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SUMMARY 

The objective of this research is to advance a multi-channel wireless implantable 

neural recording (WINeR) system for electrophysiology and behavioral neuroscience 

research applications. The system is composed of two units: a system-on-a-chip (SoC) 

transmitter (Tx) unit and a receiver (Rx) unit. In the Tx unit, the outputs are combined 

with marker signals and modulated into pulse widths after the neural signals are 

amplified and filtered by an array of low-noise amplifiers (LNA). The next step involves 

time-division multiplexing (TDM) of pulse-width modulation (PWM) signals. The TDM-

PWM signal drives RF transmitter block and is transmitted by an antenna. To satisfy the 

needs of neuroscientists during animal experiments, the proposed WINeR system 

provides long-term recording with inductive powering and stimulus-artifact rejection for 

closed-loop operations, which requires simultaneous stimulation and recording.  

The Rx is another critical unit for wireless-link communication. To increase the 

area of wireless coverage, multiple antennas are used for the Rx. In addition, the 

automatic frequency-tracking method is used to track free-running Tx frequencies, and a 

smart time-to-digital conversion method is used to reduce noise and interference. A high-

throughput computer interface and software are also developed to continuously receive 

and store neural data. The WINeR system is a potential tool for neuroscientists due to 

several advantages, such as a reliable wireless link with large coverage and no blind spots, 

low power consumption, an unlimited power source, and a stimulation function.  

The contributions from this research are summarized as follows:  

1. Development of a low-power and low-noise neural recording amplifier 

2. Development of a power scheduling mechanism for a multi-channel analog front-

end (AFE) to conserve power consumption   

3. Development of a dual-slope charge sampling AFE, which can simultaneously 

amplify and filter neural signals and easily modulate them into PWM signals 
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4. Development of a wideband multi-antenna receiver for the wireless recording of 

animals in large arenas 

5. Development of a real-time data acquisition system for multi-channel neural 

recordings 

6. Development of a pulse-width-modulation impulse-radio ultra-wideband (PWM-

IR-UWB) receiver for a low-power wireless neural recording system 

7. Development of a robust closed-loop power transmission system based on RF 

back telemetry 

8. Demonstration of a battery-powered WINeR system tested in scientifically 

meaningful in vivo experiments in large arenas 

9. Demonstration of data acquired from an inductively powered WINeR system 

from an animal in a home cage 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

CHAPTER I 

INTRODUCTION 

1.1. Motivation 

The multisite monitoring of brain activities is essential to the ongoing 

development of effective therapies for neurological diseases, such as epilepsy, dementia, 

and Alzheimer's disease. Over the past few years, researchers have attempted to engineer 

multichannel neural recording systems with minimum disturbance to the animal subject. 

Wireless operations possess several distinct advantages compared with wired operations, 

including the elimination of tethering effects, minimal irritation, a low risk of infection, 

smaller size, and simplicity. However, hardwired systems remain more popular than their 

wireless counterparts in the majority of neurophysiology laboratories. Wireless systems 

continue to experience a variety of problems, such as limited battery lifetime, limited 

wireless coverage area, and poor connectivity, which render them unreliable for state-of-

the-art behavioral neuroscience studies. 

 

Fig. 1.1. A conceptual view of the inductively powered wireless implantable neural recording system-on-a-

chip with for long-term neural recording from small freely behaving animals. 

USB
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The objective of this research is to develop a multi-channel wireless implantable 

neural recording (WINeR) system that outperforms existing systems. A WINeR system 

can provide a reliable wireless link with large coverage without blind spots, low power 

consumption, an unlimited power source, and a stimulation function with stimulus-

artifact rejection. Thus, the developed system enables neuroscientists to eliminate cables 

from their experimental setups and detect high-density and meaningful neural signals. 

A conceptual view of the WINeR system is provided in Fig. 1.1, which employs 

two independent wireless links in the industrial-scientific-medical (ISM) band at 433/915 

MHz and 13.56 MHz for wireless neural recording and inductive powering, respectively.  

1.2. Background 

1.2.1. Neural-Recording Applications 

Neural recording technology has become significant in the medical treatment of 

neurological diseases and neuroscience research [1]-[4]. Devices that target neurological 

diseases, known as neuroprostheses, replace sensory or motor functions that may become 

lost as a result of injury or disease. These devices must be chronically implantable, safe, 

and highly reliable for use in humans as part of a therapeutic paradigm. Size, power 

consumption, and carrier frequency are highly constrained in these devices due to 

implantation requirements. Cochlear implants and deep brain stimulation (DBS) are 

examples of neuroprostheses that produce undeniably positive outcomes [5].  

Devices that target neuroscience research applications are frequently used on 

animal subjects and do not always have to be implantable. They are frequently used to 

monitor interactions among large populations of neurons because animals perform 

specific tasks that involve processing sensory inputs, generating motor control outputs, or 

performing specific cognitive functions, such as learning and memory [6]. However, 

these devices must compete with sophisticated instruments that are employed by the 
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neuroscience community [7]. These devices should provide the same quality and quantity 

of information as their previous counterparts while resolving some of their limitations, 

such as hardwired interconnects. The tethering effect produced by wires attached to small 

animals may affect animal behavior. These devices deteriorate rapidly, increase noise and 

motion artifacts, and require costly motorized commutators as part of the recording setup. 

1.2.2. Neural-Recording Amplifier Design 

The depolarization of the membrane of a neuron generates extracellular action 

potentials (AP) that are waveforms in the range of 100 Hz to 10 kHz with amplitudes 

ranging from 50 μVpp to 1 mVpp. Another important neural signal is the local field 

potential (LFP) that consists of lower-frequency neural waveforms ranging from mHz to 

200 Hz with amplitudes ranging from 500 μVpp to 5 mVpp [8]. It is very important to 

have a low-noise neural amplifier design to record both neural signals. Indeed, achieving 

a low-cutoff frequency in the sub-hertz range with a small footprint and low-power 

consumption on the chip is a challenge for LNA designers. Among them, Harrison et al. 

have reported a remarkable study [9], in which they presented a topology for a metal-

oxide-semiconductor (MOS) and bipolar pseudo-resistor with a capacitor feedback 

amplifier. This topology has been used by many other groups [10], [11]. In addition, 

Harrison et al. resurrected a figure-of-merit for noise performance known as the noise 

efficiency factor (NEF), which is defined as 

           √
     

           
 , 

where Vni,rms is the input-referred rms noise voltage, Itot is the total amplifier 

supply current, and BW is the amplifier bandwidth in hertz. UT is the thermal voltage kq/T, 

k is the Boltzmann constant, and T is the absolute temperature. An amplifier using a 

single bipolar transistor (with no 1/f noise) has an NEF of one; all practical circuits have 
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higher values. Using NEF has encouraged designers to invent topologies and techniques 

with successively lower and improved NEFs. 

However, in these designs, the MOS resistance highly depends on the input and 

output voltages, causing distortion when large signals appear at the output. This is not 

uncommon, particularly at the output of the second OTA in the presence of local field 

potentials (LFPs) that are in-band neural signals from large populations of neurons firing 

in sync and creating low-frequency signals with relatively large amplitudes. To solve this 

problem, Zou et al. developed a balanced tunable pseudo-resistor to minimize the 

resistance distortion depending on the output voltage [12]. In addition, although 895 nA 

of low-power consumption was remarkable, the bandwidth was low for neural-recording 

applications. 

Several interesting LNA architectures have been proposed after Harrison. One of 

the most interesting circuit configurations that has been developed to improve the NEF is 

that of the source degeneration resistor, which is proposed in [13]. The noise contribution 

from a source-degenerated load is mainly from degeneration resistors, whose noise is 

essentially thermal, whereas MOSFETs in a regular active load contribute a large amount 

of 1/f noise. Otis et al. proposed a complementary input stage to double the effective 

transconductance with a given bias current [14]. Muller et al. used a digitally intensive 

architecture to reduce system area and enable operation from a 0.5 V supply. The 

architecture replaced AC coupling capacitors and analog filters with a dual mixed-signal 

servo loop, which allows for the simultaneous digitization of the action and local field 

potentials. A noise-efficient DAC topology and a compact, boxcar sampling ADC are 

used to cancel input offset. The prototype occupies 0.013 mm
2
 while consuming 5 μW 

and achieving 4.9 μVrms of input-referred noise over a 10 kHz bandwidth [15]. Finally, 

Gao et al. used switched-capacitor filtering to provide a well-controlled frequency 

response, and utilized windowed integrator sampling to mitigate noise aliasing, 

enhancing noise/power efficiency [16]. 
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1.2.3. Wireless Neural Recording Microsystems 

Over the past few years, researchers have been trying to engineer multichannel 

neural-recording systems with minimum disturbance to animal subjects. To this end, 

wireless operation has several clear advantages in comparison to wired operation, such as 

not having tethering effects, exhibiting less irritation or a lower risk of infection, being 

smaller in size, and being easy to use. However, hardwired systems are still far more 

popular than their wireless counterparts in the majority of neurophysiology labs. Wireless 

systems still suffer from problems such as limited battery lifetime, limited wireless 

coverage area, and poor connectivity, which render them unreliable for state-of-the-art 

behavioral neuroscience studies. 

The majority of ongoing wireless neural interfacing research has been focused on 

transferring some sort of limited processing capability to the implantable front-end to 

limit the required wireless bandwidth at the cost of losing some neural information and 

complicating the implantable unit [2], [17], [18]. However, these data reduction methods 

are employed only for spike detection. This is not possible for LFP recording, although 

LFPs are becoming increasingly important in neurophysiological investigations [19]. 

Moreover, the majority of the research on wireless neural recording performed to date has 

been focused on the high-density recording front-ends and the transmitting (Tx) side of 

the system, where the main challenges are miniaturization, low-power consumption, and 

low noise to the extent that the Tx side could eventually be implanted in the animal or 

human body. However, in a complete wireless data acquisition system, the wireless link, 

external receiving (Rx) side, computer interface, data storage, and user interface should 

be able to support the Tx unit for the entire system to operate smoothly without losing 

information that is important for the further processing of the recorded signals.  

The most challenging problems to address in designing the Rx side are 

bandwidth, sensitivity, coverage of the experimental arena without leaving blind spots, 

and continuous streaming of the acquired data to the computer without any losses. In 
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some early designs, analog samples were amplified, filtered, and directly fed into a 

voltage-controlled oscillator (VCO) on the Tx side to be frequency modulated (FM) after 

time-division multiplexing (TDM). On the Rx side, commercial FM receivers, such as the 

WinRadio (Melbourne, Australia) were employed [20]. However, because of the 

bandwidth limitation (~150 kHz) on the Rx side, such systems suffered considerable 

crosstalk between channels, which also limited the number of channels to fewer than 10. 

Increasing the Rx bandwidth can alleviate these problems, as demonstrated in a 32-

channel wireless neural-recording system by Triangle Bio-Systems (Durham, NC), which 

operates at 3.2 GHz using a custom-designed Rx with a bandwidth of 300 MHz [21]. 

Another advantage of increasing the carrier frequency is reducing the size of the optimal 

antennas. However, such frequencies are not useful for implantable devices because of 

the significant absorption of high-frequency electromagnetic fields in the tissue [22].  

As a result of the above-mentioned limitations, most recent wireless neural-

recording systems have on-chip analog-to-digital converters on the Tx side followed by 

amplitude, on/off, frequency, or phase-shift keying (ASK/OOK/FSK/PSK) to transmit 

digital samples in the industrial, scientific and medical (ISM) band. The HermesD 

system, for instance, utilized an FSK scheme along with a 24 Mbps custom-designed 

transceiver [4]. Rizk et al. used a commercial ASK/OOK transceiver at 1 Mbps from RF 

Monolithics (Dallas, TX) for their 96-ch system [23]. Cheney et al. used a commercial 

2.4 GHz FSK transceiver at 1 Mbps from Nordic Semiconductor (Trondheim, Norway) 

for their 16-ch system [24]. High-data-rate digital systems require frequency-stabilization 

components, such as crystals and phase locked loops (PLL), to reduce the phase noise 

and ensure proper synchronization between Tx and Rx, which can increase the size and 

power consumption of the Tx. Those with lower data rates either have a limited number 

of channels, low sampling rate per channel (not suitable for single-unit recording), or 

require an extensive data reduction strategy on the Tx side [25]. 



7 

 

Using ultra wideband (UWB) transceivers is quite attractive because of their high 

data rate, low multipath interference, low-power consumption, and relatively simple 

circuitry on the Tx side. Chae et al. developed a 128-ch neural-recording system 

operating over the 3-5 GHz band [17]. They reported a maximum data rate of 90 Mbps; 

however, neither separation between Tx-Rx nor coverage of the experimental space was 

reported. Greenwald et al. also developed a 16-ch neural monitoring system with a 

controllable pulse rate between 90 and 270 MHz [26]. They verified the functionality of 

the system in vivo. However, a data rate of 1 Mbps was insufficient for neural-recording 

systems with high channel count. A UWB transceiver is commercially available from 

Neuralynx (Bozeman, MT) for another 128-ch system, which offers a data rate of 100 

Mbps and supports up to 18-bit resolution and 32 kSps for all channels [27]. However, 

the architecture of the Rx has not been disclosed. Although the UWB offers many 

advantages, it is prone to interference from other RF sources. In addition, because of the 

wide spectrum of the device's carrier-less short pulses, a long synchronization time is 

required to achieve lossless signal acquisition and tracking on the Rx side with complex 

signal processing methods to recover data in noisy environments [28]. 

1.2.4. Inductive Powering 

A key limitation of common wireless neural recording systems is that the animal 

subject must carry a large payload of batteries. This requirement may not be an issue in 

recording from costly primates [3], [29]. However, the majority of laboratories use small 

animals, such as rats and mice, for which a compromise must be reached between the size 

and the weight of the headstage and the uninterrupted duration of the experiments. The 

ability to conduct long-term uninterrupted recording is attractive to neuroscientists 

because the neural population under analysis frequently changes over time. Therefore, 

overnight recording is required to track neurons for an extended period of time for 

learning studies or to combine experimental trials across consecutive days [4]. 
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Cong et al. designed a blood-pressure-monitoring microsystem that was powered 

by an external RF power source. The received RF power level and blood pressure signals 

can be sensed and wirelessly transmitted for feedback control of the external RF power 

[30]. Xiao et al. designed a 20-μW neural-recording tag for extremely small implants; the 

tag can be either remotely powered using a transponder-reader link or operated from a 

small battery to expand the communication range [31]; however, they did not apply their 

system to in vivo experiments. Sodagar et al. proposed an implantable microsystem that 

was capable of simultaneously recording neural activity on 64 channels and wirelessly 

transmitting spike occurrences to an external interface. Although the system is powered 

and programmed through an inductive RF link, the distance is limited [18].  

1.2.5. Recording and Stimulation 

Some applications require a system that interacts with the central and peripheral 

nervous system in a bidirectional manner. For example, DBS which is an effective 

neuromodulation therapy for Parkinson's disease (PD), requires neural recording for a 

closed-loop operation. Shahrokhi et al. developed a 128-channel neural recording and 

stimulation interface [32] that did not operate with a wireless system, featured no 

stimulus-artifact rejection, and was not used to perform in vivo experiments. Lee el al. 

introduced 64-channel stimulators and an 8-channel neural-recording system [33] with an 

external wireless micro controller. Azin et al used two identical 4-channel modules in a 

single SoC [34]. 

When recording and stimulation are performed simultaneously, a large amount of 

stimulation current can force the saturation of adjacent recording electrodes and 

recording amplifiers. Due to the large time constant, the recovery may be time consuming 

but can prevent immediate neural recording after stimulation, which is referred to as a 

stimulation artifact [35], [36]. In the case of arrays of chronic microelectrodes, this 

problem is exacerbated by the close spacing between the electrodes and their mutual 
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coupling. Although the reduction of artifacts using software is feasible [37], software 

techniques are not capable of recovering the period during which the amplifiers are 

saturated, which is frequently longer than 5 ms. Previously reported hardware-based 

techniques use a low-slew-rate initial amplifier [38] or actively discharge the electrodes 

immediately after stimulation [39]. These solutions require that electronics be placed on 

the animal next to the electrodes. To reduce the complexity of hardware-based techniques, 

Venkatraman et al. used an array of switches between the first and second amplifier 

stages to disconnect the second stage from the first stage for a short period after the 

stimulation [40].  

As previously discussed, several issues for wireless neural-recording systems 

remain unresolved. Important specifications for the state-of-the-art wireless neural 

recording systems are summarized and compared in Table 1.1. Photographs of recently 

developed miniaturized wireless neural-recording systems are provided in Fig. 1.2.  
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Table 1.1: State-of-the-art wireless neural-recording systems. 

 
Sodagar 

[18] 

Harrison 

[42] 

Chae 

[17] 

Miranda 

[4] 

Azin 

[41] 

TBSI 

[21] 

Mitra 

[43] 

Muller 

[44] 

Year of 

Publication 
2009 2011 2009 2010 2011 2011 2013 2014 

Total # of 

Channels 
64 100 128 32 8 64 24 64 

Simultaneous 

Channels 
2 1 128 32 4 64 24 64 

LNA Gain 

(dB) 
60 60 60 46 32 58 35.6-75.6 - 

Power 

Source 

Inductively 

powered 

Inductively 

powered 

Battery 

powered 

Battery 

powered 

Battery 

powered 

Battery 

powered 

Battery 

powered 

Inductively 

powered 

Modulation OOK FSK UWB FSK FSK FM - 
Back-

scattery 

Data Carrier 

Frequency 

174 ~ 216 

MHz 
915 MHz 4 GHz 

3.7 ~ 4.1 

GHz 

433 

MHz 
3.2 GHz · N/A 

Power 

Carrier 

Frequency 

4 MHz / 8 

MHz 

2.765 

MHz 
N/A N/A N/A N/A N/A 300 MHz 

Data 

Acquisition 

Spike data 

reduction 

Spike data 

reduction 

data 

reduction 

/ raw 

Raw data 

Spike 

data 

reduction 

Raw 

data 
Raw data Raw data 

Data rate 2 Mbps 157 kbps 90 Mbps 24 Mbps 500 kbps 
3200 

kSps 

1 kSps 

For LFP 
1 Mbps 

Resolution 

(bits) 
8 10 9 12 10 · 10 15 

Data link 

Energy per 

bit 

· 3185 pJ/b 
17.78 

pJ/b 

1250 

pJ/b 
· · · · 

Power 

supply (V) 
1.8 3.3 3.3 5 1.5 / 5 2.95 1.8 / 3.3 · 

Process 
0.5-µm 

CMOS 

0.6-µm 

BiCMOS 

0.35-µm 

CMOS 
Discrete 

0.35-µm 

CMOS 
· 

0.18-µm 

CMOS 

65-nm 

CMOS 

Power 

consumption 

(mW) 

14.4 8 6 142 0.42 · 
Activity-

dependent 
0.225 
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                           (a)                                                     (b)                                                       (c)      

 

                          (d)                                                       (e)                                                      (f)  

 

(g) 

 

(h) 

Fig. 1.1. State-of-the-art miniaturized wireless neural recording systems (a) [18], (b) [21], (c) [33], (d) [41], 

(e) [4], (f) [42], (g) [43], (h) [44]. 

MICROFABRICATED

ELECTRODES

/ANTENNA
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1.3. Dissertation Outline 

The remainder of this dissertation is organized as follows. Chapter 2 presents the 

preliminary wireless neural recording system WINeR-6, in which neural signals are 

amplified, filtered, converted to pulse width signals, and transmitted wirelessly through a 

FSK transmitter. After describing the Tx headstage, the wideband dual-antenna receiver, 

which demodulates the transmitted neural signals, is described. The results of a 

biologically meaningful animal experiment are also presented in this chapter. Chapter 3 

proposes a dual-slope charge sampling analog front-end, which can simultaneously 

amplify and filter neural signals and easily modulate them into PWM signals. Chapter 4 

describes a WINeR-7 system with a novel dual-slope charge sampling AFE. In this 

chapter, pulse-width-modulation impulse-radio ultra-wideband (PWM-IR-UWB) 

communication with a WINeR-7 system is also described for a low-power wireless neural 

recording system. Chapter 5 presents in vivo animal experiments performed with the 

WINeR-7 system, which is powered by battery source and near-field wireless power 

transmission. A robust closed-loop power transmission system based on RF back 

telemetry was developed for inductively powered freely moving animal experiments. 

Chapter 6 presents the conclusions of this work and proposes future studies.  
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CHAPTER II 

WIRELESS NEURAL RECORDING SYSTEM 

2.1. WINeR-6 SoC Design 

Yin and Ghovanloo presented the WINeR-5 [45], which was a battery-powered 

32-channel wireless neural-recording system. The next revision of the SoC, which is 

called the WINeR-6 was developed. Because the WINeR-6 uses a closed-loop inductive 

power system, it can simultaneously record from 32 channels for an unlimited period of 

time without losing any piece of information. 

2.1.1. System Architecture 

The current WINeR-6 system prototype consists of three key components: (1) a 

32-channel transmitter application-specific integrated circuit (ASIC) that is integrated on 

a chip, (2) a custom-designed wideband receiver unit (Rx), and (3) a wireless power 

transmitter unit (Reader). The complete WINeR-6 system block diagram is shown in Fig. 

2.1. Extracellular neural activity is picked up by a microelectrode array (MEA), which 

can either be micromachined or operated as an equally spaced bundle of sharpened 

microwires. An array of two-stage, low-noise amplifiers (LNA) magnifies the neural 

signals by a gain of up to 8000. An array of high-speed comparators compares the 

amplified neural signals with a precision triangular waveform to sample and convert the 

amplitudes of the neural signals to time segments in a step well known as pulse-width 

modulation (PWM) or analog-to-time conversion (ATC) [46]. The next stage of the 

WINeR-6 structure involves a time-division multiplexer (TDM), which serializes the 

PWM samples and combines them with four monitoring signals: half of the rectifier 

output (VREC/2), the bandgap reference voltage (VG), a temperature dependent voltage 

(VT), and the negative supply rail (VSS).  
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Fig. 2.1. WINeR-6 system block diagram with its key new features highlighted: (1) LNA power scheduling, 

(2) improved RF transmitter, (3) inductive powering, and (4) closed-loop power control. 
 

Therefore, every frame of the PWM signal at the output of the TDM block 

consists of 36 pulses, which pass through a PWM mask to improve their timing accuracy 

and drive a tunable voltage-controlled oscillator (VCO) that operates at about 915 MHz. 

The VCO up-converts the baseband PWM-TDM signal by frequency-shift keying (FSK), 

and finally, the PWM-TDM-FSK signal at the output of the VCO is amplified and 

transmitted through a miniature wideband monopole antenna. 

The WINeR-6 system has four important new features compared to its 

predecessor (WINeR-5): (1) LNA power scheduling, (2) an improved RF transmitter, (3) 

inductive powering, and (4) closed-loop power control, which are highlighted in Fig. 2.1 

and explained in more detail in the following sections.  

The prior experience with the WINeR-5 indicated that although each LNA 

consumes a small current, because there are 32 of them on-chip, the LNA block quickly 

becomes one of the major power consumers of the WINeR SoC. To address this issue, a 

power-scheduling mechanism places most of the LNAs that are not being sampled in 

sleep mode, which affords very low-power consumption. The power-scheduling 

mechanism is explained in greater detail in Section 3.1.2.4. In the WINeR-6, a class-AB 

RF power amplifier (PA) has been added after the VCO to extend the transmission range, 
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improve the signal to noise ratio (SNR) at the receiver input, and stabilize the operation 

of the VCO by blocking reflections and back scattering from the antenna. The external 

adaptive power transmitter, which is shown on the lower left corner of Fig. 2.1, drives a 

geometrically optimized hexagonal coil that induces power at 13.56 MHz in a receiver 

LC-tank circuit that is embedded in the animal headstage [47]. The induced power is sent 

to an on-chip active full-wave rectifier that is followed by a low-dropout regulator. 

Because of the closed-loop power control mechanism, the WINeR-6 is expected to 

maintain the power delivered to the headstage at a constant level even when the distance 

or alignment between the transmitter and receiver coils changes due to animal 

movements [30], [48]. 

2.1.2. Neural Signal Flow 

2.1.2.1. Low-noise amplifiers (LNA) 

The WINeR-6 analog front-end has been designed using two-stage capacitively 

coupled LNAs with built-in tunable band-pass filtering. A schematic diagram of the LNA 

is shown in Fig. 2.2. The first stage of the LNA is a fully differential operational 

transconductance amplifier (OTA1), shown in Fig. 2.2a and Fig. 2.2b, with a midlands 

gain of C1/C2 = 100. VCM is the common mode voltage, which is usually grounded, and 

VREF is the reference voltage from the animal reference electrode. Turning OTA1 

completely off when it is not in use to reduce power consumption results in a long 

transient to allow charge to build up in its capacitors before it resumes normal operation. 

To reduce this transient time, the OTA1 bandwidth is changed from its nominal value of 

10 kHz when the current consumption is 16 A (En1 = VSS) and the LNA is in the active 

mode to 200 Hz when the current consumption is ~0.5 A (En1 = VDD) and the LNA is 

in sleep mode. The second stage of the LNA (OTA2), shown in Fig. 2.2c, has an 

adjustable gain of either C3/C4 = 20 or C3(C4 +C5)/(C4C5) = 80 for a total LNA gain of 
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2000 or 8000 (66/78 dB). The current in OTA2 also changes from 8.6 μA to 2.8 μA when 

the LNA is switched from active to sleep mode and vice versa (controlled by En2).  

 

 
(a) 

 
                                                      (b)                                                                                       (c) 

Fig. 2.2. Schematic diagram of the WINeR-6 analog front-end: (a) two stage LNA, (b) OTA1, and (c) 

OTA2. 

 

To achieve high resistance(>10
11

 Ω) and ultra low cutoff frequencies, both stages 

of the LNA in Fig. 2.2a are equipped with voltage-controlled PMOS-NMOS pseudo 

resistors, RPMOS-NMOS, to create a low-cutoff frequency that can be continuously tuned by 

VGATE1 and VGATE2, as presented in [45]. RPMOS-NMOS transistors are biased with a floating 

bias circuitry such that they can operate as a bidirectional current source. Hence, the 

impedance seen from either end of the RPMOS-NMOS remains constant and almost 

independent of the OTA input and output voltages, causing less distortion. 
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2.1.2.2. Pulse-width modulator and 36:1 time-division multiplexer  

As shown in Fig. 2.1, conditioned neural signals at the 32 LNA outputs join four 

monitoring signals, VREC/2, VBG, VT, and VSS, at the input of the PWM-TDM block. These 

36 analog signals are fed into the PWM block, which consists of 36 rail-to-rail high-

speed comparators, enabled one at a time over one sampling period to convert the analog 

signals from each channel into a sequence of pulses by comparing them with a precision 

triangular waveform (TW). To reduce noise and dynamic power dissipation, WINeR-6 

does not use any high-frequency clock signal. Instead it uses a low-frequency clock at the 

sampling rate for TDM, which is generated locally by the triangular waveform generator 

(TWG) block. As a result during each comparison, the substrate is completely quiet, and 

there is no digital transition anywhere on the chip. Monitoring signals also play a 

secondary role by providing a unique pattern that is used for synchronization between the 

WINeR-6 transmitter and external receiver by marking the beginning of each TDM-

PWM 36-pulse frame to be easily detected on the receiver side.  

The TDM block consists of a 36-bit circular-shift register (CSR) and a 36:1 

multiplexer (MUX) as shown in Fig. 2.3a. The CSR receives a buffered time-base signal 

at the sampling rate from the TWG block, shown in Fig. 2.3b, for its clock. At the global 

reset, the CSR is loaded with a 36-bit binary code, "1…10…00", in which the number of 

"1s" is programmable (N). When the system is running, the string of "1s" circulates in the 

CSR and connects one out of 36 comparator PWM pulses (the last "1") to the MUX 

output. The resulting signal will be a 36-pulse TDM-PWM frame, which is buffered and 

trimmed before being fed into the VCO.  
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                                                  (a)                                                                          (b) 

Fig. 2.3. (a) Block diagram and timing diagram of the power scheduling mechanism. The OTAs in the 

LNA block are switched between active (BW = 10 kHz) and sleep (BW = 200 Hz) modes by changing their 

bias currents, (b) schematic diagram of triangular waveform generator (TWG) block. 

 

2.1.2.3. Triangular waveform generator (TWG) 

A precision TWG, shown in Fig. 2.3b, is a key building block in accurate 

amplitude-to-time conversion (ATC). Its performance affects the noise, accuracy, and 

resolution of the system, as described in [46]. A TWG features binary weighting (DP0~3 

and DN0~3), high voltage compliance (-1.4 ~ 1.4 V), large output impedance, and a 

complementary current source/sink (CCSS) pair, which linearly charges/discharges CS (6 

pF) to generate the triangular wave [45], [49]. Unlike common designs that require at 

least two comparators, the new TWG design utilizes only one comparator to reduce 

power consumption and the negative effects of offset mismatch. VSource and VSink are 

dynamic, current-limited, bias generator blocks. They provide fast switching waveforms 

at specific DC biasing nodes to turn the CCSS on and off, while consuming negligible 

static power. 
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2.1.2.4. Power scheduling 

Although each individual LNA consumes only ~25 A, the 32-channel LNA 

block is responsible for 42% of the total WINeR-6 power consumption when all channels 

are active. Unfortunately, this situation is only exacerbated when the number of channels 

is increased. On the other hand, the TDM-PWM block, only samples one LNA at a time. 

To address this issue, a power-scheduling mechanism has been employed, depicted in Fig. 

2.3b, which places most of the LNAs that are not being sampled in the sleep mode, 

reducing their power consumption by 86% to ~3.5 A.  

The LNAs are not completely turned off to reduce the transient time, tT, for a 

dormant LNA to reach its active state well ahead of the sampling time and thereby be 

able to track neural signals with high bandwidth and low distortion (10 kHz). Because tT 

cannot be reduced to zero, the number of LNAs that should be activated ahead of 

sampling, N, depends on the overall sampling rate, fS, which in turn depends on the 

desired neural signal bandwidth, i.e.) N > fStT. In the power-scheduling schematic, N is 

programmable by SR0:2, which can change the number of consecutive "1s" in the CSR 

from 4 to 32. For example, when N = 12, twelve consecutive "1s"circulate in the CSR 

and each LNA is switched to the active mode 11 times during the sampling period, 11/fs, 

before being sampled. In this case, the LNAs remain in the sleep mode during the rest of 

the sampling periods (24/fs) and reduce the power consumption of the LNA block by 51%. 

2.1.2.5. Voltage-controlled oscillator and power amplifier 

The WINeR-6 RF transmitter consists of a VCO with an off-chip inductor 

followed by a PA, as shown in Fig. 2.4. As a result of changes in the antenna loading and 

reflected RF signal, animal movements in the shielded Faraday cage result in undesired 

VCO frequency shifts in WINeR-5. To prevent the undesired VCO frequency shifts, a 
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nonlinear class-AB PA is used not only to reduce the frequency shift problem but also to 

facilitate transmitter output matching with miniature 50  antennas and extend the 

transmission range. A complementary negative-Gm structure is used for the VCO core 

because of its low power and superior phase-noise performance [50]. Coarse and fine 

VCO tunings are performed using an off-chip inductor and a 4-bit on-chip varactor bank 

(VC0:3), respectively. VCO varactors are PMOS transistors whose gates are connected to 

the VCO outputs, bulks are tied to VDD, and sources and drains are tied together and 

connected to either the varactor bank control signals (VC0:3) for center frequency tuning 

or TDM-PWM signal to generate the FSK signal. To finely tune the transmitter frequency, 

VC0:3 is accessible to the user. Once the VCO frequency is adjusted to the desired band, 

the external receiver can be tuned to the transmitter frequency. 

 

 

Fig. 2.4. WINeR-6 neural signal flow diagram with emphasis on the transmitter SoC. 

 

2.1.3. Simulation and Measurement Results 

The WINeR-6 SoC was fabricated using the ON Semiconductor 0.5-µm 3-metal 

2-poly standard CMOS process. A micrograph and floorplan of the chip, which occupies 

4.9 × 3.3 mm
2
 of silicon area including the padframe, are shown in Fig. 2.5. 
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Fig. 2.5. Die photomicrograph of the 32-ch WINeR-6 SoC fabricated using the ON semiconductor 0.5-µm 

3M2P std. CMOS process (size: 4.9  3.3 mm
2
). 

 

2.1.3.1. Power-scheduling measurements 

The power consumption of the WINeR-6 with and without power scheduling are 

compared in Fig. 2.6. When all LNAs are active, the WINeR-6 consumes 7.05 mW from 

±1.5 V supplies. On the other hand, when 12 LNAs (N = 12) are on at a time and the 

other 20 are in the sleep mode under power scheduling, the power consumption drops by 

17% to 5.85 mW. From a different perspective, as depicted in Fig. 2.6, with power 

scheduling, the share of the LNA block power consumption in the total power 

consumption decreases from 34% to 20%. Obviously this power saving become even 

more significant by decreasing N. However, if N < fStT, the LNA outputs will be sampled 

before they reach their operational values, which may cause distortion. 
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                                          (a)                                                                                (b) 

Fig. 2.6. Comparison between the power consumption of each block in the WINeR-6 SoC as the percentage 

of the total power with and without power scheduling, which results in a 17% reduction in the total power 

consumption: (a) without power scheduling 7.05 mW and (b) with power scheduling 5.85 mW.  

 

To evaluate the effect of power scheduling on the quality of the recorded signals, 

artificial spikes were applied with a 0.5 mV amplitude and 1 ms pulse width to the LNAs 

inputs and compared the recorded signals with and without power scheduling. The 

measured waveforms are shown in Fig. 2.7, in which the sampling rate is set to 18 kSps 

per channel and N = 12. The upper two waveforms show the LNA inputs. In the 3
rd

 row, 

the black trace shows the output signal without using power scheduling, and the blue 

trace shows the output signal with power scheduling. Even though the LNA output seems 

to be noisy with power scheduling, because the LNA output reaches its operational value 

by the time each sample is taken, the effect of this noise on the digitized signal will be 

negligible. The last row shows the reconstructed signals from the digitized samples. The 

correlation coefficient between the two reconstructed signals was measured to be 0.97, 

which demonstrates almost a perfect match between the two conditions. 
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Fig. 2.7. Measured waveforms from top: original artificial spike waveform, magnified spike waveform, 

waveforms recorded at the LNA output with (blue) and without (black) power scheduling, reconstructed 

signal in the PC. 

 

2.2. Receiver and Computer Interface 

2.2.1. Rx Design 

Resolution of the TDM-PWM based WINeR-6 system is determined by the 

accuracy of the recovered pulse width. Higher Rx bandwidth corresponds with sharper 

pulse edges and lower pulse width error [46]. Thus, the WINeR-6 Rx needs high enough 

bandwidth to receive the FSK-TDM-PWM signal while providing an adequate resolution 
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of more than 8 bits. Most commercially available ISM-band FSK receivers only provide 

up to 600 kHz bandwidth [51], which is far below what is required for a neural recording 

system with data volume in the order of 10 Mbps. Hence, a custom-designed Rx with 18 

MHz bandwidth using commercially available off-the-shelf (COTS) components was 

implemented. 

The WINeR-6 Rx block diagram, shown in Fig. 2.8, has four major modules in 

addition to the antennas: RF front end, analog signal conditioning, FPGA including USB 

2.0 interface, and digital- to-analog converter (DAC). 
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Fig. 2.8. Block diagram of the entire wireless implantable neural recording (WINeR-6) system: Rx (top) 

and Tx (bottom). 
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2.2.1.1. Yagi-Uda antenna 

Like other implantable medical devices (IMD), WINeR-6 Tx has a limited power 

budget for RF transmission to keep its overall power consumption down. At the same 

time, it was desired to provide coverage over large experimental arenas in the order of 2 

× 2 m
2
 without any blind spots. This specification required high Rx front-end sensitivity 

and high-gain Rx antennas. A Yagi-Uda antenna satisfies these requirements while 

offering wide bandwidth. Relatively high directivity of the Yagi-Uda antenna was 

mitigated by the inclusion of two antennas in each WINeR-6 Rx. A 3-element Yagi-Uda 

antenna was designed based on [52], as shown in Fig. 2.9. 

 

 

Fig. 2.9. Three-element Yagi-Uda dipole antenna designed for 433 MHz carrier. 

 

2.2.1.2. RF front-end 

In order to increase the wireless coverage of the experimental arena and eliminate 

blind spots, the Rx was equipped with two identical RF front-ends, each with its own 

antenna. As shown in Fig. 2.8, the FSK-TDM-PWM signal from the Tx was picked up by 

each antenna, and amplified/filtered independently through its parallel RF front-end. 
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Each path has an RF power detector (ADL5513), and depending on the strength of the 

received RF signal from each path, an RF switch connects the stronger one to the mixer. 

Depending on the size of the experimental arena, the wireless coverage can potentially be 

extended even further by increasing the number of antennas and parallel RF front-end 

paths. 

Each RF front-end consists of an RF-LNA (MAX2640) with a gain and noise 

figure of 15.1 dB and 0.7 dB at 400 MHz, respectively, followed by a gain stage 

(BGA2712) that provides an additional 24 dB amplification. The RF front-end can 

provide up to 1.5 GHz bandwidth, while two passive third-order Chebyshev band-pass 

filters with 403-490 MHz bandwidth are placed before and after the gain stage to provide 

selectivity around the Tx signal and limit the out-of-band noise. The RF front-end thus 

provides 45 dB gain and 87 MHz bandwidth.  

2.2.1.3. Analog signal conditioning 

The amplified and filtered FSK signal is fed into a mixer, which is a 50 MHz to 1 

GHz quadrature demodulator with 75 MHz bandwidth (AD8348). The mixer has a built-

in variable gain amplifier (VGA) that provides −18.5 to +25.5 dB programmable gain. 

The VGA output drives two (I and Q) double-balanced Gilbert cell down-conversion 

mixers, which down-convert the RF signal to 43.5/56.5 MHz IF band. The IF-TDM-

PWM signal is then further filtered and amplified in the baseband. To create a tunable 

local oscillator (LO) for the down-converter, a 720-1750 MHz VCO (V585ME41-LF) 

from Z-Comm (San Diego, CA) has been utilized. The LO frequency is divided by two 

inside the mixer, resulting in its ability to receive RF frequencies in 360-875 MHz range. 

IF amplifiers and filters improve the SNR by eliminating the out-of-band 

interference. AD4899-1 amplifier was chosen for this block because of its 300 MHz unity 

gain bandwidth, ultra low distortion, and low noise. Three instances of this amplifier have 

been implemented with a total IF gain of 46 dB. In order to reject all adjacent channels’ 
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interference, a band-pass filter (KR2850) from KR Electronics (Avenel, NJ, USA) has 

been included between the second and the third amplifiers. The filter has an 18 MHz 

bandwidth from 41-59 MHz and a 1 dB pass-band ripple.  

The amplified and filtered IF-FSK signal is fed into a logarithmic limiting IF 

amplifier (AD8309) and a high speed comparator (TLV3501) with 4.5 ns delay. This 

stage recovers the rail-to-rail baseband FSK-TDM-PWM signal, which is then fed into an 

FPGA to be FM-demodulated in the digital domain to recover the TDM-PWM signal. 

2.2.1.4. FPGA module 

A COTS FPGA module, called Xylo-EM [53], was used, which includes an 

Altera FPGA (EP2C5T144C8), 2 MB of synchronous dynamic random access memory 

(SDRAM) for data buffering, and the USB interface circuitry. 

2.2.1.4.1. FSK demodulation via TDC 

A TDC in the FPGA demodulates the down-converted IF-FSK signal in the 

digital domain. The FPGA-based TDC block diagram is shown in Fig. 2.10. The IF-FSK 

signal is used as the clock signal for the 8-bit encoder and D-type flip-flops in the delay 

chain. A unit gate delay, τ, is the average time required for a rising or falling edge to 

propagate through a four-input AND gate. As a falling edge of the IF-FSK propagates 

through the chain of AND gates, the following rising edge saves a snapshot of the AND 

gate outputs in the rising edge-trigged D flip-flop register. Since the duration of a logic 

low is different in two FSK cycles at two different frequencies, the contents of the D flip-

flop register at every rising edge of the IF-FSK can determine the period of that FSK 

half-cycle, ΔT. The 8-bit encoder then converts the contents of the D flip-flop register to 

an 8-bit value, C1[7:0] = ΔT/τ. The measured FSK pulse widths are accumulated in two 

separate registers, PWH and PWL, after comparing C1 with a programmable threshold 

value that discriminates between the two periods in the IF-FSK. The two frequencies in 
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the IF-FSK are 43.5 and 56.5 MHz, which correspond to ΔT of 11.5 ns and 8.8 ns, 

respectively. Considering τ = 304 ps in this FPGA, ΔT/τ yields 38 and 29 delay cells for 

the low and high frequency half-cycles, respectively. To distinguish between these values, 

their average, 34, was used for as the FSK period threshold.  

 

 

 

Fig. 2.10. The FPGA-based high resolution TDC, using a delay cell chain with τ = 304 ps and an automatic 

frequency tracking (AFT) block. 

 

Although the absolute values of PWH and PWL vary with the instantaneous 

changes in the triangular waveform, the TDM- PWM duty cycle is relatively more stable 

and changes mainly with amplitude of the analog sample [46]. Thus C2[14:0] was 

calculated inside the FPGA from PWH/(PWH + PWL) of the recovered TDM-PWM 

signal as a normalized value within 0 and 1 that is proportional to the analog sample. C2 

passes through a noise filtering block, which removes the pulse widths that are too small 

or too large to eliminate sharp glitches. The demultiplexing block that follows is designed 

to detect the marker created from four monitoring signals (VREC/2, VBG, VT, and VSS), 

which indicates the beginning of each TDM-PWM pulse frame. The pulse width 

following the monitoring signals is the sample taken from the first neural recording 

channel. In order to mark this channel for the BCI-2000, running on the computer, the 

demultiplexing block adds a flag to C3[14:0] as its most significant bit (MSB) such that 
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the MSB of the 16 bits digitized output, C4[15:0], would be “1” for the 1
st
 channel and “0” 

for all other channels. 

2.2.1.4.2. Automatic frequency tracking (AFT) 

Frequency stabilization components, such as phase-locked loops (PLL) or crystals, 

were not used in the WINeR-6 Tx to reduce its size and power consumption [61]. As a 

result, the Tx carrier frequency varies with temperature, supply voltage, and to a lesser 

extent antenna loading variations. To compensate for these variations, digital automatic 

frequency tracking (AFT) function was implemented in the Rx. Following TDC, the AFT 

block averages 500 IF-FSK periods, which are available from C1[7:0]. The AFT tries to 

match the low-pass filtered carrier period from TDC with a programmable reference 

period by changing the local oscillator (LO) control voltage via a DAC. The AFT 

changes the LO frequency until the down converted IF-FSK spectrum is centered at 50 

MHz. 

2.2.1.4.3. Continuous high throughput USB interface 

A USB 2.0 interface delivers a continuous stream of digitized neural data from 

WINeR-6 Rx to the computer in real time. A high speed EZ-USB chip (Cy7C68013A) 

was chosen for its high throughput, programmability, reliability, and ease of use. The 

data rate in the 32-ch WINeR-6 system is in the order of 10 Mbps for 640 kSps. When 

USB operates in the burst mode, the delays between successive USB data packets in the 

computer are quite unpredictable, varying from 100 µs to a few ms. To ensure continuous 

real time recording without data loss, a 2 MB SDRAM has been used between the TDC 

and the USB interface blocks to buffer the incoming data. The EZ-USB chip is set to 

operate in the slave-FIFO mode, controlled by a master module implemented in the 

Altera FPGA. The USB control module in the FPGA manages data transfers between the 

SDRAM and USB. It writes the 16-bit data created in the TDC module into the SDRAM 
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at the falling edge of every TDM-PWM pulse. In this module, the EZ-USB reads a 16-bit 

sample from the SDRAM into its internal 2056 Byte FIFO. Meanwhile, the EZ-USB chip 

continuously checks its own FIFO state, and when it is full, commits the data to the 

computer. 

 

2.2.1.5. DAC module 

To assist users with visualizing and determining the quality of the incoming 

neural signals and to be compatible with some commercial hardwired neural recording 

back-ends, WINeR-6 Rx includes a 4-channel 16-bit DAC (AD5664R), which operates at 

71.1 kSps. The clock, data, and enable signals for the DAC are generated by the same 

FPGA, which also allows users to select 3 out of 32 digitized and demultiplexed neural 

recording channels as inputs to the DAC. The DAC converts them into 3 analog signals 

that can be accessed independently through SMA connectors. In addition, one of these 

three analog signals can be selected and used to drive a 1 W audio amplifier with DC 

volume control (TDA7052A). The output of the audio amplifier drives an 8 Ω speaker, 

allowing users to identify the spike activity by how tit sounds. The first channel of the 

DAC is used in the AFC block, described in section 2.2.1.4.3.  

2.2.1.6. Graphical user interface 

BCI-2000, an open-source piece of software for BCI research applications, 

displays the received neural signals on the GUI and saves them on the computer hard disk 

in real time [54]. It consists of four modules that communicate within each other, as 

shown in Fig. 2.11a. The “source” module receives data from the data acquisition device 

(WINeR-6 Rx), saves it, and sends it to the signal processing module. The “application” 

module is responsible for visualization on the computer screen. The source module has 
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been modified to continuously receive the neural data from WINeR-6 Rx through the 

USB port.  

Fig. 2.11b shows the flowchart for data acquisition algorithm in the source 

module, which performs two important tasks. First, it detects the marker that indicates 

sampled data for the first channel and time division demultiplexes the rest of the 

incoming data accordingly. While the program is running, the module waits for a 

predefined amount of data to arrive by saving it in a temporary memory space before 

arranging the samples. Second, the source module applies a simple post-processing 

algorithm to compensate for some of the nonlinear characteristics of the ATC process on 

the Tx side. The TWG block in particular has nonlinear characteristics that can degrade 

the quality of the TDM-PWM signal. In a one-time calibration process, the nonlinear 

characteristics of the TWG block in each WINeR-6 ASIC can be measured and stored in 

the BCI-2000 to be applied to the incoming data from that ASIC before further signal 

processing. 
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(a) 

 

(b) 

Fig. 2.11. (a) The core modules and their interactions in the BCI-2000, (b) Data acquisition flowchart of the 

“Source” module. 

 

2.2.2. Bench-Top Measurement Results 

The RF, analog, and DAC modules of WINeR-6 Rx were implemented on 

separate custom-designed printed circuit boards (PCBs) for electromagnetic isolation and 

shielding, as shown in Fig. 2.12. They are carefully fitted in a 17.9  17.5  7.6 cm
3
 

aluminum enclosure along with the COTS FPGA module and SMA interconnects. The 
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WINeR-6 Rx consumes 80 mA and 290 mA from -5 V and 5 V supplies, respectively. 

The FPGA module is powered from the USB port. It has on-board 3.3 V and 5 V 

regulators, which also power the DAC module. 

 

 

Fig. 2.12. WINeR-6 Rx and Tx hardware components. 

 

The delays measured at different taps along the 4-input AND gate delay chain 

indicate that τ  304 ps. Thus, K = 66 gates were needed for 1/ ΔT = 50 MHz. Hence, a 

chain of delay cells with N = 100 elements was implemented, as shown in Fig. 2.9, to 

make sure that the total delay time was longer than the clock period. 

2.2.2.1. Antennas 

The WINeR-6 Rx was bench-top tested along with the three- element Yagi-Uda 

antennas, designed based on specifications in Fig. 2.9. Fig. 2.13a shows the measured 

return loss of the antennas. Considering the effect of baluns, the 10 dB return loss of the 

fabricated antennas shows 54 MHz bandwidth, over the 424-478 MHz frequency range. 

A loop antenna (3.5 × 2 cm
2
) was designed for the WINeR-6 Tx, as shown in the 

lower right panel in Fig. 2.12 [55]. The vertical and horizontal radiation patterns of the 

WINeR-6 Tx are shown in Fig. 2.13b, which were measured in an outdoor open space to 
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minimize external interference. The WINeR-6 Tx was placed in the center of the 

measurement area, and the received signal strength from the Yagi-Uda Rx antenna was 

measured at 1 m distance from the Tx. The Tx was manually rotated clockwise from 0 to 

360 with 10 increments. Fig. 2.13b shows that the WINeR-6 Tx antenna has maximum 

signal variation of 25 dB.  

 

 
(a)                                                                    

      
      (b) 

Fig. 2.13. (a) Measured return loss of the Rx Yagi-Uda antenna. The -10 dB bandwidth was 54 MHz from 

424 to 478 MHz frequency range. (b) Relative radiation patterns of WINeR-6 Tx at 433 MHz measured by 

the Rx antenna. 
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2.2.2.2. RF front-end 

The S11 and S21 of the RF front-end have been measured and depicted in Fig. 2.14. 

The total RF gain for this block was 45 dB over 403-490 MHz range, which is matching 

in the center and slightly wider than the Yagi-Uda Rx antenna bandwidth. 

 

 
Fig. 2.14. Measured return loss and gain of the RF front-end (RF module). 

 

2.2.2.3. Complete WINeR-6 Tx-Rx operation 

To test the operation of the complete WINeR-6 system (Fig. 2.8) operation in a 

bench-top setting, an artificial spike waveform was played from a DAC (mp3 player), 

attenuated to 1 mV peak amplitude, and applied to all 32 input channels. The input signal 

was then amplified and filtered by the LNA block with 67.8 dB gain and 1 Hz - 8 kHz 

bandwidth. The triangular waveform generator (TWG) output signal was adjusted at ±1.4 

V and 640 kHz, setting the overall sampling rate of the WINeR-6 system. The TDM-

PWM block compared the 32 LNA outputs and 4 monitoring signals with the TWG 
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output, and the MUX organized the resulting PWM samples into frames of 36 pulses. In 

order to make sure the TDM-PWM pulses were detectable on the Rx side, i.e. they were 

neither too narrow nor too wide, when the input was below -1.1 V or above 1.3 V, the 

ATC pulse width was kept constant by the PWM mask. This signal drove the on-chip 

MOS varactor of the hybrid LC-VCO, running at 428/441 MHz in the FSK mode. 

The transmitted FSK-TDM-PWM carrier was picked up 1.5 m away from the 

WINeR-6 Tx by the Rx antenna. In the FPGA, the down-converted signal was FSK 

demodulated and digitized via TDC to 16-bit samples, which were buffered in the 

SDRAM and delivered to a computer through its USB port. Three out of the 36 channels 

were further converted to analog signals in the DAC module. The upper and lower traces 

in Fig. 2.15 are the LNA output on the Tx side and the corresponding DAC output on the 

Rx side for the same channel, respectively. The measured WINeR-6 latency from the 

LNA output of the Tx to the Rx DAC output was ~1 µs. 

 

 
Fig. 2.15. Top trace: One of the LNA outputs on the WINeR-6 Tx when a pre- recorded neural signal with 

1 mV spikes was applied to the input. Bottom trace: DAC output on the WINeR-6 Rx for the same channel 

at 1.5 m away. 

LNA Output

Rx DAC Output

1 V

0.4 ms

0.5 V
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Using the above setup and bypassing the LNA block, the integral nonlinearity 

(INL) and differential nonlinearity (DNL) of the rest of WINeR-6 were measured as a 

wireless data acquisition system, combining ATC and TDC on the Tx and Rx sides, 

respectively. In this measurement, a constant voltage, generated by an Agilent 33250A 

function generator with 12-bit resolution was applied to the LNA output of ch-12. By 

varying the DC input from rail to rail, 1.5 V, the increments in the 16-bit digitized value 

from the same channel were recorded on the Rx side, which was located 1.5 m from the 

Tx. Considering the PWM mask, a window between -1.1 V and 1.3 V was selected to 

measure the DNL and INL, and the LSB size was set to 9.4 mV for 8 bit resolution. Fig. 

2.16 shows the measured DNL and INL for the WINeR-6 prototype, which were within (-

0.364, +0.444) LSB and (-0.468, +0.226) LSB, respectively.  

 

 
(a) 

 
(b) 

Fig. 2.16. (a) INL and (b) DNL measurements for the entire WINeR-6 system at the Tx-Rx distance of 150 

cm. 
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In addition to the INL and DNL, a tone test was conducted by applying a 600 Hz 

sinusoidal waveform to ch-12 LNA output. The test results in Fig. 2.17 show a spurious-

free dynamic range (SFDR) of 64.95 dB with a hardwired link. With a wireless link at 

150 cm Tx-Rx separation, the SFDR was 58.86 dB. This measurement indicates that 

linearity performance of WINeR-6 has decreased by 6.1 dB because of the 150 cm 

wireless link. 
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(a) 

 
(b) 

Fig. 2.17. Tone test measurements of the WINeR-6 system (a) without wireless link, (b) at the Tx-Rx 

distance of 150 cm. 

 

2.2.2.4. WINeR-6 noise performance 

To analyze the noise contribution from different WINeR-6 blocks, noise 

measurement was performed in an unshielded laboratory environment in several 
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configurations shown in Fig. 2.18. In each case, a fast Fourier transform was applied on 

20 s of the recorded signal in the computer to derive its spectrum and refer it back to the 

input. Fig. 2.18a shows the TDC noise measurement setup. Here a series of pulses with 

50% duty cycle were generated by a function generator and fed into the TDC block in the 

FPGA. It was expected that the TDC noise is very small, but it should be noted that the 

measurement included the function generator phase noise as well, which was considered 

negligible. In Fig. 2.18b the LNA outputs are forced to ground to cancel the LNA noise. 

Noise of the wireless link has also been bypassed by directly connecting the TDM-PWM 

signal from Tx to the TDC input on the Rx side through a high-speed digital isolator 

(ISO721). The setup in Fig. 2.18c is similar to the one in Fig. 2.18b except for the fact 

that the LNA noise has been included by grounding the LNA inputs. Finally, Fig. 2.18d 

shows the noise measurement setup for the entire WINeR-6 system. In all noise 

measurements, the LNA bandwidth was set to 200 Hz to 8 kHz, while the input referred 

noise was integrated over a wider range from 1 Hz to 10 kHz. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2.18. Various noise measurement configurations to find out the contribution of each major WINeR-6 

component: (a) TDC noise, (b) ATC + TDC noise without wireless link, (c) LNA + ATC + TDC noise 

without wireless link, (d) Noise of the entire system. 

 

Using the setup in Fig. 2.18d (i.e. the entire system), the Tx-Rx distance was 

swept from 30 cm to 210 cm to observe the effect of Tx-Rx separation on the noise of the 

wireless link without  shielding. The input referred noise amplitudes for these 

measurements are shown in Figs. 2.19 and 2.20. According to these graphs and our 

theoretical analysis in [46], the noise from the wireless Rx is obviously the dominant 

noise source for the current 32-ch WINeR-6 system prototype, especially at large Tx-Rx 
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separation. At the nominal Tx-Rx distance of 1.5 m, the effective number of bits (ENOB) 

is 8 bits considering the INL and DNL measurements in Fig. 2.16. In addition, the 

measured Rx sensitivity was -65 dBm. Table 2.1 summarizes the key measured 

specifications of the entire WINeR-6 system.  

 

 
Fig. 2.19. Noise contributions of different WINeR-6 blocks at 640 kSps. 

 

 
Fig. 2.20. Noise measurement of the entire WINeR-6 vs. Tx-Rx distance. 
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Table 2.1: Summary of the WINeR-6 system specifications. 

WINeR-6 Tx ASIC 

Fabrication technology 0.5-µm Std. CMOS 

Number of channels 32 + 4 feedback 

Die size (mm
2
) 4.93  3.33 

Supply voltage (V) ±1.5 

Total power consumption at -14 dBm 

RF output power (mW) 
15 

Sampling rate from all channels (kSps) 58 - 709 

FSK carrier frequency (MHz) 428/441 

WINeR Rx 

Supply voltage (V) ±5 

Current consumption (mA) 290 (+5 V), 80 (-5 V) 

Size (cm
3
) 17.9  17.5  7.6 

Bandwidth (MHz) 18  

Center frequency (MHz) 433 MHz 

Sensitivity (dBm) -65 

Tuning range (MHz) 28 (419 - 447) 

Nominal Tx-Rx antenna distance (m) 1.5 

Max. Tx-Rx antenna distance (m) 4.2 

Neural Recording 

Sampling rate/ch (kSps) 1.6 - 19.7 

LNA gain (dB) 67.8 / 78 

LNA input referred noise (µVrms) 

(BW: 200 Hz - 8 kHz) 
3.25 

System input referred noise (µVrms) 

(BW: 200 Hz - 8 kHz, Distance: 1.5 

m) 

4.58 

System resolution (ENOB) 8 

PC Interface USB 2.0 (480 Mbps Max) 

Graphical user interface BCI 2000 (Open source) 

 

 

2.3. Animal Experiments 

2.3.1. Wideband Neural Recording for Seizure Detection 

The WINeR-6 system was used with the AFE bandwidth adjusted to 1 Hz - 8 kHz 

to record the neural activity of a male Sprague-Dawley rat whose dorsal hippocampus 

was injected with tetanus toxin (TT). A 16-channel (2×8) multi electrode array (MEA) 

was also implanted with one row in the CA3 and the other in CA1. High frequency 

oscillations (HFO), which are considered emerging biomarkers for epileptic seizures, 

were recorded with the WINeR-6 system and compared with recordings from a custom 
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hardwired system with commercial components, as described in [56]. The hard-wired 

system bandwidth was set to 1 - 500 Hz for local field potentials (LFP). The recorded 

neural waveforms at different times are compared in Fig. 2.21. Because of its wide 

bandwidth, the WINeR recording shows both HFO and LFP recordings.  

 

 
(a) 

 
(b) 

Fig. 2.21. Epilepsy detection by LFP recording from (a) hard-wired system and (b) the WINeR-6 (The 

author thanks Dr. S. Desai for helping this animal experiment). 

 

2.3.2. Single Unit Recording for Behavioral Experiments 

To further evaluate the performance of the WINeR-6 system, its overall 

performance was compared to that of a commercial hardwired system, based on NSpike 

[57], in a meaningful behavioral neuroscience experiment, in which action potentials 

were recorded from hippocampal pyramidal neurons of a rat as it completed laps on a 

relatively large circular track (~1 m
2
). The subject was a 15-month-old male Long-Evans 

rat, weighing approximately 550 g. This set of experiments was conducted with approvals 

from the Institutional Animal Care and Use Committees (IACUC) at the Georgia Institute 

of Technology and Emory University.  
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The rat was implanted with a chronic recording assembly that contained 32 

tetrodes (bundle of four electrodes) targeted at the dorsal hippocampus. Further details 

can be found in [58], [59]. The electrodes were connected to four 36-pin male Nano 

connectors from Omnetics (Minneapolis, MN). In each of the four connectors, 4 lateral 

pins were used for grounding and reference, and the other 32 were connected to 8 out of 

32 tetrodes. The WINeR-6 analog front-end (AFE) bandwidth for this experiment was set 

to 400 Hz-8 kHz with a total gain of 8000 for recording single-neuron action potentials, 

similar to the settings for the NSpike system. The experiment was carried out in a circular 

track with an outer diameter of 91.4 cm and width of 7.6 cm, as shown in Fig. 2.22, 

which was setup in a small shielded cubicle. During the test, the rat completed two 

sessions of 40 laps each, in which video and neural data were recorded   with both 

systems. The rat was rewarded for completing each lap with a small piece of chocolate.  

 

 

Fig. 2.22. Awake freely behaving animal experimental setup. The rat completed two sets of 40 laps on a 

circular track with an outer diameter of ~1 m, while neural signals were recorded simultaneously from 32 

channels using the WINeR-6 and a hardwired setup. The quality of the recorded neural signals was 

observed in real time, but single-unit activities were classified offline and used to construct the place fields 

in each case after synchronizing and combining the neural activity with the animal position from the 

recorded video (The author acknowledges F. Getaneh in the Manns lab for helping this animal experiment). 
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To provide sufficient wireless coverage, four antennas from two WINeR-6 

receivers were mounted on stands made of PVC pipes, and positioned roughly at 3, 6, 9, 

and 12 o’clock slightly above the circular track in order not to miss any neural signal 

during the experiment due to fading. The two WINeR-6 Rxs and associated computers 

were placed outside the cubicle. 

Fig. 2.23 shows the operating diagram of the dual-Rx solution. When two 

receivers record the same neural signals from a single WINeR-6 Tx, the data needs to be 

synchronized by indicating the same marker signals in both recorded data streams. For 

this purpose, a predefined marker was generated in the master FPGA when a push button 

was pressed. This marker signal was then transferred to the master BCI-2000, and easily 

distinguished from the digitized neural signals. A similar marker signal was generated in 

the slave FPGA at the same time and sent to the slave BCI-2000. Fig. 2.24 shows a 

snapshot of 32 neural recording channels that was shown in real time on one of the two 

BCI-2000 GUIs. A similar WINeR-6 configuration could be used to simultaneously 

record neural signals from multiple animal subjects in the same experimental arena in a 

socially-relevant context, provided that their Tx-Rx pairs were tuned at different center 

frequencies. 
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Fig. 2.23. Synchronization between two WINeR-6 Rxs, each of which has two antennas, with a push button 

as well as a video stream, using an optical cue. 

 

 

Fig. 2.24. Time domain representation of 32-ch recorded signals in real time using the BCI2000 GUI. 

 

The exact same experiment was repeated with the same animal and the same 

electrode positions using the hardwired NSpike system, which sampling rate, gain, and 
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bandwidth were adjusted to be very close to that of the WINeR-6 system. A video camera 

was mounted above the track to record the rat position in synchrony with the neural 

recording. The video frames were synchronized with the neural data from WINeR-6 by 

flashing the LED, shown in Fig. 2.23, as an optical cue. 

After completion of the data recording phase, spike classification was conducted 

on both wireless and hardwired datasets using the Offline Sorter software from Plexon 

(Dallas, TX) in order to isolate activity from individual neurons. Figs. 2.25a and 2.25b 

show spike waveforms across four channels (wires) of the same tetrode, activity from 

what was thought to be the same pyramidal neuron recorded during the WINeR-6 

(wireless) and NSpike (hardwired) sessions, respectively. After classifying putative 

single neurons, the spike firing location for the best-isolated units were marked on the 

circular track by synchronizing the timing of the spiking activity with the rat location on 

the recorded video data. 
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(a) 

 
(b) 

Fig. 2.25. Spike classification of 4 individual channels in Tetrode 5 from (a) WINeR-6 and (b) NSpike 

systems using Plexon’s Offline Sorter. 

 

Many pyramidal neurons in the dorsal rat hippocampus, termed place-cells, show 

location-specific activity, and the  location at which the greatest firing rate of an 

individual neuron occurs is often referred to as its place field [60]. Fig. 2.26 shows a 

place field plot for a place-cell recorded during both recording sessions. Brighter colors 

indicate a higher firing rate, and grey colors show the overlapping trajectories of the rat 

as it completed laps on the circular track. Based on the similar spatial selectivity of the 

place fields in both plots and similar firing rates, the results suggest that the WINeR-6 

wirelessly recorded data is similar to that of the hardwired recording setup (gold standard) 

in an experiment with a rat freely behaving in a 1 m
2
 arena. The results illustrate the 

feasibility of the WINeR-6 system as a substitute for hardwired systems in behavioral 

neuroscience experiments. The lower SNR of the WINeR-6 system, which is also 
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noticeable in Fig. 2.25 classified single- neuron waveforms, has resulted in lower 

concentration of the place-cell firing around the peak in Fig. 2.26. 

 

  
                                             (a)                                                                                (b) 

Fig. 2.26. Comparison between place fields resulted from (a) WINeR-6 wireless and (b) NSpike hardwired 

recordings. 
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CHAPTER III 

DUAL-SLOPE CHARGE SAMPLING ANALOG FRONT-END 

3.1. Introduction 

A conventional AFE architecture consists of several voltage gain stages and filters. 

The signal is buffered and multiplexed before a sample-and-hold (SHA) and digitized 

using a low-power, medium-resolution analog-to-digital converter (ADC). According to 

the analysis in [62], conventional AFEs consume an increasing amount of power in the 

buffer and ADC blocks as the number of channels increase because the conversion per 

channel must be completed in a short period of time. 

A dual-slope charge sampling (DSCS) architecture is presented to improve the 

power efficiency of the AFE for multichannel neural recording systems. A charge 

sampling mechanism was recently employed in neural recording interfaces because it is 

stronger than voltage sampling in terms of wideband operation and provides an inherent 

pre-filtering function by integration [16],[63],[64]. The proposed DSCS-AFE architecture 

exploits the benefits of charge sampling while converting input signals to PWM pulses, 

which eliminates the need for high-speed ADCs on the transmitter unit (Fig. 3.1). These 

features make the proposed DSCS-AFE architecture a suitable choice for large channel 

count systems with limited available power and channel bandwidth.  
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Fig. 3.1. Block diagram of an 8-ch DSCS-based wireless implantable neural recording (WINeR-6.5) system. 

 

The prototype presented here is an 8-channels DSCS AFE with additional control 

circuitry. However, it can be easily extended to higher channel counts. The next section 

describes the entire WINeR system, and Section 3.3 presents the measurement results 

followed by discussion.  

3.2. DSCS-AFE Architecture 

A schematic of the proposed DSCS-AFE is shown in Fig. 3.2a. The neural signal 

is amplified in a fully differential LNA. The LNA also serves as a bandpass filter, which 

is composed of feedback capacitors and pseudo-resistors that are located on the front end 

and feedback loop [9]. The variable-gm OTA converts the amplified neural signal into a 

differential pair of currents, which are integrated into capacitors CC+ and CC- for the fixed 

time period Φ1, which is labeled as the “charging” period in Fig. 3.2b. The slopes of 

capacitor voltages VC+ and VC- during the charging period are dependent on the amplitude 

of the neural signal within that period. A “precharging” period Φ0, during which the 

capacitor voltages are set to the pair of well-defined preset values Preset+ and Preset-, 

occurs prior to the charging period.  
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(a) 

 
(b) 

Fig. 3.2. DSCS-AFE for a single channel: (a) Block diagram, (b) Operating waveforms of the dual-slope 

integration for two different input voltages. 
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After the charging period, a constant current source and a constant current sink 

discharge the accumulated charges on CC+ the CC- during another constant period Φ2, 

which is labeled in Fig. 3.2b as the “discharging” period. VC+ and VC- are compared by 

the fast hysteresis comparator, which is only enabled during Φ2 to conserve power. The 

resulting comparator output is a PWM signal, in which the duty cycle TPWM/Φ2 is 

proportional to the amplitude of the differential LNA input voltage VIN-VREF from the 

DSCS mechanism. 

Dual-slope integration has several advantages compared with the previously 

employed single-slope integration [61]. First, the accuracy of the amplitude-to-time 

conversion (ATC) is independent of both the capacitance values and clock frequency 

because they affect both the charging slope and discharging slope by the same ratio. 

Second, the fixed input signal integration period results in the attenuation of the 

background and LNA noise components in the analog input. Third, there is no need for a 

separate high-precision triangular wave generator, which further reduces the power 

requirements. 

3.2.1. LNA 

The proposed LNA uses a complementary input stage to increase the effective 

transconductance with a given bias current by two-fold [66]. A detailed schematic of the 

LNA and its common-mode feedback (CMFB) is provided in Fig. 3.3. 
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Fig. 3.3. Schematic diagram of the fully-differential LNA with CMFB. 

 

3.2.2. OTA 

 A schematic of the OTA is provided in Fig. 3.4. It converts the amplified 

differential voltage at the LNA output to differential current at the input of the DSCS 

stage. Following a simple differential pair, differential currents are fed into a variable-

gain fully differential current amplifier stage. The total gm of the OTA can be adjusted by 

controlling the current mirror ratios of the current amplifier stage by 3 bits. The cascode 

mirror structure in the output stage reduces the nonlinearity in the charging and 

discharging output currents due to variations in the output voltages, VC+ and VC-. 
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Fig. 3.4. Schematic diagram of the fully diff. OTA with 3-bit adjustable gm. 

 

3.2.3. DSCS and OTA Offset Cancellation 

When the OTA outputs are connected to CC+ and CC- at the end of Φ0, the voltage 

difference between the floating OTA outputs and capacitors, which are precharged at 

Preset- and Preset+, creates undesirable instantaneous currents that can distort the current 

integration during Φ1. When its inputs are shorted, the OTA’s offset currents can add 

offset to the charge being sampled during Φ1. The offset cancellation (OC) circuit in Fig. 

5 is employed to prevent these effects. 
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Fig. 3.5. Schematic diagram of the DSCS block including OTA offset cancellation circuitry. 

 

During Φ0, the OTA inputs are shorted to the common mode voltage VCM; as a 

result, the OTA current outputs during this phase comprise its offset current. The OC 

circuit adds IPULL1 and IPULL2 to the OTA output pull currents, IPULL+ and IPULL- in Fig. 3.4 

and adds IPUSH3 and IPUSH4 to the OTA output push currents IPUSH+ and IPUSH-. The 

resulting currents are connected to the pair of dummy capacitors C5 and C6 during Φ0, in 

which the voltages are compared to Preset+ and Preset-, respectively, via a feedback loop 

and the resulting error voltages VC1 and VC2 are used to calibrate IPUSH3 and IPUSH4 until 

IOUT- and IOUT+ node voltages become equivalent to Preset+ and Preset-, respectively, 

prior to the end of Φ0. The two feedback voltages are simultaneously sampled in C3 and 

C4 and maintained during Φ1, in which the OC currents cancel the OTA output currents 

while charging CC+ and CC-. The OC feedback loop is only turned on during Φ0 to 

conserve power. 

3.3. Measurement Results 

An 8-channel prototype ASIC was fabricated using the TSMC 0.35-μm 4-metal 2-

poly CMOS process. Fig. 3.6 displays the chip micrograph and floor planning, which 

occupies 2.4 × 2.1 mm
2
, including the padframe. In this implementation, a single DSCS-

based AFE channel occupies 872 × 331 μm
2
. 
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Fig. 3.6. Die photomicrograph of the 8-channel neural recording SoC with DSCS-AFE, implemented in the 

TSMC 0.35-μm CMOS (size: 2.4 × 2.1 mm
2
). 

 

C1 was 10 pF, C2 was 100 fF, C3,4 were 200 fF, C5,6 were 400 fF, and Cc+/- were 

10 pF. The LNA specifications were measured when the gain was set at 40 dB. The lower 

cutoff frequency was tunable from 288 Hz to 1 kHz by voltage-controlled pseudo 

resistors, and the higher cutoff frequency was ~10 kHz. The fully differential design of 

the LNA caused a 65.5 dB power supply rejection ratio (PSRR) and a 56.4 dB common 

mode rejection ratio (CMRR), with an input referred noise of 2.77 µVrms in the range of 

288 Hz to 10 kHz. The gm of the OTA was programmable from 7.43 to 52 µS in 8 steps. 

The discharge current was also programmable from 332 nA to 2.3 µA in 8 steps. The 

sampling frequency fS for each channel was set to 31.25 kHz. The charging time Φ1 was 

adjustable in 6 steps from 2.7 to 15.0 µs by programming the S2P register.  

Fig. 3.7 presents some of the main waveforms in the DSCS-AFE. Φ1,Ch1 is the 

charging clock signal for the 1
st
 channel, and VC+,Ch1 and VC-,Ch1 are the differential output 

voltages of the charge sampling capacitors of that channel. The bottom trace is the time-

division multiplexing (TDM)-pulse-width modulation (PWM) output signal, which 

combines the PWM signals from all 8 channels. The three phases of the DSCS operation 

are displayed in the enlarged segment. During Φ0, VC-,Ch1 and VC+,Ch1 are precharged to 

Preset+ and Preset-, respectively. They are differentially charged during Φ1 with the 

offset-calibrated OTA output currents, which are proportional to the differential input 
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signal. During Φ2, the capacitors are discharged by the programmable current sources, 

while their voltages are compared. PWMCh1 becomes high at the beginning of Φ2, and 

goes low when VC+,Ch1  VC-,Ch1. The pulse width TPWM is proportional to the input signal. 

Table 2.2 lists the specifications of the new WINeR-6.5 system with DSCS-based AFE 

and compares them with other recent studies. 

 

 
Fig. 3.7. DSCS-AFE measured waveforms at 250 ksps from 8 channels. 
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Table 2.2: WINeR-6.5 specifications and benchmarking. 

Publication 
This 

work  
[16] 2012 [15] 2012 [67] 2014 

Technology 
0.35µm  

CMOS 

0.13µm 

CMOS 

65nm 

CMOS 

0.5µm  

CMOS 

VDD (V) 1.8 1.2 0.5 1.5, 3 

Die size (mm
2
) 2.4  2.1 5  5 0.13 2.85  3.84 

No. of channels 8 96 1 9 

Total power (mW) 0.255 6.5 0.005 5 

Power/ch. (μW) 31.8 68 5.04 55.68 

Area/ch. (mm
2
) 0.29 0.26 0.13 - 

Sampling rate 

(kSps/ch) 
31.25 31.25 20 200 

LNA gain (dB) 40 - > 32 39.35 

LNA input ref. noise 

(µVrms) 
2.77 2.2 4.9 4.58 

LNA HPF (Hz) 
288  to 

1000 
<1, 280 300 178 - 302 

LNA LPF (kHz) 10 10 10 6.92 - 8.13 

Resolution (bit) - 10 8 - 

System input ref. 

noise (µVrms) 
6.50 - - 4.58 

 

The basic functionality of the entire system was verified by playing attenuated 

artificial spike waveforms. The original signal with an amplitude of ~40 mVp-p was 

connected to the LNA through a 100:1 resistive attenuator. The resulting PWM signal 

from the DSCS-AFE was transmitted to an FPGA-based TDC for digitization. In addition, 

16-bit digitized samples were buffered, packetized, and sent to a PC through its USB port 

as a serial data bit stream, which was demultiplexed using BCI2000 open-source software, 

displayed on the screen, and stored on the hard disk. Fig. 3.8 compares the original neural 

signal with the recovered waveform in the BCI2000. 
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Fig. 3.8. The original and recovered pre-recorded spike signals, sampled at 31.25 kHz. 

 

The input referred noise of the DSCS-AFE was measured by grounding the OTA 

inputs and conducting a fast Fourier transform (FFT) on the recorded signal for 10 s. The 

resulting input referred noise spectral densities are shown in Fig. 3.9. Integration of these 

curves from 288 Hz to 10 kHz yielded an input referred noise of 5.88 µVrms. Including 

the LNA noise, the noise of the entire system became 6.5 µVrms. 
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Fig. 3.9. Input referred noise of the LNA and the entire system without the LNA. 

 

3.4. Discussion 

A new DSCS-based AFE architecture for use in multi-channel wireless bio-signal 

recording systems has been presented. The DSCS architecture enables low noise and low 

power amplification, filtering, and ATC with robust pseudo-digital PWM-TDM output, 

which does not require sophisticated synchronization between the Tx and Rx in systems 

with a large number of channels that utilize high speed ADCs in the Tx unit.  
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CHAPTER IV 

WINER-7 SYSTEM WITH A DUAL-SLOPE CHARGE SAMPLING 

ANALOG FRONT-END 

In this chapter, a wireless integrated neural recording system (WINeR-7) is 

presented with a novel-dual slope charge sampling (DSCS) analog front-end (AFE) 

architecture, which amplifies neural signals by utilizing the charge sampling concept for 

analog signal conditioning, such as amplification and filtering. The presented DSCS-AFE 

simultaneously achieves amplification, filtering, and sampling while consuming a small 

amount of power. The output of the DSCS-AFE produces a PWM signal that is 

proportional to the input voltage amplitude. A circular shift register (CSR) utilizes time 

division multiplexing (TDM) of the PWM pulses to create a pseudo-digital TDM-PWM 

signal that can feed a wireless transmitter. The 8-channel SoC was fabricated in a 0.35-

μm CMOS process, occupied 5.0 × 2.5 mm
2
 and consumed 51.4 mW from a 1.8 V/4.2 V 

supply. The measured input-referred noise for the entire system, including the receiver 

located at 1.2 m, is 5.38 μVrms in the range of 1 Hz to 10 kHz when the system is 

inductively powered. For each channel, the sampling rate is 21.701 kHz and the power 

consumption is 19.3 μW. 

4.1. Introduction 

The proposed DSCS- AFE architecture utilizes charge sampling benefits while 

converting input signals to PWM pulses, which eliminates the need for high-speed ADCs 

on the transmitter unit, as shown in Fig. 4.1. These features render the proposed DSCS-

AFE architecture a suitable choice for large channel count systems with limited available 

power and channel bandwidth. The system presented here has an 8-channel DSCS AFE 

with additional control circuitry. However, it can be easily extended to higher channel 

counts. 
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(a) 

 
(b) 

Fig. 4.1. Block diagram of an 8-channel DSCS-based wireless implantable neural recording (WINeR-7) 

system, (a) Transmitter unit, (b) Receiver unit. 
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4.2. System Architecture 

4.2.1. Transmitter Unit 

A simplified block diagram of the WINeR-7 ASIC is shown in Fig. 4.1a. Fully 

differential low-noise amplifiers (LNAs) amplify and filter neural signals with a gain of 

100 V/V and an adjustable bandwidth. A variable-gm operational transconductance 

amplifier (OTA) converts the amplified signal to a current with 3-bit binary control over 

gm. The DSCS block pulse width modulates the neural signal by comparing differentially 

charged and discharged capacitors via a rapid hysteresis comparator. A TDM combines 

the eight PWM outputs of the DSCS blocks and generates the TDM-PWM signal. A 

circular shift register (CSR) controls the AFE timing. The pseudo-digital TDM-PWM 

signal can be directly fed into a wireless Tx to be transmitted using a frequency-shift 

keying (FSK) modulation scheme. The PWM-TDM-FSK signal at the output of the VCO 

is amplified and transmitted through a miniature wideband monopole antenna. A serial-

to-parallel (S2P) 32-bit register is used to control various adjustable parameters among 

the 8 channels. 

4.2.2. Receiver Unit 

A WINeR-7 wideband Rx unit is similar to the WINeR-6 Rx described in Section 

2.2. Its block diagram, which is depicted in Fig. 4.1b [65], has been designed to 

demodulate and digitize the incoming FSK-TDM-PWM signal (909/921 MHz) in the ISM 

band from 902 to 927 MHz. The RF signal is detected by two individual antennas to 

increase the wireless coverage over the experimental space and amplified and filtered by a 

pair of identical RF front-ends. A control circuit subsequently connects the RF path with a 

stronger signal to a mixer, which down-converts the received RF signal to a baseband 

(44/56 MHz) before demodulating the FSK signal in an FPGA. The resulting TDM-PWM 

signal is fed into a time-to-digital converter (TDC) in the same FPGA to generate the 
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digitized samples, which are demultiplexed and buffered in a 1-Mbit SDRAM to handle 

data transfer delays and transferred to a PC through a USB port. The general-purpose 

open-source platform BCI2000, which is frequently used with EEG signals for brain-

computer interfacing (BCI) applications, runs on the PC to display the received neural 

signals on the screen and store them on a hard disk in real time [54]. The entire Rx without 

an FPGA board is compactly integrated in a single PCB, as shown in Fig. 4.2. The size 

shrinks compared with the WINeR-6 Rx. The size of the WINeR-7 PCB  is 10.1 × 4.5 cm. 

 

 
Fig. 4.2. WINeR-7 FSK Rx PCB.  

 

The total structure of the WINeR-7 FSK Rx is similar to the total structure of the 

WINeR-6 Rx, with the exception that the frequency range changes from 433 to 915 MHz. 

In the RF front-end, a commercial surface acoustic wave (SAW) filter is employed for a 

bandpass filter with a bandwidth that ranges from 902 to 928 MHz. Thus, the channel 

selectivity increases compared with the WINeR-6 Rx with a passive bandpass filter. The 

RF front-end provides 45 dB gain and 26 MHz bandwidths.  

To handle +/- 5 V of dual power supplies in the WINeR-6 Rx, a computer power 

supply was required. The volume and size of the power supply was also a hindrance. The 

WINeR-7 Rx requires +12 V of the single power supply because power management 

chips can generate +/-5 V from a +12 V input supply. The current consumption of the 

WINeR-7 receiver is 380 mA. In addition, RF shielding and analog shielding improves 
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RF noise interference shielding, as shown in Fig. 4.2. Ground shielding becomes 

important in an inductively powered experiment because strong RF harmonic 

interferences are generated from the power carrier frequency.  

4.2.3. Power Management Data Transceiver (PMDT) Unit 

Fig. 4.3 presents the block diagram of a PMDT, which includes an active 

positive/negative rectifier, a battery charger, three regulators (LDOs) at 2.1, -0.3, and -2.1 

V, an automatic-resonance tuning (ART), a low-power PWM-IR-UWB Tx, a 915-MHz 

FSK Tx, PWM-ASK demodulator and a PDM transceiver. A power amplifier (PA) drives 

the Tx coil L2 at the designated carrier frequency, fc, which can be either 13.56 or 2 MHz 

in this design by controlling the rectifier. The AC signal across the Rx L3C3-tank, which 

is tuned at fc, is rectified by the positive/negative rectifier. The rectifier outputs VRECP = 

2.3 V and VRECN = -2.3 V are applied to the battery charger. A decision circuit connects 

the battery output (VBAT) to the LDO input if VRECP < 2.1 V. Three LDOs create a constant 

VDD = 2.1 V, VDDA = -0.3 V and VSS = -2.1 V, in which VDD and VSS are used for 

stimulation and FSK Tx whereas VDDA and VSS provide a 1.8 V supply for the recording 

blocks, UWB Tx, and PDM transceiver. The ART ensures that L3C3-tank is always tuned 

at fc by sweeping a 5-bit binary-weighted on-chip (3, 6, 12, 24, and 48 pF) and a 3-bit 

binary-weighted off-chip (100, 200, and 400 pF) capacitor bank, which results in a 0-800 

pF capacitance change across the L3C3-tank with a 3-pF resolution. A hysteresis 

comparator detunes L3C3-tank by a Covp of 1 nF when VRECP  > 2.4 V to protect the PMDT 

from large input voltages. The circuit-level implementation and measurements are 

explained in [70]. 
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Fig. 4.3. Block diagram of the highly efficient and adaptive PMDT block of the WINeR-7 system (The 

author acknowledges Dr. M. Kiani for designing this block). 

 

4.3. Wide-Swing DSCS-AFE Architecture 

The prototype I of the DSCS-AFE schematic is shown in Fig. 4.4a to demonstrate 

the proposed DSCS-AFE architecture. The neural signal is amplified in a fully differential 

LNA. The LNA also functions as a bandpass filter composed of feedback capacitors and 

pseudo-resistors, which are located on the front end and in the feedback loop [9]. The 

variable-gm OTA converts the amplified neural signal into a differential pair of currents, 

which are integrated the capacitors CC+ and CC- for the fixed time period Φ1, which is 

labeled as the “charging” period in Fig. 4.4b. The slopes of the capacitor voltages VC+ and 

VC- during the charging period are dependent on the amplitude of the neural signal within 

that period. A “precharging” period Φ0 occurs prior to the charging period, during which 

the capacitor voltages are set to the pair of well-defined preset values Preset+ and Preset-.  
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(a) 

 
(b) 

Fig. 4.4. DSCS-AFE prototype I for a single channel: (a) Block diagram, (b) Operating waveforms of the 

dual-slope integration for two different input voltages. 

 

After the charging period, the constant current source and current sink discharge 

the stored charges on CC+ and CC- during another constant period Φ2, which is labeled in 

Fig. 4.4b as the “discharging” period. VC+ and VC- are compared by the rapid hysteresis 

comparator, which is only enabled during Φ2 to conserve power. The resulting comparator 
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output is a PWM signal, in which the duty cycle TPWM/Φ2 is proportional to the amplitude 

of the differential LNA input voltage VIN-VREF from the DSCS mechanism. 

Although the fabricated prototype DSCS-AFE architecture exhibits low power 

consumption and low noise, the robustness of the system is limited because the negative 

capacitor voltage output VC- should always be higher than the positive output VC+ at the 

end of Φ1 to correctly generate the PWM pulse. Thus, the dynamic range of VC+ and VC- 

is limited to half of the supply. In addition, two separate buffers are required to precharge 

VC+ and VC- to Preset- and Preset+, respectively. 

After the fabrication of the prototype DSCS-AFE, the improved DSCS-AFE 

architecture was designed in the WINeR-7 system, as shown in Fig. 4.1a. The operating 

waveforms of the WINeR-7 DSCS-AFE are shown in Fig. 4.5. In the new architecture, 

half of the supply voltage VCM is used to precharge VC+ and VC-. In addition, both VC+ and 

VC- can swing within the entire supply range. After Φ1, the system verifies whether VC+ 

or VC- is higher prior to Φ2. Using this information, ISOURCE is connected to the lower 

output and ISINK is connected to the higher output during Φ2. The PWM pulse width for 

VC+ > VC- should be longer than the PWM pulse width for VC+ < VC-. The center reference 

clock signal ΦC, whose period TCenter is half of the Φ2 period, is used to distinguish the 

two cases. If VC+ > VC-, discharging of the output capacitors begins after ΦC changes 

from ‘1’ to ‘0’. V1C+, V1C-, and the resulting PWM1 in Fig. 4.5 demonstrate this case. 

Here, TPWM = TCENTER + TCOMP. If VC+ = VC-, the resulting PWM pulse width TPWM2 is 

equivalent to TCENTER. If VC+ < VC-, the capacitors begin discharging immediately at Φ2 

and TPWM = TCENTER - TCOMP. When a minimum input is attained, V3C+, V3C-, and PWM3 

are generated. The pulse width output can be formulated as follows: 

 TPWM  = TCENTER + TCOMP   for VC+ > VC- 

  = TCENTER - TCOMP   for VC+ < VC- 
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Fig. 4.5. WINeR-7 DSCS-AFE Operating waveforms of the dual-slope integration for two different input 

voltages. 

 

Four clock signals for the system are shown in Fig. 4.6, in which ΦC does not 

overlap Φ1 and is faster than Φ2. Therefore, the D flip-flop FF1 in Fig. 4.1 can 

distinguish the two cases when it is triggered by ΦC prior to Φ2. If VC+ > VC-, the FF1 

output Q is ‘0’; if VC+ < VC-, Q is ‘1’ during Φ2.  
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Fig. 4.6. Four clock signals for the WINeR-7 DSCS-AFE. 

 

Two different operations of the system are shown in Fig. 4.7. First, the circuitry of 

Fig. 4.7a is activated when VC+ > VC- and Q = 0. Here, ISOURCE and ISINK are connected to 

VC- and VC+, respectively, after ΦC changes from ‘1’ to ‘0’ during Φ2. The PWM output is 

the inverted signal of the CMP output. Therefore, TPWM = TCENTER + TCOMP. Second, the 

circuitry of Fig. 4.7b is activated when VC+ < VC- and Q = 1. Here, ISOURCE and ISINK are 

connected to VC+ and VC-, respectively, during Φ2. The PWM output is the exclusive 

‘OR’ operation of the CMP output and ΦC. Therefore, TPWM = TCENTER - TCOMP. 
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(a) 

 
(b) 

Fig. 4.7. WINeR-7 DSCS-AFE operating block diagrams when (a) VC+ > VC- and Q = 0, (b) VC+ < VC- and 

Q = 1. 

 

Dual-slope integration exhibits several advantages compared with the previously 

used single-slope integration [61]. First, the accuracy of the ATC is independent of both 

the capacitance values and clock frequency because they affect the charging and 

discharging slopes by the same ratio. Second, the fixed input signal integration period 

results in attenuation of the background and LNA noise components on the analog input. 

Third, a separate high-precision triangular wave generator, which results in additional 

power consumption, is not needed. 
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4.3.1. LNA for Power Scheduling Operations 

The proposed LNA uses a complementary input stage to increase the effective 

transconductance with a given by two-fold [14]. A schematic of the LNA and its common-

mode feedback (CMFB) is shown in Fig. 4.8. Two-bit digital control over bias currents 

offers a programmable low-pass cutoff frequency, which is realized by gate-enabled bits 

B0 and B1 and change the tail currents of the main LNA and CMFB circuitries. These 

control bits are also employed for power-scheduling mechanism introduced in [61], which 

converts the majority of the LNAs that are not being sampled in sleep mode; their power 

consumption is reduced by disabling B0 and B1. 

 

 
Fig. 4.8. Schematic of the fully differential LNA with the CMFB circuitry. 

 

4.3.2. OTA 

The OTA schematic of the WINeR-7 system is similar to the OTA schematic of 

the WINeR-6.5 in Fig. 3.4. It converts the amplified differential voltage at the LNA 

output to differential current at the input of the DSCS stage. Following a simple 

differential pair, differential currents are fed into a variable gain fully differential current 
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amplifier stage. The total gm of the OTA can be adjusted by controlling the current mirror 

ratios of the current amplifier stage by 3 bits. These control bits can also turn off the OTA 

to limit power consumption. The presented LNA and OTA can function with duty cycle 

operation for the power scheduling mechanism. The power consumption can be 

decreased without reducing the quality of the recording capability. 

4.3.3. DSCS and OTA Offset Cancellation 

The WINeR-7 DSCS AFE has an OTA offset cancellation circuitry that is similar 

to that of the WINeR-6.5 DSCS AFE, as explained in Section 3.2.3. The difference is that 

the new offset cancellation circuitry has a VCM for precharge voltages of the WINeR-6.5 

DSCS offset cancellation circuitry. When the OTA outputs are connected to CC+ and CC- 

at the end of Φ0, the voltage difference between the floating OTA outputs and capacitors, 

which are precharged at VCM, creates undesirable instantaneous currents that can distort 

the current integration during Φ1. When its inputs are shorted, the OTA’s offset currents 

can increase the offset to the charge being sampled during Φ1. The offset cancellation 

(OC) circuit in Fig. 4.9 is used to prevent these effects. 

 

 
Fig. 4.9. Schematic of the DSCS block including the OTA offset cancellation circuitry. 
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During Φ0, the OTA inputs are shorted to the common mode voltage VCM; as a 

result, the OTA current outputs during this phase comprise its offset current. The OC 

circuit adds IPULL1 and IPULL2 to the OTA output pull currents, IPULL+ and IPULL- in Fig. 4.9 

and IPUSH3 and IPUSH4 to the OTA output push currents IPUSH+ and IPUSH-. The resulting 

currents are connected to the pair of dummy capacitors C5 and C6 during Φ0. The voltages 

are compared via a feedback loop to VCM, and the resulting error voltages VC1 and VC2 are 

used to calibrate IPUSH3 and IPUSH4 until the IOUT- and IOUT+ node voltages become 

equivalent to VCM prior to the end of Φ0. The two feedback voltages are sampled in C3 and 

C4 and maintained during Φ1, in which the OC currents cancel the OTA output currents 

while charging CC+ and CC-. The OC feedback loop is only turned on during Φ0 to save 

power.  

4.4. Stimulus Artifact Rejection 

Some applications require a system that interacts with the central and peripheral 

nervous system in a bidirectional manner. DBS, which is an effective neuromodulation 

therapy for PD, requires neural recording for a closed-loop operation [69]. When 

recording and stimulation are performed concurrently, the large amount of stimulation 

current can force the saturation of adjacent recording electrodes and recording amplifiers. 

Due to the large time constant, the recovery may be time consuming but can prevent 

immediate neural recording after stimulation, which is referred to as a stimulation artifact 

[35],[36]. In the case of arrays of chronic microelectrodes, this problem is exacerbated by 

the close spacing of the electrodes and their mutual coupling. Although the reduction of 

artifacts using software is feasible [37], software techniques are not capable of recovering 

the period during which the amplifiers are saturated, which is frequently longer than 5 ms. 

Previously reported Hardware-based techniques use a low-slew-rate initial amplifier [38] 

or actively discharge the electrodes immediately after stimulation [39]. These solutions 

require that electronics be placed on the animal next to the electrodes. To reduce the 
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complexity of hardware-based techniques, Venkatraman et al. used an array of switches 

between the first and second amplifier stages to disconnect the second stage from the first 

stage for a short period after the stimulation [40].  

The WINeR-7 system provides a stimulus artifact rejection block, as shown in Fig. 

4.1a for a closed-loop operation, which requires simultaneous stimulation and recording. 

During stimulation, the LNA can be disconnected from the signal path by stimulus-

artifact rejection (AR) switches. In addition, the charge balancing (CB) switch will 

connect the recording electrode to the reference electrode to ensure charge balancing 

between the two electrodes. This approach allows the potential charge accumulation to be 

minimized. These operations will rapidly recover the neural recording as soon as 

stimulation is terminated.  

The explained stimulus artifact rejection function was tested in an in vitro set-up 

with the custom-designed biphasic current stimulator described in [71]. In Fig. 4.10a, a 

differential stimulation current of 840 µA was applied to a saline solution via electrodes. 

The stimulus-artifact rejection and charge balancing mechanisms, which simultaneously 

ensures that the residual charge is neutralized after biphasic stimulation, were triggered in 

WINeR-7 AFE units via digital control signals, as shown in Fig. 4.10b.  In this test, the 

stimulation pulse duration was set to 600 µs, followed by an additional 400 µs of 

stimulus artifact rejection and 200 µs of charge balancing.  
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(a) 

 
(b) 

Fig. 4.10. (a) Measured stimulation waveforms from the in vitro experiments showing different stimulation 

currents, (b) Digital control signals: differential simulation signals, artifact rejection signal, and charge 

balancing signal. 

 

To determine whether the AFE is saturated, 1 kHz of a reference sinusoidal signal 

was also applied in the saline. In this set-up, an AFE bandwidth that ranged from 400 Hz 

to 8 kHz was established. First, the set-up was tested without a stimulus artifact rejection 

function, the transmitter transmitted a recorded signal in the saline, and the Rx recovered 

and displayed in BCI2000, as shown in Fig. 4.11a. In this figure, the LNA saturation is 

Stimulation voltage

(VSTIMP-VSTIMM)

VSTIMP VSTIMM

In vtro test

(Electrode+Saline)

500 mV

0.4 ms

Artifact Rejection

VSTIMP VSTIMM

Charge Balancing

Digital Control

2 V

0.8 ms



80 

 

distinct and the LNA takes 2.2 ms to recover from saturation. When the same test was 

performed with stimulus artifact rejection, the recovery time decreased to less than 600 

µs, as shown in Fig. 4.11b.   

 

 
(a) 

 
(b) 

Fig. 4.11. Recorded waveforms in the BCI2000 (a) without stimulus artifact rejection, (b) with stimulus artifact 

rejection.  
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4.5. FSK RF Transmitter 

The FSK Tx consists of a voltage controlled oscillator (VCO) with an off-chip 

inductor and power amplifier (PA), as shown in Fig. 4.12. Coarse and fine VCO tunings 

are performed with an off-chip inductor and 2-bit on-chip varactor bank, respectively. 

The PA can be configured in both single- and differential-mode operation. In differential-

mode operation, two antennas with a 180º orientation can be used to increase the 

coverage. In single mode, a gate of M7 is connected to VSS to turn off the left PA branch. 

The maximum single-tone output power of the PA is 0.4 dBm in single mode and 3.4 

dBm in differential mode when the FSK Tx consumes a 12 mA current. Fig. 4.13 also 

presents the FSK spectrum at two frequencies, i.e., f1 = 902 MHz and f2 = 917 MHz, with 

an output power of -17 dBm. A detailed description of the Tx is provided in [70]. 

 

 
Fig. 4.12. Schematic of the FSK Tx. 
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Fig. 4.13. FSK spectrum of the WINeR-7 Tx. 

 

4.6. DSCS FPGA Demodulation for the WINeR-7 System 

The WINeR-6 design required a PWM mask to separate each channel PWM pulse 

[61] because it did not have an accurate clock generator. The DSCS does not require a 

PWM mask because it functions with an accurate clock signal that is generated by a 

crystal oscillator. Without a PWM mask, the channel pulse may disappear when the input 

is not sufficiently large or two channel PWM pulses may be combined when the input is 

excessive. The elegant FPGA TDC demodulation method should be developed on the Rx 

side to correctly distinguish this special case. The time bin of the WINeR-7 system is 

accurately defined by a crystal oscillator. Therefore, once marker signals are detected 

similar to the WINeR-6 Rx, then the timing of following every channel can be 

determined in the Rx. This approach does not require the channel to contain a mask. 

For synchronization, the preamble generator block in Fig. 4.1a generates four 

sequences, max pulse, zero pulse, half pulse, and zero pulse, followed by eight sequences 

from channels 1 to 8. The preamble bits will be detected by the TDC method used in the 

WINeR-6 Rx. After the detection of preamble bits, eight time bins can be established 

based on the location of the end point of preambles, as shown in Fig. 4.14. PWM signals 
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can be accurately detected without any mask function on the Tx side by comparing the 

channel PWM signals to the time bin. 

 

 
Fig. 4.14. WINeR-7 Rx TDC in the FPGA. 

 

4.7. System Measurement Results 

An 8-channel WINeR-7 ASIC was fabricated in the TSMC 0.35-μm 4-metal 2-

poly CMOS process. Fig. 4.15 presents the chip micrograph and floor planning, which 

occupies 5.0 × 2.5 mm
2
, including the padframe. In this implementation, a single DSCS-

based AFE channel occupies 1,220 × 260 μm
2
. 
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Fig. 4.15. Die photomicrograph of the 8-channel neural recording SoC with the DSCS-AFE, implemented 

in the TSMC 0.35-μm CMOS (size: 2.5 × 2.5 mm
2
). 

 

C1 was 8 pF, C2 was 80 fF, C3,4 were 200 fF, C5,6 were 400 fF, and Cc+ and Cc- 

were 10 pF. The LNA specifications were measured when the gain was set at 40 dB. The 

lower cutoff frequency could be tuned from 1 to 800 Hz in 8 steps, and the higher cutoff 

frequency was tunable from 3 to 8 kHz in 4 steps by voltage-controlled pseudo resistors. 

The fully differential design of the LNA yielded a power supply rejection ratio (PSRR) of 

65.5 dB and a common mode rejection ratio (CMRR) of 56.4 dB, with an input referred 

noise of 2.9 µVrms in the range of 1 Hz to 10 kHz for a LNA, of which a bandwidth was 

adjusted in the range of 10 Hz to 8 kHz. The gm of the OTA could be programmed from 

7.43 to 52 µS in 8 steps. The discharge current was also programmable from 332 nA to 

2.3 µA in 8 steps. A sampling frequency fS of 21.48 kHz was established for each 

channel. The charging time Φ1 could be adjusted from 2.7 to 15.0 µs in 6 steps by 
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programming the S2P register. The gain and bandwidth and the input referred noise of 

the LNA were measured and are shown in Figs. 4.16a and 4.16b, respectively. 

 

 
(a) 

 
(b) 

Fig. 4.16. LNA measurements of (a) the gain and bandwidth and (b) the input referred noise. 
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measurement results of TPWM = TCENTER – TCOMP are attained. The pulse width TPWM is 

proportional to the input signal.  

 

 
(a) 

 
(b) 

Fig. 4.17. DSCS-AFE measurement waveforms from 8 channels. 
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4.7.1. Rx Antenna 

The WINeR-7 Tx has a limited power budget for RF transmission to maintain a 

low total power consumption. At the same time, it is desired to provide coverage over the 

large experimental areas and reject the undesirable RF interferences including the 

harmonics of 13.56 MHz of wireless power transmission. This specification required high 

Rx front-end sensitivity and high-gain Rx antennas, and a bow tie antenna at 915 MHz 

(21 × 10 cm
2
) was designed by the collaborator Aida Vera due to these requirements, as 

shown in Fig. 4.18. The return loss of this antenna was measured, as shown in Fig. 4.19, 

and the -10 dB bandwidth was 50 MHz in the 870–1,020 MHz frequency range. 

 

 

Fig. 4.18. Bow tie antenna for 915 MHz carrier (The author acknowledges Aida Vera for designing this 

antenna). 
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Fig. 4.19. Measured return loss of the Rx bow tie antenna. 

 

4.7.2. Complete WINeR-7 Tx-Rx Operation 

The basic functionality of the entire system was verified by playing attenuated 

pre-recorded spike waveforms and sinusoidal waveforms. The original signals were 

connected to the LNA by a 10:1 resistive attenuator. The resulting PWM signals from the 

DSCS-AFE were transmitted to an FPGA-based TDC for digitization. In addition, 16-bit 

digitized samples were buffered, packetized, and transmitted to a PC via its USB port as a 

serial data bit stream, which was subsequently demultiplexed by the BCI2000 open-

source software, displayed on the screen, and stored on the hard disk. Simultaneous 8-

channel hard-wired recordings are shown in Fig. 4.20a. Channels 1 and 5 received 

sinusoidal waveforms of ~0.6 mVpp at 200 Hz, Channels 2 and 6 received the pre-

recorded spike waveform with 0.8 mVpp, Channels 3 and 7 received sinusoidal 

waveforms of ~0.6 mVpp at 100 Hz, and Channels 4 and 8 received sinusoidal 

waveforms of ~0.6 mVpp at 400 Hz. Wireless recording was also tested. The FSK-TDM-

PWM RF carrier signal was detected ~100 cm away from the WINeR-7 SoC by a dipole 
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receiver antenna with a bandwidth of 824–960 MHz. Fig. 4.20b presents the recovered 

pre-recorded neural signal with 1 mVpp at a Tx-Rx distance of 100 cm. 

 

 
(a) 

 
(b) 

Fig. 4.20. Recovered signals in BCI2000 GUI from (a) simultaneous 8-channel bench-top hard-wired 

recording and (b) wireless recording at a Tx-Rx distance of 100 cm. 
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generated by an Agilent 33250A function generator with a 12-bit resolution and applied 

to the LNA output of Channel 1. By varying the DC input from rail to rail, 0 to +1.8 V, 

the increments in the 16-bit digitized value from the same channel were recorded on the 

Rx side, which was located 1.5 m from the Tx. Considering a dynamic OTA range, a 

window between +0.4 and 1.4 V was selected to measure the DNL and INL, and the LSB 

size was set to 3.9 mV for an 8-bit resolution. Fig. 4.21 presents the measured DNL and 

INL for the WINeR-7 prototype, which fell within (+0.391, -0.254) LSB and (+0.353, -

0.415) LSB, respectively.   

 

 
(a) 

 
(b) 

Fig. 4.21. (a) INL and (b) DNL measurements for the entire WINeR-7 system at a Tx-Rx distance of 200 

cm. 
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a wireless link at a Tx-Rx separation distance of 150 cm in Fig. 4.22, indicating that the 

linearity performance of the WINeR-7 system has increased by 8 dB compared with the 

WINeR-6 system shown in Fig. 2.17b. 

 

  
Fig. 4.22. Tone test measurements of the WINeR-7 system at a Tx-Rx distance of 150 cm. 

 

4.7.3. WINeR-7 Noise Performance 

To analyze the noise contribution from different WINeR-7 blocks, the noise 

measurements were performed in an unshielded laboratory environment in several 

configurations, as shown in Fig. 2.18. In each case, an FFT was applied to 20 s of the 

recorded signal on the computer to derive its spectrum and refer it back to the input. Fig. 

2.18a presents the TDC noise measurement setup. Here, a series of pulses with a 50% 

duty cycle was generated by a function generator and fed into the TDC block in the 

FPGA. The TDC noise is expected to be small. The measurement also included the 

function generator phase noise, which was considered negligible. In Fig. 2.18b, the LNA 

outputs are forced to ground to cancel the LNA noise. Noise of the wireless link has also 

been bypassed by directly connecting the TDM-PWM signal from the Tx to the TDC 

input on the Rx side using a high-speed digital isolator (ISO721). The setup in Fig. 2.18c 
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is similar to the setup in Fig. 2.18b, with the exception that the LNA noise has been 

included by grounding the LNA inputs. Fig. 2.18d presents the noise measurement setup 

for the entire WINeR-7 system. In all noise measurements, the LNA bandwidth was set 

from 10 Hz to 8 kHz, whereas the input referred noise was integrated over the range of 1 

Hz to 10 kHz. 

Using the setup shown in Fig. 2.18d (i.e., the entire system), the Tx-Rx distance 

was swept from 30 to 360 cm to observe the effect of Tx-Rx separation on the noise of 

the wireless link without shielding. The input-referred noise amplitudes for these 

measurements are shown in Figs. 4.23 and 4.24. According to these graphs and our 

theoretical analysis in [46], the noise from the wireless Rx is the dominant noise source 

for the current 8-channel WINeR-7 system prototype, especially when the Tx-Rx 

separation is large. At the nominal Tx-Rx distance of 2.0 m, the effective number of bits 

(ENOB) is 8 bits considering the INL and DNL measurements in Fig. 4.21.  

 

 
Fig. 4.23. Noise contributions of different WINeR-7 blocks at 21 kSps. 
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Fig. 4.24. Noise measurement of the entire WINeR-7 vs. Tx-Rx distance. 

 

Fig. 4.24 illustrates that when the Tx-Rx separation is less than 120 cm in the 

inductive power operation, higher noise is measured within the shorter distance due to RF 

interference from a wireless power transmission system. If the Rx antenna is overly close 

to the Tx, the antenna can detect not only a desirable RF signal but also the harmonics of 

the power carrier signal at 13.56 MHz. Fig. 4.24 indicates that 120 cm is the optimal Rx 

antenna position. 

Table 4.1 compares the specifications of the WINeR-7 system against other recent 

studies. The input referred noise of the WINeR-7 system was measured by grounding the 

LNA inputs and conducting an FFT on the recorded signal for 10 s. Integration of these 

curves from 1 Hz to 10 kHz resulted in an input-referred noise of 5.38 µVrms for a Tx-Rx 

distance of 120 cm.  
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Table 4.1 

WINeR-7 Specifications and Benchmarking 

Publication This work  [16] 2012 [15] 2012 [34] 2011 [67] 2014 

Technology 
0.35µm  

CMOS 

0.13µm 

CMOS 

65 nm 

CMOS 

0.35µm  

CMOS 
0.5µm  

CMOS 

VDD (V) 
 1.8 for AFE  

 4.2 for Tx 
1.2 0.5 1.5 1.5, 3 

Die size (mm
2
) 5.0  2.5 5  5 0.13  3.3  3.3 2.85  3.84 

No. of channels 8 96 1 4 9 

Total power (mW) 51.4 6.5 0.005 0.42 5 

Power/ch. (μW) 19.3 68 5.04 26.9 55.68 

Area/ch. (mm
2
) 0.29 0.26 0.13 - - 

Sampling rate (kSps/ch) 21.48 31.25 20 63 (Max.) 200 

LNA gain (dB) 40 - > 32 51.9 - 65.5 39.35 

LNA input ref. noise 

(µVrms) 
2.90 2.2 4.9  3.12 4.58 

LNA HPF (Hz) 1 to 800 <1, 280 300 1.1 - 525 178 - 302 

LNA LPF (kHz) 3 to 8 10 10 5.1 - 12 6.92 - 8.13 

Resolution (bit) 8 10 8 10 - 

System input ref. noise 

(µVrms) 

5.38 

(BW: 1 Hz-10 

kHz, Distance: 

120 cm) 

- - - 4.58 

 

 

4.8. UWB Communication with the WINeR-7 System 

4.8.1. UWB Transmitter 

Fig. 4.25 presents a schematic of the sub-GHz-range PWM-IR-UWB. Because the 

0.35-µm process is not suitable to design a UWB Tx with a range of 3-5 GHz, the 

frequency has been reduced to < 1 GHz. In this Tx, the rising and falling edges of the 

PWM are detected and three pulses with a ns delay are created per edge, as shown as S1 

in the Fig. 4.25 inset. A simple all-digital pulse generator creates three sharp pulses. 

Three pulses are employed to increase the transmitted power for each edge to facilitate 

the detection of these small pulses by the receiver over long communication distances. 

Fig. 4.26 presents the measurement results of the UWB Tx when the output was 

connected to the oscilloscope that was terminated by 50 Ω. The input is the PWM signal 

that is directly fed by the recording chip on the same die. One pulse is generated per edge 
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of the PWM signal. Considering that the ENOB for the WINeR-7 system is ~8, the 

proposed PWM-IR-UWB reduces the power consumption by 4-fold compared with UWB 

digital communication using pulse-position modulation (PPM). Details of the UWB Tx 

are provided in [70]. 

 

 
Fig. 4.25. Schematic of the sub-GHz-range PWM-IR-UWB (The author acknowledges Dr. M. Kiani for 

designing this block). 

 

 
Fig. 4.26. Measurement results of the sub-GHz-range PWM-IR-UWB. 
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4.8.2. UWB Receiver 

A custom-designed UWB Rx using commercially available off-the-shelf (COTS) 

components was designed, and a schematic is shown in Fig. 4.27. The received RF signal 

from the antenna is amplified and filtered through an RF LNA and band-pass filters. The 

amplified and filtered RF signal is downconverted to the baseband through an RF power 

detector. In the baseband, the downconverted signal is amplified, filtered, and converted 

to sharp pulses through a comparator. Similar to the WINeR-7 FSK receiver, an FPGA 

board will recover a PWM signal from the sharp pulses, digitize it, and transmit it to a 

computer. The size of the populated UWB receiver board, which is shown in Fig. 4.28, is 

8.3 × 3.0 cm. The UWB Rx uses +12 V of a single power supply; its current consumption 

is 180 mA. 

 

 

Fig. 4.27. Schematic of the UWB receiver. 
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Fig. 4.28. UWB receiver board. 

 

The UWB Tx and Rx were tested with a distance of 40 cm between the Tx and Rx 

antennas. For the Tx, a custom designed monopole antenna was used to verify the system 

function. For the Rx, a log periodic PCB directional antenna from Ettus Research (Santa 

Clara, CA, USA) with a range of 400 MHz to 1 GHz was used. In this set-up, the 

received signal spectrum after RF amplifiers is shown in Fig. 4.29. The UWB signal 

spectrum exhibits a peak at 470 MHz, and its bandwidth is approximately 600 MHz. 

 

 
Fig. 4.29. Received RF spectrum output after the RF Amplifer. 
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The TDC algorithm in the FPGA for the UWB Rx is similar to the WINeR-7 FSK 

Rx in terms of gate delays. However, the algorithm should be modified because it is 

difficult to distinguish the start and end signals between adjacent pulses. The TDC 

method from the OOK Rx described in [45] is shown in Fig. 4.30a. Here, only the period 

in which the PWM signal is high is important. Thus, the PWM can be digitized by a 

combination of clock signal and gate delays, as described in Fig. 4.30a. However, the 

UWB pulses do not exhibit a period in which the PWM signal is high. Therefore, every 

period between adjacent periods should be digitized, as shown in Fig. 4.30b. The 

valuable alternate periods, which correspond to the high period of the PWM signal, can 

be distinguished during the channel synchronization period. 

 

 
        (a) 

 
                       (b) 

Fig. 4.30. Two different TDC methods from (a) OOK Rx and (b) UWB Rx. 

 

The simultaneous eight-channel recorded signals shown in Fig. 4.31 were 

wirelessly recorded via UWB communication when Channel 1 received a sinusoidal 

waveform of 500 µVpp at 1 kHz and the remaining channels were grounded at a distance 
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of 40 cm between the Tx and Rx antennas. This measurement demonstrates PWM-UWB 

communication with a WINeR-7 system.   

 

 

Fig. 4.31. Simultaneous eight-channel bench-top wireless recording with a WINeR-7 system with the UWB 

communication at a Tx-Rx distance of 40 cm (BCI2000 GUI).  
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CHAPTER V 

ANIMAL EXPERIMENTS WITH THE WINER-7 SYSTEM 

5.1. Battery-Powered Animal Experiments 

A compact (3.2 × 3.0 cm
2
) WINeR-7 mobile unit for battery-powered animal 

experiments was designed and is shown in Fig. 5.1; all experiments were conducted with 

prior approval from the Institutional Animal Care and Use Committee (IACUC) at the 

Georgia Institute of Technology and Emory University. In the in vivo experiment, 16 

electrodes were implanted in the hippocampus of a Sprague-Dawley rat; eight of the 

electrodes were connected to the WINeR-7 system to record local field potentials (LFPs). 

The rat was anesthetized and carried the WINeR-7 headstage, for which the bandwidth 

was set to the range of 1 Hz to 10 kHz. Its recordings were compared with recordings 

from a custom hardwired system with commercial components, as described in [56]. The 

hard-wired system bandwidth was set to the range of 1–500 Hz for LFPs. The recorded 

neural waveforms at different times are compared in Fig. 5.2. Because of its wide 

bandwidth, the WINeR recording in Fig. 5.2a exhibits both high-frequency interference 

and LFP recordings. After the offline data of the WINeR recording were processed, the 

same bandwidth data were processed, as shown in Fig. 5.2c. The processed data became 

similar to the hard-wired recording in Fig. 5.2b demonstrating that the WINeR-7 system 

can replace the hard-wired recording system. 

 
Fig. 5.1. WINeR-7 headstage for battery-powered animal experiments. 
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(a) 

 
                                              (b)                                                                            (c) 

Fig. 5.2. LFP recordings from (a) the WINeR-7 recording with a bandwidth from 1 Hz to 10 kHz, (b) the 

hard-wired system, and (c) the offline data process of the WINeR-7 recording with a bandwidth from 1 Hz 

to 10 kHz (The author acknowledges Dr. B. Mahmoudi for helping this animal experiment). 
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When the WIneR-7 system is operated in the inductively powering mode, the 
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WINeR-7 Recording

1

8

1 mV
2

3

4

5

6

7

8

  20 40 60 80 100 120
Time (ms)

Hard-Wired Recording WINeR-7 Recording

Filtering (1~500 Hz)

1

8 0 20 40 60 80 100 120
Time (ms)

1 mV
2

3

4

5

6

7

8

1

8 0 20 40 60 80 100 120
Time (ms)

1 mV
2

3

4

5

6

7

8



102 

 

subject. To resolve this issue, the WINeR-6 system achieved the closed-loop powering 

operation through the RF link. In this approach, the attenuated rectifier output voltage 

was transferred to the Rx and used to control the wireless power transmission. However, 

a drawback for this approach is that the RF back telemetry does not work when the 

received power is either not sufficiently large or excessively high. To transmit the correct 

RF signal, the system should turn on correctly; however, this operation becomes difficult 

without the correct back telemetry signal. In addition, if the closed-loop link is broken 

during operation, it is difficult to recover due to the lack of a correct feedback signal. 

This situation can place the system and an animal at risk of danger from high power and 

generated heat.  

The RF back telemetry method was improved in the WINeR-7 system. When the 

received power is out of the normal operation range, the output frequencies of the RF 

FSK Tx change due to a variation in the supply. In this case, the varying output 

frequencies can be used to indicate the rectifier output voltage because the WINeR-7 Rx 

can detect the RF frequencies by the TDC algorithm introduced in Section 2.2.1.4.2. The 

rectifier output voltage of the WINeR-7 headstage and the downconverted frequency of 

the WINeR-7 Rx under variations in the power amplifier voltage for inductive powering 

were measured and are presented in Fig. 5.3. When the PA voltage increases, the rectifier 

output voltage also increases; however, the downconverted frequency decreases until the 

rectifier output voltage reaches 4.5 V. The downconverted frequency does not decrease 

when the rectifier output voltage is higher than 4.5 V because the supply of the RF FSK 

Tx does not change; the supply remains constant because the LDO operates to stabilize 

the system power supply if the rectifier output voltage exceeds 4.5 V. Because the new 

RF closed-loop operation utilizes this phenomenon, the PA power can increase if the 

rectifier output voltage is less than 4.5 V by observing the downconverted frequency of 

the WINeR-7 Rx. When the rectifier output voltage exceeds 4.5 V, the PA voltage can 

decrease by observing the attenuated rectifier voltage transmitted from the RF link. In 
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this manner, automatic frequency tracking can also be implemented, which differs from 

the description in Section 2.2.1.4.2. The RF transmission frequency is fixed and the local 

oscillator frequency of the Rx varies in the Section 2.2.1.4.2, whereas the local oscillator 

frequency is fixed but the RF transmission frequency is varied by controlling the PA 

voltage in the new method. In this manner, the closed-loop operation stabilizes due to a 

corrected back telemetry signal when the received rectifier output voltage is small. 

 

 

Fig. 5.3. Rectifier output voltage of the WINeR-7 headstage and the downconverted frequency of the 

WINeR-7 Rx when the power amplifier voltage for inductive powering varies.   
 

5.3. Inductively Powered Freely Moving Animal Experiment 

To demonstrate the functionality of the WINeR-7 system with an inductively 

powering system, the entire system was tested in vivo in a 30 × 28 × 18 cm
3
 standard 

home cage. A Kinect from Microsoft (Redmond, WA) was installed above the cage to 

localize the animal position to turn on/off the Tx coils. The images, which were taken by 

the Kinect every 33 ms, were processed, and the position of the animal was determined 

by subtracting the images taken from the cage with the animal from the images taken 



104 

 

before the animal was placed in the cage. An IGLOO FPGA received the localization 

data via a WLAN link and controlled the switches in series with the coils based on the 

position of the animal. An nRF24LE1 microcontroller on the mobile unit was used to 

program S2P registers in the WINeR-7 SoC for initialization, and the RF back telemetry 

method described in the previous section was used to close the power loop. On the Tx 

side, a single bit that indicates whether the rectifier output voltage is higher or lower than 

4.5 V was transmitted to the closed-loop power control unit (CLPC) via XPORT 

communication. In the CLPC unit, the data are received by an MSP430 microcontroller, 

and a digital potentiometer in the resistive feedback of a DC-DC converter controls the 

supply voltage of a class-C PA from 5 to 20 V. Two 200-mF supercapacitors were 

connected to the positive and negative rectifier outputs to supply the mobile unit when 

the inductive coupling is weak due to the large distance or rotation of the coil in the 

mobile unit. Additional details of the closed-loop external powering system are provided 

in [70] and [72]. 

The fabricated mobile unit and coils are shown in Fig. 5.4. The geometry of the 

coils in the mobile unit i.e., L3 and L4, were optimized based on the design procedure in 

[68] to maximize the PTE. The diameter of L3 is 3.5 cm, the diameter of L4 is 1 cm, and 

the diameter of the PCB is 2.5 cm. 
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                            (a)                                                                              (b) 

Fig. 5.4. WINeR-7 headstage for inductively-powered animal experiments, (a) top view, (b) bottom view. 

 

The animal experiment set-up is shown in Fig. 5.5a, in which the in vivo results 

for the PA supply voltage after 40 s are displayed. The closed-loop system maintains the 

rectifier output voltage at 4.5 V by adaptively changing the PA supply with animal 

movements. In addition, the LFP recordings from the WINeR-7 system, which is 

operated by inductive powering with a bandwidth of 1 Hz to 10 kHz, is shown in Fig. 5.6. 

 

 
Fig. 5.5. (a) Animal experiment set-up, (b) The in vivo results for the PA supply voltage during 40 sec (The 

author acknowledges Byunghun Lee and Dr. Mahmoudi for helping this animal experiment). 
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Fig. 5.6. LFP recordings from the WINeR-7 system operated by inductive powering with a bandwidth of 1 

Hz to 10 kHz. 
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CHAPTER VI 

CONCLUSIONS AND FUTURE STUDIES 

This dissertation focuses on developing smart solutions by utilizing innovative 

system- and package-level designs with analog and digital circuit techniques for an 

inductively powered ultra-low-power and multi-channel wireless integrated neural 

recording system, which has resulted in several conference and journal publications [61], 

[65], [73]-[76]. A neural recording amplifier design with low power and low noise is 

critical to wireless neural recording systems. A power scheduling mechanism with a 

multi-channel analog front-end has been developed to improve the noise efficiency factor 

while not increasing the power consumption. The developed dual-slope charge-sampling 

AFE can simultaneously amplify and filter neural signals and easily modulate them into 

PWM signals with low power consumption. A wideband multi-antenna receiver with a 

real-time data acquisition system for multi-channel neural recordings enables wireless 

recording from animals in large arenas. In addition, a PWM-IR-UWB receiver was 

designed and tested with the WINeR-7 UWB Tx for an ultra-low-power wireless neural 

recording system. A robust closed-loop power transmission system based on RF back 

telemetry can manage wireless powering into the headstage of a freely moving animal 

subject without disrupting its neural recording function. This chapter summarizes the 

results and scientific contributions of this dissertation and proposes future studies. 

6.1. Conclusions 

Multi-channel electrophysiological neural recording is essential for developing 

effective therapies for neurological diseases, such as epilepsy, PD, and Alzheimer's 

disease. The wireless operation of these systems exhibit several clear advantages 

compared with wired operations, such as the elimination of tethering effects. However, 

hardwired systems remain more popular than their wireless counterparts in the majority 

of neurophysiology laboratories. Wireless systems are hindered by a variety of problems, 
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such as limited battery lifetime, limited wireless coverage area, and poor connectivity. As 

a result, wireless systems are considered unreliable for state-of-the-art behavioral 

neuroscience studies. 

An 8-channel WINeR-7 system with a novel DSCS AFE architecture has been 

developed to address these challenges. The DSCS AFE converts neural signals into 

currents, and the currents charge capacitors that are connected to a comparator. In this 

manner, the neural signals are converted to PWM signals. The presented DSCS-AFE 

simultaneously achieves amplification, filtering, and sampling, while consuming a small 

amount of power. The output of the DSCS-AFE produces a PWM signal that is 

proportional to the input voltage amplitude. A CSR utilizes TDM of the PWM pulses to 

create a pseudo-digital TDM-PWM signal that can feed a FSK transmitter. The 8-channel 

system-on-a-chip was fabricated using a 0.35-μm CMOS process, occupying 5.0×2.5 

mm
2
 and consuming 51.4 mW of power from 1.8 V and 4.2 V supplies. The measured 

input-referred noise for the entire system, including the receiver located at 1.2 m, was 

5.38 μVrms in the 1 Hz–10 kHz range when the system is inductively powered. For each 

channel, the sampling rate is 21.701 kHz and the power consumption is 19.3 μW. 

In an in vivo experiment, 16 electrodes were implanted in the hippocampus of a 

Sprague-Dawley rat, with 8 of the electrodes connected to the WINeR-7 to record LFPs. 

The rat carried the WINeR-7 headstage, which was inductively powered inside an 

EnerCage home cage (HC) system. In this system, the closed-loop inductive power 

control with optimal coil design provides high-power transfer efficiency while 

maintaining the received power at the headstage despite animal movements. The WINeR-

7 system enables neuroscientists to eliminate cables from their electrophysiology 

experiments of freely behaving animal subjects, which are awake, while acquiring high-

density and high-fidelity neural signals over extended periods of time. 
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6.2. Future Studies 

6.2.1. Animal Experiments 

The WINeR-7 headstage for the animal experiment is large and heavy for rats to 

carry. For successful animal experiments, a smaller and lighter headstage is desirable to 

prevent bias of an animal subject’s behavior. First, the piggyback board with nRF MCU 

can be removed by designing new PCB and wirebondings. Initially, the current MCU 

only exists for S2P register programming. Therefore, its use is not efficient during the 

animal experiments. Instead of S2P register programming, the required digital pins can be 

directly wirebonded to the WINeR-7 SoC. In this manner, we can remove the piggyback 

board and reduce the system power consumption. To reduce the headstage size, the 

receiver coils L3 and L4 can also be reduced. The flip chip technique can be used to 

significantly shrink the headstage size. 

6.2.2. UWB Communication 

The most power-consuming block of the WINeR-7 system is the RF FSK 

transmitter block. If PWM-UWB communication is improved with compatible 

performance to the FSK communication, the power consumption of the system will be 

significantly reduced. Although the UWB communication was already demonstrated with 

the WINeR-7 system as described in Section 4.8, the performance can be increased by 

developing various components. First, optimum UWB antennas for the transmitter and 

the receiver should be designed. Second, the UWB Rx can be improved by increasing the 

RF gain. In addition, automatic gain control can be implemented to compensate for the 

variable distance between the Tx and Rx. Finally, a high-frequency UWB Tx with a deep 

submicron process should be designed. Because the 0.35-µm process is not suitable to 

design a UWB Tx with a range of 3–5 GHz, the frequency of the WINeR-7 system has 

been reduced to < 1 GHz. The low UWB frequency becomes problematic when the 
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system is inductively powered. Although the 13.56 MHz frequency of the inductive-

powering RF signal is lower, the harmonics of 13.56 MHz can affect the low UWB in-

band signal. To minimize the interference, a UWB Tx with a range of 3–5 GHz, which 

can be designed with the deep submicron process, is desirable. 

6.2.3. WINeR-8 SoC Design 

The proposed WINeR-7 SoC exhibits superior noise and power characteristics 

compared with the state-of-the-art neural recording systems, as shown in Table 4.1. 

However, the identified drawbacks should be improved in the next WINeR system, which 

is named WINeR-8. First, an unwanted reset signal for the S2P register was generated 

due to an abrupt power change because the system body voltage VBB differs from the 

system VSS voltage. In the WINeR-7 system, VBB is connected to the negative rectifier 

output voltage, and VSS is connected to the negative regulator output voltage. Thus, 

when the negative rectifier output voltage changes suddenly, the voltage between the 

VBB and VSS can change, which can generate unwanted digital signals, such as the S2P 

register reset signal. To resolve this issue, the triple-well process can be employed, or the 

VBB and VSS can be connected assuming single-supply operation of the WINeR-8 SoC.  

A power management unit is critical for an inductive powering operation. The 

fabricated resistance value of the band gap reference (BGR) circuitry becomes three 

times larger than the designed value due to an inaccurate process design kit (PDK). 

External resistors were used in the WINeR-7 system to compensate for this mismatch. An 

accurate resistance value should be used in the WINeR-8 design. In the WINeR-7 

measurement, the super-capacitors discharge faster than the simulation. The super-

capacitors discharge from not only the load but also the rectifier output connection. To 

prevent this outcome, a separate super-capacitor charger control circuitry should be 

implemented in the WINeR-8 design. The load shift key (LSK) method can be 

implemented in the WINeR-8 for the closed-loop powering operation.   
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In the DSCS AFE, mismatches in the transconductance of the OTA, discharging 

currents, and capacitors may occur in each channel. These mismatches result in severe 

channel-to-channel gain and offset variations. To minimize the undesirable gain and 

offset variations, the WINeR-8 system can be designed with a DSCS auto-calibration 

feature. If the system operates in calibration mode, the LNA inputs will be shorted to the 

ground and the OTA gain and discharging currents of each channel will be calibrated. 

This calibration will be performed during the system initialization period when the 

system is turned on. Thus, the channel-to-channel gain and offset variations in multi-

channel recording will be minimized. In addition, the WINeR-8 AFE will feature a 

higher-order bandpass filter, which is desirable for recording various signals. Multi-

channel stimulators and robust stimulus-artifact rejection are also important features of 

the WINeR-8 for closed-loop operations. The Tx output power and frequency should be 

easily adjustable for a robust wireless link. 
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