.992
k077 4.087
2'3 2-l+
4.000
4,098
2.5

2l

5

Stiffness Parameter al

[
Lo

50

100

103

10°



PERCENT ERROR IN GRITICAL LOAD
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uniform load test is to all intents and purposes "exact".

Generalization to the Case of a Moving Lateral Support

In the arguments presented so far we have assumed that variation
in rotational constraint is the prime problem of practical concern.

We consgider this to be a well founded assumption. Nevertheless, we
realize that problems in which some flexibility exists in the lateral
support system occur. The prior work [7,9] failed for these cases.

The reason would appear to be that a single lumped compliance parameter
cannot accomodate such complex boundary effects., Thus, a second
parameter whose value is determined primarily by the lateral support
flexibility must be introduced,

To search for this parameter we consider the elastically
propped cantilever, To visualize the physics of the problem we begin
with the plain cantilever beam. Under the action of a uniform lateral
load this body deflects in a smooth curve and the maximum deflecticn and
slope occur at the tip. The introduction of a partial sideways
restraint at the tip causes certain elear changes to take place. If
the stiffness of the spring does not exceed & certain critical wvalue
the deflection at the tip will always be the maximum for the beam,
However, when thig critical stiffness is exceeded this condition is
no longer true. Moreover, no matter how light the spring is, there
will always be two zero moment points along the beam, and the zero
shear point will move away from the tip.

The propped cantilever for which the tip spring stiffness

exceeds the critical wvalue intuitively seems the easiest to deal with.



27

Thus, thls case is treated first. It is readily apparent that the
lateral spring can be replaced by an appropriate cantilever spring
system. The requirements we must specify for this equivalent system
are:

(1) The cantilever is to be regarded as a continuation of the
beam under congideration. Therefore,

(a) it has the same EI as the beam

(b) it provides the same reaction force at the tip as
does the real spring.

(¢) there is continuity of slope and deflection at the
proper point.

(2) To make the equivalent system handleable with the pro-
cedures previously followed the cantilever has an appropriate
rotational spring at its root and an infinitely stiff lateral support.

With these conditions defined we may proceed to the analytical
study of the problem. The system defined is depicted in Figure 5a and
we note that at the tip there are initislly four prescribed conditions

viz known values of Mb’ v _, 50, 60. Two unknowns are 4o be ascertained

o]
from analysis - namely, the beam length and the end fixity coefficlent
&. It can be shown from the usual beam equations that the relationship
between I, and the prescribed conditions is

1th + by - 48M f + L8y L - 485 =0. (1)
Q Q (o] [a]

The critical load for the configuration should be as follows:
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. Ks
foxt ”( !

(a)
Anclogy for Gasel: Kz > 24
gy 3> 24 EL

—

O

3 - Lext K3

(b)

Analogy for Casell: Ky €24 EE;S_

® Denotes Inflection Point

Figure 5. Beam Analogies for Cantilever with
Lateral Tip Spring
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£
For = = gxt ’ - ) ﬂgEI (15)
2Lext (4 + 1)

where the term

(L + 1)°

is the natural correction for increase in column length from T to

L +4. This semi-empirical formula has been evaluated for values of

-
[
L

[H]

ranging from the critical to virtual infinity. The error is
acceptable over the whole spectrum. The extreme value, 13 percent,
cceurs at the lower bound. The average value is, however, much
smaller as is clear from Table 6.

The cases for which the lateral support spring stiffness does
not reach the value which causes the tip to be inclined upwards for a
down loading of the beam cannot be treated by the procedure outlined.
Thus, we are forced to a somewhat more intuitive approach. To deal
with this case we go back to consider the relationship between the
instability loads for a one-end clamped, one-end free column and a
pin-pin column. We note immediately that the critical load of the first

is given by



Table 6.,

Extended Beam Analogles.

Extended Beam Analogy Case (I)

30

K3L3 P oxact + I Pest. 17

EL t T EI T EI Errors ()
24 .334 1.664 1.897 13

30 .302 1.731 1.766 3

Lo 263 1.850 1.807 -3

100 JA54 1.996 1.833 -8

500 .037 2.037 2.000 -1

0 2.045 2.07h 1
Extended Beam Analogy Case (II)
3 P 2 P P

K,.L exact L = est. L

3 T e Errors (%)
BT &I ext ez

0 250 2.0 2.0 250 0

1 .332 1.8125 1.625 .328 -1.2

2 Sk 1.7000 1.400 40T -1.7

L 572 1.571 1l.142 561 -1.9

8 872 1.455 910 .830 -4.8
16 1.360 1.368 .736 1.235 -9.2
24 1.664 1.333 666 1.498 -10.0
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R (16)

cr

and the critical load for the second by

p =B (17)

°r g
PD

For equality of loads for these two systems we see lmmediately that

Lop = 2Ler (18)
And go, of course, we focus attention on the use of reflection in the
study of the problem. But reflection of the beam to obtain an equi-
valent beam isg not all that is necessary. Some parameter closely
associated with the characteristics of the tip spring is essential.
Instinctively we feel that this may well be the location of the point
at which the shear is zero. We are given some confidence in this
viewpoint by the fact that we can show this point to have significance
in the cage we have already treated.

Consider the beam column with uniform lateral loading and suppose
that the zero shear point is positioned at distance Ll from one end
and L2 from the other. Then we can demonstrate arithmetica.lly that for

8 given beam
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3
_ ,L3 . 2L.. . 24 . 2L
P x 2V oxt } 1 l) =P__ %1 exz | i 2} = gonstant (19}
er ¥ 1 2L, + Léxt v L/ cr 2L, + L ¢’ L

If we agssume there are two functions e, and €5 which make the above

1
approximation identities, then we can write

3 3
e - 2L - 24 € .- .2
P ext + 1 | 1 . P ext + 2| / I? (13)
er 1 2L1 + Léxt f ( L ) er i 2L2 + {éxt | \ L ) bis
3
g l;(Ll + L) ext T 2016 + 2Le,, N
er | 2(Ll + LE) + E{Ext j(L)
243

_ / ext N
= Pcr lrérx-t’r + ¢ = Constant

In essence, when e is regarded as the error, this is the formula
previously derived. Hence, we see that the zero shear point is an
important point on the beam but we note that in the previous
investigations this fact was masked.

We proceed now to reexamine the question of the gubcritical
propped heam. We begin by reflecting the heam and congidering the
equivalent length to be the distance between the zero shear points.
Thig, of course, differs from the true length and thus we anticipate
some correction will be required. As before, the natural correction
should be the ratio of the sguares of the equivalent and real lengths.

With these ideas in mind the analogous expression should be
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3 2
P 24, = .
er ext (L 2
= 20
ex

%

This semi-empirical formula turns out to be a very good approximation,
the maximim error being of the order of 10 percent. The values of
the theoretically exact and approximate Pcr's together with the
appropriate errors are shown in Table 6.

Now it has become clear that the characteristic distance between
inflection points under s uniformly distributed lateral force is
an important parameter in the mathematical desgeription of the influence
of boundariegs on instability load of columns. 8o, at this stage it is
worthwhile examining the predecessor's work, i.e., "P-delta" and
"P-theta" methods, to find out whether they can be associated with
the same quantity. To clarify this point the deflection, slope and
moment due to a concentrated lateral force acting on an end rotationally
restrained beam with unyielding lateral supports was derived. The
derivation is given in section (c) of Appendix A. The analysis shows
that when the rotational restraints are equal, the sum of the absoclute
values of the extremum slopes, which was used as a parameter in
"P-theta" method is proportional to the square of the distance between
the inflection points. Therefore, in this case, the "P-theta" method

is equivalent to the following relation

2
() =5 (21)



34

where Le is the distance between the two inflection points when a

xt
concentrated lateral force is applied at the mid-span of the column

considered.

Non-Uniform Cross Section

S0 far in the analysis the bending stiffrness of the column has
been assumed to be uniform. Now the question is "Is the uniformity of
the bending stiffness essential to the issue presented here?" With
regard to this question, Reference [7] showed one example of the
variable bending stiffness problem for the clamped-pinned boundary

condition and proved the applicability of the so-called "P-delta"
method. In this thesis a simple empirical formula relating the
buckling load of the column of wvariable bending stiffness to the
extremum slopes due to a uniformly distributed latersl force is
investigated extensively. As a first example, the simply supperted
strut depicted in Figure 6 is considered. Thig strut is non-uniform,
the two halves having different bending stiffness. According to J,
Case [11] the criticel load for & strut unsymmetrical about the center

is given by

2

PCI‘

1
=5 + (22)
a

U,"UII—'

where Pa is the buckling load of a strut with two halves like OA, and

Pb ig the buckling load of a strut with two halves like OB. Since the
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Figure 6.

Non-Uniform Beam Unsymmetric About its Center.
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inflection points are always at the ends for this configuration, and the

signs of the slopes at the two ends are opposite, the sum of the

absqlute values of the extremum slopes is their algebraic difference.

When the uniformly distributed lateral force of intensity q (lb/in) is

applied to the column considered, the governing differential equations

are

Integrating both equations in (23) yields

EI,W' = 911}—'){2 - gx3 +Cy

2
EL W' =%—~X -%(X—%)3+C

The condition of slope continuity at X = L/2 gives

Hence

(-3 - - Bi) 5D

OsXs% (23)
L
7<XsL
0=sXsx % (2h)
L
'§'$X$L

(25)



nng
Pcr 8= 12
Now equation (28) can be re-written as
. 2
Pop " 00 2
2L 24

which is, of course, equation (12) precisely.

The second case considered is the clamped-pinned column as

depicted in Figure 7. The bending stiffness, in general, can be

written as

EI(x) = EIO{l - %(%)p}

(26)

(27)

(28)

(29)

(30)
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Figure 7.

Figure 8.

g=constant

Clamped-Pinned Besm of Variable Bending Stiffness

under the Uniformly Distributed Load

g=constant

X=0 X=L
Simply Supported Beam of Variable Bending Stiffness

under the Uniformly Distributed Load
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where T, a number greater than 1, represents the taper ratio of the
bending stiffness and EIo is the bending stiffness at the root.

The slope at the pinned end, which is of prime interest here,
due to a uniform lateral force is obtained by integrating the differ-

ential equation

2
Los {EZ(W"} - a = 0 (31)
7

and stsisfying the boundary conditions

=
]
=
n
o

at X =0 (32)

=
[}
=
!
o
o
ot
b
[}
[l

The slope as a function of T wag calculsted for the p = 1L and p = 2
cagses. The details are given in Appendix D. The buckling load was
calculated by the finite difference method [12] using Potter's [13]
method and its modification [14]. The set up of the finite difference
equation, the computer program in Forftran langusge, and the numerical
results for p = 1 and p = 2 cases are alsc shown in Appendix . The
buckling loads, ratiosg, the tip slope parameters and the products

of the two quantities are listed in Tables 7 and 8, for different
values of T. The results clearly confirm the excellent accuracy of the

empirical law (11), viz.



Table 7. Propped Cantilever Beam with Linearly Varying
Bending Stiffness

(1) (2) (3) (&) (5)
Buckling Tip Slope
Load Ratic Parameter
T PcrL3 21‘Leend. ?r?d?ct Error (%)
3 23x(3) in BEquation
oEI %%— (11)
o

1.053 .810 1.466 1.187 18.7
1.071 846 1.387 1.173 17.3
1.111 9Lk 1.259 1.151 15.0
1.125 .93k 1.224 1.143 14,3
1.250 1.085 1.023 1.110 11.1
1.500 1.277 .8h6 1.080 8.0
1.750 1.430 JT60 1.087 6.7
2 1.492 L710 1.059 5.9
3 1.687 .618 1.043 L.3
5 1.834 .563 1.033 3.2
10 1.940 .51k 0.997 «.3
20 1.993 .508 1.012 .6
100 2.03L .503 1.023 1.1
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Table 8. Propped Cantilever with Parabolically
Varying Bending Stiffness

(1) (2) (3) (%) (5)
Buckling Tip Slope
Load Ratio Parameter
T Pcr . L2 2LI'Bend Product Error (%)
3 2) x
nEEI %%}_ (2) (3)
Q

1.053 1.182 1.035 1.223 224
1.071 1.208 1.001 1.204 20.9
1.111 1.258 942 1.185 18.5
1.125 1.274 926 1.180 17.9
1.143 1.293 .506 1.171 17.2
1.167 1.316 .884 1.163 16.3
1.250 1.38L .82L 1.140 4.0
1.750 1.606 B7h 1.082 8.2
2 1.673 643 1.074 7.4
3 1.808 .583 1.054 5.3
5 1.907 545 1.039 3.9
10 1.974 .521 1.028 2.8
20 2.011 .510 1.026 2.5
100 2,035 .505 1.028 1.k




Yo

Por * (BEXt) - H;%‘ (11)

bis

The maximum deviation of the product of the eritical load and

slope parameter differs from the constant
ﬂ2 N
(%)

by only a few percent for all practically realistic values of T.
The third case congidered is that of the simply supported beam,
(Figure 8). The bending stiffness is assumed from the form given in

equation (30). Linear (p=1) and Parabolic (p=2) cases are considered for

different values of T'. The extremum slopes are located at the ends and
are of different signs. Thus, the sum of the absolute values of the
extremum slopes is the difference of the end slopes which are calculated
in Appendix . As before, the buckling load was obtained by a finite

di fference scheme. The appropriate computer program is given in
Appendix . The only deviation from the clamped-pinned case lies in

the boundary matrix corresponding to the left end. The empirical law

eyl + 1ol .2
1 _q-rr
Pcr 1 2L } -2k

was checked for this configuration. The wvalues of critical load and the
slope parameters and. the product of the twe are listed in Table 9 and

10 for different wvalues of T. It is readily seen from thesze tables



Table 9. Simply Supported Beam with Linearly Varying
Bending Stiffness

43

(1) (2) (3) (h) (5)
Buckling Tip Slope
Lcad Ratio Parameter
p 1° 12 AB Product Error {%)
> 3 (2)x(3) in
noEI = Equation {11)
o
1.053 429 2,440 1.047 4,7
1.071 Ll 2,343 1.036 3.6
1.111 A72 2.179 1.028 2.8
1.125 482 2.133 1.028 2.8
1.143 493 2.080 1.025 2.5
1.250 .548 1.853 1.015 1.5
1,500 636 1.584 1.007 7
1.750 690 1.448 0.999 -.1
2 734 1.364 1.001 .1
3 827 1.210 1.001 .1
5 .327 1.11k 0.999 -.1
10 .99 1.053 0.99% -.1
20 .97h 1.025 0.998 -.1
100 .995 1.005 1.000 -.0




Table 10. Simply Supported Beam with Parabolically
Varying Bending Stiffness.

Ly

(1) (2) (3) (W) (5)
Buckling Tip Slope
Icad Ratio Parameter
T PcrL2 12A0 Product Error (%)
- 3 (2)x(3) in
77BI %f— Equation {11)
o]
1.053 641 1.660 1.06k 6.4
1.071 651 1.625 1.058 5.8
1.111 672 1.563 1.050 5.0
1.125 678 1.545 1.048 4.8
1.143 .687 1.524 1.047 Y7
1.250 .725 1.430 1.037 3.7
1.500 782 1.309 1.024 2.4
1.750 .818 1.24k 1.018 1.8
2 Bl 1.201 1.01k 1.4
3 .900 1.120 1..008 T
5 L9h1 1.066 1,033 .3
10 971 1.032 1.032 .2
20 .985 1.015 1.000 .0
100 997 1.003 1.000 .0
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that the formuls (11} is an excellent approximation., The excellence
of the formula (11) for a uniformly distributed load cannot be denied,
but its practicality can readily be challenged. The characteristics
of a uniformly distributed load are relatively simple t¢ analyze but
relatively difficult to achieve in the laboratory. Admittedly a
uniform load can be regarded as the integrated effect of a series

of dlscrete loads or as that of a moving load but this clearly
presents practical difficulties., In short, uniformity is a wonderful
mathematical expedient but a poor laboratory tocl. Thus, the next
step in making the work fully practical must be to ascertaln whether
the uniform load can be replaced by a discrete load system without
inducing unacceptable errors. A detailed analysis of this question has
been made for the beam on unyielding supports. It shows that three
equal forces spplied at the 1/4, 1/2 and 3/4 points of the beam can
be used to determine the characteristic length with reasonable
accuracy. The errors involved in thig determination are depicted in
Table 1l while the effects of other multiple discrete load systems are
portrayed in Figures ¢ through 14. The use of a three force system
gimplifies the question of load application, just as characteristic
length used in the analysis improved the ease of determination of the

necegsary length parameter.
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Table 11. Estimation of the Buckling Load by Applying Three Equally
Spaced Concentrated Lateral Forces on the Rotationally
Restrained Beam

Stiffness Parameter (KL/EI)

0 .5 1 2 5 10 50 100 105 10°
1.000 1.094% 1.175 1.306 L.5L8 1.730 1.968 2.006 2.0L2 2.046
1.000 1.116 1.208 1.345 1.568 1.723 1.837 1.924 1.957 1.985| O
0.0 2.0 2.8 3.6 1.3 -4 «6.7 L1 “hki2 -3.0

1.193 1.278 1.416 1.67L 1.86% 2.114 2.153 2.190 2.195
1.2%h 1,347 1.499 1.746 1.916 2.132 2.167 2.201 2.204 .5
4.3 5.4 b.5 2.8 .9 e .5 .5 oL
1.367 1.512 1.780 1.982 2.243 2,284 2.323 2,327
1.457 1.622 1.889 2.072 2.302 2.34% 2.375 2.379] 1
6.6 T3 6.1 4.5 2.6 2.5 2.2 2.2
1.668 1.959 2.179 2.461 2.505 2.546 2.552
1.806 2.104 2.308 2.563 2.604k 2.643 2.647] 2
8.3 Tob 5.9 L. 4.0 3.8 3.7
2.297 2.557 2.801 2.943 2.991 2.997
2.4 6 2.699 3.003 3.051 3.097 3.102| 5
6.9 5.6 3.9 3.7 345 3.5
P, exact 2.854k 3.239 3.298 3.353 3.359
P~7 estimated 2,971 3.314 3.369 3.421 3.427| 10
CError 1 2.3 2.2 2.0 2.0
3.700 3.711 3.838 3.845
.74 3.779 3.840 3.847] 50
A 1.8 5.2 .l
3.845 3.914% 3.921
3.845 3,908 3.916[100
0.0 -2 -1
3.98%  3.992 3
3.973 3.981j0
-03 -03
4.000
3.988 1107
-3

Stiffness Parameter (KL/EI)
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CHAPTER III

GENERAL INTEGRAL EQUATION FORMULATICN

Formulation of the Integral Equation

The work in the preceding sections as well as that in
reference [9) has given very clear indication that the instsbility
behavior of a partially restrained column can be readily associated
with the deformationsg of the same bhody under lateral load. We are
led, therefore, to the thought that a clearer understanding of the
relationships established might be derived from an analysis of the
beam column. To this end an integral equation gpproach to stability
load level determination is developed in this chapter.

In formulating the integral equation for column buckling, it is
convenient to introduce the idea of equivalent buckling force. Con-
sider the elastically supported beam as beam-column shown in Figure
15.

The work done by the axisl force P, is

L
W =P} r w)? & (41)

The virtual work of the gxial load is



a(x) Z,W

I -
Kh EI=constant K3 Coordinate
X=0 X =1L
Figure 15. Elastically Supported Beam Under Combined Loading.
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L
6W, = P [ wewax = patew

Q

L L '
-p [ wrewax (42)
u]

0

Interpretation of equation (42) becomes clear when the variation of the
external potential is written for a beam under a load distribution q{X)

and shear forces 8(0) and 8(L) on the boundaries. That is

L L
+ [ a@x) swax (43)

O o

W, = S3(X) &w

Comparison of equation (42) with equation (43) shows that in this
problem there are equivalent force systems. The system with which we
begin can be replaced by the distributed moment -PW" upwards and
additional boundary shear forces, FW'{(L) upward at X = L and PW'(0)
dowvnward at X = Q.

Thus the effective distributed load Qepf acting upward is

defined as

Qepe = “PH(XY) - BT(XT)8(X') + PW(X")8(X'-L) (bl

“PIW(X') + W (XN)O(X') - W (X')6(X'-1)]

where §(X') is a Dirac delta function.
In general when the loading q(X) is distributed over the beam,

the deflection at X, W(X), can be written



L
W) = [ elx)q@ax

=,

Q

56

(45)

wvhere C(X,X') is the flexibility influence function interpreted as the

displacement at X due to a unit lateral force at X'.

For the sake of simplicity in the analysis which follows,

non-dimensional gquantities defined below are introduced.

_X = XL =" 5 o PL_
X=F, (=7 %= g » FP=g7

- 3 - .
i =E , G(xp = KD

Equation (kh) and (45) can now be rewritten as follows:

Qe = “BLw"(g) + w (08 (0)-w (£)8(g-1)]

l - -
w(x) = [ Gx,0)alpa

o]

Replacing q(¢) in equation (47) by &eff’

is obtained.

(46)

(47)

the following relation



o7

1
[ dte)a g leda (18)

o]

wix)

1
- B[ G0 + W (Qs(g) - wg)slg-)la

1
-B [T G(rpw(g)ag - B (x,0)w(0) + Bi(x,1)w (1)

Integration of the first term in equation (48) by parts yields terms
which cancel boundary terms, and when this is done the resulting

equation is,

1 .=
we) = B [ EED v (o (19)

It is convenient for some application to write the previous equation
in terms of the slope. Taking the derivative of equation (49) with

respect to x, an alternative form of this equation is obtained.

1 _2-
o) =8 [ 2w (50)
o]

Since no specific restriction on the boundary conditions wasg
imposed in deriving equations (49) and (50), these two equations are
valid for all boundary conditions. Here, for the sake of convenience,

the following notations are introduced.
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-
r(,¢) = 2000 (51)
B(x) = w'(x)

a(x,¢) = ﬂ%ﬁ

where r{x,r) and d(x,() are interpreted as the slope and deflection,
regpectively, due to a unit moment applied at the location {. Tt
should also be noted that r(x,) is symmetric with respect to x and {,
as can be shown from the reciprocal theorem.

Using these notations, equations {49) and (50) can now be

written as follows:

wi(x)

_ 1
P atg)e(g)a (52)

]

a1
B(x) Pj r(x,z)e(g)ag (53)
[»]

Orthogonality Relaticns

For the ideal boundary conditiong, namely, simply supported,
built-in or free, the following orthogonality relations are known to

be ftrue [15].



1
Jo Whw't X =0 (5h)

and

L
I EI(X)W" W" dX = 0 (55)
(o]

where Wﬁ and Wn are the mth and nth buckling mode associated with the

buckling load P, and P respectively. Equation (54) is, of course,

a general result. The detail of the derivation is given in Appendix
A. The orthogonality relation (equation (10)) in Appendix B can be

rewritten as follows:

Iol ei(x)ej(x) ax = N6, (56)
where
N, =] ' 0%, (x)ax
o
§, . = Kronecker delta

,=0 when i # j

)

=l when i = j

29



60

Combining the orthogonality relation (equation (56)) with the
integral equation (53), a different type of orthogonality relation can
be derived as follows. Let Br, es by the slopes of the rth and sth
buckied mode corresponding to the buckling load ﬁr and ﬁs respectively.

Then from equation (53),

_ 1
B[ r(xpe (o) (57)

e

6 (x)

A1
s | r(x0)e (g)ag (58)

o

Bs(x) P

]

Multiplying (57) by B> {58) by 6., and integrating over the length of

the beam,

N 1,1
j 88,ax=P f f r(x,¢)8,(g)e (x)axdg (59)
O o o
1 el
[ esean =B [, [, rie00 00 e (60)

In view of the symmetry of r(x,(), the above integrals are identical

on both sides of the equation,

=

T
;; arS (61)

1,1
J I r(x,¢)6 (¢)e_(x)agdx =
0O 0
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Equation (61} yields a very interesting result when r is equated to s.

That is

Jif
P = L (62)

r 1.1
r(x,;)er(;)as(x)dxdc

I

[
d
o 0

Lo
1%z

11
JO jo r(x,0)8,(g)8 (x)axag

This formula could be uged to estimate the buckling load of the

elagtically restrained column.

Some Useful Results Derived from the Integral Equation Formulation

With regards to the kernel r(x,() of the integral equation (53},
the following observations are made:
(1) The kernel is symmetric with respect to x and f.

(2) The kernel is positive in the following sense.

SR |
I=4 | r(xg)e(x)e(glaxdg = 0 (63}

vhere § is an arbitrary function. Equation (63) holds true because the
integral quantity can be shown to be proportional to the strain energy

which ig obviously positive. At this stage it is convenient to
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introduce orthonormal functions 03 defined by

8, (x)

(64)
/Ni

@ (x) =

For i = j equation (56) can be rewritten as

Because of the conditions given above for the kernel, it follows from

Mercer's theorem [15] that the kernel can be expanded in terms of the

orthonormal functions and the eigenvalues as follows:

" g (g ()
rxg) = 5 BT (65)

il 1

FEquation (65) yields many interesting relations which connect the

buckling load and the behavior of the beam under the non-destructive

force system. Vhen it is ecombined with the orthogonality relation

{equation {61)) it gives two kinds of infinite sum relationship for

the eigenvalues.

The first is obtained by letting x =

= ¢ in equation (65) and
integrating over the span
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[=~] 2 = -]
l X " l B (X) -
f r(x,x)dx =/ J _l dx = ) (%ﬁj {66)
° 1= © Byl 1=t

the second by integrating ra(x,g) with respect to both x and (.

R ® 2 1 ® 2
J I v (g )axag = (13 1:5 ) .Jr eig(x)dxj 9:12(‘3)‘1@ =) ('-"l'> (67)
0 o} i;' ii o © s=1 Fi

These two results will be discussed later. Other interesting relations

can be derived from equation (65). By definition

STl A (68)

Integrating with respect to [ gives

-y L + £(x) (69)

Integrating again with respect to x gives



S0 =) "0 x4 o(0) (70)
=1 PN

From the reciprocal theorem,

F(x) = a(x)

Then equation {70) can be rewritten as

o v (), (2)
e 0) =) ———+ F(x) + F(¢) (71)
i=1 Pi Ni

Suppose the boundary restraint is such that the lateral movement is not

allowed 8t x = 0, then in equation {71),
w,(0) = 0, c(o,2) = 0
Hence,
F(0) + F(g) =0 for 0sgsl {72)
This means that the unknown function F is identically zero. This
argument holds true also when the lateral stiffrness at x = 1 is

infinite. Hence, eguations (69) and (70), with this restriction,

become
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8(x,g) = LELO) W 6, (x)w, ()

—————— (73}
ax Sa =
i=1 T3y
Sx,g) = L W, (x)w, (¢) (74)
i=1 B.N,

11

When the end lateral stiffness is finite, the funetion F represents

the deflection caused by the rigid beody rotation. Multiplying equation

{73) by ei(x) and integrating with respect to x from 0 to 1 results in

the following simple relation

1 w. (g)
| e(x,0)8, (x)ax = 21— (75)
Yo P,
i
Integration of equation (75) with respect to £ from O to 1 yields
1 500
r - .1 o Wi C dg
' 6{x,c)dr| 6, (x)dx = ————0 (76)
i, Ll emoac)e :
But,
- 1
a{x) = ] e{x,g)ag (77)
0
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{Note that 6(x) is the slope at X due to a uniformmly distributed load.)

Substitution of equation (77) into equation (76) gives

1
J wi(x)dx
B, = ,,01 (78)
8(x)e, (x)dx
[ ot

Since the lowest buckling load Py (= Pcr) is of the prime interest,

equation (78) can be rewritten as

1
J wy (x)ax
(8]

P = (79)

e x)dx

Application and Discussion of the Results Obtained in Section 3

The main purpose of studying the buckling problem in the integral
equation formulation is to search for the mathematlieal background for
those empirical formulae derived in Chapter IT. The procedure adopted
was as follows.

The instability problem was set up in such a manner that the
critical loads were related to factors which define a non-destabilizing
force system., Now since such force factors systems appear in an integral

quantity, there must be a reasonable probability that a certain para-
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meter (e.g., deflection, slope, characteristic length, etc) may be
assocliated with thils integral. If this is so, we may be able to
derive laws of similar form to the empirical ones.

Following this reasoning infinite sum relations (equations
(66) and (67)) were developed. These equations establish that integral
quantities associated with & couple distributed along the span can be
expressed as the infinite sums of the inverses of eigenvalues or thelr
squares., Since the empirical law defined earlier is related to the
lowest buckling load Pcr’ thege eguations cannot be the answer to our
problems unlessg the ratics of the sume of these infinite series to PCr
remain nearly constant. To clarify thig point beams with equal
rotational restraint and a lateral tip spring are considered. The
sumnation is carried out over the first eight elgenvalues. The resulis
are shown in Table 12 and 13. It is clear that these raﬁios vary
widely. Thig means that the twe equations do not explain the wvalidity
of the empirical law. Since the empirical formula which uses the
characterigtic length works extremely well for the case when the
lateral gtiffness ig infinite, it is worthwhile to investigate
equation (79)_ with the assumption of infinite lateral stiffness. In
this case when the denominator is integrated by parts, the boundary

terms vanish and equation (79) becomes

P = ——— (80)
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Interpretation of the denominator in equation {80) becomes clear when
the bending moment diagram under the uniformly distributed load, the
buckled mode and the product of the two are drawn for two extreme cases,
i.e., simply supported and clamped. It is shown in Figure 16, These
pictures illustrate the fact that to evaluate the integral of the
denominator of equation (80), the necessary range of integral is
approximately (exact when simply supported) between two moment-zero

locations. This indicates that the distance between the inflection

points is an important parameter for the integral

IO w,xxwldx.

Although this is not a proof of the validity of the empirical
formula, it definitely explains why the distance between two inflection
points is an important parameter in the uniform load cases consldered.
To broaden the basis of study there are two guestions which arise.

Is the demonstration regstricted to a uniformly distributed load?

Is it possible also to illustrate the mathematical feoundation of
"P-delta', "P-theta' and scme other empirical formula corregponding

to a different kind of loading? As was shown in Chapter II, the
"p_theta" method can be reduced to the characteristic length relation
équation.(Ql). Since a concentrated lateral force is used in "P~theta”
and "P-delta” and equation (75) is the relation connecting the buckling
and fhe behaﬁior of the beam under a concentrated lateral force, this

equation will be examined closely. ILetting i = 1 in equation (75),



Simply Supported
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Figure 16. Illustration of the Product

Clamped,

Tl

e

w, M for Two Tdeal Cases.

1

\-—/



72

the following relation is cobtained

w, (¢)
= — 1
P, = 'K (81)
[ To(x,0)8, ()ax
Yo
where
Pcr = the lowest buckling load
8(x,¢) = slope at x due to a concentrated lateral force at (

el(x), wi(x) = glope and deflection of the first buckled mode,
respectively.
When the lateral restraint on the boundaries is infinite, equation (81)

can be reduced to the following form:

w. (¢)

it
{

er = 1 (82)
—j M(X,Q)Wl(x)dx '
o

where M{x,¢) is the moment at x due to a concentrated lateral force
applied at (.

To make the argument simple, consider the beam with equal
rotational restraint. It was shown in reference [6] that to apply
the "P-delta” or "P-theta' method to this configuration a concentrated
lateral force must be applied at the mid-point of the beam. The

bending moment diagram due to a concentrated lateral load at x = 3,



the buckled mode and the product of the two are drawn in Figure 17
for two extreme cases, i.e.,, simply supported and clamped.
These figures indicate that the denominator of equation (82)

can be reasonably evaluated between the inflection points.

73
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Figure 17 .

Il1lustration of the Figure Mw.
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CHAPIER 1V
FURTHER CONSIDERATION OF THE BEAM COLUMN

The analysis of Chapter III has shown beyond doubt that the
inflexion point separation distance for the laterslly loaded column is
an important parameter for describing the sgtability behavior. However,
it has not generated a process vhich be used to analytically derive

the results obtained by numerical analygis. It does serve, however, to
emphasize that the key to the question may well lie in a study of the

combined load problem.

In this chapter, therefore, ﬁe examine the combined load issue
from a somewhat different viewpoint - in essence we shall follow a
stiffness approach, This is,of courge, common in studies of structural
frameworks.

We begin with the simplest of problems, viz the pin jolnted beam
column with a central concentrated lateral load (Figure 18). Taking an
origin at the center, the bending moment at the point whose coordinate

is ¥ is,
M =3q [5 - X] + P = -ETW" 82)

Let

k' =z 83)



Figure 18.

—— —

Pin Jointed Beam Column with a Central Concentrated
Lateral Load.
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therefore,
WOr KW o= - & [E - 51
The solution is
W=A sin KX + B cos kX - (%)(E -3

The boundary conditions are

at X =0 W' =0

L
at X = ) W=20

Using these boundary conditions in equation (85}, we can write

woOh|_sinkX  tan 3L cos KX _ /1 _ ga]
5p L T XL \2 T L

The meximum deflection occurs at X = 0, and is given by

K

(84)

(85)

(86a)

(86b )

87)

(88)

It can be seen that as P approaches (ﬂzEI)/(LE), kL approaches T, and

the application of a very small lateral load causes a very large

deflection of the column. The gtiffness of the column against lateral
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displacement due to a transverse load at its center is

N . . (89)

W . T TNkl -kT)

The variation in stiffness with end load ia very nearly linear.
When we treat the somewhat more complex case of the column

with built in ends we find that for this case

kL ‘1 XL L
Mse = Z5 * bR T * Hog tan - I o)
or
_Q KL kL
Wma_}; = E-I—) {t&l’l —[I-_ - —]IJL‘ (91)

and so we have that

R L) - @)
Wﬁax taniklL - $kL L

It is clear that if we change the wvariable k to kl gsuch that

b
n

2k, (93)

Then we may write
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(9n)

and it is clear that the two stiffness lines are parallel curves, and

the ratios of their intercepts with the axis are thus constant.

That equations (B88) and {94) are to a close degree linear can

he demonstrated in the following manner.

Then, the expression for W

+ L PL2 22 + XL PL

T3 iEy " *irj Tsurff

, equation (88) may be written

- e (PL2‘}+g_ PL2)2 17 (13142\3+ ;
max = WP i3 \IEI, ' 15 \IEZ/ T35 \ker/ T - J
or
W= Q@ ), 3.2 (LY, 3. 17 (PLexe + }
mex ~ BEBET U 1 15 \IEr) T 1 TET, T -
This is convergent if
2 2
2 PL R
'S-"l_ﬁ <l’l'e'lfﬁf <2 mn

or if

Expand the tangent

s (95)

(96}

(97)

(98)



In these circumstances the serles may be replaced by a geometrical

progression.
3 2 2.2
. I - N 2= A
max Lepr Y et \ioET)
This summed te infinity, gives
W = QL3 . 1
e )
Lo
10ET
_d L1
L8ET P
1 - -]5'—
er
or
W - Ql-3 . Pcr
max LIBET Pcr- r

o
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(99)

(100)

The pin Jointed strut with z uniformly distributed lateral load

of intensity ¢ and carrying an axial load of P is a classic problem.

For this the bending moment at any point is given by

. .
M=% {1 _ coskx sec L

k? \

with the convention given in Figure 18 .

W =0= 9‘2 [,‘(l—cos kx gec %)dx + constant
2

Thus

(101)

(102)
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How the slope iz maXimum at the ends and zero in the center, so

d . kL
§ = ;é x + g3 sin kX sec =3 (103)
Thus
-4 L,.a kL
8 ox k2 5 + 3 tan 5 (10h4)
k
or
tan E&
= (105)

gL | -2 .
® nax 2k2 il " kL J
2

Thig is very close to a linear relationship between compressive
forece and slope.

As the ends become regtrained the expression for slope parameter
becomes increasingly involved. For the encastré strut with uniform

lateral load, the hending moment is given by

M= (M - gé) sec E% cos kX + 92 (106)
k k
where
2 kL
M' =gk {1 - Eﬁﬁ%ﬁi} (107)
Thus the slope expression is
=3y - 4 KL g
8 = E{M - 2] sec =5 sin kx + &, x (108)

k k



ge

and the maximim value occurs when

N

k2

cos KX = - (M' KL (109)
- 2

Ezl'ehsec
k
The expression for §/L becomes most complex and can only be evaluated
numericelly. When this ig done we find that the relationship bhetween
8/L and P is again linear and the slope of the line closely approximates
that of the previous case.

We note further that when we examine the case of the column with
an end moment the relationships developed differ from those previously

desired. For the pin-ended column (Figure 18) we obtain

M

A EY 2

5= () s -¢7) (120)

A
where

(1 - XL eot kKL)SkL

8% = enkkL 4T, (111)
and
kL - =i L
_ sin k (112)

" sinkL-klLcosgkl,

# These quantities have been termed stability funections, see reference

f17].
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The wvariation of stiffnesz with end load is given in Figure 19.

For the fixed ended column (Figure 20(a)) the relationship is a little

simpler, viz

% =(F) - g (113)
The graph of M/6 against (P)/(HBEI/Lz) is shown in Figure 20(b). We note
immediately here thet the curves are no longer parallel and thus we
should not anticipate being able to generate a wviable relaticnship.

Pure numerical techniques ag used in the first part of this thesis
failed to generate any results of value, Tt seemg likely then that the
reason why the simple relationship can be found lies in the fact that
the variation of the pertinent stiffness parameters with respect to the
applied compressive force is essentially linear and the lines have

a slope which is independent of the degree of end fixity. The complexity
of the expressions is however such that at this time we have not been
able to verify this by other than numerical fechniques. The reason

ig clear. It is not easy to find simple, accurate algebraic approxi-
mations to the various transcendental functions involved. Whether or
not it will be possgible in due course to demonstrate these conjectures

is open to question. Approximation analysis, like engineering, is

after all partly science, partly art.
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CHAPTER V

DESIGN FORMULAE FOR COLUMNS WITH ENDS PARTTALLY RESTRAINED

AGATNST ROTATION

Now that a practical method for determining the fixity which
exigts at the ends of columns has been devised it is important to the
practising engineer that simple formulae for critical load in terms
of end regtraint be avilable,

The simplest of these laws, clearly, emanales from the P§ law.
It is shown in equation () Appendix A that for the column with
equal end constraints that the deflection §, due to & unit central

lateral load is

«+8 1 .13
HQ'+2 192 BT

wvhere @ = K/EI; K bheing the rotaticnal stiffness of the end springs.

Thug, the critical load for guch a column is given by

2 .
Li"El [a + 21
= {2 (11%)
L
and, in the more general case of unequal end fixities «,p by
l|-1'i2EI J a2
Pop = : B (115)
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This latter result follows by virtue of the fact that the critical
load for a column with unequal end rotational restraints ¢ and g can
be shown arithmetically, to a close approximation, to be the geometric
mean of the eritical loads of columns with end restraints ¢ and B,
respectively.

The derivation of an egually simplelformula from the relation-
ship between critical load level and the distance apart of the extremm
points is not feasible., The complication arises from the fact that
the expresgion for this quantity is a surd in the end restraint
parameter.

It is of interest tc note that when a Rayleigh quotient
approgch is taken to the golution of the gsame problem the following

formilae can be derived:

_ hMOET o + 10g + 16

P (116)
e L2 Cz’2 + 1lhy + 64
and
_ LPRT . Qe + lll-al + 2k (ll.-()
Por =72

L a3 + 18y + 102

The former {(116) is derived by taking the column buckling deflection
function to be identical with that due o a concentrated lateral load
applied at the mid-point of the column, the latter on the assumption
that the deflection curve corresponds to the displacement produced
by a uniformly distributed side load.

Comparison of these Rayleigh formulae and the exact results
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derived numericglly from the characterigtic equaticn is made in
Table 14 .

It is clear from this table that the first expression is the
closest approximation. It is interesting to note that the percentage
of error is very nearly constant over a wide range of end stiffnesses.
This suggests that we might divide the constant by é nurber clogse
to unity and obtain an adjusted formula of greater accuracy. Indeed,

when the formuls is written ag

_ bnfmT .oe2+lOa'-!-l6
T 4f o + Lo + 6b

P (118)

the maximum error is reduced to .6 percent as can be deduced from
Table 14, and of course the extreme values (¢ = 0 and o = =) are
exact.

Thig is an interesting expression because it can be written

_ MifEL | (at2) (o#8)

P (119)
2
cr L (a+8)2—2a ,
_ 4nPRT . ot
B 2o
L (Ot’+8)' Q‘+8
) ;
_ Wy"EI a+_21Ll . 2o }
T2 +8 2
L « (ot8)
Now clearly & 5 is small for all values of u between 0 and .

(t8)
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Table 14. Approximation by Reyleigh's Quotient - Rotational Restraints

Concentrated Uniformly

P L? Lateral Force Distributed Load

EK_% Zr Pest LE (%) Pest L2 B (%)
wEI ———-ﬂQEI Error T‘r — rror
0 1.000 1.013 1.3 1.013 .1
0.1 1.040 1.054 1.3 1.042 .1
1 1.367 1.365 1.3 1.372 .3
2 1.669 1.689 1.2 1.678 5
3 1.921 1.938 .9 1.934 T
5 2.298 2.320 .9 2.334 1.5
8 2.683 2.702 .7 2.745 2.3
10 2.854 2.880 .0 2.941 3.0
15 3.1%7 3.176 .9 3.272 L.0
20 3327 34356 9 3.475 4.5
30 - 3.527 3.561 1.0 3.709 5.2
40 3.633 3.67h 1.1 3.837 5.6
50 3.702 3.745 1.2 3.918 5.8
60 3.748 3.794 1.2 3.973 6.0
80 3.810 3.856 1.2 L.0k2 6.1
100 3.845 3.894 1.3 4,085 6.1
1000 3.98L 4.037 1.3 4,238 6.k
10000 3.998 4,051 1.3 4.25h 6.4
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Thus, the expression of equation (118) is reduced to

2
P, = hfi-gl : ‘ﬁ% (114)bis

which is identical to that previously derived from the P§ law.
The approximation formula given in equation (117) can be like-
wise adjusted. To do this we again ensure compliance at the extremes

and hence write

. _ 4RI ig + by + 241 (119)

er 12 a2 + 18y + 96

which after suitable algebraic manipulation beccmes

hﬂzhl

ote

) U ey ) 020

cr

which for all practical purposes is again

2
- YW ET (Qr+2)

(114} bis
er LE

P

; 2o . .
gince TE:ETTEIiET is very small for all wvalues of wo.

Thus we can see that the P8 law and in all probability the
others also would be analytically derivable I1f we could develop
approximation method for deriving or expresgsing all relevant stability

and other parameters in simple algebraic terms.
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For the cantilever beam with a lateral tip spring neither the
uniformly distributed load nor the concentrated lateral forece deflection
curves give a reasonable estimate of the buckling lcad when used in the
Rayleigh formulation. This is not surprising because neither curve is a
¢lose repregentation of the deflection shape. The deflection produced
by an end couple is much more similar to that which results from

instability. When this deflection shape is used a quadratic rational

function can be developed for the critical load viz

= '8° + 158 + 36 | EI
Pop = 30 2
B” + 158 + 3607 L

(121)

It is clear ﬁhat this expression ig a poor representation because
when § = O the value mst be (ﬁeEI)/(hLe) whereas the expression in
equation (121) gives (3EI)/(L2). Similarly when B = = the critical
load is(2.05n2EI)/(L2) whereas the above formula yields (3OEI)/(L2) or
(3w2EI)/(L2). The meaxinrmm error in the estimation, infact, amounts
to 50 percent. However, when the approximate expression is plotted
against the exact values on a log-log pleot it is found that

52 + 158 + 360

P = -Tho(30 (122)

is a very good approximation. The log-log plot is shown in Figure 21
and a comparison between the approximation of equation (122) and the

exact valueg is given in Table 15.
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Table 15. Approximation of the Buckling Load Using Rayleigh's Quotient-
Modified-Lateral Tip Spring Case.

Approximation

Ko & e According to Eq.(122)

:EI— cr
EI P12
est Error(%)
EI

0 250 250 0
0.5 291 293 7
1 .332 .336 1.3
2 H12 A22 2,5
5 648 673 3.9
8 0870 0895 2 -9
10 1.009 1.025 1.6
14 1.257 1.238 ~1.5
18 1.457 1.401 ~3.9
20 1.538 1.466 4.6
24 1.662 1.573 -5.3
30 1.779 1.689 -5.1
Lo 1.877 1.808 =3.7
50 1.924 1.878 2.4
100 1.996 1.995 -0.1
500 2,037 2.0k .3
1000 2.042 2.045 2
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Tigure 231, Correlation Curve between the Rayleig;h"s Quotient and the

Buckling Load for the Lateral Tip Spring Case
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CHAPTER VI

CONCLUSTONS

The analysis recorded in this thesis demonstrates clearly that
gsimple relationships which couple the stability behavior of a2 column
under axial compression and the distortions of an identical member under
lateral force can be developed. These relationships appear to have
importance in the non-destructive evaluation of existing column structures.
It seems likely that they also provide a means whereby designers of
columm type structures, e.g. civil engineers might systematically develop
end fixity systems of known performance which could he standardized.

This would, of course, lead to an improvement in design.

Of particular interest in the format of the equation developed is
that in many apparently four variable problems a single parameter,
associated with the transverse loading situation, can be found to
describe the criticsl load. This condition is not restricted to a
single lateral load distribution but appertains in general. The
parameter, however, distinetly varies with the distribution.

It is also pertinent to point out that for defined end fixity
conditions the equations developed in the thesis are frequently capable
of giving practicing engineers an approximation to critical load values
as expediticusly as the Rayleigh-Ritz procedure and to an equal
accuracy .

An effort to explain the success of the process led to further



study of the applicabllity of integral equation in the evaluation of
eigénvalues for the column stability problem. This study showed thait
this technique is wvery applicable to the issue. General relationghips
that may be at least as powerful as the normal Rayleigh~Ritz expression
were derived.

Although the empirical laws were not positively shown to have
a solid foundation by analytic processes, the mathematical derivations
clearly indicate that this would be demonstirated if appropriate

approximation techniques could be developed.
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APPENDIX A

ROTATTONALLY RESTRAINED BEAM ON LATERALLY UNYIELDING END SUPPORTS

Establishment of the Characteristic Equation for Instability

For the configuration shown in Figure 22a, the non-dimensionalized

buckling equation is
w o+ sz" =0 (1)

The appropriate boundary conditicns are

"
o

w=0, w' -aw =0 at x (2)

1l
[

at x

s
1
o
E:-
+
R
ﬁ-
1
L]

The general solution for equation (1) can be written as

w=Asin \x +B cos \x +Cx + D (3)

The solution in conjunction with the boundary conditions yields the

following buckling determinant:
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Uniform EI

(a) Buckling

gq=constant

ﬁ_{lmmmmmumﬁ
Ké

(b) Uniformly Distributed Load

Figure 22, Rotationally Restrained Beam on
the Unyielding End Supports.
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aol kg ¥

sin X cos) -1 1 =0 (L)

aigcosk—kgsina -thsinAﬁhzcoal o

Expansion of this determinant gives the characteristic equation
o @ [2(1-co) - Asim] - o, + o A(xcosy-sim)  (5)
3.0
+ 27siny = 0

Extremum Slope Relationship Under Uniformly

Digtributed Lateral Load

The deflection and slope under a uniformly distributed lateral
load are derived as follows. (see Figure 22) If a non-dimensional

uniform load is defined as

i-% (6)
BT

then the non-dimensional differential equaticn for deflection w is
IV
W

-q=0 (7)

and the appropriate bhoundary conditions are
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w=0 and w" - aw' =0 at x=0 (8)
w=0 and w”+alw‘=0 at x =1
Buccessive integrations of the differential equation {7) give
wirs e A (9)
w“=%§_x2 +Ax + B
w! =%'-x3 +%x2 + Bx + C

1
=
o
V]
o

1 2
W"EI pid +gx +-2-x + Cx + D

where A, B, C, and D are constants. These four constants are obtained
by satisfying the boundary conditions of equation (8). They are thus

determined to be

br
l
]
5=
—
[
+

—) (10}

=
I
K
=
2
2
"%
pat—

2
i
Blas
=
—
Q
=
+
o
——

vhere A = 12 + W(a, + ozl) + .
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Substitution of {10) into (9) yields the following result:

- 6)..
M(x) = 9._ 6x 61+ i_&_il_ x + Oto(al; )_i (11)

o _-o a (o +6) o +6.
8(x) = 5- 2x - 3(1 + = 1)x + -2 i x + = |

= cxo-ozl3 czo(<:~zl+6)2 al+6.,:
W(z) = dp x - 201+ S0+ 2 F 4 —x |
where w(x), 6(x), M(x) are the deflection, slope and moment, respectively.

The locations of the extremum slope are obtained by solving M{x) = 0.

The result is

x = %[z + E,ext] (12)
where
Z=1 4 ao;dl
and
'E’ext '\J %o 2 5 %, (2 +0) (13)
(l t—5—) -3 —

= the distance between two inflection
points
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Define

Lo _ 3

X, = 2(2 Lext) (14)
=1 :

¥ =5t )

The meaning of xl, xe, Zext’ and Z are easily understood from Figure

23 . In equation (12) in the main text, the significant parameter is
the sum of the absolute values of the slopes at the zZero moment points.
We seek an alternate method of expressing this quantify. Hence,

ZM(GX e ) is to be evaluated. From (14), the following

2 1
relationships hold:

=X

X t %, = Z (1)
Xo = X] T Yext |
X *x 21(22-{,2 )—ao(&""é)
1 2k ext’ ~ BA "1
Thus
2 2 -
x2 -Xl =Z{'ext (16)
- - a (o, + 6)
x3-x3=£3 + 4 o1
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x=0 x=

. _ . % .
Figure 23, Tllustration of X0 Xy, {‘exi, and 7
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Making use of this result,

- o (@, + 6) 12¢ (@, + 6)-
2]_|_ _ - [ 2- o' 1 _ 2 o1l i
E‘(exz exl) LextL 2 67" + CA J (17)

[

hab(al+ 6l:
36 Jd

LextL-2Z +

1

Establishment of Extremum Slope Relationship

Under Concentrated Lateral Force

The rotationally constrained beam as shown in Pigure 3 is
considered under a point lateral load Q applied at the locabion (.
The non-dimensionalized governing differential equation and the

boundary conditions are given by

v

woo-Qs(x - () =0 (18)
where
- QL2
“ =i
at x =0 w=0 (19)
w' - aow' =0
at x =1 w=0 (20)

n 1
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The lLaplace transform

w(s) = J e % wix)dx (21)

o]

is the most convenient £00l t¢ solve this problem.

Thus we derive

.-GS
sha(s) - [83w(0) + 26 (0) + sw(0) +w™(0)] -G e =0 (22)

Noting that w{x) = 0 at x = 0, (22) can be transformed back as

follows:

Ax + Bx2 + Cx3 = wl(x) for 0 s x < (23)

w(x)

w(x} wl(x) + %(x - g)3 for { s x<1

where A, B, and C are constanta. The congtants A, B, and C are

obtained from the boundary conditions (20). They are:

a= 8D - r2e - 0 (24)
_a (1l -¢)
=4Q *-——"E—-—{dl{l -¢) +2(2 -1)]

= -3 2L [3(a, + 2oy (1 - 0423-2(1 - )% (a roy ey )]
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where A = 12 + A’—L(afo + 011) + o0 -

Differentiation of equation (23) yields the slope and moment.

w' = A + 2Bx + 3Cx2 = wl'(x) for 0= x < {25)
=wl'(x)+%(x-g)2 for < x <1
w' = 2B + 6C0x = wl”(x) for 0 s x < (26)
=w;"(x) + Q(x - ¢) for { < x s 1
Define
A= %3, B8=23, c=0Q (27)

In the case where o, = oy = s { is 2. Then B, ¥ are given by

o
E = 16{a + 2) (28)
and
1
C=-13

The locaticong of extremum slope *y and X,, are given by:

%2 = 1) (29)
= o 2
S Tl ryperr: SR
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Thus it follows that

_ o + 4 -7
¥ =X T3y Lext (30)
and
X5 + xl = 1

The sum of the absolute values of the exfremum slopes is

W' - W = 2B(x, %)) + (x,%- %) (31)

It

L (2B + Flx, +x)]

-2
v ext

The result is pertinent to the empirical law for the single concentrated
load [7]. Substituting 1/2 for x in equation (23), deflection in the

middle of the span is given as,

s =28 L L (32)
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APFENDIX B

THE ELASTICALLY SUPPORTED BEAM COLUMN OF UNIFORM BENDING STIFTNESS

Differential Equation and Boupdsry Conditions

Consider an elastically supported beam column of uniform bending
stiffness loaded with & distributed lsteral force q(X) and an axial
compression force P as depicted in Figure 15. Let spring stiffnesses
at the boundaries be Kl, K2 for rotational regtraint and K3, Kh for
lateral restraint. Thus we may write the straln energy of the systenm

as

L
U, = %J EI(W")Z ax + %[KE(W')E + Kl(W')2 + (1)
o] x=L X=0
+ K3W2\ + W | )
X=L %=0
and the work done by the external forces as
. L L
- £ 2
W= 2 vfo (w)2ax + ‘[O (X YWaxX (2)

When the non-dimensional quantities defined below:
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e -2 (3)

% T BI_ ¥ T EI
K,_I_LS K3L3
Bo = T B = %7
2 _ ot oz’

are uged; then non-dimensionalized strain energy and work functions can

be wrltten as

g =1 ’ (W")de + daw® tlow
i~ ® Jo % x=0 2% x=1 (4)
2 4
+ ¥ B * 3BV
x=0 T x=1
2 1 1
- 2 2 o T
W, = & | (w!)ax + i a{x) w dx (5)
o o
Total potential energy is:
Up = U; =W, (6)

Thus the variation of total potential is
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rt W e '
8U,, = W+ AW - a(x)] Swdx + (" 4+ ' '
T i a(x)j wdx + (w aw') bv 1 (7)
2
+ {=w" a ') bw xep ¥ (=W - AT 4 BlW)GW =1
s 2 1
+ (W' + AW+ B ow) 6wl
© x=0
By equating 6UT to zero, the resulting differential equation and the
boundary conditions are developed:
w4 2% - (x) = 0 (8)
at x = 0; w" - QBW' =0 orw =0 (9)

w't o+ Aew' + 50w =Corws=20

at x = 1; w'+ow! =0or w' =0

w4+ k2w' - ﬂlw =0orw=20

Orthogonality Relation of the Buckled Mode

Let u, v be the buckled mode corresponding to the different

eigenvalues A and ,, respectively. Then from (8)

Iv
o+ Azu" = 0 (10a}
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+ v =0 (100)

multiplying (10a) by v, (10b) by u and integrating the difference of

the products from O to 1, the following integral is obtained.

v (11)

1 -
r H
I=) 'L(uIv + heu“)v - (v o+ u?v“)u_J dx
0

1 1 1
[ Ty - wyax + 22 | utvax - W JI' v'udx = 0
“o o - Yo

Integrating by parts and making use of the boundary conditions of

equation {(9), equation (11) can be reduced to the following simple

relationship:
1
1=0%-5] wvax=o (12)
o
Therefore,
1
j w'v'dx = 0 {13)
o
Since
XF

This equation is an orthogonality relation of the buckled mode.
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APPENDIX C

APPROXIMATION OF THE UNIFORMLY DISTRIBUTED IOAD SYSTEM

BY A FINITE NUMBER OF EQUALLY SPACED CONCENTRATED LATERAL FORCES

According to the result in Appendix A, the distribution of
moment along the constant crogs-section beam on the unyielding end
gupports subjected to a uniformly distributed lateral force is given by

a & - (o, +6
m(x) = %5{6x2 - 6(1 + Oﬁal) X + %o &l )] (1)

-

The distance between the inflection points £ is given by

ext

- ?fkl N o’c."f”"l)e ) g_,“o(“’l+67
A 3

{'ext A (2)

Suppose a beam of uniform EI is loaded with concentrated lateral
forces at the equally spaced intervals. The distance between the
inflection points under this loading system i1s to be found. According
to Appendix A, the moment distribution due to a lateral comncentrated

force applied at loaction { 1is given by

2B + 6Cx for Ogsx<( (3a)

1

n{x)

2B + 6Cx + Q(x-¢) for S <xs1  (3b)

n
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where

—

B = Efae(c - 2% + () + 202 - 382 + 0] (1)

Qo= - %_A[& - 6oy +2)¢ - 3%(2 + 0’1)‘;2 + 200, tay * °‘o°’1)g3]

Suppose the murber of concentrated lateral forces ig N. Then the

location of the forces are

i=1,2,..., N (5)

th

From equation (3b), the moment between the i~ and the (:i.—s-ZL)th

lecation is given by

N i
m g =), (2B +6Gx)HA) (x-g) (6)
i=) r=1

where Bi and Ci are cbtained by replacing £ by C’i in B and C of
equation {#}. The following identities are used to calculate the

summation in equation (6).

i=4n(n + 1) (7)

Pt s

[N
Il
=



I
}:ie = %n(n + 1)}(2n + 1) (8)
b
) 12 = @+ 1) (9)
i=

Thus

N N N

T, N T_2 NeEN+1) T.3_ W%

L% =5 L4 TgmeD L4 TImeD (10)
-1 i=1

i=1 i

The uge of equation {10) in equation (6) yields the moment between

.th \ ,
17 and (i + l)th location.

mi~i+l =Y * pX (ll)

where

_ Q‘O(Q'l + 6) N(N
y = =5z N

+i{+

2 - Hirhyg (12)

p=- Z\I%ITJ.')[N(%“l + Say + 30y +12) + oy H6)(a¥2)] + Qi
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If an inflection point exists in this region, it is located at

Following thig scheme, the distance between two inflection points was
calculated. Then this length was used in the empirical formula (13)
obtained in Chagpter II to compare with the exact values of the critical
loads. The computer program is shown in Appendix F and the results

are listed in Table 11.
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APFENDIX D

BEAM OF VARTIABIE BENDING STIFFNESS

Clamped-Pinned Beam

Slope Evaluation

The slope at the pinned end of a heam loaded with a uniformly
distributed load (q per unit length) is calculated. The differential

equation for the lateral displacement W is given by

2
ig (EL(X) W") - q =0 (1)

Integrating (1) twice gives
EI(X)W" = 3 x°+ BX + B (2)

2

where A and B are constents. It is assumed that the bending stiffness

is written in the form

XP
7} (3)

}EEJ

EI(X) = ET_{1 - ;

where T is a number greater than 1 and is called the taper ratio and
p is a positive number. When the following non-dimensional quentities and

conditions are introduced
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3

=& R L ¥
#=% a=gel veg )
o
Equation (2) and the boundary conditions can be written as follows:
(1 - %XP)W" = -]2;}:2 + Ax + B (5)
where A and B are constants, and
w=0 at x =0 (6a)
wi= 0 at x =0 (6b)
w=0 at x = 1 (6c)
wr'= O at X = 1 (6d)
When the boundary condition (6d) is used in Equation (5), B can be
expressed in terms of A. Thus,
1
B=-(A+5) (7)

Hence (5) now is written as

2
(1_%341))\.;": -%—+Ax—(A+%-) (8)
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For the ease of calculation, only two cases (p = 1 and 2) are treated

in detail.

Linearly Varying Bending Stiffness: p = 1. Equation (8) is

now written as follows:

SAE R ©)
where
s =~ (T + 24} (10)
pelilireonsn)
Integrating (9) yields
¥‘=-)Ji(c-x)2-fln(’f-x)+c (11)

When boundary condition (6b) is applied to equation (11), the constant

C is obtained.
2
C = f~ + min(T) (12)

Integrating (11) gives

% - %2' (o - x)3 + (T - x)Lln(T-x)-lj]-FCx +D (13)
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and boundary condition (6a) is used to evaluate D,

3 .
b=- - 1 10(n)1] (1)

When (6c) is used in equation (13), the result is

; . 2 3 .
%—é{ o-1)3 +1(T - 1)Lln(I‘—3.) —l_!+‘i— + 1n(T) - % - TTLlB(T)-l]:O (15)

i _
o : i g 1 . .

T(T - 1) 1n(T- 1) 1]+ § - F5 + mdn() - #T{In(T)-1}0  (26)
From equation (10), + can be related to gas follows:

T=-1

T =S5—(1-0 (17)

Using (17) in (16) yields

. e
S (7-1)° . /p-ly - 3
(1~ cr)\ (T2 ) 111\TT1_,' + &L n q; + % =0 (18)

From (11), the slope w' at x =1 is

W= TL——%‘-(l - g) + 711 + X - 11 - cr)ln(,-i—l:!] (19)

When the values of (1 - 5) which is calculated from (18) is used in



(18), the slope at the pinned end is obtained.
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2
Parabolically Varying Bending Stiffness: p =2, Let A = T,

Then {8} is now

=

=i

where

A -1 + 1
e At ELE?__]

o
[}

w
|

_AQ-I—-];[-A-FA—%—:L]

(20)

(21)

(22)

When equation (20) is integrated and the boundary condition {(6b)} is

ugsed, the resulting equation is

wt

LA % - PIn(A - x) + aln(A + x) + AlnhA
T

Integration of equation (23) yields

2 i
o u(n - 0{In(a - %)

+ a{p + x){ln(n + x) - l}+ xAln(y) + D

(23)

(2h)
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where the constant D is evaluated from the boundary condition (6a) as

follows:

D = (b + a)pl1n(p)-1] (25)

When the remaining boundary condition (6¢) is used in equation (2L), the

result is

- £ + AL1+ 1a] + o{Mn(AE) - 1n(r-1)] (26)

+ a[Aln(AALl)+ In(A+1)] =

Using (21) and (22) in (26), it is possible to write this equation in

terms of the unknown constant A only. From which it follows that,

2 2
% - (&Hii)[hln (& ;%) + 1n (%;%)]

A= (e7)
AS-1
t (G5 - 1 ()
A
The slope at the pinned end is
vt B ebaalgioy) ¢ ealig] (=)

where b and g are as shown in (21) and (22).
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Formulation of the Finite Difference Equation for Buckling Investigation

The buckling equation and the boundary conditions are

2 2
2 [EI(X) —g:l + -a-w; = (29)
X
W=W =0 at X = 0 (30)
W= W"'=0 at X = L
As hefore, define
X W e PL2
X =7 w =5 A = 5T (31)
o
Then (29) and (30) become
f(1 ~ %?p)w"}" + Azw" =0 (22)
and
w=w =0 at x =90 (33)
w=w'=0 at x = 1

respectively. Completing the operation in (32) and introducing a new

variable (7 = w"), the following set of equations is cbtained.

\ - %—)n + 2 \- ByP™ l}ﬂ + i} - ELEE:—;le'ejﬂ =0 (34)

Nn-w=0
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When the central difference is used to represent the derivatives,

equation (34) can be reduced to the following finite difference

equation.
(1 - %ﬁip)(ﬂ 1t ,ni-l) . ;ﬁ xip-l(” 141 .ni-l) (35a)
+ hEQ 7\.2 R(»F-—l-l -2%
and, -hal]i + (Wi+l - 2wi + wi-l) =0 {(350)

or in matrix form,

a2t LB, et 0 (36)
where

2 - i :i j (37)

and



2z

{A] - ’ 0 (38)

‘-1 p 2,2 _plp=1) . p-2
-2(1 2y )+ =2l 5 ), o
o] -
2
-h s =2
_lop P )
| 1 \X; o+ phxi , 0
L] -
0 , 1
and h = size of division = 1/(number of division)
i denotes the i-th location,
for 1 =i < N-1. Boundary matrices sre formulated as follows:
at x = 0;
w ' = é-(w W) =0, W, =W (39)
o 2nt71 -1 71 -1
then
1 2
Mg = ;E(wl - 2w ¥+ w_l) = ;5 Wy (40)
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and

w_ =0 (L1)

Replacing g? by

the matrix equation for i = 1 in (36) becomes:

P2 1 k2)
2 h* . . (
h 2" - ple-l 1 2 §; _ by Py)
-2 (l Efa + h7{ T J, h?{ E( ph) Zl
_h? 4 -2 _
1 - (P + ) , 0 0
+ T Z2 -
0 ’ 1 0
Since w  and My 8re both zero (v" = 0, w = 0 at x = 1), 2% is a zero

matrix. Then
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1- %’L(n-l)nhn-nh (n-l)n_lhn-lf, © n-2 (43)

0 R 1

- (1 - %(n-l)nhn) + he{xe - -n—(lﬂ?l;l)-(1[1.-3.)’:1'211"‘1'2JL

Zn-l=
-h ] -2 O

Since the matrix equation obtained is banded along the diagonal, it can
be conveniently treated by Potter'’'s method (Reference [131]), but it
should be noted here that to remove the singulsr behavior of the
determinant, a slight modification is necessary (Reference [14]).
Calculation of the buckling load according to the finite
difference formulation derived was done on UNIVAC 1108 computer. The

computer program is given in Appendix r .

Conzideration of the Simply Supported Beam

Determination of Absclute Values of End Slopes

The simply supported beam shown in Figure 8 is considered. The
variation of the bending stiffness is of the same form as (3). First
the sum of the absolute wvalues of the slope at both ends under =z
uniformly distributed lcad is treated.

Linear Variation in Stiffness (p = 1). Since w" = 0 at x = 0
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and 1, constants A and B in equation (5) can be determined easily.

Thus for this case

(-0 E=2G -0 ()
Hence
P M= (T -1) - x +T(0 - 1) g (145)
Integration of (45) yields,
2
v =-%F-(r-Dx-20r - Vinlr - x) +¢ (46)

where C is a constant. From (46) the algebraic difference of the end

slopes is obtained. It is

(W' g - W) = 5 L% -T + T(T-l)ln(TT_ 1)] (L7)

2
Parabolic Variation in Stiffness {p = 2). Define A =+, then

4? - x5 E = 27 - x) (48)

Equation (48) can be rewritten as
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SAEL 1 -l 1 (19)

211__
T we=-1 2 AR 2 A-x

Integration of (49) gives

A+l

2 gt o A+l _A-l ;

FWlE - x 45 In{p + x) 5 In(p-x) + C
Where C is a constant. Hence

20 01 Lot - . A ALy 1, D=1

T " Vgeo) = - 1+ 5 0D+ 5 W)

or

. t '1-2‘{-1 + ‘&2 1n(%)+ !2'- ln(‘I"]f,-l')] (50)

Formulation of Finite Difference Equations for Buckling Load Determination

The finite difference formulation and the beoundary matrix at
x = 1 are the same ag for the clamped-pinned case. The only change re-
quired is the boundary matrix at x = 0. FEquation (42) is to be replaced

by the following matrix equation:
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—

B . p-2.
h 2.2 ht
- - - -1) — 0
2(1 z } + 1 19\ p{p-1) - L
E:L
— -he F} -2
— -
1 -~ i(hp P
T + ph¥), 0 0
+ 2 _
z - (51)
0 3 1 0




128

APPENDIX E

CANTILEVER WITH TIP LATERAL SFRING

Characteristic Equation for Instability

The buckling load of a cantilever beam with a leberal tip spring
(Figure 5) is to be calculated from the characteristic equation.

The non-dimengsionalized differential equation is

W o+ }L2w" =0 (1)

And the appropriate boundary conditions are

w=w =0 at x =0 (2)

Thus the general sclution is obtained as
w=AsinAx +Bcos AXx +Cx + D (3)

Fulfillment of the boundary conditions (2) by the general solution

yields the following equation:
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sin A cos A A 0
5 = (%)
-\ -Bl(sin AA) -gl(cos A1) [ LB 0
By equating the determinant value of coefficient matrix in
equation (L4) to zero, the buckling equation is obtained; wviz
sin ) Cos XA
=0 (5a)
-As-Bl(Sink-)t) -Blfcosl -1}

Fxpanding the determinant, the following characteristic equation

is obtained:

3

ﬁl(sin A -Xcos i) +x7cos ) =0 (5b)

From equation (4),
B =-4A tan )\

Using this result and boundary conditions at x = O of equation (2) in
equation (3), the buckled mode shape 1s:

w(x) = Afsin Ax - \x - tan ){cospx-1}} (&)

Behavior Under a Concentrated Lateral Force

A concentrated lateral force is applied to the cantilever beam
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with a lateral spring (Figure ). The deflection under thig loading is
to be derived.

Non-dimensionalized differential equation is

v -
w o -Q(x-¢)=0 (7)
where §x) is a Dirac delta function. Boundary conditions are:

at x =0 w=w'=0

at x =1 w"=w"'-Blw=O

Let the operator of Laplace transformation be denoted by L( ).
Defining w(s) = L{w(x)), equation (7) can be transformed in the
following form:

shw(s) - {SBW(O) + sew‘(O) + sw"(0) + w{(0)} - Qe-gs = 0 (8)

Noting that w(0)and w'(0) are zero, equation ({8) can be transformed

back as follows:

W = Ax3 + sz = wl(x) 0O<xs( (9)

=
u

wl(x)+%(x-g)3 L=<x=<1l

Two constants A, B are evaluated from the boundary conditions. They are,



131

(10)

e
I

" (1-g) - 22 (1¢)3 4 2
= m[ﬁl ¢) - 37 (1€ ]

5 = oy (8,000 - 5,0-0° + 60

Behavior Under Uniformly Distributed Lateral Force

A uniformly distributed lateral load is applied to a cantilever
beam with a tip spring as shown in Figure 5. The distribution of shear
forece, bending moment, in addition to slope and deflection are to be

derived.

The non~dimensionalized differential equation is

Iv (11)

=
t

teN}
I
o

Boundary conditions are the same as the previous case. Integrating (11} in

succession and satisfying the boundary conditions yilelds the following

results:
wto=q [z - %;%“iﬁfgjﬂ (12a)
1
v o= g-ihxe - §§l~;—fg X + g%—;;%f ] (12v)
= 3(5B, *+24) 4 By + 12 ‘] (120)

- 3
W—%[8X ——E-J-:—:_-—:a-——nx +6q_—|_-§—



- 5B, * 2h 3 By +12 ,

L
W= %g [2x - —51—1—5— x° + 3 EZ—:fg— X ]

From (12b), the locations of zero-moment are given by

55, + 24 g. + 12

2 1 "l
hx - X + =0
Bl + 3 Bl + 3
B, t 12

Kl=l, Xe—ErBl—_'_3)-

Hence, the distance bhetween inflection points is

- 351
bext =% ~ %1 = Eigl+3j
and the location of zero shearing force is

531 + 24
XO = Bzal + 3)

Behavicr Under a Concentrated Tip Couple
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(12a)

(13)

(14)

(15)

A concentrated couple is applied to a cantilever beam with a

lateral tip spring (Figure 5).

The deflection due to a couple can be cbtained by differ-

entiating the deflection due to a unit lateral load with respect to the

coordinate [ where the lateral load is applied. Thus, differentiating
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equation {9) with respect to ¢ gives

w = 0x° + DN = w(x) 0sx<( (16)
w = wix) - %{x - g)2 [sx=1
where
¢ =

- X 5
- ey LB A - ) ] (7)
1l
B : 2
B o IR TR 6|
Especially when a couple 1ls applied at the tip, the deflection becomes

- 2 .
w(x) = ﬁlﬁ_§+—3)' {513{ + (6 - 5]_)_]5 (18)

Slope at the tip due to an end couple is

wi(1) = W——E—B)— |38, + 2(6-8)) | = 15 X% (19)
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APPENDIX F

COMPUTER PROGRAMS

Canaa EEAM WITH ROTATIONAL SPRINGS AT BCTH ENDS. FIND PCRT. FIND RATIO

C.....0F IENGTH UPTO THE INFLEXION POINT FROM THE OPPOSITE END OF THE
C.....BEAM TO THE SIOPE AT THAT POINT.FIND PRODUCT OF THIS RATIO AND
C.....FCRT.

DIMENSION BTA(LO), PEX(40),AL3(40),P3(L0) ,ERROR3(40)

REAL L,LIOW,LUP,LNEW

DATA( BTA (I),I=1,27)/0.,.25,.5,75,1.,1.5,2.,2.5,3.,3.5,4%.,4.5,5.

1,5)5,6.,6.5,7.,7.5,10.,20.,50.,100.,500.,1000.,5000.,10000.,looooo

l‘o *
C.....CYXCLE FOR BETA1l

DO 10 I=1,27

WRITE (6,140)

140 FORMAT(1H1,10H BETA1,10H BETA2,10H PCRT,10H Ll/2Lkx 1
1,10H ERRORL,10H I2/2h#* 2,10H ERRORZ,10H LEXT ,10H
1PEXT,10H  ERROR//)

DO 15 M=1,27
C.....CYCIE FOR BETA2
C=12 .0+ ,0% (BLA (L ) +BTA (M)}BTA (I )*BTA{M)
B1=RTA(T)+BTA(M)
B2=BTA (T )*BTA(M)
C.....CYCLE FOR FINDING L{=PEX(I)),WHEN CHARACTERISTIC EQN. IS SATISFIED
30 DO 40 K=1,600
L=FLOAT(X)-0.9
DET=R1*{SIN(L) -I*COS (L)) /(L*L)
DET=DET+B2* (2 .,0-2,0%C08 (L) -I#SIN{(L) ) / (I*1*L) +SIN(L)

200 IF(X.EQ.1) GO TO 60

IF(D1*DET)50,50,60

50 DLOW=D1
DUP=DET
LUP=L

Connne BISECTION SCHEME STARTS.

70 LNEW=LLOW+DLOW* { LUP-LLOW) /(DLOW-DUP)
DIF1=LNEW-LLOW
DIF2=IUP-INEW
IF(DIF1.LT.0.0005.0R.DIF2.LT.0.0005) GO TO 100
DET=B1* (SIN(INEW ) -LNEW*COS (LNEW) } / ( LNEWX LNEW ) +SIN( LNEW)
DET=DET+B2% {2 .0-2 .0*COS (LNEW ) ~-LNEW*SIN(LNEW) ) / ( LNEW )**3
TF{DET*DLOW) 80,80,90

80 DUP=DET
LUP=LNEW
GO TO 70
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90 DIOW=DET
LIOW=INEW
GO TO 70
60 D1=DET
LLOW=E:
4O CONTIWUE
C.....BISECTION SCHEME ENDS,
100 PEX (I )=LNEW*LNEW/9.8696
2.....TO OBTAIN THE INFLEXION POINTS X1,X2.
A=6.0
B=-6,0%(1.0+(BTA(I)-BTA(M})/C)
D=BTA(I)*(ETA(M)+6.0)/C
E=SQRT{B*B-4 .0%A*D)
X1=-(B+E)/12.0
X2=(-B+E)/12.0
C.evss ALL=LFENGTH BETWEEN IEFT END AND 2ND INFLEXION FPOINT.
AL1=X2
Cuve. AL2=TENGTH BETWEEN RIGHT END AND 1ST INFLEXION FOINT.
AT2=1,0-X1
Cveo. THETAL=SLOPE AT ALl.
THETAL=(2 ,O¥X2¥* 3+X2¥X2%B /2 ,0+DI¥X2+( BTA(M) +6.0) /C) /12.0
C.....THETA2=SLOFE AT AL2.
THETA2=(2 ,0¥X1¥*3+X1*¥X1*B /2 .0+D¥X1+{ BTA (M) +6.0) /¢) /12.0
P1=AL1/(2k4 .O*THETAL)
P2=AL2 /{2l .O¥THETAZ)
P1=ABS{P1)
P2=ABS(P2)
FRROR1=(PL-PEX{I)*100.0/PEX(I)
ERROR2=(P2-PEX(1)*100.0/PEX (1)
AL3{M)=X2-X1
P3(M)=(1.0+AL3 (M) ) /(2 .O*AL3 (M)**3)
ERROR3(M)=(P3 (M) -PEX (1) )*100.0/PEX(TI)
15 WRITE {6,51) BTA(I),BTA(M),PEX(I),P1,ERROR1,P2,ERRORZ,AL3(M),P3(M),
1ERROR3{M)
51 FORMAT(2F10.2,8F10.6/)
10 CONTINUE
STOP
END
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C.....FINITE DIFFERENCE METHOD FOR BUCKLING COF A CLAMPED-PINNED BEAM
C.....OF VARTABIF EI.
DIMENSION A(2,2),B(2,2)
COMMON N,H,X,A,B,TAPER,FOWER,HSQR
TAPER=3
POWER=2.
DATA((A(I,J),I=1,2),J=1,2)/1.0,0.,0.,1.0/
DATA{NL,N2,N3,L1,12,13)/10,30,5,1,51,10/
DO 30 N=N1,N2,N3
H=1.0/N
HSQR=H*H
D0 4o 1=11,12,13
X=FLOAT(L)
IF(L.GT.(IL2-1)) GO TO 20
CALL DETERM(DETO,DET2)
IF(L.EQ.I1) GO TC 50
IF (DET1*DET2) 60,60,70
50 DET1=DETO
GO TO 40
70 DET1=DET2
G0 TO Lo
60 DETLOW=DET1
DETUP=DET2
XIOW=X-L3
KUP=X
GO TO 400
80 IF(DETLOWXDETZ2) 85,85,90
85 DETUP=DET?2
XUP=X
GO TO Loo
90 DETIOW=DET2
XTOW=X
GO TO 400
20 WRITE(6,100)
100 FORMAT(1H2 ,12H NO SQLUTION)
GO TO 30
C.....SUBPROGRAM FOR BISECTION.
LOO X=XLOW+DETIOW/ (DETLOW-DETUP)* (XUP-XIOW)
DIF1=ABS(X-XLOW)
DIF2=ABS (X-XUP)
IF (DIF1.1T.0.01.OR.DIF2.LT .0.01) GO TO 200
CALL DETERM{DETO,DET2)
GO TO 80
¢.....END OF BISECTION PROGRAM,
4¢ CONTINUE
200 X=X/9.8696
WRITE(6,300)N,X
300 FORMAT( 15,2F15.6/)
30 (ONTIKUE
STOP
END



500

280

550

350

SUBROQUTINE DETERM(DETO ,DET2)

DIMENSTON A(2.2),8(2,2),P(2,2),4P(2,2) ,BAP(2

DIMENSTON LB1(2,2),182(2,2) .RE1(2,2},782(2,2)
COMMON N,H,X,A,B,TAPER,FOWER,HSQR

REAL 1B1,LB2,JC

1B1(1,1)=-2.0%{1.0-(H**POWER ) /TAPER ) +X*HSQR

1B1(1,2)=2.0%(1.0~(H**FOWER) /TAPER) /HSQR

I1B1(2,1)=-HSQR

1B1(2,2)=-2.0

A(1,1)=1.0~({H**POWER) /TAPER
C=LB1(1,1*LB1(2,2)-1B1(1,2)*LBLl(2,1)

DO 500 I=1,2

DO 500 J=1,2

LB2{1,J)=A(1,J)

B{1.2)=0.

B(2,1)=-HSQR

B(2,2)=-2.0

V(1)=1.0

CALL GJR(LB1,2,2,2,2,$350,JC,V)

CALL MXMLT(IB1,1LB2,P,2,2,2,2,2)

DSIGN=C/ABS(C)

NY=N -3

DO 280 M=1,Nk

A{1,1)=(1.0-((M+L.C)*H )}**POWER/TAFER)

B(1,1)=-2.0%A(1,1)+X*HSQR

CALL MXMLT(A,P,AP,2,2,2,2,2)

CALI MXSUB(B,AP,BAP,2,2,2)
¢=BAP(1,1)}*BAP{2,2) -BAP(1,2)*BAP(2,1)

v{1)=1.0

CALL GJR(BAP,2,2,2,2,$350,JC,V)

CATI, MAOMUT(BAPR,A,P,2,2,2,2,2)

U=C/ABS(C)

DSICH=DSIGH*U

A(1,1)=1.0-{ (W-1.0)*H)**FOWER/TAPER
B(1,1)=-2.0%(1.0-( (N-1.0)*H)**POWER/TAPER)+X*HSQR
DO 550 I=1,2

DO 550 J=1,2

RBl(I,J):AfI,J)

RB2(1,J)=B(I,J)

CALL MXMLT(RB1,P,AP,.2,2,2,2,2)

CALL MKSUB(RB2,AP,BAP,2,2,2§
Y=BAP(1,1)*BAP(2,2)-BAP(1,2)*BAP(2,1)

DETO=DSIGN*Y
DET2=DETO
RETURN

EXD
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2),v(2),Jc(4)
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C.....FINITE DIFFERENCE METHOD FOR BUCKLING OF A S.5.BEAM
Ce....OF VARIABIE ET,
DIMENSION A(2,2),B(2,2)
COMMON N,H,X,A,B,TAPER,POWER,HSQR
TAPER=3.
POWER=2.
DATA((A(I,J),I=1,2),J=1,2)/1.0,0.,0.,1.0/
DATA(Nl,N2,N3,Ll,Le,L3)710,3o,5,1,51,1o/
DO 30 N=N1,N2,N3
H=1.0/N
HSQR==F*H
DO 40 1=L1,12,L3
X=FLOAT (L)
IF(L.GT.(L2~1)) GO TC 20
CALL DETERM (DETO,DET2)
TF(L.EQ.L1) GO TO 50
IF (DET1*DET2) 60,60,70
50 DET1=DETO
G0 TO 4o
70 DET1=DET2
GO TO 4o
60 DETLOW=DET1
DETUP=DET2
XIOW=X~13
XUP=X
GO TO L4oo
80 IF(DETLOWXDET2) 85,85,90
85 DETUP=DET2
XUp=X
GO TO 400
90 DETI.OW=DET2
XLOW=X
GO TO 40O
20 WRITE(6,100)
100 FORMAT(1H1,12H NO SOTUTION)
GO0 TO 30
C.....SUBPROGRAM FOR RISECTION.
400 X=XLOW+DETLOW/ (DETLOW-DETUP)* (XUP-XIOW)
DIF1=ABS(X-X1OW)
DIF2=ABS{X-XUP)
IF(DIF1.LT.0.01.0R.DIF2.IT.0.01)G0 TO 200
CALL DETERM{DETC ,DETZ2)
G0 TO 80
C.....END OF BISECTION PROGRAM.
40 CONTINUE
200 X=X/9.8696
WRITE (6,300) N,X
300 FORMAT( I15,2F15.6/)
30 CONTINUE
STOP
END
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280

220

350
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SUBROUTINE DETERM({DETC,DET2)

DIMENSION A(2,2),B(2,2),P(2,2),AP(2,2),BAP(2,2),V(2),JC(4)
DIMENSION 1LB1(2,2),182(2,2),RB1(2,2),RB2(2,2)

COMMON W,H,X,A,B,TAPER,POWER,HSQR

REAL LBl,LB2,JC

LB1(1,1)=-2.0%(1.0-(H**POWER ) /TAPER ) +X*HSQR

1B1(1,2)=0.0

1B1{2,1)=-HSQR

IB1{2,2)=-2.0

A(1,1)=1,0-(i**POWER) /TAPER

C=LB1(1, 1)*IB1(2,2)-LB1(1,2)*LB1(2,1)

DO 500 I=1,2

DO 500 J=1,2

1B2(I,J)=A(I,J)

B(1,2)=0.

B(2,1)=-H3QR

B(2,2)=-2.0

v(1)=1.0

CALL GJR(LBL,2,2,2,2,$350,JC,V)

CALL MXMLT(IB1,LB2,P,2,2,2,2,2)

DSIGN=C/ABS(C)

N4=N-3

DO 280 M=1,Nh

A(1,1)=(1.0-((M+1.0)*H y**POWER/TAPER)

B(1,1)=-2.0%A(1 1) +X#HSQR

CALL MXMIT(A,P,AP,2,2,2,2,2)

CALL MXSUB(B,AP,BAP,2,2,2)

C=BAP(1,1)*BAP(2,2) -BAP(1.,2)}*BAP (2,1)

V(1)=1.0

CALL GJR(BAP,2,2,2,2,$350,3¢C
CALL MXMLT (BAP,A,P,2,2,2,2,2)
U=C/ABS(C)

DSIGN=DSICGN*U
A(1,1)=1.0-(({N-1.0}*H)**POWER/TAPER
B(1,1)=-2.0%(1.0-( (N-1.0)*H )**POWER/TAFER ) +X*HSQR
DO 550 I=1,2

DO 550 J=1.,2
RR1(I,J)=A(I,J)
RB2(I,J)=B(I,J)

CALL MXMLT({REl,P,AP,2,2,2,2,
CAIL MXSUB(RB2,AP,BAP,2,2,2)

Y=BAP(1,1)*BAP(2,2)-BAP(1,2)
DETO=DSIGN*Y

DET2=DET0

RETURN

END

v)

2)

*¥BAP(2,1)
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JFINITE NUMBER OF CONCENTRATED LOAD AT EQUALLY SPACED LOCATICNS

..TO APPFROXTMATE THE UNIFORMLY DISTRIBUTED LOAD ON THE COLUMN

.ROTATIONALLY RESTRAINED AT BOTH ENDS. THE DISTANCE BETWEEYN TWO
JWFLECTION POINTS IS TO BE CAICULATED., 24 JUNE 1970
DIMENSION BETA{1h4}

REAL JO,NO,TEXT

INTECER COUNT
DATA{BETA(I),I=1,14)/0.0,.1,.5,1.0,2.0,5.0,10,0,20.0,50.0,
1100.0,500.0,1000.0,10000.0,100000.0/

DO 20 I=l,1k

DO 25 K=1,1h4

BETA1=BETA(T)

BETAZ2=BETA{X)

BETA26=BETAZ +5.0

BDIF=BETA1-BETA2

BSUM=BETA1 +BETA2

BPRO=BETAL *BETA2

DELTA=12.C +h4.0*BSUM +BFPRC

IEXT=SQRT ({1 .0+EDIF /DELTA )»*#2 -2 ,0¥BETA1I*BETA26 /3 .0/DELTA)
PCRUNI=(1.0 +LEXT)/(2.0¥LEXT#%3)
C1=BETAL¥BETA26/12.,0/DELTA

C2=(BPRO+5 ,O*BETAL+3 ,0¥BETA2+12.,0) /DELTA
C3=BETA26* (BETA1 + 2.0)/DELTA

WRITE(6,200) BETA1,RETAZ

WRITE(6,250)

DO 10 N=1,20

NO=FICAT{N)

X0=0.0

J1=0

COUNT=1

D 30 J=Ji,N

JO=FIOAT(J}

XFRONT=JO /(NO+L.0)

XAFT=(J0+1.0}/{NO+1.0)

CC=C1*NO* (NO+2.0) /(M0+1..0} - .5%J0* (JO+1.0} /(NO+1.0)
CX=~ . 5%N0 / (NO+1 .0)% (NO*C24+C3) +J0

X=-cc/cx

IF ( (XFRONT -X )* (XAFT-X) ) 40,40,30

Y=X~X0

XO=Y

IF(COUNT.EQ.2) GO TO 100

COUNT=COUNT+L

J1=T+1

GO TO 60

30 CONTINUE
100 PCRFIN=(1.0+Y)/(2.0%Y*x3)

ERROR=( PCRFIN-PCHUNI ) /PCRUNI*100.0
WRITE(6,300) N,LEXT,PCRUNI,PCRFIN,ERROR

10 CONTINUE

25

CONTINUE
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20 CONTINUE
200 FORMAT(1H1,12H BETA1=,F10.2,12H BETA2=,F10.2//)
250 FORMAT{4H NO,11H LUNT ,35H PCRUWI,

120H LFIN,20H PCRFIN,10H ERROR//)
300 FORMAT(IS,5F15.6)

STOP

END
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