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SUMMARY

Recent advancements in the machine learning algorithms, especially the development

of Deep Neural Networks (DNNs) have transformed the landscape of Artificial Intelligence

(AI). With every passing day, deep learning based methods are applied to solve new prob-

lems with exceptional results. However true impact of AI could only be fully realized if it

interacts with the real world and solves everyday problems.

The everyday problem however, is new everyday and subject to increasingly changing

requirements. The Deep Learning (DL) landscape today is incapable of solving these dy-

namic problems as the performance of DL today is heavily tied to the topology which is

often task specific and hand-tuned by experts. Not only is rigidity of the solution the prob-

lem but also the high memory and compute requirements of DNNs to perform training on

terabytes of data acts a huge barrier in bringing true intelligence to the edge which is the

true portal to the ’real world’.

NeuroEvolution (NE) are a class of algorithms that can circumvent this problem by

’learning on the fly’. These algorithms continuously interact with the environment and up-

date their models based on how fruitful their last interaction proved. This way the solution

is not tied to a topology and these algorithms do not need to perform memory and com-

pute intensive backpropagation operations (BP) making them ideal for solving dynamic

problems in a robust manner on the edge.

However, the barrier to deployment of NE today is the lack of its widespread adop-

tion and understanding of its compute behavior. This thesis attempts to lift that barrier

by characterizing the compute and communication behavior a NE algorithm NEAT (Neu-

roEvolution of Augmenting Topologies) and is an attempt to propel further research in this

direction. This Thesis also attempts to bring intelligence to the edge using a distributed

system solution.

This thesis demonstrates CLAN, Collaborative Learning using Asynchronous Neuro-

xii



evolution. It proposes techniques for enabling adaptive intelligence on the edge using NE

algorithms collaboratively on Raspberry Pis and demonstrate that CLAN can match perfor-

mance of higher end computing devices with better energy efficiency at scale. Further, this

thesis also propose algorithmic modifications to improve the scalability.

The study performed in this work aims to drive key insights to both computer archi-

tects and distributed system engineers to enable effort in deploying NE on the modern day

compute platform.
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CHAPTER 1

INTRODUCTION

The past decade has seen tremendous efforts in the space of Machine Learning (ML) and

Artificial Intelligence (AI) by both the academic and industry research communities. This

growth can be attributed to the capability of Neural Networks to solve a wide variety of

complex problems. Advancements in deep learning (DL) is the defining technological

milestone of the present times. Tasks like, computer vision, speech comprehension etc.

which were deemed impossible by computers at the turn of the decade, are now being

routinely performed at superhuman accuracy. No wonder it has captured the imagination

of many. While some see these advancements as the dawn of the new industrial revolution,

some interpret it as a foreboding of an AI uprising. Superlatives aside, new techniques have

industry altering consequences, and deep learning has already proved its mettle at it.

Supervised Learning, the engine powering this revolution, however has its limitations.

DL solutions are only as good as its topology and the data-set it has been trained on. Pre-

requisites are therefore, gargantuan amounts of data, meticulous labelling and careful con-

struction of the topology by experts. After the ingredients are in place, the model then

needs to be run on a high performance computing system for weeks at a time for training.

These dependencies make Deep Learning applicable only to a limited to set of problems.

It is therefore quite natural that AI happened only on the cloud. The edge devices, for most

cases, serve only as an interface collecting queries and displaying the results processed in

the cloud. Although recent advancements in specialized accelerators have enabled infer-

ence on edge, training still remains confined to cloud.

The true potential of machine learning can only be realized when intelligence moves

to edge. However, performing intelligence on the edge has a unique set of challenges.

First the environment of deployment can have a huge degree of variation, second, over

1



time the requirements can drift. It can be immediately recognized that present offload

model to the cloud is far from ideal. The first problem dictates that the training data-set

needs to be diverse enough to handle the variations of all different types of deployment

environments, which is not realistic. Second challenge requires the model to be updated

and trained on a regular basis to ensure adaptability. As more and more edge devices

use artificial intelligence, the scale of the problem grows out of hand. For instance the

bandwidth requirement in and out of the datacenter will grow exponentially. Also edge

devices are often used in a setting where they have access to privileged data, which might

pose serious privacy risks when backed up on the cloud.

The challenges mentioned above indicate a clear need for a solution that can learn and

adapt to the dynamics of new environments and changing problems on the edge. Figure 1.1

shows an example of such a system wherein a trained model/expert is deployed onto the

edge and the agents adapt to the new environment/task autonomously. Each agent uses the

deployed expert to perform the task at hand and continues to evaluate its fitness against a

rubric as a measure of how well the expert is performing at the task. In the event of a change

of task or environment, if the fitness of the expert deteriorates below a certain threshold,

the agents invoke the learning process and continue to learn a new expert until the desired

fitness is achieved. This new expert is used until another change occurs and learning needs

to be performed again.

Reinforcement learning approaches have been successful in tackling the first challenge

of developing such an adaptive learning system. In last few year Deep Reinforcement

Learning algorithms like DQN, DDQN, Duel DQN, A3C [1, 2, 3, 4] have shown that Deep

RL can learn from the environment, without a dataset and surpass humans in complex tasks

like playing a games involving complex strategies like DOTA [5], or develop intuitive un-

derstanding like Go [6]. RL works by interacting with the environment ie. performing an

action in order to make progress towards the objective. Internally a policy function deter-

mines the suitable action given the state of the environment. The environment responds by

2
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generating a reward value for the action taken. The policy function periodically adapts to

maximize this reward. In Deep RL this policy function is approximated by a DNN, and the

reward obtained is used as a cost estimate. Therefore each update of the policy function

results in training the DNN, which makes Deep RL is extremely costly in term of memory

and compute.. An alternative to Deep RL is a set of algorithms called Evolutionary Algo-

rithms (EA). Ea is described in detail in Section 2.1.3. Similar to RL, these algorithms also

interact with the environment and adapt to maximize the reward. However unlike Deep RL,

each update step does not require back-propagation training but uses Genetic Algorithms

instead. A subclass of evolutionary algorithms is Neuro-Evolutionary(NE) algorithm. In a

NE setting we start with a population of simple neural-networks, which interact with the

environment. Each of these networks are then allowed to interact and thus obtain a reward

value. The obtained reward are then translated to a fitness value which is then used by the

genetic algorithm to evolve a new generation of population which maximizes the reward.

Until very recently Evolutionary Algorithms were seen as inferior to Deep RL and their

ability to converge within a reasonable time has been questioned. However recent work

from Uber AI labs, DeepMind, OpenAI, Google Brain has shown that EAs scale well. The

above reasons including absence of any backpropagation, robustness and ability to adapt to

changing evnironments and taks make the study of Neuroevolutionary algorithms and their

computation characteristics on hardware an exciting task worth exploring.

This work aims at studying and characterizing the computation of one such algorithm,

NEAT. We start by exploring the algorithm and analyzing its performance on commodity

hardware such as HPC and embedded CPUs and GPUs. We discuss potential bottleneck

to these implementations and the motivate a hardware solution. Next this work discusses

the scalability of evolutionary algorithms on a distributed system by performing a scalabil-

ity study of the algorithm, agnostic to the implementation platform and later also explore

the performance of the distributed algorithm on a test bed of multiple Raspberry Pi units.

Overall, this work makes the following contributions,

4



• It characterizes NEAT, a NE algorithm providing key insights to computer architects

on how to design efficient systems for such algorithms.

• It analyzes performance of NE on commodity CPU and GPU platforms, identifying

bottlenecks and key attributes of the algorithm making single node commodity plat-

forms an inefficient choice.

• As per my knowledge, this work is the first of its kind to explore the distribution of

NE on the edge delivering insights to distributed system architects on challenges and

opportunities with NE.

• It explore various ways of implementing NE in a distributed setting, within the con-

straints of edge devices.

• It studies the scalability of each major compute component in NE algorithms and char-

acterize the cost of distributing this compute over multiple nodes.

• It proposes algorithmic modifications that allow NE scale.

• It evaluates various distributed system configurations on a real test-bed consisting of

Raspberry Pi units.

• Proposed modifications bring down the share of communication to 22% against a 50%

share when naively scaled as is.

• It opens up and discusses future research work and predicts performances in this area

based on insights developed by real system evaluations.

5



CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Background

2.1.1 Supervised Learning

Conventional machine learning algorithms learn from data. In a machine learning flow,

a model is constructed with a fixed set of parameters and initialized with arbitrary set of

values. The model is then fed with inputs from a labelled dataset to generate inference

outputs. These generated outputs are then compared with the set of labelled correct output

values and the difference are recorded. These difference or errors are then formulated into

a loss value, which is used to update the model weight using optimization algorithms like

gradient descent. These set of steps are called training.

For neural networks the most widely used training algorithm is called Backpropaga-

tion(BP). In BP, the parameters of the neural networks are updated by repeated gradient

calculation and error calculation starting from the output layers towards the input ones,

hence the name backpropagation. The quality of training greatly depends on the quality

and the size of the dataset. Also, the minimum amount of data required to train a model

scales with the number of parameters in the model itself. Although appreciating this fact

requires a deeper insight of statistics, a first order intuition is that more variation a model

sees, more complex features it could learn.

Deep Learning. Deep learning is a supervised learning setting where the model is

a neural network with large number of layers of deep neural network. It is natural that

with each layer the number of parameters in the model increases. In state-of-the-art neural

networks this number is usually in the range if millions. Naturally with models of this size

the number of compute operations in inference itself is large and is even larger in training.

6



Furthermore training DNNs is challenging not only because of the increased compute cost

but also because of the demand for large labelled dataset which is why deep learning based

solutions have a high entry barrier for new tasks as discussed in chapter 1.

2.1.2 Reinforcement Learning

In layman’s terms Reinforcement Learning can be depicted as learning on the fly. In a

reinforcement learning setting there is an agent which tries to learn the optimal policy to

complete a task by performing repeated actions in a given environment. Each interaction

with the environment generates a reward value which encapsulates the effectiveness of the

given action. With each such reward obtained the agent updates its policy such that future

rewards are maximized.

For the uninitiated policy refers to the mapping of observed state and the action taken.

In contemporary RL algorithms like DQN, A3C etc. [1, 4] the policy function is approxi-

mated by a Deep Neural Network. This internal neural network is thus trained periodically

using backpropagation, with the recorded state-pairs and their corresponding reward values

as a measure of loss.

RL on the Edge

Edge devices are particularly constrained on memory and it is thus important to analyze the

memory requirement of a learning algorithm to determine its viability. Training in Deep

RL, like in DNNs require storing weight parameters and activations as an example forward

propagates through the network as these must be retained to calculate the gradients during

the backward propagation. As an example, the model described in DQN [1] stores about

1.7 million parameters and computes about 22 thousand activations for each run. Using

32-bit floating point storage, this amounts to a storage requirement close to 7 MB, which

is already higher than the typical on-chip available memory storage. As described in the

paper, using a batch size of 32 quickly increases the burden of storage to more than 220 MB.

7



To efficiently utilize the compute power of GPUs, the convolution operations are lowered

into matrix multiplications duplicating data adding another factor to storage requirement

quickly taking the requirement well over a GigaByte.

Clearly, the memory constraint would make efficiently deploying intelligence on the

edge using Deep RL a very challenging task.

2.1.3 Neuro-Evolutionary Algorithms

Neuro-evolutionary algorithms work in the same setting of RL algorithms, where the solu-

tion to a given problem is learnt by continuous interaction with the environment. However

unlike RL algorithm there is no fixed model which is trained to learn the policy function,

but the policy function is evolved using genetic algorithm. NE algorithms start with a pop-

ulation of simple neural networks. The topology and weights of these networks are then

tweaked and built upon using the cross-over and mutation operations over multiple gen-

erations. In each generation, every member of the population (the neural networks) are

given a chance to solve the given problem. A fitness value is then assigned to the members

based on how well they perform in the given task. After the fitnesses are obtained for each

member of the population, a few fittest members are chosen. These chosen members are

then passed to a genetic algorithm which forms new members for the next generation and

the cycle repeats over. NE algorithms and their characteristics are discussed in more detail

in chapter 3

2.2 Related Work

2.2.1 Distributing DNN computation

Apart from related works on distributed training of DNN [7, 8, 9, 10, 11, 12, 13], there has

been significant research in distributing the inference of DNNs across devices. Significant

work done [14, 15] has been on high performance computing clusters, typically using many

CPU-GPU heterogenous nodes whereas we aim to distribute computation on the edge.

8



Since edge devices typically face very different compute and energy constraints, the trade-

off space is naturally dissimilar. Additionally, edge devices in our work do not rely on any

high-speed interconnect which is often present in these systems. Some works such as [16,

17, 18] focus on distributing computation between an edge device(s) and the cloud and are

thus dependent on the availability of a cloud service. Along with accelerating inference on

edge devices [19, 20] there has been some work done in distributing DNNs on the edge

devices [21, 22] but such techniques are dependent on DNN primitives such as convolution

layers and cannot be extended directly to the computation graph of NeuroEvolutionary

algorithms.

2.2.2 Distribution of EAs

Distributing EAs is an exciting challenge and has been explored by researchers in ORNL,

Uber AI [23, 24] but on HPC systems spanning up to hundreds of CPUs. As mentioned

before, HPC systems do not operate under the same constraints as an edge device. However,

we believe that some insights from our work such as using Asynchronous Speciation can

be leveraged even in HPC environments and hence has a broader scope.

2.2.3 Custom HW platforms

Accelerators for DNN inference have been an increasing trend in the research commu-

nity [25, 26, 27, 28, 29, 30, 31, 32, 33, 29, 34] and ASICs such as GeneSys [35] have

demonstrated that there is tremendous parallelism available in EAs and can be leveraged to

speed-up computation efficiently. This work leverages that insight to distribute computa-

tion across many devices and on the other hand, some insights from our work are agnostic

to the implementation platform and could even leverage custom HW platforms as a node in

the system speeding up computation significantly and allowing researchers to target even

more complex problems with EAs.
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CHAPTER 3

NEUROEVOLUTION OF AUGMENTING TOPOLOGIES

NeuroEvolution of Augmenting Topologies is an algorithm developed by Stanley et al. [36]

that falls under a class of NE algorithms known as TWEANNs (Topology and Weight

Evolving Artificial Neural Networks). I use the NEAT algorithm to drive the motiva-

tions and insights in this work, however I expect the same insights to be valuable to other

TWEANNs as well. Figure 3.1 depicts the NEAT Algorithm at a coarse granularity and

below I define the terminology that will be used throughout to describe various parts of the

algorithm.

3.1 Terminology

Gene: This is the basic building block in NEAT, which can be of two types; NN node

(i.e. Neuron), or a connection (i.e. Synapse). Each gene has an associated Gene ID and

appropriate attributes. For example, connection genes have an associated weight value, an

input and output node gene.

Genome: The unique collection of genes that describe one NN topology is known as a

genome.

Population: The group of various NN topolgies in a particular generation is known as the

population.

Species: A group of genomes with similar NN topolgies are grouped under one species.

The process of speciation has been described later in this section in more detail.

Generation: One complete step in the cycle of performing inference, selection and repro-

duction (as defined below) is known as a generation.

Inference: The step involving evaluating all the genomes in the population for a task at

hand.
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Figure 3.1: NEAT

Selection: The step involving sorting the various members of the population according to

fitness, collecting the parent pool for each species, determining the number of children for

each species (spawn count) and selecting parent genomes for each child is known as selec-

tion.

Reproduction: This step performs the crossover and mutation operations to form children

for the next generation.

Crossover: This operation picks attributes from parent genes based on the relative fitness

of parents. It is important to note that crossover operations in NEAT can combine any two

topologies without any topological analysis using Historical Markings.

Mutation: This operation is responsible to tweaking the inherited genes. It is through

mutations that genomes of varying sizes and dissimilar structures can be created, leading

to the search of an effective topology. Mutations in NEAT are controlled by predetermined

probabilities and can be of a few different types described below:

• Add Connection - A new connection gene is added between two previously uncon-

nected nodes.

• Delete Connection - A previously existing connection can be deleted using this op-

11



eration.

• Add Node - An existing connection is split and disabled and a new node is inserted.

Two new connection genes are inserted to replace the disabled connection.

• Delete Node - An existing node can be removed and its associated connections are

disabled using this mutation.

Speciation: The addition of new structures might not always immediately result in a

better individual/increased fitness as it may need time to optimize. Naively selecting the

fittest individuals as parents for the next generation can lead to premature extinction of

useful topological features. NEAT speciates the population to protect such individuals and

allow them time to optimize their structure before elimination as genomes only compete

within their own species.

Fitness Sharing: To ensure any one species cannot take over the entire population, NEAT

performs fitness sharing where each genome must share the fitness of their species. De-

pending on whether this adjusted fitness is higher or lower than the population average,

each species grows or shrinks. This new count of individuals for the species is what is

termed as Spawn count in this work.

3.2 NEAT Breakdown and Analysis

Figure 3.1 represents the flow of the NEAT algorithm broken down into compute and com-

munication. Considering the figure as a graph, the vertices represent compute whereas

edges represent data movement. Blue represents Inference, green represent Evolution and

Communication is represented by red. It is necessary to understand the compute and com-

munication involved in an algorithm before one can reason about the performance of the

same. To characterize NEAT, we analyze the compute costs of the three major compute

blocks Inference, Reproduction and Speciation. We also analyze the communication that

needs to take place between these blocks, represented by the edges in Figure 3.1. Since,
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Figure 3.2: Analysis of Compute and Communication Costs in NEAT

compute and communication costs grow proportionally to the number of genes, we use

the number of genes processed/communicated by different compute and communication

blocks as a measure of cost, effectively making number of genes the metric for evaluation.

Figure 3.2(a,b,c,f) shows the trend of various costs in terms of genes across generations for

different workloads.

Figure 3.2(e) shows the contribution of each of the four mentioned costs. It is immedi-

ately clear that inference dominates by a huge margin and this sort of behavior is not unex-

pected as will be explained in Section 3.4.2. It is also useful to note from Figure 3.2(a,d)

that any communication involving genomes are the most expensive edges in the flow of

NEAT seen earlier, contributing more than 99% of communication costs.

3.3 Target Environments

The target environments to the perform the analysis presented in this work have been taken

from OpenAI gym [37]. The environments have been carefully selected to represent bigger

and more challenging workloads like the Atari games, which have been an important bench-
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Figure 3.3: OpenAI gym Environments

mark in the RL community in history being used to evaluate evolutionary strategies [38],

Deep RL algorithms [1] to Continual Learning [39] and smaller and easier workloads such

as Cartpole-v0. I used an open source implementation of NEAT [40] to run the algorithm

on the environments described below. Changes were made to the code-base to suit the

needs of the experiments and designs described later in this work.

Next I describe in detail the environments used for the experiments detailing the task, the

observation and reward space, the fitness functions used etc. The tasks can also be seen

visually in Figure 3.3.

3.3.1 Environments

Cartpole-v0

The task is to balance an un-actuated inverted pendulum attached to the top of a cart. The

pendulum starts upright and the goal is to prevent it from falling over by applying a force

of +1 or -1 to the cart. The observation for the agent is 4 floating point numbers and output

is a binary value defining the +1/-1 action. The episode ends when the pole is more than 15

degrees from vertical, or the cart moves more than 2.4 units from the center. The episode
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was also limited to 200 time steps in experiments conducted in this work (universal to all

environments). The task is considered solved when the pole is balanced for an average of

195 time steps. To evaluate the fitness of an individual attempting to solve the task, the

fitness function used is an accumulated reward over all time steps till end of episode.

MountainCar-v0

There is a car on a one-dimensional track stuck between two mountains. The task is to

climb the mountain on the right. The car’s engine is incapable of scaling the mountain in

one pass and the only way to succeed is to build momentum by oscillating between the two

slopes. The fitness function used to evaluate fitness uses the velocity gradient between the

current and previous time step as a scaling factor to the reward before accumulation.

LunarLander-v2

The goal of this task is to land a module on to the landing pad on the lunar surface by

firing the appropriate thruster. The landing pad is always at coordinates (0,0). The episode

finishes in the event the lander crashes or comes to rest receiving -100 or +100 points

respectively. Ground contact of each leg is +10 points as well. Landing on the pad and

coming to rest is 100 to 140 points. The fuel is infinite allowing the module to learn to fly

before landing however, there is a -0.3 reward for using the main engine. There are four

discrete actions available dictated by one integer number less than 4 and the observation

state has 8 floating numbers representing x,y coordinates of the lander, velocity in the x,y

direction, angle of the lander, angular velocity and whether or not the two legs have touched

the ground respectively. 200 points is considered as solved and the fitness function used

here is similar to that of Cartpole-v0.
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Atari games

The task here is to learn how to play the Atari games using button presses which is indicated

by one integer output. The goal is to maximize the score on the game which is indicated by

the reward at each time step. The observation state for these workloads is 128 bytes of the

game RAM indicating the current state. I chose three games Airraid-ram-v0, Alien-ram-

v0 and Amidar-ram-v0 for evaluating Atari performance. Atari games have been been an

important benchmark in the RL community as indicated above and are thus an important

workload for analyzing the performance of NEAT. These workloads are evaluated with the

fitness function considering the total accumulated reward, same as before.

3.4 Computational Behavior of NEAT

In this section, I present a case study on NEAT which is intended to help drive relevant

insights and characterize the computational behavior of NE algorithms.

3.4.1 Accuracy and Robustness

NEAT starts with an initial population of very simple topologies; genomes with only an

input layer with nodes equal to that of the observation space and an output layer with nodes

equal to the action space of the environment. The network starts with a fully-connected

topology and the weights are all initialized to be zero in the beginning but other initializa-

tion techniques can be used as well.

The same codebase was used for every environment, changing only the fitness function

and the structure of the initial topology to suit the observation and action space between

different runs. All the environments achieved target fitness without changing any hyper-

parameters involved (such as mutation probabilities) - demonstrating the robustness of the

NEAT algorithm.
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3.4.2 Compute Behavior

As shown in Figure 3.1, EAs essentially comprises of two broad categories of compute;

namely Evolution which is running evolutionary learning algorithm to create new genomes

every generation and Inference which involves running the observation through these genomes

and deciding an action. NEAT also comprises of an additional category called Speciation

which is responsible for grouping topologically similar genomes.

To characterize the compute behavior of NEAT, we look at these three categories in further

detail.

Evolution

Evolution can further be split into two parts which are selection and reproduction. Selection

is the process of performing fitness sharing within each species, calculating the spawn count

(number of children each species is allowed to produce) and selecting the fittest parent

genomes for each child genome. Reproduction performs two classes of computations, i.e.

Crossovers and Mutations.

1. Reproduction

Both crossover and mutations are operations that increase or decrease with the num-

ber of genes as can be understood from Section 3.1 and Figure 3.2 represents the

amount of operations in terms of genes. A key insight is that each of these operations

are independent from each other and can be performed in parallel showcasing a case

of raw parallelism. This has been termed as Gene Level Parallelism (GLP) in this

work.

2. Selection

Selection is the step that performs fitness sharing and calculates the average fitness

of each species and based on this average in comparison to the population average,

decides the spawn count for each species as to whether it grows or shrinks. The
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Figure 3.4: Execution Time - Selection vs Reproduction

compute cost of this operation is constant as it does not depend on the structure of

any genome, just the population size and their fitnesses.

A cost comparison of the two in terms of raw execution time has also been presented in

Figure 3.4. As discussed, the selection cost is independent of the structure and is thus

insiginificant for larger workloads where the large structure of the genomes makes repro-

duction a much costlier operation. It is key to note that this cost ratio of reproduction

to selection is also agnostic to the implementation platform. Another key observation is

that the reproduction operation to one child genome is completely independent of another,

thus showcasing significant availability parallelism. This available parallelism due to the

notion of a population with independent genomes has been termed as Population Level

Parallelism (PLP). However, selection does not show any such parallelism opportunity as

it operates on collective information from all members of the population.
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Inference

Inference involves evaluating all the NNs in the population. However, it should be noted

that inference in NEAT is different than traditional Multi-layer Perceptron (MLP) NNs.

The reason for this being the probabilistic nature of NEAT, wherein nodes and connec-

tions are added or deleted based on random probabilities (recall crossovers and mutations

in Section 3.1), thereby making genomes generated by NEAT highly irregular and sparse.

Another key observation is that, inference of any genome is completely independent of

others leveraging PLP similar to Reproduction.

As mentioned in Section 3.3, each environment is run through completion which can occur

either through failure or successful completion OR the environment has completed 200

time steps (experiments in this work). The input at every time step is the observation of

the state of the environment, which is the result of the action taken in the previous time

step. Each time step also returns a reward value. Each time step can be seen as a tuple

s,a,r,s’ where s is the current state, a is the determined action after one inference pass, r is

the resulting reward and s’ is the resulting state (current state for the next time step).

It can be seen now that the same genome goes through multiple inferences attributed to

multiple time steps every generation. Due to this nature of inference, it tends to dominate

computation as shown in Figure 3.5. It shows execution time of inference normalized to

the execution time of evolution + speciation (explained subsequently) for various environ-

ments. It can be seen that inference takes 2-3 orders of magnitude more time and indicates

a clear need to speed it up. The same result can also be inferred by looking at the compute

costs of performing Inference in Figure 3.2(a,e) occupying 99% of computation costs.

Speciation

Speciation is the step of grouping new members of the population each generation into

buckets. NEAT performs speciation to protect nascent features that may need time to ma-

ture. It is easy to see that survival of the fittest policy of EAs can easily wipe out nascent
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Figure 3.5: Execution time of Inference Normalized to Evolution

features that may or may not have matured in later generations to achieve better fitness.

NEAT uses Genome Distance to group genomes based on topological similarity. Each

disjoint and excess gene contributes to the distance and the higher this value, the less topo-

logically similar the two genomes are considered. Therefore this distance can be measured

simply as a linear combination of the number of excess and disjoint genes, as well as the

average weight differences of matching genes [36].

Each genome is compared with a representative of each species and genome pairs having a

distance less than a tunable parameter, the Compatibility Threshold are placed in the same

species. If no representative is similar enough, the genome forms its own species and marks

itself as the representative. This way NEAT can use historical markings to find topological

similarity.

The compute characteristics of comparing different genomes with the representatives and

forming species has been demonstrated in Figure 3.2(c) in terms of genes. Number of com-

parisons made every generation was recorded for various workloads and was used along

with the average number of genes each generation to compute these characteristics.
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Also, to prevent any one species from taking over the entire population, each genome must

share the fitness of its entire species, which has been referred to as Explicit Fitness Shar-

ing.

In other words, speciation in NEAT allows for sufficient exploration. The Exploration-

Exploitation dilemma has been a constant discussion in the RL community and it should be

noted that this exploration is not done by suppressing exploitation. After the step of fitness

sharing, the fitter species are allowed to grow whereas the weaker ones shrink while ensur-

ing safety from annihilation. This allows exploitation along with sufficient exploration.

Thus, speciation is key to the performance of the algorithm. However, Speciation does not

enjoy the same kind of parallelism as Reproduction and Inference and is thus a serial step

requiring the topology information of all genomes to function. This limitations becomes

crucial as becomes evident in the upcoming discussions.

3.5 Evaluations on Commodity Hardware

After characterizing the compute and communication costs of NEAT, the next step in ex-

ploring opportunities and challenges to NE deployment is to evaluate performance of the

algorithm on commodity hardware. In the next few sections, I implement and analyze

NEAT on various heterogenous platforms and attempt to identify bottlenecks to perfor-

mance and its reasons.

3.5.1 Methodology

Metrics such as energy, runtime and memory footprint were studied and analyzed on em-

bedded and desktop class CPU and GPU platforms. Using the NEAT-python code base [40]

and modifying it as needed to exploit available parallelism, different implementations men-

tioned in Table 3.1 were studied.

PLP - Population Level Parallelism BSP - Bulk Synchronous Parallelism
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Table 3.1: Target System Configurations
Legend Inference Evolution Platform
CPU a Serial Serial 6th gen i7
CPU b PLP Serial 6th gen i7
GPU a BSP PLP Nvidia GTX 1080
GPU b BSP + PLP PLP Nvidia GTX 1080
CPU c Serial Serial ARM Cortex A57
CPU d PLP Serial ARM Cortex A57
GPU c BSP PLP Pascal
GPU d BSP + PLP PLP Pascal

3.5.2 CPU Evaluations

I measure the completion time and power measurements on two classes of CPU platforms,

desktop and embedded. The desktop CPU is a 6th generation Intel i7, while the embedded

CPU is the ARM Cortex A57 housed on Jetson TX2 board. On desktop, power measure-

ments are performed using Intels power gadget tool while on the Jetson board I use the

on-board instrumentation amplifier INA3221. I capture the average runtime for evolution

and inference using the codebase, and use it to calculate energy consumption.

Two flavors of NEAT were used to evaluate CPU performance on each of the two platforms,

embedded and desktop. CPU a and its embedded counterpart CPU c are serial implemen-

tations of NEAT. In CPU b (CPU d for embedded), the multiprocessing library is used to

leverage PLP by parallelizing inference utilizing 4 cores.

Figure 3.6 shows the runtime and energy for inference for the various OpenAI gym envi-

ronments described above on different platforms. It can be seen that CPU b and CPU d

are 3.5x times faster when implemented using 4 cores than their serial counterparts CPU a

and CPU c respectively. Such a speed-up despite having a serial evolution step is expected

as we have seen earlier (refer to Figure 3.5) that inference tends to be orders of magnitude

slower than evolution and the massive parallelism available.

Similar analysis for evolution can be seen in Figure 3.7 for the two different platforms.

.
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Figure 3.6: Inference Runtime and Energy on various platforms
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Figure 3.7: Evolution Runtime and Energy on various platforms
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Figure 3.8: Different representations for Inference on GPUs

3.5.3 GPU Evaluations

The massive parallelism available in GPUs coupled with the massive parallelism opportu-

nities of NEAT are naturally compatible. We implemented inference using PyCUDA and

evaluated it on the Tegra GPU on the NVIDIA Jetson X2 board for the embedded class and

a GeForce GTX1080 for the desktop class. Two flavors of inference were implemented as

well which have been explained in further detail below.

Figure 3.8(a) shows a naive representation of a layer in a genome; the popular adjacency

matrix. It can clearly be observed that this representation is highly sparse. Along with the

obvious disadvantages of sparsity, it suffers from redundant multiplications. We define

redundant multiplications as those multiplications those which would have either (1) not

been possible despite a fully connected NN layer, such as row -1 to column -1 as loops

are not possible or (2) reverse connections such as row 145 to column -2 as the graph is

directed strictly from left to right (Not true for recurrent neural networks) or (3) connections

within a layer such as row 145 to column 181. Sparsity due to the layer not being fully

connected is referred to as multiplication with 0s hereafter. It is clear that the adjacency

matrix representation leads to both redundant multiplications and multiplication with 0s.

Therefore we chose two custom representations for our GPU analysis.

Two flavors of inference were implemented to utilize the Bulk-synchronous parallelism

offered by GPU programming model. The first implementation evaluates multiple vertices

of a genome in a layer in parallel by mapping the computation on all incoming connec-

tions to the vertices to different threads using a vector-matrix multiplication as shown in

Figure 3.8(b). It can be seen that the size of these matrices leave the GPU largely underuti-
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Figure 3.9: Average Percentage sparsity induced in the different representations

lized, especially the smaller workloads as it can support many more threads. This charac-

teristic along with other issues such as extensive API calls resulting from having multiple

genomes in a population inspires the second implementation which evaluates multiple ver-

tices across all genomes in a layer in parallel as shown in Figure 3.8(c). However, this

does introduce significant sparsity in the matrix. Figure 3.9 shows the sparsity of the two

approaches along with the adjacency matrix representation. Note that the first implemen-

tation is not free of sparsity because of the irregular structure of the neural network. Also

note that the adjacency matrix considered is for one genome at a time. Having multiple

genomes in one matrix will have extremely high sparsity.

Figure 3.11 shows the breakdown of runtime on the GPU depicting contribution of

memory transfers and the kernel execution time. We can see in Figure 3.10 that 70% of
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Figure 3.10: Percentage of time spent in data movement for various representations

Figure 3.11: Breakdown of execution time on GPUs under the two representations (a)
Representation 1 and (b) Representation 2
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Figure 3.12: Average memory requirement by different representations

time is spent on memory transfers in the first implementation whereas it is only a maximum

of 30% in the second implementation owing the reduced memory transfer calls as calls for

each genome are combined into one. It is important to note that the breakdown here does

not consider contributions from other sources such as pointer transfer among others.

Figure 3.12 shows the average memory requirement by of these matrices across the

workloads showing that the memory requirement can be fulfilled even by a modern on-

chip memory making EAs favorable to Deep RL networks which suffer from intensive

memory requirements due to Back-propagation.

We turn attention to Figure 3.13 which shows all 4 flavors of inference discussed so

far vs the slowest evolution. Though we notice the GPU implementation of inference ap-

proaches the speed of evolution computation, we still notice that for all workloads barring
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Figure 3.13: Runtime of different flavors of Inference implemented compared against serial
evolution
cartpole v0, evolution still remains faster. Also as seen earlier in this section, GPU imple-

mentations suffer from a multitude of other issues that urge us to explore other options.

.

3.6 A Case for Hardware Acceleration

As discussed, we can see the numerous problems with using commodity hardware for an al-

gorithm like NEAT. CPUs are slow and perform extremely poorly on the EDP front. GPUs

on the other hand are faster and offer significant acceleration but are still an inefficient so-

lution to the NE problem. This is due to the many small irregular and sparse networks that

go through inference in NEAT, both of which are not friendly to efficient GPU processing

using the BSP model. GPUs also spend significant time in initiating and performing mem-

ory transfers. It is key to note that the GPU implementations can possibly be made more

efficient by writing heavily customized kernels but that is beyond the scope of this work

and this work focuses on using available open source libraries for GPU computations.
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We have also seen various characteristics of the algorithm earlier in this section. Given

the large amounts of parallelism available in the form of GLP and PLP with the added

advantage of having significantly lower memory foot print (less than 1 MB for the work-

loads in consideration) than traditional Deep RL algorithms such as DQN, it is evident that

custom chip with a sufficiently sized on-chip memory can help remove/reduce off-chip ac-

cesses, save both energy and bandwidth while significantly accelerating the performance.

Also, the compute operations in EAs (crossovers and mutations) are simple and hardware

friendly. Furthermore, the absence of gradient calculation and significant data movement

overheads facilitate scalability [35]. The small and irregular structures of the networks

generated by NEAT also call for a new choice of hardware platform.

As motivated in chapter 1, the goal of this work is to enable the evolution of com-

plex behaviors in mobile autonomous agents which are limited both by area and energy

constraints. If we can reduce the energy consumption of the compute operations by imple-

mentation in hardware, pack a lot of compute engines in a small form factor, and store as

much as possible of the genomes on-chip and reduce cost of data movement, this goal can

be achieved.

GENESYS [35] is a SoC aimed at realising this goal in hardware. To summarise some

key results from the work; it can be seen GENESYS outperforms the best GPU implemen-

tation by over 100x in inference. ADAM (Inference engine of GENESYS) contributes to

100x more energy efficiency, while EVE (Learning/Evolution engine of GENESYS) turns

out to be 4 to 5 orders of magnitude more efficient than GPU c, the most energy efficient

among commodity platforms.
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CHAPTER 4

COLLABORATIVE LEARNING USING ASYNCHRONOUS

NEUROEVOLUTION

Massive and easy availability of custom AI accelerators that fit the constraints of the edge

might not be a distant reality but such a situation is certainly not the scenario today. Bring-

ing true intelligence that is adaptive and robust to the edge on commodity available hard-

ware can rapidly change the the way we experience AI today. Our aim through this work is

to enable solutions and ideas that further enable solutions which can use available off-the-

shelf hardware for the intelligent edge.

4.1 Target Setup

We have already seen why EAs should be the algorithm of choice when trying to deploy in-

telligence on the edge. The massive parallelism available in NE and typically low compute

capabilities of a single edge device call for a distributed solution to the problem. The notion

that there exists a population of problem solvers in EA that each tries to learn the solution

also lends itself to a distributed setting. By virtue of distribution, different problem solvers

on the edge will experience different scenarios and learning collaboratively can accelerate

the learning process. Such deployment of collaborative learning on the edge can result in

a mass proliferation of autonomous robotic swarms capable of adapting to a new problem

setting in a robust manner. We present CLAN - Collaborative Learning using Asynchronous

Neuroevolution and aim to take the first step in bringing true intelligence to the edge.
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4.2 Hard Scaling

As we have seen in Figure 3.1, there are three major compute components - Inference,

Reproduction and Speciation. The authors of [35] characterize NEAT and discuss the raw

parallelism opportunity in NE algorithms and define two new terms

• Population Level Parallelism (PLP) - The parallelism offered by multiple agents in the

population, each of which are independent.

• Gene Level Parallelism (GLP) - The parallelism offered by the independent crossover

and mutation operations.

Of the three main compute components listed above, Inference and Reproduction can lever-

age PLP and could be performed in parallel in a distributed setting, potentially improving

performance. To characterize and identify the areas that stand to gain the most by distribu-

tion, we analyze the compute costs of the three major compute blocks. We also analyze the

communication that needs to take place between these blocks, represented by the edges in

Figure 3.1.

Figure 3.2(e) shows the contribution of each of the four mentioned costs. It is imme-

diately clear that inference dominates by a huge margin and this sort of behavior is not

unexpected due to each inference step being performed over multiple time steps as noted

in Section 3.4.2. Therefore, this becomes our first candidate for distribution. It is also use-

ful to note from Figure 3.2(a,d) that any communication involving genomes are the most

expensive edges in the flow of NEAT seen earlier, contributing more than 99% of commu-

nication costs.

Remember that in a distributed setting, the actual cost of communication in terms of

time and energy is much higher. It is evidently clear that the partitioning of the algorithm

across the nodes will define the costs to be paid and subsequently the scalability of the

design.

In the next couple of sections we try to asses the potential gains and try to identify the cost
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involved while distributing various blocks in the algorithm. While naming different con-

figurations possible of the distributed system, we follow the convention CLAN IRS where

I(Inference) and R(Reproduction) can either be distributed(D) or central(C). Speciation(S)

can be performed synchronously(S) or Asynchronously(A).

4.2.1 CLAN DCS - Distributing Inference

In every generation each member of the population interacts with the environment to attain

its fitness score. This leads to multiple inferences owing to multiple time steps as men-

tioned in Section 3.4.2 raising the compute costs of performing inference. However there

is no dependence between the inferences across genomes and thus could be performed

in parallel essentially leveraging PLP. This motivates our first design choice CLAN DCS,

where inferences for multiple genomes are performed concurrently in a distributed fashion.

Therefore, the inference step is distributed while reproduction and speciation are performed

centrally and synchronously respectively.

To achieve this, an additional step is now introduced which involves sending out genomes

formed by reproduction to multiple computing agents for inference and subsequently gath-

ering back the fitness values for every genome once inference steps are completed. The

configuration and time-line of compute/communication followed in such a setup has been

shown in Figure 4.1.

It is easy to observe that at scale, it won’t take long for Amdahl’s law to catch up. An

implementation with distributed inference, though a good start can only be as fast as the

serial steps. Moreover, there does not exist a necessary condition of repeated inference over

multiple time steps reducing the compute needs of inference and making them equivalent

to the needs of performing the evolution step. This motivates us to look at the next block

of compute that can leverage PLP: Reproduction.
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4.2.2 CLAN DDS - Distributing Reproduction

We now move on to the next candidate that can exploit parallelism - Reproduction in

CLAN DDS where along with inference, reproduction is also distributed. We distribute

the reproduction step by forming children across agents in parallel. The configuration

time-line of this implementation can be seen in Figure 4.1. We can see the additional com-

munication over CLAN DCS which is due to speciation. The step of speciation needs to

see the genome structure to appropriately speciate and therefore needs the communication

of all genomes from agents to a central node. Additionally, the central agent also needs

to communicate parent genomes to agents for reproduction as it is not a necessary condi-

tion that the fittest genomes chosen as parents are available on any given agent. Hence, a

choice attempting to naively scale reproduction involves higher communication costs due

to the repeated back and forth of genomes between the agents and center. Whether this cost

inhibits scaling of Evolution is a question we examine in Section 5.1.

4.3 Soft Scaling

However, it is immediately clear that despite forming and evaluating child genomes on a

single node, the communication costs do not seem to reduce but rather counter-intuitively

increase. The share of each of the different possible transactions (Refer Figure 3.2(d))

indicates that the transfer of genomes pays the heaviest cost. As we can see from Figure 4.2,

majority of the cost involved in CLAN DCS and CLAN DDS is due to the communication

of genomes including sending children genomes for speciation and parent genomes for

reproduction. Reduction/removal of this cost could considerably improve the performance

of the algorithm by reducing communication overhead.
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Figure 4.2: Breakdown of Communication Cost for various configurations

4.3.1 CLAN DDA - Asynchronous Speciation

As noted before, localized speciation is the only major serial component that cannot ex-

ploit any parallelism. Furthermore, it is the reason behind the elevated costs of distributing

reproduction. To overcome this limitation, we propose Asynchronous Speciation (AS) aka

Asynchronous NeuroEvolution in CLAN DDA where inference and reproduction are dis-

tributed and speciation is performed asynchronously. AS refers to speciation performed on

small clans of members of the population independently instead of entire population itself.

Using clans, we allow multiple agents to perform independent speciation. The configura-

tion setup and time-line for this design choice can be seen in Figure 4.1. As can be seen,

there is no communication of genomes in this design after the necessary initialization. Al-
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Figure 4.3: Communication Cost for different design choices

ternatively, we can also visualize this in Figure 4.2, the communication cost is the least for

CLAN DDA across the workloads.

Figure 4.3 shows the behavior of the total communication cost involved in the three

proposed designs over generations. We see that the communication cost for CLAN DDS is

higher throughout for each workload as expected. It is significantly worse for larger work-

loads due to the larger genome structures. However, performing AS in CLAN DDA has to

pay the cost of communicating genomes only in the first generation and then continues to

pay negligible cost than other two design choices.
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CHAPTER 5

EVALUATIONS AND DISCUSSION

5.1 Evaluations

5.1.1 Methodology

In order to evaluate the design choices proposed above, we constructed a test bed of 15

Raspberry Pi (RPi) units connected in a distributed setting. A local WIFI network with the

measured bandwidth of 62.24 Mbps and a measured client-to-client latency of 8.83 ms for

64 B is used. This allows us to evaluate the designs within the constraints of the edge and

observe the scalability in a real system.

As described earlier, we choose OpenAI gym [37] workloads for our evaluations. To

evaluate the scalability of our distributed system, we start with 2 RPi units and increase the

number of units gradually. We refer to each of these Raspberry Pi unit as an agent. In the

following text, we discuss our evaluations using different configurations.

5.1.2 Experiments

CLAN DCS

We plot the runtime for performing inference on various workloads with varying num-

ber of RPi units in Figure 5.1. We see that for smaller workloads such as Cartpole-v0

and Mountaincar-v0, scaling stops earlier at 5 and 10 agents respectively. Other heavier

workloads continue to scale till we exhaust our test bed of 15 RPi units. It is particularly

interesting to note that for larger workloads, due to the massive amount of inference com-

pute available, the speed-up attained is almost linear and equal to the scaling factor initially

and slows down only mildly in the much later stages of scaling.

To evaluate the reason why smaller workloads like Cartpole-v0 stop scaling, we mea-
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Figure 5.1: Execution Runtime at scale for Distributed Inference

sure the breakdown of inference time into raw inference compute and time spent in com-

munication in Figure 5.2 at 5 and 6 agents, i.e. before and after scaling ends. As expected,

one can see that communication time starts dominating when scaling stops. The raw in-

ference compute time continues to scale but is defeated by the increasing communication

overhead. The cost of communicating genomes overtakes the benefit of parallelism due

to the low compute in such workloads as the genome size remains fairly small, even after

many generations of evolution.

CLAN DDS

We now implement the CLAN DDS configuration and measure runtime of performing re-

production in parallel. Inference continues to scale as before, however evolution is unable

to scale even at 2 RPi units and progressively gets worse if attempted to scale further as

shown in Figure 5.3. The reason for this is the increased communication as expected in
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Figure 5.2: Share of Inference Compute and Communication in Inference Time

Figure 4.2. We see the breakdown of execution time taken by evolution into raw evo-

lution compute (including reproduction, selection and speciation) and communication in

Figure 5.3. The time taken to perform evolution increases 2x even at the scale of 8 units

at which point the evaluations are stopped. The raw evolution compute scales similarly to

inference and is capable of leveraging PLP but it can be immediately seen that the commu-

nication dominates the runtime and starts to dominate further as scaling is attempted.

As discussed before, the choice of partitioning the algorithm dictates what edges pay

the higher communication cost of transmission between agents. Therefore, we move to the

final configuration CLAN DDA that performs Asynchronous Speciation to significantly

reduce the cost of communication and evaluate its performance

CLAN DDA

We measure the runtime of performing inference and reproduction in parallel while per-

forming asynchronous speciation The runtime plot showing the breakdown between com-

munication and raw evolution compute in the evolution phase can be seen in Figure 5.4.

Looking at the larger workloads where evolution contributes meaningful amounts, we can

see how the trend of reducing raw evolution compute time continues, similar to CLAN DDS,

however, the communication cost is not prohibitive anymore and allows evolution to scale
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Figure 5.3: Execution Runtime at scale for Evolution and Communication using Distributed Re-
production

as well as Inference, similar to CLAN DCS.

One can observe that the inflection point in the scaling of Evolution arrives far before

that of Inference, but it is however, important to remember that Inference compute is sig-

nificantly higher due to repeated inference for reward collection. Hence, observing the

total time taken by learning process combining Inference and Evolution is key. Also, It is

important to note the scale at which Evolution is able to operate under this configuration,

less than 5x of that of Distributed Reproduction. We notice significantly less communica-

tion overhead when compared to previous designs allowing higher scalability, especially

for potentially larger real-life workloads.

This configuration allows Evolution to scale unlike CLAN DDS however only until the

overhead becomes larger than serial localized Evolution itself, a point where CLAN DCS

could potentially prove to be a better choice. However, this is something which we have

not seen till exhaustion of our test bed as execution time for Distributed Asynchronous
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Figure 5.4: Execution Runtime at scale for Evolution and Communication using Asynchronous
Speciation

Evolution continues to be lesser than that of localized Evolution. We further this line of

thought in Section 5.2.2

5.1.3 Evaluating Scalability

In our evaluations so far, we have operated all workloads with each generation and conse-

quently inference lasting multiple time steps. However, this assumption does not always

hold true outside of typical RL game workloads such as using NE in autonomous robotics.

So far, because of this nature, inference compute has dominated heavily and not allowed

evaluations a chance to understand the difference in performance of the complete learning

process under different configurations. This limitation can be overcome by evaluating each

genome only once in a given generation, thus limiting the dominance of inference. In such

a scenario, we can truly test the mettle of various configurations.

42



Figure 5.5: Breakdown of Compute Share in Different Designs

We use two workloads; one from each class of large and small workloads namely

Airraid-ram-v0 and Cartpole-v0 respectively. The share of different compute for each

of the two workloads has been shown in Figure 5.5 for comparison. The effect of the

increased amount of communication in CLAN DDS becomes more evident here. Along

with the increased amount of communication involved, the constant cost of invoking the

communication channels also kills such a design when such a scenario is presented where

the amount of communication is no longer sufficient to amortize the constant setup costs.

Looking at Figure 5.5, it can be seen that communication consumes about 50% and 94% of

the share for larger and smaller workload respectively while in the CLAN DDS configura-

tion. This share reduces to 36% and less significantly to 93% respectively in CLAN DCS.

The best result is seen while using CLAN DDA, where the share of communication is only

22% and 93% respectively indicating both energy and runtime savings. This result is sig-

nificantly important to note as the cost of communication can get extremely high between

edge devices using slower and more distant mediums of communication or go the other

way by using better and faster mediums, an effect which we discuss in Section 5.2.2.

As we have seen in Section 5.1.2, Asynchronous Speciation allows reproduction to

scale along with inference. Scalable reproduction and inference along with reduced cost of

communication make CLAN DDA the preferred configuration.
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5.2 Discussion

5.2.1 Performance per dollar

Figure 5.6: Comparing Platforms - Performance per Dollar

Deploying massive intelligence on the edge needs an additional performance metric

to be evaluated, i.e. the price for performance. To evaluate this metric, we also com-

pare the results of Inference of the distributed system with Raspberry Pis to two localized

implementations, one in each of the desktop and embedded class: (a) High-Performance

Machine (HPC) and (b) Nvidia Jetson Tx2 described in Table 5.1. The price of HPC ma-

chine and Jetson Tx2 is comparable to 40x and 15x to the cost of a RPi respectively. An

interesting question now is whether such a distributed system at scale can achieve similar

performances to these much more expensive platforms while paying the communication

latency and if yes, at what scale does it achieve equivalent performance.
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We examine this question in Figure 5.6 for various workloads. We see that for extremely

small workloads such as Cartpole-v0, the distributed system cannot achieve performance

equivalent to that of localized implementations on higher end platforms. This is due to the

communication overhead which cannot be amortized by low amount of compute. However,

for larger workloads, we see interesting results. At a scale of 6 compute units, the system

can achieve performance similar to a Nvidia Jetson Tx2 board, a Price-Performance Prod-

uct (PPP) improvement of 2.5x. At a scale of 15 units, we can compare the system with

the HPC system, a achieving a PPP benefit of 1.2x. The GPU performances of both the

higher end platforms could not be rivaled within the limits of our single core experiments

with our test bed. Although, we haven’t noticed scaling stop yet for the larger workloads.

Table 5.1: Platform Specifications
Platform Processor Price
HPC CPU 6th gen i7 $1500
HPC GPU Nvidia GTX 1080 $1500
Jetson Tx2 CPU ARM Cortex A57 $600
Jetson Tx2 GPU Pascal $600
Raspberry Pi CPU ARM Cortex A53 $40

5.2.2 Extrapolating Scalability

We begin this section trying to answer a line of What if questions in order to understand

the nature of scalability under different configurations and under various assumptions and

assess how changes to our evaluation settings could potentially impact scalability. First

important question that needs answering is:

What if we weren’t limited by resources?

It is important in a scalability study that we assess the limits of the system. For larger work-

loads such as those of Atari games, we do not notice a point where scalability stops for In-

ference. Whereas for Evolution, despite noting an inflection point while using CLAN DDA,

we do not yet see a point where a serial choice would be better under the limitation of our

test-bed.
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Figure 5.7: Extrapolating to assess Scalability

As Inference continues to scale benefiting the overall runtime, we wish to assess at what

point does scaling stop for different configurations and as we continue to scale, what config-

uration proves to be a better choice. In order to do so, we need to go beyond the limit of our

test-bed of 15 Raspberry Pis. It is also important to evaluate both multi-step and single-step

inference as both operate under two different interesting situations. We use inference, com-

munication overheads in each configuration and evolution trends seen to extrapolate these

curves to predict these points for CLAN DCS and CLAN DDA. For more accurate ex-

trapolation of compute trends, we performed experiments using different population sizes,

effectively emulating higher scale as each compute agent performs computation for a fewer

genomes, as would happen if there were more compute agents with the same population

size. We do not study CLAN DDS as it is clear that it performs worse in any setting. The

extrapolated curves for both multi-step and single-step inference have been shown in Fig-

ure 5.7. We show raw inference, evolution compute along with communication overheads

and also plot the total execution time represented by I, E, C and T in the figure.

The key result here is that for both multi and single-step inference, CLAN DDA always

performs better than CLAN DCS in total time taken. It is also interesting to note that as

raw compute continues to scale due to the available PLP, the total time taken is defined

by communication overhead. For single-step inference, CLAN DCS continues to scale till

10 units and CLAN DDA pushes scalability to 12 units owing to its low communication
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overhead. For multi-step inference, the performance stagnates for both configurations with

CLAN DDA performing better by 1.1x throughout the scale.

What if the communication technology used was better? Over the past few years, the

idea of a connected edge has grown more and more. From IoT for smart devices to au-

tonomous driving (V2V communication), the discussion of communication between de-

vices has been prevalent in both academia and industry. Innovations made in the field such

as LIDAR etc. could certainly be leveraged in the future in a setting like ours. To ana-

lyze the effect such a change would have on the scalability in our distributed configuration,

we halve the communication cost as an approximation and plot the total execution time

curves for CLAN DCS and CLAN DDA for both multi-step and single-step inference in

Figure 5.8

We notice the scalability of CLAN DCS improves from 10 nodes to 12 in such a scenario

whereas it does not show any change in CLAN DDA where communication was a less

significant challenge.

What if we used Custom HW instead of Raspberry Pi? Needless to say, there has been

a tremendous surge of research work in the field of custom DNN inference hardware in

recent years. Many DNN accelerators have been proposed [25, 26, 27, 28, 29, 30, 31, 32,

33]. Going by the trend, it is not far fetched to imagine the availability of these accelerators

as commodity hardware. We assume a 32x32 systolic array implementation and evaluate

performance using a cycle-accurate simulator SCALE-sim [41] and plot again the total run-

times for multi-step inference for both configurations under this assumption in Figure 5.8.

Signicantly faster compute performance means communication becomes a much more se-

rious issue and that is exactly what we can witness from the runtime plots. CLAN DCS

cannot scale under such a situation due to the heavy communication overhead and serial

evolution. CLAN DDA however, still shows scalability scaling upto 6 nodes showing a

performance improvement of over 2.5x when compared to CLAN DCS.
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Figure 5.8: Extrapolating to assess Scalability with alternate computing and communica-
tion paradigms
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CHAPTER 6

CONCLUSION AND FUTURE WORK

Significant focus and effort has been made in characterizing, analyzing and understand the

compute behavior of Deep Learning workloads and designing custom accelerators for the

same. However, the DL landscape today cannot bring true general intelligence to the edge

due to heavy training requirements and rigid topologies. Evolutionary algorithms, particu-

larly the field of NeuroEvolution brings the promise of solving these problems as they do

not require backpropagation based training and do not suffer from rigidity but instead can

evolve continuously.

Even with increasing interest in NE, we have not seen NE solutions being widely accepted

due to the lack of understanding of their compute behavior and suitable platforms. This re-

search work tries to bridge the gap by characterizing and understanding opportunities and

challenges in enabling NE on various heterogeneous platforms. This work also argues for

bringing intelligence to the edge as it can significantly alter our experiences with AI as a

human race.

To enable such a solution, this work studies in detail the compute and communication

behavior of NEs and its performance within the constraints of the edge. This work also

motivates the need for a distributed collaborative learning solution the edge problem and

studies two different scaling configurations. Finally, it also proposes an algorithmic modifi-

cation Asynchronous Speciation and a distributed solution CLAN - Collaborative Learning

using Asynchronous NeuroEvolution that can help scale the algorithm further and improve

performance by significantly cutting the synchronization cost paid by the system.
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6.1 Future Work

6.1.1 Allowing Global Speciation

Allowing complete Asynchronous Speciation (AS) means that at the very least there will be

as many species as the number of computing units in the distributed system. This can even-

tually get out of hand as the number of units continue to scale and the number of species

continue to increase. Intuitively increased number of species mean lesser genomes in each

species and subsequently lesser competition for survival as each member only competes

within its own species. It could also mean slower exploration as more of similar genomes

survive. Both of these factors could potentially hamper the learning and diminish the con-

vergence rate for a given task. We aim to study this effect in more detail in the future.

Given that such a situation exists, we need to come up with new techniques that al-

lows synchronous speciation without a significant bump in the communication costs. One

straightforward way of achieving such a result is to allow synchronous speciation periodi-

cally each n generations. This period can be tweaked based on the accuracy loss incurred

due to asynchronicity.

An alternative to Periodic Synchronous Speciation (PSS) can be imagined as Synchronous

Speciation using Representative Members(SSR). SSR(PSR) performs speciation every(n)

generations using a representative member of the species formed by AS. Two representa-

tives belonging to the same species automatically clubs their entire species into one. This

form of synchronous speciation reduces cost, however it is important to note that it does

not reduce the amount of synchronization points needed to scale evolution and thus still

suffers on that front.

These are interesting ideas that need to be explored in the future.
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6.1.2 Asynchronous Generation Planning

In AS, the only synchronization step that leaves units idle is the calculation and commu-

nication of spawn count which allows reproduction to begin once received. The above

means that if we are able to somehow generate children without receiving an exact spawn

count, we can eliminate significant portion of the idle time on the agents. To achieve this,

we propose Asynchronous Generation Planning (AGP). This translates to removing the re-

quirement of maintaining an exact population size. The need for generation planning arises

from the need to allow fitter species to form more children to help move the exploration in

the direction of the optimal solution to the task. If each species could individually gauge

its fitness w.r.t to other species, it can estimate the number of children it has to form. A

mechanism whereby this is achievable as an approximation can solve this problem. In such

a scheme, each species decides its spawn count by looking at its current percentage of the

population size, i.e. size of species/size of population, its own fitness history and its history

of spawn counts defined by the central agent. The idea is to see if the fitness of the species

has been growing in the past and correspondingly if the center has historically assigned

more and more members to the species or vice-versa. If the former is the case, then there

is an estimated increase in spawn count and can be estimated using the current species size

and a model of the history. If latter, the decrease is estimated. It is immediately obvious

that such a model will be based on assumption and can make mistakes. To mitigate these

mistakes, one can add completely asynchronous updates to the model where correct spawn

counts are sent to the agents by the center. This communication is completely overlapped

with computation as agents never wait for this information. Once received, agents look

at the spawn count and compare against assumed spawn count. If assumption was lower,

more children are added to the species in the next evolution step and if the assumption is

higher, few children are killed off to maintain the balance of the population size.
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6.1.3 Reliability and Fault Tolerance

In the mentioned design choices, it is easy to see the key role the central agent plays to the

learning process. Throughout the generation and across them, multiple one-to-many and

many-to-one communications happen where one is always the same agent. Having such

an agent means that this agent can get overworked. In our experiments, we noticed similar

issues with the slowing down of the central agent as we continued to run multitudes of ex-

periments and eventually even causing failures in rare occurrences. For a reliable solution,

we can switch the agent performing the task of the central agent every few generations to

ensure there is no load imbalance on average across the distributed computing units. Fault-

tolerance is simple to achieve in case of failure of any peripheral agents as such members

of the population on that node can be considered as dead and more members can be as-

signed to other units in the next generation. Achieving fault-tolerance for the central node

is a non-trivial matter and something that needs further exploration in the future along with

achieving reliability.
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