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SUMMARY

Human-in-the-Loop machine learning leverages both human and machine intelligence

to build a smarter model. Even with the advances in machine learning techniques, results

generated by automated models can be of poor quality or do not always match users’ judg-

ment or context. To this end, keeping human in the loop via right interfaces to steer the

underlying model can be highly beneficial. Prior research in machine learning and visual

analytics has focused on either improving model performances or developing interactive

interfaces without carefully considering the other side.

In this dissertation, we design and develop interactive systems that tightly integrate

algorithms, visualizations, and user interactions, focusing on improving interactivity, scal-

ability, and interpretability of the underlying models. Specifically, we present three vi-

sual analytics systems to explore and interact with large-scale text data. First, we present

interactive hierarchical topic modeling for multi-scale analysis of large-scale documents.

Second, we introduce interactive search space reduction to discover relevant subset of doc-

uments with high recall for focused analyses. Lastly, we propose interactive exploration

and debiasing of word embeddings.
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CHAPTER 1

INTRODUCTION

Machine learning enables computers to automatically learn and improve from experience [1].

That is, machine learning techniques build a model based on training data without being

explicitly programmed. Powered by massive data growth, machine learning is affecting

various aspects of our daily lives nowadays. From shopping recommendations, fraud de-

tection, and health analytics, to self-driving cars, it is almost harder to find an enterprise

that is not partly automated by machine learning. The problem is that machine learning

models need good data, both in quantity and quality. Machine learning cannot perform

well when there is not enough data, the data is unbalanced, it is noisy or of poor quality, or

it contains bad information such as human biases. In these cases, learning from data is not

enough - human intervention is necessary.

Human-in-the-loop machine learning leverages both human and machine intelligence

to build a smarter model. During the model building process, human-in-the-loop machine

learning allows users to interact with the model through interactive interfaces. Numerous

works have been done in interactive machine learning in the machine learning community

and visualization community. However, many of these works have focused on either im-

proving model performances using user feedback or developing interactive interfaces for

human interaction, without carefully considering the other side.

We advocate that both the algorithmic side and the user side should be taken into con-

sideration when designing a human-in-the-loop machine learning system. To do so, we

choose interactive visualization as a medium for machine-human interaction. Interactive

visualization can help the users quickly understand data by showing the overview of the

data and allowing them to explore items of interest. Also, visualization could be used as an

interactive interface for the users to steer the underlying model, through direct parameter

1



adjustments or semantic interactions on visual objects [2]. In this dissertation, we design

and develop interactive systems that tightly integrate algorithms, visualizations, and user

interactions, focusing on improving interactivity, scalability, and interpretability of the un-

derlying models. Specifically, we focus on analyzing large-scale text data.

Over the past decades, there has been a deluge of text data from traditional sources such

as news and research articles as well as recent electronic sources such as web pages, social

networking services, online forums, and online encyclopedia. Due to the sheer volume

and the noisy unstructured nature of these data, discovering useful knowledge from large

document collections is a challenge. Numerous text mining methods have been introduced

to effectively summarize and organize documents without going through every document.

However, automatically generated topic summaries do not always match human judgment

or context, can be of poor quality, or just do not make sense sometimes. To this end, keeping

human in the loop to steer the text mining process can be highly beneficial for generating

better quality topics that align with users’ needs.

In the following chapters, we try to solve these three research questions (RQs) using

interactive visual text analytics:

RQ1: Understanding and Organizing Large-scale Text Data (Chapter 3)

Human-in-the-loop topic modeling allows users to explore and steer topics to produce

better quality topics that align with their needs. When integrated into visual analytic sys-

tems, existing topic models are given interactive parameters that allow users to tune or ad-

just them. However, this has limitations, as non-interactive algorithms are often used and

adapted for this interactivity. Instead, we present the concept of tight integration, which

advocates for the need to co-develop interactive algorithms and interactive visual analytic

systems in parallel to achieve flexible interactivity. Another challenge in many existing

systems is scalability. We utilize hierarchical topic model to allow multi-scale sensemak-

ing for large-scale text data. To instantiate our concept, we present ArchiText, a prototype

system for interactive hierarchical topic modeling that offers fast, flexible, and algorithmi-
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cally valid analysis via tight integration. Utilizing interactive hierarchical topic modeling,

our technique lets users generate, explore, and flexibly steer hierarchical topics to discover

more informed topics and their document memberships.

RQ2: Finding the Relevent Parts of the Data (Search Space Reduction) (Chapter 4)

Often in practice, users want to focus on specific aspects or “targets” rather than the

entire corpus. For example, given a large collection of documents, users may want only

a smaller subset which more closely aligns with their interests, tasks, and domains. In

particular, Chapter 4 focuses on large-scale document retrieval with high recall where any

missed relevant documents can be critical. A simple keyword matching search is generally

not effective nor efficient as 1) it is difficult to find a list of keyword queries that can cover

the documents of interest before exploring the dataset, 2) some documents may not contain

the exact keywords of interest but may still be highly relevant, and 3) some words have

multiple meanings, which would result in irrelevant documents included in the retrieved

subset. We present TopicSifter, an interactive and scalable visual analytics system for

search space reduction. Our system utilizes targeted topic modeling based on nonnegative

matrix factorization and allows users to give relevance feedback in order to refine their

target and guide the topic modeling to the most relevant results.

RQ3: Improve Interpretability and Fairness in Text Analytics (Chapter 5)

Word embeddings are commonly used as building blocks for most natural language pro-

cessing models. However, their dimensions are not easily interpretable and they are shown

to reflect stereotypes and biases on sensitive attributes (e.g., gender, race, religion, etc).

For example, ‘man’ is to ‘computer programmer’ as ‘woman’ is to ‘homemaker’ (Boluk-

basi et al., 2016). Several recent works have proposed methods to measure these negative

associations and ultimately debias word embeddings. However, most of these techniques

are based on the selection of attribute-specific words (such as ‘man’ and ‘woman’) and

attribute-neutral words (such as ‘computer programmer’ and ‘homemaker’), which can be

subjective and may vary depending on the used corpus or the application context. In Chap-

3



ter 5, we introduce a visualization system for interactive exploration and debiasing of word

embeddings. Our system allows users to construct interpretable attribute axes, visually

examine attribute biases within word embeddings, and iteratively debias them.

1.1 Thesis Statement

We design and develop interactive visual text analytics systems that tightly integrate algo-

rithms, visualizations, and user interactions, focusing on improving interactivity, scalabil-

ity, and interpretability of the underlying models. In particular, we propose:

1. Interactive Hierarchical Topic Modeling for multi-scale analysis of large-scale docu-

ments

2. Interactive Search Space Reduction to discover relevant subset of documents for fo-

cused analyses

3. Interactive Exploration and Mitigation of Biases in word embedding

1.2 Outline of Thesis

In Chapter 2, we review previous works on text visualizations. Chapter 3 introduces in-

teractive hierarchical topic modeling with tight integration between algorithm, interaction,

and visualization. Next, Chapter 4 proposes interactive search space reduction through tar-

geted topic modeling. Chapter 5 presents an interactive interface to examine and mitigate

biases in word embeddings. Finally, Chapter 6 concludes the dissertation and suggests

future work.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, we review recent literature on text visualization techniques. Sections 2.1 and

2.2 describe visualization techniques summarizing corpus contents using topic modeling or

document clustering. Finally, Section 2.3 offers some conclusions. More in-depth related

work for specific applications will be described in the later chapters.

2.1 Corpus Summarization/Topic Modeling

Organizing large, unstructured document collections into semantically meaningful topics

and visualizing them has been a widely studied problem in the visualization community.

Even before the introduction of modern topic modeling methods such as Probabilistic La-

tent Semantic Analysis (PLSA) [3], Latent Dirichlet Allocation (LDA) [4], and Nonneg-

ative Matrix Factorizatoin (NMF) [5, 6, 7, 8], earliest works including Topic Island [9]

and IN-SPIRE [10] visualize static themes extracted from documents and let users explore

Figure 2.1: Topics visualized as wordcloud (left) and lists of keywords with glyphs (right-
top) or a bar chart (right-bottom).
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Figure 2.2: Topics visualized as a scatterplot in INSPIRE [10] (left) and contours in Fac-
etAtlas [11] (right).

Figure 2.3: Interaction with topics in UTOPIAN [12]. InfoVis-VAST dataset is used.

them. With the modern topic modeling methods available, research on text visualization

has been substantially accelerated. Specifically, many methods have focused on visualizing

topic analysis results. Topics are generally represented as a set of most representative key-

words. Wordclouds are a frequently-used visualization technique to illustrate a topic and

its keywords (Fig. 2.1(left)). Another frequently used visualization technique is an ordered

list of keywords with font size or additional bar chart indicating their importance (Fig. 2.1

(right)). While simple, this approach allows users to see a ranking of the most important

words and quick comparisons.

In many cases, similarity between topics or documents is taken into account. Docu-
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Figure 2.4: Visualizations by HiPP [21]. (Left) A topic node is expanded into two nodes.
(Middle) Top level clusters of scientific papers. (Right) All clusters are expanded to data-
instance level.

ments are represented as two-dimensional or three-dimensional points by applying dimen-

sion reduction techniques to the topic analysis results. In this way, similar documents and

similar topics are placed closer to each other. For instance, UTOPIAN [12] maps docu-

ments onto 2D scatter plot, on which clusters are labeled with keywords, and users can

interact with the topic modeling algorithm. Other examples include iVisClustering [13],

TopicPanorama [14], and TopicLens [15]. Several works such as ContexTour [16], Fac-

etAtlas [11], SolarMap [17], and [18] adopt contours to represent static topics and relation-

ship between them (Fig. 2.2).

Often, automatically generated topics can be of low quality and noisy; or may not align

well with user’s mental model. In these cases, human-in-the-loop topic model techniques

allow users to steer underlying topic models to obtain better results, e.g., UTOPIAN [12]

(Fig. 2.3). Various topic-level, document-level, word-level interactions are introduced to

add, modify, split, combine, and remove topics and its representative documents and key-

words [19, 13, 12, 20, 15, 18].

2.2 Multiscale Document Analysis

As the text data and vocabulary grow larger, visualizing a large number of topics has be-

come more challenging. To this end, some systems adopt hierarchical document clustering
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Figure 2.5: White house emails hierarchically clustered and visualized as a tree (left) by
Overview [22]. Clusters containing documents having a tag “obama letter” are highlighted
in green.

techniques to support multiscale (or multilevel) document analysis. Documents are hier-

archically clustered according to their topic similarity, which results in a topic hierarchy.

Users navigate through topic hierarchy visualizations to find coarser (higher nodes) or finer

grain topics (lower nodes).

HiPP [21] uses a hierarchical circle packing algorithm, in which a topic or a document

is represented as a circle. In Fig. 2.4, topic circles can be expanded into sub-topic circles

down to individual documents.

Other systems directly visualize a topic tree using node-link style visualizations. For

example, Brehmer et al. [22] introduces Overview1, a visual document mining tool for

investigative journalists. Overview allows users to explore the topic hierarchy and annotate

relevant documents for later use (Fig. 2.5). Similarly, Dou et al.. [23] visualize topics and

their temporal patterns as tree and themeriver charts, respectively (Fig. 2.6). More recently,

Hoque and Carenini [24] utilize a simple collapsible tree in an online conversation analytics

system and allow users to explore and revise topic hierarchy by moving topic nodes.

1https://www.overviewdocs.com/

8

https://www.overviewdocs.com/


Figure 2.6: Topic tree visualization in [23]. Topics are represented as a node with its top
keywords. Three topic hierarchy modifications are supported.

Sunburst visualizations [25] are also used to visualize topic hierarchies [26, 27]. As

seen in Fig. 2.7, concentric circles represent different levels of topic hierarchy starting from

the the center (source node) to the outermost (leaf nodes). This visualization technique

relies strongly on user interaction to allow users to expand sub-components of the tree if

requested.

2.3 Summary

We reviewed recent results on various text visualization systems. Most text visual ana-

lytics systems show overall visual summary first, and support detail-on-demand through

user exploration processes. In these systems, topics or document cluster are explored first

due to the high-dimensional nature of text data, and then documents or words. Typically

used visualization techniques are wordclouds and keyword lists for individual topics; scat-

terplots, node-link diagrams, and tables for topic/document relations; circle packing, sun-

bursts, treemap, and tree for topic hierarchy; and line charts and themeriver for temporal

trends. Various user interactions are utilized for sub tasks such as filtering, zooming, mod-
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Figure 2.7: (Left) A topic subtree and its location in the original tree in Hierarchie [26].
(Right) Document cluster hierarchy in VISTopic [27].

ifying topics, etc.

In many systems, interaction capabilities are static in the sense that they update visual-

ization based on pre-computed results and not based on the updated computed results (e.g.,

zooming, filtering). Only a number of systems (e.g., [13, 12, 15, 24]) allows users to ac-

tively steer underlying models, but the types of supported interactions are limited based on

algorithmic convenience rather than users’ needs. In my thesis work, our goal is to develop

more flexible algorithms with user-centered interaction design. In addition, when steer-

ing models, some systems re-run the entire algorithm with different parameters. Instead,

we plan to adaptively update the models, which is more efficient and is possible by tight

integration between user interaction and computation. Finally, most of current research uti-

lizes toy-sized data. For the interactive systems to be usable for real world tasks, we need

to design a scalable system in terms of both algorithms and visualizations.
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CHAPTER 3

ARCHITEXT: INTERACTIVE HIERARCHICAL TOPIC MODELING

In this chapter, we present our interactive hierarchical topic modeling technique to explore,

understand, and organize large-scale text data. Unlike previous works with limited steer-

ability, our work offers users various flexible interactions that are tightly integrated with

underlying algorithms and visualizations. Also, our system can handle large-scale corpus

to offer better scalability. This chapter is adapted from our work that is publised in TVCG.

(a)
(b)

(c)

(f)

(e)

(d)

Figure 3.1: The ArchiText system. The topic workspace mode has (a) a control bar, (b) a
breadcrumb view, (c) a topic card view, and (f) a mini overview. The topic card view shows
topic cards, which can be flipped to show (d) documents in the selected topic. (e) A detail
view pops up when the mouse hovers over a document.
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3.1 Introduction

Analysis of large-scale text collections has been a widely studied research topic in the data

analytics community. In particular, it is challenging to obtain an effective overview of

text data and discover useful insights without going through each data item. This is un-

tenable due to the sheer volume and the noisy, unstructured nature of text data. To solve

this, various computational topic modeling techniques such as Probabilistic Latent Seman-

tic Analysis (PLSA) [3], Latent Dirichlet Allocation (LDA) [4] and Nonnegative Matrix

Factorization (NMF) [28] have been developed in recent decades. These methods provide

content overviews by computing semantically meaningful topics as keyword distributions,

and organize documents within the topics.

Recent advances in topic modeling have resulted in many new formulations and algo-

rithms. However, even with the advances in topic modeling methods, results generated

by these completely automated computational approaches depend largely on the problem

formulation involving some objective functions and the corresponding algorithms. As a

consequence, the computed results do not always match human expectations or context,

and can be of poor quality, or difficult to make sense of [29, 30]. Human-in-the-loop ap-

proaches can be highly beneficial for generating higher quality topics that align with users’

needs and domain expertise. Furthermore, interactive exploration can be critical to foster

understanding through discovery [31].

Many visual analytics systems for text data have been developed for human-in-the-

loop topic modeling. These systems present a high-level overview of the text data by

visualizing the topics generated by automated topic modeling algorithms and allow users

to explore items of interest and, if possible, steer the underlying model. However, there

are two major challenges in existing interactive topic modeling systems: scalability and

limited steerability. First, most existing interactive topic modeling approaches can handle

hundreds or thousands of documents, but they are not suited for large-scale datasets in
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real world scenarios. One reason is that in many systems, the underlying topic model is

treated as a black box, which is recomputed from scratch after each interaction. In order to

utilize human-in-the-loop topic modeling in real world applications, we need an efficient

and scalable way to interact with a massive set of documents. Next, many visual analytics

systems are often not well-suited for interactive analysis since they are built on top of

existing automated topic modeling methods. In other words, interaction capabilities offered

in these systems are limited by the convenience of the adopted methods [30]. An example

is LDA [4], one of the most celebrated methods in topic modeling. Despite its popularity,

LDA has several issues which hinder its integration with visual analytics systems. For

instance, its parameters are not easy to understand and tune for non-experts. Sometimes

even a small parameter change results in unpredictable side effects [30]. Also, LDA results

are less consistent over different runs [12], which makes it difficult for users to trust the

model and to see if interactions are properly reflected.

In this chapter, we propose hierarchical topic modeling in contrast to flat (non-hierarchical)

topic modeling in the context of visual analytics. Flat topic modeling is limited for visual-

izing large-scale text data. As the text data and vocabulary grow larger, the need for inter-

acting and visualizing a larger number of documents and topics also grows, and it becomes

more challenging to better represent the underlying data. However, since the computation

of a very large number of topics at once is limited by computation capacity, display size,

and visual understanding, the number of topics generated by flat models tends to be lim-

ited, and accordingly the topics are rather general and coarse-grained. On the other hand,

hierarchical topic modeling offers better understanding of the data corpus by representing

information at multiple levels of detail, and allowing people to interactively provide feed-

back at different aggregation levels. Using a hierarchy, users can explore high-level coarse

topics and zoom in on fine-grained topics. Users can drill down into a subset of data to

increase understanding (sense-making) and organize computed topics into a hierarchy that

matches users’ mental model. By focusing on steering unclear parts and leaving the rest
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to the computational methods, more efficient and comprehensive discovery is possible. In

addition, flat topic modeling methods assume that all topics are at the same level, regard-

less of semantic granularity or size. For example, flat topics generated from sports articles

during world cup season may contain many topics related to soccer but few topics on other

sports. On the other hand, users may want to organize topics into various levels according

to their mental models, e.g., by sports.

Despite the aforementioned advantages of hierarchical topic models over flat models,

limited work has been done on interactive hierarchical topic modeling. A few visual analyt-

ics systems that support hierarchical topic modeling offer interactions to explore multiple

levels of the underlying hierarchy, but their capability to modify or steer the underlying

model is limited. For flexible steerability, we propose that the visualization systems, un-

derlying computational algorithms, and users’ interactions should be tightly integrated.

Tight integration refers to the algorithm, visualization, and user interaction being jointly

developed, where all three components are considered throughout the design process. Vi-

sualizations should not only show the outputs of models, but serve as the medium for

interaction. Interaction should not be limited to controlling some parameters of algorithms,

but allow higher-level operations that support the discovery process. Finally, algorithm de-

velopment should take into account not only automated performance metrics, but consider

interactivity and transparency for visualization in their formulation. This process of co-

development goes beyond the adaptation of existing methods to meet the needs of users or

interactive tasks, but instead co-designs algorithms, interactions, and visualizations simul-

taneously to ensure proper synchronization, compatibility, and performance. The proposed

work explores the paradigm of tight integration and proposes a new way to implement tight

integration for interactive hierarchical topic modeling.

In this chapter, we present ArchiText, a visual analytic system using hierArchical

Interactive topic modeling for large-scale Text data. ArchiText visualizes hierarchical

topics and offers various interactions to steer the topics and their hierarchical structure.
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ArchiText closely integrates the computational formulation of the model with the interac-

tions provided to support flexible and rapid updates. The primary contributions of this work

include:

• Development of an interactive and hierarchical topic modeling algorithms that achieve

tight integration among visualization, computational model, and visual representa-

tion.

• Implementation of a visualization prototype system for large-scale document analysis

utilizing our interactive hierarchical topic modeling framework.

3.2 Related Work

3.2.1 Visualization of Text Corpora

Organizing large, unstructured document collections into semantically meaningful topics

and visualizing them has been a widely studied problem in the visualization commu-

nity [38]. The earliest works including Topic Island [9] and IN-SPIRE [10] visualize

document items and extracted themes. With the introduction of modern topic modeling

methods such as Probabilistic Latent Semantic Analysis (PLSA) [3], Latent Dirichlet Al-

location (LDA) [4], and Nonnegative Matrix Factorization (NMF) [28], research on text

visualization has been substantially accelerated. Specifically, many results have focused

on visualizing topic analysis results and allowing interactive exploration of topics and data

items without the ability to steer the topic modeling results.

Once computed, topics are generally represented as a set of the most representative key-

words. In many cases, the similarities between topics or documents are taken into account.

Documents are represented as two-dimensional or three-dimensional points by applying

dimension reduction techniques to the topic analysis results. In this way, similar docu-

ments and similar topics are placed closer to each other. For instance, UTOPIAN [12]

maps documents into a 2D scatterplot, in which clusters are labeled with keywords, and

users can interact with the topic modeling results. Other examples include iVisCluster-
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Table 3.1: User interaction tasks for model steering supported (or suggested) in previous
works. Parenthesis indicates suggested interaction tasks.

Unit Interaction Tasks Reasons/Goals Prior Work

Word Create a topic by seed
word(s)

Need a new topic around the word(s). [12, 32]

Add word(s) to a topic The word(s) is relevant to the topic. [33, 32] ( [30])
Move word(s) from a
topic to another.

The word(s) is more relevant to an-
other topic.

Remove word(s) from a
topic

The word(s) is not relevant to the
topic.

[33, 32] ( [30])

Confirm or reject a
word from a topic

The word(s) is definately rele-
vant/irrelevant for the topic.

[34, 35]

Change word distribu-
tion of a topic

The topic is better represented with
new word distribution.

[12, 13, 33]
( [30])

Add word(s) to stop-
word list

The word(s) is not good representa-
tive of the data.

[34, 33]

Doc Create a topic by seed
document(s)

Need a new topic around the topic of
the document(s).

[12]

Move document(s)
from a topic to another

The document(s) belongs to another
topic.

[32, 13] ( [30])

Remove document(s)
from a topic

The document(s) is irrelevant or of
low quality.

[33, 13] ( [30])

Confirm or reject a doc-
ument from a topic

The document(s) is rele-
vant/irrelevant for the topic.

[36]

Topic Merge two topics into a
topic

Two topics are very similar. [12, 13, 37,
33, 23, 32]

Split a topic into sub-
topics

The topic is too broad or not coher-
ent.

[12, 13, 37,
33, 32] ( [30])

Move a topic The topic belongs to another branch. [13, 24, 23]
Remove a topic The topic is irrelevant, uninteresting,

or of bad quality.
[13, 24, 32]
( [30])

Restore a topic Need to undo ‘remove topic’
Fix/freeze a topic The topic is final and no more refine-

ment is needed.
Collapse topics (show
fine-grained)

Topics are too general; there are not
enough topics.

[24]

Aggregate topics (show
coarse-grained)

Topics are too specific; there are too
many topics.

[24]
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ing [13] and TopicLens [15]. Several works such as ContexTour [16], FacetAtlas [11],

SolarMap [17], and Concept Visualizer [18] adopt contours to represent static topics and

relationships among them.

3.2.2 Interactions in Topic Modeling

Fully leveraging interactivity provided by visual analytics, several systems have incorpo-

rated a ‘human-in-the-loop’ approach to interactively modify the underlying topic model.

Automatically generated topics often can be of low quality and noisy; or may not align well

with user’s mental model. In these cases, human-in-the-loop topic modeling techniques al-

low users to steer underlying topic models to obtain better results [29]. For example, if

automatically generated topics contain two similar topics, users may want to merge them

into a single topic. To this end, various interactions are introduced including add, modify,

split, combine, and remove topics, documents representing the topics, and keywords [12,

13, 37, 33, 23, 32, 34, 24, 35, 36]. We have surveyed interactive topic modeling systems

with model steerability and organized the user interactions into word-level, document-level,

and topic-level based on the unit of interactions. Specifically, the word-level interactions in-

clude user’s activities of refining topics by adding words to a topic, moving words between

topics, removing words from a topic, re-weighting word importance for a topic, and cre-

ating a new topic using selected words. Similarly, the document-level interactions involve

user’s editing of topics (which can be viewed as document clusters) by moving documents

from one topic to another topic, removing documents from its parent topic, re-weighting

document importance for a topic, and creating a new topic using selected words. The

topic-level interactions occur when users perform group-wise interactions such as merg-

ing, splitting and removing topics. A complete list of user interactions that are available

in some of the existing interactive topic model systems is summarized in Table 3.1. How-

ever, user interactions in many prior works have been designed for algorithmic convenience

rather than user tasks [30], and thus are not tightly coupled with the underlying algorithms.
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3.2.3 Visual Analytics for Hierarchical Topic Modeling

In a number of recent papers, the topics are organized with a hierarchy. Hierarchical topic

modeling and hierarchical document clustering techniques organize documents into vari-

ous granularity of topics. In this way, large text corpora can be analyzed and understood

through multi-scale analysis. In hierarchical visual analytics systems, users interactively

navigate through topic hierarchy visualizations to find coarser grained (higher nodes) or

finer grained (lower nodes) topics. For instance, HiPP [21] uses a hierarchical circle pack-

ing algorithm, in which a topic or a document is represented as a circle. Topic circles can

be expanded into sub-topic circles down to individual documents. Other systems directly

visualize a topic tree using node-link style visualizations. For example, Brehmer et al. [22]

introduces Overview, a visual document mining tool for investigative journalists. Overview

allows users to explore the topic hierarchy and annotate relevant documents for later use.

Similarly, Dou et al. [23] visualize topics and their temporal patterns as tree and themeriver

charts, respectively. Other works focus on the evolution of topic hierarchies [20, 39] and

matching topic hierarchies from multiple sources [40]. A work more closely related to what

we propose here is by Hoque and Carenini [24] which utilizes a simple collapsible tree in

an online conversation analytics system and allows users to explore and revise a topic hier-

archy by moving topic nodes. Sunburst visualizations [25] are also used to visualize topic

hierarchies [26, 27], where concentric circles represent different levels of the topic hierar-

chy starting from the the center (source node) to the outermost (leaf nodes). This technique

relies strongly on user interaction to allow users to expand sub-components of the tree if

requested.

Among these hierarchical topic modeling systems, only a few support an interactive

modification of the underlying hierarchical model [23, 24]. These systems only offer

group-wise or topic-level organizational operations such as merging topics, splitting a topic,

and moving a topic under a new parent. Therefore, users are unable to steer the underlying

topic model to a finer degree (e.g., by words and/or documents). More recently, IHTM [32]
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proposes a mixed-initiative approach where a human can intervene during the incremental

model building process. Users are asked to choose from several interaction strategies with

the help of a preview of the expected outcome of each strategy. While this work has many

advantages that work well for very small datasets, it is not scalable to large-scale datasets

because the underlying topic hierarchy is optimized every time a data item is entered. Also,

the interaction strategies available in the IHTM system are limited and its word-level inter-

actions are offered only before the algorithm starts.

3.2.4 Interactive Model Steering in Visual Analytics

Mixed-Initiative systems [41], which combine human knowledge and human intelligence

to create a collaborative system between users and machines, are closely related to what

we propose in this chapter. Adopting this principle, in mixed-initiative visual analytics sys-

tems, users interact with the machine via visual interfaces to steer the model by controlling

different model parameters. Some systems offer direct manipulation of model parameters

through control panels. However, direct manipulation of model parameters requires a deep

understanding of the underlying model mechanism and its parameters. Endert et al. [2]

introduce ‘semantic interaction’ to steer the models using native user interactions on visual

objects rather than model parameters. For instance, Disfunction [42] and Observation-

Level Interaction [43] allow users to move points in a 2D scatterplot to update the under-

lying distance function. Podium [44] updates an SVM model as users change the order of

data items. Other examples include [45, 46, 47, 48].

3.3 Interactive Topic Modeling with Tight Integration

In this section, we propose our novel approaches for interactive hierarchical topic modeling.

We first identify design goals for tight integration in interactive hierarchical topic modeling.

Then we propose our modular interaction design to support flexible user feedback. Finally,

we describe the underlying algorithms for base operations and interaction tasks.
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3.3.1 Design Goals for Tight Integration

Tight integration advocates for the visualization accurately representing the computational

result with reasonable responsiveness, user interaction being accurately interpreted taking

advantage of more detailed information that the underlying algorithm offers, and flexibility

in the model to accommodate a wide range of user tasks and goals. Here, we list the design

goals of tight integration and how ArchiText achieves them.

Fast, Adaptive, and Interaction-conductive Model and Algorithm. The founda-

tional algorithm should be designed and developed with user interaction considered from

the start. Tight integration synchronizes updates in the underlying computation with the

interpretation of the user interaction. This update cycle is iterative, where the underly-

ing computational methods guide the changes in the intermediate results taking the user

interaction into account. To achieve fast and accurate visualization updates, the underly-

ing updates of the computational result should not involve recomputing the solution from

scratch. Rather, underlying computations should be tailored to allow incremental, timely,

and responsive updates. In our proposed system, results are adaptively updated based on

intermediate solutions and user refinement.

Visualization of Various Degrees of Information and User Feedback. The compu-

tational results, the internal factors, and characteristics of the algorithms should be exposed

in various degrees of information level, likely through multiscale visual representations.

Interactively, users may perform operations on specific information, yet the algorithmic

interpretation of the action will need to consider additional information. For instance, re-

moving a topic is likely based on a subset of keywords for a topic shown in the visualiza-

tion. However, the underlying algorithm contains many additional details about the topic,

such as the complete keyword distribution (what a topic is) and the topic distribution for

each document (how close a document is to a topic). Without careful interpretation of user

intention incorporated into algorithms, the results can quickly be distorted after multiple

interactions because of the limited information users are shown in the visualization. In ad-

20



dition, with a hierarchical topic modeling, visualizations can show multiple levels of detail,

aggregating or de-aggregating sub-hierarchies depending on the level of detail requested

by users.

Capability to Support a Variety of User Feedback Types. The computational mod-

els and algorithms should be flexible enough to incorporate various user intentions and

tasks. Various model steering interactions have been identified as important (Table 3.1),

but not all interactions were supported in a single system previously. One reason is that

most topic modeling methods have many parameters and settings that are difficult to prop-

erly tune to produce the results that meet user expectations. We chose Nonnegative Matrix

Factorization (NMF) [28] as our underlying foundational topic modeling method due to its

flexibility and efficiency. Multiple advantages of NMF that we have observed and analyzed

in our previous work [6, 12, 7] include fast algorithms, higher quality and more consistent

solutions, flexibility to changes in tasks, adaptive updating methods [49, 50, 51], and inter-

pretability of results. In addition, since interactions can be formulated as constrained NMF

problems, we can identify a set of primitives that are common over various interaction tasks

and build core computational modules that can be utilized across them as will be described

in the next section. These important features of our algorithm combine to facilitate our

tight integration methodology.

3.3.2 Interaction Primitives for Hierarchy Steering

To achieve the goal of the tight integration, we propose to break down a large suite of in-

teraction tasks into basic operations called primitives. These primitive operations can be

optimized individually and then combined to implement specific subtasks. Surveying in-

teraction tasks supported or suggested in existing works, we observed that all interaction

tasks can be further divided into tree operations and/or supervised topic computation. For

instance, Move a topic into a new parent (MoveT) can be achieved by ‘cut out a topic’

followed by ‘insert the topic under a new parent’ with re-computations. Based on interac-
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Table 3.2: Key notations used in Chapter 3.

Notation Description

Ti The i-th topic node
D(Ti) Indices of documents that belong to Ti
p(Ti) The parent topic node of Ti
C Trash can, i.e., the set of removed topics
m The number of keywords
n The number of documents
ni The number of documents in Ti
ki The number of child topics under Ti
X(i) The m× ni word-document matrix of Ti
W (i) The m× ki word-topic matrix of child topics of Ti
w

(i)
p The p-th column of W (i)

H(i) The ki × ni topic-document matrix of child topics of Ti
h

(i)
q The q-th column of H(i)

R+ The set of nonnegative real numbers
|| · ||F The Frobenius norm
Ar· The r-th row of matrix A
A·r The r-th column of matrix A
argmax(a) The index of the largest element in vector a

tion tasks supported in existing systems and our design goals, we come up with five base

operations, whose combination can form the interaction tasks in Table 3.1. This modular

implementation makes it possible to optimize the tightly coupled system performance by

fine tuning the five base operations. The five base operations are as follows:

1. makechildren(T): Create two child topics for a leaf node topic T

2. merge(T1, T2): Merge sibling topic nodes T1 and T2

3. insert(T1, T2): Insert a topic node T1 under a new parent node T2

4. cut(T1): Cut out a topic node T1

5. recompute(T): Recompute child topics of T using a constrained NMF topic model

Utilizing the base operations, we simultaneously design user interactions and correspond-

ing algorithms. The complete list of supported interaction tasks is described in Tables 3.3-

3.5 and Section 3.3.4.
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3.3.3 NMF for Topic Modeling

We define our notation and topic modeling formulations as follows. Conceptually, a topic

T is identified as a keyword distribution and has a set of documents that belong to the

topic (i.e., the documents whose topic distribution has the strongest weight in the topic). A

topic node in the topic hierarchy is denoted as (T,D, p(T )) where T denotes the topic, D

the set of documents in the topic, and p(T ) a reference to the parent topic of the topic T .

We denote the i-th topic as Ti and the indices of documents that belong to Ti as D(Ti) =

{di1 , · · · , dini
}, where ni is the number of documents in the topic. We reference the parent

topic node of a child topic Ti as p(Ti). Note that the documents in a topic are the union of

documents that belong to its child topics, i.e., D(Ti) = ∪p(Tj)=Ti
D(Tj).

Let X ∈ Rm×n
+ be the data matrix of topic T , where m is the number of words in

the corpus and n is the number of documents that belong to the topic. The p-th column

of X represents the bag-of-words representation of document dp with respect to m key-

words. A standard Nonnegative Matrix Factorization (NMF) approach solves a low-rank

approximation as follows:

min
{W,H}≥0

||X −WH||2F , (3.1)

where W ∈ Rm×k
+ and H ∈ Rk×n

+ are factor matrices and k is the number of child topics

under T . W describes topics andH describes document-topic memberships. The p-th child

topic under T is calculated as wp, the p-th column of W . High values in wp indicate that

the corresponding words are strongly associated with the p-th child topic. Next, the q-th

column of H , hq, represents document dq as a weighted combination of k topics. We say

document dq belongs to the p-th child topic if the p-th element of hq is its largest element,

i.e., p = argmax(hq). Notations are summarized in Table 5.1.

In order to steer topics, we modify the NMF formulation as follows:

min
{W,H,U}≥0

||X −WH||2F + α||MW ◦ (W −W ′)||2F + β||MH ◦ (E −HU)||2F (3.2)
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The second term influences topics’ keyword descriptions by forcing W to be similar to

W ′, which represents topic keywords selected by the users. The third term affects topic-

document memberships by forcing H to be similar to E, which represents topic-document

memberships assigned by the users, with the help of a scaling matrix U . Parameters α

and β determines the amount of user control for word-level and document-level interac-

tions, respectively. When α = 0 (or β = 0), the word- (or document-) level interaction is

not reflected into the model. Larger α, β leads to stronger incorporation of user steering,

but it may result in less truthful representation of the underlying data. α, β are set to be

proportional to the number of interacted topics by word-level and document-level tasks,

respectively. MW , MH are masking matrices where (MW )·r = 0 and (MH)r· = 0 for r /∈

{steered indexes} and (MW )·r = 1 and (MH)r· = 1 for r ∈ {steered indexes}. More detail

will be described in Section 3.3.4.

3.3.4 Algorithm

Base Operations

In this section, we describe the algorithms for our base operations based on which our

interaction tasks can be composed.

[T1, T2] = makechildren(T0)

# makechildren applies a rank-2 NMF algorithm to the documents in a topic node T0 to

create two of its children nodes T1, T2.

Solve min{W (0),H(0)}≥0 ||X(0) −W (0)H(0)||2F where W (0) ∈ Rm×2
+ , H(0) ∈ R2×n0

+

D(Tk) = {dq ∈ D(T0)|argmax(H
(0)
·q ) = k}, p(Tk) = T0 for k = 1, 2

T0 = merge(T1, T2)

# merge creates a new parent T0, which is the union of selected sibling topic nodes

T1, T2, under their original parent p(T1).

p(T0) = p(T1) and D(T0) = D(T1) ∪D(T2)

p(Tk) = p(T0) for k = 1, 2
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insert(T1, T2)

# insert adds a topic T1 under the selected node T2 and updates its ancestors.

p(T1) = T2 and D(T2) = D(T1) ∪D(T2)

parent = p(T2)

while parent is not the top node do

D(parent) = D(parent) ∪D(T1)

parent = p(parent)

end while

cut(T1)

# cut removes a topic T1 from its ancestors.

parent = p(T1)

p(T1) = null and D(p(T1)) = D(p(T1))\D(T1)

while parent is not the top node do

parent = p(parent)

D(parent) = D(parent)\D(T1)

end while

[T ′01, · · · , T ′0k0 ] = recompute(T0, (W
′), (H ′))

# recompute applies a flat NMF algorithm with constraints on a topic T0 to re-partition

its children T ′01, · · · , T ′0k0 . The second and third terms incorporate word-level and

document-level supervision, respectively.

Solve min{W (0),H(0),U(0)}≥0 ||X(0)−W (0)H(0)||2F +α||M (0)
W ◦(W (0)−W ′(0))||2F +β||M (0)

H ◦

(E(0) −H(0)U (0))||2F where W (0) ∈ Rm×k0
+ , H(0) ∈ Rk0×n0

+ , U (0) ∈ Rk0×k0
+

D(Tk) = {dq ∈ D(T0)|argmax(H
(0)
·q ) = k} for k = 1, · · · , k0

When performing recompute on a parent topic before cut on a child topic, we re-

distribute documents that are not strongly relevant to the child topic (i.e., max(Hkq) <

threshold) into their sibling topics. As a result, when moving or removing topics, key-
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words, or documents, only the documents that are strongly relevant to the moved or re-

moved topics, keywords, or documents are cut out.

Hierarchical Topic Initialization

The proposed system generates the initial hierarchical topics where the upper level topics

are more general and larger, and the lower level topics are more specific, finer-grained,

and more tightly related. We adopted a hierarchical topic modeling algorithm called Hi-

erNMF2 [52, 53], which uses a fast rank-2 NMF [7] and a binary tree splitting rule. In

other words, we recursively split a topic by solving Eqn. 3.1 with k = 2 topics. By utiliz-

ing the simple computation to obtain a rank-2 NMF, some very substantial speedups have

been achieved for computing topic modeling results, which can be highly beneficial for

achieving real-time interaction.

Hierarchical Topic Revision

After the initial hierarchical topics are computed, users can steer the model by performing

various tasks described in Tables 3.3-3.5. We grouped user tasks by interaction unit types:

topics, words, and documents. Note that previous hierarchical topic modeling systems

allow topic reorganization through some topic-level interactions, but they offer none to

highly limited word-level or document-level topic steering.

Topic-level Tasks

Topic-level tasks in existing hierarchical topic modeling systems affect all documents in the

interacted topic. For example, moving a topic would relocate all the associated documents

into a new parent topic. However, the decisions to do so are based on limited information

shown on the screen to the users. Thus, our approach does not move all documents of a

topic when moving/removing topics, but rather moves only a strongly relevant subset using

constrained NMF. Now we define topic-level tasks as follows:
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T0 = MergeT(T1, T2)

# MergeT combines selected topics T1 and T2 to create a new parent topic T0. If T1 and

T2 are not siblings, T1 is moved under T2’s parent before merging.

if p(T1) 6= p(T2) then

MoveT(T1, p(T2))

end if

T0 = merge(T1, T2)

[T1, T2] = SplitT(T0)

# SplitT partitions topic T0 into two child topics T1 and T2 using rank-2 NMF.

[T1, T2] = makechildren(T0)

MoveT(T1, T2)

# MoveT detaches a topic T1 and attaches it under a new parent T2. Before detaching

T1, we redistribute less relevant documents in T1 into its sibling topics to move only a

strongly relevant subset. After attaching, we solve another NMF for the new parent T2

to find more suitable child topics with the incoming topic T1.

recompute(p(T1), w1) with min{W,H}≥0 ||X −WH||2F + α||MW ◦ (W −W ′)||2F where

W ′
·1 = w1.

cut(T1)

insert(T1, T2)

recompute(p(T2)) with min{W,H}≥0 ||X −WH||2F
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RemoveT(T1)

# RemoveT discards the most relevant documents of the selected topic T1 into the trashC

rather than all documents in T1. The remaining less-relevant documents are redistributed

to its sibling topics.

recompute(p(T1), w1) with min{W,H}≥0 ||X −WH||2F + α||MW ◦ (W −W ′)||2F where

W ′
·1 = w1.

cut(T1)

insert(T1, C)

RestoreT(T1, T2)

# RestoreT moves a previously deleted topic T1 from the trash C into a selected parent

topic T2.

cut(T1)

insert(T1, T2)

recompute(p(T2)) with min{W,H}≥0 ||X −WH||2F

Fix(T1)

# Fix freezes a topic T1 so that it will not be changed in later stages. It can be used when

the quality of a current topic is determined good and the user wants to consider the topic

as final. The Fix task does not involve any computation but marks the topic as fixed so

that the topic is not modified in any subsequent computation or interaction.

Word-level Tasks

Word-level interactions influence keyword descriptions of topics so that a specific topic

becomes more (or less) about certain words. As a result, some documents are redistributed

according to the new topic descriptions. Previously, word-level interactions were only sup-

ported in some flat topic model systems but not in hierarchical systems. To our knowledge,

ArchiText is the first to allow word-level refinement of hierarchical topics. For simplicity
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Table 3.3: Topic-level User Interactions Supported by ArchiText.

Topic-level ChangedOperated Affected

Merge two topics T1 and T2

MergeT(T1, T2) = MoveT(T1, T2) +merge(T1, T2)

pT1=T0 T2

T01 T02 T1

T3
=T1’∪T2

T0’
=T0\T1’

T1’ T2’T01’ T02’

Merge

Split a topic T0 into child topics
SplitT(T0) = makechildren(T0)

Split

T0 T0

T2T1

Move a topic T1 into a new parent T2

MoveT(T1, T2) = recompute(p(T1), w1) + cut(T1) + insert(T1, T2) + recompute(T2)

pT1=T0 T2

T01 T02 T1 T21 T22

T2’
=T2∪T1’

T0’
=T0\T1’

T21’ T22’ T1’’T01’ T02’

Move

Remove a topic T1

RemoveT(T1) = recompute(p(T1), w1) + cut(T1) + insert(T1, C)
T4

pT1=T0

T1

Remove T4’
=T4\T1’

T0’
=T0\T1’

T3’T2’

T1’

T2
T3

Restore a topic T1 under T2 from trash
RestoreT(T1, T2) = cut(T1) + insert(T1, T2) + recompute(T2)

T0’
=T0∪T1

T2’
=T1∪T2

T21’ T1’
T22’

Restore
T0

T2

T22T21

T1

Fix a topic T1

FixT(T1): makes T1 unaffected by recompute(p(T1))
Other

interactions
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Table 3.4: Word-level User Interactions Supported by ArchiText.

Word-level ChangedOperated Affected

Create a topic Tw by seed words w under a parent T1

CreateTW(w, T1) = recompute(T1, w)

w1,…,wn
T0

T2T1

T11’ T13
T12’

Create
T0

T1 T2

T12T11
w1,…,wn

Add words w to a topic T1

AddW(w, T1) = recompute(p(T1), w)
T0

T1

T0

T2 T2’T1’

w1,…,wr

Change word distribution of a topic T1

ChangeW(w, T1) = recompute(p(T1), w)
T0

T1

T0

T2 T2’T1’

w1↓,…,wr↑

Move words w from a topic T1 to another T2

MoveW(w ∈ T1, T2) = makechildren(T1) + recompute(T1, w) + cut(Tw) +
insert(Tw, T2) + recompute(T2)

T0

T1 T2

T21 T22

T0

T2’
=T2∪T11

T12
=T1\T11

T21’ T22’ T11=Tw

Move

w1,…,wr
w1,…,wr

Remove words w from a topic T11

RemoveW(w, T11) = makechildren(T11) + recompute(T11, w) + cut(Tw) +
insert(Tw, C)

T0

T2T1

T11 T12

Remove T0’
=T0-T111

T1’
=T1-T111 T2

T12T112

T111
=Tww1,…,wr

w1,…,wr
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Table 3.5: Document-level User Interactions Supported by ArchiText.

Document-level ChangedOperated Affected

Create a topic Td by seed docs d under a parent T1

CreateTD(d ∈ T1) = recompute(T1, d)

d1,…,dn

T0

T2T1

T11’ T13
T12’

Create
T0

T1 T2

T12T11
d1,…,dn

Move documents d from a topic T1 to another T2

MoveD(d ∈ D(T1), T2) = makechildren(T1) + recompute(T1, d) + cut(Td) +
insert(Td, T2) + recompute(T2)

T0

T1 T2

T21 T22

T0

T2’
=T2∪T11

T12
=T1\T11

T21’ T22’ T11=Td

Move

d1,…,dr
d1,…,dr

Remove documents d from a topic T11

RemoveD(d, T11) = makechildren(T11)+recompute(T11, d)+cut(Td)+insert(Td, C)
T0

T2T1

T11 T12

Remove T0’
=T0-T111

T1’
=T1-T111 T2

T12T112

T111
=Tdd1,…,dr

d1,…,dr

Like a document d for a topic T1

LikeD(d ∈ T1) = recompute(p(T1), d)
T0

T1

T0

T2 T2’T1’

d1,…,dr↑
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and efficiency, we limit the scope of affected topics to one level. We define word-level

tasks as follows:

CreateTW(w, T1)

# CreateTW creates a new topic with seed words w under a parent topic T1.

k1 = k1 + 1

recompute(p(T1), w) with min{W,H}≥0 ||X −WH||2F + α||MW ◦ (W −W ′)||2F where

W ′
·1 = w.

AddW(w, T1)

# AddW adds new terms w to a topic T1 to steer it toward the selected words.

recompute(p(T1), w) with min{W,H}≥0 ||X −WH||2F + α||MW ◦ (W −W ′)||2F where

W ′
·1 = w.

ChangeW(w, T1)

# ChangeW changes the word distribution w of a topic T1 to steer the topic based on the

re-weighted words..

recompute(p(T1), w) with min{W,H}≥0 ||X −WH||2F + α||MW ◦ (W −W ′)||2F where

W ′
·1 = w.

MoveW(w ∈ T1, T2)

# MoveW aims to subtract the selected terms w from a topic T1 and add them into

another topic T2 by moving the most relevant documents in the topic.

[Tw, Tw̄] = makechildren(T1) with min{W,H}≥0 ||X−WH||2F +α||MW ◦ (W −W ′)||2F
where W ′

·1 = w.

MoveT(Tw, T2)
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RemoveW(w, T1)

# RemoveW discards the documents in a topic T1 that are most relevant to the selected

words w. The remaining less relevant documents are redistributed to sibling topics.

[Tw, Tw̄] = makechildren(T1) with min{W,H}≥0 ||X−WH||2F +α||MW ◦ (W −W ′)||2F
where W ′

·1 = w.

RemoveT(Tw)

Document-level Tasks

Document-level interactions influence document-topic memberships to steer a topic to be

similar (or dissimilar) to the selected documents. As a result, keyword descriptions of

affected topics can change accordingly. Following the tight integration principles, our

document-level tasks not only involve the selected documents, but also affect documents

that are similar or relevant to the selected documents. We define document-level tasks as

follows:

CreateTD(d, T1)

# CreateTD creates a new topic with seed document d under a parent topic T1.

k1 = k1 + 1

recompute(p(T1), d) with min{W,H}≥0 ||X −WH||2F + β||MH ◦ (E − HU)||2F where

E1d = 1.

MoveD(d ∈ T1, T2)

# MoveD aims to subtract the selected documents d (and similar ones) from a topic T1

and add them into another topic T2.

[Td, Td̄] = makechildren(T1) with min{W,H}≥0 ||X −WH||2F + β||MH ◦ (E −HU)||2F
where E1d = 1.

MoveT(Td, T2)
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RemoveD(d, T1)

# RemoveD discards the selected documents d and the similar ones from a topic T1. The

remaining less-relevant documents are redistributed to sibling topics.

[Td, Td̄] = makechildren(T1) with min{W,H}≥0 ||X −WH||2F + β||MH ◦ (E −HU)||2F
where E1d = 1.

RemoveT(Td)

LikeD(d ∈ T1)

# LikeD steers a topic T1 to be more like the liked document d.

recompute(p(T1)) with min{W,H}≥0 ||X−WH||2F +β||MH ◦(E−HU)||2F whereE1d =

1.

3.4 System

In this section, we describe ArchiText, our prototype visual analytics system for interactive

hierarchical topic modeling with tight integration. The proposed system is built using the

D3.js visualization library, Flask framework, sqlite database, and a fast rank-2 nonnegative

matrix factorization algorithm and the proposed constrained low rank approximation shown

in Eqn. 3.2 written in MatlabTM.

3.4.1 System Design

Our system has two modes: a topic workspace mode (Fig. 3.1) and a hierarchy view mode

(Figs. 3.2-3.3). The topic workspace mode is designed to facilitate flexible user interactions

for tuning and interacting with the hierarchical topic representation. The hierarchy view

mode is primarily for inspecting the overall structure of the computed topic tree. Users can

alternate between the two modes by clicking the blue button on the top right corner shown

in Fig. 3.1a.
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Figure 3.2: The hierarchy view mode presents a high-level overview of the topic tree with
a control panel. A topic can be expanded (or collapsed) to show (or hide) its child topics.
Expandable topics are represented as filled circles.

Topic Workspace Mode contains the main topic card view, a control bar, a breadcrumb

view, and a mini overview.

The main topic card view (Fig. 3.1c) visualizes topics up to selected depths in the com-

puted hierarchical topic tree. Each topic is visualized as an indented equal-width card

where the height of each card is proportional to the number of documents that belong to

the topic. Each topic’s most representative keywords and their importance weights are vi-

sualized as a sorted list with bars. This design allows users to quickly understand topics

well [54] and easily compare keyword weights across different topics. Note that all key-

words are in stemmed forms as we use the porter stemmer during the data preprocessing

step. On the top right corner of a topic card are the menu button and the flip button. A topic

card can be flipped to show its documents (Fig. 3.1d) with their ‘Thumbs up’ buttons to

like the corresponding documents. Hovering the mouse over a document shows its detailed

information such as document id, title, authors, etc (Fig. 3.1e). Topic coherence scores are

visualized as bars on top of the topic cards. As a topic coherence metric, we use pointwise
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Figure 3.3: An alternate Sankey tree visualization in the hierarchy view mode. Placing the
mouse over a keyword highlights the keyword in other topics.

mutual information (PMI), which is highly correlated with human judgement [55]. This

can guide users to focus on refining and improving low-quality topics and observe how

their interactions affect topic quality by monitoring the bars. Topic cards, keywords, and

documents can be interacted with to steer the underlying topics and their hierarchy, which

will be described in Section 3.4.2 in detail.

The control bar contains buttons to update the main topic card view. A sliding trash

panel is toggled by clicking a trash button in the control bar (Fig. 3.1a). The plus and

minus buttons in the control bar (Fig. 3.1a) change the visualized depth of the topic tree

to support multi-level exploration. Users can ‘drill down/zoom in’ on a topic for more

details and ‘zoom out’ to see higher-level topics as indented topic cards, respectively. For

example, Fig. 3.4a shows the first level topics. By zooming in, Fig. 3.4b shows the first
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Zoom in Zoom in (c)(b)(a)

Figure 3.4: Zooming-in from (a) to (c) by clicking the + button reveals deeper levels of
hierarchical topics interactively.

level and the second level topics where the deepest visible topic card is shown and the rest

are collapsed. By zooming in again, Fig. 3.4c shows topics up to the third level. Note that

parent and children topics have the same color hue, but with different saturation; lighter

colors and longer indentations represent deeper node depths.

The mini overview displays the overall topic hierarchy as either a weighted tree (Fig. 3.1f)

or an icicle visualization. Topics visualized as topic cards are colored accordingly and the

remaining topics with deeper depths are colored gray. When hovering over a topic, the

breadcrumb view (Fig. 3.1b) shows the trail from the top node to the current node (orange-

colored topic in Fig. 3.1c), and the corresponding node in the mini overview is highlighted

with black solid line (orange-colored circle in Fig. 3.1f).

Hierarchy View Mode offers two types of tree visualizations, an indented tree (Fig. 3.2)
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Figure 3.5: User interaction design for supported tasks.

and a Sankey tree (Fig. 3.3), which can be selected in the control panel (Fig. 3.2a). In

both views, topic colors correspond to those in the workspace mode. Using the control

panel (Fig. 3.2a), users can collapse topics by their depths or sizes. The indented tree view

(Fig. 3.2) visualizes the topics and the hierarchy as an indented tree where indentation

reflects tree depth. For each topic, its ID, topic size, and top ten keywords are shown.

Clicking a topic’s circle collapses/expands the topic to hide/show its children topics. Filled

circles represent collapsed (and thus expandable) topics. The Sankey tree view (Fig. 3.3)

visualizes the topic tree from left (top node) to right (deeper level node) where node height

reflects topic size (number of documents in a topic). Each topic node displays up to ten

keywords depending on its size. Hovering over a topic node pops up a detail view showing

all ten keywords and the size of a topic. When hovering over a keyword in a topic node,

the same keywords in other topics are highlighted to show term patterns (red keywords in

Fig. 3.3).

3.4.2 User Interaction Design

Fig. 3.5 demonstrates supported interaction tasks to steer the underlying hierarchical topics.

All interactions are designed to be executed by clicking buttons (SplitT, FixT, LikeD) or

simply dragging and dropping visual components such as words, documents, and topic
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cards as follows. When modifying existing topics (MergeT, AddW, MoveW, MoveD),

drop recipients are the topic cards being modified. When creating a new topic (CreateTW,

CreateTD) or moving a topic (MoveT, RestoreT), the drop recipient is a dotted space

which represents a temporary topic card. When deleting words (RemoveW), documents

(RemoveD), or a topic (RemoveT), the drop recipient is the trash button.

Interaction Assistant

In the proposed tight integration framework, users incrementally update models through a

wide variety of interactions. During the process, our system guides users by predicting and

recommending interaction tasks. Many of the interactions in our system start with selecting

and dragging and end with dropping. Our interaction assistant is triggered when the user

selects or drags something and then it predicts the next step to complete the interaction.

This can be beneficial for users who are exploring potential alternatives for how to orga-

nize and construct their topics.

Multi-selection: When steering a topic using word-level (CreateTW, AddW, MoveW,

RemoveW) or document-level (CreateTD, MoveD, RemoveD) interaction tasks, select-

ing multiple words or documents can convey clearer meaning than selecting a single word

or a document. However, going over many words or documents can be time-consuming.

To foster efficient multi-selection, our interaction assistant visually recommends selection

candidates. When a word (or a document) is first selected, the system highlights frequently

co-occurring words (or similar documents) in the same topic to be selected along with the

first selected word (or document).

Drop: After selecting the words, documents, or a topic, the next step is to drag and drop

them into another topic or into the trash. Our interaction assistant predicts and recommends

the locations to drop them during an interaction. When the user starts dragging a topic,
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the system highlights similar topics as drop recipients to foster MergeT or MoveT tasks.

Similarly, when the user starts dragging words or documents, the system highlights topics

that are similar to the dragged words or documents as drop recipients to foster AddW,

MoveW, MoveD or CreateTW, CreateTD tasks. If the selected words or documents are

not coherent (not similar to each other), the system highlights the trash to foster RemoveW,

RemoveD tasks. In addition, users can preview the expected hierarchy in the mini overview

while placing the mouse over the drop recipients.

3.5 Experiments

In this section, we present a quantitative evaluation to show the scalability of our approach.

For our experiments, we use a patent dataset1. This dataset contains about 7 million granted

patents and their information, e.g., ID, type, title, abstract, year, etc. After filtering out non-

utility patents, we are left with 6,248,456 utility patents.

We report computation time using different sizes of patent subsets. We select 10,000,

50,000, 100,000, 500,000, and 1,000,000 data items from the patent dataset to create mul-

tiple subsets of different sizes. For each subset, we report the running time of building the

initial hierarchical topics as well as performing an interaction task on a topic that contains

about 10% of the documents. Experiments were performed on a MacBook Pro with Intel

Core i7 3GHz, 4 cores, 8GB memory. Table 3.6 shows that building an initial topic model

with ten leaf nodes from a million documents takes about 5 minutes. Also, most tasks are

finished within several seconds, supporting accurate and timely visualization in our tight

integration methodology as discussed in Section 3.3.1.

In general, interactions with recomputations such as moving take longer computation

time than interactions without recomputation such as merging (siblings) or splitting. This

is because recomputation on a topic runs a flat NMF algorithm with constraints (Eqn. 3.2)

on its parent topic, and the changes are propagated to its descendants. To reduce interaction

1http://www.patentsview.org/download/, March 12, 2019 Version
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Table 3.6: Computation times (in seconds) for hierarchy initialization with ten leaf nodes
and several interaction tasks (merging siblings, splitting a topic, moving a topic–with and
without recomputation). All results are averaged over 10 runs.

Datasets p10K p50K p100K p500K p1M

# Documents 10,000 49,995 99,989 499,968 999,941
# Words 6,585 15,414 22,702 60,131 92,966

Initialization 3.64 13.73 27.35 142.19 300.01

Merge 0.005 0.014 0.025 0.097 0.191
Split 0.066 0.138 0.308 1.164 7.009
Move 0.598 1.515 2.927 22.133 49.735
Move (w/o re) 0.023 0.036 0.050 0.186 0.356

latency caused by recomputation time, we suggest the following strategies. First, we could

reduce the number of recomputation. Instead of performing full recomputation every time,

the system can decide when to skip or perform recomputation. For instance, in the case of

recompute before cut or after insert, recomputation can be skipped unless a large portion

of the interacted topic is changed or a certain number of interaction tasks have been applied

to the interacted topic without recomputation. Second, we could limit the number of itera-

tions when solving Eqn. 3.2. Since our algorithm utilizes previous topics to initialize factor

matrices W,H , we could reduce the number of total iterations per one recomputation and

still reach a near optimal solution. Next, we can recommend users to keep the size of inter-

action small since recomputation time depends on the size of its parent topic. That is, focus

on splitting topics into smaller ones rather than directly steering bigger topics. Because our

recomputation is local, it only affects siblings. Regardless of the size of the entire dataset,

users can use this strategy to achieve fast interaction.

In this section, we do not report topic quality measures as those depend on user deci-

sions of which topics to interact with. For instance, merging any two random topics would

degrade the overall quality of the topic hierarchy. Instead, we show two use cases that

showcase the effectiveness of our tight integration approach in Section 3.6.
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CreateTDSplitT

Figure 3.6: The topic hierarchy after removing T19 (left). Split a topic into three sub-topics
(middle). Create sibling topic with documents (right).

Figure 3.7: Merging two topics. Interaction assistant recommends which topic to merge
into (left). The topic hierarchy after merging (middle). The final topic hierarchy (right).

3.6 Use Case

3.6.1 TED Transcript Dataset

TED is a nonprofit organization that hosts influencial talks and shares the videos online.

Various topics including technology, education, and self-help are covered in TED talks.

Although the official TED website provides keyword search functionality and over 400

category tags, navigating about 3,000 talks and discovering talks of interest is not easy. In

this section, we use ArchiText to understand main themes of the talks and organize them

into hierarchical categories for easier navigation. We used the TED dataset containing

2,969 talk transcripts.2

A user starts by inspecting six top-level topics shown in the initial topic hierarchy

(Fig. 3.2). In Fig. 3.2, there are clear and coherent topics like ‘ocean, planet, water, earth,

sea’ (T6: limegreen) and ‘patient, disease, cancer, cell, drug’ (T7: turquoise). On the other

hand, the red topic (T3) with ‘girl, love, kid, woman, mother’ keywords is more general

2Source: https://github.com/saranyan/TED-Talks
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Figure 3.8: Initial topic hierarchy of patents (left). After moving a topic (middle). After
moving keywords (right).

and ambiguous. The user zooms in to see child topics (Fig. 3.4). There is a strange topic

with keyword ‘galleri websit, wix.com, wix’ (T19). Upon inspecting its documents, she

notices that their contents are actually the same transcript of an advertisement. It turns

out that the used web scrapper transcribed youtube commercials instead of the main talk

video. She deletes the topic (RemoveT). The user continues exploring the unclear red

topic by examining its child topics (Fig. 3.6(left)). She thinks that a red child topic with

‘music, song, sing’ keywords should be one of the top level topics, so she moves it un-

der the top node (MoveT). As a result, there is a top-level topic on ‘music, art, artist’

in Fig. 3.6 (middle). The user further splits the blue art topic (SplitT). One of its child

topics contains both art-related keywords and architecture-related keywords. She moves

‘architecture, city, design’ keywords to create a sibling topic (CreateTW). As a result, the

art topic has three sub-topics on art, architecture, and music (Fig. 3.6 (middle)). Satisfied

with the blue topic, she moves on to the brown topic, which is the second largest. The

brown topics are mostly about computer technologies, but she notices that a few keywords

‘mathemat, physic, simul, theori’ are about natural sciences. She flips the topic and starts

to drag several documents about physics and simulation with the goal of separating those

out. While dragging, the interaction assistant recommends candidate drop zones with line

patterns (Fig. 3.6 (right)). She decides to move the documents under the top brown topic

to create a sibling topic (CreateTD). As a result, a new sub-topic about ‘mathemat, the-

ori, particl, quantum, galaxi’ is created (Fig. 3.7 (left)). She merges the new topic with

another natural science topic on ‘solar, mar, earth’ (lime green topic in Fig. 3.7 (left)). She
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Figure 3.9: After splitting a topic into two topics (blue box). Add keywords into the purple
topic.

is interested in sports, but she has not seen sports-related topics so far. She types in sports-

related keywords such as sports, athletes, basketball, tennis, etc. to create a new topic

(CreateTW). The new topic has a very small number of documents (30 talks in Fig. 3.7

(right)). She goes over each document and finds out that some talks are science/tech related

(e.g., math behind basketball) or inspirational talks from athletes (e.g. Billie Jean King).

She concludes that there are not many TED talks on the topic of sports and finishes the

analysis.

3.6.2 Patent Dataset

The Patent office manages historical patents; and granted or rejected patent applications.

Due to technology advances in various fields, there is a need to update the patent classi-

fication system. Using ArchiText, we will use interactive topic modeling to make sense
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Figure 3.10: The final topic hierarchy.

of existing utility patents and build a new taxonomy based on their content. The dataset

description can be found in Section 3.5.

A patent officer explores the initial topic hierarchy in Fig. 3.8. He notices that a brown

topic about semiconductor process (red box in Fig. 3.8 (left)) is grouped with a brown

chemistry topic. He moves the semiconductor topic under the top node (MoveT). As a

result, two topics are separated (red boxes in Fig. 3.8 (middle)). He inspects one of the

chemistry sub-topics and decides to move words (MoveW) about pharmaceutical patents

(green arrow in Fig. 3.8 (middle)), which results in a new topic about ‘pharmaceut, diseas,

treat, treatment’ compounds under the chemistry parent topic. Moving on to the rest of the

topics, he splits a ‘light, image’ topic (blue box in Fig. 3.8 (right)) into an optics topic and

an image-related topic (SplitT). He delves into sub-topics of all topics, and finds a media

related topic under the green ‘data, inform’ topic (second from the left). Wanting to gather
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all media related patents under a single top-level topic, he adds keywords ‘audio, multime-

dia, video’ into the purple image-related topic (AddW) while fixing other topics (FixT).

As a result, the purple topic becomes larger and contains more media-related patents, some

of which are moved from the yellowgreen topic (T13 in Fig. 3.10). He is now satisfied with

the hierarchy and creates the new taxonomy based on the result.

3.7 Discussion

Interactive topic modeling systems, in order to steer the underlying models, users provide

supervision in terms of user interaction. For the same user interaction, there are numerous

ways to interpret intermediate results to understand the algorithmic updates depending on

the visualization systems and their underlying algorithms. Two basic common factors that

can be applied to all interactive topic modeling techniques are the scope and the amount of

user control. First, scope determines how wide the impact of the interaction would be. For

instance, when a user adds a document to a topic, we can safely assume that the user wants

to update the interacted topic. Should this interaction affect only the interacted topic? Or

should it also affect the neighboring topics? Or all the topics? Updating in local scope can

be faster with less precise results. On the other hand, updating in global scope can provide

more accurate results, but may cause unexpected changes in other parts of the model. Next,

the amount of user control determines to what degree to apply the supervision. For exam-

ple, when a user adds a keyword to a topic, the user expects the interacted topic to be (more)

about the added keyword. In this case, should the updated topic have that keyword as its

top keyword at any cost (hard supervision)? Or is increasing the importance weight of that

keyword for the topic enough (soft supervision)? What if the topic and its corresponding

documents are not related to that keyword, e.g., adding an irrelevant keyword? Some may

prefer applying the hard supervision while others may argue for a more truthful representa-

tion of the data. In order to balance these trade-offs, we take a simple approach. Our system

uses recompute operations to supervise the underlying model. recompute solves a con-
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strained Nonegative Matrix Factorization (NMF) for the sibling topic nodes (local scope)

of the interacted topic with two parameters α and β (Eqn. 3.2). We considered an option to

let the users decide the amount of user control during each interaction, but decided against

it. It can be burdensome to the users and it may slow down the analytic process.

3.8 Conclusion

In this chapter, we proposed interactive hierarchical topic modeling with tight integra-

tion among algorithm, visualization, and users interaction. Unlike some previous inter-

active systems which offer rather limited interaction functionality that may result in unex-

pected outcomes, our tightly integrated system incorporates user intentions flexibly without

strange side effects. In addition, compared to existing interactive topic modeling systems

that are not scalable, our system can handle large datasets. As a proof of concept, we

developed ArchiText, a prototype system for interactive hierarchical topic modeling and

showcased usage scenarios using real-world datasets.

For future work, we plan to take a more proactive approach for smart, convenient

human-in-the-loop topic modeling. With tightly integrated topic modeling, users’ knowl-

edge and intentions can be flexibly incorporated step by step. In addition to this, we would

like our system to remember and learn from previous interactions in order to predict and

guide the users’ next steps to expedite the model steering process.
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CHAPTER 4

TOPICSIFTER: INTERACTIVE SEARCH SPACE REDUCTION THROUGH

TARGETED TOPIC MODELING

In this chapter, we describe our interactive approach to solve large-scale document retrieval

with high recall where any missed relevant documents can be critical. This chapter is

adapted from our work that is presented at VAST 2019.

(a) (b) (c)

(d)

(e)

(f)

Good-to-have:

Bad-to-have:

Figure 4.1: The TopicSifter system has (a) the control panel, (b) the main view, (c) the detail
panel. The keyword module (d) in the control panel (a) shows the current set of good-to-
have keywords, bad-to-have keywords, and stopwords and allows users to modify them.
The system recommends additional keywords based on the current set of keywords. The
main view (b) shows the sifting status bar (e) showing how many documents are retrieved
from the total dataset and the topical overview (f) of current retrieved documents. The users
can give positive or negative feedback on topics and documents to indicate relevancy. The
detail panel (c) has two tab menus for showing document details and sifting history.
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4.1 Introduction

As the world becomes increasingly digital and huge amounts of text data are generated ev-

ery minute, it becomes more challenging to discover useful information from them for ap-

plications such as situational awareness, patient phenotype discovery, event detection [56],

or the onset of violence within a diverse population. More often than not, topics of inter-

ests are only implicitly covered in vast amounts of text data and the relevant data items are

sparse and not immediately obvious. This scenario is more prevalent especially in large

scale data analytics where the data are obtained from passive sources and not all data items

are relevant to the questions at hand. In these cases, users want to focus on a subset of

documents about specific aspects or “targets”, rather than analyzing entire document col-

lections [57]. For example, a journalist may want to analyze social media data that are

related to a specific event. Similarly, a marketing expert may want reviews that are rele-

vant to certain products or brands only. Both examples require the search space of entire

documents to be reduced to relevant documents.

Discovering and extracting data items of relevance from a large collection of documents

is a challenging and important step in text analytics. In particular, we are interested in the

high recall retrieval problem, where any missing relevant documents are critical [58]. For

instance, a legal analyst searching for relevant cases from a large legal document collection

may want to collect as many documents as possible even if some of them are only slightly

relevant to her targets. Another example is a graduate student who is preparing a literature

review and does not want to miss a related work. This is different from a traditional infor-

mational retrieval problem of finding a list of k results that are most relevant to a query,

e.g., a student searching for the top 5 papers to learn about an unfamiliar research field. Our

focus is on not missing relevant results in addition to high precision. To solve this, our goal

is to retrieve documents that are relevant to targets from large scale document collections,

which we will refer to as search space reduction throughout this chapter.
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Figure 4.2: An illustration for
search space reduction, retriev-
ing relevant documents from
large corpora with high recall.

Traditional static keyword search is not suitable for

our search space reduction setting. First, it is often dif-

ficult to know or express the target aspect in advance

without exploring the dataset. Next, even when the

users are familiar with their target concept, it is hard

to cover all relevant keywords, which would result in

false negative. Lastly, a keyword may have multiple

unrelated meanings and when they are extracted out of

context, static keyword match can result in false posi-

tive. More advanced approaches such as query expan-

sion and relevance feedback have been introduced in

information retrieval. These approaches expand query

keywords and provide feedback on documents to update

the query. However, since they are designed for high

precision problems of retrieving a number of the most

relevant data items, they may not cover all relevant data

items.

To this end, we take a human-in-the-loop approach and advocate interactive and ex-

ploratory retrieval. In our framework, users explore retrieved documents, learn them, and

interactively build targets, which will be used to sift through documents. Instead of users

rating a number of retrieved documents generated by systems, our method allows the users

to proactively modify target keywords and give relevance feedback. In addition, we adopt

targeted topic modeling to support this process. Targeted topic modeling techniques find

relevant topics and disregard irrelevant aspects from document collections. Utilizing results

from targeted topic modeling, our approach allows users to discover relevant subtopics and

refine the targets using topic-level relevance feedback.

In this chapter, we propose a novel framework for interactive search space reduction
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along with an effective visual analytics system called TopicSifter. TopicSifter tightly inte-

grates the underlying computational methods and interactive visualization to support topic

model exploration and targeted topic modeling.

The primary contributions of this work include:

• A novel iterative and interactive technique for search space reduction through inter-

active target building, sifting, and targeted topic modeling.

• A visual analytics prototype, TopicSifter, that supports tight integration between the

interactive visualization and the underlying algorithms.

• Experiments and use cases that illustrate the effectiveness of TopicSifter.

4.2 Related Work

In this section, we discuss prior works on information retrieval and topic modeling in the

context of search space reduction.

4.2.1 Visualizing Search Results/Space

Various information visualization techniques have been applied to improve user interfaces

for search. Some systems augment search result lists with additional small visualizations.

For example, TileBars [59], INSYDER [60], and HotMap [61] visualize query-document

relationships as icons or glyphs alongside search results. Another approach is to visualize

search results in a spatial layout where proximity represents similarity. Systems such as In-

foSky [62] and IN-SPIRE [10] are examples. FacetAtlas [11] overlays additional heatmaps

to visualize density. ProjSnippet [63] visualizes text snippets in a 2-D layout. Many others

cluster the search results and offer faceted navigation. FacetMap [64] and ResultMap [65]

utilizes treemap-style visualizations to represent facets. These systems may guide users

well in exploring search results, but they are mostly based on static search queries. Our

system goes beyond search results exploration and offers interactive target (query) build-

ing.
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4.2.2 Query Expansion and Relevance Feedback

Information retrieval is finding (unstructured) documents that satisfies an information need

from large collections [66]. However, users of information retrieval systems may not have

a clear idea of what to search for, may not know how to construct an optimal query, or

may not understand what kind of information is available [67]. To this end, various in-

teractive methods to assist the retrieval process have been proposed. Interactive query

expansion [68] allows the users to choose additional query terms from the suggested list of

keywords. Instead of lists, Fowler et al. [69] and Hoeber et al. [70] display keyword sug-

gestions as graphs. Sparkler [71] visualize multiple query results so that users can compare

and identify the best query from the expanded queries. In our system, we suggest additional

keywords for queries in terms of two categories of good-to-have keywords and bad-to-have

keywords. Another interactive approach is relevance feedback, meaning users are asked to

mark documents as relevant to steer the system to modify the original query [67]. For

instance, VisIRR [72] allows users to rate retrieved documents on a 5-star scale. Inten-

tRadar [73, 74] models intents behind search queries and lets users give relevance feedback

on the intents to interactively update them. We adopt a similar approach to give relevance

feedback to documents as well as groups of documents (topics). These existing systems

are designed for the traditional information retrieval setting of obtaining the most relevant

data items with high precision, and thus are not well-suited for our search space reduction

setting which desires high recall. Closer to our work is ReQ-ReC [58] which combines

iterative query expansion and iterative classifier refinements to solve high recall retrieval

problem. A major difference is that ReQ-ReC system requires users to label given docu-

ments while our system allows the users to explore the documents and their topics and give

relevance feedback if needed.
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4.2.3 Aspect-Specific Topic Summarization

Although topic summarization has been studied for a long time, discovering topic summary

of a specific aspect (or targets) is a relatively new research problem. TTM [57] is the first

work to propose the term ‘targeted topic modeling’. This work proposes a probabilistic

model that is a variation of latent Dirichlet allocation (LDA) [4]. Given a static keyword

list defining a particular aspect, the model identifies topic keywords related to this aspect.

Wang et al. [75] identifies a list of target words from review data and disentangles aspect

words and opinion words from the list. APSUM [76] assigns aspects to each word in a

generative process. Since the aforementioned model generates topic keywords based on a

static keyword list, a dynamic model is desired. An automatic method to generate keyword

dynamically has been proposed [77]. This method focuses on the on-line environment of

Twitter and automatically generates keywords based on the time-evolving word graph.

4.2.4 Interactive Topic Modeling

Interactive topic models allow users to steer the topics to improve the topic modeling re-

sults. Various topic steering interactions such as adding, editing, deleting, splitting, and

merging topics have been introduced [19, 13, 12, 20, 15, 18, 33, 37, 24]. These interactions

can be applied to refine relevant topics and remove irrelevant topics to identify targeted top-

ics when most of the data items are relevant and only a small portion is irrelevant. However,

in our large-scale search space reduction setting, a more tailored approach is needed. In

this chapter, we propose interactive targeted topic modeling to steer the topics to discover

the target-relevant topics and documents.

4.3 Interactive Search Space Reduction

In many practical cases in large-scale text analyses, users have specific aspects they want

to focus on, which we will refer to as targets. Although there are many tools available
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Figure 4.3: Our human-in-the-loop algorithm workflow for interactive search space reduc-
tion. A document subset is updated based on user feedback each iteration.

with powerful natural language processing and text mining features, they tend to lack the

ability to concentrate on the targets. We define this problem of retrieving a subset of docu-

ments that are relevant to given targets from large-scale datasets with high recall as search

space reduction. Our solution is to iteratively retrieve the relevant documents utilizing user

feedback. Over multiple iterations, users inspect a topical summary of previously retrieved

documents and give feedback, and our system updates targets to better reflect their mental

model and retrieve relevant documents through sifting.

In this section, we first formulate the problem of interactive search space reduction,

then describe our iterative workflow and algorithm.

4.3.1 Problem Formulation and Algorithm Workflow

Given a document collection D = {d1, · · · , dn} with n documents, our goal is to retrieve a

subsetD∗ ⊆ D of documents that are relevant with high recall. Note that we do not limit the

number of retrieved documents |D∗|, as opposed to traditional information retrieval. Our

iterative approach updates targets G(t) based on user feedbacks and retrieves documents

D(t) over iterations t = 1, · · · , T .

Our algorithm workflow is outlined in Fig. 4.3, with notation listed in Table 4.1. Each
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Table 4.1: Key notations used in Chapter 4.

Notation Description

D Given document collection of n documents {d1, · · · , dn}
W Given keyword dictionary of m keywords {w1, · · · , wm}
X The m× n word-document matrix of D

t Current iteration number
D(t) Set of nt retrieved documents at the t-th iteration, {d(t)

1 , · · · , d(t)
nt }

s
(t)
r (·) Relevance score of document/topic at the t-th iteration
s

(t)
c (d) Topic score of document d at the t-th iteration
G(t) Set of rt targets at the t-th iteration, {g(t)

1 , · · · , g(t)
rt }

GGG(t) Set of rt target vectors for G(t), {ggg(t)
1 , · · · , ggg(t)

rt }
T (t) Set of kt topics at t-th iteration, {T (t)

1 , · · · , T (t)
kt
}

w(T )(w(d)) Set of top ten keywords of a topic T (or a document d)
d(T ) Set of documents that belong to a topic T

W
(t)
+ (W

(t)
− ) Set of good-to-have (bad-to-have) keywords by users at the t-th iteration

T
(t)
+ (T

(t)
− ) Set of upvoted (downvoted) topics by users at the t-th iteration

D
(t)
+ (D

(t)
− ) Set of upvoted (downvoted) documents by users at the t-th iteration

X(t) The word-document matrix of D(t), X(t) = X(:, D(t))
V (t) The word-topic matrix of T (t)

H(t) The topic-document matrix of T (t)

xxx
(t)
j , vvv

(t)
j , hhh

(t)
j j-th column of X(t), V (t), H(t), respectively

R+ The set of nonnegative real numbers
|| · ||F The Frobenius norm
eeei The standard basis vector where eeei(j) = 1 for j = i.
Ai· The i-th row of matrix A
A·j The j-th column of matrix A
argmax(aaa) The index of the largest element in vector aaa

iteration consists of three computational steps: target building, sifting, and targeted topic

modeling. An iteration starts with user feedback from its previous iteration. After explo-

ration of previously retrieved documents and their topics, users can modify keyword queries

and/or give positive or negative feedback on topics or documents. Based on the user input,

the interactive target building step (Section 4.3.2) updates the targets G(t−1) → G(t). Next,

the sifting step (Section 4.3.3) selects a new set of documentsD(t) using the updated targets

G(t). Finally, the targeted topic modeling step (Section 4.3.4) generates topics T (t) and the
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system visualizes them. The users can repeat the iterative process until satisfied.

4.3.2 Interactive Target Building Based on User Feedback

We represent targets as a set of single keywords (e.g., “apple”) or keyword compounds

(e.g., “apple, orange”). The former looks for documents containing the single keyword and

the latter looks for those containing all of the keywords in the keyword compound. In the

search space reduction problem, users may not be familiar with their target domains [78].

Even for domain expert users, constructing a good static query is a challenging task without

exploring and understanding given datasets in advance. Both cases can be solved with

interactive target building. At each iteration, our interactive target building step updates

targets based on user feedback.

Different from existing information retrieval approaches that use positive queries, we

use negative as well as positive targets. This allows users to express their complicated

mental target model. For example, the users may be interested in a target, but not interested

in a similar concept (e.g., retrieve “apple, fruit” and ignore “orange, fruit”). Negative

targets can also deal with multi-meaning words (e.g., retrieve “apple, iphone” and ignore

“apple, fruit”). In detail, we allow the users to directly update the keyword sets including

good-to-have keywords, bad-to-have keywords, stopwords to be ignored. Stopwords are

the words that are not useful in text analysis including too frequent words such as articles,

prepositions, and pronouns. In addition to the commonly used English stopwords, we allow

the users to add custom stopwords that are data-specific or domain-specific. For example,

when exploring medical records, ignoring common medical terms may increase the quality

of topic modeling and sifting. Also, the users can indirectly update the target by giving

item-level (documents) or group-level (topics) relevance feedback.

Our approach incorporates seven kinds of user relevance feedback into target building:

RF 1 Edit good-to-have keywords

RF 2 Edit bad-to-have keywords
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RF 3 Edit stopwords (words to be ignored)

RF 4 Confirm/upvote topics

RF 5 Reject/downvote topics

RF 6 Confirm/upvote documents

RF 7 Reject/downvote documents

RF 1, RF 4, RF 6 are positive relevance feedback indicating that the corresponding words,

topics, or documents are relevant to the user’s mental target G, respectively. On the con-

trary, RF 2, RF 5, RF 7 are negative relevance feedback indicating that the correspond-

ing words, topics, or documents are irrelevant to the user’s mental target G, respectively.

Lastly, RF 3 modifies the set of stopwords, which affects the follow-up topic modeling

process described in Section 4.3.4.

Given user relevance feedback, we model the targets and their representative vectors as

follows:

TargetModel computes the targets G(t) and their vectorsGGG(t) at the t-th iteration using the

user supplied input (W
(t)
+ , W

(t)
− , T

(t)
+ , T

(t)
− , D

(t)
+ , D

(t)
− ). The target G(t) consists of pos-

itive/negative explicit/implicit parts. Users can change the explicit part G(t)
+ , G

(t)
− directly

through keyword modification. For implicit part Ḡ(t)
+ , Ḡ

(t)
− , using relevance feedback on

a topic or a document, we extract its top keywords and add the keyword compound as an

implicit target.

[G(t), GGG(t)] = TargetModel(W (t)
+ , W

(t)
− , T

(t)
+ , T

(t)
− , D

(t)
+ , D

(t)
− )

G
(t)
+ = W

(t)
+ ;GGG(t)

+ = { aaa
‖ aaa‖2 : aaa =

∑
w∈g eeew, g ∈ G

(t)
+ }

G
(t)
− = W

(t)
− ;GGG(t)

− = { aaa
‖ aaa‖2 : aaa =

∑
w∈g eeew, g ∈ G

(t)
− }

Ḡ
(t)
+ = {w(T

(t−1)
j ) : T

(t−1)
j ∈ T (t)

+ } ∪ {w(d
(t−1)
j ) : d

(t−1)
j ∈ D(t)

+ }

ḠGG
(t)
+ = {vvv(t−1)

j : T
(t−1)
j ∈ T (t)

+ } ∪ {xxx(t−1)
j : d

(t−1)
j ∈ D(t)

+ }

Ḡ
(t)
− = {w(T

(t−1)
j ) : T

(t−1)
j ∈ T (t)

− } ∪ {w(d
(t−1)
j ) : d

(t−1)
j ∈ D(t)

− }

ḠGG
(t)
− = {vvv(t−1)

j : T
(t−1)
j ∈ T (t)

− } ∪ {xxx(t−1)
j : d

(t−1)
j ∈ D(t)

− }

G(t) = (G
(t)
+ , G

(t)
− , Ḡ

(t)
+ , Ḡ

(t)
− );GGG(t) = (GGG

(t)
+ , GGG

(t)
− , ḠGG

(t)
+ , ḠGG

(t)
− )
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Keyword Suggestion

Manually entering keywords can be burdensome. To this end, we recommend candidates

for the good-to-have and bad-to-have keyword sets in real time. Candidate recommendation

is based on similarities with the current good-to-have and bad-to-have keyword sets. Sim-

ilarities between words can be calculated by several distance measures. Among them, we

adopt the vector-space model of word representation [79]. To learn word vectors, we use

empirical pointwise mutual information (ePMI), which measures co-occurrence between

word pairs. The ePMI score between the word pair (wi, wj) is defined as:

ePMI(wi, wj) = log
(#(wi, wj) ·N

#(wi) ·#(wj)

)
, (4.1)

where N denotes the total number of the word co-occurring word pairs; and #(wi, wj)

and #(wi) denote the number of occurrences of the word pair (wi, wj) and the single word

wi, respectively. As suggested by [80], we first construct a matrix P ∈ Rm×m where

Pi,j = ePMI(wi, wj), perform low-rank matrix factorization on P , and use the left factor

as the vector representations of words after l2-normalization. We computed word vectors

for each dataset to obtain dataset-specific word similarities, but pre-trained word vectors

using word2vec [79] or Glove [81] can be used in our algorithm.

4.3.3 Sifting Documents and Words

After the target modeling step, we retrieve a new set of documents using the updated targets.

We provide two retrieval options: hard filtering by target keywords and soft sifting.

HardSift throws out documents that contain one of the negative target elements or

their nearest words and retrieves documents that contain one of the target elements or their

nearest words. One of nearest words of a word w is denoted by sim(w). Note that we

apply negative feedback first and positive feedback later to take a conservative approach in

filtering out documents.
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D(t) = HardSift(G(t), T
(t)
+ , T

(t)
− , D

(t)
+ , D

(t)
− , D

(t−1))

D(t) = D(t−1)
⋃|G(t)

+ |
j=1 {di ∈ D : ∀w ∈ gj(∈ G(t)

+ ), di has sim(w)}

D(t) = D(t)
∖|G(t)

− |
j=1
{di ∈ D(t) : ∀w ∈ gj(∈ G(t)

− ), di has sim(w)}

D(t) = D(t)
∖
T

(t−1)
j ∈T (t)

−
d(T

(t−1)
j )

D(t) = D(t)
∖
d
(t−1)
j ∈D(t)

−
{di ∈ D(t−1) : (xxxi · xxx(t−1)

j ) > δ}

D(t) = D(t)
⋃

T
(t−1)
j ∈T (t)

+
{di ∈ D : (xxxi · vvv(t−1)

j ) > δ}

D(t) = D(t)
⋃

d
(t−1)
j ∈D(t)

+
{di ∈ D : (xxxi · xxx(t−1)

j ) > δ}

SoftSift incorporates a relevance score model to rank documents by how similar they

are to the explicit and implicit targets. The relevance score of a document with respect to

a target g is calculated as cosine similarity between its target vector ggg and the document

vectorxxx, (xxx·ggg). All target vectors and document vectors are l2-normalized. To calculate the

final relevance score of a document, we take a weighted average of its previous relevance

score and its relevance scores with respect to positive and negative feedbacks at the current

iteration. To put more emphasis on recall than precision, we use smaller weight for negative

feedback score than positive feedback score, i.e. β > γ.

D(t) = SoftSift(GGG(t), D)

α, β, γ is parameters for balancing previous scores, positive feedback, and negative

feedback, respectively.

δ is the threshold for the soft mode.

for di ∈ D do

s
(t)
r+(di) = mean

ggg
(t)
+ ∈GGG

(t)
+ ∪ḠGG

(t)
+

(xxxi · ggg(t)
+ )

s
(t)
r−(di) = mean

ggg
(t)
− ∈GGG

(t)
− ∪ḠGG

(t)
−

(xxxi · ggg(t)
− )

s
(t)
r (di) = αs

(t−1)
r (di) + βs

(t)
r+(di)− γs(t)

r−(di)

end for

D(t) = {di ∈ D : s
(t)
r (di) > δ}
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4.3.4 Targeted Topic Modeling

The last step of an iteration is targeted topic modeling. Targeted topic modeling finds a

target-specific topical summary of documents that are retrieved from the previous sifting

step. The calculated topics and their representative documents are visualized to the users so

that they can easily understand what kind of documents are retrieved at the current iteration

and perform relevance feedback for the next iteration.

In this section, we explain nonnegative matrix factorization (NMF) [82] in the topic

modeling context [7, 56] and our targeted topic modeling algorithm based on NMF with

additional constraints.

Background: NMF for Topic Modeling

Given a nonnegative matrix X ∈ Rm×n
+ , NMF approximates X as a product of nonnegative

factor matrices V ∈ Rm×k
+ and H ∈ Rk×n

+ , i.e., X ≈ V H , with k � min(m,n). This can

be solved by optimizing the following formula:

min
{V,H}≥0

||X − V H||2F . (4.2)

In the topic modeling context, X is a word-document matrix where X·j (the j-th column

vector of X) is a bag-of-words representation of j-th document over m keywords. X is

based on TF-IDF representation of the document set and usually normalized with l2-norm.

k is set to be the number of topics. Factor matrices V andH represent word-topic and topic-

document relationships, respectively. V·i represents the i-th topic as a distribution over

words. Large values in V·i indicate that the corresponding keywords are strongly associated

with the i-th topic. H·j represents the j-th document dj as a weighted combination of topics.

The j-th document dj belongs to the i-th topic if the i-th element of H·j is its maximum,

i.e., argmax(H·j = i). We denote the i-th topic as Ti and define it by its word distribution

vector (w(Ti) = V·i) and the documents that belong to it (d(Ti) = {dj|argmax(H·j}).
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Targeted Topic Modeling using NMF

To reflect a target built by users into the topic modeling process, we introduce an additional

constraint term to the standard NMF formula, Eqn. 4.2, as follows:

min
{V,H}≥0

||X − V H||2F + ρ||M ◦ V − VG||2F , (4.3)

where ◦ is an elementwise multiplication. The additional term forces certain topics’ word

representation V to be similar to the corresponding target elements VG with the help of

masking coefficient matrix M . The parameter ρ controls the balance between the original

term and the additional term. Bigger ρ results in stronger incorporation of the target in

topic modeling. That is, the bigger the rho is, the closer the topics become to the targets at

the expense of becoming less truthful representation of data. When ρ = 0, it is equivalent

to the standard topic modeling. Also, ρ is inversely proportional to the number of positive

targets. To computeM and VG, for each positive target vector gggi ∈ GGG+∪ḠGG+, find its closest

topic vector, which we define as vvv∗i = argmaxvvvj(vvvj · gggi). We set (VG)j· = meanvvv∗i =vvvj(gggi)

and Mj· = 1 if |{gggi : vvv∗i = vvvj}| > 0.

The detailed algorithm at the t-th iteration is as follows:

TargetedTopicModel applies a constrained NMF algorithm on the current document set

D(t) and the current targets G(t) to compute kt number of topics T (t). Additionally, we

calculate each topic’s relevance score with respect to the targets. Note that rank(w, Ti)

calculates the rank of a word w within the topic Ti’s topic vector vvvi. For speedup, we use a

fast rank-2 NMF [52] algorithm to initialize V and H in Eqn. 4.2.

[T (t), s
(t)
r , s

(t)
c ] = TargetedTopicModel(X(t), kt, G

(t))

Generate V (t)
G , M (t) and solve

min{V (t),H(t)}≥0 ||X(t) − V (t)H(t)||2F + ρ||M (t) ◦ V (t) − V (t)
G ||2F

s
(t)
r (T (t)) = 1−min

g∈G(t)
+

(
meanw∈g

rank(w, T (t))

|W |
)

s
(t)
c (d

(t)
j ) = max(hhhj)/sum(hhhj)
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4.4 System

In this section, we present TopicSifter, our interactive document search space reduction sys-

tem. Our visualization system is tightly integrated with the underling algorithms described

in Section 4.3 to support various user feedback interactions listed in Section 4.3.2.

TopicSifter is designed to meet these design goals:

1. Given targets, retrieve relevant documents with high recall: TopicSifter should

retrieve documents that are relevant to targets.

2. Show summary and details of sifted documents: TopicSifter should provide a

topical summary and details of retrieved documents to help users understand them.

3. Support positive and negative feedback: Users should be able to positive and neg-

ative relevance of both keywords, documents, and topics (Supporting RF 1-RF 7).

4. Modify targets over iterations: TopicSifter should allow users to update targets

easily and iteratively.

5. Observe changes between iterations: TopicSifter should show differences in re-

trieved documents between iterations.

6. Export results for further analysis: TopicSifter is designed for one step of a com-

plex text analysis workflow. Users should be able to export the retrieved documents

for in-depth analyses.

TopicSifter consists of a web-based visualization interface using D3.js and a backend

system in Python and MATLAB using the Django framework.

4.4.1 System Overview

TopicSifter consists of three panels: (1) the control panel, (2) the main view, and (3) the

detail panel (Fig. 4.1). The control panel contains the keyword module to modify good-to-

have words, bad-to-have words, and stopwords (supporting RF 1, RF 2, RF 3) and control
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Figure 4.4: TopicSifter workflow. Users can provide feedback before clicking the blue
button to move to the next iteration. Results can be saved by clicking the export button.

buttons to update the main view. The main view shows the sifting status and the topical

overview of retrieved documents at the current iteration and allows the users to upvote or

downvote topics and documents (supporting RF 4, RF 5, RF 6, RF 7). The relevance

feedback on words, topics, and documents will be reflected on the next iteration (Fig. 4.4).

Lastly, the detail panel has the document table to show additional detail of all documents

and the history view to show historical trends over iterations. The width of each panel is

adjustable by dragging the divider in order to allocate more or less space to the panel. The

system design is shown in Fig. 4.1.

The users follow the workflow in Fig. 4.4. Each iteration starts with the users exploring

the retrieved documents and their topics in the main view. To give relevance feedback,

the users can modify keyword sets in the control panel or upvote/downvote topics and

documents in the main view. They can export the results or move on to the next iteration

using buttons in the control panel.

4.4.2 Control Panel

The users can utilize the control panel to update the main view. The control panel contains

the keyword input module and the control buttons. The keyword input module shows cur-
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rent set of good-to-have keywords W (t)
+ , bad-to-have keywords W (t)

− , and stopwords and

allows users to modify them (RF 1, RF 2, RF 3).

Keyword Input Module

In the keyword input module (Fig. 4.1(d)), the users can add new keywords using an input

text box or see current keyword lists for good-to-have keywords, bad-to-have keywords,

and stopwords. To add a keyword, users can enter the keyword in the input text box. While

typing, possible matching keywords in the dictionary W is listed in the pop-up as shown in

Fig. 4.5(a). The list is sorted by word frequency and updated as the user types more letters.

After selecting one of the keywords in the pop-up list, the users can either enter the keyword

as a single keyword (e.g., “visual”) or build a keyword compound (e.g., “visual” AND

“analyt(ic)” in Fig. 4.5(b)). By clicking one of the green, red, or gray buttons in Fig. 4.5(c),

the entered keyword or keyword compound is added in the good-to-have keyword listW (t)
+ ,

the bad-to-have keyword listW (t)
− , or the stopword list, respectively. Keywords or keyword

compounds in the keyword list is visualized as word buttons inside the colored areas (good-

to-have: green, bad-to-have: red, stopword: gray) as in Fig. 4.5(c). In order to remove a

keyword or a keyword compound, the users can click the × icon on the keyword button.

As discussed in Section 4.3.2, our technique suggests additional keywords based on

the current set of keywords. The keywords recommended for good-to-have or bad-to-have

lists are visualized under the corresponding keyword list as keyword buttons with dashed

borders with a + icon. The users can add one of suggested keywords by clicking the + icon.

The recommended keywords are updated in real time as the users add or remove keywords

to the keyword lists.

Changing the number of topics

Users can change the topic granularity by increasing or decreasing the number of topics

using the button group in the control panel. When the generated topics are too fine-grained

or too coarse-grained, giving relevance feedback can be problematic. For example, the
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(a) (b) (c)

Good-to-have: Good-to-have:G

Bad-to-have:Bad-to-have:

Bad-to-have:

Figure 4.5: Users can add good-to-have words, bad-to-have words, and stopwords in the
control panel. (a) While typing, partially matched keywords are ranked by frequency and
shown in a pop-up list. (b) Multi-word compound is supported. (c) Clicking the green
button adds the entered keyword compound into the good-to-have set.

user wants to give feedback on all “fruit” related topics, but there are too many fine-grained

“fruit” related topics to interact with. On the other hand, the user may be interested in

part of a topic (e.g., like “apple, mac” part from “apple, mac, fruit”, but not “apple, fruit”

part). The number of current topics is shown in the middle part of the button group. The

users can click the buttons to decrease the number of topics by -5(�), -1(<), or increase

it by +1(>), +5(�). Note that a new set of topics is generated using the same retrieved

document subset. The visual update after changing the number of topics is fast since this

happens within an iteration without triggering the target building, sifting, and targeted topic

modeling processes (Fig. 4.4).

Sift Button

The users can run our backend algorithms by clicking the sift button. After modifying

good-to-have keywords, bad-to-have keywords, and stopwords (RF 1, RF 2, RF 3) and

upvoting or downvoting topics and documents (RF 4, RF 5, RF 6, RF 7), the users move on
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Figure 4.6: The status bar chart that shows sifting status at the current t-th iteration. Blue
bars represent retrieved documents D(t) at the t-th iteration. Gray bars represent the rest
(sifted out) documents in the corpus, i.e., D\D(t). Patterned bars indicate changes from the
(t− 1)-th iteration.

to the next iteration. The sift button triggers the target building, sifting, and targeted topic

modeling processes to retrieve a new set of documents and visualize their topic summary.

This process is shown in Fig. 4.4.

Export Button

The users can export the results using the export button. When the users are satisfied with

the retrieved documents after multiple iterations, our system provides an option to save

the results. The results are saved as a JSON file including targets, topics, and IDs, topic

membership, and relevance scores of retrieved documents.

4.4.3 Main View

The main view will visualize topic summary of retrieved documents at the current iteration

along with the sifting status bar to show the difference between the current iteration and the

previous iteration. In the topic visualization, the users can upvote or downvote topics and

documents to indicate that they are relevant to targets or not (RF 4, RF 5, RF 6, RF 7).

Status Bar

Fig. 4.6 shows the status bar chart. The total length of all bars represents the total number

of documents in the dataset. The total length of blue bars represents the number of retrieved
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Figure 4.7: Visual encoding of topic cells and their representative documents. Target-
relevancy of topics are encoded by their color hue (green to red). Topic-closeness of docu-
ments are encoded by their color lightness (dark to light) and positions (top-left to bottom-
right). Topic change from the previous iteration is indicated by new keywords highlighted
as bold and underlined.

documents at the current iteration, t, while the total length of gray bars represents the num-

ber of sifted out documents. Solid-colored bars represent documents that stay retrieved

(solid blue) or stay sifted out (solid gray) between the previous (t− 1)-th iteration and the

current t-th iteration. Patterned bars represent document status changes from the previous

iteration, t − 1. In detail, the blue patterned bar represents incoming documents that were

not retrieved at the (t− 1)-th iteration but retrieved at the t-th iteration. The gray patterned

bar represents outgoing documents that were retrieved at the (t − 1)-th iteration but sifted

out at the t-th iteration. Longer patterned bars indicate interactions at the t-th iteration have

resulted in a larger change in retrieved documents.

Topic Visualization

Topics computed from the retrieved documents are visualized as rectangular cells (Fig. 4.1).

On top of each topic cell, its top ten keywords are shown, and its representative documents

are visualized as small squares. The sizes of cells are proportional to the number of re-

trieved documents that belong to each topic. The layout of cells is calculated by D3’s

built-in treemap algorithm. The color hues of topic cells represent how relevant each topic

is to the target (s(t)
r (T )) from green (relevant) to red (irrelevant) as in Fig. 4.7. The color

hue of each topic is shared by its keywords and its documents. If a topic has changed from
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Figure 4.8: User interaction for positive and negative feedback. Users can click the upvote
(or downvote) button in the pop-up menu of a topic or a document to indicate (ir-)relevancy.
Highlight with border means upvoted and white out means downvoted.

the previous iteration, new representative keywords are highlighted as bold and underlined

(The yellow topic in Fig. 4.7). For topic cells with narrow width, the users can hover over

top keywords to see the full list of keywords. To give positive (or negative) feedback to

topics, the users can click the menu button on the top right corner of each topic cells to

open a pop-up menu with upvote and downvote button (Fig. 4.8).

The number of representative documents that are visualized as squares in a topic cell

are determined by the size of the cell. Our system picks documents to be visualized by how

close the documents are to its topic (s(t)
c (d)) since they are more representative of the topic.

The color lightness of document squares represents how close each document is to its topic

from dark (close) to light (less close). The positions of document squares are also sorted

by closeness to their topics from top-left to bottom-right (Fig. 4.7). To see the detail of a

document, the users can hover over the square to see its document ID in a pop-up menu

or click the square to see its detail in the document table in the detail panel. Users are

able to give positive (or negative) feedback to documents to indicate that they are relevant

(or irrelevant) to their mental targets by toggling the upvote (or downvote) button in the

pop-up menu of each document square as in Fig. 4.8. Upvoted topics and documents are

highlighted with border and downvoted topics and documents are whited out.
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Figure 4.9: The history view. Stacked bars on the left show sifting status from top (old) to
bottom (new). In each row, blue bars represent retrieved documents at an iteration and gray
bars represent the rest (sifted out) documents in the corpus at the same iteration. Patterned
bars indicate changes from the previous iteration. Keyword summary on the right shows
the topical progression of retrieved documents over iterations.

4.4.4 Detail Panel

The detail panel has two tabs to toggle between the document table view and the history

view. The document table view shows the list of all documents D and their raw text de-

tails. The history view shows the history of previous iterations to keep track of the iterative

sifting process.

Document Table

The document table shows additional information of all documents in the dataset, i.e., D.

Each row of the table shows document details such as document IDs, titles, raw texts, etc,

along with their topic memberships and topic-relevance scores. The document table is

linked with the topic visualization. Hovering over a document square highlights the corre-

sponding table row, and vice versa. Column fields may vary depending on datasets used.

The raw texts can be long, so our system does not show them by default, but a row can

be expanded to show the raw text when clicked. One challenge is that rendering all doc-
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Figure 4.10: Exploring the TED dataset. The initial iteration (left) shows topic summary
of all documents. After adding “art, technology” to the good-to-have list, the user upvotes
an interesting document and downvotes another (middle). Documents are further sifted
(right).

ument rows are impractical in our large-scale text analytics setting. To solve this, we use

Clusterize.js1 library to render currently visible rows only and reuse those HTML elements

when the table is scrolled. Another challenge is navigating and scrolling through tens of

thousands of rows. For easy navigation, when a document square in the main view is right-

clicked, the document table automatically scrolls to the corresponding row.

History View

Fig. 4.9 shows the history view, which contains a stacked bar chart (left) and the keyword

summary history (right). The stacked bar chart shows all the visualized status bars from

previous iterations. It can reveal changes per iteration and if the sifting results became

stable. The keyword summary history shows top keywords for retrieved documents at each

previous iteration. Users can observe whether their interactions have resulted as expected.

4.5 Evaluation

In this section, we provide quantitative evaluation utilizing simulated user feedback with

a labeled dataset. Also, we show use cases to illustrate the usefulness of TopicSifter for

search space reduction using two datasets: a TED dataset and Twitter dataset.

1Available at: https://clusterize.js.org/

70

https://clusterize.js.org/


G

Figure 4.11: A stopword is detected from the history view.

4.5.1 Dataset Description

The 20 Newsgroup dataset2 is a collection of 19.8K newsgroup documents partitioned into

20 categories. The size of dictionary is 128K. The TED talk transcript dataset3 contains

2,896 documents that are transcribed from the English TED talk videos. The talks are

about various topics including technology, education, etc. The size of dictionary is 18,275.

The contents of the documents are spoken languages in a subtitle-like style. The twitter

dataset4 was originally explored by [83]. We use part of the data containing 500K tweets.

After removing the documents with less than five words, we are left with 300K documents

and 32.3K words. We applied the Porter stemming algorithm [84] for pre-processing and

built the TF-IDF matrices for the datasets.

4.5.2 Quantitative Evaluation

In this section, we present results of a study simulating user input to test the effectiveness

of our technique.

2Source: http://qwone.com/∼jason/20Newsgroups
3Source: https://github.com/saranyan/TED-Talks
4Source: https://archive.org/details/twitter cikm 2010
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Experiment Setup

To simulate user relevance feedback, we used the 20 Newsgroup dataset which has category

labels. Among 20 categories, we chose two labels “rec.sport.baseball” (989 documents)

and “rec.sport.hockey” (993 documents) as relevant/true labels, which is about 10% of the

entire dataset.

First, we entered “game, team, player, play”, which were four most representative key-

words from documents from the two categories, as initial target words. At each iteration,

we select two documents or topics to give relevance feedback on (upvote or downvote based

on the true label). We compared six strategies: 1) upvote two true documents (+d), 2) up-

vote two true topics (+T ), 3) downvote two false documents (−d), 4) downvote two false

topics (−T ), 5) upvote a true document and downvote a false document (±d), 6) upvote a

true topic and downvote a false topic (±T ).

Results

Table 4.2 summarizes the performance of different feedback strategies at the 10-th iteration,

averaged over three runs. We used four measures: precision, recall, F1-score (the harmonic

mean of precision and recall), and PRES [85], which is a recall-oriented measure. For

each strategy, we tried parameters from α ∈ {0.4, 0.5, 0.6, 0.7}, β ∈ {0.4, 0.5, 0.6}, γ ∈

{0, 0.1, 0.2} where α + β − γ = 1 and chose the combination with best F1 score. For the

sifting threshold, we used δ = 0.04. All strategies converged after 4-6 iterations.

Simulating positive feedback showed higher recall and lower precision than negative

feedback. Performing both positive and negative feedback showed better or comparable

scores than performing only positive feedbacks, which advocates our novel negative tar-

geting. In addition, positive topic-level feedbacks (+T , ±T ) outperformed the others in

F1 and PRES scores. This validates that our topic-level relevance feedback is beneficial in

search space reduction.
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Table 4.2: Retrieval performance of relevance feedback strategies with their parameter
settings. Scores are averaged over three runs. Best scores are highlighted.

+d +T −d −T ±d ±T

Precision 0.798 0.670 0.825 0.880 0.794 0.808
Recall 0.667 0.827 0.596 0.415 0.669 0.754

F1 0.727 0.740 0.692 0.564 0.726 0.780
PRES [85] -0.095 0.680 -0.362 -2.527 -0.082 0.703

α 0.4 0.6 0.7 0.5 0.6 0.7
β 0.6 0.4 0.5 0.6 0.6 0.5
γ 0 0 0.2 0.1 0.2 0.2
δ 0.04 0.04 0.04 0.04 0.04 0.04

Figure 4.12: Exploring the Twitter dataset. After the initial iteration (left), some travel-
related topics are found. After adding “intern” to the stopword list, irrelevant topics are
still included (middle). Tweets are further sifted (right).

4.5.3 Use Case 1: Exploring Scraped Data

Jim is an art-major student who is also interested in technology. He is looking for technol-

ogy areas where he can incorporate his artistic sense, and uses TopicSifter to retrieve talks

related to his interest.

His visual exploration starts with an initial topic modeling that shows ten topics of all

documents of the TED transcript dataset. From the main view (shown in Fig. 4.10(left)),

he observes that a variety of topics are covered in the TED dataset, thus, he decides to focus

on his interest, art and technology. He adds the keyword compound “art, technology” to

the good-to-have keyword list and run the TopicSifter. He discovers some topics that are

not interesting, such as biology/medicine or economy related ones, and downvotes them

by clicking the topic cells. During the process, he finds out that a keyword “laughter”

was the third-most frequent word in the TED dataset as he sees the history view from the
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Figure 4.13: Initial user-input good-to-have keyword “#travel” and the keywords recom-
mended by TopicSifter (left). The recommended keywords are also incorporated into the
good-to-have list.

detail panel (shown in the upper-right of Fig. 4.11). He reminds that the TED dataset is

based on the scripts of the talks, and the keyword “laughter” is usually used to describe

audience’s reaction in scripts. He adds the keyword to the list of stopwords so that it

cannot influence the sifting process (Left of Fig. 4.11). As he proceeds, he sees a topic

with keywords “market, africa, dollar” and downvotes it since it looks unrelated. Here,

TopicSifter does not simply removes all document in the downvoted topic. It still retrieves

target-relevant documents that was in the downvoted topic, accomplishing high recall. For

example, documents titled “The surprising seeds of a big data revolution in healthcare”,

and “Tim Brown urges designers to think big” are both highly related to art and technology

field, and were assigned to the “money” topic. They were survived by TopicSifter by

taking account into overall relevancy. He finds “comput, robot” topic inteseting, inspects

its documents in the table view interesting, and upvotes it (Fig. 4.10(middle)). In this

topic, Jim finds out interesting topics and corresponding documents that contain contents

about 3-D printer or human-computer interaction. Finally, he continues iterations until he

is satisfied with his target documents about art and technology (Fig. 4.10(right)).
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4.5.4 Use Case 2: Exploring Social Media Data

Now, we will follow the case of a marketer in a travel agency, Pam, who uses the proposed

technique to sort out consumers’ interests in travel experiences. Pam starts by loading the

twitter dataset and looking at the initial topics.

Since Twitter is a social media platform, many tweets are about everyday life and emo-

tions. For example, Pam sees that some topics include top keywords such as: “rt”, “home”,

“day”, and “today”. She adds the keyword “#travel” to the good-to-have list to observe

users’ behavior using hashtag keywords about traveling on Twitter. As recommended good-

to-have words pop up around the selected keywords, she selects relevant keywords among

them such as “airline”, “plane”, “travel” and “vacation” to see broader user interests about

traveling (Fig. 4.13). After a single sifting phase, she observes that a red (and thus less

relevant) topic includes the keyword “intern” (rectangle in Fig. 4.12(left)). Many tweets

included in it are comments about “internship” such as “Why are like 80% of the Poker-

Road intern applicants from Canada? [...]”. She finds it strange that a topic about internship

is retrieved for travel related targets. As it turns out, the word “international”, which is rel-

evant to the targets, is stemmed to “intern”, so tweets about internships are incorrectly

identified as relevant. Pam adds “intern” to the stopword list to avoid this issue. After one

iteration, the “intern” topic is removed (Fig. 4.12(middle)). She spots an unusual topic

“wind,mph”. Tweets in this topic are mostly automatically generated from a weather bot

twitter account such as “HD: Light Rain and Breezy and 52 F at New York/John F. Kennedy

[...]”. Another topic “@DL KOPC,chasin,miami” contains various spam messages such as

advertisement for a trip to Miami. She downvoted these two topics to remove additional

spamming tweets (black rectangles in Fig. 4.12(middle)). At the next iteration, there are

many casual tweets such as “Family, food, games, and football. That’s Thanksgiving.” or

“Just chatted w/ Jane Lindskold & husband Jim here at the airport. Very cool people.”.

Pam continues exploration to find out more specific tweets that represent customers’ inter-

ests related to traveling (shown in Fig. 4.12(right)). One big travel-related concern is “flight
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delay” as shown in the top-right topic in Fig. 4.12(right). Another interest is “free Wi-Fi”

as shown in the bottom-right topic in Fig. 4.12(right). She starts designing travel packages

that includes free WiFi options and flight delay insurances. The application helped her

realize customer concerns and customize the agency’s products.

4.6 Discussion

Iterative methods are computational methods that update approximate solutions over itera-

tions. In general, iterative methods have some stopping criteria or stopping rules to termi-

nate the methods, based on their objective functions or evaluation measures, e.g., when a

score converges to a local minimum. Likewise, many visual analytics systems that adopt

interactive machine learning or optimization methods utilize some form of measures to

evaluate their tasks and application. These measures can be kept internally for monitor-

ing; or can be shown to the users as charts (e.g., [32]) or some form of visual encodings

(e.g., [86]) to inform users about the status of the current iteration. In our case, the rele-

vancy scores of documents can be used as a measure. Unfortunately, our iterative retrieval

approach not only updates the solution (which is the retrieved set of relevant documents),

but also updates the target by which we measure the relevance scores of the documents.

For this reason, comparing the relevance scores between iterations are meaningless if the

target has been changed. That is, a higher relevance score in an iteration does not neces-

sarily mean a better solution than a lower relevance score in another iteration. One naı̈ve

walkaround would be to compute the relevance scores of previously retrieved documents

against the current target. However, this walkaround requires the system to store all histori-

cal results and calculate the relevance scores again at every iteration, which is not practical.

Instead, for the TopicSifter prototype system, we decided to show retrieval status changes

similar to membership changes in clustering. As explained in Fig. 4.9, the history view in

the detail panel shows changes in retrieved documents the over iterations in the stacked bar

chart. In addition, we use a colored triangle mark to indicate if a topic has changed much
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from the previous iteration as in Fig. 4.7. These kinds of visual cues can guide the users’

decision on when to stop the iteration (e.g., limited change between iterations)

4.7 Conclusion

In this chapter, we proposed a novel sifting technique to solve search space reduction prob-

lem interactively and iteratively. Our technique combined interactive target building and

targeted topic modeling to sift through document collections and retrieve relevant docu-

ment as many as possible. As a proof of concept, we built an interactive search space

reduction system which offers tight integration between the visualization and the underly-

ing algorithms.
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CHAPTER 5

EMBIVIS: INTERACTIVE EXPLORATION AND DEBIASING OF WORD

EMBEDDING

In this chapter, we present an interactive way to examine and mitigate biases in word em-

beddings. Word embeddings are shown to reflect human biases such as gender or racial

stereotypes. Our interactive approach allows users to form interpretable attribute axes to ex-

amine biases within word embeddings and de-bias them if needed. This chapter is adapted

from our ongoing work.

5.1 Introduction

As machine learning algorithms are deployed to more decision making systems for wider

applications and domains, fairness and bias have become important issues in the artifi-

cial intelligence (AI) community. Many cases of biases in deployed systems have been

reported and studied over the past decades. For instance, a widely used criminal risk pre-

diction system, which is used for parole or sentencing decisions, is shown to put higher

risk on African American defendants compared to Caucasian defendants with the same

record [87]. Another example is Google Image Search, where gender proportions are ex-

aggerated in the search results (i.e., male-dominated occupations tend to have even more

men than expected) [88]. This is not surprising because AI systems are inherently data-

driven, and thus, they reflect stereotypes and biases embedded within the real-world data.

To this end, there have been many works that try to directly deal with the bias for fair

and socially responsible AI. These techniques aim to either remove bias by transforming

the training data before training (pre-processing), modifying algorithms to consider bias

and fairness during the training (in-processing), or debiasing the results after the training

(post-processing).

78



Figure 5.1: Our system has (1) the control bar (top), (2) the attribute panel (left), (3) the
visualization panel (middle), and (4) the bias panel (right). The control bar on the top con-
tains the dataset dropdown menu, the export button, and the tutorial button. The attribute
panel has the attribute axis list, the axis module to update an axis, and the table showing
analogy pairs for the selected attribute axis. The visualization panel contains three views:
the global view, the pair view, and the quality monitoring view. The bias panel consists of
the axis projection view, the word table, and the debias button. Views are connected via
brushing and linking.

Natural language processing (NLP) tasks are no exception to such bias problems. Huge

text corpora that many state-of-the-art NLP techniques are trained on inevitably contain

human biases. Machine translation task is an example. When translating sentences from

gender-neutral languages such as Hungarian to English, Google Translate tends to pre-

fer male nouns, specifically for sentences about STEM (Science, Technology, Engineering

and Mathematics) jobs [89]. For example, the same Hungarian pronoun is translated differ-

ently: ‘he is an engineer’ vs. ‘she is a nurse’. Another example is coreference resolution,

which is the task to identify mentions referring to the same entity in a text. In a recent

work [90], gendered pronouns are more likely to be linked to pro-stereotypical entities. For
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Figure 5.2: Mitigating the biases in word embeddings reduces the risk of propagating biases
into downstream applications that utilize trained word embeddings.

instance, for the sentence ‘The physician hired the secretary because he was [...]’, ‘he’ is

more likely to reference ‘physician’. On the other hand, if ‘he’ is replaced with ‘she’ in the

same sentence, ‘secretary’ will be more likely to be associated with ‘she’.

Among many NLP tasks, we focus on biases in neural word embeddings. Word em-

beddings are widely used in NLP applications and can be considered as the building blocks

for numerous neural NLP techniques. Generally, the first layer (from the bottom) of deep

neural networks for NLP is an embedding layer which transforms a discrete token (such as

a word or a character) to a continuous vector. In many cases, a pre-trained word embed-

ding is used as the static first layer or as an initialization for the first layer in deep neural

networks. Therefore, by mitigating the biases in word embeddings, we can reduce the risk

of propagating biases into downstream applications that utilize trained word embeddings

(Fig. 5.2). For instance, it has been shown that using a debiased word embedding in a

coreference resolution algorithm reduces bias in the coreference resolution task [90].

Most of the algorithms for debiasing word embeddings are based on the seminal work

of Bolukbasi et al. [91]. These algorithms can be largely described as a two-step process.

The first step is to identify attribute (or bias) subspace (e.g., a gender subspace). The
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Figure 5.3: Eight pairs of words defining the gender attribute visualized using embed-
dings trained on Wikipedia (left) and Google News (right) corpora. Green dots repre-
sent female-related words and orange dots represent corresponding male-related words.
Gender-defining pairs from [91] are used.

subspace is usually represented as a single vector, which is computed based on pairs of

words that can define the attribute (e.g., ‘woman-man’, ‘female-male’, ‘she-he’, and so

on). The second step is to transform word vectors using the identified subspace so that the

amount of bias in the resulting embedding is reduced. For example, remove gender portion

from word vectors for gender-neutral words, making the word vector orthogonal to the bias

subspace. The main differences between debiasing algorithms come from how to compute

bias subspaces, which attribute-defining pairs to choose (from step 1), how to transform the

word vectors, and which words to transform (from step 2).

We argue that human-in-the-loop approaches can be beneficial in choosing attribute-

defining pairs and words-to-be-transformed. Fig. 5.3 shows the same set of 8 pairs of words

visualized using different embeddings trained on Wikipedia (left) and Google News (right).

While the pair difference vectors are similar to each other in the Wikipedia embedding, one

pair (‘female-male’) is vastly different from the other pairs in the Google News embedding.

In this case, removing the different pairs from the defining set may result in finding a better

gender subspace. This illustrates the importance and the need for an interactive approach

to solve the debiasing problem. Instead of blindly applying a state-of-the-art debiasing

algorithm, we advocate an interactive and exploratory approach where users’ downstream

applications and domain contexts can be incorporated into the analytic process.

In this chapter, we propose a novel human-in-the-loop framework to debias word em-
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beddings. Our approach allows users to construct attribute axes, visually examine attribute

biases within word embeddings, and iteratively debias them, realizing highly customized

and user-tailored debiasing. To test our approach, we build EmBiVis, a web-based visual-

ization prototype system, which will be open-sourced later.

The primary contributions of this work are:

• A novel human-in-the-loop technique to formulate attribute axes, assess attribute

biases, and debias word embeddings, iteratively;

• A visual analytic prototype system, EmBiVis, that supports interactive exploration of

biases in word embeddings and guides interactive debiasing; and

• A use case and experiments that demonstrate the effectiveness of our approach.

5.2 Related Work

5.2.1 Debiasing Word Embedding

The most widely known work for word embedding debiasing is Bolukbasi et al. [91]. In

this work, the authors find that even the state-of-the-art embeddings exhibit gender stereo-

types. For example, ‘man’ is to ‘computer programmer’ as ‘woman’ is to ‘homemaker’.

To mitigate this, they propose a post-processing approach to debias word embeddings. To

debias word embedding for gender bias, they first 1) identify gender subspace using a list

of gender-specific words and then 2) remove the bias subspace from gender-neutral words

(hard) or apply linear transformation to all words to minimize bias in gender-neutral words

(soft). Manzini et al. [92] extend the work of Bolukbasi et al. [91] to include other attribute

biases such as religion and race, separately. Gonen and Goldberg [93] criticize that this line

of work does not entirely eliminate the gender bias from the embeddings, but rather hides

the bias. There are other extensions such as [94] which support joint debiasing of multiple

attributes and [95, 96, 97]. More recently, Karve et al. [98] propose the conceptor debiasing
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method, which is the current state-of-the-art. This method transforms word vectors using a

debiasing conceptor matrix and supports multiple attributes simultaneously.

Contrary to the above post-processing methods that debias word embeddings after they

are already trained, Zhao et al. [99] try to learn attribute-neutral word embeddings (in-

processing approach). They introduce a gender-neutral variant of GloVE [81] called GN-

GloVE that isolates gender information in certain dimensions while keeping the other di-

mensions neutral to gender. As a result, the gender dimensions in the GN-GloVE embed-

ding becomes interpretable and can be used for gender-specific tasks. Another direction

is transforming the training corpus to reduce bias (pre-processing). Brunet et al. [100]

trace the origins of bias in training documents, which are then either perturbed or removed

before training. In our work, we take a post-processing approach to debias word embed-

dings. While in-processing and pre-processing approaches have their own merits, they are

not easily usable or applicable to non-NLP experts. Rather, we target layusers who utilize

pre-trained word embeddings in their domain applications and want to easily debias them

according to their own needs.

There have been attempts to study biases in contextualized word embeddings [101,

102] such as ELMo [103] and BERT [104]. For example, Zhao et al. [101] mitigates

gender bias in ELMo by augmenting training corpus by swapping gender-specific entities

(pre-processing) and neutralizing word vectors (post-processing).

In terms of attributes for debiasing word embeddings, gender [105, 90, 106, 107, 99,

100, 101, 108, 109, 93, 97, 96, 94, 95, 98] has been most frequently studied, and there are

a number of works on race [105, 92, 96, 94, 98], religion [92, 94], nationality [96], and

age [96]. We also categorize related works by downstream applications tasks: document

classification [108], coreference resolution [90, 99, 101, 102] language model [106, 109],

machine translation [107], and sentence representation learning [105]. Note that we only

include debiasing works that use word embeddings in their algorithms. For a more general

review of bias literature in NLP or AI, refer to [110, 111, 112].
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5.2.2 Assessing Biases in Word Embedding

Accurate quantification of biases is an important task for fairness in AI, especially for the

evaluation of debiasing techniques. The most widely used metric for biases in word em-

bedding is Caliskan et al. [113]. This work introduces a new method for evaluating bias:

the Word Embedding Association Test (WEAT), which replicates Implicit Association Test

(IAT) [114] using word embedding relationships. To simply put, WEAT compares two tar-

get sets (attribute-defining, e.g., male or female-related words) with respect to two attribute

sets of words (family or career-related words). Their result shows that females are more

associated with family (or art) and males with career (or science) (gender bias). They also

find that European American names such as ‘Brad, Brendan, and Geoffrey’ are more likely

to be closer to pleasant than to ‘unpleasant’ than African American names such as ‘Darnell,

Hakim, and Jermaine’ (racial bias). More recently, Ethayarajh et al. [95] argue that WEAT

overestimates bias and can be manipulated by changing the attribute word sets. To mitigate

this, they propose a new metric called Relational Inner Product Association (RIPA).

Garg et al. [115] compare average distances from occupation words (and selected adjec-

tives) to female words vs. to male words as well as distances from occupation words (and

selected adjectives) to hispanic vs. asian vs. white last names. Gonen and Goldberg [93]

suggests an implicit bias test using k-means clustering and SVM classifier.

5.2.3 Interactive Visual Analysis on Word Embedding

There are a number of visual analytics systems for exploring word embeddings [116, 117,

118, 119, 120]. Most of these tools project word embeddings onto 2D or 3D scatterplots

using dimension reduction techniques such as Principal Component Analysis (PCA) [121],

t-Distributed Stochastic Neighbor Embedding (t-SNE) [122], and Uniform Manifold Ap-

proximation and Projection (UMAP) [123]. Embedding projector [120], which is deployed

in Tensorflow, supports local neighborhood lookup. Parallax [118] utilizes algebraic for-

mula (e.g., sum(
−→
he,
−→
his): sum of two-word vectors for words ‘he’ and ‘his’) to form se-
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mantic axes and project word vectors along with them for improved interpretability. Liu et

al. [116] extend this line of work to general embeddings to better interpret latent spaces.

Alternatively, Heimerl and Gleicher [117] propose a novel 1D visualization and a heatmap

visualization that is tailored to specific tasks. More closely to our work, Word Embedding

Visual Explorer [119] visualizes semantic relationships such as word pairs, forms an axis

based on the pairs, and shows words that are at the extreme ends of the axis.

While these works focus on the general exploration of word embeddings, there are two

use cases that visualize bias to some extent. Parallax [118] visualizes profession words used

in [91] onto a male x-axis (computed as avg(
−→
he,
−→
his)), and a female y-axis (computed as

avg(
−→
she,
−→
her)). As a result, ‘nurse, dancer, maid’ are projected closer to the female axis,

while ‘boss, captain, commander’ are closer to the male axis (gender bias in occupation

words). Similarly, in Liu et al. [116], ‘pink, wedding’ are located near female names and

‘director, mayor, victory’ near male names when projected onto a gender attribute vector. In

addition to visualizing biases, our system supports interactive refinement of bias subspace,

quantified bias assessment over iterations, and debiasing.

5.3 Interactive Debiasing of Word Embedding

Word embeddings are shown to have undesirable associations with respect to sensitive

attributes such as gender or race [113, 91]. To solve this, many automatic algorithms are

introduced to debias word embeddings in recent years [91, 92, 94, 98]. These automatic

techniques require pre-selected sets of attribute-defining word pairs and attribute-neutral

words as their input, and the quality of debiasing is highly dependent on these selections.

However, the selections should be customized according to the needs of the end-users and

should vary depending on the used corpus, the application tasks, or the context of the

domain for better results. Therefore, we introduce an interactive and iterative approach

for human-in-the-loop debiasing of word embeddings. In this section, we formulate the

problem of debiasing word embedding, explain our interactive workflow to solve it, and
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Table 5.1: Key notations used in Chapter 5.

Notation Description

m The dimension of the given word embedding
n The number of words
k The number of attribute-defining word pairs
wi The i-th word, 1 ≤ i ≤ n
V The set of words, V = {w1, · · · , wn}
VS The set of attribute-specific words, VS ⊂ V
VN The set of attribute-neutral words, VN ⊂ V
P The set of attribute-defining word pairs, P =

{(w11 , w12), · · · , (wk1 , wk2)}
wwwi The word vector of the i-th word ∈ Rm×1

WWW The word embedding matrix ∈ Rm×n, i.e.,WWW ·i = wwwi

NNN The matrix of attribute-neutral words ∈ Rm×|VN |

BBB The bias subspace defined by P ,BBB = span({wwwi −wwwj|(wi, wj) ∈ P})
|| · ||F The Frobenius norm
AAAi· The i-th row of matrixAAA
AAA·i The i-th column of matrixAAA
argmax(aaa) The index of the largest element in vector aaa

then describe our algorithms.

5.3.1 Problem Formulation and Algorithm Workflow

Given a pre-trained word embedding WWW , the goal is to obtain a new word embedding W ∗W ∗W ∗

with less bias and comparable quality. That is, we want the new embedding W ∗W ∗W ∗ such that

the word vectors of attribute-neutral words are unbiased, i.e., ∀w ∈ VN , www ⊥ BBB, where VN

is the set of attribute-neutral words,www is the corresponding word vector of the word w, and

B is the bias subspace. Notations used in the chapter are summarized in Table 5.1.

Our approach is to update WWW (t) over iterations (t = 1, · · · , T ) based on user input of

attribute-defining pairs P (t) and attribute-neutral words V (t)
N . At each iteration, we first

compute attribute subspaceBBB(t) using the attribute-defining pairs P (t). Then we debias the

embeddingWWW (t) with respect toBBB(t), based on the selection of attribute-neutral words V (t)
N

and attribute-specific words V (t)
S . Fig. 5.4 outlines our workflow. We describe each step in
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Figure 5.4: A diagram outlining our algorithm workflow. Given a trained word embedding,
our algorithm identifies bias subspace (step 1) and debias the embedding (step 2) over
iterations. Each step can be repeated upon user feedback.

detail in the following.

5.3.2 Step 1: Formulate Attribute Subspace

We compute the attribute subspaceBBB(t) at the t-th iteration based on the attribute-defining

word pairs P (t) entered by the users. For each pair pi = (wi1 , wi2) ∈ P (t), the difference

vectorwi1wi1wi1 −wi2wi2wi2 constructs the attribute subspaceBBB. That is,

BBB = span(

[
w11w11w11 −w12w12w12 , · · · , wk1wk1wk1 −wk2wk2wk2

]
).

We perform singular value decomposition on the stacked matrix B̂BB to get B̂BB = UUUΣΣΣVVV T .

For practicality, we set the attribute subspace as the span of the first r columns of the left

singular matrix UUU .

Pair Recommendation After the subspace is computed, we provide pair recommendation

for users to help them populate and construct the pair set for next iteration, P (t+1). To do

this, we first calculate the representative vector bbb of the subspace by equation bbb =
∑r

i=1 σiuuui

where σi denotes the i-th singular value, and uuui denotes the i-th left singular vector. We

recommend pairs whose difference vectors are closest to bbb. In other words, we recommend
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top word pairs satisfying (wi′ , wj′) where i′, j′ = arg min
i,j

dist(wwwi −wwwj, bbb). We use cosine

similarity as distance measure dist(·). Calculating the desired pair (i′, j′) takesO(n2) time

because all pair-wise distance should be calculated. However, this is undesirable for our

real-time interaction system. For efficiency in real-time interaction, we filter candidate

words. We consider only words that are close to currently selected pairs. We set threshold

δ = 1 and filter out words which have larger distance than δ from words in currently

selected pairs.

5.3.3 Step 2: Debias

Given the user’s selection of attribute-specific words V (t)
S and attribute-neutral words V (t)

N ,

the debiasing step transforms word vectors to reduce bias with respect to the bias subspace

computed at step 1. Our system adopts two debiasing algorithms from previous works [91,

98]. However, any post-processing debiasing algorithm can be used as a replacement if

needed.

The first option is HardDebias, which was proposed in [91].

HardDebias at iteration t:

www(t) =
www(t−1) − bbb
||www(t−1) − bbb(t)|| for ∀w ∈ V (t)

N

www(t) = (µµµ− µµµBBB) +
√

1− ||µµµ− µµµBBB||2
www(t−1) − µµµBBB
||www(t−1) − µµµBBB||

for ∀w ∈ V (t)
S

where µµµ is the average vector of word w and its counterpart and µµµBBB is µµµ’s component in
the subspace.

The second option is ConceptorDebias, which was proposed from [98].

ConceptorDebias:

A conceptor matrix, C, is defined as an identity transformation that minimizes

‖W − CW‖2
F + α−2‖C‖2

F . (5.1)
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Choosing G, which is the negating conceptor, that minimizes

‖(G(X − Y ))TG(A−B)‖F = ‖(X − Y )TGTG(A−B)‖F

will result in mitigating the most prominent bias direction.

5.4 System

To demonstrate the effectiveness of our interactive debiasing approach, we build a visual

analytic prototype system, EmBiVis. EmBiVis consists of a web-based visualization inter-

face using D3.js, a backend module that processes all embedding computation in Python,

and the Flask framework and the Flask-SocketIO server connecting the two. In this section,

we describe the design and functionality of EmBiVis.

5.4.1 Design Goals, Challenges, and Tasks

Our design goal is to help users assess various attribute biases in word embeddings and

debias them for later use. Our target user group are those who are not necessarily NLP

experts but want to use pre-trained word embeddings in their downstream NLP applica-

tions in which certain biases may negatively impact the outcome. For these users, there

are many challenges in utilizing previous debiasing techniques. First, most of the existing

techniques require users to provide word pairs that define an attribute (e.g., ‘woman-man’

and ‘female-male’ for the ‘gender’ attribute) beforehand. Although some works offer pre-

determined sets of word pairs for a few attributes such as gender and race, selecting a good

set of attribute-defining word pairs is difficult without exploration or prior knowledge on

the training corpus or the used preprocessing method. Similarly, most of the existing tech-

niques require users to select words to be debiased, e.g., attribute-neutral words such as

‘nurse’ and ‘surgeon’ for the ‘gender’ attribute. However, users may want to explore which

words are biased and how biased these words are before debiasing them. Also, the selection

may depend on the users’ applications or domains. Finally, many works focus on debiasing
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a single attribute. But they may want to remove biases for multiple attributes. In addition

to supporting multiple attributes, we need to ensure that debiasing on an attribute does not

make the embedding more biased on another attribute.

To support users in the overarching task of debiasing an embedding, EmBiVis supports

the following tasks:

Task 1 Show global distribution of words

Task 2 Show local relationships between words

Task 3 Identify a subspace (or an axis) describing an attribute

Task 4 Allow users to edit an attribute axis

Task 5 Show relationships between attribute-defining word pairs

Task 6 Project words on an attribute axis

Task 7 Allow users to select words for debiasing

Task 8 Monitor the quality of embedding over iterations

Task 9 Support multiple attributes

Tasks 1-2 support data understanding through an interactive exploration of word vectors

(both globally and locally). Tasks 3-5 and Tasks 6-8 support Step 1: Formulate Attribute

Subspace and Step 2: Debias (of Section 3.3), respectively. Lastly, Task 9 supports debias-

ing by multiple attributes.

5.4.2 System Overview

The system design is shown in Fig. 5.1. EmBiVis has (1) the control bar, (2) the attribute

panel, (3) the visualization panel, and (4) the bias panel. The control bar on the top contains

overall controls for the tool. The attribute panel supports the attribute axis formulation (Sec-

tion 5.3.2). The visualization panel shows various views to support the exploration of word

vectors and constructed axes. Lastly, debiasing is done in the bias panel (Section 5.3.3).

90



For all views, we color one side of an attribute as green and the other as orange. The

width and height of each view or panel are adjustable by dragging the divider to allocate

more or less space to it.

5.4.3 Control Bar

The control bar on the top contains a dropdown menu to select word embeddings, the export

button to save the resulted embedding after debiasing, and the information button to show

a pop-up window with tutorial instructions. At the start, a user chooses an embedding to

debias in the dataset dropdown. After the debiasing process is done, the user can export

embedding for later use by clicking the export button.

5.4.4 Attribute Panel

The key functionality of the attribute panel is Step 1: formulating axis subspace (Sec-

tion 5.3.2). The attribute panel has the attribute axis list, the axis module to update an axis,

and the table showing analogy pairs for the selected attribute axis (supporting Tasks 3-5,

9).

Attribute Axis List

To support multiple attribute debiasing (Task 9), the users can add, modify, or delete at-

tribute axes using the attribute axis list. In the list, each item represents an axis with its most

representative word pair and the number of attribute-defining word pairs shown. When an

axis is selected, it is highlighted with a black background. The selected axis can be dupli-
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cated or deleted using the buttons on the right side of the list item. To formulate a new axis,

the user can click the ‘Add a new axis’ button.

Axis Update Module

The axis update module offers three ways to add attribute-defining pairs (Task 4). First,

we collected attribute-defining pairs from previous works covered in Section 3.2. The user

can select the pair set from the dropdown menu (top). Second, the user can manually en-

ter word pairs (middle). Third, based on currently added attribute-defining pairs and the

recommendation algorithm in Section 5.3.2, EmBiVis suggests the top five word pair can-

didates (bottom). Additionally, when the user enters a word in the custom input (middle),

EmBiVis recommends additional word pairs containing the entered word. Hovering over

a suggested pair highlights the pair with green and orange colors and updates the global

view and the pair view in the visualization panel (Task 5). This allows the user to learn the

suggested pair’s global position as well as its relationships with the current set of attribute-

defining pairs. The user can add a suggested pair using its plus button.

Pair Table

The pair table shows the attribute-defining word pairs for the currently selected attribute

axis (Task 5). Each row shows a word pair (wi, wj) and the cosine similarity between the

pair difference vector (wwwi −wwwj) and the axis vector bbb. A higher similarity means that the

pair is more representative of the selected axis. The user can remove an attribute-defining

pair by clicking the ‘x’ button on the corresponding row (Task 4). Rows are sortable by

similarity or words. Similar to the recommended pairs, hovering over a row highlights
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Figure 5.5: Zooming-in functionality of the binned scatterplot in the global view. Incre-
mentally zooming in on a region increases the details (words) shown.

the pair with green and orange colors; highlights the corresponding in words the global

view and the pair view in the visualization panel (Task 5). This allows the user to learn

the selected pair’s global position as well as its relationships with other attribute-defining

pairs.

5.4.5 Visualization Panel

The visualization panel offers various visualizations that help the exploration of word em-

beddings, examination of pair vectors, and embedding quality monitoring. The visualiza-

tion panel contains three views: the global view, the pair view, and quality monitoring view

(supporting Tasks 1-2, 5, 8).

Global View

The global view visualizes words in a binned scatterplot to show the global distribution of

words and a word’s relationship with other words (Tasks 1-2). While the other views in the

system focus on the aspects that are directly related to attribute subspace, this view shows

an overview of the words using the high dimensional relationships. Because the size of the

dictionary is not practical to visualize individual words in the scatterplot, we use a binned

scatterplot with zoom-in. In Fig. 5.5 (left), we start with large bins with coarse granularity

where each bin is represented as a square. Zooming-in will show smaller bins with finer

granularity, which is still represented as the same-sized squares (Fig. 5.5 (middle)). At the
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Figure 5.6: Illustrating the brushing and linking functionality of our system. Hovering over
a word pair in the table shows the corresponding pair in the 2D projection.

finest level of zooming in, we show individual words with labels (Fig. 5.5 (right)). We

utilize the quadtree algorithm for latency. We provide three dimension reduction options:

PCA, t-SNE, and UMAP.

Pair View

The pair view shows the 2D projection of attribute-defining pairs of the selected axis (Task

5). One advantage of our interactive approach over automated debiasing algorithms is that

the user can visually examine the saliency of the added attribute-defining pairs as illustrated

in Fig. 5.3. The user can examine the pair view and discover any sub-trends within the

pairs. For example, family related gender pairs (e.g., mom-dad, daughter-son) and the

others (e.g., female-male, he-she) tend to form different clusters. Also, the pair view, the

pair table, the pair recommendation list, and the global view are connected via brushing

and linking. Utilizing the brushing and linking, the user can discover interesting discovery

such that pairs that have similar difference vectors are not necessarily near each other in

the original space.
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Figure 5.7: The quality monitoring view (left). Hovering over a line or a legend highlights
the metric using green (improvement) and red (deterioration) colors (right).

Quality Monitoring View

The quality monitoring view shows a temporal line chart of embedding quality measures

and bias scores (Task 8). For the general embedding quality, we utilize word analogy

measure and similarity ranking measure, which are widely used in the NLP community.

For the bias metric, we adopt [95] using attribute sets from Caliskan et al. [113]. In

Fig. 5.7, hovering over a line or its legend highlights the selected measure and grays out

the others. Each segment (between iterations) in the highlighted line is colored as green (or

red) if the metric is improved (or not) at the iteration.

5.4.6 Bias Panel

The key functionality of the bias panel is Step 2: debiasing (Section 5.3.3). The bias panel

consists of the axis projection view, the word table, and the debias button (supporting Tasks

6-7).

Axis Projection View

The axis projection view visualizes the coordinates of the word vectors projected onto the

selected bias axis (Task 6). Fig. 5.8 (left) shows the axis projection view, which consists of

a bar chart and a 1D plot. For both the bar chart and the 1D plot, top is the green extreme
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Figure 5.8: The axis projection view (left), the word filter (top-right), and the word table
(bottom-right) in the bias panel.

and the bottom side is the orange extreme of the selected bias axis. We use a focus+context

approach to show the distribution of projected words in a histogram. Upon brushing the bar

chart, the selected section will be drawn in the 1D plot. For example, the focused region in

Fig. 5.8 shows that ‘clerk, singer, educator’ are biased toward female extreme. Hovering

over a word in the axis projection view highlights the corresponding word row in the word

table.

Word Table

The word table allows the user to choose which words to debias. (Task 7) Each row repre-

sents a word, and its coordinate on the bias axis is also shown. The user inspects the words

in the extreme. If they are attribute specific (e.g., actress), the user can uncheck it not to

debiase it and consider adding it to the attribute-defining pair with the opposite word (e.g.,

‘actor’). If there are biased attribute-neutral words, the user can use the checkbox to debias

it. On top of the word table, there is a filter with selected word groups. We offer Wordnet
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based categories (e.g., nouns, nouns about people, adjectives, etc.) as well as word groups

used in the previous works (e.g., professions, family words, etc). When a filter is selected,

the word table and the axis projection view are updated with only the words that are in the

group. Hovering over a word row highlights the corresponding word in the axis projection

view.

5.5 Use Case

Figure 5.9: A user selects a set of pre-defined pairs.

We describe our system’s functionalities with an example scenario. A user is interested

in the implicit gender bias in the word embedding model, word2vec. The user’s visual

explorations start with initial empty views. The user selects a set of pre-selected pairs

that defines gender attribute (Fig. 5.9). Among the added preset, the user finds out that

the maiden-bachelor pair does not align well with other added pairs (Fig. 5.11a). After

removing the maiden-bachelor pair with other less interesting pairs, the user examines

recommended pairs. The user likes the pair aunt-uncle, and add it to to refine the gender

subspace (Fig. 5.11b). In the bias panel (Fig. 5.10), the user selects verb.emotion category

from the word filter to see how implicit gender bias is associated with emotional verbs.
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Figure 5.10: Initial view after selecting a preset of (female-male) pairs.

Figure 5.11: (a) A user hovers over and removes an unrelated pair (maiden, bachelor) from
selected pairs set. (b) A user adds a recommended pair (aunt, uncle).
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Figure 5.12: Emotional verbs located at the two ends, (a) female, and (b) male. Words
corresponding to the female direction are mostly negative, and words corresponding to the
male direction are mostly positive.
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Figure 5.13: After debiasing, attribute pairs are more parallel and emotional verbs are well
distributed along the attribute direction.

Figure 5.14: A user adds recommended pairs to the pairs set.
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Figure 5.15: Nouns associated with the religion attribute direction before and after debias-
ing.

101



The user notices that most words at the extreme of the female direction are negative words

such as overwhelmed, frightened, and depressed (Fig. 5.12a). On the other hand, the words

at the end of the he extreme are mostly positive words such as humble, preferred, and

admired (Fig. 5.12b). Since these associations are undesirable, the user selects them and

debias the embedding by clicking the Debias! button. After debiasing, as shown in Fig.

5.13 , attribute pairs are more parallel then before (meaning most of their difference vectors

can be explained by the bias vector), and the emotion verbs are much more well-distributed

along the gender attribute direction. The user moves on to explore the implicit religious

bias. The user selects christian-muslim pre-defined pairs (Fig. 5.14a) and add more pairs

using the custom input menu. After populating more attribute-defining pairs using the

recommendation made by our system (5.14b), the user sees the similarity distribution of

words categorized as noun.feeling are highly biased (Fig. 5.15 a, b). For instance, words

such as ‘rage, terror’ are on the islam extreme, while on the christianity extreme ‘hope,

passion’. Interestingly, ‘horror’ is also associated with christianity. After debiasing the

embedding, words are equally distributed along the axis (Fig. 5.15 c).

5.6 Experiment

In this section, we present experimental results to test the effectiveness of our interactive

approach against automated/static debiasing algorithms for the task of sentiment prediction.

5.6.1 Experiment Setup

To observe the effect of different debiasing methods for NLP downstream tasks, we select

a sentiment analysis in the context of movie reviews. Following the experimental settings

from [94], we measure the accuracy of sentiment prediction utilizing word embeddings that

are debiased by different debiasing approaches. We compare our method with two static

debiasing methods: HardDebias by [91] and ConceptorDebias by [124] since our method

is based on these two static methods. Non-debiased, original word embedding is also used
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Figure 5.16: Classifier bias on the (female, male) attribute.

as a baseline. We use the IMDB movie review data set [125] with labels, where 1 and

0 each represents positive and negative sentiment, respectively. We add randomly chosen

word from opposing set pairs (e.g., a typical female term or a male term) to the end of

each test sentence, and calculate the difference in the sentiment prediction (i.e., the polarity

score), made by a simple neural network that takes a pre-trained word embeddings as its

embedding layer.

5.6.2 Results

Fig. 5.16 shows the polarity score for the (female, male) attribute. polarity score is defined

as follows. For a sentence si, a label is tagged where li is either 1 (positive sentiment),

or 0 (negative sentiment). After the model is trained on a train set, we use the model

to output two prediction results for two modified sentences for each sj . First prediction

lj1 is made for sj followed by a male word, and the second prediction lj2 is made for sj

followed by a female word. polarity score = lj1 − lj2 . The largest variance of the non-

debiased embedding indicates that biased words affects the sentimental analysis to some

extent. Among the compared methods, our approach shows the smallest variance, which
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means that due to our debiasing approach, biased words had less effect on the sentiment

classifier. In addition, for the non-debiased, original embedding, there is no clear trend that

the embedding influences the average polarity score of our sentiment classifier.

5.7 Discussion

In this section, we discuss limitations and opportunities of our interactive debiasing ap-

proach.

Customizing Bias Assessment Metric. Bias evaluation metrics such as the Word Embed-

ding Association Test (WEAT) [113] are highly dependent on the selected sets of attribute

words (‘art’, ‘science’) that the target sets (‘he’, ‘she’) are compared with. For example, if

we choose different sets of words describing ‘art’ and words describing ‘science’, we may

get different conclusion whether a specific gender is more close to art or science. Further-

more, the meaning and usage of a word changes over time. And the dictionary of word

embeddings may vary depending on the corpus that the given word embedding is trained

on (e.g., word embedding trained on Twitter data vs. word embedding trained on news

articles). Therefore, adopting the evaluation sets as-is may not be the best option to eval-

uate word embedding for different downstream tasks in different domains. We provide an

option to easily change the list of evaluation words via a json file.

Dealing with Non-binary Attributes. Attributes can have multiple classes. Unfortunately,

most existing literature treats multi-class attributes as binary. A common case is to pick a

pair of classes (e.g., black vs. white from race). Another common case is use all pair-

wise classes (e.g., christianity vs. islam, islam vs atheism, atheism vs. christianity from

religion). Similarly, EmBiVis only supports binary attributes. So users need to construct

pairwise axis (e.g., male-female, black-white, etc) by either picking one pair or creating

pairwise classes from a multi-class attribute. To deal with this limitation, we plan to extend

our approach to incorporate multi-class attributes as future work. One challenge is visual-

104



izing attribute-defining word sets. In our current system, we visualize vector differences of

attribute-defining pairs, which cannot be easily translated to triplets or quadruples. Another

challenge is projecting words onto multiple axes. For example, the axis projection view,

which shows two extremes, can be replaced with a radar chart or parallel coordinates to

visualize multiple axes.

Simultaneous Debiasing of Multiple Attributes. Our approach adopts single attribute

debiasing per iteration (Fig. 5.4). That is, users have to perform debiasing one attribute by

one if they want to debias multiple attributes. However, debiasing by one attribute may ag-

gravate another attribute bias in the updated embedding if there is an underlying association

between the two attributes in the original corpus. In addition, debiasing multiple times for

all attributes can lead to information loss because a debiasing operation distorts the original

high-dimensional relationships among words. One solution can be joint/simultaneous debi-

asing [98, 94]. This will likely require a new visualization design that is tailored to support

additional tasks such as attribute axes comparison, word projection on multiple axes, and

so on.

Debiasing via Post-processing. As mentioned in Section 3.1, there are three types of

debiasing techniques: pre-processing, in-processing, and post-processing. Our approach

falls into the third category, i.e., a post-hoc debiasing of word embeddings. Although our

current prototype supports two debiasing algorithm options, any other post-processing de-

biasing techniques can be applied to our human-in-the-loop framework. In addition, we

envision that human input (even from layusers who are domain experts) can also be bene-

ficial for pre-processing debiasing. Pre-processing debiasing techniques transform training

data by augmenting data, neutralizing data, removing biased subsets, and so on. Users’

domain knowledge can be incorporated into these algorithms in a semi-supervised manner.

For example, which words to substitute, with which words to substitute, and what kind of

documents to remove.
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5.8 Conclusion

Debiasing word embedding is an important NLP task that can benefit many downstream

applications. In this chapter, we propose a new human-in-the-loop debiasing framework

designed for layusers without expert knowledge on NLP techniques. Our approach allows

users to formulate attribute axes, assess attribute biases, and debias word embeddings via

interactive visualization. We demonstrate the effectiveness of our approach using use cases

and experiments. As future work, we would like to extend our framework to support multi-

class debiasing.
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CHAPTER 6

CONCLUSION

The goal of this dissertation was to achieve tight integration among algorithms, visualiza-

tions, and user interactions in human-in-the-loop machine learning systems for improved

interactivity, scalability, and interpretability. We designed and developed three interactive

visual text analytics systems for (1) interactive hierarchical topic modeling, (2) interactive

search space reduction, and (3) interactive exploration and mitigation of biases in word

embedding. From these works, we suggest the following design guidelines for tightly inte-

grated interactive systems:

1. Co-development of algorithms, visualizations, and user interactions that are

grounded in human-in-the-loop interactivity. State-of-the-art automated algo-

rithms are not necessarily best for visual analytics. Interactions designed around

algorithmic convenience can lead to analytic process not tailored to user needs. Thus,

algorithms, visualizations, and interactions should be simultaneously developed dur-

ing the deign process so that interaction can be directly linked to model change and

fast algorithm update.

2. Adaptive update for real-time interactions. Many existing human-in-the-loop ma-

chine learning systems suffer from the interaction latency problem due to slow com-

putational result updates, which hinders active user interactions. To solve this, we

recommend tailoring the underlying algorithm to allow incremental, timely, and re-

sponsive updates instead of recomputing the entire solution after interaction [86].

3. Bidirectional guidance between the system and the user. Many prior works have

focused on incorporating user feedback into the underlying model (human-to-machine

guidance), but limited work has been done regarding the systems providing feedback

to users to guide their analysis process (machine-to-human guidance). For efficient
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completion of tasks, we advocate two-way guidance between the system and the user

to leverage the strengths of both sides.

Building on the works in this dissertation, there are several directions for future work.

First, we would like to explore interactions on various degrees of information. With our

systems, users can interact with keywords, documents, and topics. Providing more flexible

and diverse interaction units such as phrases, sentences, and paragraphs can be helpful in

expressing users’ mental models. For example, highlighting a phrase can be a form of user

interaction. Another promising research direction is active learning for machine-to-human

guidance. In Chapters 3-5, we offer visual guides such as interaction assistant in Archi-

Text or keyword recommendation in TopicSifter and EmBiVis, which are mostly based on

similarities. Applying active learning framework using various performance measures and

explicit and implicit user feedback can lead to efficient analytic processes. Additionally,

providing rationale behind guidance can build trust between the system and the users.
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