
10:02:23 DCA PAD AMENDMENT - PROJECT HEADER INFORMATION 

Project #: E-16-M69 Cost share I: 
Center I : 10/24-6-R7690-0AO Center shr 1: 

Rev I: 1 
OCA file I: 

06/17/93 

Active 

Work type : RES 
Contract#: NCA2-761 
Prime I: 

Subprojects ? · N 
Main project I: 

Project unit: 
Project director(s): 

PRASAD J V R 

Sponsor/division names: NASA 
Sponsor/division codes: 105 

AERO ENGR 

AERO ENGR 

Mod 1: LTR DTD 5/12/93 Document AGR 

Unit code: 02.010.110 

(404)894-3043 

I AMES 
I 006 

Contract entity: GTRC 

CFDA: 
PE I: 

Award period: 921115 to 930814 (performance) 930831 (reports) 

Sponsor amount 
Contract value 
Funded 

Cost sharing amount 

New this change 
0.00 
0.00 

Does subcontracting plan apply ?: N 

Total to date 
26,030.00 
26,030.00 

0.00 

Title: ROTORCRAFT TURBULENCE MODELING AND SIMULATION ABSTRACT 

~ 

DCA contact: Anita D. Rowland 

Sponsor technical contact 

MR. ADOLPH ATENCIO, JR 
(415)604-6863 

FLIGHT CONTROLS BRANCH 
MAIL STOP 210-7 
NASA-AMES RESEARCH CENTER 
MOFFETT FIELD, CA 94035-1000 

Security class (U,C,S,TS) : U 

PROJECT ADMINISTRATION DATA 

894-4820 

Sponsor issuing office 

AMY CHU 
(415)604-5238 

NASA-AMES UNIVERSITY CONSORTIUM 
MAIL STOP 223-9 
MOFFETT FIELD, CA __ 94035-1000 

ONR resident rep. is ACO (Y/N): N 
Defense priority rating supplemental sheet 
Equipment title vests with: Sponsor GIT 

~~REF. PG. 1 OF BUDGET, " PURCHASE OF EQUIPMENT IS NOT AN ALLOWABLE COST" 
Administrative comments -

NASA LTR DTD 5/12/93 AUTHORIZES AN EXTENSION TO PERIOD OF PERFORMANCE TO 
8/14/93, AND FINAL REPORT TO 8/31/93, AS REQUESTED 5/5/93. 

I 



GEORGIA INSTITUTE OF TECHNOLOGY 
OFFICE OF CONTRACT ADMINISTRATION 

NOTICE OF PROJECT CLOSEOUT 

Closeout Notice Date 05/03/94 

Project No. E-16-M69 __________ __ Center No. 10/24-6-R7690-0AO_ 

Project Director PRASAD J V R _______________ _ School/Lab AERO ENGR ______ _ 

· Sponsor NASA/AMES RESEARCH CTR, CA 
·------------------------------------------------

Contract/Grant No. NCA2-761 ------------------------ Contract Entity GTRC 

Prime Contract No. 

Title ROTORCF~AFT TURBULENCE MODELING AND SIMULATION ABSTRACT ________________ _ 

Effective Completion Date 930814 <Performance) 930831 <Reports) 

Closeout Actions Required: 

Final Invoice or Copy of Final Invoice 
Final Report of Inventions and/or Subcontracts 
Government Property Inventory & Related Certificate 
Classified Material Certificate 
Release a~d Assignment 
Other 

V/N 

v 
v 
N 
N 
N 
N 

Date 
Submitted 

Comments ____________________________________________________________________________________________ ____ 

Subproject Under Main Project No. 

Continues Project No. 

Distribution Required: 

Project Director 
Administrative Network Representative 
GTRI Accounting/Grants and Contracts 
Procurement/Supply Services 
Research Property Managment 
Research Security Services 
Reports Coordinator COCA> 
GTRC 
Project File 
Other 

NOTE: Final Patent Questionnaire sent to PDPI. 

y 
y 
v 
v 
y 
N 
v 
v 
v 
N 
N 



ROTORCRAFT TURBULENCE MODELING AND SIMULATION 

J.V.R. PRASAD 
SCHOOL OF AEROSPACE ENGINEERING 
GEORGIA INSTITUTE OF TECHNOLOGY 

ATLANTA, GEORGIA 30332 

G.B. GAONKAR 
DEPARTMENT OF MECHANICAL ENGINEERING 

FLORIDA ATLANTIC UNIVERSITY 
BOCA RATON, FLORIDA 33431 

A. ATENCIO, JR. 
FLIGHT CONTROLS BRANCH 

NASA AMES RESEARCH CENTER 
MOFFETT FIELD, CALIFORNIA 

R. MCFARLAND 
FLIGHT SIMULATION BRANCH 

NASA AMES RESEARCH CENTER 
MOFFETT FILED, CALIFORNIA 

FINAL REPORT OF WORK PERFORMED 
UNDER NASA-UNIVERSITY CONSORTIUM INTERCHANGE 

NO. NCA2·761 

APRIL 1994 



TABLE OF CONTENTS 

Page No. 

SUMMARY 1 

1. INTRODUCTION 2 

2. OBJECTIVES 5 

3. ROTOR CRAFT TURBULENCE MODELING 6 

4. ROTORCRAFTTURBULENCESD&ULATION 12 

5. APPRO~TIONSTOTURBULENCESD&ULATION 15 

6. ROTATIONAL VELOCITY EFFECTS ON BODY RESPONSE 18 

7. CONCLUSIONS 19 

8. RECOMMENDATIONS 20 

REFERENCES 21 

FIGURES 24 



LIST OF FIGURES 

Figure No. 

1 . Autospectral densities of fore-to-aft turbulence seen by a rotating blade 

station and the center of the turbine disk: ( 1) at the blade station, blade­

fixed sampling or with rotational velocity effects; (2) at the turbine disk 

Page No. 

center, body-ftxed sampling or without rotational velocity effects (Ref. 9). 24 

2. Schematic of distance metric ~- 25 

3. Perspectives of correlation and frequency-time spectrum of turbulence with 

rotational velocity effects (Rosenbrock model, UR=4, J.1=0.05). 26 

4. Mean square values of flap response (von Karman model, lJR=2, m=O.l). 27 

5. Zero exceedance statistics of flap response (von Karman model, IJR=2, 

Jl=O.l). 28 

6. Sample of simulated helicopter response to two-dimensional turbulence with 

and without rotational velocity effects (von Karman model, LIR=2, Jl=O.l). 29 

. .,.,_,....--



SUMMARY 

This report documents results of rotorcraft turbulence modeling and simulation 

from a collaborative effort between the Georgia Institute of Technology (Georgia Tech), 

Florida Atlantic University (FAU) and NASA Ames Research Center. An important 

outcome of the collaboration is the development of a new simulation method for 

investigating turbulence effects on rotorcraft. The simulation method takes into account 

rotational velocity or blade-fixed sampling effects as well as spatial distribution of 

turbulence velocities over the rotor disk. It is exercised in a comprehensive helicopter flight 

simulation program to demonstrate qualitatively the blade-fiXed sampling effects on vehicle 

response to turbulence. Various approximations and simplifications to it are also presented, 

which reduce the computational effort and thereby offer promise to large-dimensional 

models of comprehensive analysis and real time implementation. The documentation also 

includes prediction of isolated blade flapping response to turbulence via state-transition and 

input-covariance matrices and the response statistics agree with the simulation results. An 

important conclusion is that neglect of blade-fixed sampling effects in modeling and 

simulation of atmospheric turbulence can lead to erroneous results of turbulence and 

response statistics. 
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1. INTRODUCI'ION 

In the presence of turbulence, the flight dynamics requirements of military 

helicopters are becoming increasingly demanding. Typical examples include nap-of-the­

earth rnaneuvers, near-ground hovering and landing on moving ships with limited 

accessibility. Turbulence also impacts the flight dynamics of other vehicles which combine 

the hovering efficiency of the helicopters with the cruising efficiency of airplanes. The tilt 

rotor "chugging" problem is a case in point, which is basically a fore-to-aft low-frequency 

acceleration of the rigid body mode coupling with the rotor torque mode. It occurs at 

relatively low speeds of 150-170 knots and aggravates during descent (Ref. 1). Such 

developments prompted an improved appreciation of low altitude turbulence modeling, its 

simulation and its effects on flight dynamics; particularly maneuverability, low-frequency 

response, stability, pilot's work load, ride quality and flight control system design. In fact, 

according to a recent NASA/Army study (Ref. 2), the lack of an adequate low-altitude 

turbulence model is a critical gap in assessing helicopter flight dynamics characteristics. 

This is well corroborated by comments from pilots "flying" flight simulators. The 

consequence is that the state-of-the-art rotorcraft simulators include turbulence models only 

in a rudimentary way in that these models developed for airplanes completely neglect the 

rotating and translating environment of the rotorcraft. As a result, real-world scenarios are 

not generally well simulated; worse still, pilots feel that some of the most severe cases 

cannot be duplicated at all (Ref. 3). Given this background and to put the present study in 

perspective, three important issues of turbulence modeling and simulation are presented 

here; for a state-of-the-art review through 1980 see Ref. 4 and for developments since 1980 

see Refs. 5-7. 

The frrst issue deals with the impact of blade rotation in turbulence modeling. 

Turbulence is typically modeled on the assumption that it is uniform over the rotor disk. 

This n1eans that turbulence as experienced at the hub center is a representative sample of the 

entire disk and that the conventional body-fixed description of turbulence is satisfactory. 

According to this assumption, as is done for fiXed-wing aircraft, the turbulence excitation at 

a blade station can be directly represented by models such as due to Dryden and von 

Karman. In sharp contrast to this assumption, which implies negligible rotational velocity 

effects, extensive investigations of wind turbines have shown dominant rotational velocity 

effects on turbulence characteristics and wind turbine blade response (Ref. 8). To present 

the role of rotational velocity effects in proper perspective it is expedient to study Fig. I 

(Ref. 9), which refers to an experimental and analytical investigation of a blade station of a 
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horizontal axis wind-turbine. It includes the predicted spectral density function of the fore­

to-aft or longitudinal turbulence velocity according to the widely used von Karman 

turbulence model. This fore-to-aft component being perpendicular to the wind turbine plane 

is the most dominant component, as is the axial or vertical component for rotorcraft. Its 

auto-power spectral density or APSD is the Fourier transform of the auto-covariance 

function of the longitudinal turbulence velocity at one blade station. To capture the 

rotational velocity effects the data base was generated from the sampling of measurements 

along a circular array of points which represent the instantaneous loci of this station. The 

monotonically decaying behavior is exhibited by the conventional body-fixed description 

which fails to capture the two basic features of data: transfer of energy from essentially 

low-frequency region (< 1P, P: rotational speed) to the higher-than-1P region and 

occurrence of peaks at 1P, 2P, etc. By comparison the blade-fixed sampling description 

dramatically improves the correlation. The correlation also shows that the assumptions of 

isotropic, homogeneous and momentarily-frozen wave fields are fairly valid at low 

altitudes. This overall validity of these assumptions is indeed remarkable, given the 

complexities at low-altitude such as earth's boundary layer, closeness to obstacles and low 

values of turbulence scale length. Although for rotorcraft no test data on gust response 

exist, analytical investigations show that for conventional helicopters (advance ratios 

1J.<0.4) operating at altitudes of 1000 ft or below (turbulence scale L < 12 x rotor radius R) 

the widely used approximation of neglecting rotational velocity effects is not satisfactory 

(Refs. 9-10). 

The second issue deals with spatial distribution of turbulence velocities over the 

rotor disk. In the past, the problem of turbulence effects on flight mechanics and vibrations 

was almost exclusively treated on the basis of point approximation. It is assumed that the 

entire rotor disk experiences a spatially uniform turbulence velocity identical to that at the 

rotor center so that each blade station sees the same turbulence velocity at a given time. In 

other words, the difference between the turbulence velocity experienced by the blade station 

and that experienced by the hub center is ignored. Outside the earth1
S boundary layer, 

where the turbulence scale is 600 ft or more as compared to the disk diameter of 70 ft or so, 

this point approximation of a small scale-vehicle encountering a large-scale turbulence is 

valid (Ref. 9). Within the earth's boundary layer and dependent on surface structure-­

trees, buildings, bridges - the turbulence scale has values that are comparable to the rotor 

diameter, so that the assumption of large-scale turbulence or of a uniform turbulence 

velocity over the rotor disk is not a good approximation. 

The third issue deals with the need for developing a turbulence simulation method 

that is suitable for rotorcraft applications. In fiXed-wing turbulence studies, it is customary 
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to use transfer function models of the aircraft and combine them with appropriate 

turbulence spectral models for predicting aircraft turbulence response statistics. The 

practical utility of such an analysis is due to the facts that the aircraft is treated as a linear 

systen1 with time-invariant coefficients and the turbulence is well approximated as a 

stationary random process. Indeed, the turbulence excitation is stationary even with 

inclusion of spatial distribution effects (Ref. 11) and it is a routine exercise to design 

shaping filters; moreover the aircraft response is also stationary and established 

methodology exists for its simulation. However, a straightforward application of this 

methodology to rotary wing turbulence is not possible. Due to combined translational and 

rotational velocities, each blade element traverses through a turbulence field at a different 

rate and samples turbulence velocities differently; hence, the simulation methods commonly 

used for fixed-wing turbulence are not valid for rotary-wing turbulence analysis. A rotary­

wing vehicle has large periodic variations of its aerodynamic parameters and its response 

to turbulence is due to integrated aerodynamic loads from various blade elements. 

Therefore turbulence excitation and rotorcraft response to turbulence are both 

cyclostationary. References 12 and 13 consider turbulence simulation for rotorcraft 

applications based on shaping-filter and related approaches. Reference 14 considers 

generating sample functions of stationary turbulence on horizontal axis wind turbines. 

However, the simulation methods developed in Refs. 12 to 14 cannot be directly applied to 

the case of cyclostationary turbulence as seen by a translating and rotating blade. To 

reiterate, this cyclostationarity of turbulence and rotorcraft response requires a new 

approach to turbulence simulation methodology. 

In summary, there is a need for developing atmospheric turbulence models that 

include effects of blade rotational velocity and spatial distribution of turbulence over the 

rotor disk. Also, there is a need for developing a simulation method for generating sample 

functions of cyclostationary turbulence. 
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2. OBJECITVES 

The objectives of the research are: 

1. Formulate a mathematical model lhat describes qualitatively and quantitatively the 

statistics (e.g., covariance and instantaneous spectral density matrices) of atmospheric 

turbulence with reference to rotor blade in forward flight; 

2. Develop a method for generating sample functions of turbulence for inclusion in vehicle 

simulation programs; 

3. Develop approximations and simplifications to the turbulence simulation method towards 

real time implementation; and 

4. Investigate the effects of turbulence on isolated blade flap-response statistics of 

covariance, frequency-time spectrum and average threshold-crossing rates. 

5 



3. TURBULENCE MODELING 

The helicopter rotor disk experiences a complex three-dimensional turbulence. The 

treatment here is based on the von Karman theocy of isotropic and homogeneous turbulence 

and on the Taylor hypothesis of momentarily frozen turbulence field (Refs. 4, 10). 

Extensive experimental data with respect to airplanes (Ref. 11) and wind turbines (e.g., 

Ref. 8) show that the von Karman theocy and the Taylor hypothesis are reasonably valid. 

They also show that turbulence is approximately Gaussian as well. With respect to 

rotorcraft, similar experimental data are not available. However, following earlier studies, 

(e.g., Refs. 3-7 and 9-10) it is assumed that the rotor disk experiences essentially free 

atmospheric turbulence with negligible influence of self induced turbulence and that the 

vertical turbulence velocity is the most dominant component compared to the turbulence 

velocity components in the fore-to-aft and lateral directions. It is emphasized that the 

vertical turbulence is treated in a three-dimensional gust field by accounting for variations 

of blade-station coordinates in the fore-to-aft, lateral and vertical directions. However, for 

illustration the results are for level-flight conditions, when the turbulence field is two­

dimensional. 

All the information necessacy to develop the dynamic equations describing the 

atmospheric turbulence velocity field experienced by a blade element is contained in the 

atmospheric turbulence velocity correlation matrix (Ref. 1 0). As shown schematically in 

Fig. 2 (sketches 1 and 2), subscripts 1, 2 and 3, respectively, refer to mean wind, lateral 

and vertical directions. For homogeneous and isotropic turbulence, the covariance matrix in 

one frame of reference can easily be transformed into another frame (Refs. 10, 15). For 

algebraic simplicity, the mean tail wind direction coincides with the flight or longitudinal 

direction in the present formulation. 

As sketched in Fig. 2, A(t) and B(t) are the instantaneous temporal or azimuthal 

locations of two stations, and A(t1)B'(t2) or ~AB, is the projection of A(t1)B(t2) on the line 

in the mean wind direction from A(tJ). For isotropic turbulence, the correlation function for 

lateral turbulence velocity u2 is identical to that of the vertical turbulence velocity u3. From 

the von Karman theory, the fundamental longitudinal correlation function f and the 

fundamental transverse or lateral correlation function g are 

(1) 
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(2) 

Several models such as due to von Karman, Dryden, Rosenbrock, etc. exist in the 

literature (Ref. 9, 11, 16) for the fundamental longitudinal and lateral correlation functions, 

f and g. For example, as per von Karman model, the expressions for the fundamental 

longitudinal and lateral correlation functions are given by (Ref. 16) 

where Lis scale length of the longitudinal turbulence and K113 and K213 are modified 

Bessel functions of the second kind of fractional order l/3 and 2/3, respectively. 

The distance metric ~AB (sketch 2, Fig. 2) discussed next represents the spatial 

separation relative to the mean wind during the lapsed time t2-t1. Theoretically, the nine 

elements of the covariance matrix between the three velocity components at A(t1) and at 

B(t2) are given by 

i,j = 1, 2, 3 
(5) 

In the above equation ~i represents spatial separation between A and Bin the i-th direction. 

Thus, the problem boils down to evaluating the correlation distance or spatial separation 

~·For example, the cross-correlation function between u1A(t1) and u2B(t2) is 

(6) 

It is clear from Eq. (6) that for level flight conditions, the velocity pairs [u2Ac:tt), u3B(t2)], 

[u2B(tJ), u3A(t2)], [uiA(tJ), u3B(t2)] and [utB(tt), u3A(t2)] are not correlated. 
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(7) 

In order to understand the impact of blade rotational velocity on turbulence 

modeling, the case of a helicopter flying straight and level, directly into the mean head 

wind, its considered; see Sketch 3 of Fig. 2. Let V ac and V mw represent ground speeds of 

the rotorcraft and mean head wind, respectively. Airspeed V=Vac+Vmw· The CXH, YH, 

ZH) and (XB, YB, ZB) systems are the conventional body-fixed and blade-fixed frames, 

respectively, in which the Z axis, directed downward, is the plunge direction and 

represents both the nonrotating vertical axis ZH of the body-fixed system as well as the 

rotating shaft axis ZB of the blade-fiXed system. Both systems are right-handed; while XH 

axis represents the flight direction, also referred to as the longitudinal or aft-to-fore 

direction, the XB axis along the blade span represents the radial direction. For blade station 

A at ~AR distance from the center (oS~AS1), the velocity components relative to the 

atmosphere, expressed in inertial or ground-fixed coordinates, are 

(8) 

The distance metric is the vector between two points on the lifting surfaces at two points in 

time in the atmospheric frame. Its magnitude is (see sketch 2 in Fig. 2) 

(9) 

which is also referred to as the correlation distance. It is convenient to use the following 

dimensionless time and velocity units: 

r1 = ntr r2 = nt2 (10) 

v ll 21.1 
nR(L/2R) = (L/2R) = (L/R) =a (11) 

where 1.1 is the advance ratio. The dimensionless magnitude of the distance metric ~AB 

reduces to 

8 



where RL=RIL, t is the average time (t
1 
+ t 

2
)/2 and t is the lapsed time t

2
- t

1
• As is 

evident from the context and for simplicity of notation, t represents both the physical time, 

as in Eq. (9) and the dimensionless average time, as in Eq. (12). Also, it is observed from 

Eq. (12) that 

(13) 

for integer m=n only. 

Under non-level flight conditions, Eq. (9) is generalized to 

The expressions of dX/dt, dY/dt and dZJdt would depend upon several flight mechanics 

details such as flight path angle, shaft tilt etc., and the expression for ~AB in closed form, 

as in Eq. (12), is not possible. Moreover, in contrast to Eq. (7), E[utA(tt)u3B(t2)], 

E[u3A(tt)utB(t2)], E[u2A(tt)u3B(t2)], E[u3A(tt)u2B(t2)1 are not necessarily equal to 0. 

Moreover, Eq. (12) shows that the rotational velocity effects should decrease with 

increasing advance ratio. When rotational velocity effects are neglected, the magnitude of 

the distance metric simplifies to 

~I= Ll;tl 
(15) 

Now, considering only the dominant vertical turbulence component that is nearly 

normal to the rotor plane and for level flight condition, the correlation of vertical component 

of turbulence velocity is given by 

(16) 

9 
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Correlation function between vertical turbulence velocities wA(tt) and wB(t2) can be 

obtained by substituting the expression for distance metric of Eq. (12) into Eq. (16). It is 

seen from Eqs. (12-13) that 

R w(t1 + 2m1t,t 2 + 2n1t) = R w(tl' t 2) 

or, equivalently, 

form= n only 

for m = 0, 1, 2, •.• 

(17) 

(18) 

Equation (17) shows that the blade-sampled turbulence belongs to a (wide sense) 

cyclostationary process (Refs. 17-20). However, the process is not mean square periodic 

since Eq. (18) does not hold for m;tn (Ref. 17). From Eq. (17), the process is also not 

(weakly) stationary since Rw(tJ,t2) is not a function oft2-t1 only (Ref. 17). Moreover, Eq. 

(17) or (18) shows that the correlation, though not invariant to arbitrary shifts oft2-t1 as in 

a stationary process, is invariant to shifts of integer multiples of 21t. This nearness to 

stationarity is better explored by means of frequency-time spectrum or the Wigner 

distribution (Refs. 21, 22). 

The frequency-time spectrum Sw(f,t) is obtained by taking the Fourier transfonn of 

Rw(t,t) with respect tot (Ref. 21), 

00 

S w{f,t) = J Rw(t, t)e-i27tft dt 
-oo (19) 

It is possible to obtain a closed-fonn expression for the frequency-time spectrum 

for the case of ~A =~B and in level flight using Rosen brock model for the fundamental 

correlation functions, f and g, as in Refs. 9 and 23. The closed-fonn solution permits 

qualitative and parametric investigation of rotational velocity effects on turbulence 

modeling. Thus with the Rosenbrock model given by 

(20) 

substituting the distance metric expression from Eq. (12) with ~A=~B=0.7 in Eq. (20) 

results in 

10 



where c=l.4/(L/R). Substituting Eq. (21) in Eq. (19) and after several algebraic 

manipulations (for details see Refs. 9 and 23), the following expression for the frequency­

time spectrum of blade sampled vertical turbulence is obtained: 

1 oo oo p=[ (q/2)+s] (- 1) q+s( q + 2s)!B2sCQ 
S w(f,t) =X I, I, I, q+2s 

s=Oq=Op=-{(q/2)+s] 2 q!s! [(q/2) + s + p]![(q/2) + s- p]! 

{ 
P r[(q + 1)/21 q + 1 1 - (f+p)

2 

X (- 1) T l(q) q+l cp(-2-'2' 2 ) 
2A 4A 

2p+l 2 2 
-2- ( f + p )exp [ - ( f + p) /4A ] 

+ ( - 1) T 2 ( q) q +2 
2A 

q + 1 1- q 3 (f + p)
2 

} 
xr<-2->ct><-2-'2' 4A 2 ) (22) 

where Tt(q)=l, T2(q)=O, for q=0,2,4,6, .... even 

Tt(q)=l, T2(q)=1, for q=1,3,5,7, .... odd 

cp is degenerate hypergeometric function. 

Equation (22) is instructive in that the variation of Sw(f,t) for instantaneous azimuth 

locations has preferred locations at 1P/2, 1P, 3P/2, etc. Figure 3 shows perspectives of the 

correlation and frequency-time spectral density for the Rosenbrock model for J1=0.05 and 

UR=4. Figure 3 illustrates rotational velocity effects on turbulence modeling as turbulence 

frequency-time spectral concentration within preferred frequency bands centered on 1P/2, 

1P, 3P/2, etc. By contrast, the conventional body-fixed turbulence modeling suppresses 

such peaks with rapid attenuation of such peaks with increasing frequency. 

Using a mathematical model of an isolated rigid root-restrained blade, the impact 

of turbulence velocity effects on turbulence modeling and flap response statistics is 

investigated in Ref. 9. Based on the numerical results for various values of advance ratio 

and turbulence scale length, it is shown therein that th~ response statistics comprising 

frequency-time spectra, the conventional correlations, and the average threshold upcrossing 

rates are significantly affected by the rotational velocity effects and these effects decrease 

with increasing advance ratio and turbulence scale length. 
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5. ROTORCRAFr TURBULENCE SIMULATION 

For convenience of illustration, a helicopter in level flight is considered. The most 

general representation comprises all the three velocity components in a three-dimensional 

turbulence field- vertical, lateral (side~to-side) and longitudinal (fore-to-aft) velocities- the 

distancle metric for each component accounts for spatial changes in all the three directions. 

First, consider only the vertical turbulence velocities felt by a rotor in level flight, heading 

into the~ mean wind direction. The correlation function, R33, for this case is given by Eq. 

(16) with the distance metric ~AB given by Eq. (12). 

For simulation purposes, it is important to consider the time lag between the hub 

center and a typical blade station in experiencing turbulence. Considering a simplified 

picture of the spatial variation of turbulence in the flight direction only (i.e., a one­

dimensional distribution of turbulence), as compared to the hub, an element located at 

radius rand azimuthal angle 'If will experience turbulence velocities with a time lag, ~t, 

given by 

~t = rcos 'If 
v (23) 

Denoting whub(t) and wblade(r,t) as sample functions of turbulence velocity felt at the hub 

center and the blade station, respectively, whub(t) and wblade(r,t) are related through the 

expression for the time lag ofEq. (23)(Ref. 24): 

r COS'If 
Wblade(r,t) = Whub(t - v ) (24) 

The term rcoswN in Eq. (24) accounts for the effects of both rotational velocity and the 

spatial distribution of turbulence. From Eq. (24 ), it is seen that the time lag increases with 

increasing radial distance and decreasing airspeed. Thus, rotational velocity effects will be 

dominant at the blade tip for low airspeeds. 

Using Shinozuka's algorithm (Ref. 25), whub(t) can be expressed in terms of a 

series of cosine fucntions as 

(25) 
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where S33( COi) is the value of the two-sided, power spectral density (corresponding to the 

correlation function, R33) of the stationary turbulence process at the temporal frequency CO:i 

and tl>i is random phase with uniform probability density distribution between 0 and 27t. 

The discrete frequency mi is obtained by dividing the frequency band of interest of the 

power spectral density curve into almost equal subdivisions: 

IDi = (2i-1 )Aro/2, i =1,2, ... ,N (26) 

Combining Eqs. (24) and Eq. (25) results in 

Wblade(r,t) = 2 ~ .J S33(COj)Acocos[COj(t - r C~'lf )+CI>i)J 
i=l (27) 

Equation (27) can be rewritten in terms of positive spatial frequencies <Ok and Am as 

Thus, Eq. (28) gives an expression for the sample function for the vertical turbulence as 

seen by a rotating blade element. 

Thus far, since the frozen field of vertical turbulence velocity is approximated in 

terms of one-dimensional waves, the turbulence velocity at a point located at {x,y ,z} in the 

atmospheric frame is written as a function of x alone. In reality, the correlation of vertical 

turbulence velocities is a function of all the three components of spatial separation and the 

corresponding spectral density is a function of three spatial frequencies, ro, v, K; a three-

dimensional spectrum. 

The simulation method described above can be extended to the cases of two- and 

three-· dimensional distributions of vertical turbulence. For the case of two-dimensional 

distribution of vertical turbulence the expression for w{r,t), including rotational velocity 

effects, reduces to (Ref. 24) 

N 1 N2 ,....------
w(r,t) = 2 L L ...; s33(IDj,Vk).AroAvcos(~ ( v t- r cosv) + Vk ( r Sin'lf) + tl>j k) 

j=l k=-N2 ' 
(29) 

where 

13 

---



roj = (2j-1 )~ro/2 

Vk = (2k-l)~v/2 

The expression for w(r,t) for the case of three-dimensional spectrum is given by 

(Ref. 24) 
Nt N2 N3 

w(r,t) = 2I, I, I, -./ s33(roi,vj,Kk)~ro~v~K co~roj x + vj y + Kk z+ Cl>ij,k) (30) 
i=l j=-N2 k=-N3 

where x, y and z represent the three components of the location of the blade element 

measured in the atmosphere-axis system and co, v, K are the corresponding spatial 

frequencies. 

Using numerical results for the two-dimensional case, it is shown in Ref. 24 that 

sample functions generated using the simulation method described above will contain the 

correct second order statistics as seen by a rotating and translating blade element. Reference 

26 presents a generalization of the above simulation method to include all three components 

of turbulence velocities using the turbulence spectral matrix. 
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6. APPROXIMATIONS TO TURBULENCE SIMULATION 

The turbulence simulation method presented in the previous section in its present 

form is not suitable for real-time implementation as it involves for the three-dimensional 

case triple summation of terms over several frequency values in the expression for 

turbulence velocities. Also, for real-time implementation, the type of turbulence 

distribution, i.e, 1-D, 2-D or 3-D, as well as the number of blade elements and the number 

of azirnuthal locations at which turbulence velocities need to be computed become 

important. 

Reference 27 addresses the issue of minimum number of blade stations at which 

turbulence velocities need to be computed for adequate representation of turbulence effects 

on blade response. Using a mathematical model representation of an articulated rigid root­

restrained blade, flap response statistics are computed and compared for different number 

of blade stations. Also, comparisons are made between response results with one­

dimensional and two-dimensional turbulence distributions. Figures 4 and 5 describe the 

mean square flapping response and zero exceedance statistics (average number of response 

up-crossings per unit time) of flapping response, respectively. Four curves are shown in 

these figures. The line labeled as 'body fixed' represents results for the case wherein 

turbulence velocity computed at the hub center is used for the entire rotor and the turbulence · 

simulation involves single summation of sinusoids at one blade station. The other three 

lines represent results with blade-fiXed sampling. The line labeled as 'One-Dimensional' 

represents results for the case wherein turbulence velocity is computed at several blade 

stations (eight in this study) but with the assumption of one-dimensional distribution (see 

Eq. (28)). The turbulence simulation for this case involves single summation of sinusoids 

at several blade stations. The line labeled as '75% Approximation' represents results for the 

case wherein turbulence velocity computed at the 75% radial station with a two­

dimensional distribution is used for the entire blade and the simulation method involves 

double. summation of sinusoids (see Eq. (29)) at one blade station. The line labeled as 

'Two-Dimensional' represents results for the case wherein turbulence velocity is computed 

at several stations (eight stations in this study) with a two-dimensional distribution (see Eq. 

(29)). The two-dimensional case involves double summation of sinusoids at several blade 

stations and it is the most accurate of the four cases. It is emphasized that the one- and 

two-dimensional results include the effect of cross-correlation of turbulence velocities on 

various elements of the blade. It is seen from Figs. 3 and 4 that the 'body-fiXed' and 'one­

dimensional' cases result in very inaccurate predictions of blade response. Surprisingly, the 
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'75% approximation' results are very close to the 'two-dimensional' case. Based on these 

results, Ref. 27 concludes that a two-dimensional distribution of turbulence is required in 

order to capture the effects of turbulence on blade response. Also, it is adequate to use the 

three-quarter radial station as a representative station for obtaining a reasonably accurate 

prediction of turbulence effects on blade response. 

The number of terms involved in the summation for simulation of sample functions 

of two-dimensional vertical turbulence is considered next. The expression for sample 

function of vertical turbulence velocity given by Eq. (29) involves summation of terms over 
spatial frequencies wand v. Transforming Eq. (29) to polar coordinates using 

results in 

co=Ocose 

v=ilsin e 

N 3N 4J2s 
33

(il .,a .)il .AilA9 cos(il .cos 9 .(Vt - rcos ~f) 

(31) 

w(r,t) = 2 L L 1 
J 

1 1 
J 

l=lj=l + n .sine .(rsin 'If)+ 4> . . ) (32) 
I J IJ 

In Eq. (32), the summation limits for the transformed variables n and e are as follows: 

0: Otoilmax 

e: 0 to 7tl2 

Reference 26 uses 110 values for wand v each (i.e., Nt=llO, N2=llO) in Eq. 

(29) for accurate representation of rotational velocity effects. However, Ref. 28 shows that 

if one uses Eq. (32) instead ofEq. (29), then the number of terms required in simulation 

for accurate representation of rotational sampling effects are significantly reduced. 

Even with the use of polar coordinate representation (see Eq. (32)) in turbulence 

simulation, the computational effort involved may still be high for implementation of the 

simulation method in a real time simulator. For this reason, the feasibility of approximating 

the double summation in the expression for 2-D turbulence sample function by an 

equivalent single summation is investigated ~n Ref. 28. Reference 25 provides motivation 

for such an approximation wherein it is shown that sample functions for a non­

homogeneous random process can be simulated by using its power spectral density 

multiplied by a modulating function that characterizes the non-homogeneity of the process. 

Extending this idea to the case of blade-fixed cyclostationary turbulence, it may be possible 
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to arrive at a suitable modulating function which, when used in conjunction with a 1-D 

spectral distribution and hence, single summation of terms, approximates a 2-D spectral 

distribution. Reference 28 identifies such a modulating function and gives the following 

expression for single summation approximation to 2-D vertical turbulence sample function 

for a blade station located at a point (x, y) in the atmospheric frame: 

Nl 

w(x,y) = 21: Jf(x, y)S 33(m .)aro cos(m.; + 4> .) 
i=l 1 1 1 

where S33(CO) is 1-D vertical turbulence spectrum and 

s vP 
f(x,y) = "'Pv 
s= Jx2+y2 

t 

p= JVpdt 
0 

~ = sl~:l 

(33) 

(34) 

Using numerical results it has been shown in Ref. 28 that the single summation 

approximation to the expression for sample functions of vertical turbulence described above 

results in reasonably accurate second order statistics. Also, Ref. 28 investigates 

development and use of parallel computing schemes for turbulence simulation and for 

prediction of turbulence statistics. 
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6. ROTATIONAL VELOCITY EFFECTS ON BODY RESPONSE 

The effect of rotational sampling of turbulence on helicopter body response has 

been qualitatively investigated in Ref. 26. In order to carry out this investigation, the 

turbulence simulation method was first integrated into the UH-60A Black Hawk helicopter 

simulation program (Ref. 29). The vehicle was initially trimmed at an advance ratio of 0.1 

and the main rotor was subjected to a two-dimensional vertical turbulence velocity 

distribution given by von Karman model with an intensity of 5 ftlsec and IJR of 2. The 

normal acceleration response results are shown in Fig. 6 for the cases of with and without 

rotational velocity effects. It is seen from Fig. 6 that for the case without rotational velocity 

effects, the normal acceleration response is essentially of low frequency. However, for the 

case with rotational velocity effects, the low frequency response is attenuated and it is 

replaced by low-amplitude high frequency response. Though not shown, the body pitch 

and roll rate responses exhibit similar characteristics. Based on the qualitative differences 

seen in body response results with and without rotational velocity effects, Ref. 26 

concludes that the effect of rotational sampling on vehicle response is to attenuate the low 

frequency (<lP) response of the vehicle and to amplify the high frequency (~lP) vibration. 
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7. CONCLUSIONS 

Based on various results obtained in this study the following general conclusions 

are made: 

1. A generalized formulation of the correlation matrix describing atmospheric turbulence 

that a rotating blade element encounters has been developed. 

2. Using a closed-form solution of frequency-time spectrum of the dominant vertical 

turbulence excitation at an arbitrary blade station, it has been shown that the blade flap 

response statistics comprising frequency-time spectra, the conventional correlations, and 

the average threshold crossing rates are significantly affected when rotational velocity 

effects are included in turbulence modeling. 

3. A simulation method suitable for rotorcraft turbulence analysis has been developed. It is 

shown that the simulation method is capable of generating samples of vertical turbulence 

velocities with correct second order statistics as seen by a rotating and translating blade 

element. 

4. The simulation method for generation of sample functions of vertical turbulence has been 

generalized for arbitrary motion of a blade element and the same has been integrated into a 

comprehensive flight simulation program. Using representative results of vehicle response 

in the presence of vertical turbulence, it has been shown that the effect of rotational velocity 

results in a decrease of low frequency(< lP) response of the body and an increase in high 

frequency (~lP) vibrations. 

5. Using a mathematical model of an articulated rigid root-restrained blade, flap response 

statistics have been computed and compared for one- and two-dimensional turbulence 

distributions. Using representative results for mean square flapping response and zero 

exceedance statistics, it has been shown that a two-dimensional distribution of turbulence is 

requiw,d in order to capture the effects of turbulence on blade response. 
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8. RECOMMENDATIONS 

I. Experimental validation of the rotorcraft turbulence modeling and analysis approach 

developed in this study needs to be conducted. 

2. An improved understanding of turbulence is needed for non-level-flight conditions of 

· helicopters and tiltrotors such as axial flights, transition flights, landing approaches, nap­

of-the-·earth or NOE flights and hovering. The current formulation with blade rotational 

velocity effects is restricted to a two-dimensional turbulence field of level-flight conditions 

and considers only vertical turbulence at a helicopter blade station near the tip; it thus 

completely neglects cross-correlation between vertical, longitudinal and lateral turbulence 

velocities at different blade stations and also neglects turbulence in the longitudinal and 

lateral directions. 

3. Several approximations to the simulation method have been studied in this work. Further 

work is required to investigate real-time simulation of blade-sampled turbulence. 

4. The Taylor-von Karman turbulence theory provides the basis of all the turbulence work 

on helicopters and tiltrotors. This theory, though reasonably valid for level-flight 

conditions, is not valid in hovering. Its range of validity for different non-level flight 

conditions is seldom verified. Much research is needed to provide a means of quantifying 

the range of non-applicability of this theory for different flight conditions and to develop a 

viable turbulence theory for such flights. 

-·­.--
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Figure 1. Autospectral densities of fore-to-aft turbulen~ seen by a rotating blade station 

and the center of the turbine disk: (1) at the blade station, blade-fixed sampling or 

with rotational velocity effects; (2) at the turbine disk center. body-fixed 

sampling or without rotational velocity effects. (Ref. 9). 
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Figure 3. Perspectives of correlation and frequency-time spectrum of turbulence with 

rotational velocity effects (Rosenbrock model, I.JR=4, J.1={).05). 
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Figure 4. Mean square values of flap response (von Karman model, l1R=2, ~-t=O.l). 
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Figure 5. Zero exceedance statistics of flap response (von Karman model, 11R=2, IJ.=O.l ). 
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Figure 6. Sample of simulated helicopter response to two-dimensional turbulence with 

and without rotational velocity effects (von Karman model, lJR.=2, IJ.=O.l ). 
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