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SUMMARY 

For a very long time analysts and practicing engineers have 

been beset by uncertainty in defining the boundary conditions for real 

structures subject to destabilizing loads. Recently, some progress in 

the resolution of this question has been made. A new method of boundary 

evaluation, which associated the behavior of a structure under a non-

destabilizing force system with the behavior of the same structure 

in a destabilizing environment, was proposed. The initial study 

demonstrated that in a number of cases the technique had significance 

for columns. However, the view point was restricted. It was not 

clear from the initial work whether the results were fortuitous or 

whether they were a consequence of a general principle. Empiricism, 

particularly when applied in a very specialized fashion can often yield 

results of interest for a particular or specific example and be value­

less in any expanded problem.. The question - how to determine the 

influence of realistic boundaries in a non-destructive fashion - is one 

of the most important. Thus, this thesis presents the results of 

detailed evaluations which clearly establish that the prior results 

are the outcome of a general, relationship basic to the issue . 
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CHAPTER I 

INTRODUCTION 

It is generally accepted that the critical load for a relatively 

slender, geometrically perfect, centrally compressed column is given by 

the formula 

Pcr = c TT^I/L 2 (1) 

where c is the restraint coefficient, a quantity which characterizes 

the conditions of end fixity. Nevertheless, there is a major problem 

in the practical use of this simple equation. This difficulty was 

succinctly stated by Salmon [l] who wrote in 1921: 

The most pressing point for future research on the subject 
of columns is undoubtedly the question of the degree of 
imperfection in practical fixed ends; in short, what value 
of K[c]*should be assumed for such ends. A complete answer 
to this question is difficult, but, at present, the designer 
has no real data whatsoever regarding practical end conditions. 

While a satisfactory answer to the above question remains to be 

found, the designer is not without some practical information per­

taining to end restraint. Design conventions have emerged which are 

usually conservative and which can be applied with confidence to 

orthodox types of attachment. For example, Niles and Newell [2] 

present the following guidelines for airframe column members: 

* K[cJ, end fixity coefficient. 
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As used in practice, the restraint coefficient is partly rational, 
partly empirical. A value less than 1.0 is seldom required, 
or a value greater than 2.0 permitted. Aeronautical engineers have 
customarily designed compression members in trusses having all-
welded joints on the basis of c = 2.0, if the structure supporting 
the member was as stiff as, or stiffer than, the member itself. 
If the joints were made with several rivets or bolts, c was taken 
equal to 1.5 unless adequate test data were available to justify 
a larger coefficient. If the restraining effect of the contiguous 
structure was in doubt, c = 1.0 was used. 

It is clear that these criteria are of questionable usefulness, 

especially in novel and innovative applications, and that more definitive 

information certainly is desirable for all cases. 

Since Salmon's statement was made, much research on the subject 

of columns has been carried out. Great ingenuity has been expended by 

experimentalists in simulating the "ideal" end restraint conditions 

that are normally considered in analysis. A thorough review of these 

efforts has recently been prepared by Horton and Struble [3]• In this 

report the authors conclude that the complexity of achieving prescribed 

conditions and the fact that such conditions are rarely, if ever, met 

in actual structures provide strong justification for seeking a simple 

non-destructive testing method. A successful method of this type would 

yield data pertinent to the stability of column members with realistic 

end restraint without risk of costly damage or loss. 

One powerful technique of column evaluation has already been 

established. This is the so-called Southwell Method, A review of its 

applicability to various types of structures is to be found in Reference 

[̂ ] . Despite the power of this technique and its universal applic­

ability in structural stability problems, it does not completely satisfy 
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the needs. The reason for this is that, before this method can be 

applied, data must be generated at destabilizing load levels which 

approach the critical. In this sense, the Southwell method can not be 

included in the category of the non-destructive test. It is perhaps 

more appropriately referred to as an indirect test. 

Subsequent to the analysis of Southwell, Fisher [5] made a more 

detailed study. In this, he demonstrated that constant lateral load 

systems were effectively imperfections. Hence, lateral loading is a 

simple means of sensitizing columns to axial load effects . This 

means, then, that compressive load level can be reduced, data 

acquisition simplified and reliability enhanced by applying a constant 

lateral force. The Southwell critical load, being independent of 

imperfection level, is unaltered by the procedure. 

Another approach to stability evaluation has been based upon 

relationships that exist between vibration frequencies and stability. 

It consists of measuring reductions in natural, vibration frequencies 

as destabilizing load levels are increased. Stability limits may be 

estimated from vibration data obtained at subcritical values of load in 

this manner. This technique, as the Southwell, method, is indirect 

rather than non-destructive in the sense explained earlier and does not 

appear to have received much, attention [6] . 

Efforts [7,8,951°] directed toward the development of truly 

non-destructive testing methods have recently been made. These center 

around the establishment of relationships between the behavior of the 

member under non-destabilizing conditions and in instability. The 



k 

approach adopted in References [7]? [8] , and [9] originated from the 

observation that buckling loads of columns are raised if end restraint 

stiffnesses are increased while the flexibility or compliance of the 

member under lateral loads is concomitantly decreased. These early 

investigations were concerned primarily with the establishment of 

empirical correspondence laws relating critical loads and compliances 

under lateral loads. The results obtained in this way are encouraging, 

but much additional work remains to be done. 

A semi-analytical procedure is presented in Reference [10] which 

differs from the above. The author suggests applying lateral loads to 

the memberj measuring parameters which vary with the end restraint 

stiffnesses and then inserting these measured values into stability 

equations in order to predict buckling. Obviously, this idea is both 

rational and straight-forward, but it does not permit measurements to 

be directly interpreted in terms of buckling. Moreover, since a 

precise theoretical calculation is required, extension of the method 

to more complex structural elements could present considerable 

difficulty. 

To date the need for a practical non-destructive stability test 

is not yet satisfied. Nevertheless, by correlating buckling loads 

with compliances under lateral loads, progress has been made towards 

establishing such a test for columns. In the present work the back­

ground of this approach is reviewed in depth, a new correspondence law 

for columns is presented and a significant parameter associated with 

points of inflection identified. In addition, the practical appli­

cation of the law is discussed and comparisons with previous laws are made. 
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CHAPTER II 

NON-DESTRUCTIVE LATERAL LOAD TESTS 

The work reported in References [7]? [8], and [9] is basic to 

the current endeavor. The central idea presented in these pioneering 

efforts is perhaps best introduced by way of an illustration. Consider 

two similar columns of uniform bending stiffness with different con­

ditions of end restraint - one simply supported and the other clamped 

at both ends. For these two configurations, the product of the 

respective buckling load and the maximum deflection caused by unit 

concentrated lateral force applied at the span mid-point is 

constant. That is 

Pcr <t> = T S <2> 

where 6 is the span mid-point deflection, Q is the magnitude of the 

concentrated lateral load, and L is the member length. 

Equation (l) suggests that an increase (decrease) in restraint 

stiffness raises (lowers) P , the buckling load of the beam acting as v ' cr 

a column, and lowers (raises) the compliance (6/Q) in such a way that 

the product of the two remains constant. Is this fact simply 

fortuitous or is it a consequence of a general principle of mechanics? 

In an effort to answer this question, the remaining limiting 

cases of restraint were investigated [7]; the results are summarized in 
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Table 1. The best agreement corresponds to concentrated lateral loads 

applied so as to maximize the compliance (6/Q). It is seen that 

equation (2) is adequate for all but the cantilever beam, in which 

case it gives results that are in error by a factor of four. 

Struble [9] modified equation (2) to derive a rule which also 

applies to the cantilever. He noted that the difference between the 

cantilever and the other cases recorded in Table 1 is the number of 

inflection (zero moment) points that develop under both lateral and 

destabilizing forces. (The cantilever restraint produces a single 

inflection point, while the others result in two). Consequently, the 

modified law is of the form 

Pcr(l) = ^ 2 (3) 

Cr ^ 12n 

where 'n' is the number of inflection points that develop within the 

span under the lateral loading. The incorporation of 'n' into the 

empirical law is similar to the introduction of the concept of 

effective or reduced length in the usual theory of column buckling; 

recall that a column's effective length is associated with the 

distance between inflection points in the buckled configuration. 

Equation (3) can be appropriately called the load-deflection 

test. Following Struble [9]? it will usually be abbreviated to 

simply "P-delta" test or law. 

Results for beams of uniform bending stiffness or for limiting 

cases of restraint which correspond to either zero or infinite boundary 
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Table 1. Load-Deflection Test 

Ideal Conditions 
of End Restraint 

© 
y-
•n* E I 

© ©*KD 
48 %h^ 

1.000 0.02083 1.000 

0.586L 
2.0U5 0.0098*+ 0.968 

0.500L U.000 0.00521 

0.250 0.33333 

1.000 

i+.000 
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restraint springs are not sufficient to substantiate the soundness of 

equation (3). Additional study [7:,9] provided strong evidence that 

uniformity of bending stiffness is not essential for the P-delta law 

to remain valid. A systematic study [9] of the two elastically 

restrained configurations shown in Figures la and lb was also con­

ducted. For beams with elastic rotational restraint at the ends 

(Figure la), it was found that the maximum error incurred by using 

equation (2) is only 7 percent for all values of the rotational spring 

constants. 

The P-delta test is no panacea, however. When applied to "beams 

possessing the type of boundary restraint depicted in Figure lb the 

agreement found is far from satisfactory in certain parameter ranges . 

A problem develops as the translational spring stiffness at the tip 

increases - the number of inflection points changes abruptly from one to 

two producing an unrealistic discontinuity in critical load prediction 

based upon equation (2). An error in P of as much as 235 percent was 

reported by Struble [9] for this type of constraint; he then proposed an 

elaborate modification of the P-delta law in order to improve the 

situation, but the modified law was cumbersome to apply and the error 

remained unacceptably large for practical purposes. 

An attendant experimental study [8] of the P-delta test was 

conducted using a test fixture designed to simulate the boundary 

conditions shown in Figure la. Maximum compliances were located by 

systematically varying lateral load positions along the beam specimens 

while critical loads were estimated by the Southwell method. Typical 
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(a) 

Unyielding Supports,, Elastic Rotational Springs 

(b) 

Cantilever with Elastically Supported Tip 

Figure 1. Elastically Restrained Beam 
Configuration 
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test results appear in Figure 2; it is evident that the product of 

the critical load and maximum compliance is constant. 

While the value of the P-delta test cannot be denied, its 

shortcomings when lateral springs are present prompted a further 

search for a more comprehensive law. Noting that the transition from 

one to two inflection points was at the heart of the problem, Struble 

[9] made the following conjecture:: 

We have thus far emphasized the importance of inflection 
points in beam behavior, indicating that there might be 
some sensitivity to wave form, as opposed to wave ampli­
tude, that is lacking in the measurement of a single 
deflection only. It is noteworthy that an inflection point 
is also a point of extremal slope, and it is only natural 
to wonder if the measurement of maximum slopes might provide 
a better estimation of the buckling load than using the 
deflection approach. 

He tenaciously employed a trial-and-error approach to finding laws 

relating the buckling loads and extreme values of slope or rotation. 

Perhaps the most successful of the load-rotation or "P-theta" 

laws is 

*J<r) - 4 w 

where 9 is the difference between the maximum and minimum values of 
m 

the rotation angle produced by bending under the lateral load Q,. The 

load is positioned so as to maximize 9 . This relation is applicable 
m 

without modification to the four limiting cases of restraint discussed 
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Figure 2 . Typical Experimental Results of Horton and Ford (Reference 8 ) . 
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earlier. It is illustrated in Table 2. It does not explicitly 

contain either material or geometric properties of the beam. 

The adequacy of the P-theta test has been explored within the 

context of the elastically restrained configurations shown in 

Figures la and lb. For beams on unyielding supports with ends 

elastically restrained against rotation (Figure la), the use of 

equation (h) results in a maximum error in critical load prediction 

of 6 percent for all values of end spring stiffnesses. Unfortunately, 

such good agreement cannot be achieved if a lateral spring is present 

(Figure lb); unacceptably large errors in the range of weak lateral 

spring stiffness indicate that this test suffers from a deficiency 

comparable to that of the P-deIta law. 

In summary, it has been clearly established that both the P-delta 

and P-theta tests provide a sound basis for the evaluation of boundary 

effects for a wide class of structures subjected to destabilizing loads. 

These tests have been empirically developed, however. Their range of 

applicability is limited and their underlying principles have yet to 

be uncovered. Nevertheless, the potential usefulness of such methods 

is beyond question. 

Introduction of a Uniformly Distributed Load 

In the practical application of either the P-delta or P-theta 

tests, maximum flexibility locations are generally unknown at the 

outset. It becomes necessary, therefore, to search for them by 

applying lateral forces at a sufficient number of stations along the 

beam. Such a procedure produces a large quantity of data, of which 
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Table 2 . Load-Slope T e s t . 

Ideal Conditions 
of End Restraint 

© 
^ TTZ E I 

6m E I 
QL? 

Q X8 

8 Per 9m 
QTT2 

1.000 0.1250 1.000 

0.612L 2.0^5 0.0609 0.996 

0.500L 
l j - ,000 

0.250 

0.0312 

0.5000 

1.000 

1.000 

• Denotes inflection point. 
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only a fraction - the extreme values of compliance - are of any 

interest if the P-delta or P-theta tests are used. In view of the 

inadequacy of these two methods for weak lateral restraints and of the 

quantity of unused data available, the question naturally arises 

whether this data can be employed effectively to improve stability 

predictions in the parameter ranges where improvement is needed. 

We are strongly tempted to search for a meaningful statistic 

such as some form of weighted average which incorporates all the data 

obtained in traversing the beam. We are also cognizant that an 

intimate relationship exists between a "moving" concentrated load and a 

uniformly distributed load - the effects of the latter are the cumulative 

or integrated effects of the former. At this point these two notions 

coalesce to suggest a new direction - exploring the possibility of 

relationships between a uniformly loaded beam and its stability limit. 

We emphasize at the outset that uniformly distributed loading is 

not recommended as practicable. It should be regarded as the convenient 

limiting mathematical form for use in the search for empirical laws. 

The recommended test procedure would consist of suitably superposing 

data obtained from the application of a finite number of concentrated 

loads along the beam span. We shall consider this matter in more 

detail later in the discussion. 

Search for Empirical Laws 

The development of empirical laws is usually based upon an 

intuitive step followed by inductive-deductive reasoning. In this the 

experience gained in prior or similar situations is most helpful. So. 
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it has been in this study. Previous work indicated that extreme 

values of beam displacement and slope caused by lateral loads provide 

relevant compliance data. Moreover, the method of considering ideal 

limiting cases of end restraint first and then proceeding to more 

general situations has evolved as a pragmatic method of evaluating 

proposed empirical relations. These two notions serve to guide the 

course of our investigation. 

We note that for a cantilever under uniform lateral load, q 

per unit length, the tip slope is given by 

9 = qL3/6EI (5) 

and that the critical compressive load for an identical column under 

axial force is 

p c r = jhi/hi? (6) 

whence it follows that 

P • 9 = ̂  (7) 
cr w 

It should be noted at this juncture that the point at which the obser• 

vation has been made is the tip of the beam. At this point there are 

certain other clearly definable conditions. 

(l) the bending moment due to either the side load or the 
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axial load would be zero. 

(2) the deflection in either load condition would be maximum, 

(3) the slope at the tip can be regarded as a limiting case 

since 

lim 61 " 62 

AK-̂ O t x 

where 6 is the lateral displacement determined at the tip and 6p is 

the lateral displacement determined at a point &x inboard of the tip. 

It is also pertinent to note that 

(k) the shear at the tip is zero. 

(5) that the displacement curve under the action of the side 

force has no inflection points. 

The introduction of a sideways partial restraint at the tip 

causes certain clear changes to take place. If the stiffness of the 

restraining spring does not exceed, a certain critical value then the 

deflection at the tip will always be the maximum deflection in the beam 

but when the value is exceeded it will no longer remain so. Moreover, 

no matter how light the spring is, there will always be two zero 

moment points along the beam, and there will always be a shear force 

at the tip station. 

We proceed now to examine the case of a simply supported beam. 

Under a uniform load, q_, the maximum slopes are located at the positions 

of zero moment, viz. each end, and are given by 
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1_ £l£ 
2k EI 

The critical load level in this case is given by 

(8) 

Pcr = # (9) 

and so 

P • 9 = ̂  (10) 
cr "UT 

The similarity -with the previous case is apparent. There is therefore 

a strong justification for examining the other limiting cases in the 

same fashion. At this stage certain complexities occur. We note now 

that if both of the beam ends are clamped, the positions of zero moment 

are no longer at the ends of the beam but are moved in from the ends 

by 0.211 L and are separated by a distance of 0.578 L. The slopes 

at these points are of course much reduced, having a value of 

0.193 /'qL3\ 
"2̂ 4 V EI/' 

It is apparent that the prior simple relationship is no longer 

applicable. 

The discrepancy between the clamped-clamped and the other cases 
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can be simply resolved by a slight change in the comparison formula 

used. We observe that the product 

Pcr 9max = k x 0.193 TT2 §jf - 0.772 / §5 

and that the 9max is positioned at a distance of 0.211 L or O.789 L 

from the end. Hence, we conjecture that a 'better quantity to consider 

is the least value of P 8max/tmax, where -tmax is the greater of the 
cr ' 

two distances from an end to the inflection point. Thus, we propose 

the approximate relation 

P Gmax 2 
rr ^ q.TT 
-tmax ~ ST 

~ q.n ( 1 1 ) 

The results obtained when this simple rule is used for the four ideal 

cases are shown in Table 3» The buckling determinant and the equation 

for beam slope under uniform lateral load for the rotationally 

restrained body on unyielding lateral supports is derived in Appendix 

A. From these derivations we can numerically evaluate the approximation 

(ll) in a broader context. The necessary computations were made on a 

Univac 1108 and are summarized in Table k. We see from this that 

the expression is excellent for all combinations of end rotational 

stiffness 

A further examination of the case of a beam with one end clamped 

and the other simply supported (propped cantilever) shows that the 
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Table 3. Distributed Load-Slope Test 

Ideal Conditions 
of End Restrainr & 

Per L2 

T T 2 E I Jmax'q I? 

® x <D 
24 ^r^max 

Jma*q TT* 

1.000 1.000 1.000 

2.0^5 0.500 

0.25L 

1.023 

max 

J-I-.000 0.2^5 

taiax = O.789L 

max 
0.250 h .000 

O.98O 

1.000 

• Denotes inflecton point. 
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Table 4. Estimation of the Buckling Load "by 
equation (ll). 

Stiffness Parameter Q: 

0 • 5 1 
1.000 1.094 1.175 
1.000 1.077 1.143 

0 -1 .5 - 2 . 7 

1.193 I . 2 7 8 
1.197 1.267 

• 3 - . 9 

1.306 
1.250 

- ^ . 3 

5 10 
1.548 
l.Jj-55 

- 6 . 0 

50 100 10* 10 5 

2.042 2ToITc7 
1.99^ 2.000 

- 2 . 3 - 2 . 2 

2.190 2.195 
2.175 2 . l 8 l 
- . 7 - . 6 

1.730 
1.625 

- 6 . 1 

l . 4 i 6 1.671 1.864 
1.380 1.598 1.780 

-2 .5 - 4 . 3 -4 .5 

1.367 1.512 
1.372 1.492 

.3 - 1 . ^ 

1.780 
1.721 

-3.3 

1.982 
1.914 

-3 .5 

1.968 
1.893 

- 3 . 8 

2 .114 
2.067 

- 3 . 3 

2.243 
2.217 

- 1 . 2 

2.006 
1.9^3 

- 3 . 1 

2 .153 
2 .121 

-1 .5 

2 .284 
2.275 
- .4 

P exact cr 
P~.~ es t imated or 
% error 

2.297 2.557 2.891 
2.273 2.520 2.870 

-1.0 -1 .5 - . 7 

2 .854 3*239 
2.813 3.187 

-1 .5 - 1 . 6 

3.700 
3.718 

• 5 

2.323 
2.332 

.4 

2.327 
2.339 

.5 

1.668 1.959 2.179 2 .461 2.505 
1.669 1.918 2.129 2.463 2.536 
0.0 - 2 . 0 - 2 . 3 .0 .8 

2.546 2.552 
2.590 2.597 
1.7 1.9 

2 .943 2 .991 2.997 
2.922 2.970 2.975 
- .7 - .7 - .7 

3.298 3.353 3.359 
3.246 3.300 3.306 

- 1 . 6 - 1 . 6 - 1 . 6 

3 . 7 H 3.838 3-845 
3.789 3.855 3.863 

.5 .4 .4 

3.845 3 -91^ 3.921 
3.896 3.965 3.973 
1.3 1.3 1.3 

3.984 3.992 
4.077 4.085 
2 . 3 2 . 3 

4.000 
4.098 
2o5 

10-
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relation (ll) applies approximately if the slope value at the second 

inflection point is used. For this beam under the uniform load q, 

the slope at the inflection point remote from the pinned end is 

e = o.ikk $L 

and this point is located at a distance of 0.75 L from the pinned end 

Thus, 

V*. /o.3j^L3y2WW i \ = o QIK> (-ai. 
0.75L V 24EI A T2 Ao.75L/ ^ V 2JT 

This observation suggests that equation (11) may be generalized. 

If we let Q and 9p denote the two extreme values of slope that corre­

spond to inflection points located at distances K,. and £p from the 

remote ends of the beam (Figure 3) 5 then we expect that 

IJIIJJL! ( 1 9 i | +l Q^] 

\ ~ l2 ~ (l2 + l2) 

Thus we can derive another equation as a replacement for equation (ll) 

(*, + 1 2 ) 2k 
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inflection points 
uniform load 
q (Force/Length) 

Figure 3. Geometric Parameters for an Elastically 
Restrained Beam. 
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where I , tp, 0 and 0 are defined in Figure 3. In an effort to 

clarify the issue further the behavior of a beam with rotational end 

restraint at both ends is considered analytically (Appendix A). The 

lateral load is uniformly distributed and has a value of q per unit 

length. The analysis demonstrates that the sum of the absolute values 

of the slopes at the zero moment points is proportional to the cube of 

the distance apart of these points. This simple result has important 

practical consequences, because the formula (12) can now be written in 

the form 

y — ) ( 2 • i e x t ) 2 
= TT (13) 

<L + W 

In other words to evaluate the critical load under axial com­

pression we do not need to measure slope at a point but merely 

distance apart of two points . Practically this is a much simpler 

operation. 

The numerical calculations appropriate to this formula 

demonstrate that for all possible combinations of rotational spring: 

stiffness the maximum error is only 2.5 percent. The results are 

shown in Table 5. The comparisons between the results by this test and 

those of "P-delta" and "P-theta" tests are shown in Figure h. 

The calculation was made for the case of equal rotational 

restraint, because for all three test methods this is the case in 

which the maximum error exists. It is seen that the result for the 



Table 5• Errors Involved in the Estimation Formula 
equation (13)• 

S t i f f n e s s Pai^ameter OL 

0 1 5 10 50 100 10 3 io-
2.006 2.042 2.046 
2.023 2.069 2.074 

.9 1.3 1.4 

2.153 2.190 2.195 
2 .181 2.229 2.234 
1.3 1.8 1.8 

2.284 2.323 2.327 
2.317 2.367 2.373 
1.4 1.9 2 .0 

2.505 2.547 2.552 
2.539 2.593 2.600 
1.3 1.8 1.9 

2.943 2 .991 2.997 
2.959 3.022 3.030 

.5 1.0 1.1 

3.298 3.353 3.359 
3.300 3.371 3.380 

. I .5 .6 

3.771 3.838 3-845 
3.805 3.891 3.901 

.9 1 . ^ 1.5 

1.000 
1.000 
0.0 

1.094 
1.095 

. 1 

1.175 
1.176 

.0 

1.193 1.278 
1.197 1.282 

• 3 .3 

1.306 
1.303 
- . 3 

1 .4 l6 
l o 4 l 8 

. 1 

1.367 1.512 
1.372 1 .51^ 

• 3 .2 

1.548 
1.535 

I . 6 7 1 
1.664 
- . 5 

1.780 
1.77^ 
- . 3 

1.668 1.959 
1.669 1.950 

.0 - . 5 

P exact 
c r P es t imated 

a/cr 

Jo e r r o r 

1.730 
1.715 
- . 9 

1.864 
1.856 

1.982 
1.975 

2.179 
2.169 

2 .297 2 . 
2 .273 2 . 

-1 .0 -1.2 

57 
28 

1.9^8" 
1.977 

.4 

2.114 
2.132 

•9 

2.243 
2.266 
1.0 

2 . 4 6 l 
2.484 

•9 

2 .891 
2.895 

. 1 

2 .854 3.239 
2.813 3.227 

-1 .5 - . ^ 

3.700 
3.718 

3.914 3.924 3.921 
3.896 3.985 3.995 
1.3 1.8 1.9 

3-984 3.992 
4.077 4.087 
2 . 3 2 . 4 

4.000 
4.098 
2 .5 
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uniform load test is to all intents and purposes "exact". 

Generalization to the Case of a Moving Lateral Support 

In the arguments presented so far we have assumed that variation 

in rotational constraint is the prime problem of practical concern. 

We consider this to be a well founded assumption. Nevertheless, we 

realize that problems in which some flexibility exists in the lateral 

support system occur. The prior work [7*9] failed for these cases. 

The reason would appear to be that a single lumped compliance parameter 

cannot accomodate such complex boundary effects. Thus, a second 

parameter whose value is determined primarily by the lateral support 

flexibility must be introduced. 

To search for this parameter we consider the elastically 

propped cantilever. To visualize the physics of the problem we begin 

with the plain cantilever beam. Under the action of a uniform lateral 

load this body deflects in a smooth curve and the maximum deflection and 

slope occur at the tip. The introduction of a partial sideways 

restraint at the tip causes certain clear changes to take place . If 

the stiffness of the spring does not exceed a certain critical value 

the deflection at the tip will always be the maximum for the beam. 

However, when this critical stiffness is exceeded this condition is 

no longer true. Moreover, no matter how light the spring is, there 

will always be two zero moment points along the beam, and the zero 

shear point will move away from the tip. 

The propped cantilever for which the tip spring stiffness 

exceeds the critical value intuitively seems the easiest to deal with. 
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Thus, this case is treated first, it is readily apparent that the 

lateral spring can be replaced by an appropriate cantilever spring 

system. The requirements we must specify for this equivalent system 

are: 

(1) The cantilever is to be regarded as a continuation of the 

beam under consideration. Therefore, 

(a) it has the same EI as the beam 

(b) it provides the same reaction force at the tip as 

does the real spring. 

(c) there is continuity of slope and deflection at the 

proper point. 

(2) To make the equivalent system handleable with the pro­

cedures previously followed the cantilever has an appropriate 

rotational spring at its root and an infinitely stiff lateral support. 

With these conditions defined we may proceed to the analytical 

study of the problem. The system defined is depicted in Figure 5a and 

we note that at the tip there are initially four prescribed conditions 

viz known values of M , V , 6 , 9 . Two unknowns are to be ascertained 
o' o o o 

from analysis - namely, the beam length and the end fixity coefficient 

a. It can be shown from the usual beam equations that the relationship 

between L and the prescribed conditions is 

iiiL + kv L3 - km L2 + ^8e L - ^86 = o. (ik) 
o o o o 

The critical load for the configuration should be as follows: 
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(a) 
Analogy for Gasel: K 3 >24 -E I . 

Analog y for CaseH: K3 < 24 c f i 

• Denotes Inflection Point 

Figure 5« Beam Analogies for Cantilever with 
Lateral Tip Spring 
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Pcr " i f ¥ • ~^-T • J* (15) 
2-text (t + L) 

where the term 

L2 

(L + -t)2 

is the natural correction for increase in column length from L to 

L + t . This semi-empirical formula has been evaluated for values of 

3 
K 3 L 

EI 

ranging from the critical to virtual infinity. The error is 

acceptable over the whole spectrum. The extreme value, 13 percent, 

occurs at the lower bound. The average value is, however, much 

smaller as is clear from Table 6. 

The cases for which the lateral support spring stiffness does 

not reach the value which causes the tip to be inclined upwards for a 

down loading of the beam cannot be treated by the procedure outlined. 

Thus, we are forced to a somewhat more intuitive approach. To deal 

with this case we go back to consider the relationship between the 

instability loads for a one-end clamped, one-end free column and a 

pin-pin column. We note immediately that the critical load of the first 

is given by 
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Table 6. Extended Beam Analogies. 

Extended Beam Analogy Case (i) 

3 
K 3 L 

EI 

P 2 
exac t • L P 2 e s t . L 

3 
K 3 L 

EI 
I 

Tl2 E I Tl2 E I 
E r ro r s (fo) 

24 • 334 1.664 1.897 13 
30 • 302 1.731 I . 766 3 
4o .263 I.85O 1.807 -3 

100 .154 1.996 1.833 -8 
500 .037 2 .037 2.000 - 1 

0 2.045 2.074 1 

Extended Beam Analogy Case (il) 

K3L3 -p 2 
exac t L L 1 + 

v 2 
e s t . L E r ro r s (fo) 

EI Tl2 E I ex t Tl2 E I 

0 .250 2 .0 2 .0 .250 0 
1 o332 1.8125 1.625 .328 -1 .2 
2 .414 1.7000 i.4oo .407 - 1 . 7 
4 .572 1.571 1.142 .561 - 1 . 9 
8 .872 1.455 .910 .830 - 4 . 8 

16 1.360 1.368 .736 1.235 - 9 . 2 
24 1.664 1.333 .666 1.498 -10 .0 
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Pcr = 7 % ' I ^ 
Lcf 

and the critical load for the second by 

Pcr = # i (17) 
L 
PP 

For equality of loads for these two systems we see immediately that 

L = 2L p (18) 
pp cf 

And so5 of course, we focus attention on the use of reflection in the 

study of the problem. But reflection of the beam to obtain an equi­

valent beam is not all that is necessary. Some parameter closely 

associated with the characteristics of the tip spring is essential. 

Instinctively we feel that this may well be the location of the point 

at which the shear is zero. We are given some confidence in this 

viewpoint by the fact that we can show this point to have significance 

in the case we have already treated. 

Consider the beam column with uniform lateral loading and suppose 

that the zero shear point is positioned at distance Ln from one end 

and Lp from the other. Then we can demonstrate arithmetica.ily that for 

a given beam 
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2£3 - • 2L . 2^3 -. ,2L 

P x
 ext I ! l) - p x i OT , (- 1-=̂ ) ~ Constant (19) 

Pcr X t 2LX + <text J \ L >/ cr l 2L2 + lQJ \ L 7 

If we assume there are two functions en and gp which make the above 

approximation identities, then we can write 

Cr t 2L1 + *ext ; U j " - t 2L2 + \xt J ^ bis 

-P S M L 1 + L2 } ̂ ext + 2 Li e! + 2V2yiN 
cr I 2( L l + L2; + 2^ext A j 

.. 2l3 ,_ . 
•^ i e x " t ! 

= P -i-r s r + e = Constant 
cr L L + </ J ext 

In essence, when e is regarded as the error, this is the formula 

previously derived. Hence, we see that the zero shear point is an 

important point on the beam but we note that in the previous 

investigations this fact was masked. 

We proceed now to reexamine the question of the subcritical 

propped beam. We begin by reflecting the beam and considering the 

equivalent length to be the distance between the zero shear points. 

This, of course, differs from the true length and thus we anticipate 

some correction will be required. As before, the natural correction 

should be the ratio of the squares of the equivalent and real lengths. 

With these ideas in mind the analogous expression should be 
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^ rff~ ®- * (20) 

ext 

This semi-empirical formula turns out to be a very good approximation, 

the maximum error being of the order of 10 percent. The values of 

the theoretically exact and approximate P 's together with the 

appropriate errors are shown in Table 6. 

Now it has become clear that the characteristic distance between 

inflection points under a uniformly distributed lateral force is 

an important parameter in the mathematical description of the influence 

of boundaries on instability load of columns. So, at this stage it is 

worthwhile examining the predecessor's work, i.e., "P-deltaM and 

"P-theta" methods, to find out whether they can be associated with 

the same quantity. To clarify this point the deflection, slope and 

moment due to a concentrated lateral force acting on an end rotationally 

restrained beam with unyielding lateral supports was derived. The 

derivation is given in section (c) of Appendix A. The analysis shows 

that when the rotational restraints are equal, the sum of the absolute 

values of the extremum slopes, which was used as a parameter in 

"P-theta" method is proportional to the. square of the distance between 

the inflection points. Therefore, in this case, the "P-theta" method 

is equivalent to the following relation 

2 

(-£) • *2«t = T ^ 



3̂  

where -L is the distance between the two inflection points when a 
exrj 

concentrated lateral force is applied at the mid-span of the column 

considered. 

Won-Uniform Cross Section 

So far in the analysis the bending stiffness of the column has 

been assumed to be uniform. Now the question is "Is the uniformity of 

the bending stiffness essential to the issue presented here?" With 

regard to this question, Reference [7] showed one example of the 

variable bending stiffness problem for the clamped-pinned boundary 

condition and proved the applicability of the so-called "P-delta" 

method. In this thesis a simple empirical formula relating the 

buckling load of the column of variable bending stiffness to the 

extremum slopes due to a uniformly distributed lateral force is 

investigated extensively. As a first example, the simply supported 

strut depicted in Figure 6 is considered. This strut is non-uniform, 

the two halves having different bending stiffness. According to J. 

Case [11] the critical load for a strut unsymmetrical about the center 

is given by 

T- - r+ k ^ 

cr a b 

where P is the buckling load of a strut with two halves like OA, and 

3/ 

P is the buckling load of a strut with two halves like OB. Since the 
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V—* x 

A 

V) 

w,. mm 

Figure 6 . Non-Uniform. Beam Unsyrametric About i t s C e n t e r . 
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inflection points are always at the ends for this configuration, and the 

signs of the slopes at the two ends are opposite, the sum of the 

absolute values of the extremum slopes is their algebraic difference. 

When the uniformly distributed lateral force of intensity q (lb/in) is 

applied to the column considered, the governing differential equations 

are 

E^W" ^ X - l x 2 0 £X S § (23) 

E l 2w.. a£ . i (x - if fe | * X £ L 

Integrating both equations in (23) yields 

EI^' = ̂ X 2 - | x 3 + C1 0 £ X £ | (2k) 

EI2W' = 2 T X "'6(X-|)3 + C2 | * X * L 

The condition of slope continuity at X = L/2 gives 

(> ->) - A - Mfc> MS) (25) 

Hence 
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E(v'x=L-W'x=o)=€(i7 + i;) (26) 

Equation (22) can be re-written as 

P - iGL £ (27) 

cr * (^t 
and this in conjunction with equation (26) becomes 

Pcr • *> = ̂  <28> 

Now equation (28) can be re-written as 

P • A6 2 

^ 2 T - ==2* ™ 

which is, of course, equation (12) precisely. 

The second case considered is the clamped-pinned column as 

depicted in Figure 7» The bending stiffness, in general, can be 

written as 

EI(X) = EIo|l - %ffi (30) 
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q_=constant 

H 
4 

X= 0 

nnmn 
X= L 

Figure 7 . Clamped-Pinned Beam of Var iab le Bending S t i f f n e s s 

under the Uniformly D i s t r i b u t e d Load 

q=constant 

Figure 8. Simply Supported Beara of Variable Bending Stiffness 

under the Uniformly Distributed Load 
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where T, a number greater than 1, represents the taper ratio of the 

bending stiffness and EI is the bending stiffness at the root. 
o 

The slope at the pinned end, which is of prime interest here, 

due to a uniform lateral force is obtained by integrating the differ­

ential equation 

^ ( E I ( X ) W " ! " q = ° (31) 

ax" 

and staisfying the boundary conditions 

W = w1 = 0 at X = 0 (32) 

W = W" = 0 at X = L 

The slope as a function of T was calculated for the p = 1 and p = 2 

cases. The details are given in Appendix I). The buckling load was 

calculated by the finite difference method [12] using Potter's [13] 

method and its modification [14]. The set up of the finite difference 

equation, the computer program in Fortran language, and the numerical 

results for p = 1 and p = 2 cases are also shown in Appendix . The 

buckling loads, ratios, the tip slope parameters and the products 

of the two quantities are listed in Tables 7 and 8, for different 

values of T. The results clearly confirm the excellent accuracy of the 

empirical law (ll), viz. 
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Table 7• Propped Cantilever Beam with Linearly Varying 
Bending Stiffness 

(1) (2) (3) (1+) (5) 

Buckling Tip Slope 
Load Ratio Parameter 

T P L " 5 end Product Error ($) 
-5 _3 (2)x(3) in Equation 
n2EI &- (11) 

1.053 .810 1.1+66 1.187 18 .7 
1.071 .81+6 1.387 1.173 17.3 
1.111 .911+ 1.259 1.151 15.0 
1.125 .931+ 1.221+ 1.11+3 11+.3 
1.250 1.085 I.023 1.110 1 1 . 1 
1.500 1.277 .81+6 1.080 8.0 
1.750 1.1+30 .760 1.087 6.7 
2 1.1+92 .710 1.059 5-9 
3 1.687 .618 1.01+3 1+.3 
5 1.831+ .563 1.033 3.2 

10 1.9^0 .511+ 0.997 - . 3 
20 1.993 .508 1.012 .6 

100 2.031+ .503 1.023 . 1 .1 



Table 8. Propped Cantilever with Parabolically 
Varying Bending Stiffness 

(1) (2) (3) (10 (5) 
Buckling Tip Slope 
Load Ratio Parameter 

Product Error (fo) 

(2) x (3) 

1.053 1.182 1.035 1.223 2 2 . h 
1.071 1.208 1.001 1.204 20 .9 
l . l l l 1.258 .9U2 1.185 18.5 
1.125 I.27U .926 1.180 17 .9 
1.1^3 1.293 .906 1.171 17.2 
1.167 1.316 .88U 1.163 16 .3 
1.250 1.381* .82U 1.1U0 1U.0 
1.750 I .606 .67U 1.082 8.2 
2 1.673 .6^3 1.07^ 7 ^ 
3 1.808 .583 1.051* 5.3 
5 1.907 .5^5 1.039 3.9 

10 1.971* .521 1.028 2 .8 
20 2 .011 .510 1.026 2 .5 

100 2.035 .505 1.028 l.k 

cr 
2 
rr EI 

249 
end 

<d 
EI 
o 
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^ • {¥) - 4 <*> 
bis 

The maximum deviation of the product of the critical load and 

slope parameter differs from the constant 

(4) 
by only a few percent for all practically realistic values of T. 

The third case considered is that of the simply supported beam, 

(Figure 8). The bending stiffness is assumed from the form given in 

equation (30) . Linear (p=l) and Parabolic (p=2) cases are considered for 

different values of T. The extremum slopes are located at the ends and 

are of different signs. Thus, the sum of the absolute values of the 

extremum slopes is the difference of the end slopes which are calculated 

in Appendix . As before, the buckling load was obtained by a finite 

difference scheme . The appropriate computer program is given in 

Appendix . The only deviation from the clamped-pinned case lies in 

the boundary matrix corresponding to the left end. The empirical law 

P J JL JJ L i i = an,. 
cr I 2L J ^ + 

was checked for this configuration. The values of critical load and the 

slope parameters and. the product of the twe are listed in Table 9 an(i 

10 for different values of T- It is readily seen from these tables 
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Table 9» Simply Supported Beam -with Linearly Varying 
Bending Stiffness 

(1) (2) 
Buckling 
Load Rat io 

(3) 
Tip Slope 
Parameter 

w (5) 

T P L2 

cr 12 AG Product E r r o r (%) 

TT2EI 
L3 

EI 
0 

(2)x(3) i n 
Equat ion ( l l ' 

1.053 .1+29 2.1+1+0 1.01+7 h.7 
1.071 .1+1+2 2.31+3 1.036 3.6 
1.111 .1+72 2.179 1.028 2 .8 
1.125 .1+82 2.133 1.028 2 .8 
1.11+3 .1+93 2 .080 1.025 2.5 
1.250 .5I+8 1.853 1.015 1.5 
1.500 .636 1.581+ 1.007 .7 
1.750 .690 1.1+1+8 0.999 - . 1 
2 .731+ 1.361+ 1.001 .1 
3 .827 1.210 1.001 .1 
5 .897 1.111+ 0.999 - . 1 

10 • 9^9 1.053 0.999 - . 1 
20 .971+ 1.025 0.998 - . 1 

100 • 995 1.005 1.000 - . 0 
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Table 10. Simply Supported Beam with Parabolically 
Varying Bending Stiffness. 

(1) (2) (3) W (5) 
Buckling Tip Slope 
Load Ratio Parameter 

T T ^ I 

1.053 .6U1 1.660 1.06U 6.U 
1.071 .651 1.625 1.058 5.8 
1.111 .672 1.563 1.050 5.0 
1.125 .678 1.5U5 1.0U8 U.8 
I.1U3 .687 1.52U 1.0U7 U.7 
1.250 .725 1.U30 1.037 3.7 
1.500 .782 1.309 1.02U 2.U 
1.750 .818 1.2UU 1.018 1.8 
2 .Qkh 1.201 1.01U l .U 
3 .900 1.120 1.008 .7 
5 .9^1 1.066 1.033 .3 

10 • 971 1.032 1.032 .2 
20 • 985 1.015 1.000 .0 

100 .997 1.003 1.000 .0 

12A9 Product E r r o r \-/ot 

3 " (2)x(3) i n 
£=~ Equat ion ( 1 1 ; 
i l j j . 

O 
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that the formula (ll) is an excellent approximation. The excellence 

of the formula (ll) for a uniformly distributed load cannot be denied, 

but its practicality can readily be challenged. The characteristics 

of a uniformly distributed load are relatively simple to analyze but 

relatively difficult to achieve in the laboratory. Admittedly a 

uniform load can be regarded as the integrated effect of a series 

of discrete loads or as that of a moving load but this clearly 

presents practical difficulties. In short, uniformity is a wonderful 

mathematical expedient but a poor laboratory tool. Thus, the next 

step in making the work fully practical must be to ascertain whether 

the uniform load can be replaced by a discrete load system without 

inducing unacceptable errors . A detailed analysis of this question has 

been made for the beam on unyielding supports. It shows that three 

equal forces applied at the l/h9 l/2 and 3 A points of the beam can 

be used to determine the characteristic length with reasonable 

accuracy. The errors involved in this determination are depicted in 

Table 11 while the effects of other multiple discrete load systems are 

portrayed in Figures 9 through ll+ . The use of a three force system 

simplifies the question of load application, just as characteristic 

length used in the analysis improved the ease of determination of the 

necessary length parameter. 



1+6 

Table 11. Estimation of the Buckling Load by Applying Three Equally 
Spaced Concentrated Lateral Forces on the Rotationally 
Restrained Beam 

S t i f f n e s s P a r a m e t e r (KL/EI) 

0 .5 1 2 5 10 50 100 
3 

1 0 J 10" 
1 .000 
1 .000 
0 . 0 

1.091+ 
1 .116 
2 . 0 

1.175 
1 .208 
2 . 8 

1 .306 
1.345 
3.6 

1 .548 
1 .568 
1 .3 

1 .730 
1 .723 
-.1+ 

1 .968 

1 .837 
-6.7 

2 . 0 0 6 
1.921+ 

- l+ . l 

2 . 0 4 2 

1 .957 
-1+.2 

2.01+6 
1.985 

- 3 . 0 

1 .193 
1.21+1+ 
4 . 3 

I . 2 7 8 
1 .347 
5 . 4 

1.1+16 
1.499 
4 . 5 

1 .671 
1 .746 
2 . 8 

1.861+ 
I . 9 1 6 

.9 

2.111+ 
2 . 1 3 2 

• 7 

2 . 1 5 3 
2 . 1 6 7 

.5 

2 . 1 9 0 
2 . 2 0 1 

•5 

2 . 1 9 5 
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CHAPTER III 

GENERAL INTEGRAL EQUATION FORMULATION 

Formulation of the Integral Equation 

The work in the preceding sections as well as that in 

reference [9] has given very clear indication that the instability 

behavior of a partially restrained column can be readily associated 

with the deformations of the same body under lateral load. We are 

led, therefore, to the thought that a clearer understanding of the 

relationships established might be derived from an analysis of the 

beam column. To this end an integral equation approach to stability 

load level determination is developed in this chapter. 

In formulating the integral equation for column buckling, it is 

convenient to introduce the idea of equivalent buckling force. Con­

sider the elastically supported beam as beam-column shown in Figure 

15. 

The work done by the axial, force P, is 

we = P J J ( w ) 2 ax (i+i) 

v o 

The virtual work of the axial load is 



q(x) Z,W 

A 

X ,X 

Coordinate 

X= 0 X = L 

Figure 15 . E l a s t i c a l l y Supported Beam Under Combined Loading. 

VJl 

-p-



55 

6W = P f W'6W'dX = PW'6W 
e J 

o 

L r L 
- P I WM6WdX 

<J 
0 0 

Ct2) 

Interpretation of equation (42) becomes clear when the variation of the 

external potential is written for a beam under a load distribution q(x) 

and shear forces S(0) and S(L) on the boundaries. That is 

| L L 
6W = S(X) 6W + q(x) 6WdX (43) 

e t] 
1 o o 

Comparison of equation (42) with equation (43) shows that in this 

problem there are equivalent force systems. The system with which we 

begin can be replaced by the distributed moment -PW" upwards and 

additional boundary shear forces, PW'(L) upward at X = L and PW'(O) 

downward at X = 0. 

Thus the effective distributed load q „„ acting upward is 
el i 

defined as 

q f f = -PW"(X') - PW
,(X,)6(X') + PW'(X')6(X,-L) (44) 

= -P[W"(X') +W,(X')6(X') - W*(X')6(X,-L)] 

where 6(X') is a Dirac delta function. 

In general when the loading q(X) is distributed over the beam, 

the deflection at X, w(X), can be written 



r L 

w(x) = cCx^OqCxOdX' (^5) 

where C(X,X') is the flexibility influence function, interpreted as the 

displacement at X due to a unit lateral force at X' . 

For the sake of simplicity in the analysis which follows, 

non-dimensional quantities defined below are introduced. 

v X r XT w ^ PL2 

L ' b L ' " L ' x " EI 

i(c) = r . e(x,c) = ^ 

Equation (M+) and (U5) can now be rewritten as follows 

*eff = "^w"(0 + w'(rj6(c)-w'(c)6(C-D] (U6) 

r :L -
w(x) = I C(x,£)q(£)d£ ( W 

o 

Replacing q(^) in equation (k'j) by q ff, the following relation 

is obtained. 
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r 1 
w(x) = J C(x,G)qeff(Q)&Q (48) 

o 

- r 1-
P I c(x,c)[wM(c) +w(c)6(c) - wf(c)6(c-i)K 

= - p C(x,£)wM(£)d£ - PC(x,0)w'(o) + PC(x,l)w'(l) 
o 

Integration of the first term in equation (1+8) by parts yields terms 

which cancel boundary terms, and when this is done the resulting 

equation is, 

w ( x ) = p T ac~(*>0 W'(e)dc (U9) 
"' o ^ 

It is convenient for some application to write the previous equation 

in terms of the slope. Taking the derivative of equation (49) with 

respect to x, an alternative form of this equation is obtained. 

1 2-

WW = p r ^4fe^w ,(c)^ (50) 
«- ̂  OXOL 

o •= 

Since no specific restriction on the boundary conditions was 

imposed in deriving equations (49) and (50), these two equations are 

valid for all boundary conditions. Here, for the sake of convenience, 

the following notations are introduced. 
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•<*,C) • % ^ (5D 

e(x) = w"(x) 

^ 3C 

where r(x,£) and d(x,£) are interpreted as the slope and deflection, 

respectively, due to a unit moment applied at the location Q . It 

should also be noted that r(x,£) is symmetric with respect to x and £, 

as can be shown from the reciprocal theorem. 

Using these notations, equations (̂ 9) an(i (50) can now be 

written as follows: 

- r 1 

w(x) = P d(x,C)8(C)dC (52) 

8(x) = P J r(x,£)e(G)d£ (53) 

Orthogonality Relations 

For the ideal boundary conditions, namely, simply supported, 

built-in or free, the following orthogonality relations are known to 

be true [15]. 



J wnWmax = o m 
O 

and 

r L 

j Ei(x)w,,mw*
,
ndx = o (55) 

" o 

where W and W are the mth and nth buckling mode associated with the 
m n 

buckling load P and P respectively. Equation (5*0 is, of course, 

a general result. The detail of the derivation is given in Appendix 

A. The orthogonality relation (equation (10)) in Appendix B can be 

rewritten as follows: 

r 1 
I 9.(x)9.(x) dx = N.6.. (56) 
J l 3 l lj 

where 

N. = 
l 

, 1 2 
9 .(x)dx 

l • ' o 

6.. = Kronecker delta 

,=0 when i ^ j 

=1 when i = j 



Combining the orthogonality relation (equation (56)) 'with the 

integral equation (53)} a different type of orthogonality relation can 

be derived as follows. Let 0 , 0 by the slopes of the rth and sth 
r s 

buckled mode corresponding to the buckling load P and P respectively. 
i S 

Then from equation (53)} 

(x) = P [ r(x,£)9 (£)<!£ (57) 

9
s
(x) = ?s J r(x>G)es(c)ac 

" o 

(58) 

Multiplying (57) by 9 , (58) by 9 , and integrating over the length of 
s r 

the beam, 

1 
9 9 dx = P 

J r s r 
o 

1 

o o 
r(x,£)e (C)ejx)dxd£ (59) 

! e e dx = p 
j r s s J o 
o 

Q r(x,c)es(c)er(x)dxdc (6o) 

In view of the symmetry of r(x,£), the above integrals are identical 

on "both sides of the equation, 

lr 1 N 

I r(x,c)eT.(c)efl(x)dcdx = =£ 6rs 
o J o r = s 

(61) 



6l 

Equation (6l) yields a very interesting result when r is equated to s 

That is 

K - — E ^ 
i j r(x,c)e (c)e (x)dxd^ 
"o o r s 

' 1 2 
9 (x)dx 
r 

o 

p 1 r 1 
j I r(x,Q)B (Q)Q (x)dxd£ 
o o 

This formula could be used to estimate the buckling load of the 

elastically restrained column. 

Some Useful Results Derived from the Integral Equation Formulation 

With regards to the kernel r(x,£) of the integral equation (53): 

the following observations are made: 

(1) The kernel is symmetric with respect to x and Q. 

(2) The kernel is positive in the following sense. 

, 1 r 1 
I = | | r(x,£)9(x)9(c)dxd£ ^ 0 (63) 

o o 

where 9 is an arbitrary function. Equation (63) holds true because the 

integral quantity can be shown to be proportional to the strain energy 

which is obviously positive. At this stage it is convenient to 
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introduce orthonormal functions cp. defined by 

e (x) 
cp^x) = - i (6k) 

/ \ 

For i = j equation (56) can be rewritten as 

> 1 2 

cp. (x) dx = 1 
o 

Because of the conditions given above for the kernel, it follows from 

Mercer's theorem [15] that the kernel can be expanded in terms of the 

orthonormal functions and the eigenvalues as follows: 

" CD- ( C W M 
r(x,£) = ) -i -2= (65) 

i ' i pi 

Equation (65) yields many interesting relations which connect the 

buckling load and the behavior of the beam under the non-destructive 

force system. "When it is combined with the orthogonality relation 

(equation (6l)) it gives two kinds of infinite sum relationship for 

the eigenvalues. 

The first is obtained by letting x = £ in equation (65) and 

integrating over the span 



r l *± M 1 r(x,x)dx = ; I — dx = ) (—J 
-J o P.N. . ^ V V 

i=l i' i i = l 

the second by integrating r (x,£) with respect to both x and 

„ 1 n 1 

O O 

j" r^Oaxdc-Vy-)/ ê WtoJ 6^(^=7 ( 
i = l 1 1 O i = l 

These two results will be discussed later. Other interesting 

can be derived from equation (65) . By definition 

r(x,r) = a
gc(x,c)...f 9i W 9i^ 
SxdC ^ p F 

i=l i i 

Integrating with respect to Q gives 

3£l2L£l = ) - i 1 + f ( x ) 
^ ."-; p. N 

i = l 1 i 

Integrating again with respect to x gives 



C(x,C) = I Vi ( x ) Vi ( C ) + F(x) + G(C) 
i=l P.N. 

1 1 

From the reciprocal theorem? 

F(x) = G(x) 

Then equation (70) c a n ^ rewritten as 

w (x)w (C) 
foO =} ~ + F(x) +F(C) 

. , P. N. 
1=1 1 1 

Suppose the boundary restraint is such that the lateral movement 

allowed at x = 0, then in equation (7l)j> 

Hence, 

wi(o) = 0, c(o,c) = 0 

F(0) + F(C) = 0 for 0 <;, £ <; 1 

This means that the unknown function F is identically zero. This 

argument holds true also when the lateral stiffness at x = 1 is 

infinite. Hence, equations (69) and (70)? with this restriction, 

become 
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ei(x)wi(c) 
e(x,C)-2Sg^-y ^ - ^ (73) d .--; P.N. 

1 = 1 i i 

c(x,r) = ) w i « w i W (7U) 
i=l P.N. 

l l 

When the end lateral stiffness is finite, the function F represents 

the deflection caused by the rigid body rotation. Multiplying equation 

(73) "by 0.(x) and integrating with respect to x from 0 to 1 results in 

the following simple relation 

P 1 w, (£) 
J 9(x,^)9i(x)dx == -i (75) 

P. 
1 

Integration of equation (75) wi-th respect to £ from 0 to 1 yields 

r 1 

P T r-_, ,_!.,,_ Jo wi^ ) d£ 1 - r* 1 -| 

j L J e(x;,c)dCJ ei(x)dx =
 uu ,x " (76) 

o o p. 
1 

But, 

o 1 

e(x) = j e(x,^)d^ (77) 
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(Note that 9(x) is the slope at x due to a uniformly distributed load.) 

Substitution of equation (77) into equation (76) gives 

r 1 

I w. (x)dx 

h = 4V̂  ^ I e(x)e.(x)dx 

Since the lowest buckling load Pn (= P ) is of the prime interest, 
1 cr 

equat ion (78) can be r e w r i t t e n as 

j w1(x)dx 
f cr = J r i ™ 

e(x)e.j(x)dx 
o 

Application and Discussion of the Results Obtained in Section 3 

The main purpose of studying the buckling problem in the integral 

equation formulation is to search for the mathematical background for 

those empirical formulae derived in Chapter II. The procedure adopted 

was as follows. 

The instability problem was set up in such a manner that the 

critical loads were related to factors which define a non-destabilizing 

force system. Now since such force factors systems appear in an integral 

quantity, there must be a reasonable probability that a certain para-
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meter (e.g., deflection, slope, characteristic length, etc) maybe 

associated with this integral. If this is so, we may be able to 

derive laws of similar form to the empirical ones. 

Following this reasoning infinite sum relations (equations 

(66) and (67)) were developed. These equations establish that integral 

quantities associated with a couple distributed along the span can be 

expressed as the infinite sums of the inverses of eigenvalues or their 

squares. Since the empirical law defined earlier is related to the 

lowest buckling load P , these equations cannot be the answer to our 
cr 

problems unless the ratios of the sums of these infinite series to P^ 

remain nearly constant. To clarify this point beams with equal 

rotational restraint and a lateral tip spring are considered. The 

summation is carried out over the first eight eigenvalues. The results 

are shown in Table 12 and 13. It is clear that these ratios vary 

widely. This means that the two equations do not explain the validity 

of the empirical law. Since the empirical formula which uses the 

characteristic length works extremely well for the case when the 

lateral stiffness is infinite., it is worthwhile to investigate 

equation (79) with the assumption of" infinite lateral stiffness . In 

this case when the denominator is integrated by parts, the boundary 

terms vanish and equation (79) becomes 

r 1 

w dx 

K.r = 71 (8°) 
w wn dx J ,xx 1 

o ' 
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Interpretation of the denominator in equation (80) becomes clear when 

the bending moment diagram under the uniformly distributed load, the 

buckled mode and the product of the two are drawn for two extreme cases, 

i.e., simply supported and clamped. It is shown in Figure l6. These 

pictures illustrate the fact that to evaluate the integral of the 

denominator of equation (80), the necessary range of integral is 

approximately (exact when simply supported) between two moment-zero 

locations. This indicates that the distance between the inflection 

points is an important parameter for the integral 

r * 
w wn dx. J ,xx 1 

o 

Although this is not a proof of the validity of the empirical. 

formula, it definitely explains why the distance between two inflection 

points is an important parameter in the uniform load cases considered. 

To broaden the basis of study there are two questions which arise. 

Is the demonstration restricted to a uniformly distributed load? 

Is it possible also to illustrate the mathematical foundation of 

"P-delta", "P-theta" and some other empirical formula corresponding 

to a different kind of loading? As was shown in Chapter II, the 

"P-theta" method can be reduced to the characteristic length relation 

equation (21) . Since a concentrated lateral force is used in "P-theta" 

and "P-delta" and equation (75) is the relation connecting the buckling 

and the behavior of the beam under a concentrated lateral force, this 

equation will be examined closely. Letting i = 1 in equation (75)? 



Simply Supported Clamped 

w. 

M 

w.M 

Figure 16. Illustration of the Product w.M for Two Ideal Cases. 
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the following relation is obtained 

P _ = — T ~ (81) 
cr 

J e(x,c)e1(x)dx 

where 

P = the lowest buckling load cr & 

Q(xj^) = slope at x due to a concentrated lateral force at £ 

9-. (x) ., w.. (x) = slope and deflection of the first buckled mode, 

respectively. 

When the lateral restraint on the boundaries is infinite, equation (8l) 

can be reduced to the following form: 

w (£) 
p = — r ^ (82) 
cr .1 

-[ M(x^)w.L(x)dx 

where M(x,£) is the moment at x due to a concentrated lateral force 

applied at Q. 

To make the argument simple, consider the beam with equal 

rotational restraint. It was shown in reference [6] that to apply 

the "P-delta" or "P-theta" method to this configuration a concentrated 

lateral force must be applied at the mid-point of the beam. The 

bending moment diagram due to a concentrated lateral load at x = 2", 
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the buckled mode and the product of the two are drawn in Figure 17 

for two extreme cases, i.e., simply supported and clamped. 

These figures indicate that the denominator of equation (82) 

can be reasonably evaluated between the inflection points. 



7h 

Figure 17 . Illustration of the Figure Mw. 
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CHAPTER IV 

FURTHER CONSIDERATION OF THE BEAM COLUMN 

The analysis of Chapter III has shown beyond doubt that the 

inflexion point separation distance for the laterally loaded column is 

an important parameter for describing the stability behavior. However, 

it has not generated a process which be used to analytically derive 

the results obtained by numerical analysis. It does serve, however, to 

emphasize that the key to the question may well lie in a study of the 

combined load problem. 

In this chapter, therefore, we examine the combined load issue 

from a somewhat different viewpoint - in essence we shall follow a 

stiffness approach. This is,of course, common in studies of structural 

frameworks . 

We begin with the simplest of problems, viz the pin Jointed beam 

column with a central concentrated lateral load (Figure 18) . Taking an 

origin at the center, the bending moment at the point whose coordinate 

is X is, 

M = |Q [| - X] + FW = -EIW" (82 ) 

Let 

k2 = |r (83 ) 
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Figure 18. Pin Jointed Beam Column with a Central Concentrated 
Lateral Load. 
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thereforej 

WM + k2W = - 3- r£ - £-1 
EI lh 2J 

(8U) 

The solution is 

W = A sin kX + B cos kX - (|) (̂  - |) (85) 

The "boundary cond i t ions are 

a t X = 0 

a t X = |-

V = 0 

W = 0 

(86a) 

(86b) 

Using these "boundary cond i t ions i n equat ion ( 8 5 ) , we can w r i t e 

W 
_ QL_ i" sin kX tan \ kL cos kX /l X\~ 
2P L" kL kL \2 Lj_ (87) 

The maximum deflection occurs at X = 0, and is given "by 

= QL ftan \ kL ' 
max 5 P LlrkL " 1 (88) 

It can "be seen that as P approaches (TTEI)/(L ), kL approaches Tt, and 

the application of a very small lateral load causes a very large 

deflection of the column. The stiffness of the column against lateral 



displacement due to a transverse load at its center is 

Q ^P jkL . , 
= -T-14. — T , - T .1.-T r L ItanfkL-iklJ' ( 8 9 ) 

W u <«.ueiiipivj_i-p. 

max ^ * 

The variation in stiffness with end load is very nearly linear. 

When we treat the somewhat more complex case of the column 

with built in ends we find that for this case 

Q , kL Q/l kl L", /Q 0 N 
Wmax = 2k? • tan T + ]?tS tan ~ - IT! (90) 

or 

W max 
= s— - tan —r- - —r-H (QI j 
kP I IT UJ yy±J 

and so we have that 

-3_ = (kLA) . !+P (92 

Wma^ tan&L - & L L ^ 

It is clear that if we change the variable k to k-. such that 

k = 2 ^ (93 

Then we may write 
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^~ " (tan \ L - V ] • T ^ > 
max 

and it is clear that the two stiffness lines are parallel curves, and 

the ratios of their intercepts with the axis are thus constant. 

That equations (88^ and (9^) are to a close degree linear can 

be demonstrated in the following manner. Expand the tangent 

t a n ~ l _ t a n • ; i r _ , . i ;PL2; + ^ P L 2 . 2 . I T , ' P L 2 3+ . . . ( 9 5 ) 

~ V§f 

Then, the expression for W , equation (88) may be written 
max 

QL f l /PL \ ^2 / P L 2 \ 2 17 / P L 2 N - 3 '; , . . 
Wmax = UP \3 V&[) 15 \^J 3l? \ E i + • • • J (96) 

or 

W - ^ /•, + 3 . 2 /PL N 3 . 17 f a ', . "L ,„,., 
U-H!l1 + 1 15 VUEIJ

 + I 315 VHEI;
 + ' • • J (97) 

This is convergent if 

2 2 2 
£ P L *- 1 • n « n f P L ^ 5 ^ TT 
5 ST ' IffiT 2 T 

or if P < P 
cr 

(98) 
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In these circumstances the series may be replaced by a geometrical 

progression. 

3 2 2 2 
0L PL / PL ^ 

V* =
 55EI I1 + ioEi + Kvm) + • • • I (») 

This summed to infinity, gives 

or 

3 
W = Qir 

i 

1 
Lliax km 

i P i 2 

10EI 

QL3 
I 

H
 

1 
U8EI 

I 
H

 

P 
P cr 

w = « • ! 
P 

cr (100) 
cr 

The pin jointed strut with a uniformly distributed lateral load 

of intensity q_ and carrying an axial load of P is a classic problem. 

For this the bending moment at any point is given by 

M = ̂ u '1 - coskx sec -~j 0-01) 
k c" 

with the convention given in Figure 18 . Thus 

W = 0 = ̂  ; (l-cos kx sec —)dx + constant (l02) 
k 
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Now the slope is maximum at the ends and zero in the center, so 

q q kL . . 
= -p x + -o s i n kx sec -r- (103) 

k k 

Thus 

or 

k k 

. kL tan -— 

wBhi1 + — k i — j ^ ) 
^k — 

This is very close to a linear relationship between compressive 

force and slope. 

As the ends become restrained the expression for slope parameter 

becomes increasingly involved. For the encastre strut with uniform 

lateral load, the bending moment is given by 

M = (Mf - - 2) sec -| cos kx + ^ (106 ) 
k k 

where 

«• - *2 f1 - t H ^ ^ 

Thus the slope expression is 

= r[Mf - %>] sec ^ sin kx + % x (108) 
* kd d k^ 
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and the maximum value occurs when 

-1 
k
2 

cos kX = - ? — r = — (109) 

[W - \ sec £§• 
k 

The expression for G/L becomes most complex and can only be evaluated 

numerically. When this is done we find that the relationship between 

G/L and P is again linear and the slope of the line closely approximates 

that of the previous case. 

We note further that when we examine the case of the column with 

an end moment the relationships developed differ from those previously 

desired. For the pin-ended column (Figure 18) we obtain 

M 

^ = (5i) s(i - c2) (no 

where 

S* = =
 (1 - kL cot kL)J5kL , 

fnnilrT _-±-VT. I 111 . tan^kL-^kL 

and 

ru, kL - sin kL , 
C* = —: nip 

sinkL-kLcoskL v± •' 

* These quantities have been termed stability functions, see reference 

[173-
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The variation of stiffness with end load is given in Figure 19. 

For the fixed ended column (Figure 20(a)) the relationship is a little 

simpler, viz 

Q" = (—) ' S (113) 

2 ° 
The graph of M/6 against (P)/(lt EI/L'~) is shown in Figure 20(b). We note 

immediately here that the curves are no longer parallel and thus we 

should not anticipate being able to generate a viable relationship. 

Pure numerical techniques as used in the first part of this thesis 

failed to generate any results of value. It seems likely then that the 

reason why the simple relationship can be found lies in the fact that 

the variation of the pertinent stiffness parameters with respect to the 

applied compressive force is essentially linear and the lines have 

a slope which is independent of the degree of end fixity. The complexity 

of the expressions is however such that at this time we have not been 

able to verify this by other than numerical techniques. The reason 

is clear. It is not easy to find simple, accurate algebraic approxi­

mations to the various transcendental functions involved. Whether or 

not it will be possible in due course to demonstrate these conjectures 

is open to question. Approximation analysis, like engineering, is 

after all partly science, partly art. 
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^kL=- TT / p / Q 

Figure 19 . (a) Pin-ended Column, (b) S t i f f n e s s Plot 

4.45kL 

00 

Figure 20 . Fixed ended column 
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CHAPTER V 

DESIGN FORMULAE FOR COLUMNS WITH ENDS PARTIALLY RESTRAINED 

AGAINST ROTATION 

Now that a practical method for determining the fixity which 

exists at the ends of columns has been devised it is important to the 

practising engineer that simple formulae for critical load in terms 

of end restraint be avilable. 

The simplest of these laws, clearly, emanates from the P6 law. 

It is shown in equation (32) Appendix A that for the column with 

equal end constraints that the deflection 65 due to a unit central 

lateral load is 

a + 8 1 . L£ 
a + 2 * 192 El' 

where a = K/EI; K being the rotational stiffness of the end springs. 

Thus, the critical load for such a column is given by 

h-n2-EI (a + 2"i , . v 
p = . J _ _ _ , (±1^) 
cr 2 la + oj 

J_i 

and, in the more general case of unequal end fixities a,3 by 



86 

This latter result follows by virtue of the fact that the critical 

load for a column with unequal end rotational restraints a and (3 can 

be shown arithmetically, to a close approximation, to be the geometric 

mean of the critical loads of columns with end restraints a and |3, 

respectively. 

The derivation of an equally simple formula from the relation­

ship between critical load level and the distance apart of the extremum 

points is not feasible. The complication arises from the fact that 

the expression for this quantity is a surd in the end restraint 

parameter. 

It is of interest to note that when a Rayleigh quotient 

approach is taken to the solution of the same problem the following 

formulae can be derived: 

P Bm..«2 + i°« + i£ ( l l 6 ) 
cr _£ d _,, ,-, 

L a + 14a + 64 

and 

p J±2EI . a
2
 + 14c + 24 ( 1 1 ? ) 

cr l/~ & + 18a + 102 

The former (n6) is derived by taking the column buckling deflection 

function to be identical with tnat due to a concentrated lateral load 

applied at the mid-point of the column, the latter on the assumption 

that the deflection curve corresponds to the displacement produced 

by a uniformly distributed side load. 

Comparison of these Rayleigh formulae and the exact results 
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derived numerically from the characteristic equation is made in 

Table ik . 

It is clear from this table that the first expression is the 

closest approximation. It is interesting to note that the percentage 

of error is very nearly constant over a wide range of end stiffnesses. 

This suggests that we might divide the constant by a number close 

to unity and obtain an adjusted formula of greater accuracy. Indeed, 

when the formula is written as 

P = ̂  . % + 10t* + l6 (118) 

the maximum-error is reduced to .6 percent as can be deduced from 

Table Ik, and of course the extreme values (a •- 0 and a = °°) are 

exact. 

This is an interesting expression because it can be written 

,cr B A . (^§1 (119) 
L (of+8) "-2a 

2 
T̂T EI . a+2 

L2 (a+8) 2a 

or +8 

Im2EI . g+2 L . Jte X 

L2" -+8"u' W ; 

2cv Wow clearly 0 is small for all values of a between 0 and », 
(a+8)2 
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Table 14. Approximation by Rayleigh's Quotient - Rotational Restraints 

Concentrated Uniformly 

P L2 L a t e r a l Force D i s t r i b u t e d Load 
KL X J_l 

c r P 2 P 2 
EI 

TT2EI 
e s t L „ /tlf\ — s Er ro r (%) 
TT2EI 

— ' - 7 5 E r r o r (%) 
T T E I 

0 1.000 1.013 1.3 1.013 . 1 
0 . 1 i.o4o 1.054 1.3 1.042 . 1 
1 1.367 1.385 1.3 1.372 .3 
2 1.669 I .689 1.2 I . 6 7 8 o5 
3 1.921 1.938 .9 1.934 .7 
5 2.298 2.320 .9 2.334 1.5 
8 2.683 2.702 .7 2.745 2 . 3 

10 2 .854 2.880 .9 2 .941 3.0 
15 3.147 3.176 .9 3..272 4.0 
20 3.327 3.356 .9 3.475 4.5 
30 3.527 3.561 1.0 3.709 5.2 
4o 3.633 3.671J- 1.1 3.837 5.6 
50 3.702 3.7^5 1.2 3..918 5.8 
6o 3 . 7 ^ 3-794 1.2 3.973 6.0 
80 3.810 3o856 1.2 4.042 6 .1 

100 3.845 3-894 1.3 4.085 6 .1 
1000 3.984 4.037 1.3 4.238 6 .4 

10000 3.998 4.051 1.3 4,254 6.4 
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Thus, the expression of equation (ll8) is reduced to 

T̂T EI . a+2 / 1 l M,. 
P = x— * —-?r (114) blS 
cr 2. a+b 

which is identical to that previously derived from the P6 law. 

The approximation formula given in equation (117) can be like­

wise adjusted. To do this we again ensure compliance at the extremes 

and hence write 

p = ̂ EI {^lJ^J_2k) (119) 
cr
 L 2 of2 + 18a + 96 

which after suitable algebraic manipulation becomes 

pcr = ̂ 5 ^Hi + (^fey} d2o) 

which for all practical purposes is again 

P = iisfsi (S^j (nU) MS 
cr Jd. oi+o 

2a 
since ->—-75-77—,-,oV is very small for all values of a. 

(a+o)(o?+12) ,y 

Thus we can see that the P6 law and in all probability the 

others also would be analytically derivable if we could develop 

approximation method for deriving or expressing all relevant stability 

and other parameters in simple algebraic terms . 



90 

For the cantilever beam with a lateral tip spring neither the 

uniformly distributed load nor the concentrated lateral force deflection 

curves give a reasonable estimate of the buckling load when used in the 

Rayleigh formulation. This is not surprising because neither curve is a 

close representation of the deflection shape. The deflection produced 

by an end couple is much more similar to that which results from 

instability. "When this deflection shape is used a quadratic rational 

function can be developed for the critical load viz 

gcr ° 30 f2
 + ^ + 3 6 } f (121) 
(3 + 15P + 36oJ if 

It is clear that this expression is a poor representation because 

when p = 0 the value must be (TTEI)/(^L ) whereas the expression in 

equation (12l) gives (3El)/(l/~) . Similarly when p == » the critical 

2 2 2 
load is(2.05rr El)/(L ) whereas the above formula yields (30El)/(L ) or 

2 2 
(3TT El)/(L ). The maximum error in the estimation, in fact, amounts 

to 50 percent. However, when the approximate expression is plotted 

against the exact values on a log-log plot it is found that 

P = .740(30 \ + ^ + 3 6 f12 (122) 
B + 15P + 360 

is a very good approximation. The log-log plot is shown in Figure 21 

and a comparison between the approximation of equation (122) and the 

exact values is given in Table 15. 
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Table 15. Approximation of the Buckling Load Using Rayleigh's Quotient' 
Modified-Lateral Tip Spring Case. 

App r oximat ion 

KL3 

T1 T c r t 
According to E q . ( l 2 2 ) 

E I E I P L2 

e s t E r r o r ( ^ ) 
EI 

0 .250 .250 .0 
0o5 .291 .293 .7 
1 .332 .336 1.3 
2 .412 ,k22 2 .5 
5 .648 .673 3.9 
8 .870 .895 2 .9 

10 1.009 1.025 1.6 
14 1.257 I . 2 3 8 -1 .5 
18 1.457 1.401 - 3 . 9 
20 1.538 1.466 - 4 . 6 
24 1.662 1.573 - 5 . 3 
30 1.779 1.689 - 5 . 1 
ko 1.877 1.808 - 3 . 7 
50 1.924 1.878 - 2 . 4 

100 1.996 1.995 - 0 . 1 
500 2.037 2.044 .3 

1000 2.042 2.045 .2 



3.CI 

P L4 

7C2EI 

(Rayleighs Quot ient )x 
f«EI 

Figure 21. Correlation Curve between the Rayleighs Quotient and the 

Buckling Load for the Lateral Tip Spring Case 
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CHAPTER VI 

CONCLUSIONS 

The analysis recorded in this thesis demonstrates clearly that 

simple relationships which couple the stability behavior of a column 

under axial compression and the distortions of an identical member under 

lateral force can "be developed. These relationships appear to have 

importance in the non-destructive evaluation of existing column structures. 

It seems likely that they also provide a means whereby designers of 

column type structures, e.g. civil engineers might systematically develop 

end fixity systems of known performance which could be standardized. 

This would, of course, lead to an improvement in design. 

Of particular interest in the format of the equation developed is 

that in many apparently four variable problems a single parameter, 

associated with the transverse loading situation, can be found to 

describe the critical load. This condition is not restricted to a 

single lateral load distribution but appertains in general. The 

parameter, however, distinctly varies with the distribution. 

It is also pertinent to point out that for defined end fixity 

conditions the equations developed in the thesis are frequently capable 

of giving practicing engineers an approximation to critical load values 

as expeditiously as the Rayleigh-Ritz procedure and to an equal 

accuracy. 

An effort to explain the success of the process led to further 
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study of the applicability of integral equation in the evaluation of 

eigenvalues for the column stability problem. This study showed that 

this technique is very applicable to the issue. General relationships 

that may be at least as powerful as the normal Rayleigh-Ritz expression 

were derived. 

Although the empirical laws were not positively shown to have 

a solid foundation by analytic processes, the mathematical derivations 

clearly indicate that this would be demonstrated if appropriate 

approximation techniques could be developed. 
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APPENDIX A 

ROTATIONALLY RESTRAINED BEAM ON LATERALLY UNYIELDING END SUPPORTS 

Establishment of the Characteristic Equation for Instability 

For the configuration shown in Figure 22a, the non-dimensionalized 

buckling equation is 

wIV + X2V* = 0 (1) 

The appropriate boundary conditions are 

w = 0, w" - a w' = 0 at x = 0 (2) 
o 

w = 0, w" + a w' = 0 at x = 1 

The general solution for equation (l) can be written as 

w = A sin Xx + B cos \x + Cx + D ' (3) 

The solution in conjunction with the boundary conditions yields the 

following buckling determinant: 
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K, K. 
Uniform. EI 

7777777- 77777777 

(a) Buckling 

K, 

q=constant 

. n i i i u u m n n m n 
•rm 

K. 

(b) Uniformly Distributed Load 

Figure 22. Rotationally Restrained Beam on 
the Unyielding End Supports. 



sin X 

o^XcosX-X sinX 

X a?c 

cosX-1 1 

-a^XsinX-X cosX a 

= 0 (k) 

Expansion of this determinant gives the characteristic equation 

^ ^ ( l - c o s X ) - XsinX] - {aQ + a )X(XcosX-sin\) (5) 

+ X^sinX = 0 

Extremum Slope Relationship Under Uniformly 

Distributed Lateral Load 

The deflection and slope under a uniformly distributed lateral 

load are derived as follows, (see Figure 22) If a non-dimensional 

uniform load is defined as 

L3 

^ EI 
(6) 

then the non-dimensional differential equation for deflection w is 

w - q = 0 (7) 

and the appropriate boundary conditions are 



w = 0 and w" - a w' = 0 at x = 0 (8) 
o 

w = 0 and w" + a-.'W - 0 at x = 1 

Successive integrations of the differential equation (7) give 

w»'= Jx + A (9) 

1 - 2 
w" = ̂  qx + Ax + B 

1 - "3 A 2 
w' = £• qxJ + gx + BX + C 

I - I4. A ^ B 2 
w = 7% qx + gxJ + -x + Cx + D 

where A, B, C, and D are constants. These four constants are obtained 

by satisfying the boundary conditions of equation (8). They are thus 

determined to be 

A = - § (1 + -2^-i) (10) 

B = 12A" ao ( o !l^ 

_ 1 c = 35A
 (V 6) 

D = 0 

where A = 12 + 4(a + a ) + a a,. 
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Substitution of (10) into (9) yields the following result 

- - o a - OL a (OL + 6)- / n n N 

- o a -<*, o a (a. + 6) en + 6-
«x) = £ L2x3 - 3(1 + -W + -Si x + J^_ 

- ,•• 1, a - a a (a. + 6) 0 an+ 6 _ 
V ( X ) . ^ ^ . 2 ( 1 + ^ _ ^ ) x 3 + JLJ^? + 2 j ^ 

where w(x), 9(x), M(x) are the deflection, slope and moment, respectively, 

The locations of the extremuiri. slope are obtained by solving M(x) = 0. 

The result is 

where 

and 

*=UZ± W M 

z = 1 + -S -J , 

I ext = / a? -*, 2 2 ^(a-,+6) (13) 

V ( 1 + ^ i ) . | JL-i-

= the distance between two inflection 
points 
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Define 

xl = ¥Z - lext) W 

X2 = ¥ + l
eJ 

The meaning of x., x , i , , and Z are easily understood from Figure 
1 2 ext 

23 . In equation (12) in the main text, the significant parameter is 

the sum of the absolute values of the slopes at the zero moment points. 

We seek an alternate method of expressing this quantity. Hence, 

2^(9 _ - 9 ) is to be evaluated. From (ik), the following 

relationships hold: 

x± + x2 = Z (15) 

X2 " Xl " ̂ ext 

x 1 • X2 = ̂  - 4t> = U ^ 

Thus 

2 2 -x_ - xn = Zl (16) 
2 l ext 

3 3 3 + J
 tto(al + 6 ) 

x2 " xl = * ext + lext ~L  
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x=0 x=l 

Figure 23. Illustration of x , x I and Z. 



Making use of this result, 

•- P ^ (or., + 6) o 12c* (a-, + 6) 

2i(e - e ) = I J hz2- - ° i 6z2 + — 2 i 
- xo x-i extL oA oA 
q 

p V (or + 6)., 
^ , O 1 i _ n.J 

J 

,1 -£Zi + — = -dJL, 
tL 3 A J ext ex 

Establishment of Extremum Slope Relationship 

Under Concentrated Lateral Force 

The rotationally constrained beam as sho-wn in Figure 3 

considered under a point lateral load Q, applied at the location 

The non-dimensionalized governing differential equation and the 

boundary conditions are given by 

where 

IV - / % 
w - Q6(x - C) = 0 

2 
Q =SL-
* EI 

at x = 0 w = 0 

w" - or w1 = 0 o 

at x = 1 "w = 0 

w" + c^w' = 0 



The Laplace transform 

w(s) = f e~SX w(x)dx (21) 

is the most convenient tool to solve this problem. 

Thus we derive 

-Cs 
s w(s) - [s3w(o) + s2w'(0) + swM(o) + wm(0)] - Q, e = 0 (22) 

Noting that w(x) = 0 at x = 0, (22) can be transformed back as 

follows: 

2 ^ 
w(x) = Ax + Bx + Cx = w (x) for 0 £ x < £ (23) 

w(x) = wx(x) + |(x - C)
3 for £ <; x <; 1 

where A, B, and C are constants. The constants A, B, and C are 

obtained from the boundary conditions (20). They are: 

A = Q £li-ZJL)[ofi(1 . C) + 2(2 - C)] (2^) 

«nC(l " 0 
B = Q ̂ — ^ -[^(1 - C) + 2(2 - 0 ] 

C = -5 - - ^ [3(a0 + 2)[ai(l - C)+2}-2(l - C)
2(a0

+a1-^0«1)] 



where A = 12 + ^(aQ + cO + a a-.. 

Differentiation of equation (23) yields the slope and moment. 

w' = A + 2Bx + 3Cx = w ' (x) for 0 <. x < £ (25) 

= w1
,(x) + |(x - Q)2 for Q <, x <; 1 

w" = 2B + 6Cx = w "(x) for 0 <; x < £ (26) 

= w"(x) + Q(x - Q) for £ «s x ss 1 

Define 

A = TfQ, B = BQ, C = CQ (27) 

In the case where <y = ̂  = a, £ is \ . Then 13, tf are given "by 

s = isr^y (28) 

and 

7* = -
12 

? = - ^ 

The locations of extremum slope x and xn, are given "by: 

Xo = T-7-^V (29) 2̂ ~ ¥(a+2) 
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Thus it follows that 

*2 " xl = if^T - lext (30) 

and 

x2 + x = 1 

The sum of the absolute values of the extremum slopes is 

W'x=x2 " w'x=xl = ̂ W + 3tf(X22- Xl2) ^ 

= * [2B + 3C(x2 + Xl)] 

12 t ext 

The result is pertinent to the empirical law for the single concentrated 

load [7]. Substituting l/2 for x in equation (23), deflection in the 

middle of the span is given as, 

R - (y+® 1 L (^o\ 

~ a+2 192 EI U'"; 



APPENDIX B 

THE ELASTICALLY SUPPORTED BEAM COLUMN OF UNIFORM BENDING STIFFNESS 

Differential Equation and Boundary Conditions 

Consider an elastically supported beam column of uniform bending 

stiffness loaded with a distributed lateral force q(X) and an axial 

compression force P as depicted in Figure 15 • Let spring stiffnesses 

at the boundaries be K , K for rotational restraint and K , K, for 

lateral restraint. Thus we may write the strain energy of the system 

as 

\- I 
r> L 

EI( W " ) 2 clX + | { K 2 ( W ' )
2 

X==L 
K^W')' 

X=0 
(1) 

+ K 3W 
X=L 

+ K,W 
4 

X=0 

and the work done by the external forces as 

W = £ 
e 2 

• L o r
 L 

(W)^ + q(x)WdX 
o "" o 

(2) 

"When the non-dimensional quant i t ies defined below: 
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0i 

K^L 

o " E l~ 

K2L 
al = EI~ (3) 

^o ~ EI 

3 KL-
p i = ~ E T 

X , 2 
L: x = r> X PL - qlf 

EI EI 

a re used; then non-dimensional ized s t r a i n energy and work funct ions can 

he w r i t t e n as 

^ 2 . ,• = i i (w") dx + ^a w' 
I f O 

+ 1 ~ ' 2 

x=0 * V x=l w 

+ ^ v + ^ 6 w2 

x=0 x=l 

x r 2 f •'" 
We = — j (w1) dx + j q(x) w dx (5) 

Total potential energy is 

Um = U. - W T l e (6) 

Thus the variation of total potential is 
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1 
6UT = J tW + X w" " ^ X H 6wdx + (w" + a i w l ) 6w' 

o •L x=l 
(7) 

+ (-w" + a w') 6w' 
o ' 

_n + (-V" - X w1 + p w)6w 
x=0 x=l 

+ (w"' + X w' + p w) 6w 
o x=0 

By equating 6U to zero, the resulting differential equation and the 

boundary conditions are developed: 

+ X w" - q(x) = 0 (8) 

at x = 0: w" - a w1 = 0 or w,: = 0 
3 o 

(9) 

w"» + x
2w' + N = 0 or v = 0 

o 

at x = 1; w" + OLw1 = 0 or w1 = 0 

w"t + x
2v» - p w = 0 or v = 0 

Orthogonality Relation of the Buckled Mode 

Let u, v be the buckled mode corresponding to the different 

eigenvalues X and p, respectively. Then from (8) 

IV 2 
u + X u" = 0 (10a) 



109 

vIV + /v" = o (iob) 

multiplying (10a) by v, (lOb) by u and integrating the difference of 

the products from 0 to 1, the following integral is obtained. 

x = j
 X

 L( UW + x2 u„ ) v _ (vOT + ti2v„)u-: d x (ll) 

" o 

1 1 1 
= f (uIVv - u v ^ d x + X2 j u'Vdx - / j vMudx = 0 

o o o 

Integrating by parts and making use of the boundary conditions of 

equation (9)? equation (ll) can be reduced to the following simple 

relationship: 

I = (X2 - pJ
2)[ u'v'dx = 0 (12 

o 

Therefore 

1 

u'v'dx = 0 (13) 

Since 

\ / ^ 

This equation is an orthogonality relation of the buckled mode. 
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APPENDIX C 

APPROXIMATION OF THE UNIFORMLY DISTRIBUTED LOAD SYSTEM 

BY A FINITE NUMBER OF EQUALLY SPACED CONCENTRATED LATERAL FORCES 

According to the result in Appendix A, the distribution of 

moment along the constant cross-section beam on the unyielding end 

supports subjected to a uniformly distributed lateral force is given by 

ĉ -ar-, a
n(&n+^) 

"Avt" _ A/'l 4-m(x) = ̂ £6x2 - 6(1 + -2_i) x + ° A
x '"'] (i) 

The distance between the inflection points t is given by 
6XL 

£ , =/(l + — — ) - | - J L " i - (2) 
ext ^ A ' 3 A 

Suppose a beam of uniform EI is loaded with concentrated lateral 

forces at the equally spaced intervals. The distance between the 

inflection points under this loading system is to be found. According 

to Appendix A, the moment distribution due to a lateral concentrated 

force applied at loaction £ is given by 

m(x) - 2B + 6Cx for 0 <. x < £ (3a) 

= 2B + 6Cx + Q(x-g) for £ <; x <: 1 (3b) 
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•where 

B = h-a°ai{z ' 2Q2 + £3) + 2 a ° ( 2 £ - 3c2 + ^ W 

C = - |^tA - 6(0^ + 2)C - 3«0(2 + a i)£
2 + 2(aQ + «x + c y * ^

3 ] 

Suppose the number of concentrated lateral forces is N. Then the 

location of the forces are 

Ci =HTT i=l,2,...,» (5) 

From equation (3b), the moment between the i and the (i+l) 

location is given by 

N i 
m i ~ i + l = A ( 2 B i + ^ x ) + Q V (X-^) (6) 

i= l r =1 

•where B. and C. are obtained by replacing ^ by ^. in B and C of 

equation (k). The following identities are used to calculate the 

summation in equation (6). 

n 

) i = |n(n + 1) (7) 
Z__i 

i=l 
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V i 2 = |n(n + l)(2n + 1) (8) 
i=l 

n 
^ i 3 =ln 2( n + 1 ) 2 (9) 

i=l 

Thus 

N N N 

Y c = I Y r
 2 - N< 2 W + ̂  Y r 3 2 (10) 

A £i 2' A Ci " 6(N + 1) ' L k " 1+(N + 1) U ° ; 

i=l i=l i=l 

The use of equation (10) in equation (6) yields the moment between 

•th w . _,Nth _, 
l and (l + 1) location. 

mi~i+l := y + pX ^ 

where 

_ «0(«1 + 6) N(N + 2) _ i(i +!)..- (12) 
1 12 A N + 1 2(N + 1)M K ' 

M 
P = - 2 A T N V T ) [ N ( V * I + 5ao + 3ai + 12) + ^i+6)(ao+2)] + Qi 
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If an inflection point exists in this region, it is located at 

x = - * 
P 

Following this scheme, the distance between two inflection points was 

calculated. Then this length was used in the empirical formula (13) 

obtained in Chapter II to compare with the exact values of the critical 

loads. The computer program is shown in Appendix F and the results 

are listed in Table 11. 
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APPENDIX D 

BEAM OF VARIABLE BENDING STIFFNESS 

Clamped-Pinned Beam 

Slope Evaluation 

The slope at the pinned end of a beam loaded with a uniformly 

distributed load (q per unit length) is calculated. The differential 

equation for the lateral displacement W is given by 

-2 
2-~ (EI(X) W") - q = 0 (1) 
3X 

Integrating (l) twice gives 

El(x)w" = | X2+- AX + B (2) 

where A and B are constants. It is assumed that the bending stiffness 

is written in the form 

EI(X) = EI {1 - ̂ ) P ] (3) 

where T is a number greater than 1 and is called the taper ratio and 

p is a positive number. When the following non-dimensional quantities and 

conditions are introduced 
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X =
 L

 q = m1 w =
 L

 W 

o 

Equation (2) and the boundary conditions can be written as follows: 

(! - IxP)wM = |x2 + Ax + B (5) 

where A and B are constants, and 

w = 0 at x = 0 (6a) 

w'= 0 at x = 0 (6b) 

w = 0 at x = 1 (6c) 

w"= 0 at x = 1 (61) 

When the boundary condition (6d) is used in Equation (5), B can be 

expressed in terms of A. Thus, 

B = -(A + |) (7) 

Hence (5) now is written as 

(1 - i * P K = 4 + Ax - (A + i) (8) 
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For the ease of calculation, only two cases (p = 1 and 2) are treated 

in detail. 

Linearly Varying Bending Stiffness: p = 1. Equation (8) is 

now written as follows: 

*"- l ( n . x ) + _JT_ (9) 

where 

CT = - (T + 2A) (10) 

T = ~ ^ (T + 2A + 1) 

Integrating (9) yields 

w'= 1, x2 
T 

^(<J - x) - Tin ( T - x) + C (11) 

When boundary condition (6b) is applied to equation (ll), the constant 

C is obtained. 

2 
C = g- + Tln(T) (12) 

Integrating (ll) gives 

- = !L- ( V ^ 3 , _/rp _ Nj -i^/m v \ _n l+Tiv 4- T» 0-3>) jg (G - x ) J + T(T - x) [ ln(T-x)- l +Cx + D 
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and boundary condition (6a) is used to evaluate D 

D = ' 12 " TT L l n ( T ) _ 1 
(lh) 

When (6c) is used in equation (13)? the result is 

£- 3 
^ ( a- l ) 3 + T ( T - l)[lnCC-l)-lJ+5- + Tln(T) - 2- - TT[ln(T)-1 ]=0 (15) 

or 

T(T - l)Lln(T - 1) -lj + ̂  - i- + Tm(T) - TT[ln(T)-ll=0 (16) 

From equation (10), T can be related to Q as follows: 

T - 1 fl N 

T = — 5 — (1 - a) 
(17) 

Using (17) in (16) yields 

< i - a ) ( * # ^ i ) * 2 L r a M - (18) 

From ( l l ) , the slope w' at x = 1 i s 

V = TL-|(1 - B ) • 1 + ^ ( x . a ) l n Q ] (19) 

When the values of (l - CT) which is calculated from (18) is used in 
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(l9)? the slope at the pinned end is obtained. 

2 
Parabolically Varying Bending Stiffness: p = 2. Let A = T 

Then (8) is now 

where 

2!! = . i + Jo + _ _ j ^ _ (20) 
T 2 A - x A + x 

= ̂  [A + ^ ] (21) 

a = ̂  ["A + S"̂  (22) 

When equation (20) is integrated and the boundary condition (6b) is 

used, the resulting equation is 

¥' _ X 

T = " 2 - "bln(A - x) + ain(A + x) + AlnA (23) 

Integration of equation (23) yields 

f- - - f- + b(A " *){ln(A " *) -1} (2k) 

+ a(A + x)|ln(A + x) - l}+ XAIII(A) + D 
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where the constant D is evaluated from the boundary condition (6a) as 

follows: 

D = -(b + a)A[m(A)-l] (25) 

When the remaining boundary condition (6c) is used in equation (2k), the 

result is 

- jt + A[l+ InA] + b[Aln(^)- ln(A-l)] (26) 

+ a[Ain(Mi)+ ln(A+l)] = 0 

Using (21) and (22) in (26), it is possible to write this equation in 

terms of the unknown constant A only. From which it follows that, 

I - (\r)[Mn (̂ |) • in (££)] 
A = A" 'A~' " (27) 

The slope at the pinned end is 

-' =TL-i+bHT^T)+ alnH^I (28) 

where b and a are as shown in (2l) and (22) . 
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Formulation of the Finite Difference Equation for Buckling Investigation 

The buckling equation and the boundary conditions are 

2 2 2 

a [EI(X) a^W] + P aw 0 (29) 
SK ax^ sx 

W = W = 0 at X = 0 (30) 

W = W" = 0 at X = L 

As b e f o r e , d e f i n e 

X W . 2 PL2
 / Q 1 N 

X = = L > W = L> X = ET ( 3 1 ) 

o 

Then (29) and (30) become 

{(1 - - x P K } " + X2w" = 0 (32) 

and 

•w = w' = 0 at x. = 0 (33) 

w = w" = 0 at x = 1 

respectively. Completing the operation in (32) and introducing a new 

variable (T| - w"), the following set of equations is obtained. 

\x - £)•? + z (- Y^ + i^2 - E iVJ^~2)-n - o ^ 
T " 

I] - w'T = 0 J 



When the central difference is used to represent the derivatives, 

equation (34) can be reduced to the following finite difference 

equation. 

and, 

1 - hV)^±+1- ^ + O - - - 1
P" 1(^ 1 + 1- ^i_1) (35a) 

+ h
2( x2 . sLp*lx-p-zy __ 0 

- h Y + (w
1+1 - 2W1 + w1"1) = o (35b) 

or in matrix form, 

I*] zi_1
 + LB] / + W z

i+1 - o (36) 

where 

Z 1 = i ̂  }- (37) 
1 v1 J 

and 



A 
l-i(x; P-phx*- r 

T \ i 

-2(l-ix/) + h
2 ( x 2 - ̂  x.P- 2) 

-h 

i C 

n 1/ p P~l^ 1 ix. + phx. ) 

and h = size of division = l/(number of division) 

i denotes the i-th location, 

for 1 <> i <> N-l. Boundary matrices are formulated as follows 

at x = 0; 

w ' = s^V1*-^ = °' •"• wi = w-i 

then 

^o = ~2(wl " 2 wo + W-l } = h Wl 
h h 
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and 

w = 0 o 
(hi) 

Replacing Z by 

h 
2 Wl 

} 

the matrix equation for i = 1 in (36) becomes 

P-2 

-2 (i - £) + n2^ - p(p-«V-} Mi - k^-v^ 
\ T / L ' h T 

-h 
-2 

(te) 

+ 
! - I(hP

 + phP) , 

0 , 

0 

1 
i -c 

Since vn and ̂  are both zero (w" = 0, v = 0 at x = l), Z n is a zero 

matrix. Then 



22k 

1 - f{(n-l)V-nh (n-D^V"1}^ 0 

1 

,n-2 (̂ 3) 

-2 (l - ±(n-l)V) + h
2|x2 - £^i)(n.l)

n-2hn-2^ 

-h ,-2 
_J 

,n-l = 

Since the matrix equation obtained is banded along the diagonal, it can 

be conveniently treated by Potter's method (Reference [13]), but it 

should be noted here that to remove the singular behavior of the 

determinant, a slight modification is necessary (Reference [lU]). 

Calculation of the buckling load according to the finite 

difference formulation derived was done on UNIVAC 1108 computer. The 

computer program is given in Appendix F . 

Consideration of the Simply Supported Beam 

Determination of Absolute Values of End Slopes 

The simply supported beam shown in Figure 8 is considered. The 

variation of the bending stiffness is of the same form as (3)- First 

the sum of the absolute values of the slope at both ends under a 

uniformly distributed load is treated. 

Linear Variation in Stiffness (y - 1). Since w" = 0 at x = 0 



125 

and 1, constants A and B in equation (5) can be determined easily. 

Thus for this case 

(T - x) =r = | ( x 2 -x) m 

Hence 

2 2l = - (T - 1) - x + T(T - 1) ̂  (U5) 

Integration of (45) yields, 

9 v2 

£ w» = _ ±- - (T _ i) x _ T ( T .. i)in(T - x) + C (46) 

where C is a constant. From (46) the algebraic difference of the end 

slopes is obtained. It is 

(w'x=l " W'x=0) = I Ll "
 T + T(T-D1H(T4T)] ^7) 

\ 2 
Parabolic Variation in Stiffness (p =• 2) . Define A = T ? then 

(A2 - x2) f- = |(x2 - x) (48) 

Equation (48) can be rewritten as 
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2 „" = . ! + A+l J_ + A^i _L. (1,9) 
T 2 A+X 2 A-x v ^ ; 

I n t e g r a t i o n of (2+9) gives 

| . w« = . x + A4i i n ( A + x ) . A z i ln(A-x) + C 
1 C- £1 

where C is a constant. Hence 

Tv x=l x=Cr 2 A-l 2 v T 

or 

«W-^=^+^'(&K)] (50 

Formulation of Finite Difference Equations for Buckling Load Determination 

The finite difference formulation and the boundary matrix at 

x = 1 are the same as for the clamped-pinned case. The only change re­

quired is the boundary matrix at x = 0. Equation (̂ 2) is to be replaced 

by the following matrix equation: 
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p-2 
- 2 ( l - 5 ! ) + h ^ - p ( p - l ) ^ \ } 

-h > - 2 

1 - T - ( h P
 + p h P ) , 

1 

z 2 = , 
(51) 



128 

APPENDIX E 

CANTILEVER WITH TIP LATERAL SPRING 

Characteristic Equation for Instability 

The buckling load of a cantilever beam with a lateral tip spring 

(Figure 5) is to be calculated from the characteristic equation. 

The non-dimensionalized differential equation is 

wIV + X2w" = 0 (1) 

And the appropriate boundary conditions are 

w = w' = 0 at x = 0 (2) 

w" = w,,T + X2wT - p^w = 0 at x = 1 

Thus the general solution is obtained as 

w = A sin Xx + B cos \x + Cx + D (3) 

Fulfillment of the boundary conditions (2) by the general solution 

yields the following equation: 
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sin X cos X 

-X3-31(sin X-X) -PjCcos \-l) 
W 

B) 10. 

By equating the determinant value of coefficient matrix in 

equation (k) to zero, the buckling equation is obtained; viz 

sin X cos X 

-X -P-^sinX-x) -31(cosX-l) 

= 0 (5a) 

Expanding the determinant, the folio-wing characteristic equation 

is obtained: 

J 

P (sin X - X cos X) + X cos X = 0 (5b) 

From equation (k), 

= - A tan X 

Using this result and boundary conditions at x = 0 of equation (2) in 

equation (3), the buckled mode shape is: 

•w (x) = A(sin Xx - X x ~ tan X(cosXx-l)} (6) 

Behavior Under a Concentrated Lateral Force 

A concentrated lateral force is applied to the cantilever beam 
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with a lateral spring (Figure ). The deflection under this loading is 

to be derived. 

Non-dimensionalized differential equation is 

wIV - Q8(x - 0 = 0 (7) 

where 6(x) is a Dirac delta function. Boundary conditions are: 

at x = 0 w = w' = 0 

at x = 1 w" = w'" - p w = 0 

Let the operator of Laplace transformation be denoted by L( ) . 

Defining w(s) = L(w(x)), equation (7) can be transformed in the 

following form: 

—rs 
s^w(s) - {s3w(0) + s2w'(0) + sw"(0) + w'"(0)3 - Qe = 0 (8) 

Noting that w(o)and wT(0) are zero, equation (8) can be transformed 

back as follows: 

w = Ax + Bx = w (x) 0 <; x <; Q (9) 

w = w. to + g (x - £ )
J C <. x £ 1 

Two constants A, B are evaluated from the boundary conditions. They are, 
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A = - 5ip^y tpx(i-c) - r d-e)3 + 2] do) 

B = i^3j [̂ (l-C) - Pxd-C)3 + 6C] 

Behavior Under Uniformly Distributed Lateral Force 

A uniformly distributed lateral load is applied to a cantilever 

beam with a tip spring as shown in Figure 5. The distribution of shear 

force, bending moment, in addition to slope and deflection are to be 

derived. 

The non-dimensionalized differential equation is 

wIV - c[ = 0 (11) 

Boundary conditions are the same as the previous case. Integrating (ll) in 

succession and satisfying the boundary conditions yields the following 

results: 

5B 1 + 2k 
W '" = 5 [X " 8 ( P l + 3 ) ] (12a) 

w 
_ i rk 2 

5 p i + 2h h + 1 2 

s^-p^r3« +tr^r ] (i2b) 

- , 3(5P, + 2U) , p + 12 

w - fe [8x3 - -j±rr- *• + 6 PTTT- ^ ^ C > 
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q k ^ 1 + 2k 3 h + J 2 2 

From (12b), the locations of zero-moment are given by 

P 5pn + 2U B-, + 12 

_ p1 + 12 
xl - !» x

2
 = 4(p.+3) 

Hence, the distance between inflection points is 

3P 

*ext = »2 " xl = UTp^37 (l4) 

and the location of zero shearing force is 

5(3n + 2k 
1 xo = s T ^ r i ) d5) 

Behavior Under a Concentrated Tip Couple 

A concentrated couple is applied to a cantilever beam with a 

lateral tip spring (Figure 5). 

The deflection due to a couple can be obtained by differ­

entiating the deflection due to a unit lateral load with respect to the 

coordinate Q where the lateral load is applied. Thus, differentiating 



equation (9) with respect to Q gives 

w = CxJ + Dx = w(x) 0 ^ x < £ 

w = w(x) - | ( x - C)2 C * x <; 1 

where 

c =" M ^ 3) L A + p i ( 1 - £)2_ 

D = Mp/+ 3) L-̂ i + 3 \ (1 - C)2 + 6] 

Espec ially when a couple is applied at the tip, the deflect 

w(x) = ̂ T3l Kx + (6 " pl}} 

Slope at the tip due to an end couple is 

",(1) = ^ + 3) L ^ + 2(6-^)] - ̂ g ^ y i 
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APPENDIX F 

COMPUTER PROGRAMS 

,100 . ,500 ,1000. ,5000. ,10000. ,100000 

BETA2,10H PCRT,10H Ll /24* 1 

C BEAM WITH ROTATIONAL SPRINGS AT BOTH ENDS. FIND PORT. FIND RATIO 
C OF LENGTH UPTO THE INFLEXION POINT FROM THE OPPOSITE END OF THE 
C BEAM TO THE SLOPE AT THAT POINT .FIND PRODUCT OF THIS RATIO AND 
C PCRT . 

DIMENSION BTA(^O), PEX(^O),AL3(^0),P3(^0),ERR0R3(^0) 
REAL L,LL0W,LUP,LNEW 
DATA( BTA (i),I=l,27)/0.,.25,.5,75,1.,1-5,2.,2.5,3.,3.5,k.,4.5,5. 
1,5-5,6.,6.5,7.,7.5,10.,20.,50, 
1.0/ 

C CYCIxE FOR BETA1 

DO 10 1=1,27 
WRITE (6,1^0) 

lUO FORMAT(IHIJIOH BETA1,10H 
1,10H ERR0R1,10H L2/24* 2,10H ERR0R2,10H LEXT,10H 
1PEXT510H ERROR//) 
DO 15 M=l,27 

C CYCLE FOR BETA2 
C=I2.O+U.C^(BTA(I)+BTA(M)>I-BTA(I)^BTA(M) 
BI=BTA(I)+BTA(M) 
B2=BTA(l)*BTA(M) 

C CYCLE FOR FINDING L(=PEX(l)) ,WHEN CHARACTERISTIC EQJtf. IS SATISFIED 
30 DO UO K=l,600 

L=FL0AT(K)-0.9 
DET=BI*(SIN(L)-L*COS(L))/(L*L) 
DET=DET+B2*(2.0-2.0*COS(L)-L*SIN(L))/(L*L*L)+SIN(L) 

200 IF(K.EQ.l) GO TO 60 
IF(D1*DET)50,50,60 

50 DL0W=D1 
DUP=DET 
LUP=L 

C BISECTION SCHEME STARTS . 
7 0 LNEW=LLOW+DLOW* (LUP-LLOW)/(DLOW-DUP) 

DIF1=LNEW-LL0W 
DIF2=LUP-LNEW 
I F ( D I F 1 . L T . 0 . 0 0 0 5 - O R . D I F 2 . L T . 0 . 0 0 0 5 ) GO TO 1 0 0 
DET=BI*(SIN(LNEW) -LNEW^COS(LNEW) )/(LNI^W^LNEW)+SIN(LNEW) 
DET=DET+B2*(2 .0-2 ,0*COS(LNEW) -LNEW*SIN(LNEW) )/(LNEW)**3 
IF(DET*DLOW) 80 ,80,90 

80 DUP=DET 
LUP=LNEW 
GO TO 70 
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90 DL0W=DET 
LL0W=LNEW 
GO TO 70 

60 D1=DET 
LL0W=L 

1+0 CONTINUE 
C BISECTION SCHEME ENDS . 
100 PEX(l)=LNEW^LNEW/9.8696 

C TO OBTAIN THE INFLEXION POINTS X1,X2 . 
A=6.0 
B=-6.O*(I.O+(BTA(I)-BTA(M))/C) 
D=BTA(l)*(BTA(M)+6.0)/C 
E =SQRT (B*B -k. 0*A*D) 
X l = - ( B + E ) / l 2 . 0 
X 2 = ( - B + E ) / l 2 . 0 

C AL1=LENGTH BETWEEN LEFT END AND 2ND INFLEXION POINT. 
AL1=X2 

C AL2=LENGTH BETWEEN RIGHT END AND 1ST INFLEXION POINT. 
AL2=1.0-X1 

C THETA1=SL0PE AT AL1. 
T H E T A 1 = ( 2 . 0 ^ X 2 ^ 3 + X 2 ^ X 2 ^ B / 2 . 0 + D ^ X 2 + ( B T A ( M ) + 6 . 0 ) / C ) / 1 2 . 0 

C THETA2=SL0PE AT AL2 . 
THETA2=(2 .0*Xl**3+Xl*Xl*B/2 .0+D*Xl+( BTA (M) + 6 . 0 ) / C ) / l 2 .0 
P l = A L l / ( 2 k . 0*THETA1) 
P2=AL2/(2k .0*THETA2) 
Pl=ABS(Pl) 
P2=ABS(P2) 
ERR0R1=(PI-PEX(I)*100.O/PEX(I) 
ERR0R2=(P2-PEX(l)*100.0/PEX(l) 
AL3(M)=X2-X1 
P3(M)=(l.0+AL3(M))/(2.O^AL3(M)^3) 
ERR0R3 (M) = (P3 (M) -PEX(I) )*100 .0/PEX(l) 

15 WRITE (6,51) BTA(I),BTA(M),PEX'(I),P1,ERRDR1,P2,EREDR2,AL3(M),P3(M), 
1ERR0R3(M) 

51 F0RMAT(2F10.2,8F10.6/) 
10 CONTINUE 

STOP 
END 
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C FINITE DIFFERENCE METHOD FOR BUCKLING OF A CLAMPED-PINNED BEAM 
C OF VARIABLE E I . 

DIMENSION A ( 2 , 2 ) , B ( 2 , 2 ) 
COMMON N,H,X,A,B,TAPER,POWER,HSQR 

TAPER=3 
POWER = 2 . 
D A T A ( ( A ( I , J ) , I = 1 , 2 ) , J = 1 , 2 ) / 1 . 0 , 0 . , 0 . , 1 . 0 / 

D A T A ( N 1 5 N 2 J N 3 J L 1 , L 2 , L 3 ) / 1 0 , 3 0 , 5 , 1 J 5 1 , 1 0 / 
DO 30 N=N1,N2,N3 
H=I.O/N 
HSQR=H*H 
DO 1+0 L=L1,L2,L3 
X=FLOAT(L) 
I F ( L . G T . ( L 2 - l ) ) GO TO 20 
CALL DETERM(DET0,DET2) 

I F ( L . E Q . L l ) GO TO 50 
IF(DET1*DET2) 6 0 , 6 0 , 7 0 

50 DET1=DET0 
GO TO kO 

70 DET1=DET2 
GO TO 1+0 

60 DETL0W=DET1 
DETUP=DET2 
XL0W=X-L3 
XUP=X 
GO TO 1+00 

8o IF(DETLOW-*DET2) 85,85,90 
85 DETUP=DET2 

XUP=X 
GO TO 1+00 

90 DETL0W=DET2 
XLOW=X 
GO TO 1+00 

20 WRITE(6,100) 
100 FORMAT(1H1,12H NO SOLUTION) 

GO TO 30 
C SUBPROGRAM FOR BISECTION . 

1+00 X=XLOW+DETLOW/(DETLOW-DETUP)^ (XUP-XLOW) 
DIF1=ABS(X-XL0W) 
DIF2=ABS(X-XUP) 
I F ( D I F 1 . L T . 0 . 0 1 . 0 R . D I F 2 . L T . 0 . 0 1 ) GO TO 200 
CALL DETERM(DET0,DET2) 
GO TO 80 

C END OF BISECTION PROGRAM. 
kO CONTINUE 
200 x=x/9.8696 

WRITE(6,3OO)N,X 
300 FORMAT( I5,2F15.6/) 
30 CONTINUE 

STOP 
END 
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SUBROUTINE DETERM(DETO.DET2) 
DIMENSION A(2 .2 ) ,B(2 J 2) J P(2 ,2 ) ,AP(2 ,2 ) ,BAP(2 ,2 ) J V(2) ,JC(i+) 
DIMENSION LBl(2 ,2) ,LB2(2 ,2) ,RBl(2 ,2) ,RB2(2,2) 
COMMON N,H,X,A,B,TAPER,POWER,HSQR 
REAL LB1,LB2,JC 
LB1(1,1)=-2.0*(1.0-(H**POWER)/TAPER)+X*HSQR 
im(l,2)=2.0*(l.0-(H**P0WER)/TAPER)/HSQR 
LBl(2,l)=-HSQR 
LBl(2 ,2)=-2 .0 
A(151)=1.0-(H**P0WER)/TAPER 

C=LBl(l,l)*LBl(252)-LBl(l52)*LBl(25l) 
DO 500 1=1,2 
DO 500 J=l,2 

500 LB2(I,J)=A(I,J) 
B(l#2)=0. 
B(2,l)=-HSQR 
B(2,2)=-2.0 
V(l)=1.0 
CALL GJR(LB1,2,2,2,2,$350,,IC,V) 
CALL MXMLT(LB1,LB2,P,2,2,2,2,2) 
DSIGN=C/ABS(C) 
N̂ -=N-3 
DO 280 M=1,N^ 
A ( i a ) = ( i . o - ( ( M + i . o ) * H ) * * POWER/TAPER) 

B ( I , I ) = - 2 . O * A ( I , I ) + X * H S Q R 
CALL MXMLT(A,P,.AP,2,2,2,2,2) 
CALL MXSUB(B,AP,BAP,2,2,2) 
C=BAP(l,l)*BAP(2,2)-BAP(l,2)*BAP(2,l) 
V(l)=1.0 
CALL GJR(BAP,2,2,2,2,$350,JC,V) 
CALL M X M L T ( B A P , A , P , 2 , 2 , 2 , 2 , 2 ) 
U = C / A B S ( C ) 

2 8 0 DSICN=DSIGITO 
A(1,1)=1.0-((N-1.0)*H)*^F0WER/TAPER 
B(I5I)=-2.O*(I.O-((N-I.O)*H)-^POWER/TAEER)+X*HSQR 
DO 550 1=1,2 
DO 550 J =1,2 
RB1(I,J)=A(I,J) 

550 RB2(I,J)=B(I,J) 
CALL MXMLT(RB1,P,AP,2,2,2,2,2) 
CALL MXSUB(RB2,AP,BAP,2,2,2) 
Y=BAP(l,l)*BAP(2,2)-BAP(l,2)*BAP(2,l) 
DETO=DSIGN*Y 
DET2=DET0 

350 RETURN 
END 



C FINITE DIFFERENCE METHOD FOR BUCKLING OF A S . S .BEAM 
C OF VARIABLE E I . 

DIMENSION A ( 2 , 2 ) , B ( 2 , 2 ) 
COMMON N ,H,X,A,B,TAPER,POWER,HSQR 
TAPER=3• 
P0WER=2. 
D A T A ( ( A ( l , j ) , I = l , 2 ) , J = l , 2 ) / l . O , 0 . , 0 . , 1 . 0 / 
D A T A ( N l , N 2 , N 3 , L l , L 2 , L 3 ) / l O , 3 0 , 5 , l , 5 1 , 1 0 / 
DO 30 N=N1,N2,N3 
H=1.0/N 
HSQR=H*H 
DO UO L=L1,L2,L3 
X=FLOAT(L) 
I F ( L . G T . ( L 2 - 1 ) ) GO TO 20 

CALL DETERM (DET0,DET2) 
I F ( L . E Q . L l ) GO TO 50 

IF(DET1*DET2) 6 0 , 6 0 , 7 0 
50 DET1=DET0 

GO TO kO 
70 DET1=DET2 

GO TO UO 
60 DETL0W=DET1 

DETUP=DET2 

XL0W=X-L3 
XUP=X 
GO TO UOO 

8o IF(DETLOW*DET2) 85,85,90 
85 DETUP=DET2 

XUP=X 
GO TO UOO 

90 DETL0W=DET2 
XL0W=X 
GO TO UOO 

20 WRITE(6,100) 
100 FORMAT(IH1,12H NO SOLUTION) 

GO TO 30 
C SUBPROGRAM FOR BISECTION . 

UOO X=XLOW+DETLOW/(DETLOW-DETUP)^(XUP-XLOW) 
DIF1=ABS(X-XL0W) 
DIF2=ABS(X-XUP) 
I F ( D I F l . L T . 0 . 0 1 . 0 R . D I F 2 . L T . 0 . 0 l ) G 0 TO 200 
CALL DETERM(DET0,DET2) 
GO TO 80 

C END OF BISECTION PROGRAM. 
UO CONTINUE 

200 x = x / 9 . 8 6 9 6 
WRITE (6,300) N,X 

300 FORMAT( I5,2F15.6/) 
30 CONTINUE 

STOP 
END 
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SUBROUTINE DETERM(DET0,DET2) 
DIMENSION A(2,2),B(252),p(2,2),AP(2,2),BAP(292),V(2),JC(l+) 
DIMENSION LBl(2,2),LB2(2,2),RBl(252),RB2(252) 
COMMON N,H,X,A,B,TAH;R,IOWER,HSQR 
REAL LB1,LB2,JC 
L B 1 ( 1 , 1 ) = - 2 . 0* (1.0-(H**FOWER)/TAPER)+X*HSQR 
LB1(1,2)=0.0 
LBl(2,l)=-HSQR 
LBl(2,2)=-2.0 
A(1,1)=1.0-(H**FOWER)/TAPER 
C=im(l, l)-*LBl(2,2)-LBl(l,2)*LBl(2,l) 
DO 500 1=1,2 
DO 500 J=l,2 

500 LB2(l,j)=A(l,j) 
B(l,2)=0. 
B(2,l)=-HSQR 
B(2,2)=-2.0 
V(l)=1.0 
CALL GJR(LB1,2,2,2,2,$350,JC,V) 
CALL MXMLT(LB1,LB2,P,2,2,2,2,2) 
DSIGN=C/ABS(C) 
N^=N-3 
DO 280 M=1,NU 
A(I,I)=(I.O-((M+I.O)*H)**POWER/TAPER) 
BCI^L^^.O^-ACIJIJ+X^HSQR 
CALL MXMLT(A,P,AP,2,2,2,2,2) 
CALL MXSUB(B,AP,BAP,2,2,2) 
C=BAP(l,l)-*BAP(2,2)-BAP(l,2)*BAP(2,l) 
V(l)=1.0 
CALL GJR(BAP,2,2,2,2,$350,JC,V) 
CALL MXMLT(BAP,A,P,2,2,2,2,2) 
U=C/ABS(C) 

280 DSIGN=DSIGN*U 
A(1,1)=1.0-((N-1.0)-*H)*-*P0WER/TAPER 

B (1,1) =-2 .0* (1.0 - ((N -1.0 )*H )**POWER/TAPER) +X*HSQR 
DO 550 1=1,2 
DO 550 J=l,2 
RBl(l,j)=A(l,j) 

550 RB2(l,j)=B(l,j) 
CALL MXMLT(RB1,P,AP,2,2,2,2,2) 
CALL MXSUB(RB2,AP,BAP,2,2,2) 
Y=BAP(l,l)*BAP(2,2)-BAP(l,2)*BAP(2,l) 
DETO=DSIGN*Y 
DET2=DET0 

350 RETURN 
END 



1̂ 0 

C FINITE NUMBER OF CONCENTRATED LOAD AT EQUALLY SPACED LOCATIONS 
C TO APPROXIMATE THE UNIFORMLY DISTRIBUTED LOAD ON THE COLUMN 
C ROTATIONALLY RESTRAINED AT BOTH ENDS. THE DISTANCE BETWEEN TWO 
C INFLECTION POINTS IS TO BE CALCULATED. 2k JUNE 1970 

DIMENSION BETA(l^) 
REAL JO,NO,LEXT 
INTEGER COUNT 
D A T A ( B E T A ( l ) , I = l , l U ) / 0 . 0 , . 1 , . 5 , 1 . 0 , 2 . 0 , 5 . 0 , 1 0 . 0 , 2 0 . 0 , 5 0 . 0 , 

1 1 0 0 . 0 , 5 0 0 . 0 , 1 0 0 0 . 0 , 1 0 0 0 0 . 0 , 1 0 0 0 0 0 . 0 / 
DO 20 1 = 1 , I k 
DO 25 K=l , lU 
BETAl=BETA(l) 
BETA2=BETA(K) 
BETA26=BETA2 +6.0 
BDIF=BETA1-BETA2 
BSUM=BETA1 +BETA2 
BPR0=BETA1 *BETA2 
DELTA=12.0 +U.O*BSUM +BPRO 
LEXT=SQRT((l .0+BDIF/DELTA)**2-2.0*BETAl*BETA26/3.O/DELTA) 
PCRUNI=(1.0 +LEXT)/(2.0*LEXT**3) 
Cl=BETAl*BETA26/l2.O/DELTA 
C2=(BPRO+5 .0*BETAl+3 .0*BETA2+12 .0)/DELTA 
C3=BETA26*(BETA1 + 2.0)/DELTA 
WRITE(6,200) BETA1,BETA2 
WRITE(6,250) 
DO 10 N=l,20 
N0=FLOAT(N) 
X0=0.0 
J1=0 
COUNT=1 

60 DO 30 J=J1,N 
J0=FL0AT(J) 
XFRONT =J0/(NO +1.0) 
XAFT=(J0+1.0)/(N0+1.0) 
CC=CI*NO*(NO+2.O)/(NO+I.O)-.5*JO-KJO+I.O)/(NO+I.O) 
CX=-.5*NO/(NO+1.0)*(NO*C2+C3)+JO 

x=-cc/cx 
IF((XFRONT-X)*(XAFT-X))k),^0,30 

kO Y=X-XO 
XO=Y 
IF(C0UNT.EQ.2) GO TO 100 
COUNT =C0UNT+1 
J1=J+1 
GO TO 60 

30 CONTINUE 
100 PCRFIN=(l.O+Y)/(2.0*Y**3) 

ERROR=(PCRFIN-PCRUNl)/PCRUNr*100.0 
WRITE(6,300) N,LEXT,PCRUNI,PCRFIN,ERROR 

10 CONTINUE 
25 CONTINUE 



l i n 

20 CONTINUE 
200 FORMAT(1H1,12H BETA1=,F10.2,12H BETA2=?F10.2//) 
250 FORMAT(kE TTOjlIH LUNI,15H PCRUNI, 

120H LFIN,20H PCRFIN,10H ERROR//) 
300 F0RMAT(I5,5F15.6) 

STOP 
END 
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