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ABSTRACT

This paper introduces event-driven network control, a net-

work control framework that makes networks easier to man-

age by automating many tasks that must currently be per-

formed by manually modifying low-level, distributed, and

complex device configuration. We identify four policy do-

mains that inherently capture many events: time, user, his-

tory, and traffic flow. We then present Lithium, an event-

driven network control framework that can implement poli-

cies expressed using these domains. Lithium can support

policies that automatically react to a wide range of events,

from fluctuations in traffic volumes to changes in the time of

day. Lithium allows network operators to specify network-

wide policies in terms of a high-level, event-driven policy

model, as opposed to configuring individual network devices

with low-level commands. To show that Lithium is practical,

general, and applicable in different types of network scenar-

ios, we have deployed Lithium in both a campus network and

a home network and used it to implement more flexible and

dynamic network policies. We also perform evaluations to

show that Lithium introduces negligible overhead beyond a

conventional OpenFlow-based control framework.

1. Introduction

Network management is incredibly difficult and remains

one of the most important unsolved problems in commu-

nications networks; this problem is becoming increasingly

acute as networks become bigger and more complex. Net-

work management potentially entails implementing a variety

of policies and actions, ranging from provisioning network

topologies to implementing traffic load balance and access

control. Unfortunately, despite the increasing variety and

complexity of network management tasks, the mechanisms

for configuring and managing networks remain frustratingly

primitive: to perform even simple tasks, operators must grap-

ple with low-level configuration of individual devices, as

well as complicated network-wide dependencies. Manual

configuration is complex and error-prone [3, 14, 23, 24, 26].

Network operators cope with the continual transformation

of network states caused by various events ranging from in-

trusions to excessive data usage to network congestion by ei-

ther manually reconfiguring individual network devices or re-

lying on unwieldy collections of scripts. Different modules,

set of devices and scripts are responsible of solving different

dynamics of the network, making it harder to maintain the

network in a manageable state. The problem is exacerbated

by the fact that current configuration languages are low-level

do not accommodate frequent changes.

We posit that the complexity of network management

stems from the following two shortcomings of the current

configuration model:

• Network conditions are dynamic. The state of the net-

work is continually changing due to a variety of net-

work events. Hence, network configuration is continu-

ally in flux [22].

• Configuration languages are low-level and distributed.

The languages that network operators use for configur-

ing network devices are rudimentary. A network de-

vice’s configuration can have hundreds to thousands

of device-specific configuration lines that poorly repre-

sent the intended policy or high-level intended behav-

ior [4, 8, 12].

One approach to coping with the difficulty of network con-

figuration is to design tools that automate and check existing

network configurations [14, 16, 25]. Despite the significant

amount of previous work in this area, however, testing net-

work configurations remains extremely difficult. Another ap-

proach is to devise a higher-level language that could make

network management and configuration significantly easier

and less prone to errors. Although recent developments in

network programming languages based on functional reac-

tive programming show promise [17, 21], these languages

still typically operate on a packet level, rather than on the

level of higher-level policies. Raising the level of abstraction

requires developing a control model that can incorporate and

process more sophisticated, high-level events.

This paper describes the design, implementation, and de-

ployment of Lithium, a new event-driven network control

runtime that supports more realistic network policies. Unlike

existing paradigms for network configuration, Lithium natu-

rally handles changes to network conditions that arise due to

temporal conditions and changes in network state. Themodel

supports reactive constructs, which may ultimately enable a

wider classes of applications to be programmed in a high-

level declarative language. Lithium allows packet processing
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rules to change over time and in reaction to internal or exter-

nal network events.

Network operators can use Lithium to enforce policies that

are written as event-driven programs, using the state ma-

chine model and event listener built in the Lithium controller.

Through these components, it is possible to specify a com-

plex network policy in a simple, high-level declarative man-

ner, which normally requires intensive planning and use of

variety of scripts to achieve the same goal if current config-

uration methods based on low-level language is used, as we

later demonstrated in Section 5.

Software-defined networking separates the “data plane”

(i.e., the devices that forward packets) from the “control

plane” (i.e., the logic that makes decisions about how traf-

fic should be forwarded). Lithium draws inspiration from a

large body of previous work on software defined network-

ing, including Ethane [6], RCP [15], 4D [19], and propos-

als in the IETF FORCES working group [11]. This decou-

pling makes it possible for a network’s forwarding behavior

to be dictated by a single, logically centralized software con-

trol program, rather than complex, low-level network con-

figurations. However, the central question in software de-

fined networking—how should network control be specified

at the controller—remains as an unanswered question of ut-

most importance. For example, OpenFlow, which is one of

protocols built upon this paradigm, provides the environment

to control forwarding of traffic based on the incoming flow.

However, OpenFlow does not specify how software defined

networking could simplify network management, nor does

it incorporate control mechanisms for processing dynamic

network events. Lithium is a software defined networking

framework that supports a richer set of policies than conven-

tional OpenFlow-based control, which only operates on flow

characteristics.

We deployed Lithium in two unique settings to demon-

strate the power and flexibility of its constructs. First,

we used Lithium to re-implement a network access control

framework (which is currently implemented with a compli-

cated VLAN-based configuration) across three buildings on

the campus; the deployment has five switches, about thirty

active network ports, and a wireless network. Our research

group uses the deployment for general network access. We

also deployed Lithium in a home network to address an in-

teresting management problem in such networks: usage cap

management. Using Lithium’s configuration model, we were

able to easily set up network policies for home networks

that dynamically react to meaningful network events such

as monthly data usage capacity reached. Our deployment

and evaluation show that Lithium can simplify configura-

tion management for real-world configuration scenarios in

campus and enterprise network settings as well as in solving

home network management problems.

This paper presents three contributions. First, we intro-

duce the concept of event-driven network control and iden-

tify four different domains for expressing event-based net-
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Figure 1: Comparing Lithium to existing approaches. The

legacy approach to network configuration uses a variety of

protocols from multiple layers to convert high-level network

policy to a set of configuration files. SDN advocates a cen-

tralized control with a software program, but is still limited to

flow-action pairs. Lithium uses a much richer set of control

domains.

work policies: time, history, user, and flow. Second, we de-

sign and Lithium, a new event-driven control framework that

can support policies that incorporate these domains. Third, to

demonstrate that Lithium can simplify network management

tasks in different types of networks, we deploy Lithium in an

enterprise network and a home network, two real-world set-

tings where network configuration is challenging today. We

evaluate Lithium in both of these settings to show that it is

both usable and feasible.

2. Lithium: Event-Driven Network Control

Although the research community has seen numerous calls

for developing higher-level network configuration languages,

few such high-level languages have emerged. The lack of

a higher-level language is not for lack of trying; rather,

we believe that the underlying network “runtime” remains

too complicated to directly support higher-level program-

ming domains. Software defined networking advocates net-

work control from a centralized software program, creating

the possibility for a range of improvements for expressing

higher-level network policies. Although OpenFlow is one

mode for central control, specifying actions based only on

properties of traffic flows inherently limits the expressive-

ness of network policies. Lithium attempts to fill this gap

by allowing operators to use additional event-driven control

domains for more declarative and expressive network poli-

cies. Figure 1 shows how Lithium extends the control model

that current software-defined networking systems provide.

2.1 Event-Driven Control Domains

Domains for expressing event-driven control. Table 1

shows possible domains along with example policies where

each condition might be useful. The first three rows are ex-
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domains Examples

Time peak traffic hours, academic semester start date

History
amount of data usage, traffic rate, traffic delay, loss

rate

User
identity of the user, assignment to distinct policy

group

Flow

ingress port, ether src, ether dst, ether type, vlan id,

vlan priority, IP src, IP dst, IP dst, IP ToS bits, src

port, dst port

Table 1: Control domains, and examples of how a higher-

level policy might use them. First three rows are event-

driven control domains, meaning these domains can invoke

an event, which in turn can change the network state. In con-

trast, flow is not a event-driven control domain.

amples of event-driven control domains; the last row, flow,

is not. Flow is a 12-tuple control domain that already exists

in the OpenFlow specification: action is determined for the

incoming packet based on the flow domain specification. For

the purposes of this paper, we consider only the set of ac-

tions permitted by OpenFlow (e.g., forward, drop, redirect);

instead, we focus on how the network might support a richer

set of conditions on which to perform action on a certain traf-

fic flow. We focus on four domains for which the controller

might take different actions:

• Time. Network operators often need to implement poli-

cies where network behavior depends on the date or

time of day. For example, a campus network would

want to manage traffic differently in semester breaks

when traffic loads are less than they are during the

academic year; similarly, operators may want to rate-

limit non-essential traffic during peak hours. In a home

network, users might want to use time as the basis

for parental control. Operators normally rely on time-

triggered scripts to implement these policies, but they

are still low-level and error-prone.

• History. Operators sometimes specify policies whereby

the behavior of the network depends on history (i.e.,

past conditions or patterns in the network). Examples

of historical information include amount of data usage

(download/upload), data transfer rate over a particular

time interval, or load on a certain port.

• User. An operator may wish to specify privileges for

different users or groups of users. Moreover, user’s

privilege or status often changes due to various reasons.

Legacy configuration systems do attempt to distinguish

users through various methods, including VLAN tag,

MAC address, IP address, port numbers, or any combi-

nation of these fields.

• Flow. A network flow contains fields such as the

source/destination MAC address, source/destination IP

address, TCP/UDP port numbers, etc. Network opera-

tors want to specify different network behaviors based

time history user flow

policy domains output

Lithium

Figure 2: Conceptual representation of Lithium. Lithium

extends OpenFlow, which only uses the flow as a condition

for taking an action, by supporting additional domains to be

used as condition when deciding traffic behavior.
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Figure 3: High-level design of Lithium.

on various field values in multiple layers, specified in a

packet or flow.

Figure 2 shows the conceptual illustration of how Lithium

extends OpenFlow’s expressiveness, since OpenFlow sup-

ports actions based on flow properties only. We do not claim

that the set of domains that we have outlined is complete,

but we demonstrate in later sections that this set is expres-

sive enough to support a wide range of network policies in

various types of network deployments.

2.2 Designing Lithium

We now explain how we design Lithium to support the

four control domains. Figure 3 shows the high-level design

of Lithium. Lithium has two main components: (1) a finite

state machine, and (2) a dynamic event handler.

2.2.1 Finite state machine

Lithium uses a finite state machine model to express and

enforce network policies. Event-driven control domains es-

sentially invoke network events, which in turn can trigger

state transitions in the finite state machine. Incoming traf-

fic is subjected to different actions depending on the current

network state.

States. A state in Lithium’s control model maps to a partic-

ular network state that correspond to a set of static network

policies. A set of domain values represents a state. For ex-

ample, a state may be a certain time of day, the presence

3



of a certain user on the network, the traffic that an applica-

tion has sent over the past day, or even some combination of

these types of values. In Lithium, each end-system device

is mapped to a single state, which is identified by its MAC

address. The state of a device at any time determines how

a network switch will forward its traffic. In this paper, we

assume an end host device can only be assigned to a single

state, for simplicity.

Events. Networks may experience a variety of events, rang-

ing from intrusions to changes in traffic volumes to the ar-

rival or departure of new hosts; the Lithium controller re-

sponds automatically to these events. We define an event as

any change in state (i.e., a change in time, history, user, or

flow). Any event can induce the controller to execute a dif-

ferent set of actions for a particular end host by updating flow

table entries. In summary, a change in a domain value (i.e.,

a state change) is an event that triggers an ultimate change

in the flow table entries of one or more network switches;

the network policy determines exactly how these flow-table

entries should change for different events.

2.2.2 Dynamic event handler

The Lithium dynamic event handler processes network

events that arrive at the controller. It waits for events on a

TCP socket and determines where incoming events are com-

ing from and whether they were sent by a known event dis-

patcher. If the handler recognizes an event’s source and mes-

sage type, it processes the event and executes a state transi-

tion for the associated device based on accompanying event

parameters. The event handler also manages flow table state

by deleting old flow table entries on switches, which will

cause the switches to receive the correct set of entries the

next time they query the controller.

Lithium reacts to domain events instead of proactively

fetching domain values. We do this for practicality: if the

controller proactively queried the network domain, then ev-

ery packet would need to visit the controller to determine

its action; this approach scales poorly in operational Open-

Flow networks because of flow setup overhead. Recent work

in declarative configuration languages suggest methods for

mitigating this scalability limitation [29].

3. Towards “High-Level” Configuration

Although Lithium presents a new programming model for

specifying network policies, operators still need a high-level

language for easily specifying these policies. Lithium does

not currently have a high-level language for expressing net-

work policies. The policy itself is embedded in the controller

as a program expressed in C++, which offers the convenience

of a widely used language but does not offer the potential

benefits of other high-level languages. This paper focuses

on designing the back-end framework that can more readily

support a high-level language. We envision a high-level lan-

guage with the following features:

• Declarative Reactivity: Operators should be able to de-

fine reactive device permissions in a declarative way,

by describing when events happen, what changes they

trigger, and how permissions change over time.

• Expressive and Compositional Operators: A powerful,

expressive set of language constructs should allow op-

erators to build reactive permissions out of smaller re-

active components.

• Well-defined Semantics: The language should have

simple semantics, simplifying policy specification

when compared with current methods of configuration.

In addition, the semantics should provide a basis for

building a variety of related tools, such as static analy-

sis tools for policy analysis prior to deployment.

• Error Checking & Conflict Resolution: Leverag-

ing well-defined, mathematical semantics, the language

should be able to automatically inspect its own config-

uration and detect errors or conflicting statements or

operational goals after reconfiguration attempts.

Embedded domain-specific languages (DSLs) allow network

operators to specify event-based policies at a higher level of

abstraction. Currently all domains in Lithium are represented

with a single datatype so Lithium’s policies are technically

not an embedded domain-specific language, but we are cur-

rently extending Lithium to provide support for embedded

DSLs. DSLs that facilitate functional reactive programming

(FRP) are a natural fit for event-driven programming models

like Lithium since they make it easy to specify programs that

operate on streams of events. Possible future work might in-

volve extending a DSL like Nettle [33, 37], Frenetic [17], or

NetCore [29] to express policies in Lithium at a higher level

than is currently possible with any of these languages.

4. Implementation

We now describe the implementation of Lithium and how

various components support policies that build on the do-

mains we outlined in Section 2.

4.1 Lithium Controller Overview

Our current implementation uses NOX [20] version 0.6.0,

which is compatible with OpenFlow version 1.0.0. The con-

troller manipulates the flow table entries for all connected

OpenFlow switches, as a conventional NOX controller does.

Through the predefined API in NOX, the controller adds,

deletes, and modifies flow table entries. As with a conven-

tional OpenFlow controller, the Lithium controller makes de-

cisions about distinct flows and enforces these decisions by

installing flow table entries in individual switches.

Figure 4 shows an overview of Lithium’s implementation.

As in conventional OpenFlow-based network, when a new

flow arrives, it is directed to the controller, at which point the

controller determines the state that corresponds to the flow,

4



action

external

events

FSM

policy 

repository 

Si -> Ai
flow

Time
History

DB

User

DB

internal

events

updates

Figure 4: How Lithium processes flows using the extended

set of domains from Section 2.

based on the flow’s MAC address. Each state, Si, has a de-

fault associated action, Ai, that determines the action that

a switch should take for that flow and state (e.g., forward,

drop). The controller’s event handler processes dynamic net-

work events invoked by internal or external modules. Based

on the identity of the event, the state to which the flow is

mapped to can change, thereby altering how switches in the

network process the flow.

The processing machinery for Lithium is written in C++.

Excluding the code to implement policy specifications, the

central controller is implemented with 1,266 lines of C++.

The ultimate size of the code running at the controller of

course depends on the network policy itself, since currently

the policy is programmed and encoded in the controller (also

in C++). As we explained in Section 3, a separate high-level

language for specifying policy could also be run in conjunc-

tion with the existing controller.

4.2 Event-Driven Control Domains

To support the three additional domains in addition to to

the flow domain that already exists in OpenFlow, Lithium

has several additional components that we describe below: a

user database, a history database, and a time module. Some

components can be implemented within the controller itself,

while some components, such as the history database, are

implemented as a separate piece of functionality.

User database. Lithium allows a user’s identity to be

mapped to network identifiers, as stated above. Lithium also

allows users or devices to be assigned to different policy

groups in a declarative way. Moreover, different network

events can change a user’s privilege level; for example, a

successfu login at a Web authentication portal could change

a user’s privilege level. These external events can update the

internal user DB shown in Figure 4. The runtime system

should allow different network policies to be applied to dif-

ferent users. For the case studies Section 5, we use MAC

address to distinguish between users and user devices.

History database. The history domain could conceivably be

used to express a wide range of values ranging from histori-

cal data usage for past five minutes to the average throughput

for a day. We have currently set up a history database es-

pecially for tracking the Internet usage of end-host devices,

differentiated by their MAC address. The database is up-

dated periodically with the new data usage information. Op-

erators can configure the history database so that it invokes

events when specified conditions are met: in our case study,

data usage of particular hosts reaching their capacity thresh-

old value. Based on the usage value as well as the capacity

set for the host device, forwarding policy for each device’s

traffic is determined. We demonstrate Lithium’s support for

historical queries in Section 5, in more detail.

Timing module. Lithium supports policies that use time of

day as a condition through a separate module. As in Figure 4,

Lithium has an internal time module which an incoming flow

uses to fetch the time at the moment the flow enters the con-

troller. A separate external time module could be used, as

well. The time module is often used in conjunction with the

history database many historical policies naturally incorpo-

rate time ranges (e.g., data usage over one gigabyte from 2 to

3 p.m.).

4.3 Processing External Events

As shown in Figure 4, Lithium contains a dynamic event

handler, which is responsible of processing external events

and signaling the internal finite state machine in turn to make

relevant changes to the underlying network. The event dis-

patcher sends a message to the central controller via a TCP

connection over port 9999. We have implemented a client

program in both C and Python; therefore, to send events to

the Lithium controller, the network entity must only run the

program we provide or generate a message that conforms to

the specification in Table 2.

The event message has two header fields: payload length

andmessage type; and three body parameters: sender ID, de-

vice ID, and event ID. Table 2 shows the format of an event

message packet. The header contains the total length of the

packet and the message type. In the body, sender ID is the

identification number of event sender or the dispatcher. The

controller uses this ID to determine the origin of the event;

the current implementation uses pre-defined numbers, but the

sender ID might also be the MAC address associated with the

device that generated the event. The device ID is the MAC

address of the host that may be affected as a result of the

event. The event ID specifies the type of event that has oc-

curred; the event handler uses the event ID, plus the host de-

vice’s current state, to determine the subsequent state for the

device.

If the event triggers a state transition, Lithium deletes ex-

isting flow table entries in all switches. This is to make sure

5



payload length msg type sender ID device ID event ID

Table 2: Event message payload format.

new incoming packets do not match the outdated flow table

entries, because different states have different set of forward-

ing rules. Correct flow table entries will be populated on-

wards.

5. Real-World Deployments

In this section, we describe the deployment of Lithium in

two real-world scenarios where network configuration can be

difficult: enterprise networks and home networks. In Sec-

tion 5.1, we study how Lithium and our new configuration

model can be used to solve a common access control problem

that arises in computer networks, furthermore how to extend

and simplify the task; we describe the deployment of Lithium

in an operational campus network. In Section 5.2, we explain

how Lithium can be applied to home networks to make cer-

tain network management tasks easier, and to facilitate the

outsourcing of some aspects of home network management.

Each of the deployment scenarios below currently exer-

cises different domains that Lithium supports: Our campus

network deployment focuses on Lithium’s support for han-

dling different types of external events, while our home net-

work deployment focuses on Lithium’s support for time and

history. In practice, both of these scenarios could be extended

to use more domains to support a richer set of policies. In

addition to the policies that we have implemented in current

deployments, we describe how our current deployments can

be easily extended to support a richer set of policies.

5.1 Campus Network

We describe how we have deployed a network access con-

trol system within a single network using Lithium. The func-

tion of the system we have deployed mirrors and extends

an access control system in our campus network, which is

currently based on a complicated VLAN-based setup. The

Lithium state machine implements basic states that are asso-

ciated with network access control and were inspired by the

policies that the VLAN-based system implements. The re-

sulting deployment has several distinct advantages over the

existing deployment, which has several shortcomings: The

current framework is hard to manage, due to the distributed

configurations; it is too coarse-grained, due to the limited

number of VLAN groups defined; and it is too static, due to

the fact that it is difficult to remap clients from one VLAN to

another when various network events occur.

We begin by describing these policies; we then explain

how Lithium processes events from various other network

components, as well as how the system might be extended to

process other event streams. Finally, we describe the deploy-

ment and operation of this access control system in practice.

Reg/DNS/

DHCP/

Auth. Portal

Scanner

Firewall

VMPS

Campus

network

Router

Switch

physical connection

VLAN connection

VLAN map download

client

Internet

Figure 5: The legacy system architecture.

5.1.1 Current approach

Figure 5 shows the current access control system, which

we will call the legacy system for now on. The system is

based on VLAN technology and dynamic manipulation of

firewall rules. Network operators must enable VLAN func-

tions in all switches by adding VLAN assignment commands

to switch configuration files. Every port that has a connection

in a switch needs a set of VLAN commands. Although the

setup we describe is specific to our network, many campus

network operators we have talked to describe similar setups

and configurations on their campus networks. Essentially,

there is no “out of the box” solution to for implementing dy-

namic network access control.

The network has two separate VLAN groups: for regis-

tered users (reg-vlan) and the other for unregistered users

(unreg-vlan). There are also two DHCP servers, one for

each VLAN group. If an unknown device appears in the net-

work, it is assigned to the unreg-vlan VLAN group; known

devices stay in the reg-vlan group. Based on this VLAN as-

signment, a device’s DHCP lease request reaches a different

DHCP server and receives IP addresses for different address

ranges. The DNS server returns different DNS records based

on the host’s IP address. If request comes from the unreg-

istered group, all requests are resolved to the authentication

web portal, where the user must input credentials; registered

users’ DNS requests resolve to their designated destination.

The scanner is responsible for scanning the host devices for

known vulnerabilities when during the registration process.

Switches periodically download the VLAN group-host map-

ping from VLAN Management Policy Server, or VMPS [1]

so that they have the most updated mapping between hosts

and VLANs.

Access control lists in firewalls ensure that devices in the

unreg-vlan group are only allowed to connect to the authen-

tication Web portal through port 80 or 443; all other traffic

is blocked. Traffic from host devices in the reg-vlan group is

basically allowed with few exceptions due to security issues.

Specific source ports can be allowed, allowing host devices
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user time history flow action

un-auth. * *
dst. port

== 80/443

redirect to

auth. portal

scan * *

ip addr ==

scanner’s

IP

allow

guest * * * allow

student * * * allow

guest 2pm-6pm

data

usage>1

GB

* block

infected * * * block

Table 3: Policy for each state in campus

to host services like Web server, based on the options se-

lected when registering the device. This is done by inserting

additional firewall rules dynamically in the firewall device.

5.1.2 Lithium approach

We start by enumerating the actual required network poli-

cies currently enforced in the network by the legacy sys-

tem. Additionally, we add more useful policies that can be

achieved easily through Lithium, but far more harder to ac-

complish with the legacy system. Figure 3 summarizes the

network policy. Additional network policies achieved by

Lithium are shown in bold.

States. In this case study, we define four different network

states that that are represented by combinations of values in

the underlying network domains: Registration, Scanning, Al-

low, and Block. Hosts in the Registration state are unregis-

tered devices that have not yet authenticated via the authen-

tication Web portal. In this state, HTTP traffic is redirected

to the authentication Web portal; all other traffic is dropped.

Host devices in Scanning state are only allowed to interact

with the vulnerability scanner in the network, which checks

the host device for known vulnerabilities. All other traffic

will be dropped. The Allow state allows all traffic (subject to

normal operational firewall rules), and Block state blocks all

communication to the rest of the network. Peak guest blocks

guest traffic which hits the data usage limit of 1GB during

the peak hour 2–6 p.m. everyday. Although not the actions

are not shown in the table, both DHCP traffic and DNS traffic

are always allowed by default.

Events and transitions. After defining the states, an oper-

ator must specify the transitions between them, as well as

the events that trigger each transition. Figure 6 describes the

transitions and events for this operational deployment. The

host’s traffic behavior solely depends on its current policy

state. To ensure that switches forward traffic according to

policy, flow table entries that have the host’s MAC address

are deleted and re-populated in all connected switches when

transitions happen between states.

Registration

Scanning

user

authenticated

Infection

cleared

Guest's

data usage>1GB

at 2 - 6 p.m.

Infection

Vulnerable

Block

Allow
Clean

Figure 6: Transitions and events in campus.

Event dispatch. Our deployment of Lithium in a campus

network has several types of devices and systems that send

events to the Lithium controller. We have deployed a set of

devices that could trigger state changes that alter a host’s ac-

cess rights; other types of network policies might take in-

put from different event dispatchers and require policies that

build on a different set of domains. Events are dispatched

according to the format presented in Section 4: Each event

is accompanied with a sender ID, which identifies the event

dispatcher; and event ID, which differentiates different events

from a single event dispatcher; and a device ID, which rep-

resents the host device that may change its state according to

the event.

• Authentication portal. This component authenticates

users who attempt to use to the network. Any HTTP re-

quest from an unauthenticated user is redirected to the

authentication portal, which requests the user’s login

credentials. Only when the user provides the correct

credentials (in this case, a combination of username

and password) does the authentication portal invoke the

notifier executable to send a notification to Lithium.

A successful authentication moves user’s device to the

Scanning state.

• Scanner. There are a variety of proprietary and free

scanners; our deployment uses a port scanner as a proof

of concept. We use nmap [36] to scan for open ports of

the host machine. However, any scanner would work

as long as it is able to dispatch events to the Lithium

controller. After the scanning is done, the scanner noti-

fies Lithium so that the host’s state can change to Block

(if vulnerabilities are found) or Allow (if host turns out

to be clean) based on the result and depending on the

group the scanned host belongs to.

• Intrusion detection system. Lithium uses Snort,

an open source network intrusion and detection sys-

tem [35]. The IDS inspects the payload of traversing

traffic and generates an alert if suspicious packets are

detected. This actually causes the state of the hosts to

change to Block state, as shown in Figure 6. As the re-

sult, traffic of the host is dropped. It is possible for the
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operator to revert back to the original state dynamically

without restarting the controller by sending an appro-

priate remedy notification to the dynamic listener.

• History database. We have built a separate history

database, which continuously tracks the data usage of

each host device in the network and stores it for future

use. A graphical user interface is available via a web

browser to set the limit, or cap, data usage value for

each device. If the actual data usage hits the limit value

in the specified block of time, (e.g., 2–6 p.m.), a trig-

ger invokes a dynamic event towards the controller to

enable the transition.

5.1.3 Deployment experience

Figure 7 shows the current deployment of system in the

our network. There are five OpenFlow-enabled switches (two

HP switches, two NEC switches, and one Toroki switch) de-

ployed across the campus, forming our system network that

spans three buildings. The NEC switch’s OpenFlow switch-

ing performance is 136 Gbps, 101.2 Mpps. The controller

runs on a Dell PowerEdge 1950 machine running Ubuntu

Linux 9.04 with 8 GB RAM and Intel Xeon Quad-core

2.5 GHz processors. It has 1 Gbps network interfaces at-

tached to it. Two access points are deployed around the lab

and hallway in building #3 to enable users to connect via a

wireless network. Two /27 IP subnets are reserved for the

Lithium network: one for management and the other for data

traffic; thus, the network is separate from the existing access

control network managed by the legacy system.

A user who is within range of the access points in the net-

work can connect to the Lithium network by establishing a

wireless connection to our predefined SSID with a shared

key. Immediately after successful connection establishment,

the DHCP server assigns the host a public address from the

IP pool we have reserved for the Lithium network. If the

controller has never previously seen the host’s MAC address

or the host has never been authenticated, the traffic will be

redirected to our authentication portal. The user must input

valid credentials to the portal so that the host machine’s state

can transfer from the Registration to Scanning state. At this

point, the vulnerability scanner initiates a scanning on the

host machine. If the host machine is considered to be clean,

the state will finally change to Allow.

The deployment was successful and reliable enough to be

used as a daily access point for many users, especially when

the pre-existing VLAN-based network access control system

experienced configuration or connectivity problems.

5.2 Home Network

Internet service providers around the world are beginning

to deploy monthly “usage caps”, which limit the amount

of traffic that any particular subscriber can transfer within

a billing cycle. For example, in the United States, Com-

cast has deployed a monthly usage cap of 250 gigabytes,

controller
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OpenFlow switch
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OpenFlow switch
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data
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Figure 7: Campus network deployment.

and AT&T DSL and U-Verse users are subject to a 150-

gigabyte usage cap. Given the growing diversity of appli-

cations, the increasing demands of certain applications (e.g.,

high-definition NetFlix movies), and the relative opacity of

usage information to individual users [9], consumers need

better ways of managing these caps.

Unfortunately, intuitive tools for helping users monitor and

manage their usage caps effectively do not exist today. To

fill the need for such a tool, we are developing a system to

help consumers perform flexible and fine-grained monitor-

ing and management of their usage caps. Previous user stud-

ies have identified that consumers want information to help

them manage the usage cap to ensure all household mem-

bers enjoy good performance for their activities, while also

avoiding overage charges or service interruptions if the “cap”

is exceeded [9].

Lithium empowers unskilled home users to be semi-

operators in their own household, allowing them to perform

general resource management of data usage. Through our

system, home users can set usage caps or limits on each de-

vice, user and household and even facilitates other more so-

phisticated policies, such as parental control.

5.2.1 Current approach

Some ISPs provide a Web interface where a user can view

and monitor the aggregate usage at a household level, but we

are not aware of any management system that allows users to

specify any type of control, in addition to plain usage mon-

itoring, even though most existing home networking infras-

tructure supports such functions.

One possible approach is manual configuration of the

home router by a skilled home user. This will likely involve

manual manipulation of firewall-like rules in the home router

or modem, which is difficult to land a correct configuration,

even harder to maintain. Another approach is the ISP per-

forming host device level access control. However, this in-
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Table 4: Network policy for home network usage manage-

ment.
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Figure 8: States and transitions for a simple example of us-

age cap management in home networks.

corporates dynamic manipulation of access control lists in

firewalls or routers managed by the ISP.

5.2.2 system approach

Assuming the ISP is willing to provide this service to

home users, we use Lithium to build a working solution.

States. Table 4 details the network policy for the home net-

work usage management system. This policy requires two

states states here: Allow and Block. Host devices in Block

state are not allowed to have internet connection while host

traffic in Allow state is all allowed without exception. Host

devices are assigned to the Allow state by default whenever a

new monthly cycle starts.

Events & transitions. There are two transitions in the home

deployment which are driven by two events: cap reached and

cap released. The transitions are shown in Figure 8. Cap

reached event is triggered when the data usage exceeds the

predefined cap value. The databased detects the situation and

raises an event to notify the central controller. This event

triggers a host to move to the Blockstate, i.e., Capped state,

thus blocking all traffic between the host and the Internet.

Cap released event is generated by the database if it detects

that the cap value is again over the actual data usage, or if the

capping functionality is disabled. The event makes the host’s

state change to Allow, i.e., Uncapped state where all traffic is

allowed.

Event dispatch. Lithium’s home network solution uses the

same history database used in Section 5.1. As described ear-

lier, the history database sends an event to the central con-

troller to invoke transitions between states. For this particu-

lar task, the time value is set to monthly billing cycle of each

household.

5.2.3 Deployment experience

Home Network

Controller

History

DB

Internet

Wireless router

End host devices

events

view

flow table manipulation

control

traffic

data

traffic

Figure 9: Home network deployment.

Figure 9 how Lithium can be used for home data usage

management system. We use a NetGear WNDR 3700v2

gateway as the wireless home router, which runs a custom

made firmware based on OpenWrt. We use PostgreSQL as

the back end database and an Apache web server is set up to

provide a graphical interface for monitoring as well as man-

aging usage in the home network. Home users interact with

the graphical interface through a Web browser to view and

set usage caps on devices and users. When a cap is reached,

relevant devices will be cut off from the network and will be

informed by an automatically generated email.

We have deployed these wireless routers in two house-

holds and are planning a more extensive deployment in a

dozen households to support a broader user study on home

network management interfaces. More generally, the deploy-

ment shown in Figure 8 can allow for a variety of home net-

work management tasks to be “outsourced”. Several projects

have advocated slicing the home network infrastructure to

allow multiple service providers to use and control the home

network infrastructure simultaneously [38]; others have even

proposed outsourcing some aspects of network control en-

tirely to third parties [13]. This deployment of Lithium could

easily support such a broader range of management tasks and

scenarios.

6. Evaluation

In this section, we evaluate the usability and feasibility of

Lithium. Evaluation of network management systems is dif-

ficult since there are no quantitative metrics that allow us to

compare Lithium to existing approaches. The state of the art

in complexity evaluation is syntactic: the methods only apply

to networks where one can analyze the syntax of low-level

network configurations [5, 27]. Because Lithium takes an

new approach to configuration that does not rely on low-level

configuration, these approaches do not apply. We concede

that there is definitely a need for more comprehensive met-

rics for measuring the complexity of various network man-
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agement systems. Given that no such framework exists, we

focus our evaluation on two aspects:

• Usability (Section 6.1). We perform a qualitative eval-

uation of how Lithium can make network management

tasks easier for network operators and users. Our aim

is to argue informally that Lithium is more manageable

than existing network configuration frameworks.

• Feasibility (Section 6.2). We perform a quantitative

evaluation to demonstrate that the performance over-

head imposed by Lithium is negligible compared to ex-

isting OpenFlow-based systems with published perfor-

mance numbers (such as the deployment in the Gates

building at Stanford University).

6.1 Qualitative Evaluation: Usability

Measuring whether a certain network management or con-

figuration system is more effective or usable than existing so-

lutions is difficult, due to the lack of standard usability met-

rics. Here, we discuss several criteria that can possibly re-

flect the usability of a management system. We do not claim

that Lithium can achieve networking tasks that operators can-

not in some way perform with legacy methods today. In

fact, with the variety of configuration commands used in net-

work devices combined with additional customized scripts

and tools, legacy systems are remarkably flexible and capa-

ble. Rather than focus on what is possible (capability), we

focus on the ease of solving certain problems (usability).

More expressive with fewer touches, fewer scripts. When

configuring and managing a network, fewer touches to net-

work configuration may reduce configuration errors and

overall workload for network operators. For example, con-

sider adding or deleting a VLAN group in the previous cam-

pus access control case study through legacy methods. Es-

sentially, operators have to touch multiple switches that are

responsible of forwarding traffic for the group. In each

switch, ports that are related to that VLAN group should

be configured in detail. In Lithium, the same task can be

achieved by adding a new policy state in the controller if

necessary without touching other network devices, and ad-

ditional scripts are not required as well.

Fewer distinct scripts are desirable as well because they

become harder to manage and maintain as the number grows.

Lithium maintains to be very expressing, leveraging the

event-driven control domains while refraining from using

separate scripts to do the job.

More general. Lithium is general enough to solve a variety

of network management tasks. The case studies in the pre-

vious section demonstrate this generality. Legacy configura-

tion techniques would require two different approaches for

each task; campus network access control requires VLAN

configuration, and the home network management case re-

quires a separate script is required to update iptable rules in

the local wireless router.

More portable. In legacy configuration methods, policy is

enforced by configuring individual devices in the network,

so applying an identical or even similar network policy to

another network with different physical infrastructure may

be cumbersome. Because network policy depends on on

individual configuration files from network devices, config-

urations may be specific to network topology, switch ven-

dors and software versions, and other specifics of a particular

network. In Lithium, policies might be more easily ported,

since the control program could be written in a more device-

independent manner.

6.2 Quantitative Evaluation: Feasibility

As the size of network grows, the key factors that affect

the feasibility of Lithium are (1) forwarding performance;

(2) the size of the flow table in switches; and (3) the load on

controller and switches. However, as OpenFlow is used for

materializing Lithium, the performance and feasibility also

heavily relies on OpenFlow’s capability. Although this pa-

per’s main focus is about presenting a better network control

model, we do performed some basic quantitative evaluation

to prove two main points: First, it is indeed feasible to run

Lithium on real operational networks, e.g., campus or home;

Second, Lithium does not incur additional processing over-

head compared to the basic NOX controller.

6.2.1 Forwarding performance & latency

We first evaluate the throughput and latency of Lithium

for both case studies from Section 5. We emulate synthetic

traffic with netperf [34]. For throughputmeasurement, we

send a stream of TCP packets between two hosts for at least

120 seconds until it achieves a confidence level of 95%. For

latency, we measure the round trip time, or RTT, between two

hosts, collecting around 500 round trip time measurements.

Campus network measurements. In our campus access

control case study, presented in Section 5.1, we use pro-

duction quality OpenFlow-enabled switches from profes-

sional network switch vendors, NEC, HP, and Toroki. These

switches implement OpenFlow as a kernel module and per-

forms packet forwarding and flow matching in the hardware.

Measurement testbed is set up as following: Two end hosts

are directly connected to one NEC switch, and the controller

is one-hop away from the NEC switch.

Table 5 shows the throughput and latency measurements

in the campus network between three systems on synthetic

traffic: (1) baseline (without system or NOX), (2) with NOX

switch implementation, and (3) with Lithium. The baseline is

when only basic VLAN configuration is used to connect the

two end hosts, and we assume the performance of baseline is

same as the existing configuration without OpenFlow. NOX

switch is an existing implementation which comes with the

NOX suite, and simply makes OpenFlow switches to forward
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every packet it receives to the correct output port based on the

destination MAC address. The comparison shows negligible

performance difference between baseline, NOX switch im-

plementation, and Lithium for both throughput and latency.

The table also suggests that Lithium does not introduce ad-

ditional delay for policy lookup when compared to the NOX

switch implementation.1

Home network measurements. Table 6 shows the measure-

ment results in the home network (wired and wireless) be-

tween three systems on synthetic traffic. The use of the NOX

switch significantly hinders performance because the Open-

Flow module for OpenWrt is currently written in user space;

there is negligible difference between the NOX switch im-

plementation and Lithium.

Further investigation revealed that the home gateway is the

bottleneck cause for the performance degradation in the case

of home network. The NetGear WNDR 3700v2 gateway we

use has a 680 MHz MIPS 32-bit processor, and running an

OpenFlow module causes the CPU cycle to hit close to 90%

constantly during the test. This overhead is caused by the fact

that OpenFlow instances runs in the user-space instead of as

a kernel module in the gateway. More optimization itera-

tions can boost the performance further, but is limited. Open

vSwitch [2] is a production quality virtual switch, which can

be installed in linux-based wireless routers (e.g., OpenWrt).

Open vSwitch has OpenFlow as a built-in kernel module,

hence, we expect the performance to be comparable to the

baseline.

We expect that if the OpenFlow module were imple-

mented in the OpenWrt kernel, then both the NOX switch

and Lithium setups would forward trafficmuchmore quickly.

This trend is apparent in the latency measurement as well.

These results show that, while enabling tue current Open-

Flow module for traffic forwarding in OpenWrt significantly

slows forwarding performance, Lithium itself does not in-

cur additional performance degradation compared to the base

NOX implementation, despite the additional modules and

network policies embedded in Lithium.

6.2.2 Flow table size

Next, we study the scalability of Lithium in terms of flow

table size. There is a limit on the number of flow table en-

tries a single switch can maintain: 131,072 for exact match

entries and 100 for wildcard entries, according to the Open-

Flow specification [31]. An exact-match entry has all 12-

tuples specified with some value, while a wildcard entry con-

tains one or more tuples as wildcards.

To help us understand how Lithium might scale on larger

networks and in a home network, we performed a trace-based

analysis using data from a large campus network, and a typ-

1NOX has sometimes performed worse than Lithium; we suspected
that the default wildcard entries we insert into Lithium might be re-
sponsible for improved performance. We added the wildcard entries
in NOX and saw a performance improvement.

ical home network, as shown in Figure 10. For the campus

network, we captured an hour of traffic at the campus net-

work gateway on a typical weekday from 2 p.m. to 3 p.m.

For the home network, we captured an hour of traffic on the

home gateway router between 9 p.m to 10 p.m. We analyzed

these traces to infer the number of unique flows in specific

time intervals. With this information, we measure how many

flow-table entries are needed to manage the traffic.

In the campus network, as shown in Figure 10a, the num-

ber of flows is always below 25,000 along the measured

period, which is far below the 131,072 threshold for exact

match entries. Thus, in a typical campus network, Lithium

will likely scale in terms of flow table entries that each switch

must store. Moreover, it is likely that more than a single

switch would be responsible to handle a /16 subnet, thus con-

sidering these flows will be spread out to multiple switches,

Lithium is scalable in terms of flow table size. Figure 10b

also suggests the number of flow table entries needed for a

typical home network traffic would not exceed the limit.

Additional way to mitigate the growth of flow table en-

tries is to use wildcard entries. It is possible to dramatically

reduce the amount of communication between the controller

and switches by using several wildcard entries wisely. For

example, Figure 10 shows that DNS packets are responsible

for much of real production traffic. ARP packets and DHCP

packets will account for a notable portion of the traffic as

well, though not depicted in our figure.

6.2.3 Scalability: Load on controller and switches

The process of installing flow table entries in switches by a

central controller affects the scalability of both the controller

and switch. Basically, if a packet arrives at a switch and can-

not find a matching flow table entry, the switch buffers that

packet and consults the central controller, where the network

policy is stored. Then, the controller sends the decision to

the switch, and after a flow table entry is inserted, the packet

is processed based on that entry.

This overhead, which is commonly known as flow setup

overhead, is inherent to the current design of OpenFlow and

the NOX controller. This control plane interaction not only

incurs additional delay in packet forwarding, but also in-

creases the load on the controller as well as switches as they

sacrifice certain amount of CPU cycles and memory to per-

form the task. In other words, poor network topology and

system design can lead to overwhelming new flow setup re-

quests, overloading the switch and/or the central controller.

In fact, in our lab test, continuous stream of 2,000

unique flows was able to overwhelm the production quality

OpenFlow-enabled switch we have in several seconds, after

hitting 95-100% CPU utilization. Figure 11 shows the pro-

cessing time of the Lithium controller with different traffic

loads. Processing time is defined as the time the controller

uses to process a new flow request and send out a decision

to the switch, after the request arrives at the controller. The

number of unique flows, and, thus, the number of requests ar-
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System Throughput (Mbps) Latency (RTT avg.) Latency (RTT 95th %)

Baseline 941.34 0.1248 0.1258

NOX 940.14 0.1215 0.1246

Lithium 939.94 0.1239 0.1250

Table 5: Performance comparison in campus network. Baseline is the system without OpenFlow enabled. NOX represents a

system with OpenFlow running controlled by the basic NOX switch implementation. Lithium is our own controller implemen-

tation with the finite state machine and dynamic event handler module.

System
Throughput (Mbps) Latency (RTT avg.) Latency (RTT 95th %)

wired wireless wired wireless wired wireless

Baseline 93.76 35.16 1.739 2.584 1.779 2.903

NOX 21.13 16.29 2.309 3.323 2.428 3.976

Lithium 22.52 16.93 2.327 3.317 2.427 3.872

Table 6: Performance comparison in home network. System definition is same as Table 5.

Figure 11: Processing time difference at the controller with

different traffic load. Light traffic is a continuous TCP stream

traffic with 500 unique flows. Medium traffic identical but

with 1,000 unique flows, and heavy traffic with 1,500 unique

flows.

riving at the controller, clearly affect the performance of the

central controller.

Our test results suggest that the number of interactions be-

tween the controller and switches in the control plane is the

key factor that determines the scalability of Lithium. Fortu-

nately, several recent studies tackle this overhead issue us-

ing clever techniques. For example, DIFANE suggests to

lessen the controller load by deploying authority switches

that cache authority rules and respond to normal switch’s re-

quests instead of the central controller [39]. DevoFlow uses

several techniques simultaneously, (e.g., rule-cloning, mini-

mizing statistic requests), to minimize the control plane in-

teraction [10]. Continuous advancement in improving the

scalability of OpenFlow, or software defined networking in

general, can help foster and enable the deployment of many

network control systems that rely on or assume logically cen-

tralized control, such as Lithium.

7. Related Work

In this section, we survey previous work on software de-

fined networking, languages for programming Openflow net-

works, and other network management frameworks.

The field of software defined networking (SDN) has roots

in Ethane [6], RCP [15], and 4D [19]. The 4D architecture

generally describes the separation of the control and data

planes. Ethane embodies this architecture; it introduced a

newmethod for configuring and managing a network through

central command with a software software program that pop-

ulates flow-table entries in network switches. Ethane’s policy

model and its policy language, POL-ETH, only allow lim-

ited configuration of static policies. Lithium complements

Ethane’s work by introducing a new policy model with a

right abstraction, an attempt to reduce network complexity

and ease the process of network configuration and making

changes to it. The OpenFlow protocol standard is currently

the lingua franca of software-defined networking [28, 32],

and it is the standard on which Lithium builds. While Open-

Flow is often used synonymously with software-defined net-

works, we note that the protocol standard is just one instanti-

ation of software defined networking. Richer control frame-

works such as Lithium also fall within the broader paradigm

of SDN. In an early workshop paper, Nayak et al. proposed

an SDN-control framework that processes certain network

events for access control systems [30]; Lithium extends the

design of that system to incorporate a much broader set of

control domains. We also present a complete implementa-

tion and deployment of such a system.

There has been significant recent attention into developing

languages for programming OpenFlow networks. FML [21]

is a policy language for NOX that allows network opera-
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Figure 10: Number of unique flows in (a) a /16 subnet from a large campus network, and (b) a home network. Time periods

are selected based on the peak usage hours on a typcial weekday.

tors to write and maintain policies efficiently in a declara-

tive manner. Frenetic is a domain specific language for pro-

gramming OpenFlow networks that provides programmers

an abstraction of seeing every packet, even though the pro-

gram is operating from a central controller [17, 18]. Nettle

is a domain specific language implemented in Haskell that

is used to configure BGP policies with more comprehen-

sive abstraction calculation constructs [33,37]. Both Frenetic

and Nettle use functional reactive programming, a declara-

tive programming paradigm that allows programmers to ex-

press event processing very naturally; in principle, Lithium

could serve as the underlying control system for either lan-

guage. Frenetic’s programming model is at a packet-level

granularity, so it might be too low-level for the types of poli-

cies that we aim to implement with Lithium. NetCore is a

declarative language for expressing packet forwarding pol-

icy on SDNs which improves the performance of Frenetic’s

see-every-packet abstraction by automating and optimizing

the installation of flow table entries [29]. Nettle’s and Net-

Core’s focus on higher-level policies may make them more

appropriate languages to run on top of Lithium.

Researchers have proposed various management frame-

works and systems to make network configuration easier and

less error-prone; none of these previous systems have used

software defined networking as a platform for doing so. Bal-

lani et al., identified the problem of low-level configuration

language used in network devices, and built CONMan, which

uses higher-level modular building blocks to achieve same

functions [4]. PACMAN [8] and COOLAID [7] by Chen

et al., both implement a higher-level construct than device-

specified configuration languages to achieve certain network-

ing tasks. However, the above studies focus on building

a language that ultimately translates into low-level device-

specified commands, while Lithium advocates a new con-

figuration model as a stand-alone, event-driven program that

captures the dynamics of a network well.

8. Conclusion

Configuring networks is difficult and error-prone, and op-

erators must configure individual network devices using low-

level, vendor-specific configuration commands. Ensuring

that these devices achieve some higher level network-wide

property is difficult, and certain types of policies cannot be

expressed at all. Although the networking community has

long agreed that networks need better network configura-

tion languages, most network configuration languages re-

main low-level and are unable to allow operators to express

high-level events and policies. We believe that enabling con-

figuration languages that allow the expression of higher-level

policies first requires a network control model that can pro-

cess higher-level events in the first place. Towards this goal,

we have designed, implemented, and evaluated Lithium, an

event-driven network control framework that can implement

policies based on four different domains: time, user, history,

and traffic flow. To demonstrate the power and flexibility

of these domains for expressing higher-level network poli-

cies, as well as the ability of Lithium to implement them,

we deployed Lithium in two different network settings—a

campus network and a home network. Our evaluations show

that Lithium introduces negligible overhead beyond a con-

ventional OpenFlow-based network.

Significant work remains in developing higher-level con-

figuration languages for networks, and we believe that

Lithium can potentially enable this next step by providing

an event-based control framework that could act as a runtime

for event-based network configuration languages. The ad-

vent of software-defined networking also potentially enables

a wide range of network control frameworks that support an
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even broader range of domains than the ones that we have ex-

plored in this paper. In this sense, Lithium serves only as the

first step towards exploring how software defined networking

can help simplify network configuration and management.
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